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1. INTRODUCTION

The analysis of building frames is one of the major tasks that a
structural engineer faces in order to properly design the members composing
the frame. The structure is analyzed for all the loadings desired and the
members are subsequently designed to resist the anticipated forces with
provision for margin of safety, along with other factors such as deflection
control, durability, and ducti]ity, to name a few.

The adequacy of such an analysis as a part of the design process
depends in part on the accuracy of the properties chosen for the various
members of the frame, the assumptions of the analysis approach employed,
as well as the reasonableness of the various loadings considered. Since
the properties of the structural members are not known until they are
designed, and since they cannot be proportioned accurately before the
frame is analyzed, it obviously becomes a matter of jteration to obtain
a satisfactory and economical design. For a given functional structural
form and selected loadings, properties must be assumed to be able to
analyze the frame for a first trial. Thereafter, members can be propor-
tioned and if large discrepancies exist between the assumed and obtained
properties, the frame is reanalyzed with the new properties of its struc-
tural members. Usually, there would be no need to reanalyze more than
once or possibly twice to obtain a satisfactory design if the initial
assumptions were reasonable. It is evident that member properties are
a vital input to frame analysis.

Dynamic loadings, such as those ariéing from earthquakes, present a

unique problem in structural analysis. These forces arise from the



occurrence of natural hazards that are less predictable than the deter-
ministic gravity loads. A structure subjected to ground acceleration will
have inertial forces that depend on mass, and its dynamic response will
depend on the combination of stiffness and mass, among other factors.

The frame is subjected to lateral forces, and must resist these forces in
addition to the gravity loads imposed on it. For strong earthquakes the
resulting lateral forces induce stresses in the structural members that
may be considerably larger than those arising from gravity loads. The
structure must be designed to resist these forces in combination with the
gravity loads.

The structural members that are normally assumed to resist the
dynamic lateral Toads are the columns, beams, shear walls, and lateral
bracing, depending on the type of building being analyzed. Floor systems,
the subject of this study, have consistency been neglected in most types
of dynamic analyses of frames. This study presents a simplified method
for determining the effective width of floor systems (with or without
supporting beams) for use in analysis of frames subjected to lateral
forces. The results are based on a parametric study performed using
linear elastic finite element analysis of typical interior panels.

There are many reasons for this situation, some of which are
warranted, while others are not. The main reasons for neglecting the
resistance of floor systems against dynamic loads are the following:

(1) The lateral forces are usually resisted by the stiffest members,

usually the moment resisting frame, the shear wall, or lateral
bracing. Therefore, whatever added lateral strength the floor

system may offer will be on the conservative side, and its



assumed small contribution does not warrant the added effort
necessary to consider its effect.

(2) Floor system types are diversified, and their behavior differs.
Therefore, generalization is difficult.

(3) Meticulous consideration of the stiffness of the floor system
requires three dimensional dynamic finite element analysis which
makes the problem prohibitive in computational time. Although
computer programs capable of such an analysis are available
[7, 29, 30]*, the number of elements required is large, rendering
the analysis either impossible or extremely expensive.

(4) Few experimental results are available for framed systems
employing loadings of the type considered herein, especially
frame systems with fioors.

Traditionally, the functional performance requirements of a floor
system usyally include: 1) adequate strength and stiffness to safety
support dead loads and Tive loads without excessive deflection, 2) provi-
sion for lateral support of walls, 3) satisfactory resistance to trans-
mission of airborne and structure-borne sound, 4) suitable fire resistance,
5) suitability for application of finish materials, 6) adaptability to
economical methods of assembly and erection, 7) space to accommodate
heating, air conditioning, electrical, and plumbing equipment, and
8) control of heat loss and the flow of water vapor. None of these

requirements includes resistance to seismic forces.

* Numbers in brackets refer to citations in the 1ist of references.



One of the most important reasons for taking the floor slab into
consideration is the fact that it must deform together with the beams
which support it; consequently, the floor system will affect the stiffness,
strength, ductility, and energy dissipation characteristics of the frame.
This is especially true in critical regions 1ike column-beam-slab
connections. _

Underestimating or neglecting the effect of the floor slabs on the
strength of the girders may change an assumably balanced design to a
design with columns that are not capable of resisting the moment that can
be developed by the existing girders acting compositely with the slab under
lateral loads. As a result, the critical overstressed region will develop
in the columns. This type of behavior could be undesirable because the
columns may have less available ductility than the beams; therefore, the
idea of "soft story deformation” or a balanced-type design will not be

fulfilled in such a case.

1.1 Background

One of the early studies dealing with composite structural action
between slabs and beams [26] was concerned with the encasement of steel
beams with concrete. Later, composite beams consisting of concrete slabs
on structural steel I-beams were investigated [10], and the recommendation
was offered that they be designed on the basis of a homogeneous section
wherein the concrete area is transformed into an equivalent area of steel.

The necessary information required for such calculations invoived
knowledge of the area of the slab to consider for composite action. Early

theoretical studies attempted to provide rational values for the effective



widths of floor slabs in composite action [20, 22, 35, 40]. Recent

analytical studies on the representation of floor systems can be grouped

into three types,

(1) ACI Equivalent Frame Method [3, 4, 12, 13, 18]. This method

was derived for gravity loading, and is based on modeling a
slab structure as an equivalent frame, and taking the beams as
the portion of slab bounded by the midspan centerline in each
direction. The column stiffness is modified, and columns are
assumed fixed at their far ends. Methods for extending this
method for lateral loads have been proposed recently [33, 39].
(2) Effective Slab Width [1, 9, 21, 27, 34]. This method assumes

a certain width of slab to be effective in being considered as
an equivalent beam acting compositely with the beam supporting
it. Several suggested methods are available for computing the
effective width. Some researchers suggested a specific value

of the effective width while others suggested different values
for different slab dimensions.

{3) Stiffness Modification [28]. This method modifies the stiffness

matrix of the beam without identifying a physical shape for the
slab. The resulting modified stiffness matrix is claimed to
account for the siab stiffness under gravity loads.

There were also some other studies conducted that included analytical
investigation of other behavioral characteristics of the slab [2, 8, 14-
17, 19, 23, 25, 36, 37, 41-43]. To the best of the author's knowledge,
there is only one set of unpublished experimental test results dealing

with flat plate multistory unbraced structures tested by the National



Research Council of Canada as described in Ref. 39, This fact makes it
quite difficult to compare the proposed methods of analysis to actual
tested behavior,

Most of the studies performed dealt primarily with flat slabs, and
the effect of the existence of a supporting beam (steel or concrete) has
not been adequately investigated. Furthermore, behavior of the composite
sections under lateral loads leads to a complex problem. As a result, in
part, because the contribution has been felt to be small, it has been

customary to neglect the floor contribution.

1.2 Purpose of Study

The purpose of this study is to develop a rational and simple method
using elastic beam theory for calcuiating the effective width of floor
systems for use in analyzing frames subjected to lateral loading.

The method described covers a wide range of practical values of the
slab dimensions. The analytical method can be applied to both steel and
concrete frames and to cases of flat slabs as well as slabs with supporting

beams.

1.3 Scope of Investigation

The investigation is based on a parametric study of typical interior
panels of floor systems, with and without supporting beams, using elastic
finite element analysis to model the behavior of the floor system when
frame is subjected to lateral loads. |

Chapter 2 deals with the theoretical derivation of the method and
the procedure employed for the finite element analysis. In Chapter 3,

the results obtained and the proposed simplified method of analysis for



estimating the composite propérties are presented. Some simple examples
illustrating application of the proposed method, with emphasis on seismic
analysis and the resistance of floor systems under dynamic loads, are

presented in Chapter 4.

1.4 Notation and Units

A1l units of the quantities used in this study are consistent units
of force, length, and time. The quantities must be used in this manner

throughout this report.

‘A = spectral amplification factor for peak ground acceleration
AB = cross-sectional area of beam
ABT = transformed cross-sectional area of beam
Ase = effective area of slab
Asg = gross area of slab
= column dimension in loading direction
Cy = column dimension in transverse direction

d = depth of beam

D = spectral amplification factor for peak ground displacement
e = distance between the neutral axes of slab and beam
E, = modulus of elasticity of the beam
E_ = modulus of elasticity of the slab
f. = the ith natural frequency of vibration

{fsn} = lateral story forces of the nth mode

{f } = maximum lateral story forces when they are combined by the

method of square root of the sum of the squares of the modal

story forces



fé = concrete 28-day compressive strength
g = gravitational acceleration

IB = moment of inertia of beam

IBT = transformed moment of inertia of beam

I__ = equivalent moment of inertia of the composite section
qu] = equivalent moment of inertia of the slab
quz = equivalent moment of inertia of slab and beam compositely
I__ = effective moment of inertia of the slab (ISe = AfISg)
= gross moment of inertia of the siab

Ip = Aplgg * Ipp

[K] = stiffness matrix for lateral displacements
L1 = longitudinal span

L2 = transverse span

=
I

mass
[m] = Tumped mass matrix
M = bending moment at column centerline
M! = bending moment at end of the free span of the beam

beam = maximum bending moment acting on the beams in the frame

Mco] = maximum column moment in the frame

n = modular ratio (n = EB/ES)
P = axial load on column
P' = equivalent axial load for bending moment on column

col. = maximum column axial load in the frame

San = gpectral acceleration at the nth mode of vibration

t = thickness of slab



displacement along the x-axis

displacement along the y-axis

spectral amplification factor for peak ground velocity
maximum base shear computed by the method of square root of
the sum of the squares of the modal base shears

base shear for the nth mode of vibration

vertical displiacement along the z-axis

derivative of w with respect to x, y, z, etc.

distance between the composite neutral axis and neutral axis
of the slab

participation factor of the nth mode of vibration

end rotation of composite section

rotation about the y-axis

rotation about the z-axis

axial effective width ratio

axial effective width ratio for cz/{.2 = (.06

flexural effective width ratio

flexural effective width ratio for c2/L2 = 0.06

the nth mode shape vector

Poisson's ratio

circular frequency of vibration
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2. ANALYTICAL STUDY

The behavior of a slab in a frame subjected to lateral loading is
complex. The complexity is compounded by the presence of a flexible beam
helping the slab. Part of the complexity arises because the beam is usually
eccentric with respect to the slab, i.e., the beam's neutral axis usually
lies at some distance below that of the slab.

This study is directed at analyzing typical interior panels of frames
that are subjected to lateral forces. The interior panels considered in
the analysis may have supporting beams in the longitudinal direction
(Toading direction}. The proposed hypothesis is that there are two
nondimensional constants for a given slab aspect ratio and relative column
size which model the stiffness of the slab to that of an equivalent beam.
These two constants are assumed to be properties of the slab shape and do
not depend on the shape or properties of the supporting beam. This equiva-
lent beam is assumed to act in full composite action with the supporting
beam, if it exists. Therefore, the effect of the eccentricity is incorpo-
rated in the equations of composite action analytically. The two constants
that govern the equivalence of the stiffness of the slab to that of the
equivalent beam modify the gross moment of inertia and the gross area of
the slab for use in determining the composite properties of the section.

Several major assumptions were made in this study and are as follows:

(1) Behavior of all materials of the members being analyzed is elastic

and follows Hooke's Taw.

(2) There is no slippage between the siab and the flexural beam at

their interface. Bonding is assumed to be ideal and full composite
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action is developed.4 In practice, in order to make this assumption
valid, shear connectors normally would be provided between the siab
and the steel beam. In reinforced concrete frames, the slab and
beam normally would be cast monolithically in order to make this
assumption valid.

(3) There is no relative displacement between adjacent frames of the
building in the direction of loading.

(4) Column midheights are points of inflection in lateral deflection
of the frame.

(8) Column Tines and slab midspan centerlines in the longitudinal
direction (direction of loading) are lines of symmetry.

(6) Column Tines and slab midspan centerlines in the transverse
direction are lines of antisymmetry.

(7) The area of slab bound by the column has infinite stiffness and

deflects as a rigid body.

2.1 Equivalent Composite Stiffness

Composite action is developed when two structural members such as a
concrete floor system and the supporting steel beams are integrally connected
and deflect as a single member. The development of composite action is
insured if strain distribution is continuous over the entire cross section.

When a system acts compositely, no slippage occurs between the slab and
beam. Horizontal shear forces are developed at the surface between the slab
and beam. There should be enough friction and shear reinforcement at the
slab-beam interface to insure proper shear transfer so that full composite

action is developed. If slippage occurs, the moment capacity of the
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composite section is reduced, The following analysis assumes no s1lippage
at the slab-beam interface.

Simple beam theory was used for the analysis. Figure 2.1 shows a
slab supported by a flexural beam. The slab and the beam need not have
the same modulus of elasticity. The section properties of the beam can

be transformed by the modular ratio,

Modulus of elasticity of beam, EB

n-..
Modulus of elasticity of slab, ES

Stiffness is now referenced to the modulus of elasticity of the slab.

The transformed area and moment of inertia of the beam are

ABT = n x (area of beam)

IBT = n x (moment of inertia of beam)

There exists a certain effective area of slab, Ase’ and an effective
moment of intertia, Ise’ which if the slab is replaced by a beam having
these properties will yield the same end rotation, eo’ when the frame is
subjected to lateral loads. The values of Ase and ISe are the properties
to be'determined in order to make the equivalence between the slab and
the equivalent beam correct, as far as the overall behavior of this
assemblage in a frame is concerned. |

The position of the neutral axis of this composite section below the
neutral axis of the slab can be easily determined by simple mechanics,

and may be expressed by

A e
BT (1)

Y7 ABT + Ase



13

The composite moment of inertia of the section is given by

= 2
1. =1__+ Asey

2
eq = lse + lgr + Iggle - y) (2)

Simplifying and rearranging terms, one obtains

Toq = Ase® * Igg *+ Lpy (3)
or
ApTA
- BT se 2
qu - Aot * Ao e + Ie * Iy (4)

It is evident that if the effective area and moment of inertia of the
slab are known, then qu can be calculated. Ase and ISe should be less or
equal than the gross sectional properties of the slab, Asg and Isg‘
For convenience, Ase and ISe can be represented as some fraction of

the gross properties, namely,

Age = AaAsg (5)
and

Ise = AfIsg (5a)

The terms Aa and Ag represent that fraction of the gross area and
moment of inertia of the slab, respectively, which if used as properties
of an equivalent beam replacing the slab, will yield the same composite
stiffness in the frame. These fractions may be referred to as Effective
Width ratios, Effective Width coefficients, or Equivalent Beam coefficients.
In reality they are merely correction coefficients for equating the action
of the slab, as a plate, to that of a beam. Physically, the slab can be

thought of as a beam whose depth is equal to the thickness of the slab
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and whose width is equal to the effective width ratio times the width of
the slab. There are two effective widths to be considered, one for bending
action (to determine Ise in Eq. (4)), and the other for composite action
(to determine ASe for the first term of Eq. (4)). Since the two effective
widths are determined from the two nondimensional correction constants that
satisfy Eq. (4), they are not necessarily equal in general. Earlier in the
study, it was assumed that there was a single effective width of slab for
usage in Eqs. (4) and (5). However, when the same slab and beam were
analyzed with a varying eccentricity, the resulting calculated effective
width did not remain constant. The effective width had a maximum value
equivalent to what was later determined as Af when the eccentricity was
zero. As the eccentricity increased, the effective width decreased and
reached a minimum value (for large eccentricities) of what was later found
to be the value of ka' Since the basic assumption was that the effective
width is a property of the slab, an effective width dependent on beam
properties did not fulfill this assumption. Therefore, the more general
approach of assuming that two constants are required to satisfy the
proposition of an effective width independent of the properties of the
beam was adopted.

In order to calculate effective width coefficients, the stiffness of
the slab/beam assemblage must be determined. This stiffness was derived
by applying beam theory to the end rotations obtained from finite element
analysis of the slab and beam as discussed in Sections 2.2 and 2.3.

Under Tlateral loading of the frame, the slab/beam will deflect in
the antisymmetric manner shown in Fig. 2.2. The finite dimension of the

cotumn will make the corner encompassed by the column to be essentially
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rigid. The applied end moment, M, caused by the shear in the column

will cause an end rotation, 8, as shown in Fig. 2.2. The dimension Cq
represents the column width in the loading direction, which is considered
rigid in the foregoing analysis. The equivalent beam is defined as that
beam which will have the same end rotation, B, for the same applied

moment, M. Its moment of inertia, I__, is given by

€q
qu = M'L'/(3E8) (6)

where L' = (L1 - c])/2, M' is the bending moment at the end of the rigid

part of the equivalent beam, and @ is the angle shown in Fig. 2.2, given by

0= 80 + 6] (7)

For small angles,

8y = 2w/(L; - ;)

where the deflection, w, is given by

H]

w 60c1/2

Substitution in Eq. (7) gives

[as)
I

8,/ (1 - ¢;/L4) (7a)

The bending moment, M', may be written in terms of the applied moment,
M, by statics, as

Finally, substitution of Egs. (7a) and (8) in Eq. (6) gives the

expression of the equivalent moment of inertia,
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Tog = (1/3)(WEB)(L,/2)(1 - ¢y’ (9)

If the value of M/Ee0 is known for a given composite slab and beam,
then the moment of inertia of the equivaient beam can be calculated

using Eq. (9).

2.2 Deriving Effective Width Ratios

The foregoing derivation assumes that the values of M/Ee0 for the
cases being considered are readily available. These values were obtained
by finite element analysis which will be discussed in section 2.3. With
the equivalent composite moment of inertia of the slab and beam determined,
it is a fairly simple task to calculate the effective widths.

Substitution of Egs. (&) and (5a) in Eq. (4) and rearranging gives

A A
| -1.-_asdBT 2

I I (10)
eq BT AaAsg + ABT f'sg

The flexural effective width ratio may be determined from the
equivalent composite moment of inertia for the cases where no beam exists
or for the cases where the eccentricity of the beam is zero. Either method
should yield comparable results for the flexural effective width ratio, Aes

which will be given by

As = (qu-I - IBT)/Isg

where qu is obtained using Eq. (9) for the case where no beam is present
1
or when the eccentricity of the beam is zero.
With A determined for the slab under consideration, Eq. (10) can be

solved for the axial effective width ratio, Aa’ which gives
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1 - (A I+
Apt eq, Orlsg

. |
sg Apelgy + (Ipp + Agre

il (1)
2
) - Iy,

Ka =

where qu2 is the equivalent moment of inertia of the composite section
when an eccentric beam js present.

The numerator of the above expression represents the difference
between the composite moment of inertia about the composite neutral axis
and the sum of the moments of inertia of the beam and the effective
flexural width of the slab about their individual neutral axes. The
denominator represents the difference between the sum of the effective
moment of inertia of the slab and beam about the neutral axis of the slab
and the composite moment of inertia about the composite neutral axis.

If the term (AfISg + IBT) is called the total moment of inertia, Irs
about the individual neutral axes of slab and beam, and rearranging terms,

Eq. (11) becomes

A-/A
A = — Bl sg (12)
a A e2
_BT™

-1

Therefore, for a given slab, two values of qu are needed to calculate
xf and la‘ The flexural effective width ratic can be calculated by
analyzing the slab without a beam. With the value of Af obtained, IT may

be determined by

I =21 _+1

T f sg BT

In order to calculate the axial effective width ratio, la’ an eccentric

beam is inserted in the longitudinal direction. With the computed equivalent
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composite moment of inertia, qu » obtained from finite element analysis,
2

the value of Aa can be determined using Eq. (12).

As will be noted later in Chapter 3, it was found from finite element
analysis that both effective width ratios are independent of beam proper-
ties. The term Xf depends only on the aspect ratio of the slab, LI/LZ’
and the relative size of the column, c]/L] and c2/L2. The thickness of
the slab, t, does not affect Af.

Although Eq. (12) appears to depend on the properties of the beam,
it was found, from analyzing the same slab with various beam properties,
that it actually does not have such dependence. The axial effective
width ratio, Aa’ remains constant as the area, moment of inertia and
eccentricity of the beam are varied. Slight variation in Aa occurs when
extremely small relative values of e, ABT’ and IBT are used. Such small
values are not likely to be found in practice, and their importance is
only of academic interest. In general, if the transformed moment of
inertia of the beam, IBT is kept greater than about 5 percent of the
gross moment of inertia of the slab, Isg’ the effective width ratios do
not change. For trahsformed beam areas, ABT’ greater than about one
percent of the gross slab area, Asg’ the effective width ratios are found
to remain constant for a given slab. Beam eccentricities greater than
about one-fifth the slab thickness had essentially no effect on the
effective widths. The errors introduced by using smaller values of the
aforementioned parameters are not large, and it is believed that they
arise as a result of round-off error in the numerical solution.

After experimentation with several values of relative beam properties,

it was determined that fairly high values avoid any possible round-off
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errcr caused by the large discrepancy between beam and slab properties if
small values are used. Every effort was made to keep these parameters as
close to practical values as possible. The values chosen for the final

analysis were

ABT/Asg = 0.25
IBT/Isg = 3.0
e/t = 3.0

where t is the thickness of the slab.

2.3 Finite Element Analysis

The stiffness of each slab/beam assemblage analyzed was determined
with the aid of elastic finite element analysis. The computer program
that was used in this study was the finite element program FINITE which
was developed by Professor Leonard A. Lopez and colleagues [24] at the
University of I111inois at Urbana-Champaign. A typical interior panel of
a slab was modeled as a plate having both bending and membrane stresses
with a rigid column area and a beam in the longitudinal direction (i.e.,
direction of loading).

The boundary conditions and lcading imposed on this typical interior
panel were such that the resultant deflected shape was similar to that
encountered when the frame is subjected to lateral loading, such as
seismic or wind forces. The following sections describe the modeling

procedure employed in the analysis.
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2.3.1 Mesh

Several meshes were attempted and considerable experimentation with
different meshes was employed for determining an efficient, yet accurate,
finite element mesh.

The first mesh used consisted of 16 elements in each direction with
two different spacings. Ten elements at 0.04 times the half-span, and
six at 0.10 times the half-span were used, as shown in Fig. 2.3. This
mesh was costly in computation time and was not feasible for the parametric
study intended as many runs are required to cover the practical range of
the parameters.

In order to reduce computing time, the number of elements were
reduced to ten in each direction but with three different spacings which
are (Fig. 2.4) four at 0.05 times the half-span, four at 0.10, and
two at 0.20. This mesh reduced computation time by about 60 percent,
but yielded rotations and deflections about two-thirds of those of the
16 x 16 element mesh, which indicates a condition of being too far away
from convergence of the finite element solution.

To seek convergence of the solution, a uniform mesh of 20 elements
in each direction was attempted though at a higher computation time.
This yielded rotations about twice those for the 16 x 16 element mesh.

A 25 x 25 element mesh was also tried and it yielded results virtually
identical to those of the 20 x 20 element mesh, which indicates that
the solution converges at around the 20 x 20 element mesh.

Since the 20 x 20 element mesh was by noc means feasible for the
study, a new mesh was attempted that had 25 elements in the longitudinal

direction and only two elements in the transverse direction. The width
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of the first element is controlled by Co» the width of the column in the
transverse direction. The rotations of this mesh came within about 4
percent of the converged solution provided by the 20 x 20 and 25 x 25
element meshes. The computation time was very fast relative to the
original 16 x 16 element mesh, requiring only about 8 percent of its
computation time.

This encouraging result led to the final slab mesh employed which
had 25 elements longitudinally and 3 elements transversely. The first
element had its width controlled by the column size, the next two elements
split the remaining transverse span in half. This slab mesh, shown in
Fig, 2.5, yielded results that were within 2 percent of the converged
25 x 25 element mesh solution (Fig. 2.6) at about 3 percent of its compu-
tation time. This fact made the parametric study of the slab feasible
and efficient, yet accurate. This efficiency would not have been possible
to achieve with any of the previous meshes attempted. Experimentation
with different meshes for finite element analysis, although time-consuming
and expensive, usually becomes economical at the end in terms of overall
efficiency and feasibility of studies that must change many parameters
and perform numerous finite element computations.

The reason why such a mesh (3 x 25 element mesh) provides satisfactory
result for this analysis is that it has a large number of elements in the
direction of loading {longitudinal) while it has only a few elements in
the transverse direction where the rotations are much less. Therefore,
the errors introduced by the coarse mesh transversely are small. Although

this mesh provides good results for the rotations under consideration and
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yields satisfactory overall behavior, one strongly suspects that it does

not provide accurate results for local behavior in the transverse direction.
This 3 x 25 element mesh was used for all the analysis, and all

results of the study were derived based on the solution using this mesh.

Several cases were run, and their results confirmed its overall accuracy

of about 2 percent with respect to the more elaborate meshes that were

attempted (20 x 20 elements and 25 x 25 elements).

2.3.2 Elements

Two superimposed elements were used for each element in the slab mesh
to model all degrees of freedom.

The first element was a Rectangular Plate Bending element having 16
degrees of freedom. It has 4 nodes and is formulated using moderately
thick plate theory. The displacement shape for this element is of the
third order. Each node has 4 degrees of freedom as shown in Fig. 2.7.
Vertical displacement, w, rotation about the x-axis, ex, rotation about

the y-axis, ey, and twist, w The element is completely conforming and

zy’
rotations are compatible between elements since the element has the warping
degree of freedom. Complete formulation and behavior of this element is
discussed in Ref. 6.

The generalized stress and strain resultants are defined by the

following terms, referring to Fig. 2.8 [24],

Moy = D(Ws o * vw,yy)
= +

Myy D(w,yy vw,xx)

Mxy = D(] - \))W,Xy
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Qxx = D(W’xxx * w’xyy)
= +
Quy = Dlwsyyy * Wayy)
Vax = D(W’xxx + (2 - v)w,xyy)
=D 3 + - )
Vyy = Doy + (2 = VDo)
where
0 - £td
. 2y
12(1 - V)
v = Poisson's ratio
E = Young's modulus of elasticity
t = thickness of the plate
w = vertical displacement (z-axis)

The second superimposed element was a Plane Stress Rectangle having
4 nodes and two degrees of freedom at each node, the x-displacement, u,
and the displacement, v, as shown in Fig. 2.9. The generalized stresses
and strains for this element are shown in Fig. 2.10.

The beam was modeled using plane frame elements along the y-axis.
They were connected with rigid links to the plate elements to represent
the eccentricity between the slab and beam neutral axes. The plane frame
elements have two nodes with three degrees of freedom at each node: the
x-displacement, u, the y-displacement, v, and the rotation about the
z-axis, 82. These degrees of freedom are with respect to the local axes
of the element; however, the element is oriented such that its local
x-axis lies along the global y-axis, and its local z-axis lies along

the global x-axis.
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2.3.3 Constraints

The symmetry of the structure and the antisymmetry of the loading
implied that the following boundary conditions be imposed on the panel
being analyzed (Fig. 2.11):

(1) The x-displacement, u, and the y-rotation, ey, were constrained
along the longitudinal column 1ine and longitudinal centerline
of the slab.

(2) The vertical displacement, w, was constrained at the transverse
column line edge and transverse slab centerline edge.

These constraints enabled the analysis of one quarter of the panel

instead of the whole panel, thus greatly reducing computation time.

2.3.4 Loading

The loading for this structure was selected to be a concentrated
moment about the global x-axis applied to node 1, which is the column
corner of the quarter panel where the three elements, slab, beam and
column, meet. This loading models the deflection pattern of this
subassemblage when the frame deflects in an antisymmetric manner under

Tateral forces.
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3. RESULTS

Numerous test runs were performed and analyzed before the final
finite element runs were selected for purposes of arriving at the results
presented. Many of these runs were improved and rerun to obtain the final

results presented herein.

3.1 Variation of Parameters

Two approaches were used to obtain the final values. The first
approach employed a slab without a beam for the derivation of the flexural
effective width coefficients, and the second employed a slab with a beam
for determination of the axial effective width coefficients. In each case
the variation of the parameters involved was achieved by varying the
dimensions of the elements, thus the mesh remained the same for all cases.
The rigidity of the column was approximated by increasing the modulus of
elasticity of column elements desired to be rigid to 105 times that of
the remaining elements. This factor was established after some experi-
mentation. It proved to be a good compromise between infinite rigidity
which causes round-off error and too small a rigidity that would not

yield the desired effect.

3.1.1 Flexural Effective Width

Three main parameters control the flexural effective width
coefficient, Af:

(1) The aspect ratio of the siab, L1/L2. The transverse dimension

L, was fixed at 100 units of length and L, was varied from 50

2
to 300 units, thus yielding a variation in the aspect ratio
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from 0.50 to 3.00. As expected, an 1ncfease in the aspect
ratio increased the effective width, indicating that a
greater fraction of the width of the slab acts Tike a beam
as the slab becomes longer in the loading direction.

The longitudinal relative column dimension, c]/L]. The

variation of this parameter was accomplished by varying the
number of elements being considered rigid from one to six.
The parameter c]/L] varied from 0.04 to 0.24 in increments of
0.04, which is the size of one element, encompassing most of
the possible practical values. This variation was performed
for each of the six aspect ratios considered. The resulting
effective widths indicate that as c]/LT increases, the
effective width increases though in different magnitudes for
different aspect ratios. For small aspect ratios the effect
is small, but for large aspect ratios the effect is more
pronounced for the smaller values of 01/L]; however, the
curves level off at smaller values of c]/L] as the aspect
ratio increases (Fig. 3.1). Finite element results are
listed in Table 3.1, and the derived flexural effective
width coefficients are listed in Table 3.5.

The transverse relative column dimension, C2/L2‘ The above

two variations were performed with a fixed value of 02/L2

of 0.06. This value was chosen because it seemed more
representative of what would be encountered in practice.

As c2/L2 was varied, the flexural effective width coefficient

varied linearly. For larger 02/L2, Af increased in a linear
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fashion that was dependent on the aspect ratio of the slab,

but seemed to be relatively independent of the value of cllL]
being considered. In general, the variation was slightly
higher for lower values of c1/L]. Several cases were analyzed,
and the relative decoupling between c2/L2 and c]/LT was
confirmed. The difference noted in Af varied in general by
less than 1.5 percent as cl/L] was changed from 0.08 to 0.16.
Therefore, an average value for 01/L1 of 0.12 was chosen to
derive the final correction factors used, Af/hfo, to correct
for the transverse column dimension effect. The parameter
c2/L2 was varied from 0.3 to 0.18. The resulting finite
element values shown in Table 3.2 and the calculated correction

factors are shown in Table 3.5 and Fig. 3.2.

3.1.2 Axial Effective Width

The same three parameters controlling the flexural effective width
were the ones affecting the axial effective width coefficient, Aa. The
same cases used for deriving the flexural coefficient were used for the
axial coefficient, with the difference being the addition of a beam.

Numerous test runs with different aspect ratios, relative column
dimension, slab thickness, beam eccentricity, beam cross-sectional area,
and beam moment of inertia indicated that the axial effective width
coefficients are only dependent on L]/Lz, C1/L]’ and to a lesser extent
c2/L2. Therefore, arbitrary practical values for e, ABT’ and IBT were
chosen for each slab analyzed. They were chosen slighly on the high

side to cancel any round-off errors, and because the resultant values
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of Aa will be slightly on the conservative side when used with smaller
values.

The same variations in L1/L2 and c]/L1 as the flexural calculations
were used in this study. The resulting finite element stiffnesses are
shown in Table 3.3 and the derived Aao values are shown in Table 3.7 and
Fig. 3.3.

As c2/L2 was varied for various values of(L]/Lz, there were smatl
changes in the axial effective width coefficient, Aa; these changes
became less apparent for higher values of L1/L2. Analytical results are
given in Table 3.4 and the adjusted derived correction factors are shown
in Table 3.8 and Fig. 3.4. For-L]/L2 greater than 1.0, the correction
is negligible and is therefore omitted from consideration.

The variation of ha with c]/L] was observed to be opposite to that

for Af. As c]/L1 increases, Aa decreases, and it does so more sharply
for larger aspect ratios than for smaller ones. The explanation for
this behavior is that as the rigid area becomes larger, there is less
remaining span length in the direction of loading; the composite action
decreases, thereby reducing the effective area of the slab acting in this
manner. Theoretically, the curves should all converge to zero as c]/Ll
approaches 1.0. The results substantiate this fact. These axial effective
width coefficients are independent of the properties of the beam, unless
unrealistic values are used, in which case the deviation cbserved is mainly

due to round-off error in the finite element solutions.

3.2 Discussion of Accuracy

It is difficult to specify accuracy of the presented results because,

to the best knowledge of the author, no published test data are available
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on laterally loaded frames with floor slabs and beams. Other researchers
have also confirmed this fact [40]. The proposed method can only be
compared to the analytical values obtained from finite element analyses.
Therefore, any accuracy referred to in this study is based on such
analytical values, and no claim is made on accuracy with respect to
experimental testing. Some of the other theoretical studies which are
not based on finite element analysis employ empirical distributions of
stresses, or are restricted to gravity loading.

The rotations and deflections of the equivalent beam having properties
that will give an identical end rotation as the composite slab and beam
is very compatible with the deflections obtained by the finite element
analysis of the 3 x 25 element mesh and the 20 x 20 element mesh. In fact,
the deflections lie between the elaborate mesh and the one being used,
which makes the equivalent beam even closer to the converged solution.
The deviation is on the order of 1.5 percent.

The results of most of the cases studied in this investigation are
tabulated in Tables 3.9 to 3.15, with direct comparison of the resultant
composite stiffness using the presented effective width constants with
the results of the finite element analysis of those particular slabs.

As can be seen from the tables, all values of composite stiffness are
within 2.5 percent of the finite element results. The cases studied
present a wide variety of parameters that were varied. While they do

not cover every conceivable variation, they show the trends of the
variations which led the way to the final results and proposed simplified

method of analysis for using the derived effective width coefficients..
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The effect of the eccentricity of the beam was to change the
equivalent composite stiffness in a quadratic manner as would be expected
from Eq. {(4). The data from the finite element analysis fit this equation
satisfactorily. For zero eccentricity, the composite equivalent stiffness
is simply the sum of that of the effective slab and beam without any
composite action.

The moment of inertia of the beam was just an additional constant
to the composite moment of inertia as long as the area of the beam was
not changed. If the area of the beam is changed, then the position of
the composite neutral axis changes as well as the composite action
between the slab and the beam. The effect of changing the thickness
of the siab 1is more involived, especially as the gross area and moment
of inertia of the slab are changed simultaneously. The position of the
composite neutral axis is changed, composite action is changed, and the

slab effective moment of inertia also is changed.

3.3 Proposed Method for Using the Effective Width Coefficients

The recommended procedure for calculating the composite stiffness
of the slab and beam using the derived results is the following:
(1) Enter Fig. 3.1 with the desired value of the longitudinal
relative column size, c]/L1. For the appropriate curve for
the aspect ratio of the slab being considered, L]/Lz, read

the value of the flexural effective width coefficients, Af .
o
Linear interpoiation may be used for values that are not

plotted.

(2) Enter Fig. 3.2 with the desired value of the transverse
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relative column size, CZ/LZ. For the appropriate curve for
the aspect ratio of the slab under consideration, read the

correction factor for Af. Calculate Af, where

Ag =Afo x (flexural correction factor)

(3) Enter Fig. 3.3 with the value of the longitudinal relative
column size. For the appropriate curve for the aspect ratio
under consideration, read the value of the axial effective
width coefficient, Aao’

(4) From Fig. 3.4 read the correction factor for the axial
effective width coefficient for the appropriate aspect ratio

and transverse relative column size. Calculate Aa’ where

Ay = Aao x (axial correction factor)

(5) Determine the position of the composite neutral axis from
y = ABTe/(ABT * kaAsg)

(6) Calculate the equivalent moment of inertia of the composite

section referred to the modulus of elasticity of the slab from

qu - xaAsg * AfIsg * IBT

This calculated composite moment of inertia does not include the
rigidity effect of the finite column dimension. Therefore, when the
equivalent beam is analyzed as part of a frame, rigid 1inks must be
imposed at the ends of the equivalent beams to account for this effect.

If the equivalent beam is to be analyzed without this rigidity

imposed, then Ie has to be corrected to include this rigidity.

q
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The corrected value, Iéq, should then be used in the frame, where

T = Teg/(1 = 6y/)°

Use of the corrected moment of inertia in such a manner will yield
accurate results for the end rotations of the equivalent beam, but may
not be as accurate for evaluating the deflections of the slab/beam.
Also, the equivalent moment of inertia may be larger than that obtained
by considering the whole width of the slab as an equivalent beam. This
situation arises because the additional stiffness offered by the finite
dimension of the column is essentially added to the stiffness of the
slab. Such a case arises if the aspect ratio of the slab is large or
the relative dimension of the column is large. However, the nodal
effective stiffness of the slab will be correct. If only the nodal
stiffness of the equivalent beam is of primary concern, then the
eduiva]ent moment of inertia may be used in any of the two forms

described.

3.4 Remarks on Applicability

The results presented in this chapter were derived from the
analysis of typical interior panels. and technically the results are
applicable only in such cases. However, a few cases of end panels
were studied, and their results showed that the proposed method can
be applied satisfactorily., The error involved in such cases was
observed to be on the order of 10 percent.

Also, a few cases were analyzed where a transverse beam was

present at the column Tine which was about half the size of the
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longitudinal beam. The results obtained were very close to those
without the torsional beam. One reason for this observation possibly
is that the boundary conditions do not allow for large relative

torsional rotation of that beam.'
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4. EXAMPLE APPLICATIONS

There are several possible applications of composite siab and beam
behavior in structural analysis and design. The proposed method was
derived based on 1laterally loaded frames and was mainly intended for
application in seismic design. However, it may be applied for wind
loading and any other loading pattern of a frame that produces the anti-
symmetricldef1ection shape described previously.

The proposed effective width factors may be applied to steel as
well as concrete frames. Although derived for a slab of uniform thick-
ness, the method can apply to slabs that do not have a uniform thickness,
such as ribbed slabs or steel joist floor systems provided the gross area
and moment of inertia of the slab is computed, and the position of the
neutral axis of the slab is determined. A nonuniform slab will make the
computation of composite stiffness more involved, but the theory should
still apply.

For the design of the composite member, any suitable method may be
used, depending on the situation at hand. Ultimate design, as per ACI
Code [3], or working stress design may be emﬁ]oyed. The effect of
cracking also may be considered by using a cracked moment of inertia
for the slab as recommended by the ACI Code. The designing process
always will follow the preliminary analysis; therefore, once the effec-
tive widths are determined, the engineer has many choices for design
using an appropriate procedure. While the design procedure for the
structural members of a frame is certainly important, it is not the

purpose of this study to suggest methods for member design. However,
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it is the main purpose of this investigation to recommend modification
of member properties as a tool for analyzing frames subject to lateral
forces.

The examples presented in this chapter are for the purpose of
illustrating the use of the proposed method and some of its effects in
analyzing low-rise steel frames for seismic loading. The method of
analysis was chosen for simplicity and does not necessarily limit the

use of the study to the type of frame or method of analysis discussed.

4.1 Composite Member Properties of a Slab

For determination of composite properties of a floor system, a
square interior panel of a concrete slab 5 inches thick having a span
of 20 feet is selected. The beam is a W24x68 steel section, and the
column is W14x68 steel section. The concrete compressive strength
used in this example is 3500 psi.

The dimensions of the steel column are [5]:

it

c] 14.06 inches

cy 10.04 inches

which gives

It

C1/L1 0.059

il

c2/L2 0.042
The flexural effective width ratio is determined from Fig. 3.1

for the aspect ratio, L]/L2 = 1.0,

Af = 0.54

0
The correction factor for the transverse relative column size is

determined from Fig. 3.2,
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Xf/AfO = 0.98

Therefore,

A, =0.54 x 0.98 = 0.53

f

Similarly, the axial effective width coefficient is determined from
Fig. 3.3,

A, =0.34
aO

And the correction factor for c2/L2 is determined from Fig. 3.4,

A/ = 1.01
aao

Therefore,

Aa =0.34 x 1.01 = 0.34

The properties of the beam as obtained firom the 7th edition of

the AISC Manual [5] are the following:

) 2
AB = 20.0 1in.
B} .4
IB = 1820 in. .
d = 23.71 in.

where d is the depth of the steel beam.

Since the slab and beam are of two different materials, their

1

properties must be transformed to the same modulus of elasticity. The

modulus of elasticity of concrete may be taken as suggested by the ACI

Code [3],

E = 57000/?z
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which gives the modulus of elasticity of the stab, Es’

ES = 3370 ksi

The modulus of elasticity of the steel is taken as 29,000 ksi

giving a medular ratio, n, of

Therefore the transformed properties of the beam become

2

A nA 8.60 x 20.0 = 172.0 in.

BT B.

4

1 = nl

BT 8.60 x 1820

B 15650 in.

The gross area and moment of inertia of the slab are calculated
as follows;

A 2

sg

Isg

]

th = (20 x 12) x 5 = 1200 in.
4

L2t3/12 - 1280 in.

The eccentricity of the beam's neutral axis below that of the slab

is given by
e =(d+ t)/2 = (23.71 + 5)/2 = 14.36 in.

The position of the neutral axis of the composite section can now

be calculated,

Agre 172.0 x 14.36

+ TRy 1720 + (0.3¢ x Tz0y T 4B

y:
Agt

Finally, the equivalent composite moment of inertia can be computed,
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—
1

AaAS ey + A0+ 1

eq g fsg BT

(0.34 x 1200 x 14.36 x 4.23) + (0.53 x 1280) + 15650

41300 in.%

H

and the equivalent composite area is

eq AaAsg * ABT

2

A

1]

= (0.34 x 1200) + 172.0

583.6 in.

These properties are equivalent concrete properties of the composite
section since it is referred to the modulus of elasticity of the slab.
If it is desired to reference them to the beam's modulus of elasticity,
they should be divided by the modular ratio, n,
4

1]
1]

(1_) 4800 in.

eq’steel

(A.,)

eq’steel

41300/8.60
2

n
i

583.6/8.60 = 67.9 in.

It is interesting to compare these properties to the ones obtained
if the whole width of slab is assumed to be effective in composite
action, and to the properties of the beam by itself,

4 4

3}

5570 1in. I 1820 in.

(Tog¢u11 width B

2 2

A

159.5 1in. 20.0 in.

(Aeq)full width ~ B

As expected, the properties based on the full width are considerably
larger than the values using the effective width.

The computed effective composite properties do not include the
effect of column rigidity, If this effect is desired to be included,

the computed values must be divided by the quantity (1 - c1/L])3.
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The resulting properties become

4

I' = 4800/(1 - 0.059)3

eq

Aéq

5760 in.
2

1]
1]

67.9/(1 - 0.059)3 = 81.5 in.

It is a debatable matter whether or not this rigidity effect
should be considered. The behavior of the column area is somewhere
between infinite rigidity and zero rigidity. This contact area of slab
js stiffer than the rest of the slab, but not necessarily fully rigid.
Since conventional frame anaIysis neglects this rigidity effect, it may
be more desirable not to correct the resultant equivalent composite beam

properties for this extra rigidity.

4.2 Seismic Analysis of a Frame

To illustrate the application of the proposed method in seismic
design of buildings, a three-story moment-resisting steel frame is chosen
for analysis. A smoothed elastic response spectrum [32] is used as the
earthquake input. Modal analysis is performed, and the results are
compared to those obtained by analyzing the frame with the slab stiff-
ness neglected.

The three-story frame selected fs a two-bay frame with a span of
22 feet each as shown in Fig. 4.1. The columns used are all W14x127
and the beams are W21x68, all of them made of A36 steel. The floor
systems selected are all uniform six-inch reinforced concrete with a
compressive strength of 3500 psi. The transverse span selected is

20 feet.
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4,2.1 Gravity Loads

The dead load considered for this frame was computed as follows:

6" Concrete slab 72 psf
Steel members 8 psf
Partitions _20 psf

Total DL 100 psf

The 1ive load was taken as 40 psf, a common loading for residential
buildings. Although the roof usually carries less live load than the
rest of the floors, it was taken to be the same in this example in order

to facilitate the computations.

4.2.2 Equivalent Composite Beam Properties

The dimensions of the W14x127 steel column are obtained from the

1973 AISC Manual [5],

¢y = 14.62 in.

02 14.69 in.

which gives the relative column size as

- 14,62 _
“/h Tz 1z T 0-0%
14.69_ _ 4 961

/Ly = 5% 12

The aspect ratio of the slab is
L1/L2 = 22720 = 1.1

The flexural and axial effective width coefficients obtained from

Figs. 3.1 through 3.4 are
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Ap = 0.567
A, =0.374

The properties of the beam as obtained from the 1973 AISC Manual

are
I, = 1480 in.}
= in 2
Ay = 20.0 in.
= 21.13 in.

If the properties of the slab and beam are transformed to the same
modulus of elasticity using the modular ratio (n = 8.6), the resultant
equivalent composite properties referenced to the modulus of elasticity
of the beam (E = 29000 ksi) are
4

qu 4554 in.

Aeq

82.6 in.2

For consistency of comparison with the frame analysis which neglects
the siab, the above properties were used without modification for the
column rigidity effect. The analysis of the frame neglecting the slab
does not take this effect into consideration, so proper comparison should

not include this factor. Otherwise, the results may be misleading.

4,2.3 Modal Analysis

The stiffness matrix for lateral forces was determined by applying
unit horizontal displacements at each level, one at a time, while
restraining the remaining horizontal degrees of freedom, and calculating

the resulting horizontal forces. This analysis was performed with the
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aid of finite element analysis. The rotations and vertical displacements
of the joints were not restrained. Their effect is included in the
condensed stiffness matrix for lateral forces. The numbering of the
degrees of freedom is as shown in Fig. 4.2.

The resulting stiffness matrix for the frame neglecting the slab

was calculated as follows:

y——

103

896 -505
[K] = |-505 710 -331 | k/in.
103 -331 245_

The stiffness matrix for the frame, including the slab effective

stiffness, was calculated as follows:

953 =515 70

-515 854 -417

[K] = k/in.

70 -417 353

- —

As expected, the lateral stiffness of the frame, including the stiff-
ness of the .slab is greater than that when the siab stiffness is neglected.

The mass matrix for the frame was taken as a lumped mass matrix, and
no mass is attributed to the rotational degrees of freedom at the nodes
where the masses are lumped., The load used to compute the mass per floor
was the dead load plus 25 percent of the live load. This load leads to a

weight per floor, W, of

W= (100 + (0.25 x 40)) x 44 x 20 = 96.8 k

and Teads to a floor mass of
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m=W - 9680010 _ 5 1b-sec?/in.

9 386 in./sec

and the lumped mass matrix is

1 0 0
ml=251 10 1 0 1b-sec2/in.
0 0 1

In order to calculate the natural frequencies of vibration, the

characteristic equation has to be solved,

I[K] - w’[m]] = 0

The characteristic equation is a cubic function in w’. The solution
to this cubic equation provides the square of the natural circular

frequencies, from which the frequencies may be calculated by

For the frame with the slab neglected, the natural frequencies are

fI = 1.95 Hz
fz = 6,52 Hz
f3 = 11.85 Hz

If the effective stiffness is considered, the natural frequencies

of vibration are increased to the following values:

1".l = 2.50 Hz
f2 = 7.64 sz
f, = 12.39 Hz
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The mode shapes can be computed from the characteristic matrix by
substituting into the characteristic matrix one frequency at a time.
The mode shape for that frequency (scaled to an arbitrary constant) is
the vector obtained by taking any row of the matrix of cofactors of the
characteristic matrix. In this example, the mode shapes are scaled by
the component of the first degree of freedom. The resulting mode shapes,
{¢n}, for each vibrating frequency, without considering the slab stiffness,

are as follows:

1.000 1.000 1.000
'{¢]} =4 2.368 {¢2} = 4 0,799 {¢3} = {-0.784
3.284 -0.919 0.303

while for the frame with the slab considered, the mode shapes are as

follows:
1.000 1.000 1.000
{¢]} =4 2.110 {¢2} =< 0.616 {¢3} = 4-1.042
2.775 -0,828 0.432

The participation factor for each mode, G5 May now be calculated.

The participation factor for mode n is defined as

RCRy G
" fg, HIml{e,}

Q

The caliculated participation factors for the frame neglecting the

slab are

0y = 0.383 o = 0.354 ag = 0.305
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while those for the frame considering the slab are

oy = 0.447 ay = 0. 381 ag = 0.171

A smoothed response spectrum as suggested in Ref. 32 was used with
a base ground acceleration, ag, of 0.15 g. The ground motions were
calculated for competent soil with the recommended value of v/a ratio
of 36 in./sec/g and an ad/v2 equal to 6.0. The amplification factors
were computed for 5 percent damping and a cumulative probability of
84.1 percent, which is the median plus one standard deviation. The
resulting amplification factors for acceleration, A, velocity, V, and

displacement, D, are

A=2.71
V= 2.30
D = 2.0]

The design elastic response spectrum is then drawn as suggested in

Ref. 32 and is shown in Fig. 4.3. The resuiting spectral acceleration,
San’ for the three modes of vibration can now be read directly from this
response spectrum for the three natural frequencies of vibration. For
the frame without the slab considered, the spectral accelerations for
the three modes are

0.41
Sa =< 0.41 ; g

0.32

while the spectral accelerations for the frame with the effective slab

considered are
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0.41
s, =1{0.41 g
0.30

The story forces, fsn, may now be calculated for each mode of
vibration using the participation factor, the mode shape, and the

spectral acceleration for that mode [11, 31, 38]

{font = [mla, {8,}S,,

The resulting forces for the frame without consideration of the

slab stiffness for the three natural modes of vibration are

15.2 14.1 9.5
fs1 = ¢ 35.9 } kips fs =4 11.3 r kips fSB = 4-7.4 ¢ kips
49.9 -12.9 2.9

The lateral story forces for the frame, including the slab stiffness,

are
17.2 14.7 4.9
f_ =4 36.4 } kips f = 9.1 kips f. =4-5.1 kips
$q Y S3
48.0 -12.2 2.1

These modal story forces are the maximum amplitude of the forces
when the system is vibrating in that mode of vibration. The total
response is obtained through superposition of the three modes. However,
this superposition is in the time domain. The maximum total response
cannot be obtained, in general, by merely adding the modal maxima.

The modal maxima generally do not occur at the same time. Therefore,

although adding the modal response maxima provides an upper 1imit to
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the total response, it is in génera] an overestimation of the maximum
response likely to be encountered.

There are several proposed methods to obtain a reasonable estimate
of the maximum response from the spectral values. The simplest method
is to take the square root of the sum of the squares of the modal maximum

values as the most probable estimate, or

3 5 1/2
fs,max =X (fsn)_

n=1

The maximum values of the story forces computed by this method for

the frame neglecting the slab are

22.8

fs,max =< 38.4 } kips
51.6

and the maximum computed forces for the frame with the effective slab

considered are

23.1
fs,max =14 37.9 } kips
- 49.6

Now the base shear for each mode can be computed by summing forces
at all the story levels, and the maximum value may be computed by square
root of the sum of the squares method. The base shears, Vbn’ neglecting

the slab are

b] = 101.0 kips Vbz = 12.5 kips Vb3 = 5.0 kips

= 101.9 kips
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If the slab is considered, the base shear values become

v 101.6 kips vV, = 11.6 kips V. =1.9 kips

by b, bs

)

b,max 102.3 kips

The frame can now be analyzed in a quasi-static manner by imposing
the computed modal story forces on the frame, one mode at a time, and
computing the resulting maximum member forces and moments for combination
of loadings by taking the square root of the sum of the squares of the
modal values. The loadings considered were DL + LL and DL + 0.25LL +
Earthquake Load. The analysis of the frame was performed by finite
element analysis. The distribution of fhe tateral forces at each level
was such that the interior joints took twice the lateral force imposed
on the exterior joints. This distribution was employed because the
interior joints have twice the lumped mass of the exterior joints;
therefore, they experience twice the inertial forces of the outer joints.
As expected, maximum member forces and moments occurred for the second
type of loading, the critical members being the first-story beams and
the interior first-story column.

When the slab was not considered, these maximum member forces were

Pop. = 151 kips
Moy = 302 k-ft
Myoam = 325 k-Tt

When the slab was considered, the maximum member forces became
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PCOL = 155 kips
Mco1. = 257 k-ft
Mbeam = 353 k-ft

The moment on the critical column is considerably reduced because
the stiffer equivalent beam carries a larger share of the applied moment.
Although the moment on the c¢ritical beam has become larger, the composite
beam now has a higher moment capacity than the steel beam by itself, as
noted later.

For this example, the capacity of the column may be computed for the
combination of axial force and moment. The modified formula (1.6-1b) of
the AISC specificaticns [5] may be used to compute the required tabular

load for the above loading, which gives for the case neglecting the slab
P+ P' =680 kips

When the slab effective stiffness is considered, the required

tabular load for the column becomes
P+ P' =602 kips

The tabulated Toad for the W14x127 column is 721 kips [5]. It can
be seen that without considering the stab stiffness, the analysis indicates
that the column is highly stressed and is approaching its capacity 1imit.
However, taking the effective stiffness of the slab into consideration
suggests that the column is not as highly stressed, and may be slightly
overdesigned. A column one or two sizes smaller (W14x119 or W14x111) may

be used instead.
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Similarly, the resisting moment capacity of the W21x68 beam by
itself is 280 k-ft, which is Tess than the bending moment acting on it.
If the capacity of the composite section is calculated using the formula
g = Mc/1, the resisting moment of the composite section becomes 431 k-ft,
exceeding the applied moment on the section. Again, without consideration
of the slab stiffness, the results would indicate that a larger beam must
be chosen when in fact the section is adequate if it is considered to act
compositely with the slab.

It is interesting to note that if the frame with the composite slab
and beam was analyzéd with the computed modal lateral forces using moment
distribution instead of finite element analysis, the resulting maximum
moments on the critical members are almost identical. The resulting

moments are

1]

Mco]. 256 k-ft

M = 344 k-ft

beam

The calculated axial 1oad on the first-story interior column in
this case is 161 kips instead of 155 kips obtained by finite element
analysis.

This example illustrates that for low-rise buildings, in general,
the floor system contributes a substantial added resistance against
dynamic loads, which increases the reserve capacity of the building in

resisting lateral Toads.

4,3 Concluding Remarks on Seismic Analysis

The preceding example illustrated some of the effects of the

proposed method on the seismic analysis of a low~rise steel frame.
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The natural frequencies of this low-rise frame were in the range
where the smoothed elastic response spectrum had a constant spectral
acceleration for the first two modes. Consequently, when the slab
was considered, the shift in the natural frequencies of vibration
caused 1ittle change in the spectral accelerations. The mode shapes
changed slightly and the resulting story forces were close to those
obtained neglecting the slab; however, in general, the forces on the
higher stories were less. The distribution of member forces changed
considerably. The bending moments acting on the columns were reduced
because the stiffer composite beams carry more moment. The distribution
of ductility demand also may change because of the change in the
distribution of moments on the sections, and because of the increase
in the resisting moment capacity of the composite beams. In general,
for lTow-rise buildings, the slab usually provides an additional margin
of safety for the frame in resisting lateral seismic forces. Neglecting
the slab in the design of the frame will usually result in a design that
has a higher resistance against seismic 1oading than anticipated by the

designer.
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Table 3.1

Ly/Ly
0.50
0.75
1.00
1.50
2.00
3.00

Note:

Flat Siab Stiffness, M/Esao, for Varying Aspect Ratio, L]/Lz,
and Longitudinal Relative Column Size, c1/L] '

L, = 100.0 ¢y = 6.0 t=4.0
/Ly
0.04 0.08 0.12 0.16 0.20 0.24
12.31 14.56 17.10 20.00 23.34 27.24
10.42 12.58 14.96 17.62 20.67 24.18
9.39 11.48 13.73 16.23 19.04 22.26
7.99 9.84 11.76 13.84 16.15 18.81
6.92 8.47 10.03 11.70 13.56 15.72
5.37 6.43 7.47 8.59 3.91 11.54

Refer to Sec. 1.4 for consistency of units.
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Table 3.2

Flat Slab Stiffness, M/Eseo, for Varying Aspect Ratio, L]/Lz,

and Transverse Relative Column Size, c2/L2

L,

Elf}}i
0.50
0.75
1.00
1.50
2.00

3.00

Note:

- 100.0 ¢ /Ly = 0.12 t=4.0
Co/ly

0.03 0.06 0.12 0.18

15.68 17.10 19.98 22.87
14.07 14.96 16.85 18.74
13.04 13.73 15.09 16.41
11.38 11.76 12.49 13.18

9.80 10.03 10.44 10.83

7.33 7.47 7.63 7.78

Refer to Sec. 1.4 for consistency of units.
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Table 3.3 Composite Stiffness, M/E_6

L1/L2
0.50
0.75
1.00
1.50
2.00
3.00

Note:

so’
and Longitudinal Relative Column Size, c]/L1

for Varying Aspect Ratio, L1/L2,

L, = 100.0 t=4.0 Agr = 100.0
¢, = 6.0 e =12.0 Iy = 1600.0
/4
0.04 0.08 0.12 0.16 0.20 0.24
541.05 605.94 681.77 771.23 877.14  1003.19
418.26 468.24 526.68 595. 63 677.73 775.95
348.33 389.67 438.06 495.02 562.87 644.08
262.24 294.76 331.54 374.87 426.33 488.01
209.98  235.39 265.14 300.28 342.06 392.44
147.45 165.53 186.80 212.08 242.50 279.34

Refer to Sec. 1.4 for consistency of units.

89
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Table 3.4 Composite Stiffness, M/Eseo, for Varying
Aspect Ratio, L1/L2, and Transverse
Relative Column Size, c2/L2
L2 = 100.0 t=4.0 ABT = 100.0
c]/L] = 0.12 e = 12.0 IBT = 1600.0
c2/L2
LI/L2 0.03 0.06 0.12 0.18
0.50 698.69 681.77 670.45 674.99
0.75 531.73 526.68 524.01 526,22
1.00 439,72 438.06 437.44 439.00
1.50 331.74 331.54 331.89 332.83
2.00 265.02 265.14 265.72 266.43
3.00 186.56 186.80 187 .37 187.90
Note: Refer to Sec. 1.4 for consistency of units.



c2/L2 = 0.06 for all values.

Table 3.5 Flexural Effective Width Coefficients, Af » for Varying
. 0
Aspect Ratio and Longitudinal Relative Column Size
c1/L1

L]/L2 0.04 0.08 0.12 0.16 0.20 0.24

0.50 0.340 0.354 0.364 0.370 0.373 0.374
0.75 0.432 0.459 0.478 0.490 0.496 0.498
1.00 0.519 0.559 0.585 0.601 0.609 0.611
1.50 0.663 0.719 0.752 0.769 0.775 0.775
2.00 0.765 0.825 0.854 0.867 0.868 0.868
3.00 0.890 0.939 0.954 0.955 0.955 0.955
Note:

For c2/L2 different from 0.06, above
values must be corrected using the appropriate correction curves.

Interpolate Tinearly for unlisted values.

For consistency of units, refer to Sec. 1.4.

09
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Table 3.6 Correction Factors for Flexural Effective Width
Coefficients, Xf/Af , for Varying Aspect Ratios
0
and Transverse Relative Column Size

Co/ly
Ly/Ly 0.03 0.06 0.12 0.18
0.50 0.917  1.000 1.168 1.337
0.75 0.936 1.000 1.126 1.253
1.00 0.950 1.000 1.099 0.195
1.50 0.967 1.000 1.062 1.120
2.00 0.977 1.000 1.041  1.079
3.00 0.981 1.000 1.022 1.081

Note: Interpolate or extrapolate linearly for unlisted
values. If correction factor yields a Af greater
than 1.0, then the value of kf to be used should
be 1.0, meaning the whole width of slab is
effective in bending action.

For consistency of units, refer to Sec. 1.4.



Table 3.7 Axial Effective Width Coefficients, A5 ., for Varying

Aspect Ratios and Longitudinal Relative Column Size

CI/L]

Li/L, 0.04 0.08 0.12 0.16 0.20 0.24
0.50 0.189 0.182 0.176 0.170 0.163 0.156
0.75 0.266 0.255 0.244 0.234 0.224 0.214
1.00 0.350 0.332 0.316 0.300 0.286 0.272
1.50 0.515 0.484 0.455 0.429 0.405 0.381
2.00 0.645 0.603 0.566 0.533 0.502 0.473

3.00 0.800 0.747 0.703 0.664 0.629 0.598

Note: c2/L2 = 0.06 for all values listed. For c2/L2 different from 0.06,
the appropriate correction factors must be used. Interpolate Tinearly
for unlisted values.

For consistency of units, refer to Sec. 1.4.

29



63

Table 3.8 Correction Factors for Axial Effective Width
Coefficients, Aa/ka , for Varying Aspect
0

Ratios and Transverse Relative Column Size

cz/L2
L]/Lz 0.03 0.06 0.12 and higher
0.50 1.061 1.000 0.955
0.75 1.027 1.000 0.979
1.00 1.015 1.000 0.988

For L]/L2 greater than 1.0, no correction for c2/L2

is necessary.

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.9 Composite Stiffness for Varying Slab Aspect Ratio

ABT = 125.0 IBT = 1302.1 t=25.0
Composite Stiffness, M/Ese0
L] Finite Element Proposed Method % Error
62.5 344 344 0.0
125.0 _ 532 531 -0.2
187.5 259 259 0.0
250.0 206 206 0.0
312.5 170 169 -0.6
375.0 145 144 -0.7

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.10 Composite Stiffness for Varying
Relative Column Dimension

L1 = 125.0 t=5.0 ABT = 125.0
L2 = 125.0 Cy = Co IBT = 1302.1
Composite Stiffness, M/ESGO
cT/L] (=c2/L2) Finite Element Proposed Method % Error
0.04 270 270 0.0
0.08 304 303 -0.3
Q.12 344 344 0.0
0.16 392 392 0.0
0.20 450 449 -0.2
L] = 125.0 t =5.0 ABT = 125.0
L2 = 125.0 Cy = 15.0 IBT = 1302.1
Camposite Stiffness, M/Eseo
cl/LI Finite Element Proposed Method % Error
0.04 271 270 -0.4
0.08 304 302 -0.7
0.12 344 344 0.0
0.16 390 390 0.0
0.20 444 445 0.2
0.24 510 510 0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.10 {continued)

L1 = 125.0 ¢ = 15.0 ABT = 125.0
L2 = 125.0 t =5.0 IBT = 1302.1
e = 10.0
Composite Stiffness, M/Eseo

c2/L2 Finite Element Proposed Method % Error
0.02 344 343 -0.3
0.04 343 342 -0.3
0.08 343 342 -0.3
0.12 344 344 0.0
0.16 345 345 0.0
0.20 347 347 0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.11 Composite Stiffness for Varying Beam Eccentricity

L] = 125.0 Cy = 15.0 ABT = 125.0
L2 = 125.0 Cp = 15.0 IBT = 1302.1
t=5.0
Composite Stiffness, M/Ese0
Eccentricity, e Finite Element Proposed Method % Error
6.0 76 75 -1.3
5.0 143 142 -0.7
10.0 344 344 0.0
15.0 676 679 0.4
20.0 1137 1147 0.9
L1 = 125 ¢y = 10 ABT = 78.3
L2 = 125 Cy = 6 IBT = 1691.7
=5
Composite Stiffness, M/Ese0
Eccentricity, e Finite Element Proposed Method % Error

0.1 75 74 -1.3
1.0 77 76 -1.3
2.0 83 82 -1.2
2.5 86 85 ' -1.2
3.0 91 90 -1.1
6.0 139 137 -1.4
9.0 218 216 -0.9
12.0 187 186 -0.5
15.0 469 469 0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.11 (continued)

L] = 150.0 ¢y = 18.0 ABT = 61,7

L2 = 100.0 Cy = 6.0 IBT = 740.6

' t = 8.0

Composition Stiffness, M/Ese0
Eccentricity, e Finite Element Proposed Method % Error

0.5 118 116 -1.7
1.0 119 117 ~1.7
2.0 124 122 -1.6
3.0 132 130 -1.5
6.0 176 172 -1.7
9.0 245 242 -1.2
10.0 274 27 -1.1
12.0 342 340 -0.6
15.0 466 466 0.0

Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.12 Composite Stiffness for Varying Slab Thickness

L1 = 125.0 Cy = 15.0 ABT/ASg = (.20
L2 = 125.0 c, = 15.0 IBT = 1302.1
e = 10.0
Composite Stiffness, M/Ese0
Thickness, t  Finite Element Proposed Method % Error
1.0 100 100 0.0
2.5 184 184 0.0
4.0 276 276 0.0
5.0 344 344 0.0
7.5 548 548 0.0
10.0 819 818 -0.1
15.0 1649 1647 -0.1

Note: Refer to Sec. 1.4 for consistency of units.



for Varying Beam Area

IBT = 1302.1

% Error

-1.3
-0.4
0.0
0.0
0.0

IBT = 740.6

% Error

Table 3.13 Composite Stiffness
L] = 125.0 ¢ = 15.0 = 5.0
L2 = 125.0 c, = 15.0 = 10.0
Composite Stiffness, M/Eseo
Area, ABT Finite Element Proposed Method
0.0 76 75
62.5 243 242
125.0 344 344
187.5 412 412
312.5 498 498
L] = 150.0 ¢y = 18.0 = 8.0
L2 = 100.0 C, = 6.0 = 10.0
Composite Stiffness, M/Ese0
Area, ABT Finite Element Proposed Method
0.0 117 116
12.9 156 153
25.7 190 186
38.6 222 218
51.4 252 248
64.3 280 276
77.1 306 303
90.0 331 328
128.6 397 395
Note: Refer to Sec. 1.4 for consistency of units.
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Table 3.14 Composite Stiffness for Varying
Beam Moment of Inertia, IBT

15.0 t

L, = 125.0 ¢y = = 5.0 AgT = 125.0
L, = 125.0 ¢, = 15.0 e = 10.0
Composite Stiffness, M/E_6_

IBT Finite Element Proposed Method " % Error
130.2 296 302 2.0
260.4 304 307 1.0
651.0 320 320 0.0
1302.1 344 344 0.0
2604,2 390 389 -0.3
5208.3 482 431 -0.2

Note: Refer to Sec. 1.4 for consistency of units.



Table 3.15

Composite Stiffness for Variocus Values of Controlling Parameters

Composite Stiffness, M/Eseo

L1 L2 ¢ cy t e ABT IBT Finite Element Proposed Method % Error
125.0 125.0 15.0 15.0 8.0 10.0 200.0 5333.3 740 738 -0.3
125.0 125.0 15.0 15.0 8.0 16.0 200.0 5333.3 1408 1407 -0.1
125.0 125.0 25.0 25.0 5.0 12.0 78.3 1691.7 491 491 0.0
125.0 125.0 10.0 6.0 5.0 10.0 116.0 1691.7 305 304 -0.3
125.0 125.0 10.0 6.0 5.0 10.0 145.0 1691.7 339 338 -0.3
125.0 125.0 10.0 6.0 5,0 10.0 143.1 1691.7 336 335 -0.3
250.0 250.0 10.0 6.0 5.0 12.0 78.3 1691.7 172 170 -1.2
250.0 250.0 20.0 12.0 5.0 12.0 78.3 1691.7 195 194 -0.5
125.0 250.0 10.0 12.0 5.0 12.0 156.6 3383.3 546 548 0.4
250.0 125.0 20.0 6.0 5.0 12.0 78.3 1691.7 187 186 -0.5
Note: Refer to Sec. 1.4 for consistency of units.

¢l
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Composite Beam in Antisymmetric Deflection
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Column

Fig. 2.3 The 16x16 Finite Element Mesh
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Column

Fig. 2.4 The 10x10 Finite Element Mesh
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Fig. 2.6 Comparison of the Deflected Shape of the Composite Beam
for Different Finite Element Meshes
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Fig, 2.7 Degrees of Freedom of the 16 Node Rectangular
Plate Bending Element [24]
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Fig. 2.8 Generalized Stress and Strain Resultants for
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Fig. 2.9 Degrees of Freedom of the Plane Stress Rectangle [24]
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Beams : W21x68 (A36)
Slabs : 6" RC fé = 3500 psi

Transverse span = 20'

Fig. 4.1 Three-story Frame
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Positive Directions Illustrated

Fig. 4.2

Lateral Stiffness Coefficients
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