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1. INTRODUCTION

The analysis of building frames is one of the major tasks that a

structural engineer faces in order to properly design the members composing

the frame. The structure is analyzed for all the loadings desired and the

members are subsequently designed to resist the anticipated forces with

provision for margin of safety, along with other factors such as deflection

control, durability, and ductility, to name a few.

The adequacy of such an analysis as a part of the design process

depends in part on the accuracy of the properties chosen for the various

members of the frame, the assumptions of the analysis approach employed,

as well as the reasonableness of the various loadings considered. Since

the properties of the structural members are not known until they are

designed, and since they cannot be proportioned accurately before the

frame is analyzed, it obviously becomes a matter of iteration to obtain

a satisfactory and economical design. For a given functional structural

form and selected loadings, properties must be assumed to be able to

analyze the frame for a first trial. Thereafter, members can be propor

tioned and if large discrepancies exist between the assumed and obtained

properties, the frame is reanalyzed with the new properties of its struc

tural members. Usually, there would be no need to reanalyze more than

once or possibly twice to obtain a satisfactory design if the initial

assumptions were reasonable. It is evident that member properties are

a vital input to frame analysis.

Dynamic loadings, such as those arising from earthquakes, present a

unique problem in structural analysis. These forces arise from the
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occurrence of natural hazards that are less predictable than the deter

ministic gravity loads. A structure subjected to ground acceleration will

have inertial forces that depend on mass, and its dynamic response will

depend on the combination of stiffness and mass, among other factors.

The frame is subjected to lateral forces, and must resist these forces in

addition to the gravity loads imposed on it. For strong earthquakes the

resulting lateral forces induce stresses in the structural members that

may be considerably larger than those arising from gravity loads. The

structure must be designed to resist these forces in combination with the

gravity loads.

The structural members that are normally assumed to resist the

dynamic lateral loads are the columns, beams, shear walls, and lateral

bracing, depending on the type of building being analyzed. Floor systems,

the subject of this study, have consistency been neglected in most types

of dynamic analyses of frames. This study presents a simplified method

for determining the effective width of floor systems (with or without

supporting beams) for use in analysis of frames subjected to lateral

forces. The results are based on a parametric study performed using

linear elastic finite element analysis of typical interior panels.

There are many reasons for this situation, some of which are

warranted, while others are not. The main reasons for neglecting the

resistance of floor systems against dynamic loads are the following:

(1) The lateral forces are usually resisted by the stiffest members,

usually the moment resisting frame, the shear wall, or lateral

bracing. Therefore, whatever added lateral strength the floor

system may offer will be on the conservative side, and its
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assumed small contribution does not warrant the added effort

necessary to consider its effect.

(2) Floor system types are diversified, and their behavior differs.

Therefore, generalization is difficult.

(3) Meticulous consideration of the stiffness of the floor system

requires three dimensional dynamic finite element analysis which

makes the problem prohibitive in computational time. Although

computer programs capable of such an analysis are available

[7, 29, 30]*, the number of elements required is large, rendering

the analysis either impossible or extremely expensive.

(4) Few experimental results are available for framed systems

employing loadings of the type considered herein, especially

frame systems with floors.

Traditionally, the functional performance requirements of a floor

system usually include: 1) adequate strength and stiffness to safety

support dead loads and live loads without excessive deflection, 2) provi

sion for lateral support of walls, 3) satisfactory resistance to trans

mission of airborne and structure-borne sound, 4) suitable fire resistance,

5) suitability for application of finish materials, 6) adaptability to

economical methods of assembly and erection, 7) space to accommodate

heating, air conditioning, electrical, and plumbing equipment, and

8) control of heat loss and the flow of water vapor. None of these

requirements includes resistance to seismic forces.

* Numbers in brackets refer to citations in the list of references.



4

One of the most important reasons for taking the floor slab into

consideration is the fact that it must deform together with the beams

which support it; consequently, the floor system will affect the stiffness,

strength, ductility, and energy dissipation characteristics of the frame.

This is especially true in critical regions like column-beam-slab

connections.

Underestimating or neglecting the effect of the floor slabs on the

strength of the girders may change an assumably balanced design to a

design with columns that are not capable of resisting the moment that can

be developed by the existing girders acting compositely with the slab under

lateral loads. As a result, the critical overstressed region will develop

in the columns. This type of behavior could be undesirable because the

columns may have less available ductility than the beams; therefore, the

idea of "soft story deformation ll or a balanced-type design will not be

fulfilled in such a case.

1.1 Background

One of the early studies dealing with composite structural action

between slabs and beams [26] was concerned with the encasement of steel

beams with concrete. Later, composite beams consisting of concrete slabs

on structural steel I-beams were investigated [10], and the recommendation

was offered that they be designed on the basis of a homogeneous section

wherein the concrete area is transformed into an equivalent area of steel.

The necessary information required for such calculations involved

knowledge of the area of the slab to consider for composite action. Early

theoretical studies attempted to provide rational values for the effective
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widths of floor slabs in composite action [20, 22, 35, 40]. Recent

analytical studies on the representation of floor systems can be grouped

into three types.

(1) ACI Equivalent Frame Method [3, 4, 12, 13, 18]. This method

was derived for gravity loading, and is based on modeling a

slab structure as an equivalent frame, and taking the beams as

the portion of slab bounded by the midspan centerline in each

direction. The column stiffness is modified, and columns are

assumed fixed at their far ends. Methods for extending this

method for lateral loads have been proposed recently [33, 39].

(2) Effective Slab Width [1, 9, 21, 27, 34]. This method assumes

a certain width of slab to be effective in being considered as

an equivalent beam acting compositely with the beam supporting

it. Several suggested methods are available for computing the

effective width. Some researchers suggested a specific value

of the effective width while others suggested different values

for different slab dimensions.

(3) Stiffness Modification [28]. This method modifies the stiffness

matrix of the beam without identifying a physical shape for the

slab. The resulting modified stiffness matrix is claimed to

account for the slab stiffness under gravity loads.

There were also some other studies conducted that included analytical

investigation of other behavioral characteristics of the slab [2, 8, 14

17, 19,23,25,36,37,41 -43]. To the best of the author's knowledge,

there is only one set of unpublished experimental test results dealing

with flat plate multistory unbraced structures tested by the National
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Research Council of Canada as described in Ref. 39. This fact makes it

quite difficult to compare the proposed methods of analysis to actual

tested behavior.

Most of the studies performed dealt primarily with flat slabs, and

the effect of the existence of a supporting beam (steel or concrete) has

not been adequately investigated. Furthermore, behavior of the composite

sections under lateral loads leads to a complex problem. As a result, in

part, because the contribution has been felt to be small, it has been

customary to neglect the floor contribution.

1.2 Purpose of Study

The purpose of this study is to develop a rational and simple method

using elastic beam theory for calculating the effective width of floor

systems for use in analyzing frames subjected to lateral loading.

The method described covers a wide range of practical values of the

slab dimensions. The analytical method can be applied to both steel and

concrete frames and to cases of flat slabs as well as slabs with supporting

beams.

1.3 Scope of Investigation

The investigation is based on a parametric study of typical interior

panels of floor systems, with and without supporting beams, using elastic

finite element analysis to model the behavior of the floor system when

frame is subjected to lateral loads.

Chapter 2 deals with the theoretical derivation of the method and

the procedure employed for the finite element analysis. In Chapter 3,

the results obtained and the proposed simplified method of analysis for
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estimating the composite properties are presented. Some simple examples

illustrating application of the proposed method, with emphasis on seismic

analysis and the resistance of floor systems under dynamic loads, are

presented in Chapter 4.

1.4 Notation and Units

All units of the quantities used in this study are consistent units

of force, length, and time. The quantities must be used in this manner

throughout this report.

A = spectral amplification factor for peak ground acceleration

AS = cross-sectional area of beam

AST = transformed cross-sectional area of beam

Ase = effective area of slab

ASg = gross area of slab

cl = column dimension in loading direction

c2 = column dimension in transverse direction

d = depth of beam

D = spectral amplification factor for peak ground displacement

e = distance between the neutral axes of slab and beam

EB = modulus of elasticity of the beam

Es = modulus of elasticity of the slab

f. = the ith natural frequency of vibration
1

Usn} = lateral story forces of the nth mode

{fs,max} = maximum lateral story forces when they are combined by the

method of square root of the sum of the squares of the modal

story forces
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f~ = concrete 28-day compressive strength

g = gravitational acceleration

IS = moment of inertia of beam

1ST = transformed moment of inertia of beam

Ieq = equivalent moment of inertia of the composite section

Ieql = equivalent moment of inertia of the slab

Ieq2 = equivalent moment of inertia of slab and beam compositely

Ise = effective moment of inertia of the slab {Ise = AfISg }

Isg = gross moment of inertia of the slab

IT = AfISg + 1ST

[K] = stiffness matrix for lateral displacements

Ll = longitudinal span

L2 = transverse span

m= mass

[m] = lumped mass matrix

M = bending moment at column centerline

MI = bending moment at end of the free span of the beam

Mbeam = maximum bending moment acting on the beams in the frame

M 1 = maximum column moment in the frameco •
n = modular ratio {n = Es/Es}

P = axial load on column

pi = equivalent axial load for bending moment on column

P = maximum column axial load in the framecol.
San = spectral acceleration at the nth mode of vibration

t = thickness of slab
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u = displacement along the x-axis

v = displacement along the y-axis

v = spectral amplification factor for peak ground velocity

Vb,max = maximum base shear computed by the method of square root of

the sum of the squares of the modal base shears

Vb = base shear for the nth mode of vibration
n
w = vertical displacement along the z-axis

W'xyz = derivative of w with respect to x, y, z, etc.

y = distance between the composite neutral axis and neutral axis

of the slab

a = participation factor of the nth mode of vibration
n

eo = end rotation of composite section

ey = rotation about the y-axis

ez = rotation about the z-axis

Aa = axial effective width ratio

= axial effective width ratio for c2/L2 = 0.06Aao
Af =

Af =
o

{<Pn} =

flexural effective width ratio

flexural effective width ratio for c2/L2 =

the nth mode shape vector

0.06

v = Poisson's ratio

w = circular frequency of vibration
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2. ANALYTICAL STUDY

The behavior of a slab in a frame subjected to lateral loading is

complex. The complexity is compounded by the presence of a flexible beam

helping the slab. Part of the complexity arises because the beam is usually

eccentric with respect to the slab, i.e., the beam's neutral axis usually

lies at some distance below that of the slab.

This study is directed at analyzing typical interior panels of frames

that are subjected to lateral forces. The interior panels considered in

the analysis may have supporting beams in the longitudinal direction

(loading direction). The proposed hypothesis is that there are two

nondimensional constants for a given slab aspect ratio and relative column

size which model the stiffness of the slab to that of an equivalent beam.

These two constants are assumed to be properties of the slab shape and do

not depend on the shape or properties of the supporting beam. This equiva

lent beam is assumed to act in full composite action with the supporting

beam, if it exists. Therefore, the effect of the eccentricity is incorpo

rated in the equations of composite action analytically. The two constants

that govern the equivalence of the stiffness of the slab to that of the

equivalent beam modify the gross moment of inertia and the gross area of

the slab for use in determining the composite properties of the section.

Several major assumptions were made in this study and are as follows:

(1) Behavior of all materials of the members being analyzed is elastic

and follows Hooke's law.

(2) There is no slippage between the slab and the flexural 'beam at

their interface. Bonding is assumed to be ideal and full composite
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action is developed. In practice, in order to make this assumption

valid, shear connectors normally would be provided between the slab

and the steel beam. In reinforced concrete frames, the slab and

beam normally would be cast monolithically in order to make this

assumption valid.

(3) There is no relative displacement between adjacent frames of the

building in the direction of loading.

(4) Column midheights are points of inflection in lateral deflection

of the frame.

(5) Column lines and slab midspan centerlines in the longitudinal

direction (direction of loading) are lines of symmetry.

(6) Column lines and slab midspan centerlines in the transverse

direction are lines of antisymmetry.

(7) The area of slab bound by the column has infinite stiffness and

deflects as a rigid body.

2.1 Equivalent Composite Stiffness

Composite action is developed when two structural members such as a

concrete floor system and the supporting steel beams are integrally connected

and deflect as a single member. The development of composite action is

insured if strain distribution is continuous over the entire cross section.

When a system acts compositely, no slippage occurs between the slab and

beam. Horizontal shear forces are developed at the surface between the slab

and beam. There should be enough friction and shear reinforcement at the

slab-beam interface to insure proper shear transfer so that full composite

action is developed. If slippage occurs, the moment capacity of the
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composite section is reduced. The following analysis assumes no slippage

at the slab-beam interface.

Simple beam theory was used for the analysis. Figure 2.1 shows a

slab supported by a flexural beam. The slab and the beam need not have

the same modulus of elasticity. The section properties of the beam can

be transformed by the modular ratio t

Modulus of elasticity of beam t ESn = -------------~
Modulus of elasticity of slab, Es

Stiffness is now referenced to the modulus of elasticity of the slab.

The transformed area and moment of inertia of the beam are

AST = n x (area of beam)

1ST = n x (moment of inertia of beam)

There exists a certain effective area of slab t Aset and an effective

moment of intertia t Ise ' which if the slab is replaced by a beam having

these properties will yield the same end rotation, Bo' when the frame is

subjected to lateral loads. The values of Ase and Ise are the properties

to be determined in order to make the equivalence between the slab and

the equivalent beam correct t as far as the overall behavior of this

assemblage in a frame is concerned.

The position of the neutral axis of this composite section below the

neutral axis of the slab can be easily determined by simple mechanics t

and may be expressed by

(1 )
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The composite moment of inertia of the section is given by

(2)

Simplifying and rearranging terms, one obtains

or

A A
I BT se e2 + I + I
eq = ABr + Ase se BT

(3)

(4)

It is evident that if the effective area and moment of inertia of the

slab are known, then Ieq can be calculated. Ase and Ise should be less or

equal than the gross sectional properties of the slab, ASg and ISg '

For convenience, Ase and Ise can be represented as some fraction of

the gross properties, namely,

(5)

and

(Sa)

The terms Aa and Af represent that fraction of the gross area and

moment of inertia of the slab, respectively, which if used as properties

of an equivalent beam replacing the slab, will yield the same composite

stiffness in the frame. These fractions may be referred to as Effective

Width ratios, Effective Width coefficients, or Equivalent Beam coefficients.

In reality they are merely correction coefficients for equating the action

of the slab, as a plate, to that of a beam. Physically, the slab can be

thought of as a beam whose depth is equal to the thickness of the slab
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and whose width is equal to the effective width ratio times the width of

the slab. There are two effective widths to be considered, one for bending

action (to determine Ise in Eq. (4», and the other for composite action

(to determine Ase for the first term of Eq. (4». Since the two effective

widths are determined from the two nondimensional correction constants that

satisfy Eq. (4), they are not necessarily equal in general. Earlier in the

study, it was assumed that there was a single effective width of slab for

usage in Eqs. (4) and (5). However, when the same slab and beam were

analyzed with a varying eccentricity, the resulting calculated effective

width did not remain constant. The effective width had a maximum value

equivalent to what was later determined as Af when the eccentricity was

zero. As the eccentricity increased, the effective width decreased and

reached a minimum value (for large eccentricities) of what was later found

to be the value of Aa. Since the basic assumption was that the effective

width is a property of the slab, an effective width dependent on beam

properties did not fulfill this assumption. Therefore, the more general

approach of assuming that two constants are required to satisfy the

proposition of an effective width independent of the properties of the

beam was adopted.

In order to calculate effective width coefficients, the stiffness of

the slab/beam assemblage must be determined. This stiffness was derived

by applying beam theory to the end rotations obtained from finite element

analysis of the slab and beam as discussed in Sections 2.2 and 2.3.

Under lateral loading of the frame, the slab/beam will deflect in

the antisYmmetric manner shown in Fig. 2.2. The finite dimension of the

column will make the corner encompassed by the column to be essentially
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rigid. The applied end moment, M, caused by the shear in the column

will cause an end rotation, 6, as shown in Fig. 2.2. The dimension cl
represents the column width in the loading direction, which is considered

rigid in the foregoing analysis. The equivalent beam is defined as that

beam which will have the same end rotation, 6, for the same applied

moment, M. Its moment of inertia, Ieq , is given by

I = M' LI / (3Ee)eq (6)

where L ' = (L l - cl )/2, M' is the bending moment at the end of the rigid

part of the equivalent beam, and e is the angle shown in Fig. 2.2, given by

(7)

For small angles,

where the deflection, w, is given by

Substitution in Eq. (7) gives

(7a)

The bending moment, M' , may be written in terms of the applied moment,

M, by statics, as

(8)

Finally, substitution of Eqs. (7a) and (8) in Eq. (6) gives the

expression of the equivalent moment of inertia,
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(9)

If the value of M/E8 is known for a given composite slab and beam,o
then the moment of inertia of the equivalent beam can be calculated

using Eq. (9).

2.2 Deriving Effective Width Ratios

The foregoing derivation assumes that the values of M/E8o for the

cases being considered are readily available. These values were obtained

by finite element analysis which will be discussed in section 2.3. With

the equivalent composite moment of inertia of the slab and beam determined,

it is a fairly simple task to calculate the effective widths.

Substitution of Eqs~ (5) and (5a) in Eq. (4) and rearranging gives

(10)

The flexural effective width ratio may be determined from the

equivalent composite moment of inertia for the cases where no beam exists

or for the cases where the eccentricity of the beam is zero. Either method

should yield comparable results for the flexural effective width ratio, Af'

which will be given by

where I is obtained using Eq. (9) for the case where no beam is present
eql

or when the eccentricity of the beam is zero.

With Af determined for the slab under consideration, Eq. (10) can be

solved for the axial effective width ratio, Aa , which gives
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(11 )

where I q is the equivalent moment of inertia of the composite section
e 2

when an eccentric beam is present.

The numerator of the above expression represents the difference

between the composite moment of inertia about the composite neutral axis

and the sum of the moments of inertia of the beam and the effective

flexural width of the slab about their individual neutral axes. The

denominator represents the difference between the sum of the effective

moment of inertia of the slab and beam about the neutral axis of the slab

and the composite moment of inertia about the composite neutral axis.

If the term (AfI Sg + IBT) is called the total moment of inertia, IT'

about the individual neutral axes of slab and beam, and rearranging terms,

Eq. (11) becomes

(12)

Therefore, for a given slab, two values of Ieq are needed to calculate

Af and Aa. The flexural effective width ratio can be calculated by

analyzing the slab without a beam. With the value of Af obtained, IT may

be determined by

In order to calculate the axial effective width ratio, Aa, an eccentric

beam is inserted in the longitudinal direction. With the computed equivalent
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composite moment of inertia, I , obtained from finite element analysis,
eq2

the value of Aa can be determined using Eq. (12).

As will be noted later in Chapter 3, it was found from finite element

analysis that both effective width ratios are independent of beam proper

ties. The term Af depends only on the aspect ratio of the slab, L1/L2,

and the relative size of the column, cl /L1 and c2/L2. The thickness of

the slab, t, does not affect Af .

Although Eq. (12) appears to depend on the properties of the beam,

it was found, from analyzing the same slab with various beam properties,

that it actually does not have such dependence. The axial effective

width ratio, Aa, remains constant as the area, moment of inertia and

eccentricity of the beam are varied. Slight variation in Aa occurs when

extremely small relative values of e, ABT , and IBT are used. Such small

values are not likely to be found in practice, and their importance is

only of academic interest. In general, if the transformed moment of

inertia of the beam, IBT is kept greater than about 5 percent of the

gross moment of inertia of the slab, ISg ' the effective width ratios do

not change. For transformed beam areas, ABT , greater than about one

percent of the gross slab area, Asg ' the effective width ratios are found

to remain constant for a given slab. Beam eccentricities greater than

about one-fifth the slab thickness had essentially no effect on the

effective widths. The errors introduced by using smaller values of the

aforementioned parameters are not large, and it ;s believed that they

arise as a result of round-off error in the numerical solution.

After experimentation with several values of relative beam properties,

it was determined that fairly high values avoid any possible round-off
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error caused by the large discrepancy between beam and slab properties if

small values are used. Every effort was made to keep these parameters as

close to practical values as possible. The values chosen for the final

analysis were

ABT/ASg = 0.25

I8T/I Sg = 3.0

eft = 3.0

where t is the thickness of the slab.

2.3 Finite Element Analysis

The stiffness of each slab/beam assemblage analyzed was determined

with the aid of elastic finite element analysis. The computer program

that was used in this study was the finite element program FINITE which

was developed by Professor Leonard A. Lopez and colleagues [24] at the

University of Illinois at Urbana-Champaign. A typical interior panel of

a slab was modeled as a plate having both bending and membrane stresses

with a rigid column area and a beam in the longitudinal direction (i.e.,

direction of loading).

The boundary conditions and loading imposed on this typical interior

panel were such that the resultant deflected shape was similar to that

encountered when the frame is subjected to lateral loading, such as

seismic or wind forces. The following sections describe the modeling

procedure employed in the analysis.
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2.3.1 Mesh

Several meshes were attempted and considerable experimentation with

different meshes was employed for determining an efficient, yet accurate,

finite element mesh.

The first mesh used consisted of 16 elements in each direction with

two different spacings. Ten elements at 0.04 times the half-span, and

six at 0.10 times the half-span were used, as shown in Fig. 2.3. This

mesh was costly in computation time and was not feasible for the parametric

study intended as many runs are required to cover the practical range of

the parameters.

In order to reduce computing time, the number of elements were

reduced to ten in each direction but with three different spacings which

are (Fig. 2.4) four at 0.05 times the half-span, four at 0.10, and

two at 0.20. This mesh reduced computation time by about 60 percent,

but yielded rotations and deflections about two-thirds of those of the

16 x 16 element mesh, which indicates a condition of being too far away

from convergence of the finite element solution.

To seek convergence of the solution, a uniform mesh of 20 elements

in each direction was attempted though at a higher computation time.

This yielded rotations about twice those for the 16 x 16 element mesh.

A 25 x 25 element mesh was also tried and it yielded results virtually

identical to those of the 20 x 20 element mesh, which indicates that

the solution converges at around the 20 x 20 element mesh.

Since the 20 x 20 element mesh was by no means feasible for the

study, a new mesh was attempted that had 25 elements in the longitudinal

direction and only two elements in the transverse direction. The width
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of the first element is controlled by c2, the width of the column in the

transverse direction. The rotations of this mesh came within about 4

percent of the converged solution provided by the 20 x 20 and 25 x 25

element meshes. The computation time was very fast relative to the

original 16 x 16 element mesh, requiring only about 8 percent of its

computation time.

This encouraging result led to the final slab mesh employed which

had 25 elements longitudinally and 3 elements transversely. The first

element had its width controlled by the column size, the next two elements

split the remaining transverse span in half. This slab mesh, shown in

Fig. 2.5, yielded results that were within 2 percent of the converged

25 x 25 element mesh solution (Fig. 2.6) at about 3 percent of its compu

tation time. This fact made the parametric study of the slab feasible

and efficient, yet accurate. This efficiency would not have been possible

to achieve with any of the previous meshes attempted. Experimentation

with different meshes for finite element analysis, although time-consuming

and expensive, usually becomes economical at the end in terms of overall

efficiency and feasibility of studies that must change many parameters

and perform numerous finite element computations.

The reason why such a mesh (3 x 25 element mesh) provides satisfactory

result for this analysis is that it has a large number of elements in the

direction of loading (longitudinal) while it has only a few elements in

the transverse direction where the rotations are much less. Therefore,

the errors introduced by the coarse mesh transversely are small. Although

this mesh provides good results for the rotations under consideration and
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yields satisfactory overall behavior, one strongly suspects that it does

not provide accurate results for local behavior in the transverse direction.

This 3 x 25 element mesh was used for all the analysis, and all

results of the study were derived based on the solution using this mesh.

Several cases were run, and their results confirmed its overall accuracy

of about 2 percent with respect to the more elaborate meshes that were

attempted (20 x 20 elements and 25 x 25 elements).

2.3.2 Elements

Two superimposed elements were used for each element in the slab mesh

to model all degrees of freedom.

The first element was a Rectangular Plate Bending element having 16

degrees of freedom. It has 4 nodes and is formulated using moderately

thick plate theory. The displacement shape for this element is of the

third order. Each node has 4 degrees of freedom as shown in Fig. 2.7.

Vertical displacement, w, rotation about the x-axis, Bx' rotation about

the y-axis, By' and twist, wzy . The element is completely conforming and

rotations are compatible between elements since the element has the warping

degree of freedom. Complete formulation and behavior of this element is

discussed in Ref. 6.

The generalized stress and strain resultants are defined by the

following terms, referring to Fig. 2.8 [24],

MxX = O(w'xx + VW'yy)

Myy = O(w'yy + vw'xx)

MXY = 0(1 - v)w'Xy
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Qyy = D(W,yyy + W'XXy)

Vxx = D(W,xxX + (2 - v)W'Xyy)

Vyy = D(W,yyy + (2 - V)W'XXy)

where

v = Poisson's ratio

E = Young's modulus of elasticity

t = thickness of the plate

w = vertical displacement (z-axis)

The second superimposed element was a Plane Stress Rectangle having

4 nodes and two degrees of freedom at each node, the x-displacement, u,

and the displacement, v, as shown in Fig. 2.9. The generalized stresses

and strains for this element are shown in Fig. 2.10.

The beam was modeled using plane frame elements along the y-axis.

They were connected with rigid links to the plate elements to represent

the eccentricity between the slab and beam neutral axes. The plane frame

elements have two nodes with three degrees of freedom at each node: the

x-displacement, u, the y-displacement, v, and the rotation about the

z-axis, 8z' These degrees of freedom are with respect to the local axes

of the element; however, the element is oriented such that its local

x-axis lies along the global y-axis, and its local z-axis lies along

the global x-axis.
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2.3.3 Constraints

The symmetry of the structure and the anti symmetry of the loading

implied that the following boundary conditions be imposed on the panel

being analyzed (Fig. 2.11):

(1) The x-displacement, u, and the y-rotation, 8y ' were constrained

along the longitudinal column line and longitudinal centerline

of the slab.

(2) The vertical displacement, w, was constrained at the transverse

column line edge and transverse slab centerline edge.

These constraints enabled the analysis of one quarter of the panel

instead of the whole panel, thus greatly reducing computation time.

2.3.4 Loading

The loading for this structure was selected to be a concentrated

moment about the global x-axis applied to node 1, which is the column

corner of the quarter panel where the three elements, slab, beam and

column, meet. This loading models the deflection pattern of this

subassemblage when the frame deflects in an anti symmetric manner under

lateral forces.
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3. RESULTS

Numerous test runs were performed and analyzed before the final

finite element runs were selected for purposes of arriving at the results

presented. Many of these runs were improved and rerun to obtain the final

results presented herein.

3.1 Variation of Parameters

Two approaches were used to obtain the final values. The first

approach employed a slab without a beam for the derivation of the flexural

effective width coefficients, and the second employed a slab with a beam

for determination of the axial effective width coefficients. In each case

the variation of the parameters involved was achieved by varying the

dimensions of the elements, thus the mesh remained the same for all cases.

The rigidity of the column was approximated by increasing the modulus of

elasticity of column elements desired to be rigid to 105 times that of

the remaining elements. This factor was established after some experi

mentation. It proved to be a good compromise between infinite rigidity

which causes round-off error and too small a rigidity that would not

yield the desired effect.

3.1.1 Flexural Effective Width

Three main parameters control the flexural effective width

coefficient, Af :

(1) The aspect ratio of the slab, Ll /L2. The transverse dimension

L2 was fixed at 100 units of length and Ll was varied from 50

to 300 units, thus yielding a variation in the aspect ratio
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from 0.50 to 3.00. As expected, an increase in the aspect

ratio increased the effective width, indicating that a

greater fraction of the width of the slab acts like a beam

as the slab becomes longer in the loading direction.

(2) The longitudinal relative column dimension, cl /L1. The

variation of this parameter was accomplished by varying the

number of elements being considered rigid from one to six.

The parameter c1/L1 varied from 0.04 to 0.24 in increments of

0.04, which is the size of one element, encompassing most of

the possible practical values. This variation was performed

for each of the six aspect ratios considered. The resulting

effective widths indicate that as c,/L, increases, the

effective width increases though in different magnitudes for

different aspect ratios. For small aspect ratios the effect

is small, but for large aspect ratios the effect is more

pronounced for the smaller values of cl/Ll ; however, the

curves level off at smaller values of cl/Ll as the aspect

ratio increases (Fig. 3.1). Finite element results are

listed in Table 3.1, and the derived flexural effective

width coefficients are listed in Table 3.5.

(3) The transverse relative column dimension, c2/L2. The above

two variations were performed with a fixed value of c2/L2
of 0.06. This value was chosen because it seemed more

representative of what would be encountered in practice.

As c2/L2 was varied, the flexural effective width coefficient

varied linearly. For larger c2/L2, Af increased in a linear



27

fashion that was dependent on the aspect ratio of the slab,

but seemed to be relatively independent of the value of cl/Ll
being considered. In general, the variation was slightly

higher for lower values of cl/L l . Several cases were analyzed,

and the relative decoupling between c2/L2 and cl/Ll was

confirmed. The difference noted in Af varied in general by

less than 1.5 percent as cl/Ll was changed from 0.08 to 0.16.

Therefore, an average value for cl/L l of 0.12 was chosen to

derive the final correction factors used, Af/Af ' to correct
o

for the transverse column dimension effect. The parameter

c2/L2 was varied from 0.3 to 0.18. The resulting finite

element values shown in Table 3.2 and the calculated correction

factors are shown in Table 3.5 and Fig. 3.2.

3.1.2 Axial Effective Width

The same three parameters controlling the flexural effective width

were the ones affecting the axial effective width coefficient, Aa. The

same cases used for deriving the flexural coefficient were used for the

axial coefficient, with the difference being the addition of a beam.

Numerous test runs with different aspect ratios, relative column

dimension, slab thickness, beam eccentricity, beam cross-sectional area,

and beam moment of inertia indicated that the axial effective width

coefficients are only dependent on L1/L2, cl/L l , and to a lesser extent

c2/L2. Therefore, arbitrary practical values for e, AST ' and 1ST were

chosen for each slab analyzed. They were chosen slighly on the high

side to cancel any round-off errors, and because the resultant values
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of Aa will be slightly on the conservative side when used with smaller

values.

The same variations in Ll /L2 and cl/L l as the flexural calculations

were used in this study. The resulting finite element stiffnesses are

shown in Table 3.3 and the derived Aa values are shown in Table 3.7 and
o

Fig. 3.3.

As c2/L2 was varied for various values of Ll /L2, there were small

changes in the axial effective width coefficient, Aa; these changes

became less apparent for higher values of Ll /L2. Analytical results are

given in Table 3.4 and the adjusted derived correct10n factors are shown

in Table 3.8 and Fig. 3.4. For Ll /L2 greater than 1.0, the correction

is negligible and is therefore omitted from consideration.

The variation of Aa with cl/Ll was observed to be opposite to that

for Af . As cl/L l increases, Aa decreases, and it does so more sharply

for larger aspect ratios than for smaller ones. The explanation for

this behavior is that as the rigid area becomes larger, there is less

remaining span length in the direction of loading; the composite action

decreases, thereby reducing the effective area of the slab acting in this

manner. Theoretically, the curves should all converge to zero as cl/Ll
approaches 1.0. The results substantiate this fact. These axial effective

width coefficients are independent of the properties of the beam, unless

unrealistic values are used, in which case the deviation observed is mainly

due to round-off error in the finite element solutions.

3.2 Discussion of Accuracy

It is difficult to specify accuracy of the presented results because,

to the best knowledge of the author, no published test data are available
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on laterally loaded frames with floor slabs and beams. Other researchers

have also confirmed this fact [40]. The proposed method can only be

compared to the analytical values obtained from finite element analyses.

Therefore, any accuracy referred to in this study is based on such

analytical values, and no claim is made on accuracy with respect to

experimental testing. Some of the other theoretical studies which are

not based on finite element analysis employ empirical distributions of

stresses, or are restricted to gravity loading.

The rotations and deflections of the equivalent beam having properties

that will give an identical end rotation as the composite slab and beam

is very compatible with the deflections obtained by the finite element

analysis of the 3 x 25 element mesh and the 20 x 20 element mesh. In fact,

the deflections lie between the elaborate mesh and the one being used,

which makes the equivalent beam even closer to the converged solution.

The deviation is on the order of 1.5 percent.

The results of most of the cases studied in this investigation are

tabulated in Tables 3.9 to 3.15, with direct comparison of the resultant

composite stiffness using the presented effective width constants with

the results of the finite element analysis of those particular slabs.

As can be seen from the tables, all values of composite stiffness are

within ±2.5 percent of the finite element results. The cases studied

present a wide variety of parameters that were varied. While they do

not cover every conceivable variation, they show the trends of the

variations which led the way to the final results and proposed simplified

method of analysis for using the derived effective width coefficients.
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The effect of the eccentricity of the beam was to change the

equivalent composite stiffness in a quadratic manner as would be expected

from Eq. (4). The data from the finite element analysis fit this equation

satisfactorily. For zero eccentricity, the composite equivalent stiffness

is simply the sum of that of the effective slab and beam without any

composite action.

The moment of inertia of the beam was just an additional constant

to the composite moment of inertia as long as the area of the beam was

not changed. If the area of the beam is changed, then the position of

the composite neutral axis changes as well as the composite action

between the slab and the beam. The effect of changing the thickness

of the slab is more involved, especially as the gross area and moment

of inertia of the slab are changed simultaneously. The position of the

composite neutral axis is changed, composite action is changed, and the

slab effective moment of inertia also is changed.

3.3 Proposed Method for Using the Effective Width Coefficients

The recommended procedure for calculating the composite stiffness

of the slab and beam using the derived results is the following:

(1) Enter Fig. 3.1 with the desired value of the longitudinal

relative column size, cl/Ll . For the appropriate curve for

the aspect ratio of the slab being considered, Ll /L2, read

the value of the flexural effective width coefficients, Af .
o

Linear interpolation may be used for values that are not

plotted.

(2) Enter Fig. 3.2 with the desired value of the transverse
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relative column size, c2/L2, For the appropriate curve for

the aspect ratio of the slab under consideration, read the

correction factor for Af ' Calculate Af , where

Af =Afo x (flexural correction factor)

(3) Enter Fig, 3.3 with the value of the longitudinal relative

column size. For the appropriate curve for the aspect ratio

under consideration,. read the value of the axial effective

width coefficient, A
ao'

(4) From Fig. 3.4 read the correction factor for the axial

effective width coefficient for the appropriate aspect ratio

and transverse relative column size. Calculate Aa , where

A = Aa ao x (axial correction factor)

(5) Determine the position of the composite neutral axis from

(6) Calculate the equivalent moment of inertia of the composite

section referred to the modulus of elasticity of the slab from

This calculated composite moment of inertia does not include the

rigidity effect of the finite column dimension. Therefore, when the

equivalent beam is analyzed as part of a frame, rigid links must be

imposed at the ends of the equivalent beams to account for this effect.

If the equivalent beam is to be analyzed without this rigidity

imposed, then Ieq has to be corrected to include this rigidity.
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The corrected value, I~q' should then be used in the frame, where

I~q = Ieq/(l - C1/L1)3

Use of the corrected moment of inertia in such a manner will yield

accurate results for the end rotations of the equivalent beam, but may

not be as accurate for evaluating the deflections of the slab/beam.

Also, the equivalent moment of inertia may be larger than that obtained

by considering the whole width of the slab as an equivalent beam. This

situation arises because the additional stiffness offered by the finite

dimension of the column is essentially added to the stiffness of the

slab. Such a case arises if the aspect ratio of the slab is large or

the relative dimension of the column is large. However, the nodal

effective stiffness of the slab will be correct. If only the nodal

stiffness of the equivalent beam is of primary concern, then the

equivalent moment of inertia may be used in any of the two forms

described.

3.4 Remarks on Applicability

The results presented in this chapter were derived from the

analysis of typical interior panels, and technically the results are

applicable only in such cases. However, a few cases of end panels

were studied, and their results showed that the proposed method can

be applied satisfactorily. The error involved in such cases was

observed to be on the order of 10 percent.

Also, a few cases were analyzed where a transverse beam was

present at the column line which was about half the size of the
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longitudinal beam. The results obtained were very close to those

without the torsional beam. One reason for this observation possibly

is that the boundary conditions do not allow for large relative

torsional rotation of that beam.
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4. EXAMPLE APPLICATIONS

There are several possible applications of composite slab and beam

behavior in structural analysis and design. The proposed method was

derived based on laterally loaded frames and was mainly intended for

application in seismic design. However, it may be applied for wind

loading and any other loading pattern of a frame that produces the anti

symmetric deflection shape described previously.

The proposed effective width factors may be applied to steel as

well as concrete frames. Although derived for a slab of uniform thick

ness, the method can apply to slabs that do not have a uniform thickness,

such as ribbed slabs or steel joist floor systems provided the gross area

and moment of inertia of the slab is computed, and the position of the

neutral axis of the slab is determined. A nonuniform slab will make the

computation of composite stiffness more involved, but the theory should

sti 11 apply.

For the design of the composite member, any suitable method may be

used, depending on the situation at hand. Ultimate design, as per ACI

Code [3], or working stress design may be employed. The effect of

cracking also may be considered by using a cracked moment of inertia

for the slab as recommended by the ACI Code. The designing process

always will follow the preliminary analysis; therefore, once the effec

tive widths are determined, the engineer has many choices for design

using an appropriate procedure. While the design procedure for the

structural members of a frame is certainly important, it is not the

purpose of this study to suggest methods for member design. However,
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it is the main purpose of this investigation to recommend modification

of member properties as a tool for analyzing frames subject to lateral

forces.

The examples presented in this chapter are for the purpose of

illustrating the use of the proposed method and some of its effects in

analyzing low-rise steel frames for seismic loading. The method of

analysis was chosen for simplicity and does not necessarily limit the

use of the study to the type of frame or method of analysis discussed.

4.1 Composite Member Properties of a Slab

For determination of composite properties of a floor system, a

square interior panel of a concrete slab 5 inches thick having a span

of 20 feet is selected. The beam is a W24x68 steel section, and the

column is W14x68 steel section. The concrete compressive strength

used in this example is 3500 psi.

The dimensions of the steel column are [5]:

c = 14.06 inches1
c2 = 10.04 inches

which gives

C1/L1 = 0.059

c2/L2 = 0.042

The flexural effective width ratio is determined from Fig. 3.1

for the aspect ratio, Ll /L2 = 1.0,

Af = 0.54
o

The correction factor for the transverse relative column size is

determined from Fig. 3.2,
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Therefore,

Af = 0.54 x 0.98 = 0.53

Similarly, the axial effective width coefficient is determined from

Fig. 3.3,

A = 0.34ao

And the correction factor for c2/L2 is determined from Fig. 3.4,

Therefore,

Aa =0.34 x 1.01 =0.34

The properties of the beam as obtained 1imm the 7th edition of

the AISC Manual [5] are the following:

AS = 20.0 in. 2

IS = 1820 in. 4

d = 23.71 in.

where d is the depth of the steel beam.

Since the slab and beam are of two different materials, their

properties must be transformed to the same modulus of elasticity. The

modulus of elasticity of concrete may be taken as suggested by the ACI

Code [3],

E =57000~
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which gives the modulus of elasticity of the slab, Es '

E = 3370 ksis

The modulus of elasticity of the steel is taken as 29,000 ksi

giving a modular ratio, n, of

n = 29000
3370 = 8.60

Therefore the transformed properties of the beam become

ABT = nAB = 8.60 x 20.0 = 172.0 in. 2

IBT = nIB = 8.60 x 1820 = 15650 in. 4

The gross area and moment of inertia of the slab are calculated

as follows:

A = L t = (20 x 12) x 5 = 1200 in. 2
sg 2

ISg = L2t 3/12 = 1280 in. 4

The eccentricity of the beam's neutral axis below that of the slab

is given by

e = (d + t)/2 = (23.71 + 5)/2 = 14.36 in.

The position of the neutral axis of the composite section can now

be calculated,

4.23 in.

Finally, the equivalent composite moment of inertia can be computed,
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Ieq = AaAsgey + Af Is9 + 1ST

= (0.34 x 1200 x 14.36 x 4.23) + (0.53 x 1280) + 15650

= 41300 in. 4

and the equivalent composite area is

Aeq = AaAsg + AST = (0.34 x 1200) + 172.0

= 583.6 in. 2

These properties are equivalent concrete properties of the composite

section since it is referred to the modulus of elasticity of the slab~

If it is desired to reference them to the beam1s modulus of elasticity,

they should be divided by the modular ratio, n,

It is interesting to compare these properties to the ones obtained

if the whole width of slab is assumed to be effective in composite

action, and to the properties of the beam by itself,

(Ieq }fu11

(Aeq}full

width = 5570 in.
4

width = 159.5 in.
2

IS = 1820 in. 4

As = 20.0 in. 2

As expected, the properties based on the full width are considerably

larger than the values using the effective width.

The computed effective composite properties do not include the

effect of column rigidity, If this effect is desired to be included,

the computed values must be divided by the quantity (1 - Cl /L1}3.
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The resulting properties become

I~q = 4800/(1

A~q = 67.9/(1

0.059)3 = 5760 in. 4

0.059)3 ~ 81.5 in. 2

It is a debatable matter whether or not this rigidity effect

should be considered. The behavior of the column area is somewhere

between infinite rigidity and zero rigidity. This contact area of slab

is stiffer than the rest of the slab, but not necessarily fully rigid.

Since conventional frame analysis neglects this rigidity effect, it may

be more desirable not to correct the resultant equivalent composite beam

properties for this extra rigidity.

4.2 Seismic Analysis of a Frame

To illustrate the application of the proposed method in seismic

design of buildings, a three-story moment-resisting steel frame is chosen

for analysis. A smoothed elastic response spectrum [32J is used as the

earthquake input. Modal analysis is performed, and the results are

compared to those obtained by analyzing the frame with the slab stiff

ness neglected.

The three-story frame selected is a two-bay frame with a span of

22 feet each as shown in Fig. 4.1. The columns used are all W14x127

and the beams are W2lx68, all of them made of A36 steel. The floor

systems selected are all uniform six-inch reinforced concrete with a

compressive strength of 3500 psi. The transverse span selected is

20 feet.
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4.2.1 Gravity loads

The dead load considered for this frame was computed as follows:

6" Concrete slab

Steel members

Partitions

Total DL

72 psf

8 psf

20 psf

100 psf

The live load was taken as 40 psf, a common loading for residential

buildings. Although the roof usually carries less live load than the

rest of the floors, it was taken to be the same in this example in order

to facilitate the computations.

4.2.2 Equivalent Composite Beam Properties

The dimensions of the W14x127 steel column are obtained from the

1973 AISC Manual [5],

cl = 14.62 in.

c2 = 14.69 in.

which gives the relative column size as

c
1
/l

1
= 14.62 = a 05522 x 12 .

c
2
/L

2
= 14.69 = a 06120 x 12 •

The aspect ratio of the slab is

The flexural and axial effective width coefficients obtained from

Figs. 3.1 through 3.4 are
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Af = 0.567

Aa = 0.374

The properties of the beam as obtained from the 1973 AISC Manual

are

IB = 1480 in. 4

AB = 20.0 in. 2

d = 21.13 in.

If the properties of the slab and beam are transformed to the same

modulus of elasticity using the modular ratio (n = 8.6), the resultant

equivalent composite properties referenced to the modulus of elasticity

of the beam (E = 29000 ksi) are

Ieq = 4554 in. 4

A = 82.6 in. 2
eq

For consistency of comparison with the frame analysis which neglects

the slab, the above properties were used without modification for the

column rigidity effect. The analysis of the frame neglecting the slab

does not take this effect into consideration, so proper comparison should

not include this factor. Otherwise, the results may be misleading.

4.2.3 Modal Analysis

The stiffness matrix for lateral forces was determined by applying

unit horizontal displacements at each level, one at a time, while

restraining the remaining horizontal degrees of freedom, and calculating

the resulting horizontal forces. This analysis was performed with the
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aid of finite element analysis. The rotations and vertical displacements

of the joints were not restrained. Their effect is included in the

condensed stiffness matrix for lateral forces. The numbering of the

degrees of freedom is as shown in Fig. 4.2.

The resulting stiffness matrix for the frame neglecting the slab

was calculated as follows:

896 -505 103

[K] = -505 710 -331 k/in.

103 -331 245

The stiffness matrix for the frame, including the slab effective

stiffness, was calculated as follows:

953 -515 70

[K] = -515 854 -417 k/in.

70 -417 353

As expected, the lateral stiffness of the frame, including the stiff

ness of the slab is greater than that when the slab stiffness is neglected.

The mass matrix for the frame was taken as a lumped mass matrix, and

no mass is attributed to the rotational degrees of freedom at the nodes

where the masses are lumped. The load used to compute the mass per floor

was the dead load plus 25 percent of the live load. This load leads to a

weight per floor, W, of

W= (100 + (0.25 x 40)) x 44 x 20 = 96.8 k

and leads to a floor mass of
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m=~ = 96800 lb = 251 lb-sec2/in.
g 386 in./sec2

and the lumped mass matrix is

[~l o~ O~]em] = 251 lb-sec2/in.

In order to calculate the natural frequencies of vibration, the

characteristic equation has to be solved,

2
I[K] - w [m]1 = 0

The characteristic equation is a cubic function in w2. The solution

to this cubic equation provides the square of the natural circular

frequencies, from which the frequencies may be calculated by

f =~2n

For the frame with the slab neglected, the natural frequencies are

f l = 1.95 Hz

f 2 = 6.52 Hz

f 3 = 11.85 Hz

If the effective stiffness is considered, the natural frequencies

of vibration are increased to the following values:

f l = 2.50 Hz

f 2 = 7.64 Hz

f 3 = 12.39 Hz
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The mode shapes can be computed from the characteristic matrix by

substituting into the characteristic matrix one frequency at a time.

The mode shape for that frequency (scaled to an arbitrary constant) is

the vector obtained by taking any row of the matrix of cofactors of the

characteristic matrix. In this example, the mode shapes are scaled by

the component of the first degree of freedom. The resulting mode shapes,

{~n}' for each vibrating frequency, without considering the slab stiffness,

are as follows:

{

1.000 }
{¢1} = 2.368

3.284
{

1.000 }
{¢2} = ·0.799

-0.919 {

1.000 }
{¢3} = -0.784

0.303

while for the frame with the slab considered, the mode shapes are as

follows:

{

1.000 }
{¢1} = 2.110

2.775
{

1.000 }
{¢2} = 0.616

-0.828
{

1.000 }
{¢3} = -1.042

0.432

The participation factor for each mode, an' may now be calculated.

The participation factor for mode n is defined as

a =n

{¢n}T[m]{l}

{¢n}T[m]{¢n}

The calculated participation factors for the frame neglecting the

slab are

a1 = 0.383 ~ = 0.354 a3 =0.305
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while those for the frame considering the slab are

a l = 0.447 a2 = 0.381 a3 = 0.171

A smoothed response spectrum as suggested in Ref. 32 was used with

a base ground acceleration, ag, of 0.15 g. The ground motions were

calculated for competent soil with the recommended value of via ratio

of 36 in./sec/g and an ad/v2 equal to 6.0. The amplification factors

were computed for 5 percent damping and a cumulative probability of

84.1 percent, which is the median plus one standard deviation. The

resulting amplification factors for acceleration, A, velocity, V, and

displacement, 0, are

A = 2.71

V = 2.30

o = 2.01

The design elastic response spectrum is then drawn as suggested in

Ref. 32 and is shown in Fig. 4.3. The resulting spectral acceleration,

S for the three modes of vibration can now be read directly from thisan'
response spectrum for the three natural frequencies of vibration. For

the frame without the slab considered, the spectral accelerations for

the three modes are

{

0.41 }
Sa =. 0.41 g

0.32

while the spectral accelerations for the frame with the effective slab

considered are
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{

0.41 }
Sa = 0.41 9

0.30

The story forces, f , may now be calculated for each mode ofsn
vibration using the participation factor, the mode shape, and the

spectral acceleration for that mode [11,31,38]

The resulting forces for the frame without consideration of the

slab stiffness for the three natural modes of vibration are

{

15.2 }
fs = 35.9 kips

1 49.9 {

14.1 }
fs = 11.3 kips

2 -12.9 {

9.5 }
f s = -7.4

3 2.9
kips

The lateral story forces for the frame, including the slab stiffness,

are

{

17.2 }
fs = 36.4 kips

1 48.0 {

14.7 }
fs = 9.1 kips

2 -12.2 {

4.9 }
fs = -5.1 kips

3 2.1

These modal story forces are the maximum amplitude of the forces

when the system is vibrating in that mode of vibration. The total

response is obtained through superposition of the three modes. However,

this superposition is in the time domain. The maximum total response

cannot be obtained, in general, by merely adding the modal maxima.

The modal maxima generally do not occur at the same time. Therefore,

although adding the modal response maxima provides an upper limit to
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the total response, it is in general an overestimation of the maximum

response likely to be encountered.

There are several proposed methods to obtain a reasonable estimate

of the maximum response from the spectral values. The simplest method

is to take the square root of the sum of the squares of the modal maximum

values as the most probable estimate, or

3 ~ ~1/2f . = L: (f )
s ,max n=l sn_

The maximum values of the story forces computed by this method for

the frame neglecting the slab are

{

22.8 }
fs,max = 38.4 kips

51.6

and the maximum computed forces for the frame with the effective slab

considered are

{

23.1 }
fs,max = 37.9 kips

49.6

Now the base shear for each mode can be computed by summing forces

at all the story levels, and the maximum value may be computed by square

root of the sum of the squares method. The base shears, Vbn , neglecting

the slab are

Vb = 101.0 kips
1

Vb,max = 101.9 kips

Vb = 12.5 kips
2

Vb = 5.0 kips
3
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If the slab is considered, the base shear values become

Vb = 101.6 kips
1

Vb,max = 102.3 kips

Vb = 11.6 kips
2

Vb = 1.9 kips
3

The frame can now be analyzed in a quasi-static manner by imposing

the computed modal story forces on the frame, one mode at a time, and

computing the resulting maximum member forces and moments for combination

of loadings by taking the square root of the sum of the squares of the

modal values. The loadings considered were DL + LL and DL + 0.25LL +

Earthquake Load. The analysis of the frame was performed by finite

element analysis. The distribution of the lateral forces at each level

was such that the interior joints took twice the lateral force imposed

on the exterior joints. This distribution was employed because the

interior joints have twice the lumped mass of the exterior joints;

therefore, they experience twice the inertial forces of the outer joints.

As expected, maximum member forces and moments occurred for the second

type of loading, the critical members being the first-story beams and

the interior first-story column.

When the slab was not considered, these maximum member forces were

p = 151 kipscol.
Mcol. = 302 k-ft

Mbeam = 325 k-ft

When the slab was considered, the maximum member forces became
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p = 155 kipscol.

Mcol . = 257 k-ft

Mbeam = 353 k-ft

The moment on the critical column is considerably reduced because

the stiffer equivalent beam carries a larger share of the applied moment.

Although the moment on the critical beam has become larger! the composite

beam now has a higher moment capacity than the steel beam by itself! as

noted later.

For this example! the capacity of the column may be computed for the

combination of axial force and moment. The modified formula (1.6-lb) of

the AISC specifications [5] may be used to compute the required tabular

load for the above loading! which gives for the case neglecting the slab

p + pi = 680 kips

When the slab effective stiffness is considered! the required

tabular load for the column becomes

p + pi = 602 kips

The tabulated load for the W14x127 column is 721 kips [5]. It can

be seen that without considering the slab stiffness! the analysis indicates

that the column is highly stressed and is approaching its capacity limit.

However! taking the effective stiffness of the slab into consideration

suggests that the column is not as highly stressed! and may be slightly

overdesigned. A column one or two sizes smaller (W14xl19 or W14xlll) may

be used instead.
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Similarly, the resisting moment capacity of the W21x68 beam by

itself is 280 k-ft, which is less than the bending moment acting on it.

If the capacity of the composite section is calculated using the formula

cr = Mc/I, the resisting moment of the composite section becomes 431 k-ft,

exceeding the applied moment on the section. Again, without consideration

of the slab stiffness, the results would indicate that a larger beam must

be chosen when in fact the section is adequate if it is considered to act

compositely with the slab.

It is interesting to note that if the frame with the composite slab

and beam was analyzed with the computed modal lateral forces using moment

distribution instead of finite element analysis, the resulting maximum

moments on the critical members are almost identical. The resulting

moments are

Mcol • = 256 k-ft

Mbeam = 344 k-ft

The calculated axial load on the first-story interior column in

this case is 161 kips instead of 155 kips obtained by finite element

analysis.

This example illustrates that for low-rise buildings, in general,

the floor system contributes a substantial added resistance against

dynamic loads, which increases the reserve capacity of the building in

resisting lateral loads.

4.3 Concluding Remarks on Seismic Analysis

The preceding example illustrated some of the effects of the

proposed method on the seismic analysis of a low-rise steel frame.
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The natural frequencies of this low-rise frame were in the range

where the smoothed elastic response spectrum had a constant spectral

acceleration for the first two modes. Consequently, when the slab

was considered, the shift in the natural frequencies of vibration

caused little change in the spectral accelerations. The mode shapes

changed slightly and the resulting story forces were close to those

obtained neglecting the slab; however, in general, the forces on the

higher stories were less. The distribution of member forces changed

considerably. The bending moments acting on the columns Were reduced

because the stiffer composite beams carry more moment. The distribution

of ductility demand also may change because of the change in the

distribution of moments on the sections, and because of the increase

in the resisting moment capacity of the composite beams. In general,

for low-rise buildings, the slab usually provides an additional margin

of safety for the frame in resisting lateral seismic forces. Neglecting

the slab in the design of the frame will usually result in a design that

has a higher resistance against seismic loading than anticipated by the

designer.
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Table 3.1 Flat Slab Stiffness, M/EsSo' for Varying Aspect Ratio, L1/L2,
and Longitudinal Relative Column Size, c1/L1

L2 = 100.0 c2 = 6.0 t =4.0

c1/L1

L1/L2 0.04 0.08 0.12 0.16 0.20 0.24
-- -- -- --

0.50 12.31 14.56 17.10 20.00 23.34 27.24 0'1

'"
0.75 10.42 12.58 14.96 17.62 20.67 24.18

1.00 9.39 11.48 13.73 16.23 19.04 22.26

1.50 7.99 9.84 11.76 13.84 16.15 18.81

2.00 6.92 8.47 10.03 11.70 13.56 15.72

3.00 5.37 6.43 7.47 8.59 9.91 11.54

Note: Refer to Sec. 1.4 for consistency of units.



Table 3.2 Flat Slab Stiffness, M/Es8o' for Varying Aspect Ratio, L1/L2,
and Transverse Relative Column Size, c2/L2

L2 = 100.0 c1/L1 = 0.12 t = 4.0

c2/L2

L1/L2 0.03 0.06 0.12 0.18
-- -- -- --

0.50 15.68 17.10 19.98 22.87

0.75 14.01 14.96 16.85 18.74
(jJ

'-J

1. 00 13.04 13.73 15.09 16.41

1. 50 11.38 11.76 12.49 13.18

2.00 9.80 10.03 10.44 10.83

3.00 7.33 7.47 7.63 7.78

Note: Refer to Sec. 1.4 for consistency of units.



Table 3.3 Composite Stiffness, M/Es8o' for Varying Aspect Ratio, L1/L2,
and Longitudinal Relative Column Size, c1/L1

L2 = 100.0 t = 4.0 AST = 100.0

c2 = 6.0 e = 12.0 1ST = 1600.0

c1ILl

L1/L2 0.04 0.08 0.12 0.16 0.20 0.24
-- -- -- -- -- -

0.50 541.05 605.94 681.77 771.23 877.14 1003.19
(J'I

ex>

0.75 418.26 468.24 526.68 595.63 677.73 775.95

1.00 348.33 389.67 438.06 495.02 562.87 644.08

1.50 262.24 294.76 331.54 374.87 426.33 488.01

2.00 209.98 235.39 265.14 300.28 342.06 392.44

3.00 147.45 165.53 186.80 212.08 242.50 279.34

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.4 Composite Stiffness, M/Es6o' for Varying
Aspect Ratio, L1/L2, and Transverse
Relative Column Size, c2/L2

L2 = 100.0 t = 4.0 ABT = 100.0
c1/L1 = 0.12 e = 12.0 1BT = 1600.0

c2/L2
L1/L2 0.03 0.06 0.12 0.18

0.50 698.69 681.77 670.45 674.99

0.75 531.73 526.68 524.01 526.22

1.00 439.72 438.06 437.44 439.00

1. 50 331. 74 331.54 331.89 332.83

2.00 265.02 265.14 265.72 266.43

3.00 186.56 186.80 187.37 187.90

Note: Refer to Sec. 1.4 for consistency of units.



Table 3.5 Flexural Effective Width Coefficients, Af ' for Varying
0

Aspect Ratio and Longitudinal Relative Column Size

cl/Ll
Ll /L2 0.04 0.08 0.12 0.16 0.20 0.24

-- -- -- -- -- --
0.50 0.340 0.354 0.364 0.370 0.373 0.374

0.75 0.432 0.459 0.478 0.490 0.496 0.498

1.00 0.519 0.559 0.585 0.601 0.609 0.611
'"0

1.50 0.663 0.719 0.752 0.769 0.775 0.775

2.00 0.765 0.825 0.854 0.867 0.868 0.868

3.00 0.890 0.939 0.954 0.955 0.955 0.955

Note: c2/L2 = 0.06 for all values. For c2/L2 different from 0.06, above
values must be corrected using the appropri~te correction curves.

\

Interpolate linearly for unlisted values.

For consistency of units, refer to Sec. 1.4.
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Table 3.6 Correction Factors for Flexural Effective Width
Coefficients, Af/A

fo
' for Varying Aspect Ratios

and Transverse Relative Column Size

c2/L2
Ll /L2 0.03 0.06 0.12 0.18

0.50 0.917 1.000 1.168 1.337

0.75 0.936 1.000 1.126 1.253

1.00 0.950 1.000 1.099 0.195

1.50 0.967 1.000 1.062 1.120

2.00 0.977 1.000 1.041 1.079

3.00 0.981 1.000 1.022 1.041

Note: Interpolate or extrapolate linearly for unlisted
values. If correction factor yields a Af greater
than 1.0, then the value of Af to be used should
be 1.0, meaning the whole width of slab is
effective in bending action.

For consistency of units, refer to Sec. 1.4.



Note: c2/L2 = 0.06 for all values listed. For c2/L2 different from 0.06,
the appropriate correction factors must be used. Interpolate linearly
for unlisted values.

For consistency of units, refer to Sec. 1.4.
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Table 3.8 Correction Factors for Axial Effective Width

Coefficients, Aa/Aa ' for Varying Aspect
o

Ratios and Transverse Relative Column Size

c2/L2
L1/L2 0.03 0.06 0.12 and higher

0.50 1.061 1.000 0.955

0.75 1.027 1. 000 0.979

1.00 1.015 1.000 0.988

For Ll /L2 greater than 1.0, no correction for C2/L2
is necessary.

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.9 Composite Stiffness for Varying Slab Aspect Ratio

c1/L1 = 0.12
AST = 125.0

L2 = 125.0
1ST = 1302.1

c2 = 15.0
t = 5.0

Composite Stiffness, M/Es8o
Finite Element Proposed MethodL

1

62.5
125.0
187.5
250.0
312.5
375.0

344

532
259
206
170

145

344

531
259
206
169
144

%Error

0.0
-0.2
0.0
0.0

-0.6
-0.7

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.10 Composite Stiffness for Varying
Relative Column Dimension

Ll = 125.0
LZ = 125.0

AST = 125.0
1ST = 1302.1

Composite Stiffness, M/Es8o
Finite Element Proposed Methodc1/L1 (=c2/L2)

0.04
0.08

0.12
0.16

0.20

L1 = 125.0
LZ = 125.0

270
304

344
392

450

t = 5.0

c2 = 15.0

270
303

344
392

449

AST = 125.0

1ST = 1302.1

%Error

0.0
-0.3

0.0
0.0

-0.2

Composite Stiffness, M/Es8o
Finite Element Proposed Methodcl/L,

0.04
0.08

0.12

0.16

0.20

0.24

271

304
344

390

444
510

270
302
344

390

445
510

%Error

-0.4
-0.7
0.0

0.0
0.2
0.0

Note: Refer to Sec. 1.4 for consistency of units.



66

Table 3.10 (continued)

Composite Stiffness, M/Es8. 0

Finite Element Proposed Methodc2/L2

0.02

0.04
0.08
0.12

0.16
0.20

L1 = 125.0

L2 = 125.0

344
343
343
344
345
347

c1 = 15.0
t = 5.0
e = 10.0

343

342
342
344
345
347

AST = 125.0
1ST = 1302.1

% Error

-0.3
-0.3
-0.3
0.0
0.0
0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.11 Composite Stiffness for Varying Beam Eccentricity

L1 = 125.0

L2 = 125.0

C1 = 15.0

c2 = 15.0

t = 5.0

AST = 125.0

1ST = 1302.1

Eccentricity, e

Composite Stiffness, M/E 8s 0

Finite Element Proposed Method %Error

0.0
5.0

10.0
15.0

20.0

L1 =125

L2 = 125

76
143

344
676

1137

c1 = 10

c2 = 6

t = 5

75
142

344
679

1147

ABT = 78.3

1ST = 1691.7

-1.3
. -0.7

0.0
0.4

0.9

Eccentri ci ty, e

Composite Stiffness, M/Es8o
Finite Element Proposed Method %Error

O. 1

1.0

2.0

2.5
3.0

6.0

9.0
12.0
15.0

75
77

83
86

91
139

218
187
469

74
76
82

85
90

137
216
186

469

-1.3
-1.3
-1.2

-1.2
-1.1

-1.4
-0.9
-0.5
0.0

Note: Refer to Sec. 1.4 for consistency of units.



68

Table 3.11 (continued)

L1 = 150.0

L2 = 100.0

c1 = 18.0

c2 = 6.0

t = 8.0

ABT = 61. 7

IBT =740.6

Eccentri ci ty, e

Composition Stiffness, M/Es8o
Finite Element Proposed Method %Error

0.5
1.0
2.0
3.0
6.0
9.0

10.0
12.0
15.0

118

119
124
132
175
245
274
342
466

116

117

122
130
172

242
271
340
466

-1. 7

-1. 7
-1.6
-1.5
-1.7
-1.2
-1.1
-0.6
0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.12 Composite Stiffness for Varying Slab Thickness

L1 = 125.0 c1 = 15.0 ABT/Asg = 0.20

L2 = 125.0 c = 15.0 1BT =1302.12
e = 10.0

Composite Stiffness, M/Eseo
Thickness, t Finite Element Proposed Method %Error

1.0

2.5
4.0
5.0
7.5

10.0
15.0

100
184
276
344
548
819

1649

100
184
276
344
548
818

1647

0.0
0.0
0.0
0.0
0.0

-0.1

-0.1

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.13 Composite Stiffness for Varying Beam Area

L1 = 125.0 c1 = 15.0 t = 5.0 1BT = 1302.1
L2 = 125.0 c2 = 15.0 e = 10.0

Composite Stiffness, M/EsSo
Area, ABT Finite Element Proposed Method %Error

0.0 76 75 -1.3
62.5 243 242 -0.4

125.0 344 344 0.0
187.5 412 412 0.0
312.5 498 498 0.0

L1 = 150.0 c1 = 18.0 t = 8.0 1BT = 740.6
L2 = 100.0 c2 = 6.0 e = 10.0

Composite Stiffness, M/EsSO
Area, ABT Finite Element Proposed Method %Error

0.0 117 116 -0.9
12.9 156 153 -1.9
25.7 190 186 -2.1
38.6 222 218 -1.8
51.4 252 248 -1.6
64.3 280 276 -1.4
77.1 306 303 -1.0
90.0 331 328 -0.9

128.6 397 395 -0.5

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.14 Composite Stiffness for Varying
Seam Moment of Inertia, 1ST

L1 = 125.0
L2 = 125.0

c1 = 15.0
c2 = 15.0

t = 5.0
e = 10.0

AST = 125.0

Composite Stiffness, M/Es8o
Finite Element Proposed Method1ST

130.2
260.4
651.0

1302.1
2604.2
5208.3

296
304
320
344
390
482

302
307
320
344
389
481

%Error

2.0
1.0

0.0

0.0

-0.3
-0.2

Note: Refer to Sec. 1.4 for consistency of units.



Table 3.15 Composite Stiffness for Various Values of Controlling Parameters

Composite Stiffness, M/Eseo
L1 L2 c1 c2 t e ABT IBT Finite Element Proposed Method %Error

---- - --
125.0 125.0 15.0 15.0 8.0 10.0 200.0 5333.3 740 738 -0.3
125.0 125.0 15.0 15.0 8.0 16.0 200.0 5333.3 1408 1407 -0.1
125.0 125.0 25.0 25.0 5.0 12.0 78.3 1691. 7 491 491 0.0
125.0 125.0 10.0 6.0 5.0 10.0 116.0 1691. 7 305 304 -0.3
125.0 125.0 10.0 6.0 5.0 10.0 145.0 1691. 7 339 338 -0.3 ......

N
125.0 125.0 10.0 6.0 5.0 10.0 143.1 1691. 7 336 335 -0.3
250.0 250.0 10.0 6.0 5.0 12.0 78.3 1691. 7 172 170 -1.2
250.0 250.0 20.0 12.0 5.0 12.0 78.3 1691. 7 195 194 -0.5
125.0 250.0 10.0 12.0 5.0 12.0 156.6 3383.3 546 548 0.4
250.0 125.0 20.0 6.0 5.0 12.0 78.3 1691. 7 187 186 -0.5

Note: Refer to Sec. 1.4 for consistency of units.
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