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Light, flexible, "secondary" systems such as piping, penthouses
and antenna towers are often attached to major structures. The purpose
of this study is to investigate the dynamic response of secondary systems
that are tuned to a natural frequency of the primary system.

Consideration is first given to simple structural models composed
of a single-degree-of-freedom secondary system attached to a single-
degree~of-freedom primary system. Formulas for the response of the
secondary system are obtained for various damping configurations. The
effects of a slight detuning of the secondary system are also examined.

The response expressions are then used to develop estimates for
the maximum response of the secondary system. The accuracy of these
estimates is assessed in a numerical study in which the exact and
approximate responses are compared.

Lastly, an expression is obtained for the response of a multi-
degree~of-freedom tuned secondary system attached to a multi-degree-

of-freedom primary system,
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CHAPTER 1, INTRODUCTION

1.1 General Remarks

The components of complex structures can often be thought of as
belonging either to a relatively heavy, stiff “primary“ system or to a
relatively light, flexible "secondary" system. In most applications,
the primary system comprises the structural frame plus the larger masses,
while typical secondary systems are piping, penthouses and ventilation
systems, The subject of this study is the response of the secondary
system when the structure is subjected to specified ground motion.

This problem has long been of interest to earthquake engineers because
secondary systems often perform tasks that are especially crucial during
earthquakes, as in the case of building sprinkler systems and coolant
circulation systems of nuclear powef plants.

Special emphasis is given in the study to secondary systems that
are tuned to a natural frequency of the primary system. Tuning is of
great concern to the designer since it is this frequency configuration
that brings about an extremely large, if not the largest, secondary
system response. Ideally, the best course of action would be to design
the structure so that tuning is avoided. However, because of the
uncertainties and inaccuracies that are inherent in any modeling of a
structure, certain frequencies of the primary and secondary systems may
be closer than analytical or'experimental data would indicate. As a
result, it is generally advisable to assume exact tuning for primary and
secondary system frequencies that appear to be in close proximity.

The accurate dynamic analysis of a tuned secondary system is
essential in view of the large response that can result. Unfortunately,
it is precisely when such a system 1s present that the conventional
methods of structural dynamics break down. If a secondary system is
present but is widely detuned, it is usually permissible to neglect
interaction between the primary and secondary systems and utilize the
well-known floor spectrum method of analysis. When the secondary system
is tuned, however, its response is often large enough to affect the
primary system and render the floor=spectrum method invalid. The

presence of a tuned secondary system also precludes the use of modal



analysis methods. This is because structures that contain such systems
have two eigenmodes with frequencies that are very close to the frequency
of tuning. While %hese modes often contribute significantly to the
response, the close spacing of the frequencies makes it difficult to

compute the modal data or infer the joint response of the modes,

1.2 Object and Scope of Study

The principal object of this study is the development of procedures
for computing and estimating the dynamic response of tuned secondary
systems. The study is focused mainly on the most difficult analytical
problem that arises from the presence of these systems; namely, evaluating
the response contributed by the two closely-spaced eigenmodes mentioned
earlier. The study isolates and examines this problem by considering in
detail the response of the simple tuned system shown in Fig. 1. Later,
more complicated tuned and detuned systems are also.éonsidered.

In Chapter 2, response formulas are derived for the response of the
small mass of the simple tuned system shown in Fig., 1, The derivation
employs an asymptotic procedure that uses the assumed smallness of the
mass and stiffness of the secondary system to simplify the exact solutions
of the equations of motion, The motions described by-the response formulas
are then studied qualitatively and some interesting response phenomena are
deduced.

In Chapter 3, the results of Chapter 2 are used to develop estimates
for the maximum response of the secondary system. First, parallel time
and frequency domain analyses are used to derive a closed-form solution
for the maximum response to ground motions of short duration. The
parallel analyses are then extended to include a special class of long
duration ground motions. Finally, the analytical results are used in
conjunction with heuristic arguments to deduce a series‘of response
estimates for long ground motions in general.

Chapter 4 discusses a numerical study that was carried out to
assess the accuracy of the response estimates developed in Chapter 3,

The numerical study computed, by exact and approximate methods, the

response of a number of secondary systems to three widely differing



ground motions. 1In Chapter 4, the numerical studies are first described
and the results are then evaluated in light of the analyses in Chapters
2 and 3.

In Chapter 5, a formula is derived for the general case of the
response of a multi-degree-of-freedom (i.e., M-DOF) tuned secondary
system that is attached at several points to an M-DOF primary system.

The results and conclusions of this study are summarized in

Chapter 6.

1.3 Survey of Previous Work

The problem of analyzing the dynamic response of secondary systems
has received considerable attention in recent yvears from investigators
in earthquake engineering and related fields. The following brief survey
gives additional background material for the problem and illustrates scme
of the methods that have been used to treat it.‘

The need for special methods to compute the response of secondary
systems is widely recognized. The mass, damping, and stiffness influence
coefficients of the secondary system are, respectively, smaller than those
associated with the primary system, and, as a consequence, considerable
round-off error may result when conventional methods are used to solve
the equations of motion.

One way to avoid this difficulty is to assume that the secondary
system does not perturb the motion of the primary system. The equations
of motion of the total structure then decouple into two smaller sets of
equations that allow one to solve for the responses of the primary and
secondary systems in succession. Plots of maximum decoupled response
of the secondary system versus frequency are wldely used by designers
and are generally referred to as "floor spectra."

While the computation of floor spectra is straightforward, it requires
the cumbersome intermediate step of computing and storing the time histories
of the points of attachment of the secondary system. Various schemes have
been proposed that avoid this step and otherwise simplify the floor spectrum
method. Kassawara [11] sought to develop an analogue to the modal method.
To this end, a series of summation formulas were presented for use in

conjunction with so-called "iterated response spectra" that were obtained



heuristically from conventional response spectra. A similar procedure
was also developed by Biggs and Roesset [1]. Singh [27] and Singh [28]
utilized random vibration techniques to develop methods for comnstructing
floor spectra.

Although the floor spectrum method has been widely used, its validity
has been questioned by some on the grounds that interaction between the
primary and secondary systems can be significant. As was mentioned earlier,
this is likely to occur when the secondary system is tuned. Interaction
is also important in the so-called "vibration absorber™ phenomenon [29].
Caughey [4] has studied this question analytically and has rigorously
derived some sufficient conditions for applying a method quite similar
to the floor spectrum approach.

A number of analytical schemes have been devised to account for
dynamic interaction between component systems. Penzien and Chopra [20]
considered a structure composed of an N—degree—of—fréedom primary system
and a single-degree-of-freedom secondary system. The structure was
treated as a series of N two-degree-of-freedom systems with one-degree-
of-freedom representing a mode of the primary system and the other
representing the response of the secondary system induced by that mode.
The maximum responses of the two-degree-of-freedom systems were then
combined using the familiar root-sum-square summation formula. A simpler
procedure proposed by Newmark [16] and improved by Nakhata et al. [15]
uses a conservative modal summation rule in conjunction with simple
approximations for the eigenvectors and frequencies of the total structure.
In a recently completed work, Villaverde and Newmark [30] improved the
method in Ref. [15] and also expanded it to cover structures with
nonclassical damping and secondary systems with two points of attachment.

The present work marks the end of long study, the preliminary results
of which were reported earlier by Ruzicka and Robinson [21]. While this
study was in progress, a parallel, independent study along similar lines
was conducted by Sackman and Kelly ([12], {13], [14]1, [22], [23], [24],
[25]) at the University of California, Berkeley, and at Weidlinger Asso-
ciates, Menlo Park, California. Both studies focus on the response

contributed by the two closely-spaced modes of a structure containing



a tuned secondary system and use the following two-step procedure:

1. A simple formula for the response is derived by exploiting the tuning

condition and the smallness of the mass and stiffness of the secondary

system.

results of step 1.

2. An estimate of the maximum response is obtained using the

Both studies obtain the same results for step 1

but by different methods: the present study uses modal analysis and

Fourier transforms while the Sackman-Kelly study uses Laplace transforms.

It is in step 2 that the two studies truly differ.

A brief discussion

of these differences may be found at the end of Chapter 3.

1.4 Notation

The notation used in this study is listed and defined here. All

terms are also defined where they first appear in the text,
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CHAPTER 2. RESPONSE OF SIMPLE TWO-DEGREE-
OF-FREEDOM TUNED SYSTEMS

2.1 Introduction _

This chapter presents a detailed analysis of the response of the simple
tuned two-degree-of-freedom (2-DOF) system depicted schematically in Fig. 1.
The goal is to obtain a general analytical and qualitative grasp of the
response of tuned secondary systems.

There are two main reasons for examining the simple tuned system in
detail. TFirst, the simple system may be an adequate dynamic model if the
primary and secondary system are tuned at their fundamental frequencies
and- the secondary system is attached at only one point. This is the case,
for instance, 1f the secondary system is a slender antenna tower that is
attached to a high rise building having the same fundamental frequency.
Another reason for studying the simple system is that the results of the
study are directly applicable to the analysis of more complicated tuned
systems having the same critical feature; namely, the presence of two eigen-
modes with closely spaced frequencies. It will be shown later that the
contribution of the two closely spaced modes to the response of a tuned
secondary system is, in general, mathemétically equivalent to the response
of the secondary mass of a system of the type shown in Fig. 1.

The chapter starts by analyzing an undamped tuned system in free and
forced vibration. A simple formula is derived for the response of the
secondary system. The formula is examined qualitatively to gain insights
that will prove useful in obtaining response estimates. The analysis is
then repeated for damped systems. Fourier analysis is used to extend the
results to systems for which modal analysis is inconvenient. Finally,
there is a discussion of the effects of a slight detuning of the primary

and secondary systems.

2.2 Response of Undamped Tuned Systems

This section analyzes the response of the simple 2-DOF system of
Figure 1 when no damping is present. Refined approximate solutions are
derived for the cases of free and forced excitations. The motions

described by the approximate solutions are then examined qualitatively.
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2.2.1 Analysis of Equations of Motion
The equations of motion of the undamped tuned system of Figure 1

can be written in matrix form as:

M 0 a_(t) K +K_ -K u_(t) M]
P p +] P s s P =={ P i a(t) (1a)
0 MS us(t) -KS KS us(t) MS J
in which:
Mp, Kp are the primary system mass and spring stiffness
Ms’ KS are the secondary system mass and spring stiffness
(
u (t) primary displacement
P is the response vector relative
us(t) secondary displacement

to the ground
a(t) is the ground acceleration

t is time

Equation (la) can also be written symbolically as:
Mi{u} + [(KHu} = - [M]{1} a(c) (1b)

where [M] and [K] are the mass and stiffness matrices of the total system,
{u} is the response vector and {1} is a vector of ones.

It is assumed that the secondary system is tuned to the primary system
of some frequency w. This means the mass and stiffness terms are related

by:
. _=_ 2
M M w @

The "size" of the secondary system relative to the primary system is

characterized by the mass ratio which is denoted:
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Equation (la) can be rewritten in terms of w and € as:

10 u (t) 1+¢€ - u (t) ' 1
] o, 2 P = - a(t) (4)
0 ¢ iis(t) -£ £ us(t) 1

Equation (4) can be solved for {u} in closed form using the modal method
(see [6]). We first consider the case a(t) = 0. The system is then in free

vibration and the response is given by the formula:

2, o :
- 3
{ul E {¢-} Ay sin (@t + a)) (5)

In Eq. (5), the aj are phase angles. The eigenvalues Q§ are the
roots of the characteristic equation:

m2(1 +g) - 92 -mze

=0 (6)
-wzs e(wz - Qz)

The eigenvector {QJ} is obtained by substituting Qj into the simultaneous

equations:

m2(1 + g) - Q% —w2€ ¢j
2 2 _ L2 h|
we e(w ﬂj) ¢35

Upon expanding the determinant in Eq. (6), the characteristic

equation becomes:

A et rey +ut =0 (8)
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The roots of Eq. (8) are:

9 =1+5-//ATE (9a)
9§=1+§-+/E/1+_l€: (9b)

The expressions for the 2, can be approximately simplified by expanding

i

the radical in powers of € and then keeping only the two largest terms. For

91 this process yields:

2
2 _ 2 1_ E__E_
3/2
o 2(1 + E . - g
=W (1 + 3 Ve 5 }
2 ‘,
= w (1 - /&) (10)
Using Eq. (10), we can approximate Rl as:
2, = w(l - /512
= gl - {g) (11a)
= - Aw (11b)

The parameter Aw defined in Eq. (11b) will be used frequently in the
sequel,

To evaluate the eigenvector {¢1}, we set ¢i = 1 and substitute Eq.
(9a) into the second of Eq, (7). This yields:

We conclude:
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o

{¢l} = = (12)

1.1
)

-

[}

The evaluation of w, and {42} closely parallels the evaluation of 2
and {¢1}. It can be shown that:

92=m1+§> (13)
2
2 * '
{07} = & (14)
2 1 1
o l’(7€- 5)

Substituting Eqs. (11)-(14) into Eq. (5) gives the following approxima-

tion for free vibration response:

up(t) 1 1

. 11,1 A, sin [(w-fw)t+a ]+ 1.1 A, sin [(wHhw)t+a,]  (15)
s Ve 2 Je 2 '

The motion described by Eq. (15) will be examined qualitatively in the
next subsection.

Our attention now turns to the case of forced excitation. When the
system is excited by some ground acceleration a(t), the response is given

by the formula:

2 . P, t
{u} = -2 {¢?}=L [ a(r) sin Q, (t-1) dt (16)
=t 950 . |

The Pj are the modal participation factors and are given by:

_ {9 g
P, = - (17)
I (I e}

An approximation for Pl can be obtained by inserting Eq. (12) into

Eq, (17). We then have:
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M+ eM/2 + VeM

P, =
2M + eM/4 + VeM
,_,1+/5:%[1+—‘/2§] (18a)
2 + /e
Similarly, it can be shown that:
1|y e
P, =3 [1 - 2} (18b)

We will now use the approximations for Pj’ SZJ. and {d')]} to form

approximations for the coefficients which precede the integrals in Eq.

(16). TFor the first coefficient:

%(1 + VE)

=L . (19)
1 3
2D

Similarly, for the second coefficient:

1
2, %2 1 RS
{¢}—Q—:G (20)
2 “l1a 3,
2E T2

Combining Eqs. (11), (13), (16), (19) and (20), we have:

t t
up(t) - %3- f a(T) sinw(t-T) cos Aw{t-T)d1 +§ j’ a(T) sin Aw(t-1) cos w(t-1) d1 (21)
#] 0
1 t 3 t
‘us(t) =T§ ({ a(T) sin w(t-T) cos Aw(t-Tt)dT ~%0 f a({t) sin w(t-T) cos Aw(t-T) dT (22)
0
We define:
3 ¢ ‘
ul(t) = - 5= | a(1) sin w(z-T) cos Aw(e-T) dt (23a)
S w 5
1 t
uk(t) = —= | a(t) sin Aw(t-1) cos w(t-T) dt (23b)
wv/e 0
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ug*(t) = ué(t) + ug(t) (23c)

It is apparent from the derivation of Eq. (22) that ug*(t) becomes us(t)

exactly for vanishingly small €.

2.2.2 Qualitative Analysis of Response

Equations (15) and (22) will now be examined to obtain qualitative
information about secondary system response.

Consideration is given first to the case of free vibrations. Equation
(15) shows that uS(t) ig the sum of two sinuscidal ogcillations with close
frequencies. This gives rise to the eclassical "beat phenomenon" in which
the amplitude of the combined oscillation rises and falls as the component
oscillations drift in an out of phase. To see this, we set A1 = A2 = A

and a, = a, = 0 in Eq. (15). This yields:

1
e« L L (L1 ; -
us(t) = (/E + 2) A sin (w+Aw) t (/E 2) A sin {(w-Aw) t
~ 2A[sin Awt]cos wt (24)
Ve

The motion described by Eq. (24) is the solid curve drawn in Fig. 2,
The bracketed term in Eq. (22) and its negative are the dashed curves in
Fig. 2. 1t is seen that the dashed curves oscillate relatively slowly and
closely match the peaks and troughs of the troughs of the solid curve. We
define an envelope, denoted E{t), as a non-negative, slowly oscillating
function that closely matches the extreme of an oscillatory motion. From

Fig. (2), it can be seen that the envelope of Eq. (24) is given by:

gé-sin Awt
£

E(t) = (25)

The rate of oscillation of the envelope (or "beating") is governed by

w/e

My = 5 << w., For this reason, Aw will be referred to as the "beat frequency."

The duration of the beats 1s characterized by the "beat period" which is

denoted:
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From Egs. (24)-(26) and Fig. 2, it can be seen that Ty is the duration
of two beat lobes.

Our attention now turns to the description of secondary system
response under ground excitation. The integrals in Eg. (22b) contain
the terms cos AMw(t-T) and sin Aw(t-T). However, Aw<<w and if w and € are
sufficiently small, Awt<<l for a fairly long time. When Awt<<l, Eq. (22)

can be replaced by:

t
us(t) o u:*(t) B %f a{tT) (t-1) cos wlt-T) dt

0
: @n
3 DC
- == [ a(?) sin w(t-1) dT = u_ (£); Awt<<l
20 0 s
Straightforward calculation shows that uzc(t), defined in Eq. (27),
satisfies the differential equation:
«DC 2 DC t
iy (£) + wug (t) = - a(t) - wfa(t) sin w(t-1) dt (28)

0

Egquation (28), however, is the equation of motioﬁ for us(t) that
results from the assumption (generally incorrect) that the secondary
system does not perturb the motion of the primary system. An analysis
based on this assumption is said to be a "decoupled analysis." The
methodology of a decoupled analysis is depicted schematically in Fig. 3.

We see that when Awt<<l, the secondary system response can be
calculated using a decoupled analysis. In light of Eq. (26), this means
that a decoupled analysis is valid when the elapsed time after the start
of the ground motion is much less than the beat period.  This result
seems reasonable on physical grounds. In the early stages of the motion,
the secondary spring distortion is small and the secondary spring force
too small té perturb the primary system significantly. Therefore, a
decoupled analysis is valid (see Fig. 3) and the secondary system is
subject to a‘base motion input with significant frequency content close

to its own natural frequency. This input makes the amplitude of the
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secondary response grow rapidly until the secondary response spring force
is large enough to perturb the primary system. The smaller the secondary
spring stiffness (or the longer the beat period), the more time required
for the second system force to reach an amplitude large emnough to affect
the primary system.

When Awt is not small, ugc(t) is no longer a valid approximation
and us(t) must be approximated by u:*(t) as given by Eg. (23). To examine

u:*(t) qualitatively, we first rewrite it in the following form:

%k
u_ () = ul(t) sin wt + uz(t) cos Wt (29)
where:
1 & 3t
u (t) = —— [ a(1) sinwt sin Aw{t-T) dt -5~ { a(t) cos wt cos Aw(t-T) dT (30a)
w/e 0 0
1 ¢ 3 t
uz(t) = —/: j' a{T) cos wt sin Aw(t-T) drt +ﬂ f a(1) sinwT sin Aw(t-1) dT (30b)
wve 0 0

The behavior of ul(t) and uz(t) will now be examined. The first of
the two terms in ul(t) is proporticnal to the displacement of a linear SDF
(i.e., single-degree~of-freedom) system of circular frequency Aw that is
excited by a "ground acceleration" a(T) sin wr. It is well known that
when a linear SDF system is excited byla wide-banded function, it oscillates
at a rate close to its natural frequency. Consequently, the first term in
ul(t) oscillates about as rapidly as sin Awt. The second term in ul(t) is
proportional to the velocity of a linear SDF system of circular frequency
A that is excited by a "ground acceleration" a(T) cos wT and this term
also oscillates about as rapidly as sin Awt. We therefore conclude that
ul(t) oscillates about as rapidly as sin Awt, It can be shown in a similar
manner that uz(t) also oscillates about as rapidly as sin Awt. Since
A<, ul(t) and uz(t) remain essentially constant for several cycles of
sin wt and cos wt. We can therefore treat ul(t) sin wt and uz(t) cos wt
as though they are rotating vectors 90 degrees out of phase and combine

them accordingly. We then have:

u:*(t) = £ (t) cos [wt - o(t)] (31)
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where!

E7(e) = {[u, (0% + [u:,_(t)}z}l/2 (32a)
-1l
g(t) = tan “2(t) {32b)

It is readily seen that E**(t) is the-envelope of u**(t).

We conclude that the forced vibration as well as the free vibration of
a tuned secondary system is characterized by the presence of beats and a
_ smooth envelope function that oscillates at the beat frequency.

The analysis of u:*(t) has so far included the contributions of both
ué(t) and u:(t). However, examination of Egs. (23a, b) might lead one to

conclude that lu;(t)[ << Iu:(t)l since the integrals appear to be similar

in magnitude but-§§ >> %~. If u;(t) can be neglected, us(t) = uZ(t) and
we have:
#k %
E (t) = E (t) = (33)
1 t 5 t 9 1/2
= — {(fa('r) gin wT sin Aw(t-T) dT1)" + (fa('c) cos wT sin Aw(t-T) dT)"}
we 0 0

To illusfrate the results of this section, the time histories of two
tuned secondary systems have been computed using the exact (i.e., Eq. (16))
and approximate formulas., ' The ground acceleration used was the earthquake
accelerogram for El Centro 1940-NS (see Fig. 10). The paraﬁeters of the
first system are € = .0025 and W = 2TRPS. The approximate time history,
uz*(t), for this system is the solid curve shown in Fig. 4a. It is virtually
identical to the exact time history, us(t), which is shown in Fig. 4b.

Two sets of dashed curves are shown in Fig. 4a. The curves comprised of
the shorter dashes are plots of E*(t) and —E*(t). It can be seen that E*(t)
satisfies the criteria specified earlier for an envelope; i.e., it is rela-
tively smooth and closely matches the response extrema. The curves in Fig.
4a that are comprised of the longer dashes are plots E**(t) and -E**(t).

We conclude that for this system and ground motion, little accuracy is lost
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by using u:(t) or u:*(t) instead of us(t).

The second tuned secondary system considered is characterized by the
parameters € = .01 and w = 27TRPS. The approximate and exact time history
data for this system are shown in Figs. 4c and 44, respectively. It can
be seen that most of the remarks made in regard to the previous example
apply here equally as well. The most significant difference is that E*(t)

is somewhat less satisfactory here than in the previous example.

2.3 Response of Tuned Systems with Proportional Damping

This section examines the equations of motion of a damped tuned
system in ﬁhich the damping matrix is proportional to the stiffness matrix.
Before proceeding with the analysis, we present here a brief discussion of
damping in general and the significance of the damping formulation
considered in this section.

Damping refers to energy dissipation caused'by the internal friction
that is always present to some degree in structures. A common method of
taking damping into account is to insert into the equations of motion the
term [C]{t} where [C] is a symmetric matrix of damping coefficients., The
matrix [C] is usually constructed so that it can be diagonmalized by the
same transformation that uncouples the equations of motion of the undamped
system. This type of damping matrix is often called '"classical damping".

Numerous damping formulations are possible, even within the constraints
imposed by classical damping. Damping parameters are usually a function of
the type of system, the materials used, the mode of construction and the
maximum stress level (éee [27]1). Separate damping models may prove to be
necessary for widely differing primary and secondary systems. This can
lead to analytical difficulties because classical damping in the separate
primary and secondary systems does not ensure that classical damping exists
in the total system. /

A commonly used classical damping formulation involves setting the
damping matrix proportional to the stiffness matrix. Physically, this
can be intexpreted as inserting in parallel with each spring a dashpot
with damping proportional to the spring stiffness. Consider now the Z-DOF
damped tuned system shown in Fig. 1. Assuming stiffness proportional

dampiﬁg in the separate primary and secondary systems, we have:
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cp = Ypr (34a)
C, = YK (34b)

It can be shown using a theorem of Caughey and 0'Kelly [5] that the system
of Fig. 1 is classically damped if and only if Yp = Yg- We shall then say
that the system is '"proportionally damped" since the damping matrix of the
total system is proportional to the stiffness matrix.

In this section, we examine the system of Fig. 1 assuming proportional
damping. TFirst, the exact response formula is simplified analytically and
the resulting response exﬁression is studied qualitatively. The analytical
results are then transformed into the frequency domain, principally for
future reference. The case of non-proportional damping (i.e., Yp # YS)

will be treated in the next section.

2.3.1 Analysis of Equations of Motion

In light of our assumptions about damping, we can write:
. | Y, =Y, =Y (35)

The damping in the separate primary and secondary systems can also be

characterized by their respective damping ratios, Ep and ES,‘where:

C
g, ~ EEEE << 1 (36a)
p
Cs
Es v << 1 : (36b)
S
It is easily shown that:
= = lu—)- =
Eg=f,=T=c (37)

The equations of motion may be written symbolically as:

(M1{i} + [c1{a} + [KI{u} = - [MI{1l}a(t) (38)
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where the damping matrix, [C], is:

[c] =y s | s (39)

Equation (38) can be solved using the modal method. The secondary

system response is given by:

1 t e
-p - -
us(t) = *__;Eﬁz___i f a(t)e Elﬂl(t v sinf?lfi—gi(t—T) dt
O/ 1-¢- ©
1 1
-p, 07 ¢ =l (£-T) 12
272 [ a(mye =22 sin R,/ 1-£,(t-1) dt (40)
9 [}
sz 1- Ez

where the Ei are the modal damping ratios and are given by:

Yﬂi
ST (41
Inserting Eqs. (7a,b) into Eq. (41) yields:
Eo= X8 g o YE L
g2 a-%H ¢ (422)
L Y ey o
E, =5 A+5) =& | (42b)

(42a,b) and Eqs. (20a,b) in Eq. (40) and neglecting terms Ei,

ysing Eqs.
we have:
1§ oy mER(E=T)
u () = —=[ a(De WD) Sin Aw(t-T) cos w(t-T) dt
s we 0
t (43a)
3 a(T)emgm(t-T) cos Dw(t=1)sin w(t-T) 4T
T 2w
F3 Jek
=g (8 Fug () =g (8 (43b)
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The approximate response expression of Eq. (43a) complements the
undamped approximation of Eq. (22); hence, the same notation is used in
Eq. (41b) and Eq. (23c).

The integrals appearing in Eq. (43a) are generally of the same order
of magnitude and since € << 1, it is usually true that lu;(t)|<<[u:(t)[.
However, it will be seen in Chapter 4 that exceptions can occur. Conditions
under which the contribution of u;(t) is significant are discussed in
Chapter 3.

A "ground motion" that plays an important role in the sequel is the
unit impulse function, 6(t) (i.e., the Dirac Delta function). The response
of the secondary system to the unit impulse function is denoted hs(t).
Substituting &8(t) for a(t) in Eq. (43a) yields the approximate impulse

response function:

h:*(t) =‘—3: e-gwt sinAwtcosut - f% e_‘gwt cosbwtsinwt (44a)
wv'e
= B¥ '
=h_(t) +h (t) (44%)
= hs(t) (44c)

2.3.2 Qualitative Analysis of Response

The results obtained in Sec. 2.3.2 for undamped systems apply, with
some minor modifications, to damped systems.

When Awt<<l, the decoupled response is a good approximation for damped
as well as undamped systems. To see this, we first obtain ugc(t) for the
damped tuned system. With the aid of Fig. 3 it is seen that the equation

of motion for ugc(t) is given by:

DC DC , 2 DC DC, 2
wo” + 280 + wfulC = 28000 + wun’ - a(t) (45)
where ugc is given by:
t
Wl = —Z2— [ a(r) & WD) sing/l-EX(e-1) dt (46)
20

wy¥ 1-&
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Dc .
Substituting Eq. (46) into Eq. (45) and solving for ug (t) yields:

2 22t

ey = LTI [y e~ 1y cosw/1-E2(t-T) dt +
s 20 (1-87) o

2 22t
e I 1 [ a(7) e BT i ToE (-1T) d + (47)

2(1-£2)3 o

__g__ [ a(t) e ~Ew(t-1) (t=1) sinw/l-§ (t—‘[) dt
w/l- E

The last term on the right-hand side of Eq. (47) is generally much smaller
than the first term since the integrals are of generally the same order of

magnitude and £<<1. Consequently:

t
DC(t) & %-f a{T1) e—Em(twt) {(t-1) cosw(t-T1) 4T -
o

(48)
t
?3—] a(t) e D Ginu(e-1y dr
)
It is easily seen from Eqs. (43a) and (48) that:
. DC '
us(t) ® ug (t); Awe<<l (49)

The beat and envelope phenomena that characterize the response of
undamped systems are also present in the response of damped systems. It
is easily shown that the envelope of u:*(t) is given once again by Eq. (31)
where ul(t) and uz(t) are modified as follows to include the effects of
damping:

1§ -Ew(t-T)
o _f a(t) e sinwT sinAw(t-1) dT -
o
(50a)

£
- 73(5 [ a(® e E(E=T) st coshw(t-1) dt
[0
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t
uz(t) = ——m-f a(D) e—Ew(t—T) coswT sinAw(t-T) dT +
[o}

1
wE

~-Ew(t=-1)

t
+‘§% f a(t) e sinwt coshw(t-T) dT (50b)
o

' *k *
If, as seems likely, lu;(t)]<<|u:(t)], then u (t) = us(t) and the envelope

simplifies to:

ot )
E**(t) - [(f a(T) e—Ew(t—T) sinwt sinAw(t~-T) dT)2 +
WE o (51)

2.1/2

~Ew(t-T) coswT sindw(t-T) dT) ]

t
+ (f a(D) e = E'(t)
o

The integrals in Eqs. (50a,b) can be interpreted as linear combinations
of the relative displacement and velocity of a damﬁed SDF system subject to
Yground accelerations" a(t) sin wt and a(t) cos wt. The damping ratioc for
this SDF system can be regarded as the "envelope damping ratio" because it
governs the rate of decay of the beats of a freely oscillating damped tuned
system. To obtain an expression for the envelope damping ratio, we rewrite
the first integral in Eq. (51} in terms of SDF response as follows:

t

f a(t) e_gm(t-T) sinwT sinAw(t-Tt) dT
(o]

t e e
= [ o &5 D LinfA-(®)  (e-1) dr (52)
! |

where;

A N — (53a)

/ 1+{%}2 /e %2
o =V (w? + (2w’ (53b)
G(1) = a(1) sin wt (53c)
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In light of the above discussion, the envelope damping ratio Ee is given
by Eq. (53a) for a proportionally damped tuned system.

From Eq. (53a), it can be concluded that £% >> £ since &, € << 1.
In other words, the envelope is damped much more heavily than the separate
primary and secondary systems. It can also be concluded from Eq. (53a)
that when (Aw/&w) << 1, £e = ] and the envelope is critically damped. By
analogy with critically damped SDF systems, this implies that the envelope
does not oscillate, or that beats are absent from the response. The absence
of beats, however, implies that there is no dynamic interaction between the
primary and secondary systems. Consequently, one is led to conclude that
when (Aw/&w) << 1, the primary and secondary systems are decoupled. This
result, which has just been derived heuristically, was first derived
rigordusly by Caughey [4] using integral equation theory. A rigorous
derivation using Eqs. (43a) and (47) can also be constructed as follows:

Subtracting Eq. (43a) from Eq. (47) and taking absolute values, we

have:
t .
S (t)-u_(0)] < Jla D gy - SO gy (e-1) [T +

la(r) e D 1 - cosAw(t-T) Jsinw(t-1) |dT (54)

O Y—urt

3
+ 2w
We assume that a(t) is bounded and therefore:

la®)| < a (55a)

where a ax is some number greater than 0. We also need the well-known

results:

1 - cosAw(t-Tt) > 0 (55b)
sinAw(t-1)
(t-T) - ————jﬁs————_z 0 (55¢)

Using Egqs. (55a-c¢) in Eq. (54), we have:
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t .
PO I N R CORE s s K

s 3a e L e dr

2(1) max ! - COSAW -T
< _% a { o~ EWT [t - sizng] dt
+'§a 8 v f e-ng [1 - ceshAwT] dT
Sl . Gofg) .3, b/ Ew) 2

2 max 21+ (Gu/Ew? 2 T g+ /e D)

(56)

The result follows immediately from Eq. (56).

To illustrate the response of proportionally démped systems, the time
histories of two secondary systems have been computed and plotted. The
ground motion and system parameters are the same as those used in the illus-
trations of undamped response {(see Figs. 4a-d) except for damping of £ = .01
(i.e., one percent of critical) in the separate primary and secondary systems.
The approximate time historjes are plotted in Figs. 5a and 5c and the exact
time histories are plotted in Figs. 5b and 5d. From these figures, it can
be seen that the functions u:*(t), u:(t) and their envelopes furnish

satisfactory response data for damped as well as undamped systems.

2.3.3 Frequency Domain Analysis of Response

A frequency domain representation of the analytical results for
proportionally damped systems is presented here, It will prove useful in
analyzing nonproportionally damped systems and in obtaining response
estimates,

The frequency domain representation is accomplished via the Fourier
transform., Some basic definitions and theorems about Fourier transforms
are presented here as background. For a detailed and lucid exposition on
Fourier transforms, see [19].

The Fourier transform of a vector {x(t)} is given by:



29

@M = [ x@©} e 1 4y (57)

where i = v=1, Q is the frequency domain parameter, and {X(Q)} is the
transformed vector. We adopt the following notational convention for
vectors: lower case refers to time domain representation and upper case
to frequency domain representation. Equation (57) can be written

symbolically as:
@} = Fdx(e)h (58)
where F(+) denotes the linear Fourier transform operator.

The vector x(t) can be recovered from X(f)) using the inverse Fourier

transform, which is given by:
1 7 19 -1
x(0)} = 5= [ x@} ™ ap = FHx@b (59)
-0
Since derivatives with respect to time appear in the equations of

motion, it is useful to have a formula for the Fourier transform of a

derivative. It is easily shown that:
Fix(nh = 10F({x()H = 10x(Q) (60)
A repeated application of Egq. (58) shows further that:
FUROD = 10FUx®) D = -22x@) (61)
The frequency domain representation of u(t) is readily obtained by

straightforward application of Eqs. (57)~(6l). Taking the Fourier
transform of both sides of Eq. {38), we have

-2 + 10[c] + [RDIUEDT = ~MI{1IA@ (62)

Equation (62) is a set of simultaneous linear algebraic equations for the

components of the vector:
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U_()
v} =4 P (63)
u_ (D

where Up(ﬂ) and US(Q) are the Fourier transforms of u (t) and us(t)

respectively, Solving Eq. (62) for US(Q) yields:

#

207 + GiEu0 - @7 + e{wiH2iEeR) A)

(64)
(02424 500-0%) - 0 (21 Euirtu)

US(Q)

I

HS(Q) ASD) (65)

The complex valued function HS(Q) defined in Eq. (65) will be referred
to as the "transfer function”. The role of the transfer function in the
frequency domain is somewhat analogous to the role of the impulse response
function in the time domain. TIn fact, as the notation implies, hs(t) and

HS(Q) are related by Fourier transforms. To see this, we note that

FGS@) = f 6 e g =1 (66)

The result follows immediately from Eqs. (65) and (66) and the definition
of hs(t).

Equation (65) was derived by transforming the equations of motion.
An alternative derivatioﬁ is now presented which makes direct use of

the time domain solution. The time domain solution can be written:

£t o0
u (t) = £ a(t) h (e-1) dt = _i a(T) hs(t—r) dt (67)

The limits of integration may be shifted as shown because a(t), h(t) =0
when t<0. The Fourier transform of Eq. 67 is readily evaluated using

the convolution theorem which states that for two functions x(t) and y(t):

FC [ x(B)y(t-1) dt) = X(DY(R) - (68)
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Taking the Fourier transform of Eq. (67) and utilizing Eq. (68) yields:
F(us (= A(Q)HS(Q) = U_{Q) ' ‘ (69)

which is the same as Eq. (653).

We now wish to obtain approximations for HS(R) that correspond to
the approximate impulse response functions h:(t) and h:*(t). This could
be done by working directly with Eqs. {64) and (65). However, it is more
convenient to take the Fourier transform of Eq. (44a). Straightforward

calculation yields the following formulas:

P2 2 2
) - ' =3 _(BeriQ)” + (uT-(A)?) 70
HL(@) = F(r!(£)) 2 Toep) (07 ) (0 79 (7)) (70a)
BEG@) - Fit(e) = L - e - G (700)
s 8 2 (Q—rz)(ﬁ—rz)(ﬂ-r3)(ﬁ—r4)
' ot ? - 2w ()2
HEH (@) = B + i) = R posb) ) (70e)

(Q‘rl) (Q“rz) (Q—r?’) (g-ra)

where: ’
L 16w + (wtdw) (71a)
ty o, = ikw + (w-lw) (71b)
The r, in Egs. (71a,b) can be shown to be good approximations for

i
the roots of the denominator of H(D).

* .
Using HS(Q) in place of HS(Q) in Eq. (b65) gives an approximation

for US(Q) which is denoted:
* *
US Q) = Hs A (72)

2.4 Response of Tuned Systems with Nonproportional Damping
The analysis of damped systems has so far been based on the simplifying
assunption that Ys = Yp’ or that the damping of the primary and secondary

system are related to their stiffnesses by the same constant of propor-
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tionality, This made it possible to solve the equations of motion using
the modal method. If it is assumed more generally that YS # Yp’ the modal
method is not applicable because the damping matrix cannot be diagonalized
by the eigenmodes of the undamped system. While it is still possible to
obtain a solution using an eigenfunction expansion (see [10]), it is easier
to use frequency domain analysis,

The equations of motion are given symbolically by Egq. (38) with the
stiffness and mass matrices as before. However, the damping matrix is:

+ -
¥ Kp sKs EYSKS

[cl = - (73)
LA Yoy

Taking the Fourier transform of Eq., (38) and utilizing Eqs. (71) and
{34a,b) vields: ‘

24248 wrew?  —e(2if wikeD) i (n)] -1
P \ , s ) p = A(R) (74)
-z—:(2i€sm§2«u ) e{w +21£Smﬂ+m ) US(Q)I -E

Solving Eq. (72) for US(Q):

2.,.
-0 +41gawsz+2w2) + e(ZigSwszﬁu?‘)

BT @218 00kt + (£ o0 -0 (218_wpi®) e (5
= H_(Q) A() (75b)
where
&, = fil%;jai (75¢)
g4 =& " & (754)
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The function HS(Q) defined in Eqs. (75a,b) is the tramsfer functiom
for nonproportionally damped systems. It reduces to the transfer function

for proportionally damped systems (Egs. (64) and (65)) when § = £ .

P s
We first consider the case of decoupled response, i.e., € = The
transfer function becomes:
o —(-92+4i£am9+2w2)
H (@) = — ) 7 (76)
(-Q +21£awﬂ+w )T+ (Edwﬂ)

Equation (76) can be inverted using contour integration [3] to obtain the
impulse response function:

~£ wt

e 's COSUJSt - e

€ - E)

Epwt coswpt

Dchs(t) -
(77a)

(25 _-4E ) e—ﬁpwt sinW t (28 -4E ) e_gswt sinw t
P S + ) P s
4mp(£p—€s) Aws(ip-is)

where:

o =w/1 - 512) (77b)
w =w/1 - gz (77¢)

s

Neglecting terms Ei and Ez in Eqs. (77a-c), we obtain the approximate

impulse response function:

DC. %% g —ant E,ut —ant £, wt .
hS (t) = gdm e sinh( 5 ) coswt - T cosh( 5 ) sinwt -
€, —ant ' £ .wt _
- Edw e sinh{ 5 ) sinwt (78)

ok
The Fourier transform of DChS (t) is given with sufficient accuracy by:
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-(—92+4iiawﬂ+2m2)
(Q—rl)(ﬂ-rz)(ﬂ-r3)(ﬂ—r4)

DC

*k
H, (t) =

= F2 ) = FE% (o) (79)
in which:
£, ifwtw (80a)
ry,3 = 150t w (80b)

We now consider the case of finite mass ratio, £€>0. It will be shown
that the transfer function (Egs. (75a,b)) can be simplified approximately
to an expression having the general form of either Eq. (70¢) or Eq. (79).

The first step is finding the roots of the denominator of HS(Q).

We must solve the fourth order equation:
'(—92+Zigaw9+w2)2 = (Zigswﬂ+w2)eﬂz - (gdwa)z (81)

Equation (8l) has, in general, four complex roots. The imaginary part of
each root corresponds to damping and the real part of each root corresponds
to the frequency of oscillation. Now, the damping should be small and the
frequencies of oscillation should be close to fw., Accordingly, we expect

at least one root to be of the form:
Q= awi + w(l+b) (82)

vhere a and b are real and la|, |bl<<l. Substituting Eq. (82) for the
first  on the right~hand side of Eq. (81l) yields:

2 2.2 22
(-27+218_witu’) lv) (5-53) + mzﬂze'ZESmi(aim+bw+m) (83)

If it is assumed that E-Ei 0(e), the second term on the right-hand side
of Eq. (83) can be neglected in light of our assumptions about the
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magnitudes of Es, a, and b. Equation (83) then becomes the biquadratic

equation:
2
(-RZ+Zi£an+w2)2 - nzmz(e—ad) (84)

-

d
later. The first two roots of Eq. (84) are:

It is first assumed that £-%, > 0. The case a—iﬁ < 0 will be treated

r, o, = iE e ¥ Sw + JPH(LE whw)?

1,2
] 8w} 2
ig w+dn

12
[N
oy

€
+

w

4
P
Uy
€
i+

Sw + w

where:

w%e-Ez

_ d
Sw = 7 (86)
A comparison of Eq. (82) with Eq. (83) shows that
a= Ea . (87a)
Ve-gi
b=t (87b)

2

and the derivation of Eq. (85) is fully justified. It can be shown that the
other two roots of Eq. (84) are also approximate solutions of Egq. (81);

these roots are:

I+

Ty 4 = 150 £ Su - vws + (igawtéw)z

H

if w * 8w - w (88)



36

The ry in Eqs. (85) and (88) can be used to construct an approximation for

the denominator of HS(Q). Replacing the exact denominator by this approxi-

mation and rearranging terms yields:

2
&
(€ori)? - 207 + 20602 + P (€ + L & £ )2 250 (1-¢)
H (Q) =-—2 2 2 ‘a a (89a)
s (ﬂ-rl)(ﬂ-rz)(ﬂ-rs)(ﬂ—r4)
(e omd)” - 20 + 20007,
N (89b)

BRI CEN IR e B

The last two terms in the numerator of Eq. (89a) are subsequently neglected

because inversion shows that they contribute little to the response.
Comparing Eq. (89b) with Eq. (70c) shows that‘H:*(Q) from Eq. (89b)

is the transfer function of a proportionally damped tuned system with

damping ratio ia and mass ratio (Emgﬁ). Consequently when e-Eg >0,

. -£ w(t~1)
u:*(t) = - ZLm f; a(1)e a sin w(t-t1) cos 5&).(1:“’[)(1’[

2 t "Eam(t“‘f)
t 5 IO a(t)e sin Sw(t-1) cos w(t-t1)dr (90)

. ' 2
We now consider the case e-Ed < 0. The roots of Eq. (84) are given

by:
2 'y &
rl’2 Ewit o (91a)
~ 2T+
Ty g = EgWl*w (91b)
in which:
VEi-e
E' = g+ - (92a)



(92b)

The ry in Eqs. (91a,b) can be used to construct an approximation for the
denominator of HS(Q). The transfer function is then given with sufficient

accuracy by:

(—Q2+Ai£awﬂ+2w2) + E(Ziiswﬂ+m2)
(Q-rl)(ﬁ-rz)(ﬂ—rB)(Q-rA)

4

H () = -

(-0P a1 _uav2u®) "

T (o) (v @) (@r) Hy (%) (93)

o
Comparing Eq. (93) with (79) shows that HS () from Eq. (93) is the

transfer function of a decoupled tuned secondary system with damping ratio

E' attached to a primary system with damping E' Consequently, when
e—&d <0,
¢ —g w(t-1) £
(t) = = a(T)e sinh —TZ—(t—T) cos w(t-t)dT
d
3 t “Eam(t_’r) E.'Lu
~ % 0 a(t)e cosh -—E—Ct—r)sinumt—r)dT
& ¢ ~€ w(t-1) £lw
T w0 a(t)e sinh -??—(t-rj sinw(t-1)dt (94)
d
where:
Eé = Eé - E; = VEE - € (95)

Since the decoupled analysis is widely used (sometimes incorrectly)
by engineers in practice, the analyst may often have response data

available based on Eq. (94). Consequently, it will be assumed that when
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nonclassical damping is present, € - 53 > 0 since this requires a more
elaborate analysis which includes dynamic interaction between effective

primary and secondary systems.

2.5 Response of Slightly Detuned Systems

We have thus far considered systems in which the secondary system is
precisely tuned to the primary system. In practice, ah analyst or designer
is more likely to encounter situatioﬁs in which the primary and secondary
systems have frequencies which are close together but differ slightly.
In this section, the results of Section 2.3 are modified to include this
possibility.

Consider the system of Figure 1. The frequencies of the primary and

secondary systems are given by:

=w » (96a)

Ks 2
T = (1+dve) (96b)

]

in which the magnitude of d is such that

It is assumed that damping is proportional to stiffness or:
C =YK =2
p p EMPN (98a)
Cg = YK = 25Mpwe(1+d¥€) (98b)

The equations of motion are given symbolically by Eq. (38) where [M]

is as before and:

1+e(14+dve) -e(1+d/E)
K (99a)

(K] ]
Pi _ (14dv8) (1+d/e)

fcl

]

yiK} (99b)
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The equations can be solved exactly using the modal method and the solution
can be simplified approximately to yield a convenient formula for the
response. The calculations closely parallel those of Sections 2.2.1 and

2.3.1 but are much more tedious. The final result is:

el (e
u (0 = ;o= o ae ™ Vg putet) cos whe-r)ar
(100)
SN YOl ‘
"é%’fg a(t)e Ewl(t ?)cos Aw#(t-T) sin w#(t-T)dt
in which:

21

# - '
) (l Y (101a)
ot =114 :’_@ w (101b)

\ 4 |
At = WYeb ot et

2 2 (101¢)

A comparison of Eq. {100) with Eq. (43a) shows that the response
‘of a proportionally damped, slightly detuned system is similar to the
response of a tuned system with mass ratio et and tuned frequency wt.
This result underscores the importance of the results in Sections 2.2
and 2.3 and further justifies the attention that has been devoted to

tuned systems.
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CHAPTER 3. RESPONSE ESTIMATES FOR TWO-DEGREE-
OF-FREEDOM TUNED SYSTEMS

3.1 Introduction

In Chapter 2, we derived some simplified formulas for accurately com—
puting the response of a tuned secondary system. While evaluation of these
formulas is straightforward, it is often quite tedious and must usually be
done on a computer. Consequently, usé of these formulas is usually war-
ranted only in the final stages of design when the final structural model
has taken shape and the need for accuracy is greatest. In the early stages
of design, when the structural model is only tentative, it is more useful
and appropriate to estimate the maximum dynamic response using approximate
but simple procedures.

In this chapter, we use the analytical results and insights of Chapter
2 to obtain simple estimates for the maximum respohse of a tuned secondary
system. The analyses are restricted to proportionally damped systems, but
as was shown in Sees. 2.4 and 2.5, the results are directly applicable
to many non-proportionally damped and detuned systems. First, a rigorous,
closed form solution is derived in the time domain for ground motions of
short duration. Then, an alternative derivation is presented using fre-
quency domain arguments. Finally, a combination of time domain and fre—
quency domain arguments is used to extend the‘estimate heuristically to
cover ground motions of long duration. The accuracy of the response esti-

mates is assessed in Chapter 4.

3.2 Response Estimates for Ground Motions of Short Duration

3.2.1 Time Domain Analysis

We derive here a rigorous, closed form solution for the maximum response
.0f a secondary system when the ground motion is of short duration. For the
time being, "short duration" means simply a time duration, ty that is much
less than the beat period, or Awtd << 1. Later, it will be seen that an
additional requirement must also be satisfied in order for a gound motion
to be considered short.

Before proceeding with the derivation, it proves useful to examine in

detail the response of a particular system to a short duration ground motion.
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Consider, as an extreme case, a tuned secondary system with w = .25,

e = .0036 and £ = .01l. The period of the separate primary and secondary
systems 1s 8 seconds and the beat period (Eq. (26)) is 267 seconds. Let
this system be excited by the earthquake E1 Centro 1940-NS , which lasts
33 seconds and is plotted in Fig. 10.

The exact secondary system response to the earthquake is plotted in
Fig. 6a. As in Figs. 3a-d, 4a-d, the solid curve is the response time history
and the dashed curve is the envelope. From Fig. (6a) it can be seen that
the maximum secondary system response is virtually identical to the enve-
lope peak of the first beat lobe. This takes place at about t = 70 seconds,
which is well after the earthquake ends. Indeed, most of the first beat
lobe and much of the rise to its peak takes place after the earthquake ends,
or when the system is in free vibration. This suggests that it might be
useful to compare this response to that caused by an impulse function, for
then the entire response is free vibration.

Accordingly, let us now excite the same system by thel"ground motion"
a(t) = I8(t) where I is the impulse intensity. The value of I is adjusted
so that the maximum response is the same as that caused by the earthquake.
The resulting response is plotted in Fig. 6b. It is evident that the
response caused the earthquake (Fig. 6a) is substantially the same as the
response caused by the impulse. It will be seen shortly that this is
generally the case when the ground motion is of short duration.

We now proceed to derive an estimate for the maximum secondary system
response. It is a55umed that the response is given with sufficient accu-
racy by u:(t) (Eqs. (43a,b)); this will be checked later. With negligible
loss of accuracy, the envelope response will be used throughout.

*
The envelope of uS(t) is given by Eq.(51), which is reproduced here:
* .1 t -zw(t-1) _. . _ 2
E (v) m[(é a(t) e sinwt sindw(t-1) dT1)

~Ew(t-1)

+(ft a(1) e coswt sinAw(t—-1) d't)z]l/2 (51)
0

It is expected that the maximum response will take place after the end of

the ground motion, or when t > t For this portion of the response, we

d
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have, after some manipulation:

t

* e—Ewt d EWwT
E (t) = —= [(sinawt f a(t) e sinwt cosAwt dT -
e !
td EWT 2
- coshwt [ a(1) e sinwt sindwt dt)” +
o
td Ewt
+ (sinAwt f a(t) e CoswT coshwt dt -
o
t .
d Ewt 2%
- cosAwt f a(t) e coswt sinAwt dt)° 1% >ty . (102)
o

Now by assumption, Awtd << 1 and we can use the approximations
sinAwT = Awt << 1, cosAwt = 1 in the integrals of Eq. (102). This leads
us to expect that the coefficient of each cosAwt will be considerably less
than the coefficient of the sinAuwt enclosed within the same wet of paren-—
theses. Consequently, it seems reasonable to neglect the terms containing
cosAwt in Eq. {(102) and we have:
* e—Ewt
E(t) = == |sindwt [x
t t

d £ 2 d
x[(f a(t) e YT sinwt dt)” + (f
o o

i
a(t) egwT coOsWwT dT)ZJZ; t>td (103)

It now proves necessary to introduce the requirement Zwt., << 1; this is

d
the second requirement that must be satisfied if a ground motiom is to be
considered short. When gwtd << 1, eng = 1 and we have:
t t ‘

-':Smt d d 1
*
E (t) * £ IsinAwt] [(f a(t) sinwt dT)2 + (f a(t) coswrt d'r)z]/2

w/e 5 5

e—Ewt

= i t| |A ; t>t 104
A |sindwt| [Adw)| d (104)

where ]A(m)l is the norm of the Fourier transform, or as it is more com—
monly referred to, the Fourier amplitude spectrum.
Let us now see what happens when the ground acceleration is an impulse

function. Using a(t) = I8(t) in Eq. (51) gives:
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-twt
B () = 2

w/e

IsinAwt] II' (105)

Comparing Eq. (104) with Eq. (105), it is seen that the envelope response
to a short ground motion is given approximately by the envelope response
to an impulse of intemsity |A(w)]|.

The maximum secondary system response, which we denote uzax’ is
virtually identical to the maximum envelope response. Using Eq. (104), it
is easily shown that:

‘ _ Ew tan” (Aw)
ax LA(mlJe ho s

s 2 2. %

2(Aw) " + (Ew)™)?

;D y<<l, Eut <<l

An important special case is when the mass ratio is so small that a
decoupled analysis is valid for all t. The maximum response obtained from
a decoupled analysis is often called the ""floor spectrum' and is denoted
FSus. The floor spectrum for short duration ground motions is obtained by

letting Aw approach zero in Eq. (106). This yields:

1éﬁﬁlli- Eut y<<l (107)

28w

Equation (106) enables us to check an important assumption used in
its derivation; namely, that u:(t)ﬂu:*(t). From Eq. (43b), it is evident
that the maximum error introduced by this assumption is bounded by
m%xlué(t)\ which can be estimated as follows:

From Eqs. (43a,b)we have:

u (t) = (t) = ul(t) +u (t) (43b)
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£ ~gu(t-1)

fl

ué(t) 'iak)a(T) e sinw(t~-1) cosAw(t-1) dT

t
Thw)

3 t
—sti‘a(r) e

-Ew(t-T)

a(t) e sin(w~-Aw) (t~1) dt -

"Bt i (whAw) (=) dt (108)
From Eq. (108) it is evident that:
' <3 _
m%xlus(t)] 7o Sy (w-tw, &) + Sy(wHiw,E)) (109a)
where Sv(m,E) is the pseudo-~velocity spectrum of a(t) at circular frequency
w and damping ratio {. The pseudo-velocity spectrum is usually fairly

constant in the frequency interval [w-Aw,wHAw] for most values of w and ¢

of practical interest and it can be concluded that:
' <3
maxlul(e) | < 5 Sy(w,E) (109b)

In view of Egs. 106, 43b and (109b), us(t) =y

n *»

(t) if:

_Ew a7t

laCw) e 2
2(aw)? + 0

—§~S (w,&) << (110)

2wV

e
» els

It can be easily shown that:

bwo A
e Aw tw

Y (Aw) 2+ (Ew) 2

>> L (111)
W

and, therefore, Ineq. (110) is satisfied if:
Sy(w,8) = 0([alw)]) (112)

Inequality (112) generally holds for most ground motions of practical
interest, and in fact, Sv(m,o) is often used as a conservative, first

order estimate for [A(w)| (see [9] and [26]). However, as will be seen in
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Chapter 4, there are instances when S{w,g) >> [A(m)] to such an extent that
Ineq. (110) is violated. 1In these instances, u;(t) must be considered in

the computation of uS(t) and Eqs. (106b) and (107) are rendered invalid.

3.2.2 Frequency Domain Analysis

In this article, thg results of Sec., 3.2.1 are rederived using a
frequency domain analysis. The alternative derivation sheds new light on
the results and is essential for the development of response estimates for
long duration earthquakes,

In Chapter 2, it was shown that a Fourier transform analysis of the

equations of motion gives:
a(t) = Fhu @) = L [ 1 @ametay (112)
S s 2w _; s

* .
It is assumed that HS(Q) = Hé(ﬂ); this is equivalent to assuming

%
us(t) = u:(t) as was done in Sec., 3.2.1. Replacing Hs(ﬂ) by HS(Q) in
Eq. (112) yields:

i) = 2 [ i (am@e g (113)

Certain properties of H:(Q) engble us to evaluate the integral in
Eq. (113) in closed form when the ground motion is of short duration. The
analysis presented here closely follows the one used by Papoulis (Ref. [19]
Chapter 7).

From Eqs. (44a,b)-We have:

* o1 _-EBwt
hs(t) = ng-e sinAwt coswt (114)
Let us define:
hg(t) =-§£73 e 59 qinawt ' (115a)
nlee) = no(oe ot (115b)
hi(t) = hﬁ(t)eiwt (115¢)
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It is apparent that:

*
h_(t)

hl(t) + h2(t) (116a)

H:(n) Hi(2) + Hy(Q) (116b)
By virtue of the shift%ng property of Fourier Transforms [4], Hi(ﬂ) is
obtained by shifting Hs(ﬂ) an amount —-w along the frequency axis. Simi-
larly, Hi(ﬂ) is obtained by shifting Hﬁ(ﬂ) an amount + walong the fre-
quency axis.

The relationships among the various transfer functions can be visual-
ized with the aid of Figs. 7a-c where plots of |H§(n)|, IH;(Q)], [Hi(ﬂ)l,
and IHS(9)| have been drawn. The plots have been normalized with respect
to max IHS(Q)[ and scales have been omitted from the ordinate axes. The
system parameters are w=l RPS, e=.0256, and £=.04. 

Figures 7a-c reveal important information about the frequency sensi-
tivity of the transfer functions. It can be seen that Hi(ﬂ) has signifi-
cant values only in the frequency band (m—&b, m+6b) where Sb is some
number with Sb << w. Similarly, it can be seen that Hs(ﬂ) hai significant
values only in the frequency band (—w-éb, —w+6b). However, HS(Q) is sig-
nificant in both (m+6b, w+6b) and (-m—Gb, —w+6b). From the bandedness of

the transfer functions and Eq. (116), it can be concluded that:

H2(0) = H.(R), 220

» (117a)
H(@) = 0, as0

1 *
HO(R) = H (2), 9<0

i S (117b)
HS(Q) = 0 , 020

The definition of the half-bandwidth, Gb, is somewhat subjective.
Each bandpass should include the two peaks that correspond to the char-
acteristic frequenciles of the system and some additional interval which
increases with damping. In this study, satisfactory results were obtained

using:
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(Sb = 2&(.0, €=0 (1183)
6b = AwtEw, >0 (118b)

The bandedness of H (Q) considerably simplifies the task of approxi-
mating u (t), because 1nstead of using the exact A(R) in Eq. (112), we can
use any well—behaved functions that coincide with A(R) in the bandpasses.

In other words, we can say:
% 1 L] 2 . Lot 1 © i
~ L ift, : iot
u_(t) = 2”_£ H(2) A,(2) e an +-§;;£ Ho(@) Ay(2) e ae (119)

where A2(9)=A(Q) in the interval (-w—-§ —w+6b) and A1(9)=A(Q) in the inter-

b’
val (w- Gb, b)

Equation (119} can often be used to obtain an approximation for u (t)
if A(R) behaves simply in the bandpasses. Let us assume that A(R) is con-

stant in the bandpasses. We can write:

AlQ) = | A(m)]e . w=8, <Q<uts, (120)

]A(w)[e > —w=6, <Qe-utby

where 8 is a constant phase angle. Suitable Al(g) and AZ(Q) are:

|ACw) [™® (121)

AL ()

Ay@) = [AGw e (122)

Substituting Eqs. (121) and (122) into Eq. (119 gives:

i

A [ F al @) + ) [e*F  ad @)

-Ewt (123)
sinAwt cos(wt+8)

u:(t)

I

AW |

The envelope is:

Wt
|81nAmtl (124)

k3
E (t) = |Aw) |
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Equation (124) is in agreement with Eq. (104) and the response maximum is
given by Eq. (106).

We have thus been able to obtain the same estimate for maximum
response using time domain and frequency domain analyses. However, these
derivations used different sets of assumptions regarding the ground motion.

The time domain derivation used the assumptions Awt, << 1 and gwtd << 1j; these

will henceforth be called the "time conditions." fze frequency domain
analysis used the assumption that the Fourier transform of the ground
motion is constant in the bandpass zones; this will henceforth be known
as the "bandpass condition." The relationships between the time condi-
tions and the bandpass condition will now be examined.

We first show that the bandpass condition is satisfied if the time
conditions are satisfied. To see this, consider the real part of A(Q),
which is given by:

ta
R(A(2)) = [ a(1) coswt dr (125)
0

At the far end of the bandpass zone on the positive axis:

t
d
R(A(wtAwtEw)) = f a{t)cos (wrhAwtiw)dr
o
tq td
= f a(t)coswtcos{AwtEw) tdt ~ f a(7)sinwtrsin{(AwtEw) tdt (126)
o 0
From Eq. (126), it can be shown that when Awtd and Ewtd are sufficiently

small, R(A(uwtAwtinw))*R{A{w)). A similar result applies to the imaginary
part of A(R). Consequently, when the time conditions are satisfied,
A(wtAwtEn) ~A(w). The remainder of the proof is similar.

We will now show that the converse of the last result is not true.
That is, the time conditions need not hold if the bandpass condition is
satisfied. It proves useful to first introduce the notion of "effective
time duration," tz, which we define as the duration of the uninterrupted
portion of the ground motion that contributes significantly to the fre-
quency content in the vicinity of w. We are motivated to introduce this

notion by the observation that for many earthquakes, the spectral content
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is determined by a relatively short segment where the acceleration ampli-
tude is greatest. Let us imagine a ground motion whose effective duration
is such that Awtz << 1 and Ewtz << 1 but whose true duration is such that
the original time conditions are violated. It is apparent that for this
ground motion, the bandpass condition is satisfied even though the time
conditions are not and our result is proved.

The bandpass condition, as it has thus far been defined, requires that
both the real and imaginary parts of A(Q) be constant in the bandpasses.
However, a shift of a(t) along the time axis can significantly alter these
functions but does not change the maximum response of the secondary system.
It will therefore be assumed in what follows that the bandpass condition
is satisfied if |A(Q)|, which is unaltered by a time shift of a(t), is

constant in the bandpasses.
3.3 Response Estimates for Ground Motions of Long Duration

3.3.1 Preliminary Discussion

A ground motion is said to be of long duration if its Fourier amplitude
spectrum is not constant in the bandpass zones; that is, when the bandpass
condition defined in Sec. 3.2.2 is violated.

Before treating the problem of estimating the response to long ground
motions, we examine briefly the following examples which illustrate the
differences between short and long ground motions.

Figure (10a) represents the frequency domain data relevant to the short
ground motion example that was discussed in Sec. 3.2.1. The solid curve
in Fig. (7a) is a portion of the Fourier amplitude spectrum of the earthquake
El Centro 1940-NS., The dashed curve is part of ‘H:(ﬂ)| for a tuned system
with w=.257RPS, £=.0036, and £=.01. It is apparent from Fig. 10a that
the Fourier amplitude spectrum is virtually constant in the bandpass. This
is to be expected since it was shown in Sec. 3.2.1 that the strict time con-
ditions are satisfied by the ground motion and system under consideration.
Let us now see what happens when the ground motion is kept the same but the
system is modified by raising the tuned frequency to w=207RPS. The frequency
domain data relevant to this case is shown in Fig. 10b. We see that the
Fourier amplitude spectrum now fluctuates considerably in the bandpass, an

important consequence of the long duration excitatiom.
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We now turn to the problem at hand, i.e., estimating the maximum
response to long ground motions. This proves to be much more difficult than
estimating the response to short ground motions. A simple, rigorous closed
form solution that is applicable to all long duration ground motions does
not appear to be possible since, as will be seen, the details of Fourier
spectrum in the bandpass matter very much.

Long ground motions can be classifed according to the degree of the
polynomials needed to represent A((2) adequately in the bandpasses. From
this point of view, a short ground motion can be regarded as one for which
A(f)) can be approximated by a constant in the bandpasses. Obviously, the
next approximation for A(Q) that should be considered is a linear function;
this is a reasonable method of attack for the shorter end of the long dura-
tion range. In principle, it is possible to continue the process and obtain
results for quadratic and higher order variations of A(Q). 1In practice, the
higher order analyses are tedious to perform and yiéld formulas that are
wholly unsuited for use as simple approximations. Consequently, in what
follows we shall present detailed analyses only for long ground motions
where A(Q) varies linearly in the bandpasses. Although the results from
such analyses would appear to have only limited applicability, it will be
seen that they do, in fact, provide useful information about the response
of secondary systems to long ground motions in general.

The case where A({}) exhibits linear bandpass behavior is taken up in
Sec, 3.3.2., An approximate response formula corresponding to such behavior
is derived using time and frequency domain analyses. In Sec. 3.3.3, the
results of Sec. 3.3.2 are used in conjunctidn with heuristic arguments to

develop response estimates for long duration ground motions.

3.3.2 Analysis of Response for Linear Variation of A()) in Bandpasses
Although the ground motions considered here are defined in terms of
their frequency domain characteristics, it proves instructive to begin with
a time domain derivation.
Take a ground motion that violates the short duration time conditions
but is still short enough to ensure that the maximum response occcurs after
the ground motion ends. For simplicity, it is assumed that Ly = tz. When

t >ty the envelope is given by Eq. (102). The slowly varying exponential
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and sinusoidal terms in the integrands of Eq. (102) have the series

representations:

) 2
SEWT g 4 EwT +-£§%%l—- s (127a)
Awr)3
sinfwtT = AwT —-L—ET—— + ... {127h)
()
coshAwt = 1 —‘——%E—— + ... {(127¢)

In Sec. 3.2.1, the time conditions enabled us to neglect all but the constant
terms in the series. Obviously, the next category of ground motions we
should consider are those whose durations necessitate the inclusion of the
linear as well as the constant terms in the series. In general, the linear

2
(Awtz:d) <« 1

terms must be included when Awt, and &wt, are significant but

and Sé@%dl% << 1. We then havedfor T < id:
LR . (128a)
\ sinAwT = AwT . (128b)
cosfwt = 1 ‘ {(128c)

Substituting Eqs. (128a-c) into Eq. (102) and neglecting second-order

product terms, we have:

o But 2 2 2 2
Ex(t) = {sin“Awt[|A(w) | + 26w(F FL - FFL) + (Ew)"(EDT +FHDI] +
WYy e
+ sinAwt] (Aw) (FSF": - FCF;) - (Aw)(gw)((Fé) + (F":)z)] +
+ coszAwt{(Aw)z((Fc':)z + (F;)z)]}llz; ety (129)
where:
4 ar_
FS = f a(T) sinwr dT, F; =i (130a)

o]
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td dF
F = £ a(T) coswt 4T, Fé =L (130b)

C
Equation (129) can also be obtained from a corresponding approximate
frequency domain analysis by using the linear bandpass approximation for
A() that was alluded to earlier. The basic tool of the frequency domain
analysis is Eq. {119) which is rewritten here:
1 %2 it 2t o
o« o 1 i
u*(t) 21T_{X)HS(Q)AZ(Q)e f nt < (WA (De (119)
The functions Al(Q) and AZ(Q) must, as explained earlier, coincide with A(Q)
in the bandpasses. The bandpass behavior of A(Q) must, in turn, be that
which is implied by the duration limitations if a result consistent w1th
these 11m1tatlons is to be obtained. 1t can be shown that1f~9@£Edl— << 1
and £§9£dl__ << 1, then A(R}) varies linearly in the bandpasses. We can thus

use:

AZ(Q) FC - iFS + (Fé - iF;)(Q-w) (131a)

it

Al(Q) Fc + iFS + (—F; - iF;)(Q+m) (131b)

Substituting Egs. (132a, b) into Eq. (119) and using:

13

n w n .
d 6§t)) =7 d8(r) e—lﬂtd
dt

( t = (iR) (132)

-0 d"

we arrive at:

~fwt

11§(t) = {sinwt[(FéwaFé) sinfwt + AwFé coshwt] +

Wye

+ coswt[FC + &wF;) sinAwt - AmFé cosAwt ]} (133)

Taking the envelope of ﬁg gives, once again, Eq. (129).
It should be noted that the time domain analysis gives results only for
t > t, whereas the frequency domain analysis appears to give results for all

d
t > 0. Since the maximum response occurs, by assumption when t > td’ the
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results of the two analyses can be regarded as consistent for our purposes.
We could use Eq. (129) to obtain a Quantitative response estimate
analogous to the short duration result (Eq. 106); however, -our interest in
Eq. (129) lies primarily in its qualitative implications. We note that Eq.
{(129) differs from its short duration counterpart (Eq. (104)) by the
presence of terms containing Fc’ Fé, Fs and F;. The presence of these
terms indicates that the response is explicitly a function of the bandpass
behavior of the real and imaginary parts of A(f}). This is in marked
contrast to the case of short duration ground motions where, as was shown
earlier, only the Fourier amplitude spectrum, |A(Q)|, at §i= significantly
affects the response.
Equation (129) is valid only when A() varies linearly in the bandpasses.
When A(R) exhibits more complicated behavior, an approximation analogous to
Eq. (129) can be obtained using the following procedure:
1. Approximate A(Q) in the bandpasses by as many terms of its Taylor
series as necessary and substitute the resulting approximations
into Eq. (121).

2, Evaluate the integrals in Eq., (121) with the aid of Eq. (132) to
obtain u;(t).

3. Compute the envelope of ug(t).

While application of the above procedure is straightforward, the
response formula that results from it is quite complicated if more than
linear terms of the Taylor series are used. The complexity of the resulting
formula renders it useless for developing fast, simple response estimates.
However, without actually going through the approximation procedure, we can
see that the approximate envelope must contain the coefficients of the
truncated Taylor series used to approximate A(Q) in the bandpasses. Conse-
quently, for long ground motions in general, the response is significantly
affected by the details of the behavior of the real and imaginary parts of
A(®?) in the bandpasses.

3.3.3 Development of Response Estimates
The discussion in Sec. 3.3.2 clearly revealed the difficulties of
developing a general response estimate for long ground motions. To develop

a rigorous estimate, we need detailed data about A(Q) and this is not usually
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available. Even if it were, the data would have to be used in conjunction
with rather elaborate formulas and this defeats our purpose of proposing
rational but simple estimates.

While a simple, rigorous estimate is beyond our reach, there are other
possibilities. Consider once again Eq. (129). If F' and F' are not too
large, the terms containing (Aw)2 and (Ew)z can be niglecteg. We then have:

~Ewt

B*(t) =S — [sin’dut[[AG)] + 28u(F F] - FED] +
wve

/2 (134)

+ sinAwt[Aw(FsFé- FCF;)]
I1f Aw is not too large, the general appearance of E*(t) from Eq. (134) is
a succession of beat lobes of decreasing amplitude. This is also the
general appearance of E*(t) when the ground motion is short. It is recalled,
however, that a short ground motion is effectively berceived by the secondary
system as an impulse function. This suggests that Eq. (138) could be
replaced by the envelope of the response to an impulse function; in other

words we can write:

-Euwt ,
E*(t) = Ieff e lsinAwt| (135)
w/e
eff R ;
where I is the effective impulse intensity.
In order to apply Eq. (135), we must first determine IEff. Eg. (134)

suggests that Ieff

is a function of both real and imaginary parts of the
Fourier transform of the ground motion (A(%)). Unfortunately, at best
only the Fourier amplitude spectrum, [A(Q)I, is known to the designer.
It 1s possible to relate Ieff to !A(Q)[ alone in an approximate manner by
employing the following equation, which is a consequence of Parseval's

theorem [3]:
[ lascer ae = £ £ lae | luxw | a0 (136)

The left-hand side of Eq. ('136) is usually referred to as the "energy

integral" of the response. By assumption, u:(t) is effectively the
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response to a(t) = IEff §(t) and thus for the energy integral:

w eff 2 o
éiug(t)[z dt = SEE;ZL_ £ (e-Ewt sinAwt coswt)2 dt
G ¥E
eff, 2
- 53;——15»(1 + (Aw/E)®) (137
32(Ew)

In evaluating the right-hand side of Eq. (136), we can take advantage of the

bandedness of H:(Q) and replace the infinite integral by an integral over
the bandpass; thus:

o ’ oS
[ la@ Plrr@ Pae = = 7P a@ P e @)
b m—ﬁb ' s

where fb is the fraction of the total area under ]H;(Q)]z that lies in the

bandpass. The factor-é; has been inserted into Eg. (138) te account

approximately for the centribution of that portion of the integrand that

lies outside the bandpass. Finally, by equating the right-hand sides of

Eqs. (137).and (138), we find that:

2 whd
fb(l + (Aw/Zw) ) w—éb
£f

has been determined, it can be used in Eq. (134) to give an
approximate envelope.

Once Ie

The maximum response of this envelope - an approxima-
tion of the true maximum response - is given by:
_fw -1 Aw
nax Ieff e Aw tan Ew '
u = (140)
s 2
2/(8)2 + (Ew)

Equations (139) and (140) define a procedure for estimating the maximum

response of a secondary system to a long duration ground motion. The

procedure can be summarized as follows:

whd
1. Using plots of !H:(Q)I and |A(Q)]|, evaluate [ b ]A(Q)lleg(ﬂ)lz dl.
urﬁb
*
(Plots of HS(Q) have been provided in Fig. 9 for this purpose.)

2. Determine ITY from Eq. (139). (To this end, f

b has been tabulated
for several values of %% in Table 1.)
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3. Determine ﬁzax from Eq. (140).
The response estimate obtained from the above procedure will henceforth be
referred to as "Approximation 1."

We recall that the development of Approximation 1 was based, in part,
on the assumption that us(t) = ﬁg(t). In Sec. 3.2.1, this assumption
was shown to be valid for short ground motions provided Eq. (112) is
satisfied., The corresponding requirement for long ground motions is
obtained by using Ieff in place of [A(Q)| in Eq. (112). In other words,
u:(t) = us(t) and Approximation 1 are valid if:

5, (W) = o(1%t%) (141)

If Eq. (141) is violated, the contribution of ﬁ;(t) must be included
in the calculation of uS(t). Since us(t) = ug(t) + ué(t), it seems that
us(t) could be estimated by directly adding the estimated maximum responses
of ué(t) andalg(t). Unfortunately, this procedure often results in
extremely conservative estimates. An improved estimate is obtained by
proceeding as follows:

Let us first assume that the floor spectrum is known. The floor
spectrum, we recall, is the maximum response obtained using a decoupled
analysis. 8ince decoupled analyses are widely used in practice, it is
reasonable to assume that floor spectrum data will usually be available
to the designer. The proposed approximate procedure also requires a floor
spectrum estimate which incorporates u;(t). This is obtained by using the
direct summation procedure mentioned above in conjunction with Eqs. (43a, b),

{109), and (140). We thus have:

I3

Fs
u
s

m:x[ué(t)l + miX|u§(t)[
FS_eff

3 L = ¢
2 Sy 8 e =y (142)

17

FSIeff .

where is the effective impulse intensity computed from Eq. (139)

when €=0. Whén >0, the direct summation procedure gives:
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Ew -1 Ew
ma 3 Ieff o Aw tan Aw
W e s (W E) + = F (143)
s 20 TV 7 3 5 2
2/ (Mw)” + (Ew)
. Fl
The factor-FE is a rough estimate of the ratio of the maximum response to
the exact floor spectrum. Consequently:
1 7s
M a2 Eo (L44)
s F2 s

The estimate obtained from Eq. (144) will henceforth be referred to as
"Approximation 2." The applicability of Approxzimation 2 is unaffected
by the relative magnitudes of sv(w,g) and IEff.

Both Approximations 1 and 2 require that Ieff be computed using Eq.
(139). However, if A(f)) exhibits highly erratic behavior in the bandpass,
as is sometimes the case, evaluating the integral in Eq. (139) can be
extremely tedious. When A(R) exhibits such erratic bandpass behavior,
the calculations can be simplified by using, in place of (Ieff)2 from
Eq. (139), the average value of é%{A(Q)IZ in the bandpass. The effective

. . . . . R ff
impulse intensity obtained in this manner is denoted IZv . The response

estimate obtained by using Izif in place of IEff in Eq. (144) will be
referred to as "Approximation 1A." Similarly, the response estimate
obtained by using IZ&f in place of Ieff in Egs. (142) to (149) will be
referred to as "Approximation 2A."

We shall now discuss briefly the expected accuracy of the approximate
methods just developed. If |A(R)| is constant in the bandpass, Approxima-
tions 1 and 1A give the same results as the rigorous short ground motion
solution derived earlier. As the behavior of [A(Q)] in the bandpass
becomes more erratic, the accuracy of Approximation 1 should degrade.

It was shown in Sec. 3.2.2 that the fluctuation of A(Q) in the band-
pass is, roughly speaking, related to the magnitudes of the parameters

Ewtd and Awt Thus, as a rule of thumb, we can say that the accuracy of

a
Approximations 1 and la should diminish as damping, frequency, mass ratio
and ground motion duration increase. A similar statement applies to

Approximations 2 and 2A. However, Approximations 2 and 2A always give



58

the correct answer (i.e., the floor spectrum) when the mass ratio is
sufficiently small. Also, Approximations 2 and 2A should give better
results than Approximations 1 and 1A when Eq. (142) does not hold.

It should be noted that strictly speaking, the use of the approxima-
tions developed above is justified only when A(Q}) exhibits linear behavior
in the bandpass. However, as will be seen in Chapter 4, the approximations
often provide good response data even when lA(Q)l (hence A({l)) exhibits
highly erratic bandpass behavior.

The response estimates developed here will now be compared with those
obtained in the parallel study by Sackman and Kelly (see, for example,
[23]pgs. 26-31). To develop their estimates, Sackman and Kelly start
with a modified expression for u:(t) and consider short ground motions
characterized by Awtd << 1. A heuristic time domain analysis then leads
to a result which differs from Eq. (140) only in that SV(N,E) appears
in place of Ieff. The contribution of u;(t) is later factored in along
with that of the detuned modes using the root-sum-square approximation,

From the discussion earlier in this chapter, it is apparent that
the numerical differences between the estimates obtained here and the
Sackman-Kelly estimates are roughly proportional to the difference

between the pseudo-velocity and Fourier amplitude spectra in the vieinity

of the tuned frequency.
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CHAPTER 4. ASSESSMENT OF RESPONSE ESTIMATES
FOR TUNED SECONDARY SYSTEMS

4,1 Introduction

This Chapter examines the results of the numerical studies that were
conducted to assess the accuracy of the response estimates developed in
Chapter 3. Before examining the results, we shall first discuss the ground

motions and then the systems considered in the numerical studies.

4.1.1 Ground Motions Considered

The response estimates presented in Chapter 3 were developed on the
basis of general frequency domain considerations and without regard to some
deterministic or probabilistic ground motion model. Consequently, we are
free to test the estimates using any ground motion whose accelerogram has a
well-defined Fouriler transform. To utilize this flexibility to the utmost
but at the same time limit the volume of computations to a reasonable amount,
it was decided to test the estimates using a small number of widely differing
ground motions.

The first ground motion considered is the earthquake E1 Centro 1940-NS.
This is a prime example of a white noise type California earthquake and has
been used extensively in earthquake engineering research.

The second ground motion considered is the Mexico City earthquake of
May 11, 1962. This earthquake is much longer than El Centro and its frequency
content reflects filtering by the infilled valley of soft soil which underlies
Mexico City.

The last ground motion considered is the Vrancea earthquake of March 4,
1977, Specifically, we have used the time history recorded at INCERC in
Bucharest, Rumania, which is about 110 kilometers from the epicenter. This
earthquake record is representative of a class of ground motions in which
the energy is concentrated in a short, relatively simple pulse.

The three earthquakes considered in this Chapter fall into three of the
four categories that Newmark and Rosenblueth have used to classify all ground
motions (Ref. [18], pg. 225). Consequently, the results presented in this
Chapter should give a good idea of thke accuracy of the response estimates for

most ground motions likely to be encountered.
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4,1.2 System Parameters Considered

The classically damped, tuned, secondary systems dealt with here are
completely characterized by the parameters T, £ and € where T = %§>is the
natural period of the primary and secondary systems. The values assigned
to each of these parameters in the numerical studies will now be discussed
in turn.

The fundamental period, is, in general, the most important structural
characteristic that influences the dynamic behavior of a structure. A rule
of thumb [18] states that the fundamental period of a structure in seconds
is about one-tenth the number of stories; consequently, it is expected that
the fundamental periods of interest will range from .1 to 10 sec. The range
2 sec to 5 sec corresponds to high-rise commercial structures and towers;
the range .5 sec to 2 sec corresponds to mid-rise residential and commercial
structures; and the range .1 sec to .5 sec corresponds to low-rise and very
stiff structures, such as nuclear power plants. In this study the following
nine periods were used in conjunction with all three ground motions: 10 sec,
8 sec, 5 sec, 3 sec, 1 sec, .8 sec, .5 sec, .3 sec and .1 sec.

The most difficult structural characteristic to evaluate is damping.,
Newm;rk and Hall [17] have re¢commended damping ratios ranging from .005 for
lightly stressed piping to .2 for heavily stressed bolted steel structures.
At the higher end of the damping range mentioned above, the floor spectrum,
which is generally known, can be expected to be applicable in view of the
results of Sec. 2.3.2. Consegquently, the emphasis of the numerical studies
has been placed on relatively low damping ratios. For all ground motions
and periods considered, the damping ratio £ was assigned the values .01, .03
and .05. It will be seen later that when £ =.05, the responses do not
differ very much from the floor spectrum, suggesting that it was reasonable
not to have considered higher values of damping.

In selecting values of the mass ratioc €, we have been guided mainly by
analytical considerations. A major purpose of this study is the development
of analytical methods that circumvent the difficulties caused by the smallness
of £, Hence, an upper bound for £ should be some number above which these
difficulties are not encountered when conventional response methods are used.
In addition, € should be bounded so as to satisfy the limitation Ye << 1

which was specified earlier. In this study, it was found that both of the
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above requirements were fulfilled by setting € < .09. 1In setting a lower
bound for €, we recall that the floor spectrum is valid when € is small
enough to satisfy %5 << 1, Since we are primarily interested in cases where
there is significant interaction between the primary and secondary systems,
a suitable lower bound for € is some value at the upper end of the floor
spectrum range. This bound criterion was satisfied by setting € > .000036
.01l and € > .0009 when £ = .03 and £ = .05, The actual values of

€ used in this study fall within the bounds specified above and are listed
in Table 2. |

when &

4,1.3 Discussion

In the numerical studies, each system within the ranges of parameters
described above was subjected to each of the three ground motions. For each
system, the exact maximum‘response was computed along with the maximum
responses predicted by Approximations 1 and 2 (see Sec. 3.3.3). In addition,
the responses predicted by Approximations 1A and 2A were computed for systems
with periods of .3 sec and .1 sec, TIn the following sections, the response

data for each of the three ground motions are discussed in turn.

4,2 Discussion of Response Data for El1 Centro 1940-NS Earthquake Record

The time history data for the ground motion are shown in Fig. 10, and
the frequency domain data for the ground motion are shown in Fig. 11, Figure
12 gives detailed representations of the frequéncy domain data in the wvicinity
of T = 10 sec (W= 628 RPS), T =1 sec (W = 6.28 RPS) and T = .1 sec (w =
62.8 RPS). The purposes of Fig. 12 are to illustrate the complexity of
behavior of the Fourier amplitude spectrum and to show the relative magnitudes
of the Fourier and pseudo-velocity spectra.

The response results are shown in Figs. 13-18. We shall consider first
the results for T = 10 sec¢, which are shown in Fig. 13. It can be seen that
for £ = .01, there is excellent agreement between the exact responses and
Approximations 1 and 2. However, when & = .03 and & = .05, the accuracy of
the response estimates deteriorates significantly. To see why this happens,
consider Fig. 12a, which shows the spectral behavior of the ground motion in
the viecinity of T=10 sec. It can be seen that near T=10 sec, the Fourier
amplitude spectrum forms a deep valley; consequently the wide bandpasses

of the more highly damped systems encompass significant spectral fluctuations.
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It is recalled from Sec. 3.3 that if the Fourier amplitude spectrum fluctuates
considerably in the bandpass, the conditions for an exact, c¢losed form solution
are violated and the response estimates are, at best, approximate solutions.
The accuracy of the response estimates is also adversely affected by the fact
that the Fourier amplitude spectrum is often significantly less than the
pseudo~velocity spectrum in the vicinity of T = 10 sec (Fig. 12a). When such
a disparity exists, the contribution of u;(t) (Eqs. (43a, b)), which is
neglected by Approximation 1, may be significant. For example, Eq. (109)
predicts that for £ = .05, mixjué(t)iw.AB meters, which is more than half the
maximum response. It can be seen from Fig. 13 that when § = .05, Approxima-
tion 1 gives generally poor results. However, Approximation 2, which includes
the contribution of u;(t), gives good results only when € < .01,

The response data for T = 8 sec is also shown in Fig. 13. It can be
seen that both response estimates give generally excellent results with just
a slight decay in accuracy at the higher mass and &amping ratios., The
improved accuracy of the estimates over that observed for T = 10 sec is
largely the result of the generally smooth behavior of the Fourier amplitude
spectrum and the close agreement of the pseudo-velocity and Fourier spectra
in the vicinity of T = 8 sec (Fig. 11). ’

The response data for T = 5 sec and T = 3 sec is shown in Fig. 14.

It can be seen that once again, the response estimates are in good agreement
with tne exact responses, At worst, the estimates exceed the exact result
by 30% at some of the higher damping and mass ratios.

The periods considered thus far are relatively long and are usually
associated only with tali buildings and towers. The shorter periods
considered next pose more severe tests for the response estimates (see
Sec. 3.4) but are also more typical of actual structural periods.

The response data for T = 1 sec and T = .8 sec are shown in Fig. 15.
The behavior of the Fourier amplitude spectra in the vicinity of T = 1 sec
is shown in Fig. 12b. From Fig. 15, it can be seen that for T = 1 sec, the
response estimates are in reasonable agreement with the exact results for
£ < .01l. For & > .01, Approximation 2 is overly conservative by as much as
1007 ﬁhile Approximation 1 gives somewhat better agreement. Consistent with
with previous results, the accuracy of the estimates generally deteriorates

at higher mass and damping ratios. For T = .8 sec, the response estimates
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are in reasonable agreement with the exact responses except for "spikes"
at € = .0144, Contrary to previous results, the accuracy of the estimates
is somewhat better at the.higher damping ratios.

The response data for T = .5 sec is shown in Fig. 16. Both response
estimates give generally conservative results with the overall level of
accuracy being comparable to that observed for T =1 sec and T = .8 sec.

The periods considered next are relatively short and can therefore be
expected to pose severe tests for the response estimates (see Sec., 3.4).

The response data for T = .3 sec is shown in Fig. 17. When £ = .01,
Approximations 1 and 2 give generally fair results but are sometimes over-
conservative by as much as 100%. On the other hand, Approximations 1A and
2A give generally excellent results when £ = ,01. At the higher damping
ratios, Approximation 1 gives results that are overly conservative by as
much as 80% although Approximation 2 gives superb results. The accuracy of
Approximations 1A and 2A is intermediate betweeﬁ‘Approximations 1 and 2 at
the higher damping ratibs, although Approximation 2A gives generally uncon-
servative, and hence undesirable results. 1In assessing the relative merits
of the four approximations for T = .3 sec, due account should be taken of
the relative ease of calculating Approximations 1A and 2A.

The response data for T = .1 sec is shown in Fig. 18. The general
appearance of Fig., 18 is quite similar to Fig. 17 and the remarks made
regarding T = .3 sec apply equally to.T = .1 sec.

To summarize the results for El Centro, it appears that Approximations
1 and 2 provide generally acceptable response estimates for periods as short
as .5 sec. TFor shorter periods Approximation 2 provides good results while
Approximations la and 2A provide somewhat poorer results but with less

computational effort.

4,3 Discussion of Response Data for May 11, 1962 Mexico City
Earthquake Record

The time history data for the ground motion are shown in Fig. 19 and
the frequency domain data are shown in Figs. 20 and 21.

In discussing the results, we shall follow the procedure of the previous
section and discuss the longer periods first.

The response data for T = 10 sec and T = 8 sec are shown in Fig. 22.

The accuracy of the response estimates is reasonably good although somewhat
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poorer than the excellent predictions for the T = 8 sec responses to El
Centro (Fig. 13). The deterioration of the accuracy of the estimates at
higher damping and mass ratios Is consistent with earlier observationms.

The response data for T = 5 sec and T = 3 sec is shown in Fig. 23.

The response estimates give good predictions for T = 5 sec and for T = 3
sec when § = .0l. However, the accuracy of the estimates is significantly
decreased for T = 3 sec at the higherldamping and mass ratios. Apparently,
both Approximations 1 and 2 exaggerate the effects of the sharp rise in the
Fourier amplitude spectrum that takes place between T = 3 sec and T = 5 sec
{Fig. 20). 1It should be noted that the peak of the pseudo-velocity and
Fourier amplitude spectra at T = 2,5 sec coincide with the fundamental
period of the soil underlying Mexico City.

The response data for T = 1 sec énd T = .8 sec are shown in Fig. 24.
The accuracy of the response estimates is comparable with that for the
corresponding El Centro results (Fig. 15) although the major imaccuracies
occur for different system parameters. Generally speaking, Approximations
1 and 2 overestimate the response, as has usually been the case for the
systems and ground motions considered thus far.

The response data for T = .5 sec are shown in Fig. 25. The accuracy
of the estimates is generally reasonable and is comparable with that observed
for the corresponding El Centro results (see Fig. 17).

The response data for T = .3 sec, which is shown in Fig. 26, indicate
that Approximation 1 provides generally fair predictions for & = .01 but
significantly poorer, albeit conservative, results for the higher damping
ratios. Approximation 2, on the other hand, provides generally good predic-~
tions for all damping ratios. Overall, the accuracy of Approximations 1 and
2 is quite similar to that observed for the corresponding El Centro results
{Fig. 17). Approximations 1A and 2A are generally intermediate in quality
between Approximations 1 and 2 but somewhat poorer than the corresponding
El Centro results.

The reéponse data for T = ,1 sec are shown in Fig, 18. It can be seen
that Approximation 1 provides extremely unconservative predictions. The
principal reason for this is that the Fourier amplitude spectrum in the
vicinity of T = .1 sec (w = 62.8 RPS) is considerably less than the pseudo-

velocity spectrum (see Fig. 2lc) and as a result, the contribution of u;(t)
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forms a significant part of the response. For example, when § = .01,
m%xiu;(t)l is about .00032 meters, which is more than half the maximum
response. Another reason for the poor accuracy of Approximations 1 and 1A
is that they seriously underestimate the contribution of ug*(t). Calcula-
tions show that for £ = ,01 and € = .000144, max!ug*(t)l is about .0002
meters while Approximation 1 predicts ,00005 meters and Approximation 1A
predicts .00004 meters. The poor accuracy of the predictions is not
surprising in view of the chaotic Eehavior of the Fourier amplitude spectrum
in the vicinity of the tuned fréquency.

In conclusion, the response estiﬁates are generally about as accurate
for the Mexico City earthquake as they are for the El Centro earthquake.
The agreement of the estimates breaks down for the same reasons cited for
El Centro - namely - when the Fourier amplitude spectrum fluctuates consider-

ably and when the Fourier amplitude and pseudvaeLocity spectra differ widely.

4.4 Discussion of Response Data for March 4, 1977
Vrancea Earthquake Record

The time history data for the ground motion are shown in Fig. 28 and
the frequency domain data are shown in Figs. 29 and 30.

The response data for T = 10 sec and T = 8 sec are shown in Fig. 31.

Tt is apparent that for both periods, Approximation 1 significantly under-
estimates the response whereas Approximation 2 gives generally good predic-
tions. The poor accuracy of Approximation 1 is to be expected in view of
the spectral behavior of the ground motion. From Figs. 29 and 30a, it can
be seen that for periods greater than 5 sec, the Fourier amplitude spectrum
is insignificant in comparison with the pseudo-velocity spectrum, and conse-
quently, the contribution of u;(t), which is neglected by Approximation 1,
forms a significant part of the response.

The response data for T = 5 sec are shown in Fig. 32. The improved
accuracy of Approximation 1 for T = 5 sec over that observed for the higher
periods (Fig. 31) reflects the significant increase in the Fourier amplitude
spectrum that takes place as the period drops below T = 5 sec (Fig. 29).

The accuracy of the response estimates for T = 3 sec is quite good and is
generally comparable with the corresponding El Centro results for the same
period (Fig. 14).
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The response data for T = 1 sec and T = .8 sec are shown in Fig. 33.
The accuracy of the response estimates for T = 1 sec is good for £ = .01 and
£ = .03 but deteriorates at the higher mass ratios when § = .05. Both
estimates give good results for T = .8 sec when £ = .01 but the accuracy
of Approximation 1 deteriorates somewhat for £ = ,03 and even more so for
'g = ,03. The poor accuracy of Approximation 1 when £ = .05 can probably be
attributed to the cqntribution of u;(t) since Eq. (109) predicts that
m?x]u;(t)l is about .1 meters, or, about half the exact maximum response.

The response data for T = .5 sec are shown in Fig. 34, The response
estimates are quite good and are generally somewhat more accurate than the
corresponding results for El Centro and Mexico City (Figs. 16 and 25).

The response data for T = .3 sec and T = .1 sec are shown in Figs. 35
and 36 respectively. In general, Approximation 2 furnishes the most satis-
factory estimates. Approximations 1A and 2A give generally satisfactory
results when T = .3 sec but usually underestimate the results, sometimes
quite seriously when T = .1 sec.

In summary, only Approximation 2 appears to give consistently reliable
predictions for responses to the Vrancea earthquake. Approximation 1 is
generally unreliable because the Fourier amplitude spectrum is often
considerably less than the pseudo-velocity spectra.  Approximations 1A
and 2A are somewhat less satisfactory predictions here than for the E1

Centro ana Mexico City earthquakes.
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CHAPTER 5. RESPONSE OF MULTI-DEGREE-OF-FREEDOM
TUNED SECONDARY SYSTEMS

5.1 Introduction

In this chapter, expressions are derived for the response of a
tuned M~DOF (i.e., multi-degree-of-freedom) secondary system that is
attached to a M-DOF primary system. First, the eigenvalue problem for
the undamped total system is set ﬁp and solved approximately. Later,

response expressions for various forms of damping are presented.
5.2 Approximate Solution of the Eigenvalue Problem

5.2.1 Formulation of the Eigenvalue Problem

A primary system with attached secondary system is shown schemati-
cally in Fig. 37. To assemble the equations of motion, we treat the
primary and secondary systems as substructures and assign the attachment
point degrees of freedom to the primary system. The equations of motion

may then be written in global coordinates as:

[M;p] 0 {Up(t)} . 'IKI',p] [Kps] {Up(t)} =0 . (145)

0 (M, 11U ()} [K,1 [R]

{u (o)}
where!
{Up(t)L {Us(t)} are primary and secondary system response vectors
of dimensions P and S, respectively.
[Mép], [K;p] are PxP mass and stiffness matrices of the primary
system with the secondary system held fixed.
[MSS], [KSS] are SxS mass and stiffness matrices of the secondary
system with the attachment points held fixed.
[K 1=I[K is the matrix of stiffness coefficients of primary

system forces that result from the motion of

secondary system degrees of freedom.

In general, [M' and [K' can be expressed as:
g s 1 pp] [ pp] p
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[Kop] = [Kppl + [*Kp#] (146a)
[M;p] = [Mpp] + [*Mpp] (146b)

where [MfP] and [Kpp] are the mass and stiffness matrices of the primary
systems alone and[*Mpp] and [*Kpp] reflect the contributions of the

secondary system. For the lumped mass models considered here:

[*Mpp] =0 (146¢)

The matrices [Mpp] and [MSS} are, of course, positive definite. The
constraints on the primary and secondary systems are assumed sufficient
to prevent rigid body motions, it follows that [Kpp] and [KSS] are
positive definite. ,

Equation (145) can be expressed in terms of the modal coordinates

of the primary and secondary systems via the transformations:

{up(t)} [¢P]{a?(t)} (1473a)

{u (0)} [¢p}{as(t)} : (147b)
where [¢P] and [¢s] are the modal matrices of the primary and secondary
systems, respectively. It is convenient to normalize the eigenvectors

so that their norms are of the same order of magnitude. A suitable norm
for this purpose is the éum of the absolute values of the elements.
Substituting Eqs. (l46a-c) and (147a,b) into Eq. {145) and using modal
orthogonality, we obtain:

[MPP] 0 {ocp(t)} . [KPP]+{*KPP1 (K] {ap(t)} Y wis)
o M1 HE Y] | ] [Ry,1| | {og(0))

where:

= - T
[Mpp] = [¢P] [Mpp][¢p] (149a)
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(€, = [0 17k 10e ] (149b)
DR 1 = 16 1106 (149¢)
1= (o 170106 (150a)
R, 1 = o 17K 106] - ason)
[(K,g] = [o,17[K 1101 = (K 1" (151)

The elements of the diagonal matrices [ﬁfp] and Eﬁp] are the
generalized masses and stiffnesses of the primary system. The ith terms

of [ﬁ%p] and [ipp] are related by:

‘Izl .
i.2 _ pp ' .
(wp) = (152a)
PP

where wh is the ith natural frequency of the primary system. Similarly,

the jth terms of the diagonal matrices [Egs} and~[EgS] are related by:

=i

Jy2 _ _ss
(ms)‘ —'Eﬁ (1521b)
s8Ss

+ . R t i .
where m; is the j h natural frequency of the secondary system. It is
assumed that the first mode of the primary system is tuned to the first

mode of the secondary system at the frequency w. Consequently:
wh o= ot = w ' (153)

By definition, the secondary system is much lighter and much more

flexible than the primary system. We can therefore say that:
JES LR N , (154a)

*K X << ||k
R TR << T (154b)
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L 3

where | denotes the norm referred to earlier.

We now introduce into Eq. (148):
{ap(t)} = {ap} sinft ' {155a)
{o ()} = {o } sinQt (155b)

vhere {up} and {GS} are vectors of modal coordinates of the primary and
secondary system. We thus obtain the eigenvalue problem:
— —_ 2 —_—
K__J4[*K__1-0°IM K {o }
[ pp} 1 pp] [ pp] [ pS) > _
—_ _ 2 — =0 (156)
[Kg,] X J-071M 1} {a}
ivi =i =d
Dividing each row of Eq. (156) by the term Kpp or KSS that lies on the

principal diagonal, we have:

t11+fe*3-92[1/w§1 el |{a )}

s 9 =0 (157)
1E] [11-9 [llms{J {as}

where:

=
s
s

*
= PP :
eij ii (158a)
BD

=
AN
[

eij (158p)

Sk

=
e
[

E,. =

13 (158¢)

?ﬂdg

w
&3]

2
and [1/(w) ]and'Ill(wS)zl are diagonal matrices where ith elements are
(1/w§)2 and (1/w;)2, respectively,
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To simplify the appearance of forthcoming equations, we define:

si = eii (15%a)
i,

€= — (159b)
1
M
P

B = Ell (159¢)

By combining Eqs. {153), (158b,c) and (159b,c), we obtain:
ell = Re (1594)

We shall now make some order—of-magnitude estimates for the terms
that have just been defined. These estimates will prove useful in
solving the eigenvalue problem.

In view of Eq. (154a), it is expected that £<<l. Equation (158b)
suggests that the Eij-(hence B) are 0(1) since both the numerator and

denominator are generalized stiffnesses of the secondary system. It

therefore follows that e is 0(g). The other eij and the eij are,
like €51 ratios relating generalized stiffnesses of the.secondary system
to generalized stiffnesses of the primary system. It 1is therefore assumed

that e?j, e,, = 0(g).

ij
5.2.2 Approximate Solution of Characteristic Equation

The first step in solving Eq. (157) is obtaining the roots of the

characteristic equation:

[I]+[e*]-92[l/w§] [e]

. =0 {160)
[E] [13-07[1/u]

In general, the roots of Eq. (160) cannot be evaluated exactly. An

approximate analytical solution is therefore derived.
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The determinant in Eq. (160) can be expanded using the formula
(see [8]):

la..l = £ ¢1F a, a, (161)

i . eae &
ij () 131 232 nj_

whete n = P+S8 and the summation varies over all the n! permutations of
the order of the second subscripts. The exponent is +1 or -1 if the
permutation is of even order or odd order, respectively.

In view of the structure of the characteristic determinant, each of
the factors appearing in the summation of Eq. (161) can be put in the
form:

(-—1)j aj ay we.a, = ges

1 39 iy .

where the exponent s is the number of terms eij and eﬁl (k#%) appearing
in the factor and g contains no €. The characteristic equation can thus

be put in the form:

I Ger =0 (162)

where Tk is independent of €.

In general, it is impractical to carry out the entire expansion
appearing in Eq. (162). However, since £<<1, the characteristic equation
can be simplified approximately by neglecting all but the lowest order
terms in €. A similar method has been used to analyze the vibrations of
a mechanical system with nonclassical damping (see [7], pp. 231-235).

We consider first the '"zeroth order" approximation to the characteristic

equation, which is given by:

It is easily shown that To is the product of the terms on the principle

diagonal of the characteristic determinant. Consequently, the
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characteristic equation is approximately:

P.
G = T [1+e¢ —(Q/m X n [1- (ﬂ/m 1=0 (163)
¢ 4=1 =1

The solutions of Eq. (163) are:

2

=
24

(w;)2(1+€i), i=1,...,P (164a)

o]
H

. (wg)z, j=1,...,8 (164b)

Equation (163), unfortunately, does not contain terms from [e] or [E].
These matrices account for dynamic interaction between the primary and
secondary system, which should be important at least for the two eigenmodes
with frequencies near w. To account for interaction approximately and to

check Eqs. (l64a,b), we examine:

Go + Gls =0 (165)

which is the next approximation for the characteristic equation. T,E€

_ 1
contains all factors in the determinant having terms of 0(¢) and is

given by:
P P s S 4.2
Tle =-3F I {1+e -(Q/m ) 1 ei E I [1—(Q/ws)'] (166)
g=1 k=l j=1 1331 gy
k#i 243

Equation (165) will now be solved approximately. Equations (164a,b)
suggest that Eq. (165) has roots close to the eigenvalues of the separate
primary and secondary systems. We consider first the eigenvalues close

to (mg)z, m#l. Equation (165) can be written:

. S .
e @/ T (e @/ T (1-@/eh)?) -

i=1 j=1
i#m
P P g S
- LT [ - (/)] T e, ij n [1- (ﬂ/w 211 =
i=1 k=1 L

ifm k#i,m K#j
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P S

= I [Tte,-(@/u; 5321 5 e .E. n [1- (Q/m 321 (167)
k=1 j=1 ™ I g
k#m 245

The second term in the braces in Eq. (167) has eij in each of its factors
and is therefore much smaller, in general, than the preceding term.

Consequently:

S .
[1+€ —(Q/w Y291 1 [1+¢ -(Q/w »21 T [1-@/w))?} =

i=1 i=1
i#m
P S
= I [l4e, - (ssz) 21 e .E. n [1—(Q/w) 21 (168)
k=1 j=1 AR \
k#m 43
and therefore:
S (wJ)
o W1 +e - j 5 “mj 3“’), m#l (169)
P R R ! <wp)

(w‘p“)za + 0(e))

It can be shown in a similar manner that the eigenvalues close to

(m ) s m¥l, are given by:

2 P J) m m
= (w:) L- = ®4mmj + 0(e)), m=2,...,5 (170)

5=1 (wJ) Wl

Al]l that remains is to find the two eigenvalues close to (m:;)2 =

(w]S')2 = w. To do this, we write

(14e,- @/ 21 [1-@/?) T [ake, ~@tsh? ! T -@/ah? -

i=2 ) =2
PoT k.2, S )
- ¥ 1 [1+€ (Q/w Y1 L e, . E, H [1—(Q/w )]} =
1=2 k=2 j=2 13731 9o
k#i 3

S
. n [1+e,- (0w 218% 1 [1-(9/0’2)2]
k=2 =2
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o (ﬂ,)}ﬁ 1 [1-9/u) 2]
+ 1+e w e, .k 1-8/w +
=2 K j=2 13731 oy s
243

PP
+ 35 T [l4e -(n/w 2 ]e. F1y [1 (Q/w 321 (171)

i=2 k=1 =2

k#i

The second term enclosed in the.brackets on the left-hand side of Eq. (171)
is 0(g) and is therefore much smaller than the preceding term. On the
right-hand side, all the terms are 0(g£). However, each of the factors in
the last two terms contains [14e,-(2/w)’] or [1~(0/w)?] and is therefore

relatively insignificant near {i=w, We can thus write:
2 2, . 2
[1+e, - (Q/w)"1[1-(R/w)"] = 8" € (172)

The roots of Eq. {173) are:

€ .
(nlfz = WP (L + 7%»- |81Ve) (173a)
2.5% & w? ! /8
N7 = w (L + 5+ |BlVE) (173b)

5.2.3 Evaluation of Eigenvectors and Participation Factors
In what follows, ct.p denotes the contribution of the 1th mode of the
primary system to a mode of the total structure. Similarly, ui denates

the contribution of the jth

mode of the secondary system to a mode of the
total structure, -

We first obtain the eigenvectors corresponding to eigenvalues of the
structure near (w;)z, i=2,...,P. Consider the jth row of the second set
of Eq. (156):

T e a4 [1-(9/w3) ] aJ =0 (174)

k=1 JKP

Since the eigenvalue 92 is very close to (m ) » 1t seems reasonable to

assume that aP is much greater than the other modal coordinates of the
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primary system, this will be checked later. Equation (175) then simplifies

to:

i _ 32y 3 .
Ejiap + [1 (Q/ms) 1oy =0 {175)

Using Eq. (169) in Eq. (178) and setting a; = 1, we have:

o -——i———z- +0(e), j=1,
1-(w /w

ceesS (176)
By substituting Eq. (179a) into the k'" row of the first set of Eq. (159),
it can be shown that:
k _
ocp = 0(g), k#l, i (177)
and the derivation is fully justified.
The next step is computing the modal participation factor. If the
equations of motion in global coordinates are given symbolically by Eq.

(38), then the participation factor for an eigenmode of the total system
is given by:

{a} (o ] [M L+ fa yT1e, 1M K1)
%. T T (178)
{ap} [cu oo 1[¢]{u}+{(x} (6,171, J 16,1 o)

Combining Eqs. {176-178), we have
P=P s 1#1 (179)

where P; is the participation factor of mode i of the primary system.
An analysis quite similar tec the one just presented shows that the
modal data corresponding to eigenvalues near (w;)z, j=2,...,S are:
e
i
oy = = g K,..P (180)
1-(w /w)
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o =1 {181)

Q
i

o(g), 3 (182)

By substituting Eqs. (180-182) into Eq. (178), we obtain:

P

P = pg - L (:Zg/wk)z] P];Ml; + 0(g) (183)
, s s p
where Pi is the participation factor of the jth mode of the secondary
system.
We now obtain the modal data corresponding to the eigenvalues (Q )
and (ﬂ ) of the total structure (i.e., the two closely sgpaced modes).

Consider the first rows of the first and second séts of Eq. (157):

5
(e, - (/w27 Yl + z e o + e al + ¢ e Yo -0  (184a)
P 1= 1k k=2 1k %
g1, P %k 2. %1 |
BY%r + ¢ E.. XF 4+ [1-(/w)?] *ot = 0 (184b)
p o, dk PV 5

where £ is 1 or 2 depending on the mode being considered. Since the

eigenvalues are close to (wl) = (w ) , we expect that the largest

contributions to the elgenvectors will come from.za; and Eal this will

be checked later. Equations (185a,b) then simplify to:
[1+e - @/0)°] o + Beal = 0 (185a)
P s
Ba; + [1—(Q/w)2] ai = 0 (185b)
s 2 2 R
Setting 9 = (Ql) and solving, we have:

(186a)

Q
T
=

14

[
Il = _ E%“ _ 18l (186b)
s £ B‘[E—
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Similarly, for 92 = (92)2, we have:
2l =3 (187a)
P
2,1, _ -1, lsl -
s ZBe (187b)

BVE

Approximations are now derived for the contributions of the detuned
modes of the primary and secondary systems to the two closely-spaced
modes of the total system. These small contributions give rise to the
so~called "non-dominant tuning pole response terms" that were first
obtained by Sackman and Kelly [23].

We first consider the contributions of the primary system modes.
These are obtained by considering the i'® row of the first set of Eq. (157):

P S _
2k ' i,2. 2.1 Lk _ _
kzl eik ap + [1+e§k—(ﬂ/wp) | ap + k£1 ey O = 0 (188)
k#i

In view of our assumptions about the magnitudes of the £a§ and the lag,

the summations in Eq. (189) will be dominated by the .terms containing

Lu;. Consequently, setting ﬂ=91 in Eq. (189), we have:
e, |8] '
i = il 5+ 0(e), i=2,...,P (189a)
P B{E[l—(w/wp) ]
= 0(/&)
Similarly:
e..|8|
2ot = B+ o), i72,...,P (189b)
P 8/5[1-(w/wp) ]
N
P

The contributions of the detuned secondary system modes are obtained

by considering the second set of Eq. (156). The jth row of this set is:
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P
5 Lk 2. 2 j

Z ik ap + [1- (Q/m 171 =0 (190)

For the two closely-spaced modes, the summation in Eq., (191) is dominated

by Ell 2a§»and consequently:

f
Q

. E_
lo‘g %ol = - —"L‘*"" 5=+ 0(/e), 3=2,...,8 (191)
[l-(m/w )]

‘It is easily shown that the results in Eqs. (190a,b) and Eq. {(192)
are small enocugh to have negligible impact on our estimates for the ﬁal
and the Rai (see Eqs. (187a,b) and (188a,b)) and consequently, our
derivation is fully justified.

The participation factors for the modes corresponding to eigenvalues
(Ql) and (92) are denoted Pl and P By substituting our results for

2°
the Qu; and the gaq intoe Eq. (179), we obtain:

€

P
1 144 1||

(1 ) + L To P -B R 1+ 0(e) (192a)
1 2% 2[3[/8 i=2 PPMf)

£

- P oo, .M |
P, = %[1:1(1 +—2 - 5 Lodpt <+ /e p’ Jﬁl-] +0(e)  (192Db)
PUoasle a2 PP s B

5.3 Evaluation of Seéondary System Response

5.3.1 Response of Systems with Proportional Damping

The response of the total structure to a ground motion is given by
Eq. (38) where the stiffness and mass matrices are as shown in Eq. (148).
If the damping in the primary and secondary systems is proportional to
stiffness, the damping matrix is given by:

*
[c] = Yo fop! * Yolipel Yoltps] (193)
VelKgp] YslK ]

where Nb and y; are constants. We consider here the case Yb = vé = Y.
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The total structure is the proportionally damped in the semse of Sec. 2.3

and the response is given by:

P4S P, {¢ y ¢t -£,Q, (t-1)
{fu(t)} = - z J a(T) e sin@, (t-1) d1 (194)
o
where!
. YQ-
g - (195)

It proves convenient to counsider separately the response contributed
by the two closely-spaced modes (i=1,2) and the responsevcontributed by
the detuned modes (i=3,...,pt+s).

By combining the appropriate results from Secs. 5.2.2 and 5.2.3, it
can be shown that the response of the secondary system contributed by the

two closely-spaced modes is given approximately by:
furr ()} ={ud ()} + {ul ()} (196)

where:

t
tug(0)) = &, YoraTre (f) a(m ¢ sinmn(e-1) cosw(t-1) dt  (197a)

-t

{ul () = gt [0 BT Cinu(e-T) cosbu(t-1) dT (197b)
W o . ‘
and:
2
B} = {61} J_gj_ (198a)
| eg PN, E, {¢>J}P
{8} = {473|-eL + pll) 1812, 3 (198b)

i=1 EIln(w/w ) ] M i= 2 [1—(w/w ) 1

A = [BIw% (198c)
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A comparison of Egs. (197a,b) with Eqs. (43a,b) shows that {h**(t)}
{u*(t)}, and {u (t)} are analogous, respectively, to u**(t), U*(t), and
;(t) Also, it is seen that if \i{u'(t)}ll<<ll{u*(t)}ll then {u**(t)}
is proportional to the response of a simple tuned secondary system (see
Fig. 1) with a "mass ratio” of IBIZE.
The response of the secondary system contributed by the detuned
modes is denoted by {ug(t)}. By combining the appropriate results from

Secs. 5.2.2 and 5.2.3, we obtain:

s . P plyk el (e
x _ i °k] P P N tsY% 3
{us(t)} = -jEl(PS k§1 [1—(w /w fﬁMJ){¢S} J I a(t) e ° sinw_ (t-1) dt+
P S {¢ } t ~Ely (£=1) ,
+r Z ik p -1—f a(t) e PP sinw_(t-T) dT (199a)
i=2 k=1 [1- (m /w an ; 0 o P
where:
X
& =73 ' (199b)
i
Yw
i_ s
£, = (199¢)

It is easily demonstrated that a decoupled analysis furnishes the same
result for {ﬁg(t)} as Eq. (199a). This shows that interaction between the
primary and secondary systems can be neglected when considering the
response of the detuned modes of the total structure.

The total response of the secondary system, denoted by {us(t)}, is
obtained by summing the response of the closely-spaced and detuned modes;

thus:
lu (O} = fak*(©)} + {ui(t)} (200)

5.3.2 Response of Systems with Nonproportional Damping
1f Yp#ys, the damping matrix of the total structure is not proportional

to the stiffness matrix and, in general, the damping is nonclassical.
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I1f, however, the damping coefficients are sufficiently small, as
assumed here, the undamped eigenmodes approximately uncouple provided
their corresponding frequencies are widely spaced. Consequently, Eq.

(199a) for the response of the detuned modes heolds but with:

Y wi
gl = PP
P 2

j

Y w

j_ 's's
gs T2

The two closely-spaced modes are, in general, coupled when the

is

(201a)

(201b)

damping is nonproportional. To isolate these modes, we use the trans-

formations:
[ _ 1, 1124 3 (%)
up(t)} = [¢P][{ ap}{ o ! (202a)
(2 |
{u ()} = [d}s}[{lu 1% }]~x'1 (202b)
P P P sz
where Xy and x, are modal coordinates. Substituting Egqs. (202a,b) into

2
Eq. (38) and using modal orthogonality, we obtain:

2 ~P,a(t)

xl + 2§awxl + Edwxz + (Ql) X =
- . . 2 _
X, + Edwxl + Zanxz + (Qz) X, = —Pza(t)
where:
1 1
£+ &
£ = 0 L2
a 2
-1 1
Ed_gp"gs

Equations (202a,b) can be solved using Fourier transforms. After

substituting the solutions into Eq. (203b), we have:

(203a)

(203b)

(204a)

(204b)
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'{ug*(t)} = {Bl}Zl(t) +‘{Bz}22(t)

where:
1t —an(t-T)
zl(t) =55 £ a(t) e sindw(t-T) cosw(t-T) dT
1 t £ w(t-1)
Zy(e) == [a( e ® sina(t-1) cosdw(t-1) dr
o]
Bze-iz
Sw=w 5 |
if (szs-g§)>o; and:
1 t —an(t-'r) %;.'m‘.
zl(t) =- =5 a(T) e sinh-—é-—(t-'r) cosw(t-1) dTt
Ew o
d
t & w(t-1) !
z,(6) = =[ame 2 cosh"d“(t-1) sinw(t-T) dt
o 2
£l =/ - g%

if (825—£§)<0.

(205)

(206a)

{206b)

(206c)

(207a)

(207b)

(207¢)
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CHAPTER 6. CONCLUSIONS

6.1 Summary and Conclusions _

The most crucial and difficult problem involved in computing the dynamic
response of a tuned secondary system is evaluating the response contributed
by two closely-spaced eigenmodes. Formulas for this response have been
derived with the aid of an asymptotic procedure. The systems considered
were undamped, classically damped, non-classically damped as well as slightly
detuned. For most of the systems, the response was shown to be characterized
by the presence of "beats" and an envelope function that closely matches the
response maxima. '

Estimates of the maximum secondary system response contributed by the
two closely-spaced modes were developed from the response formulas. The
estimates indicated that the maximum response depends primarily on the
Fourier amplitude spectrum of the ground motion. Responses predicted by
the exact approximate method were compared in a numerical study. Three
distinct types of behavior were observed depénding on the behavior of the
Foutier amplitude and pseudo-velocity spectra in the vicinity of the tuned

frequency:

Case 1: The Fourier amplitude spectrum exhibits moderate or little
fluctuation and is comparable in magnitude to the pseudo-
velocity spectrum. In this case, Approximations 1 and 2 of
Chapter 3 furnish good to excellent results and, in fact,
Approximation 1 may sometimes be regarded as an "exact"

closed form solution for engineering purposes.

Case 2: The Fourier amplitude spectrum exhibits extreme fluctuation
and is comparable in magnitude to the pseudo-velocity
spectrum. In this case, Approximation 2 furnishes acceptable
results while Approximation 3 usually furnishes poorer, but

conservative, results.

Case 3: The Fourier amplitude spectrum is much smaller than the
pseudo-velocity spectrum. In this case, a term that is

negligible in Cases 1 and 2 contributes significantly to
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the response and only Approximation 2 furnishes satisfactory

estimates.

Consideration was next given to MDOF systems. The asymptotic
procedure used.earlier was employed to derive a formula for the response
of an MDOF tuned secondary system attached to an MDOF primary system.
The responée contributed by the detuned modes was seen to be similar to
the analogous decoupled analysis result. Likewise, the response
contributed by the closely-spaced modes was seen to be similar in form

to the response of the simple system dealt with in Chapter 2.

6.2 Suggestions for Future Research

This study has clearly shown that knowledge of the Fourier amplitude
spectrum is essential if the response of a tuned secondary system is to
be estimated accurately. Since Fourier spectra are not as widely available
as response spectra, some attention should be gi?en to the development of
approximate procedures for generating Fourier spectra from response spectra.
The concept of a "design Fourier spectrum' analogous to a design response
spectrum could be developed for use in building codes.

Effort should also be devoted to remedying what is felt is the
principal weakness of this study; namely, the failure to accurately
estimate the response to ground motions that fall into Case 2 above.

A stochastic approach will probably be needed to do this.
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Table 1. Values of f_ Appearing in Equation (139)

b
- Sy
0.0 » .960
0.1 .847
0.2 .933
0.3 .879
0.4 | .888
0.5 .895
0.6 .899
0.7 .902
0.8 .903
0.9 .904
1.0 .904
2.0 .892
3.0 .876
4.0 .863
5.0 .852
6.0 844
7.0 .836
8.0 .830
9.0 .825

10‘0 l821
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Table 2. Parameters of Tuned Systems Considered in
Numerical Studies

Tuned Periods

elE

T (sec)
0.1
0.3
0.5
0.8
1.0
3.0
5.0
8.0
10.0
£ = .01 £ = .03 &= .05
Aw AT
£ W € Fw £
.000036 0.3 .00090 0.5 .0009
.000144 0.6 .001296 0.6 .0016
.000324 0.9 .001764 0.7 .0025
000576 1.2 .002304 0.8 .0036
. 000900 1.5 .003600 1.0 .0049
.001296 1.8 .014400 2.0 0064
.001764 2.1 .032400 3.0 .0081
.002304 2.4 .057600 4.0 .0100
.003600 3.0 .090000 5.0 .0225
.014400 6.0 .0400
.032400 9.0 .0625
.057600 12.0 .0900
.0%0000 15.0

s e e e
CUOoOUVMOVYR~NOU MW

LNMNMHFFODOOOO OO
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Figure 1. Simple Two-Degree-of-Freedom

Tuned System

ug(t) + Y (1)
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Y (1)
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L up(h) + v (1)
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uf%(t) = Decoupled Response

Figure 3. Schematic Illustration of
Decoupled Analysis Method
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Secondary System

Primary System

Figure 37. Schematic Diagram of Multi-Degree-of-
Freedom Secondary System Attached to
Multi-Degree—of-Freedom Primary System



