| NSF/RA-B00379

POgl-1¢5572

FINAL TECHNICAL REPORT

PREPARED FOR

THE NATIONAL SCIENCE FOUNDATION
CARTHQUAKE BAZARD AND MITIGATION PROGRAM

- RESEARCH INITIATION GRANT
NSF CONTRACT RO. PFR-7823098

NONLINEAR VISCOELASTIC BEHAVIOR OF A COHESIVE SOIL
UNDER UNIAXIAL LOADING CONDITIONS

BY
SAEED RAFIE AND M.G. SHARMA

THE PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

SEPTEMBER 1980

T BEPRODUCED BY
- NATIONAL TECHNICAL
[NFORMATiON SERVICE:

US. DEPARTMENT OF COMMERCE
_ SPRINGRIELD, VA el

EAS INFORMATION RESOURCES
NATIONAL SC!ENCE FOUNDATION






iid

ABSTRACT

The nonlinear viscoelastic behavior of a cohesive soil under
uniaxial loading conditions has been studied. A constitutive relation-
ship based upon a multiple integral representation has been developed.
The time dependent parameters of this relation (kernel functions) have
been determined, performing uniaxial single-~step creep tests on a
specilally developed test apparatus. The constitutive relationshlp has
been generalized for multi-step loading, as well as dynamic sinusoidal
loading conditions. Yt has been shown that the behavior of the material
for multi-step loading conditions can be predicted by the results of
the single-step tests. In addition, the behavior of the soil under
uniaxial compressive cyclic loading has alsc been studied, using an
apparatus specially developed for the purpose. The energy dissipation
in a given cycle of loading has been evaluated. The effect of frequency

on the energy loss has been studied.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.
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THTRODUCTICH

1.1 General Remarks

The design and analysis of soil-structure systems subjected to
vibratory and impulsive forces have attracted considerable attention in
recent years. It is known that ground motions due to the transient
forces impose severe inertia forces on structures. These inertia forces
may influence the load bearing capacity of the soil underneath the
structures. This mutual influence between the structure and soil is
usually known as the soil-structure interaction. The study of this
problem requires a knowledge of dynamic soil properties. Desiguers cre
concerned with the so0il behavior under dynamic loading conditicms, buz
there has been no attempt to develop a rational and analyticzal method o
represent the behavior of this material.

The soll-structure interaction has been studied by nuwmsrous
investigators. To date most of the scil-interactior wark has been doms
assuming the soil mass underneath a foundatiom as elastic (1,2). This
assumption has been used in three different methods to represent the
behavior of a so0il mass:

(1) Elastic half-space theory;

(2) Lumped parametric representaticn; and

(3) Finite elements analysis.

Although in recent years some attempts have been made to analyze the
stresses and strains in the soil mass assuming the material as linear
viscoelastic (3), very little work has been done to determine the realistic
properties of this material.

Generally soils are rheological in nature. They display time-



dependent creep behavior under steady loading conditions. A study on
creep and relaxation behavior (4) shows, soils behave as a nonlinear
viscoelastic material. Recently, much attention has been given to
represent the behavior of a nonlinear viscoelastic material by using
the multiple integral theory. According to this theory, the nonlinear
viscoelastic behavior of a material is specified in the form of a
series of kernel functions which are assumed to be symmetric. These
kernel functions tﬁat are time dependent only have to be determined
from a series of tests invo;ving step loading. It is generally known
that a large number of tests are necessary to determine the kernel
functions (5).

In this thesis, multiple integral representation theory has been .
used for characterizing the nonlinear viscoeleastic behavior of a2 cohesive
soil. The work describes a comprehensive experimental program for
determination of kernel functions. It is shown that if certain symmetry
properties are assumed, the kernel functions can be determined from

relatively few tests.

1.2 Statement of the Problem

Although rheological behavior of solls has been studied exteﬁsively
for the last three decades, much of the literature deals with the
development of laboratory techniques for studying the behavior under
creep, stress relaxation, andfdynamic sinuscidal loading conditions.

Very few attempts have been made to analyze the data from rational
mechanistic principles. Even those investigators (6,7,8,9,10), who have
attempted to describe the behavior of soils from mechanistic principles,

have assumed the cohesive solls as



(1) Elastic;

(2) Elastic-plastic; and

(3) Linear viscoelastic.

It is well-known that solls display appreciable nonlinear stress-time
dependent behavior (5). There is a great need for the development of
constitutive relations that reflect these properties of soils.

The thesis describes an experimental program, as well as the
theoretical development for the one~dimensional constitutive relationship
that represents the nonlinear viscoelastic behavior of a cohesive soil.
The constitutive relationship has been developed from creep tests. The
generality of the developed constitutive relationship is verified by
predicting the behavior of the material under other stress historiles.
The predicted values have beer correlated with the observed values for

the same stress histories.

1.3 Objectives

The objectives of this investigation are as follows:

{1) To study the creep behavior of a cohesive soil under various
uniaxial compressive loadings. at agiven molsture content and to develop
a one-dimensional constitutive relation that reflects the viscoelastic
and nonlinear effects. .

(2) To study the rheological behavior of the cohesive soil under
other stress histories such as the multi-gtep and sinusoidal stress
histories.

(3) To correlate the observed behavior of the material for stress
histories that are studiea under item {2) with the predicted behavior

based upon the developed constitutive relatiocnship.



1.4 Scope and Limitation of the Thesis

The work reported in this thesis is primarily concerned with the
experimental investigation for the creep and dynamic mechanical behavior
of unconfined cylindrical specimens of a cohesive so0ll subjected to
uniaxial stresses varying from 5 to 38 p8i., The deformation was
measured for a short time interval (500 seconds). Creep tests have also
been conducted for other stress histories such as two-and three-step
histories. Two—-step loading tests were performed for three stress
levels, whereas, three-step loading tests were performed for only one
stress level. Also testé under sinusoidal loading for a frequency range
from 9 to 22 Hz were conducted as part of this study. The particular soil
used in this investigation is a remolded soil from the test track area of
the Pennsylvania Transportation Facility. The soil specimens were tested
at room temperature (75°F), and for a moisture content of 18.9% water
under a constant compaction effort.

The background for the proposed investigation including the related
literature has been presented at the end of this Chapter. Chapter II
describes a review of the nonlinear theory of viscoelasticity leading to
a one-dimensional comstitutive relatiomship fof characterizing the stress-
strain-time behavior of a given rheclogical material. The one-dimensional
constitutive relationship for dynamic sinusoidal loading is also discussed
in this Chapter. The details on soil specimen preparation, test
apparatus, and experimental procedures are given in Chapter III. In
Chapter IV, the experimental results and complete determination of the
stress-strain-time behavior of a cohesive soil are presented. The
application of this relation is discussed for two- and three-step loading

conditions. The correlation of the creep test results, with the dynamic



sinusoidal test results,is also given in this Chapter. Summary and

conclusions are given in Chapter V.

1.5 Literature Survey

Soils can be consildered as one of the oidest and the most complex
materials of construction. It is generally understcod that thz
stability and durability of a structure wiil largely depend upcn the
behavior of the so0il upon which it is built.

Mechanical behavior of soils primarily has been studied by
considering s0il as an elastic or elastic-plastic materiai. Amoug ths
investigators, Wilson and Dietrich (8) have studied the elastic strain
response of a cohesive soil by performing incremental and repeatred
loading tests. Elastic~plastic behavior of soil was studied by Mitchell
and McConnell (7). They discussed a possible approach for separatinn of
elastic and plastic deformation by performing the creep-recovery tasts.
They found the elastic deformation is nonlinear with respect to che
stress level.

In early 1960, several investigators (8,9,10) have studis: ths tims-
dependent behavior, by conducting creep and stress relaxation resgos.
Their results show soils are rheological in nature, and their mechanicol
response depends on both the loading path, as well as the histoyr of
loading. Murayama and Shibata (8) by assuming a rheological moc:.. .-
clays, derived a relationship for>strain response of the material wish
respect to stress and time. Vialov and Skibitsky (9,10) have seudizd
the rheological properties of soil by comsidering a Kelvin modzl. Tha
viscous element in this model was replaced by an elasto~plastic vwisccous

element. The results show that the model is suitable for describiug

the stress relaxation of dense clay. Folque (11) and Barden (12)



performed creep and relaxation tests., The results from these tests were
represented by models consisting of linear springs and dash-pots.
Comparison of the results from experimental data and differential laws
based on the model indicate the existance of nonlinear effects in
cohesive soils. Drescher (4), has done a comprehensive work for
characterizétiqn of soil béhavior. On thé basis of experimental results
under various loading programs, he found that the response of soil

under creep loading for a short duration is markedly nonlinear. He also
observed that the nonlinearity of soil increases with the value of
applied stress and time.

During the last decade, some attempts have been made to analyze
stresses and strains in the soil mass assuming the material as linear
viscoelastic. In most of these investigations, the principle of
superposition proposed by Boltzmann was the basis for déscribing the
linear viscoelastic behavior of soils. Kondner and Krizek (13),
presented a creep compliance function for the creep response of a
cohesive soil under uniaxial compression. They obtained an explicit form.
for the creep compliance, that included the nonlinear effects of the
material. Veletros and Verbic (3), studied the effects of éoil damping
on steady-state response of harmonically excited foundation. They
represented the dynamic vigcoelastic béhavior of a soil by two models
that consisted of a standard Voigt model in series with a constant
hysteretic element. Kondner {(14), studied a soll-structure system
subjected to a vertical sinusoidal loading. His experimental results
indicate that the soil-foundation system behaves nonlinearly.

Kendner (15), and Krizek (16), by performing creep and dynamic

sinusoidal loading tests represented the time and rate effects on the



stress-strain response of a cohesive soil in terms of a compliance;
time function. Their experimental data showed that the stress-strain
time response from the creep and dynamic sinusoidal loading is
definitely nonlinear. The nonlinearity was handled by reducing the
response to a constant level which can be approximated by linear theory
of viscoelasticity. Kondner (15) also found that the experimental
results from blast pulse loading correlate quite well with those
obtained from dynamic steady-state loading tests.

The energy storage and energy dissipation characteristics of soils
have been specially considered in the design and analysis of soil-
structure systems subjected to transient loadings such as earthquake
phenomena. There has been a considerable effort to characterize the
dynamic behavior of soils. XKrizek (17) suggested the use of one~sided
Fourler transform techniques to transform the results from the time-
dependent creep tests for a remolded clay into the frequency domain.
He obtained approximate expressions for the storage and loss compliance
functions. The use of this technique was limited for a linear
viscoelastic material. The energy storage and energy dissipation
characteristic of a cohesive soil was studied experimentally by Kondner
and Ho (18) and Kondner and Krizek (19). They performed strain-
controlled vibratory uniaxial compression tests, and obtained the
response of the material in terms of conventional viscoelastic
parameters such as storage modulus, loss modulué, and the loss tangent.
Dynamic stress—strain response showed that nonlinearity existed even at
very small values of dynamic strain. Their experimental results
indicate that the phase angles between sinusoidally applied strains and

the resulting stresses are small (a few degrees). Also they found for



the linear range, the applied stress level has little effect on the
dynamic response. The results of the dynamic testing show that storage
logss, and loss tangent decrease with dynamic strain amplitude.

Krizek and Franklin (20), studied the energy dissipation characteristics
of soft kaolin clay. They obtained the hysteresis loops produced by
subjecting & clay specimen to a harmonically varying torsional shear
strain. The energy losses were determined by using the phasé angle
between the stress and strain combination with linear theory of
viscoelasticity. The results show that the energy losses are slightly
higher than those measured from the hysteresis loops. The difference
can be attributed to the nonlinearity of the soils behavior. They also
found that the energy dissipation is relatively independent of
frequency for frequenciles ranging from .1 to 30 cps.

In order to study the dynamic stress-strain response of a cohesive
soll for short time (0.2 m sec.), Kondner and Forrest (21), performed
compressién tests for duration of approximately 3.0 m sec., by explosion
'of a rifle cartridge. The stress—-strain response of soil under a short
time.impulsive'loading was found to be nonlinear. They represented
the nonlinear stress-straln effect in terms of a two-~constant
hyperbolic relationship. The volumetric stress-strain behavior of soils
was investigated by Klausner (22). He showed that the mechanical
analogy of voiumetric behavior can be represented either by Kelvin
elements coupled in series, or by Maxwell élements coupled in parallel.
The results show that linear viscoelasticity is not suitéble to
represent a volumetric constitutive relationship.

A more comprehensive experimental study on soils has been

reported by Drnevich (23), and Drnevich, Hardin, and Shippy (24). They



used the resonant-column method to obtain modules and damping of solid
cylindrical soil specimens. In their method, shear or compressional
waves were propagated by applying a sinusoidal torque, or a sinusoidal
axial compression to the specimens. The frequency of the applied
torque or force was adjusted until resonance occurred. The resonant
frequency plus the magnitude of the applied torque or force and the
magnitude of the resulting motions have been used to calculate the

modulus, damping, and strain amplitude.
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CHAPTER II

THEORETICAL CONSIDERATION

2.1 Introduction

In order to obtain a general constitutive relationship for a
cohesive soll under uniaxial loading conditions, a nonlinear theory
of viscoelasticity 5ased upon the multiple integral representation
is discussed. The nonlinear representation has been determined by
using the e#perimental data from the uniaxial creep tests on the
.cohesive soll specimens. As the experimental results (see Chapter
1V) indicated nonlinear response, attempts have been made to model
this behavior in terms of a nonlinear theory of viscoelasticity.
For a linear viscoelastic material, the creep compliance, which is
defined as the strain per unit of applied stress, 1s independent of
the stress level and is a function of time only, whereas, for a
nonlinear viscoelastic material, the creep compliance is dependent
uéon the stress level, as well as the time of ldading.

The nonlinear theory of viscoelasticity has other feafures in
common with the linear theory, which is the memory hypothesis. This
hypothesis, in terms of a stress-strain relationship, simply means
that the current value of gtrain i1s determined not only by the cur-
rent value of stress, but also by the complete past history of
stress.

In the following, a general one dimensional constitutive rela-
tionship for a nonlinear viscoelastic material under uniaxial
loading condition has been given. A multiple integral functional
relationship has been employed to obtain the constitutive relation-

ship. Application of this relationship for different loading
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histories consistiﬁg of one, two, and three steps loading has also
been discussed. Finally, expressions for the sinusoidal behavior
of a nonlinear viscoelastic material in terms of dynamic kernel

functions are obtained, using the kernel functions from creep loading.

2.2 One Dimensional Constitutive Relationship

The most general uniaxial constitutive relationship for a

nonlinear viscoelastic material may be expressed as:

t
_ do(t")
e(t) = F ["E_'—} £l = ew (1)

According to equation {1), the strain depends upon the entire past
history of stress. When the function F is linear, equation (1) re-
presents the Boltzmann superposition integral that is, the basis

of the linear theory of viscoelasticity:

t
- _ery So(E') Ly
;(t) i}:m D(t~t") a0 dt (2)

where D(t) is the creep compliancé function that is a function of
time only.

By assuming the nonlinearity and continuity of the functional
F in equation (1), and utilizing a Fréchet series, Green, Rivlin,
and Spencer (25,26,27}, have shown that the functional can be re-

presented by an infinite series of multiple integrals as follows:

t dc(tl) t rt da(tl)
t) = D, (t-t e dt, + D t-t,,t-t —_—
o) ,’:m 1=ty dt, 1 [m[m g (E7tq,E-E)) dt,
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do(t,) t rt t dc(tl)
i, de,dt, +[meIm D, (t=t,,t-t,,t=t,) __dtl

dc(tz) do(t

dt2 dt3

3)

dtldt dt3 + . .. (3)

2
where Dl(t), Dz(t,t), D3(t,t,t), ... are Kernel functions which are
symmetric with respect to thelr arguments. These kernel functioms
are completely determined when their values are known for the fol-

lowing situations:

Dl(t) t 20

t,2t,20 (4)

Dy (ty,ty) 1

D, (t),t,,t,) ty2t,2t,20

The first order kernel function Dl(t) 1s described in terms of a
single time parameter t and may be illustrated by a plane curve as
shown in Figure 1, whereas the determination of the nonlinear kernel
fucntions such as Dz(t,t) and Ds(t,t,t) require more than one time
parameter. The second order Kernel function Dz(t,t-tl).may be
illustrated by a surface P as shown in Figure 2.

The type of input stresses ¢g(t) that may be used to determine
the kernei functions is arbitrary. The form of the equatiﬁn (3) is
particularly suited to step loading inputs, for example, for single

step creep loading:

oft) = ogH(t) (5)
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where H(t) represents the Heaviside step function. Subsituting

equation (5) in equation (3), it can be shown;:

e(t) = GDl(t) + 02D2(t,t) + 03D3(t,t,t) + ... (6)
T or
_eft) _ 2
D(t,0) = p = Dl(t) + 0D2(t,t) + o D3(t,t,t) + ... (7

where D{t,o} is the creep compliance function which for a nonlinear
viscoelastic material is both stress and time dependent.

A number of investigators have proposed methods for the experi-
mental determination of the kernel functions. In most of these in-
vestigations, the representation corresponding to equation (1), has
been terminated after a finite number of terms and then the tacit
assumption is made that this finite-order e#pansion represents the
system exactly.

The representation of the uniaxlal nonlinear constitutive rela-
tion can be extended to a multi-axial stress state by considering
all the possible combinations of stress tensors and stress invari-

ants, which is beyond the scope of this thesis.

2.3 Uniaxial Multi-Step Loading

2.3.1 Two-Step Loading

In order to develop the constitutive relationship for two-
step loading history, the load levels during the two steps will be
given arbitrary values. 1In most of the existing experimental data
have been obtained from the cases where the load is doubled or re~

moved in the second step (recovery). The two-step stress history

14
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as shown in Figure 3 can be formulated as followings:

o(t) =0 t<0
a(t) = Gl 05t<t1 (8)
o(t) = 9y + o, tat

An examination of the experimental data indicates that three terms
in the infinite series integral equation (equation (3)), are suffi-

cient to describe the creep behavior of the test material.
l) .

t do(tl) £ ot
e{t) =f D, (t-t ) —— dt +f j D, (t-t,,t=-t,)
o 1 1 dtl 1 o Jo 2 1’7 2 1

do(t,) t ot oot do(t;)  do(ty)
at, - dhd9 ¢ f f f Dylt=ty,t=ty,t=t) 3¢ ' Tar.
2 o Jo Jo 1 2

do(t
dt

dc(t3) _
dt3 dtl . dtz . dt3 {9

By substituting equation (8) in (9), the single integral for two-

step loading can be shown as following:

t dc(tl)
J[ Dl(t*tl) _EEI“_ dtl = Dl(t)crl + Dl(t—t1)02 {10)

The double and triple integrals of equation (9) can be evaluated as

follows:

t ot dc(tl) dc(tz)
LJ; Dz(t—tl,t-tz) dtl dtz dtldt2=01[D2(t,t)ol+
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+ Dz(t,t—tl)oz] + 02{D2(t~tl,t)c1 + Dz(t—tl,t—tl)czl =

2 2
= Dz(t,t)ol + D2(t—t1,t—tl)02 + 20102D2(t,t—t1) (11)
and
jt tft do(tl) dc(tz) do(ts)
A D, (t-t.,,t-t,,t-t,) ¢ . dt.dt. dt, =
o.l; o 3 1 2 3 dtl clt2 dt3 1"72773

‘ 2 2
*vcl(D3(t,t,t)01 + D3(t,t~-tl,t~tl)o2 + 20102D3(t,t,t-tl)]

: 2 2 _
+ 02[D3(t~tl,t,t)01 + D3(t—t ,t—=t t~—tl)c2 + 20162D3(t—tl,t,tft1)~

1 1

ki

3 3
D3(t,t,t)01 + D3(t—tl,t—tl,t—tl)02 + 3010

2[01D3(t,t,t—t1) +

+ gDy (t,t-t,,t-t,)] (12)

Therefore, the creep response for two-step loading history can be

expressed by the following equation:

) .
s(t,tl,cl,cz) = Dl(t)ol + Dl(t—t1)02 + Dz(t,t)ol + Dz(t-tl,t-tl)
02 4 20,00, (t,t=t) + D, (t,t,£)0- + D (t=t,,t-t.,t-t Yo +

2 17272 1 3~ 1 3 1’ 1’ 172
30,0,[0,D (t,t,t—tl) + 02D3(t,t—t1,t—tl)] (13)

17277173

2.3.2 Three-Step Loading

Three-step loading history as shown in Figure 4, can be formu-

lated as followings:

[
(o]

a(t) t<0

o(t) 1 O<t<t

fl
Q

17



o(t) =¢ +02 t15t<t2

o (t) =0 t0,t0, t, stst (14)

By expanding the results from the two-step loading history, the
strain response under a three-step loading can be expressed as

following:
E(t,tl,tz,ol,cz,OB) = Dl(t)o1 + Dl(t_t1>02 + pl(t—t2)03 +

1 z(t t) +0 2(.r.—tl,t-t:l) + 0 {t- “t,,t-t ) + 2[o,0

3 2 2 2

3

(ttt)+o‘132(ttt)+0232(tt1,tt)]+01 3(ttt)+

3 (t-t_,t-t t—t)+cr3 (t-t,,t-t t-t)+3[0 o,.D

2 3 1? 1? 1 3 3 2? 2? 2 2°3
(ttt-t)+020D(tttt)+ 2D(t t-t t—t)+002D

?e 1 9192 Y3its 1° 2 173 73
(t,t-t t-t)+020D (t-t, ,t-t tt)+ 2‘ (t-t,,t-t, ,t~t. )] +

* 2 2 1* 1’ 2 3 3 1 2° 2
+ 6010203D3(t,t—t1,t-t2) (15)

2.4 Determination of Kernel Functions

Equations (6), (13), and (15) indicate that a large number of
tests are requireé to determine the kernel Ffunctions completely.
Several methods for determination of kernel functions based upon re-
sults from multi-step history loading have been suggested in recent
yvears (5,28). In this thesis, a method has been developed for the

determination of kernmel functions from creep tests.

2.4.1 Multiple-Step Creep Tests

The first order kernel function, Dl(t) can be determined ex~

perimentally by performing single-step creep tests at several stress

18
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levels. The experimental data from these creep tests can provide
three equations for determining Dl(t), Dz(t,t), and D3(t,t,t);
From the créep tests, the second and third order kernel functions
can be only known for the same arguments.

To obtain a complete determination of the second order kernel
functions, it is necessary to perform several combinations of diffe~
rent time and stress levels of two-step loading tests. The two-

step stress history can be formulated as follows:
o(L) = Ulﬂ(t) + UZH(t~t1) (16)

The experimental results from three different loading con- ‘
ditions as represented by equation (16) can be used to determine
nz(t;t—tl), Ds(t,t,t-tl), and D3(t,t—tl,t—t1).

To cbtain the third order kernel functions with different
values of arguments, it is necessary to perform several three-

step loading tests as follows:

an

g(t) = cln(t) + GZH(t—tl) + 03H(t,t-t1,t—t2)

The total number of experimental tests required for complete deter-
mination of kernéls are presented in Table 1 on the following page.
The number N i8 related to the number of spatial lines on which the
second and third order kernel functions must be known in order to

satisfactorily specify these functions.



Table 1. Experimental Tests Required for Complete Determination
of Kernel Functions(5)

loading program number of tests
g(t) = 01H(t) 1
a(t) = o,H(t) 1
ag(t) = OSH(t) 1
g(t) = o&H(t) + OSH(t-—tl) ' N
g(t) = 04H(t) + UGH(t-tl) N
o(t) = c.iH(t)‘ + csﬂ(t—tl) N
alt) = ogH(t) + GQH(t—tl) + o of(t-ty) 1/2 N
Total number of tests 1/2 N° + 3N + 3

2.4.2 Exponential Representation of Kernel Functions

A general and simple approximation method for determining the
kernel functions, has been suggested by Nakada (29). He derived
a general constitutive relationship for a nonlinear viscoelastic
material by considering three assumptions of causality, conver—

gence, and stationariness.

4 dc(t-tl) 4o~ goo do‘(t-tl)
e(t) = Dl(tl) —r dt1 +f f Dz(tl,tz) —_—

e 1 dt1

do(t-tz) f+wf+oo +o0 do(t—tl) do(t—tz)
—— dt,dt,, + D, {t,,t. ,t.)
dt2 1772 T j_-_w 3v1*-2*3 dtl dt2
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d (t-t

dt3

) )
3 ) i
dtldtzdt3 + ... (18)

A most simple and convenient approximation for kernel functions,
for single-step excitation, can be expressed by exponential

functions as follows:

. _ t/A
Dl(t) = Klkl(l—e 1)

t 2

2 (1-e /Az)

Dz(t;t) = szz

3 __t/;\3 3
Dy(t,t,t) = Kodg (1-e ) (19)

In order to determine the three kernel functions, the
experimental data should be fitted to equations (19), or any other

exponential functions that fit the test results well.

2.5 Dynamic Behavior of a Nonlinear Viscoelastic Material

A uniaxial constitutive relationship that describes the dynamic
mechanical behavior of a nonlinear viscoelastic material can be ob- |
tained extending the multiple integral representation (equation 3).

Assuming the dynamic excitation as follows:
a(t) = o, cos u t (20)

Substituting equation(20)in equation(9), we have

t t prt
e(t) =Im Dl(t—tl) (—oom sin w tl)dtl +[mlm Dz(c—tl,t—tz)
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t t et
(-gow sin tl) (-00 wsin w t2) dtldtz + f_m j:m -]:m D3(t-t1,
t-tz,t—t3) (—co w sin w tl) (-0, w sin w t2) (—00 w sin w t3)

2
dtldtzdt3 (21)

. Assuming t-t, = 8 ;0 the above equation leads to:

i

e(t) = 5 w[D"l(wl) cos wt - D'l(wl) sinwt] - 1/2 002‘ m2

[D'z(wl,ﬁz) cos 2 p t + D"2('wl,w2) sin 2wt - D'Z(wl,-—w)] +

3 3., o n
+ 1/4 o, W D ,mz,m3) sin 3wt~-D 3(m1,w2,w3) cos 3wt

300y
= D' g(wgs0y,w,) sin w € = D" (w,,0,,-0,) cOB B t - 2 8inw t
o [+:] 00
-];-[oj:) D3(61,92,83) cos w (61-92) cos w 6,d0,d6,do, + 2 cos w t
[=-3 0 <0
f j f D3(91,02,93) co8 w (91-'92) sin w 33 d31d92d63] (22)
[¢] 0o <0
where
X
) 8 =
D', (wy) jo D, (8,) cos w 6,d6,
" -
D", (wy) -fo D,(6;) sin w 6,8,

o0 oo
L) _
D Z(ml,wz) —LL Dz(el,ez) cos m(61+62)d61d62
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" -
D z(ml,wz) ——LL D2(61,62) sin w(61+92)d61d62
t ¢ = - |
D 2(wl,-m2) L./; Dz(Gl,ez) cos w(el ez)delde2
: oo o] oo
\ -
D' 40wy ,ty,05) -j; fojo D,(8,,8,,8,) cos (B, +0,+0,)de,d6,do,
@ L0 0 ' ’
" = ;
D 3(w1,m2,m3) .[OJ;L D3(61,92,83) sin w(61+62+83)d91d62d63
[e-] o
D' (W) = ’ D,(0,,6.,0.) cos w(B,+6,+8_)de. de, do
3Y172 73 o Jo Jo 3v71*72°73 i 273 1273

[+s] (o] [+
1" =
D 3(ml,l1>2,--m3) j;];jo D3(Bl,62,63) sin w(91+82+e3)d61d82d93 {23)

The dynamic constitutive relationship can be obtained by substi-

tuting equation (23) in equation (22), and assuming e
e(t) = 0 D" () cos wt - D', (w) sin » t] « 1/2 02 0)2

) Om' 1 w 1 o v
. 1 . - L1 T 3 3
[D 2(m,m) cos 2 3t +D 2('w,m) sin 2 4y £t = D Z(w,nw)]— 1/4 o,

[D'a(w,m;m) sin 3 wt - D“S(w,w,w) cos 3w t - 3D‘3(u.1,w,—w) sin w t

- 3D"3(m,m,-m) cos w t] (24)
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CHAPTER III

EXPERIMENTAL ARRANGEMENT AND PROCEDURES

3.1 Testing Apparatus

3.1.1 Single and Multi-Step Test Apparatus

The uniaxial creep tests were conducted by using a specially
developed apparatus. A schematic diagram of the experimental set up
is shown in Figure 5. The soil specimens were subjected to axial
compression locads by means of dead weights in a pan hung from cne
end of the lever arm. The other end was connected to the upper platen
of the testing frame using a Thompson bearing. In order to eliminate
the force due to the weight of the lever on a2 specimen, a counter-
balance weight was attached to one end of the lever arm. The lever arm
ratio was such that the load in the pan was magnified five times. A
Thompson bearing was also used to connect the loading shaft to the lever
arm. To produce a uniform load on the specimen, a 3/4 in. in diameter
of a solid steel ball was used between the main shaft and the
connecting loading shaft to the lever arm. The specimens were enclosed
in a plexiglas triaxial cell that can impose a desired confined
pressure range 0 to 5 psi (Figure 6). A Thompson ball bushing was
built in the upper platen of the triaxial cell. This enabled the main
shaft to transfer the applied load vertically with less friction to
the top of specimen. A photograph of the test apparatus is shown in
Figure 7.

The axial deformation of specimen was measured by two linear
variable differehtial transformers (LVDT) of Schavitz model 250 MHR.
The deformation observed from each different transformer (LVDT) were

different. The difference could be due to bending effects from the
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Figure 5. Schematic Diagram of the Experimental Setup for Single- and Multi-Step Loading
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Figure 6,

Close-Up Picture of Triaxial Cell
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Figure 7,

Picture of the Experimental Setup for Single-
and Multi-Step Loading
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crookedness of specimens. Therefore, to eliminate this effect, the
two LVDT's were connected in series, énd the average deformation was
measured for 1 7/8 in. of the length of specimen. The specially
designed LVDT holder for measuring the soil deformation is shown in
Figure 8.

The magnitude of applied load on specimens was obtained from a
fabricated load cell. This load cell consists of a rectangular frame
(see Figure 9) with a full-bridge circuit of four strain gauges. The
strain gauges were selected from Micro~Measurements type CEA-06-250 UW-
120, specially for higher fatigue 1ife. The outputs of the LVDT's and
load cell were fed into a six~channel electronic amplifier, Sanborn
656-1100, and a six-channel beam recorder, Sanborn 4500.

3.1.2 Dynamic Loading Test Apparatus

The dynamic loading test apparatus that 1s specially designed to
produce sinusoidal stress on soil specimens is shown in Figure 10.
The dynamic loading is applied by means of an eccentric system and a
variable speed DC motor of 1/3 HPwith variable range of rpm from 1 to
1725. The applied mean stress was imposed by a Bellofram with 4 in.
square in area, that is controlled by a mac-valve. A schematic diagram
of dynamic loading test apparatus is shown in Figure 11. The specimens
were tested in the same triaxial cell used for single and multi-step

loading tests.

3.2 Preparation of Specimens

The specimens used in this investigation were prepared from a soil
that was obtained from the Test Track Area of the Pennsylvania
Transportation Facility. The soil was passed through a #16 sieve, and

was kept in an oven at 110°F for one week. To obtain a reasonably
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Figure

10. Picture of the Experimental Steup for Dynamic
Sinusoidal Loeading
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reliable predetermined water content, 140 grams of oven dried soil
was thoroughly mixed with a 26.4 c.c. water in a completely sealed
plastic bag. The wet soll was compacted in a standard compaction
cylinder, 2.8 in. in overall length, 1.3 in. in diameter, and 3.78 cu.
in. in volume.

In soil engineering, compaction 1s any process by which the soil
particles are artifically rearranged and packed together into a closer
state of contact by mechanical means. During the compaction, the
porosity of the soil decreases, and thus the dry density increases.
The mechanical method of compaction can be accomplished by impact,
kneading action, vibration, and static or dynamic compression. The
compaction of soil for this investigation was done in a standard
compaction cylinder. The compaction was accomplished in three steps
by monotonically increasing compressive load from a Standard Tinius
Olsen Universal Testing Machine. Each layer received 200 1b. at the
rate of 1 in. per minute. The specimens were weighed and tesged right
afﬁer extrusion from the compaction cylinder.

The degree of compaction of a soil which is characterized by its
dry density depends upon its molsture content, the amount of compaction
effort or energy expended on it, and the nature of the soil. The
moisture content of soil refers to the total amount of water contained
therein, either as free water or capillary water in the soll pores or
as absorbed water film around the solid particles. The moisture content
is determined by first weighing soil specimen in its wet State, drying
thg specimen in an oven ét a temperature 230°F, and then weighing the
dried specimen. ‘The difference between the weights of the specimen‘

before and after drying represents the amount of water in the specimen,
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Figure 13.

Picture of Soil Specimen Preparation Apparatus
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and this weight, computated as a percentage of the weight of the dried

specimen, is the moisture content of the soil.

=

w = WE' x 100 Percent {25)
s ‘ h o

There exists a definite relationship between the soil moisture content
and the degree of dry density to which a soil may be compacted. If a
soil is compacted to such a degree that all voids are filled with water,
then the soil is said to be saturated. The relationship between ‘
moisture content and dry density of the soil tested 1s shown in Figure.lz.
The soil specimen preparation apparatus is shown in Figure 13.

The soil specimens were covered with a rubber membrane during the

test. This membrane protected the specimen against the moisture losses.

3.3 Experimental Proceédures

3.3.1 Single and Multi-Step Loading Tests

The experimental program for single-step and multi-step creep
loading conditions is presented in Table 1. In order to determine ihe
:single—step creep behavior, tests were éonducted at six different stress
lmagnitudes (4.58 psi, 9.54 psi, 14.1 psi, 19.1 psi, 28.6 psi, 38.0 psi).
The deformation, as well as stress magnitudes were measured for 500
seconds from the application of the load. Ihe deformation was recorded
continuously for the first 100 seconds. After 500 seconds, the
deformation was registered at four different time intervals (200 sec.,
300 sec., 400 sec., 500 sec.). To provide a more accurate and reliable‘
data, the deformation for each stress magnitude was obtaingd from the
averagé yalué of identical tests.

Tﬁo—step creep loading tests were conducted for three different

stress magnitudes (01 = 14,1 psi, o, = 9.54 psi/ol = 19,1 psi, o, =

2 2
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4.58 psi/cl = 19.1 psi, g, = 9.54 psi), as shown in Figure 3. The
second step loading was applied at five different time intervals (10
sec., 100 sec., 200 sec., 300 sec., 400 sec.), from the application of
the first step. The deformation was registered for 500 sec. from the
application of the first step locading. The continuous deformation
record was obtained for the first 100 seconds from the application of
locad for each step.

Three—step loading tests were performed only for one of three

stress values (cl = 14.1 psi, o, = 15.7 psi, o, = 13.75 psi), as shown

3

in Figure 4. The second and third step loading were applied for
different time intervals. The following table shows the time intervals

(tl, t2) used in three-step loading tests.

Table 2. Time Intervals (t

and tz) Used 1N Three-Step
Loading Tests.

1

100
200
300

10 LAOO

100 200
tl(sec.) = T——t_(sec.) 300

S 200 2 400

300 \\\\\‘\\ 300
L tzcsec.) = h400
)

tz(sec.) 400

, tz(sec.) =

il
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where tl and t2 are the time of application of second and third step
loading respectively. The time intervals were measured from the
application of first step loading. All specimens were tested at room
temperature (75°F).

3.3.2 Dynamic lLoading Tests

In order to investigate the behavior of a cohesive soil under
uniaxial dynamic load, tests were performed for different frequencigs
mean stresses, and dynamic stress magnitudes. The dynamic sinusoidal
load was superimposed after 500 seconds of the application of mean
load on soil specimens. The deformation was measured for three time
intervals after application of the dynami§ load (100 sec., 300 sec.,
500 sec.). Tests were conducted for four different dynamic |
sinusoidal stress amplitudes (5.2 spi, 7 psi, 10 psi, 13 psi), and
four mean stress valﬁes (11 psi, 17 psi, 24 psi, 28 psi). Each
dynamic test was performed for four different frequencies (9 Hz,

125 Hz, 22 Hz, 26 Hz). All tests were conducted at the room

temperature (75°F).
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CHAPTER 1V

EXPERIMENTAL RESULTS AND INTERPRETATION

4.1 Experimental Results

The results from the unlaxial creep tests for different stress
magnitu&eé are shown in the form of stréin—time curves in Figure 14.
Thé creep deformation was measured for a widelrange of stress mag-
nitudes up to the failure point. The results for two~-gtep and
three-step loading conditions are preseﬁted in Figures 15 through
29. Each of these figures indicates different time interval. A
typical hysteresis loop obtained from dynamic sinusoidal loading
test for a specific frequency and three different total number of
cycles are shown in Figure 30. Figure 31 shows the variation of
the dynamic strain amplitude with frequency. The strain response

amplitude agaiﬁst the dynamic stress amplitude is shown in Figure 32.

4.2 Interpretation of the Result

4.2,1 Single-Step Creep

Tﬁe dreep compliance was defined as the ratio of ;he creep
strain to the applied stress at a certain time ( g‘). For a lineaf
viscoelastic material, the creep compliance-stress curve is a hori~
zontal line at various constant time values. In order to determine
the linear range from creep test results, the creep compliance was
obtained and plotted against stress magnitude. Tﬁese curves éere
obtained for four different time intervals (10 sec., 100‘sec., 300
sec., 500 sec.), as shown in Figure 33. This figure shows, for

stress levels higher than 10 psi, the behavior of soil is highly
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and t,=100 sec.
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Figure 27. Experimental and Theoretical Creep Response for Three-Step Loading for t1s1o sec.,

and t2*300 sec.
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and t2=200 sec.
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nonlinear. The slope of this curve in this regidn increases with
stress magnitude. The linear range was observed for stress level
lowe; than 10 psi. In this regioﬁ, thé slope of creep compliance-
stress curve is zero. As shown in Figure 33, the creep compliance
rapidly increases with stress for each time value beyond the stress
level of 10 ési.

The measured creep complliance function was fognd fit with an

equation of a polynomial type with three terms as follows:

2

§=n 4+ D.c + Do ' (26)

1 2 3

A computer program for curve fitting based upon the least squate
method was performed in APL language, as éhown in Appendix A,
This program is able to estimate the required terms for best fitc.
The curve fittinglwas done, for all four different-time intervals
discussed earlier. The kernel functions, Dlit), Dz(t,t), and
D3(t,t,t), as obtained by fitting the data, are shown in Figures
34, 35, and 36. Figures show that Dl(t) and D3(t,t,t) increase
with time, whereas, Dz(t,t) decreases with time. For lower time
interval, the influence of Dz(t,t) on the total response is signi-
ficant, and it decreases rapidly with the increment of time. As
shown in Figure 35, for higher time interval, the second order kef—
nel function in equation (26), is not.veiy sensitive and very rapidly
decreases in value.

In order to approximate the first order kernel function Dl(t),
a curve fitting program based upon the least square method was ﬂe-
veloped (see Appendix A). The slope of Dl(t) for different time was

plotted in a semi-log scale as shown in Figure 37. This figure shows,
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dp, ()
-%E*— is linearly decreasing with time. Therefore, the filrst

order kernel function can be defined as the following equation:

= a——

t
D (t) = [4.9945.09(1-e 110)] x 107 27

The second order kernel function Dz(t,t), can be obtained by
plotting Dz(t,t) against time in a semi-log scale, as shown in

Figure 38. The curve shows that the logarithm of D, decreases

2
linearly with time. The following equation is the second order

kernel function obtained from Figure 38.

t

D, (t,t) = 9.25 x 1077 e 100 (28)

Figures 34 and 36 show that the third order kernmel function has
the same type of curve as the first order. Therefore, the same
procedures were followed to determine the third order kernél func~
tion as was done for ;he first order. .The slope of D3(t,t,£)
versus time is éhown in Figure 39. The figure indicates that the
third order kernel function can be represented by the following

relation:

t

-y

D3(t,t,t) = [2,2+.47(1-e (29)

In view of equations 27-29, the uniaxial creep response of the

cohesive soil for a duration less than 500 seconds, can be given as:

t
- 100)] < 10 7 T 100 2

3 5 +9.25 x 107 e o +

e(t,0) = [4.9945,09(1-e

-
100)]

[2.24.47 (1-e x 1077 o3 o (30)
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Figure 14 shows the comparison between the theoretical and experi-
‘mental curves, This figure shows that equation (30) correlates
with the experimental results closely with the error between the
experimental and theoretical curves being less than five percent

(see Appendix A).

4.2.2 Two-Step Loading

The response of soil under twoéstep loading éonditibn was preF
dicted by substituting equations (27), (28), and (29) in equation
(13). A computer program in APL language was developed to facili-
tate the numerical computations (see Appendix A).

The experimental results show that the instantaneous time de-
pendent creep response for the second step depends upon the stress
magnitude, as well as the time at which the second step was imposed.
The overall instantaneous time independent.stréin response which is,
the summation of instantaneous strains for the first and second
steps right after application of load, €gy With respect té the time
of the application of the second sﬁep ;6ading t is shown in Figure

40, This figure shows ¢_., is decreasing with the increment of t

1"
with respect to tl’ curves in Figure 40,

02

To obtain a relation for 502

' were replotted on a log-log scale as shown in Figure 41. These

curves show that the logarithm of ¢ 2 is decreasing linearly with

0

the logarithm of t ., for a constant stress magnitude. As tl tends

1’

to one second, D tends to the instantaneous time independent strain -

02
value for a single-step creep, for a stress value equal to the sum
of the stresses for two steps. Therefore, the overall instantaneous

time independent sttain for two-step loading condition can be
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represented by the following equation:

- -01
502(t1) = Eootl t1 > 1 sec. (31)

where €00 is the instantaneous time independent strain from singie—
stép creep response.

The theoretical and experiméntal results for two stress levels
and different t, are shown in Figure 17 through Figure 21. The
error between the experimental two-step creep response curves and

that evaluated by equation (13), was less than 12 percent (see

Appendix A).

4.2.3 Three-Step Loading

The résponse of a nonlinear viscoeléstic material for three-
.step loading condition was described by equation (15). Thé kernel
functions in this equation can be obtained by equations (27), (28),
and (29). A computer program in APL was performed to represent the.
response of soil for different stress levels, as well as, different
time of application of second and third step loading (see Appendix A).‘

The experimental results from three-step loading tests show
that the overall instantaneous time independent strain, 603, varies
with stress magnitudes, as well as the time of application‘of the
second and third steﬁ loading. Figure 42 shows the variation of

for different t, and t

03 1

strain was obtained from the experimental results and used in the

9 The instantaneous‘time independent
computer program to determine the approximate response of soil under
uniaxial three-step loading conditions. Ianigure 25 through Figure‘

29 are compared the theoretical and experimental results for three-
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step loading conditions on soil. The error between the experimental
 and theoretical curves for three~step loading tests has been found

'to be less than 10 percent (see Appendix A).

4.2.4 Dynamic Sinusoidal Loading

The results from the dynamic sinusoidal loading tests show
that the response of the cohesive so0il under dynamic loading con-
~dition is almost independent of mean stress amplitude. In other
words, thé'dynamic strain does not vary with the mean stress, whereas,
the overall strain response increases as a fesult of the creep
effect from the mean stress on soil specimens. Fiéure 30 1nd1cates
that the dynamic sinusoidal strain amplitude‘decreases with the
total number of cycles. Figures 31 and 32 show that the.dynamic
strain amplitude decreases with frequency, and increases rapidly
with the stress amplitude. Figure 43 shows that the energy loss
décreases with the frequency for a constant dynamic.stress_ampli-
tude. The energy loss was obtained by evaluating area of'hystersis

sloop.
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary

The uniaxial creep behavior of a cohesive s0il under single and
multi-step loading has been studied in this thesis, A one-dimensional
constitutive relationship based upon the multiple integral
representation, has been developed to characterize the observed
nonlinear viscoelastic behavior of the material. In order to obtain
the constitutive relationship, various uniaxial single-step creep tests
were performed using a specially developed test apparatus. These
tests were performed for a short time (500 sec.), and for a wide range
of stress amplitudes up to the failure. It has shown that the time-
dependent kernel function can be expressed in the form of an exponential
series. Experimental results from two- and three-step créep loading
tests show that the creep response of soil under multi-step loading
conditions can be predicted by the constitutive relationship that is
obtained from the single-step creep tests. The dynamic behavior of soil
has also been studied by performing dynamic sinusoidal loading tests on

cylindrical samples of the test material using a specially designed apparatus

5.2 Conclusions

The following conclusions can be drawn from the results of the
theéretical and experimental study:

(1) The behavior of cohesive s0il under creep loading is linear
for lower stress levels (less than 10 psi). The nonlinearity of the
material which was studied in this thesis was observed for stress levels

higher than 10 psi.
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(2) The creep response function with respect to the stress
amplitude can be represented by a polynomial series containing terms
up to and including the third order. The coefficients of the
polynomial are only time dependent and are defined as the kernel
functions.

(3) The first and third order kermel functions increase with
time, whereas, the second order kernel function decreases rapidly with
time. The contrilition of the second order kernel function to the creep
behavior is significant for lower time intervals,whereas,for timss

higher than 300 seconds , its influence is minimal.

{(4) The proposed constitutive relationship for single-step creep
behavior can be generalized for two- and three-step loading conditions,
as well as for dynamic creep behavior.

(5) The multiple integral representation of kernel functions
obtained from single-step creep tests has been found to agree well with
thé experimental data from multi-step loading tests.

(6) The results from dynamic sinusoidal loading tests show that
the dynamic strain amplitude decreases with frequency, and increases
with dynamic stress amplitude. Also, the energy loss decreases with

frequency for a constant dynamic stress amplitude.

5.3 Suggestions for Further Research

The author suggests the following topics for further research.

(1) Experimental and theoretical investigation of cohesive soils
under multi-axial creep behavior must be studied and the results must
be compared with in situ test results.

(2) Plastic and viscoplastic behavior of soils must be studied by

performing the repeated loading, and creep-recovery tests.
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(3) Nonlinear viscoelastic behavior of cohesive soils under other
dynamic loading conditions must be investigated,and. the effect of confining

pressure on the dynamlc mechanical behavior must be studied.
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APPENDIX A

COMPUTER PROGRAMS AND A TYPICAL OUTPUT DATA
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