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ABSTRACT

The nonlinear viscoelastic behavior of a cohesive soil under

uniaxial loading conditions has been studied. A constitutive relation-

ship based upon a multiple integral representation has been developed.

The time dependent parameters of this relation (kernel functionS) have

been determined, performing uniaxial single-step creep tests on a

specially developed test apparatus. The constitutive relationship has

been generalized for multi-step loading, as well as dynamic sinusoidal

loading conditions. It has been shown that the behavior of the material

for multi-step loading conditions can be predicted by the results of

the single-step tests. In addition, the behavior of the soil under

uniaxial compressive cyclic loading has also been studied, using an

apparatus specially developed for the purpose. The energy dissipation

in a given cycle of loading has been evaluated. The effect of frequency

on the energy loss has been studied.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.
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f}JTRODUCTIml

1.1 General Remarks

The design and analysis of soil-structure systems subjected to

vibratory and impulsive forces have attracted considerable attention in

recent years. It is known that ground motions due to the transient

forces impose severe inertia forces on structures. These inertia forcest,

may influence the load bearing capacity of the soil underneath the

structures. This mutual influence between the structure and soil is

usually known as the soil-structure interaction. The study of this

problem requires a knowledge of dynamic soil properties. Desi.gners ere

concerned with the soil behavior under dynamic loading conditi,:m'3. bt1t

there has been no attempt to develop a rational and analytical II'Iethod to

represent the behavior of this material.

The soil-structure interaction has been studied bynur!",~To,,,

investigators. To date most of the soil-interacU_ontpor'k h~ h~ .aCl\.q;

assuming the soil mass underneath a foundatio~ as elastic (1,2), lhis

assumption has been used in three different methods to n;pres€nt L(lE:

behavior of a soil mass:

(1) Elastic half-space theory;

(2) Lumped parametric representation; and

(3) Finite elements analysis.

Although in rec~nt years some attempts have been made to analyze the

stresses and strains in the soil mass assuming the material as linear

viscoelastic (3), very little work has been done to determine the realistic

properties of this material.

Generally soils are rheological in nature. They display time-
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dependent creep behavior under steady loading conditions. A study on

creep and relaxation behavior (4) shows, soils behave as a nonlinear

viscoelastic material. Recently, much attention has been given to

represent the behavior of a nonlinear viscoelastic material by using

the multiple integral theory. According to this theory, the nonlinear

viscoelastic behavior of a material is specified in the form of a

series of kernel functions which are assumed to be sYmmetric. These

kernel functions that are time dependent only have to be determined

from a series of tests involving step loading. It is generally known

that a large number of tests are necessary to determine the kernel

functions (5).

In this thesis, multiple integral representation theory has been

used for characterizing the nonlinear viscoeleastic behavior of a cohesive

soil. The work describes a comprehensive experimental program for

determination of kernel functions. It is shown that if certain symmetry

properties are assumed, the kernel functions can be determined from

relatively few tests.

1.2 Statement of the Problem

Although rheological behavior of soils has been studied extensively

for the last three decades, much of the literature deals with the

development of laboratory techniques for studying the behavior under

creep, stress relaxation, and dynamic sinusoidal loading conditions.

Very few attempts have been made to analyze the data from rational

mechanistic principles. Even those investigators (6,7,8,9,10), who have

attempted to describe the behavior of soils from mechanistic principles,

have assumed the cohesive soils as
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(1) Elastic;

(2) Elastic-plastic; and

(3) Linear viscoelastic.

It is well-known that soils display appreciable nonlinear stress-time

dependent behavior (5). There is a great need for the development of

constitutive relations that reflect these properties of soils.

The thesis describes an experimental program, as well as the

theoretical development for the one-dimensional constitutive relationship

that represents the nonlinear viscoelastic behavior of a cohesive soil.

The constitutive relationship has been developed from creep tests. The

generality of the developed constitutive relationship is verified by

predicting the behavior of the material under other stress histories.

The predicted values have been correlated with the observed values for

the same stress histories.
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1.4 Scope and Limitation of the Thesis

The work reported in this thesis is primarily concerned with the

experimental investigation for the creep and dynamic mechanical behavior

of unconfined cylindrical specimens of a cohesive soil subjected to

uniaxial stresses varying from 5 to 38 p$1. The deformation was

measured for a short time interval (500 seconds). Creep tests have also

been conducted for other stress histories such as two-and three-step

histories. Two-step loading tests were performed for three stress

levels~ whereas~ three-step loading tests were performed for only one

stress level. Also tests under sinusoidal loading for a frequency range

from 9 to 22 Hz were conducted as part of this study. The particular soil

used in this investigation is a remolded soil from the test track area of

the Pennsylvania Transportation Facility. The soil specimens were tested

oat room temperature (75 F), and for a moisture content of 18.9% water

under a constant compaction effort.

The background for the proposed investigation including the related

literature has been presented at the end of this Chapter. Chapter II

describes a review of the nonlinear theory of viscoelasticity leading to

a one-dimensional constitutive relationship for characterizing the stress-

strain-time behavior of a given rheological material. The one-dimensional

constitutive relationship for dynamic sinusoidal loading is also discussed

in this Chapter. The details on soil specimen preparation~ test

apparatus~ and experimental procedures are given in Chapter III. In

Chapter IV~ the experimental results and complete determination of the

stress-strain-time behavior of a cohesive soil sre presented. The

application of this relation is discussed for two- and three-step loading

conditions. The correlation of the creep test results~ with the dynamic
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sinusoidal test results,is also given in this Chapter. Summary and

conclusions are given in Chapter V.

1.5 Literature Survey

Soils can be consi.dered BS one of the oldest and the most complex

materials of construction. It is generally understood ti:tat th'~

stability and durability of a structurewHl largely depend upon the

behavior of the soil upon which it is built.

Mechanical behavior of soils primarily has been studied by

considering soil as an elastic or elastic-plastic material. AmoH,:::; the

investigators, Wilson and Dietrich (6) have studied the elastic strah1

response of a cohesive soil by performing incremental and repeated

loading tests. Elastic-plastic behavior of soil was studied byMttl~hel1

and McConnell (7). They discussed a possible approach for sepaxathm ,)f

elastic and plastic deformation by performing the creep-recove::y t2.3t:3,

They found the elastic deformation is nonlinear with respect to-.:he

stress level.

In early 1960, several investigators (8,9,10) have studiei the time<'

dependent behavior, by conducting creep and stress relaxation test3.

Their results show soils are rheological in nature, and their m(~chanic,-,l

response depends on both the loading path, as well as the hislcc,v of

loading. Murayama and Shibata (8) by assuming a rheological fLOC

clays, derived a relationship for strain response of the material witb

respect to stress and time. Vialov and Skibitsky (9,10) have 8't""jiec

the rheological properties of soil by considering a Kelvin mod;~l. The

viscous element in this model was replaced by an elasto-plasticvisccus

element. The results show that the model is suitable for describing

the stress relaxation of dense clay. Fo1que (11) and Barden (12)
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performed creep and relaxation tests. The results from these tests were

represented by models consisting of linear springs and dash-pots.

Comparison of the results from experimental data and differential laws

based on the model indicate the existance of nonlinear effects in

cohesive soils. Drescher (4), has done a comprehensive work for

characterization of soil behavior. On the basis of experimental results

under various loading programs, he found that the response of soil

under creep loading for a short duration is markedly nonlinear. He also

observed that the nonlinearity of soil increases with the value of

applied stress and time.

During the last decade, some attempts have been made to analyze

stresses and strains in the soil mass assuming the material as linear

viscoelastic. In most of these investigations, the principle of

superposition proposed by Boltzmann was the basis for describing the

linear viscoelastic behavior of soils. Kondner and Krizek (13),

presented a creep compliance function for the creep response of a

cohesive soil under uniaxial compression. They obtained an explicit form

for the creep compliance, that included the nonlinear effects of the

material. Veletros and Verbic (3), studied the effects of soil damping

on steady-state response of harmonically excited foundation. They

represented the dynamic viscoelastic behavior of a soil by two models

that consisted of a standard Voigt model in series with a constant

hysteretic element. Kondner (14), studied a soil-structure system

subjected toa vertical sinusoidal loading. His experimental results

indicate that the soil-foundation system behaves nonlinearly.

Kondner (15), and Krizek (16), by performing creep and dynamic

sinusoidal loading tests represented the time and rate effects on the
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stress-strain response of a cohesive soil in terms of a compliance­

time function. Their experimental data showed that the stress-strain

time response from the creep and dynamic sinusoidal loading is

definitely nonlinear. The nonlinearity was handled by reducing the

response to a constant level which can be approximated by linear theory

of viscoelasticity. Kondner (15) also found that the experimental

results from blast pulse loading correlate quite well with those

obtained from dynamic steady-state loading tests.

The energy storage and energy dissipation characteristics of soils

have been specially considered in the design and analysis of soil­

structure systems subjected to transient loadings such as earthquake

phenomena. There has been a considerable effort to characterize the

dynamic behavior of soils. Krizek (17) suggested the use of one-sided

Fourier transform techniques to transform the results from the time­

dependent creep tests for a remolded clay into the frequency domain.

He obtained approximate expressions for the storage and loss compliance

functions. The use of this technique was limited for a linear

viscoelastic material. The energy storage and energy dissipation

characteristic of a cohesive soil was studied experimentally by Kondner

and Ho (18) and Kondner and Krizek (19). They performed strain­

controlled vibratory uniaxial compression tests, and obtained the

response of the material in terms of conventional viscoelastic

parameters such as storage modulus, loss mOdulus, and the loss tangent.

Dynamic stress-strain response showed that nonlinearity existed even at

very small values of dynamic strain. Their experimental results

indicate that the phase angles between sinusoidally applied strains and

the resulting stresses are small (a few degrees). Also they found for
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the linear range, the applied stress level has little effect on the

dynamic response. The results of the dynamic testing show that storage

loss, and loss tangent decrease with dynamic strain amplitude.

Krizek and Franklin (20), studied the energy dissipation characteristics

of soft kaolin clay. They obtained the hysteresis loops produced by

subjecting a clay specimen to a harmonically varying torsional shear

strain. The energy losses were determined by using the phase angle

between the stress and strain combination with linear theory of

viscoelasticity. The results show that the energy losses are slightly

higher than those measured from the hysteresis loops. The difference

can be attributed to the nonlinearity of the soils behavior. They also

found that the energy dissipation is relatively independent of

frequency for frequencies ranging from .1 to 30 cps.

In order to study the dynamic stress-strain response of a cohesive

soil for short time (0.2 m sec.), Kondner and Forrest (21), performed

compression tests for duration of approximately 3.0 m sec., by explosion

of a rifle cartridge. The stress-strain response of soil under a short

time impulsive loading was found to be nonlinear. They represented

the nonlinear stress-strain effect in terms of a two-constant

hyperbolic relationship. The volumetric stress-strain behavior of soils

was investigated by ~ausner (22). He showed that the mechanical

analogy of volumetric behavior can be represented either by Kelvin

elements coupled in series, or by Maxwell elements coupled in parallel.

The results show that linear viscoelasticity is not suitable to

represent a volumetric constitutive relationship.

A more comprehensive experimental study on soils has been

reported by Drnevich (23), and Drnevich, Hardin, and Shippy (24). They



used the resonant-column method to obtain modules and damping of solid

cylindrical soil specimens. In their method, shear or compressional

waves were propagated by applying a sinusoidal torque, or a sinusoidal

axial compression to the specimens. The frequency of the applied

torque or force was adjusted until resonance occurred. The resonant

frequency plus the magnitude of the applied torque or force and the

magnitude of the resulting motions have been used to calculate the

modulus, damping, and strain amplitude.

9



CHAPTER II

THEORETICAL CONSIDERATION

2.1 Introduction

In order to obtain a general constitutive relationship for a

cohesive soil under uniaxial loading conditions, a nonlinear theory

of viscoelasticity based upon the multiple integral representation

is discussed. The nonlinear representation has been determined by

using the experimental data from the uniaxial creep tests on the

cohesive soil specimens. As the experimental results (see Chapter

IV) indicated nonlinear response, attempts have been made to model

this behavior in terms of a nonlinear theory of viscoelasticity.

For a linear viscoelastic material, the creep compliance, which is

defined as the strain per unit of applied stress, is independent of

the stress level and is a function of time only, whereas, for a

nonlinear viscoelastic material, the creep compliance is dependent

upon the stress level, as well as the time of loading.

The nonlinear theory of viscoelasticity has other features in

common with the linear theory, which is the memory hypothesis. This

hypothesis, in terms of a stress-strain relationship, simply means

that the current value of strain is determined not only by the cur­

rent value of stress, but also by the complete past history of

stress.

In the following, a general one dimensional constitutive rela­

tionship for a nonlinear viscoelastic material under uniaxial

loading condition has been given. A multiple integral functional

relationship has been employed to obtain the constitutive relation­

ship. Application of this relationship for different loading

\0
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histories consisting of one, two, and three steps loading has also

been discussed. Finally, expressions for the sinusoidal behavior

of a nonlinear viscoelastic material in terms of dynamic kernel

functions are obtained, using the kernel functions from creep loading.

2.2 One Dimensional Constitutive Relationship

The most general uniaxial constitutive relationship for a

nonlinear viscoelastic material may be expressed as:

e(t) = F [da(t')] t
dt' t' = _00

(1)

According to equation (1), the strain depends upon the entire past

history of stress. When the function F is linear, equation (1) re-

presents the Boltzmann superposition integral that is, the basis

of the linear theory of viscoelasticity:

e(t) ~: D(t-t') dO~::) dt' (2)

where D(t) is the creep compliance function that is a function of

time only.

By assuming the nonlinearity and continuity of the functional

F in equation (1), and utilizing a Frechet series, Green, Riv1in,

and Spencer (25,26,27), have shown that the functional can be re-

presented by an infinite series of multiple integrals as follows:



(3)
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where D1 (t), D2(t,t), D
3
(t,t,t), .•• are Kernel functions which are

symmetric with respect to their arguments. These kernel functions

are completely determined when their values are known for the fo1-

lowing situations:

t ~O

(4)

The first order kernel function Dl(t) is described in terms of a

single time parameter t and may be illustrated by a plane curve as

shown in Figure 1, whereas the determination of the nonlinear kernel

fucntions such as D
2
(t,t) and D

3
(t,t,t) require more than one time

parameter. The second order Kernel function D
2
(t,t-t

1
) may be

illustrated by a surface P as shown in Figure 2.

The type of input stresses a(t) that may be used to determine

the kernel functions is arbitrary. The form of the equation (3) is

particularly suited to step loading inputs, for example, for single

step creep loading:

a(t) = aH(t) (5)
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where H(t) represents the Heaviside step function. Subsituting

equation (5) in equation (3), it can be shown:

14

or

dt) (6)

D(t,cr) dt)=-- =
cr + . . . (7)

where D(t,cr) is the creep compliance function which for a nonlinear

viscoelastic material is both stress and time dependent.

A number of investigators have proposed methods for the experi-

mental determination of the kernel functions. In most of these in-

vestigations, the representation corresponding to equation (1), has

been terminated after a finite number of terms and then the tacit

assumption is made that this finite-order expansion represents the

system exactly.

The representation of the uniaxial nonlinear constitutive rela-

tion can be extended to a multi-axial stress state by considering

all the possible combinations of stress tensors and stress invari-

ants, which is beyond the scope of this thesis.

2.3 Uniaxial Multi-Step Loading

2.3.1 Two-Step Loading

In order to develop the constitutive relationship for two-

step loading history, the load levels during the two steps will be

given arbitrary values. In most of the existing experimental data

have been obtained from the cases where the load is doubled or re-

moved in the second step (recovery). The two-step stress history



as shown in Figure 3 can be formulated as followings:
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a(t) = 0 t<O

(8)

An examination of the experimental data indicates that three terms

in the infinite series integral equation (equation (3», are suffi-

cient to describe the creep behavior of the test material.

(9)

By substituting equation (8) in (9), the single integral for two-

step loading can be shown as following:

(10)

The double and triple integrals of equation (9) can be evaluated as

follows:
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(11)
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and

2 2= 01[D3(t,t,t)ol + D3(t,t-t1,t-t1)o2 + 201o2D3(t,t,t-t1)]

2 2
+ 0Z[D3(t-t l ,t,t)ol + D3(t-tl ,t-t l ,t-tl )o2 + 2olo2D3(t-tl,t,t-tl) =

3 3= D3(t,t,t)ol + D3(t-t1 ,t-t1 ,t-tl )o2 + 30102[olD3(t,t,t-t1) +

(12)

Therefore, the creep response for two-step loading history can be

expressed by the following equation:

(13)

2.3.2 Three-Step Loading

Three-step loading history as shown in Figure 4, can be formu-

lated as followings:

o(t) = 0 t<O



o(t) =°1+°2

o(t) =°1+°2+°3

t l .s:t<t2

t 2.::;t.::;t 3 (14)

18

By expanding the results from the two-step loading history, the

strain response under a three-step loading can be expressed as

following:

2.4 Determination of Kernel Functions

(15)

Equations (6), (13), and (15) indicate that a large number of

tests are required to determine the kernel functions completely.

Several methods for determination of kernel functions based upon re-

suIts from multi-step history loading have been suggested in recent

years {5,28>'. In this thesis, a method has been developed for the

determination of kernel functions from creep tests.

2.4.1 Multiple-Step Creep Tests

The first order kernel function, Dl(t) can be determined ex­

perimentally by performing single-step creep tests at several stress



levels. The experimental data from these creep tests can provide

three equations for determining D1 (t), D2(t,t), and D3(t,t,t)~

From the creep tests, the second and third order kernel functions

can be only known for the same arguments.

To obtain a complete determination of the second order kernel

functions, it is necessary to perform several combinations of diffe­

rent time and stress levels of two-step loading tests. The two­

step stress history can be formulated as follows:

19

(16)

The experimental results from three different loading con­

ditions as represented by equation (16) can be used to determine

D2(t,t-tl ), D3(t,t,t-tl ), and D3(t,t-tl ,t-tl ).

To obtain the third order kernel functions with different

values of arguments, it is necessary to perform several three­

step loading tests as follows:

(17)

The total number of experimental tests required for complete deter­

mination of kernels are presented in Table 1 on the following page.

The number N is related to the number of spatial lines on which the

second and third order kernel functions must be known in order to

satisfactorily specify these functions.



Table 1. Experimental Tests Required for Complete Determination
of Kernel Functions(5)

loading program number of tests

<1 (t) = <1
1
H(t) 1

<1 (t) <1 2H(t) 1

<1 (t) = <1
3
H(t) 1

<1(t) = <1
4
H(t) + <1 SH(t-t1) N

<1 (t) = <1
4
H(t) + <1

6
H(t-t

1
) N

<1 (t) = <1
7
H(t) + <1

S
H(t-t1) N

<1 (t) = <1SH(t) + <1 9H(t-t1) + <110H(t-t2) 1/2 N2

Total number of tests 1/2 N2 + 3N + 3

2.4.2 Exponential Representation of Kernel Functions

A general and simple approximation method for determining the

kernel functions, has been suggested by Nakada (29). He derived

a general constitutive relationship for a nonlinear viscoelastic

material by considering three assumptions of causality, conver-

gence, and stationariness.

20
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(18)

A most simple and convenient approximation for kernel functions,

for single-step excitation, can be expressed by exponential

functions as follows:

(19)

th
1 )

tIA 2
2 )

t/A 3
3 )

Dl(t) = K
l

A
l

(l-e-

2 -
D

2
(t,t) = K2A

2
(l-e

3 -D3(t,t,t) = K3A3 (l-e

In order to determine the three kernel functi~ns, the

experimental data should be fitted to equations (19), or any other

exponential functions that fit the test results well.

2.5 Dynamic Behavior of a Nonlinear Viscoelastic Material

A uniaxial constitutive relationship that describes the dynamic

mechanical behavior of a nonlinear viscoelastic material can be ob-

tained extending the multiple integral representation (equation 3).

Assuming the dynamic excitation as follows:

cr(t) = cr cos w t
o

(20)

Substituting equation(20)in equation(9) , we have



Assuming t-ti = ai ' the above equation leads to:

22

e:(t)

where



The dynamic constitutive relationship can be obtained by substi-

tuting equation (23) in equation (22), and assuming w
1

=w
2

=w
3
=w.

3 3
[D'2(w,w) cos 2 w t + D"2(w,w) sin 2 w t- D'2(w,-w)]- 1/4 crow

[D' 3(w,w;w) sin 3 w t - D"3(w,OJ,w) cos 300 t - 3D' 3(w,W,-W) sin 00 t

23

- 3D"3(w,w,-w) cos w t] (24)



CHAPTER III

EXPERIMENTAL ARRANGEMENT AND PROCEDURES

3.1 Testing Apparatus

3.1.1 Single and Multi-Step Test Apparatus

The uniaxial creep tests were conducted by using a specially

developed apparatus. A schematic diagram of the experimental set up

is shown in Figure 5. The soil specimens were subjected to axial

compression loads by means of dead weights in a pan hung from one

end of the lever arm. The other end was connected to the upper platen

of the testing frame using a Thompson bearing. In order to eliminate

the force due to the weight of the lever on a specimen, a counter­

balance weight was attached to one end of the lever arm. The lever arm

ratio was such that the load in the pan was magnified five times. A

Thompson bearing was also used to connect the loading shaft to the lever

arm. To produce a uniform load on the specimen, a 3/4 in. in diameter

of a solid steel ball was used between the main shaft and the

connecting loading shaft to the lever arm. The specimens were enclosed

in a plexiglas triaxial cell that can impose a desired confined

pressure range 0 to 5 psi (Figure 6). A Thompson ball bushing was

built in the upper platen of the triaxial cell. This enabled the main

shaft to transfer the applied load vertically with less friction to

the top of specimen. A photograph of the test apparatus is shown in

Figure 7.

The axial deformation of specimen was measured by two linear

variable differential transformers (LVDT) of Schavitz model 250 MHR.

The deformation observed from each different transformer (LVDT) were

different. The difference could be due to bending effects from the
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Figure 6. Close-Up Picture of Triaxial Cell
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Figure 7. Picture of the Experimental Setup for Single­
and Multi-Step Loading
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crookedness of specimens. Therefore, to eliminate this effect, the

two LVDT's were connected in series, and the average deformation was

measured for 1 7/8 in. of the length of specimen. The specially

designed LVDT holder for measuring the soil deformation is shown in

Figure 8.

The magnitude of applied load on specimens was obtained from a

fabricated load cell. This load cell consists of a rectangular frame

(see Figure 9) with a full-bridge circuit of four strain gauges. The

strain gauges were selected from Micro-Measurements type CEA-06-250 UW-

120, specially for higher fatigue life. The outputs of the LVDT's and

load cell were fed into a six-channel electronic amplifier, Sanborn

656-1100, and a six-channel beam recorder, Sanborn 4500.

3.1.2 Dynamic Loading Test Apparatus

The dynamic loading test apparatus that is specially designed to

produce sinusoidal stress on soil specimens is shown in Figure 10.

The dynamic loading is applied by means of an eccentric system and a

variable speed DC motor of 1/3 HPwlthvariab1e range of rpm from 1 to

1725. The applied mean stress was imposed by a Be110fram with 4 in.

square in area, that is controlled by a mac-valve. A schematic diagram

of dynamic loading test apparatus is shown in Figure 11. The specimens

were tested in the same triaxial cell used for single and multi-step

loading tests.

3.2 Preparation of Specimens

The specimens used in this investigation were prepared from a soil

that was obtained from the Test Track Area of the Pennsylvania

Transportation Facility. The soil was passed through a #16 sieve, and

owas kept in an oven at 110 F for one week. To obtain a reasonably
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Figure 8. Detail View of L V D T Connection for
Measuring Axial Deformation of Soil
Specimen
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Figure 10. Picture of the Experimental Steup for Dynamic
Sinusoidal Loading
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reliable predetermined w~ter content, 140 grams of oven dried soil

was thoroughly mixed with a 26.4 c.c. water in a completely sealed

plastic bag. The wet soil was compacted in a standard compaction

cylinder, 2.8 in. in overall length, 1.3 in. in diameter, and 3.78 cu.

in. in volume.

In soil engineering, compaction is any process by which the soil

particles are artifically rearranged and packed together into a closer

state of contact by mechanical means. During the compaction, the

porosity of the soil decreases, and thus the dry density increases.

The mechanical method of compaction can be accomplished by impact,

kneading action, vibration, and static or dynamic compression. The

compaction of soil for this investigation was done in a standard

compaction cylinder. The compaction was accomplished in three steps

by monotonically increasing compressive load from a Standard Tinius

Olsen Universal Testing Machine. Each layer received 200 lb. at the

rate of 1 in. per minute. The specimens were weighed and tested right

after extrusion from the compaction cylinder.

The degree of compaction of a soil which is characterized by its

dry density depends upon its moisture content, the amount of compaction

effort or energy expended on it, and the nature of the soil. The

moisture content of soil refers to the total amount of water contained

therein, either as free water or capillary water in the soil pores or

as absorbed water film around the solid particles. The moisture content

is determined by first weighing soil specimen in its wet state, drying

othe specimen in an oven at a temperature 230 F, and then ~eighing the

dried specimen. The difference between the weights of the specimen

before and after drying represents the amount of water in the specimen,
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Figure 13. Picture of Soil Specimen Preparation Apparatus
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and this weight, computated as a percentage of the weight of the dried

specimen, is the moisture content of the soil.

w
w =~ x 100 Percent

Ws
(25)

There exists a definite relationship between the soil moisture content

and the degree of dry density to which a soil may be compacted. If a

soil is compacted to such a degree that all voids are filled with water,

then the soil is said to be saturated. The relationship between

moisture content and dry density of the soil tested is shown in Figure 12.

The soil specimen preparation apparatus is shown in Figure 13.

The soil specimens were covered with a rubber membrane during the

test. This membrane protected the specimen against the moisture losses.

3.3 Experimental Procedures

3.3.1 Single and Multi-Step Loading Tests

The experimental program for single-step and multi-step creep

loading conditions is presented in Table 1. In order to determine the

single-step creep behavior, tests were conducted at six different stress

magnitudes (4.58 psi, 9.54 psi, 14.1 psi, 19.1 psi, 28.6 psi, 38.0 psi).

The deformation, as well as stress magnitudes were measured for 500

seconds from the application of the load. The deformation was recorded

continuously for the first 100 seconds. After 500 seconds, the

deformation was registered at four different time intervals (200 sec.,

300 sec., 400 sec., 500 sec.). To provide a more accurate and reliable

data, the deformation for each stress magnitude was obtained from the

average value of identical tests.

Two-step creep loading tests were conducted for three different

stress magnitudes (01 = 14.1 psi, 02 = 9.54 psi/Ol = 19.1 psi, 02 •
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4.58 psi/o
l

= 19.1 psi, O2 = 9.54 psi), as shown in Figure 3. The

second step loading was applied at five different time intervals (10

sec., 100 sec., 200 sec., 300 sec., 400 sec.), from the application of

the first step. The deformation was registered for 500 sec. from the

application of the first step loading. The continuous deformation

record was obtained for the first 100 seconds from the application of

load for each step.

Three-step loading tests were performed only for one of three

stress values (01 = 14.1 psi, O2 = 15.7 psi, 0
3

= 13.75 psi), as shown

in Figure 4. The second and third step loading were applied for

different time intervals. Tlie following table shows. the time intervals

(tl , t
2

) used in three-step loading tests.

Table 2. Time Intervals (t
l

and t
2

) Used tn Three-Step
Loading Tests.

[
300
400

-[;gg
- 300

400

= [;gg
400

100-- _
- t 2(sec.)=tl(sec.)



where t l and t z are the time of application of second and third step

loading respectively. The time intervals were measured from the

application of first step loading. All specimens were tested at room

temperature (750 F).

3.3.Z Dynamic Loading Tests

In order to investigate the behavior of a cohesive soil under

uniaxial dynamic load, tests were performed for different frequencies

mean stresses, and dynamic stress magnitudes. The dynamic sinusoidal

load was superimposed after 500 seconds of the application of mean

load on soil specimens. The deformation was measured for three time

intervals after application of the dynamic load (100 sec., 300 sec.,

500 sec.). Tests were conducted for four different dynamic

sinusoidal stress amplitudes (5.2 spi, 7 psi, 10 psi, 13 psi), and

four mean stress values (11 psi, 17 psi, 24 psi, 28 psi). Each

dynamic test was performed for four different frequencies (9 Hz,

125 Hz, 22 Hz, 26 Hz). All tests were conducted at the room

otemperature (75 F).
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CHAPTER IV

EXPERIMENTAL RESULTS AND INTERPRETATION

4.1 Experimental Results

The results from the uniaxial creep tests for different stress

magnitudes are shown in the form of strain-time curves in Figure 14.

The creep deformation was measured for a wide range of stress mag-

nitudes up to the failure point. The results for two-step and

three-step loading conditions are presented in Figures 15 through

29. Each of these figures indicates different time interval. A

typical hysteresis loop obtained from dynamic sinusoidal loading

test for a specific frequency and three different total number of

cycles are shown in Figure 30. Figure 31 shows the variation of

the dynamic strain amplitude with frequency. The strain response

amplitude against the dynamic stress amplitude is shown in Figure 32.

4.2 Interpretation of the Result

4.2.1 Single-Step Creep

The creep compliance was defined as the ratio of the creep

€strain to the applied stress at a certain time ( -). For a linear
(1

viscoelastic material, the creep compliance-stress curve is a hori-

zonta1 line at various constant time values. In order to determine

the linear range from creep test results, the creep compliance was

obtained and plotted against stress magnitude. These curves were

obtained for four different time intervals (10 sec., 100 sec., 300

sec., 500 sec.), as shown in Figure 33. This figure shows, for

stress levels higher than 10 psi, the behavior of soil is highly
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nonlinear. The slope of this curve in this region increases with

stress magnitude. The linear range was observed for stress level

lower than 10 psi. In this region, the slope of creep compliance-

stress curve is zero. As shown in Figure 33, the creep compliance

rapidly increases with stress for each time value beyond the stress

level of 10 psi.

The measured creep compliance function was found fit with an

equation of a polynomial type with three terms as follows:

(26)

A computer program for curve fitting based upon the least square

method was performed in APL language, as shown in Appendix A.

This program is able to estimate the required terms for best fit.

The curve fitting was done, for all four different time intervals

discussed earlier. The kernel functions, DI(t), D2(t,t), and

D3(t,t,t), as obtained by fitting the data, are shown in Figures

34, 35, and 36. Figures show that Dl(t) and D3(t,t,t) increase

with time, whereas, D2(t,t) decreases with time. For lower time

interval, the influence of D
2
(t,t) on the total response is signi­

ficant, and it decreases rapidly with the increment of time. As

shown in Figure 35, for higher time interval, the second order ker-

nel function in equation (26), is not very sensitive and very rapidly

decreases in value.

In order to approximate the first order kernel function DI(t),

a curve fitting program based upon the least square method was de-

veloped (see Appendix A). The slope of DI(t) for different time was

plotted in a semi-log scale as shown in Figure 37. This figure shows,
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is linearly decreasing with time. Therefore, the first

65

order kernel function can be defined as the following equation:

t---
Dl(t) = [4.99+5.09(1-e 110)] x 10-5

The second order kernel function D
2
(t,t), can be obtained by

plotting DZ(t,t) against time in a semi-log scale, as shown in

Figure 38. The curve shows that the logarithm of D
Z

decreases

linearly with time. The following equation is the second order

kernel function obtained from Figure 38.

t
-7 - 100

D2(t,t) = 9.25 x 10 e

Figures 34 and 36 show that the third order kernel function has

the same type of curve as the first order. Therefore, the same

(27)

(28)

procedures were followed to determine the third order kernel func-

tion as was done for the first order. The slope of D3(t,t,t)

versus time is shown in Figure 39. The figure indicates that the

third order kernel function can be represented by the following

relation:

t

D
3
(t,t,t) = [Z.2+.47(1-e- 100)] x 10-7

In view of equations 27-29, the uniaxial creep response of the

(29)

(30)

cohesive soil for a duration less than 500 seconds, can be given as:

t t

e(t,o) = [4.99+5.09(1-e- 100)] x 10-5 0 + 9.25 x 10-7 e- 100 0
2 +

t

[Z.2+.47(1-e 100)] x 10-7 0
3
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Figure 14 shows the comparison between the theoretical and experi­

mental curves. This figure shows that equation (30) correlates

with the experimental results closely with the error between the

experimental and theoretical curves being less than five percent

(see Appendix A).

4.2.2 Two-Step Loading

The response of soil under two-step loading condition was pre­

dicted by substituting equations (27), (28), and (29) in equation

(13). A computer program in APL language was developed to facili­

tate the numerical computations (see Appendix A).

The experimental results show that the instantaneous time de­

pendent creep response for the second step depends upon the stress

magnitude, as well as the time at which the second step was imposed.

The overall instantaneous time independent strain response which is,

the summation of instantaneous strains for the first and second

steps right after application of load, £02 with respect to the time

of the application of the second step loading t l is shown in Figure

40. This figure shows £02 is decreasing with the increment of t l •

To obtain a relation for £02 with respect to t l , curves in Figure 40,

were replotted on a log-log scale as shown in Figure 41. These

curves show that the logarithm of £02 is decreasing linearly with

the logarithm of t l , for a constant stress magnitude. As t l tends

to one second, D02 tends to the instantaneous time independent strain

value for a single-step creep, for a stress value equal to the sum

of the stresses for two steps. Therefore, the overall instantaneous

time independent strain for two-step loading condition can be



""""C"'l
I
0,....,
~

C'I 6
0
w
'-'

~
'M
Cll
l-l
-l.J
(/) 5
-l.J
I=l
Ql

J- d ~ crl=19.1 psi"0
~
Q) 10 cr2=9.54 psit:l.
Q)

"0
~

H

Q)

~ 3! ---- f 0'1=19.1 psi0
E-t 0 .. e
CIl G2=4.54 psi
::l
0
Q)

~
Cll
-l.J
~
Cll
-l.J 2
CIl

~I~
1-1

..-l t1..-l
Cll
l-l i.Q) 1
~ tl t

o
o 100 200 300 400

tl (sec.)
Figure 40. Overall Instantaneous Time Independent Strain for Two-Step Loading Tests vs. tl

0\
\0



-s
o

soo300 400200).00

4 5
w • 10

31. 2
~

Q

---- g

______ _.. EI 0 ~Ol=l9.1 psi

--0

Q 0,=9.54 psi

o e 0,\°1:::19 •1 psi
02.:::4 •54 psi

----,....-_ .......

.2

.3

1

.5

.4

'2

3

10

8
1
6
5

4

(""l

I~

<:'l
o
II>

P
·M
til
\o-l.w
CIJ

.w
~
to;
P.
IU
-g
H

~
~

(/)

g
~
~
.w
(/)

~
H

.-l
.-l
til
\o-l

~

figure 41.



71

represented by the following equation:

t 1 > 1 sec. (31)

where £ is the instantaneous time independent strain from single­
00

step creep response.

The theoretical and experimental results for ,two stress levels

and different t 1 are shown in Figure 17 through Figure 21. The

error between the experimental two-step creep response curves and

that evaluated by equation (13), was less than 12 percent (see

Appendix A).

4.2.3 Three-Step Loading

The response of a nonlinear viscoelastic material for three-

step loading condition was described by equation (15). The kernel

functions in this equation can be obtained by equations (27), (28),

and (29). A computer program in APt was performed to represent the

response of soil for different stress levels, as well as, different

time of application of second and third step loading (see Appendix A).

The experimental results from three-step loading tests show

that the overall instantaneous time independent strain, £03' varies

with stress magnitudes, as well as the time of application of the

second and third step loading. Figure 42 shows the variation of

E03 for different t l and t 2• The instantaneous time independent

strain was obtained from the experimental results and used in the

computer program to determine the approximate response of soil under

uniaxial three-step loading conditions. In Figure 25 through Figure

29 are compared the theoretical and experimental results for three-



5.5.

~

I
0.....
><
cY'l
0
w 5.
~

orf
ctl
$0<
~

en
~

~

4. JQl
~ ~

tl=lO sec.
~
QI
P-
QI
~
~

H

~ I -- t 1=100 sec.
orf 4.0H T
en
=' °3
0
QI + I .> > > y//// - t 1=200 sec.
~
ctl
u Of~
ctl
~

en 3.5 01
~

H J.
..... t 1 t z t.....

CIS
$0<

~

"N

400300

Strain for Three-Step Loading Tests vs.

24
t

2
(sec.)

oVerall Instantaneous Time Independent
T2 for Different Tl

Figure 42.

3.0. I I I I
o



73

step loading conditions on soil. The error between the experimental

and theoretical curves for three-step loading tests has been found

to be less than 10 percent (see Appendix A).

4.2.4 Dynamic Sinusoidal Loading

The results from the dynamic sinusoidal loading tests show

that the response of the cohesive soil under dynamic loading con­

dition is almost independent of mean stress amplitude. In other

words, the dynamic strain does not vary with the mean stress, whereas,

the overall strain response increases as a result of the creep

effect from the mean stress on soil specimens. Figure 30 indicates

that the dynamic sinusoidal strain amplitude decreases with the

total number of cycles. Figures 31 and 32 show that the dynamic

strain amplitude decreases with frequency, and increases rapidly

with the stress amplitude. Figure 43 shows that the energy loss

decreases with the frequency for a constant dynamic stress ampli­

tude. The energy loss was obtained by evaluating area of hystersis

loop.
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary

The uniaxial creep behavior of a cohesive soil under single and

multi-step loading has been studied in this thesis. A one-dimensional

constitutive relationship based upon the multiple integral

representation, has been developed to characterize the observed

nonlinear viscoelastic behavior of the material. In order to obtain

the constitutive relationship, various uniaxial single-step creep tests

were performed using a specially developed test apparatus. These

tests were performed for a short time (500 sec.), and for a wide range

of stress amplitudes up to the failure. It has shown that the time­

dependent kernel function can be expressed in the form of an exponential

series. Experimental results from two- and three-step creep loading

tests show that the creep response of soil under multi-step loading

conditions can be predicted by the constitutive relationship that is

obtained from the single-step creep tests. The dynamic behavior of soil

has also been studied by performing dynamic sinusoidal loading tests on

cylindrical samples of the test material using a specially designed apparatus

5.2 Conclusions

The following conclusions can be drawn from the results of the

theoretical and experimental study:

(1) The behavior of cohesive soil under creep loading is linear

for lower stress levels (less than 10 psi). The nonlinearity of the

material which was studied in this thesis was observed for stress levels

higher than 10 psi.
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(2) The creep response function with respect to the stress

amplitude can be represented by a polynomial series containing terms

up to and including the third order. The coefficients of the

polynomial are only time dependent and are defined as the kernel

functions.

(3) The first and third order kernel functions increase with

time, whereas, the second order kernel function decreases rapidly with

time. The contrribtitionof the second order kernel function to the creep

behavior is significant for lm~er time intervals ,whereas ,for times

higher than 300 seconds , its influence is minimal.

(4) The proposed constitutive relationship for single-step creep

behavior can be generalized for two- and three-step loading conditions,

as well as for dynamic creep behavior.

(5) The multiple integral representation of kernel functions

obtained from single-step creep tests has been found to agree well with

the experimental data from multi-step loading tests.

(6) The results from dynamic sinusoidal loading tests show that

the dynamic strain amplitude decreases with frequency, and increases

with dynamic stress amplitude. Also, the energy loss decreases with

frequency for a constant dynamic stress amplitude.

5.3 Suggestions for Further Research

The author suggests the following topics for further research.

(1) Experimental and theoretical investigation of cohesive soils

under multi-axial creep behavior must be studied and the results must

be compared with in situ test results.

(2) Plastic and viscoplastic behavior of soils must be studied by

performing the repeated loading, and creep-recovery tests.
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(3) Nonlinear viscoelastic behavior of cohesive soils under other

dynamic loading conditions must be investigated,and the effect of confining

pressure on the dynamic mechanical behavior must be studied.
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APPENDIX A

COMPUTER. PROGRAMS AND A TYPICAL OUTPUT DATA
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