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1. INTRODUCTION

1.1 General Remarks

During this past decade, there have been increasing applications of

system identification techniques in structural engineering [4,12,15,16,23].

The pilot phase of this research project began in 1977, and the general

problem was described in a conference paper [33J. A comprehensive litera­

ture review of this subject area was presented and published in 1979 [34].

Results of the pilot project are summarized in a technjcal report [35].

In recent years, sophisticated electrical and electronical instruments

have been placed in existing building structures to record their response

to test loads as well as natural loading conditions such as earthquakes and

winds. The analysis of available earthquake data is an important task in

structural engineering. A significant benefit resulting from the evaluation

of earthquake data is the interpretation of the structural behavior at large

response levels. In addition, it can be helpful in the detection and identi­

fication of the seismic damage in existing structures.

There have been several attempts to compare the recorded response of a

building with the response of a synthesized linear model subjected to the

same base excitation. The comparison has been followed by certain trial-and­

error adjustment of the model parameters to achieve better fit between the

calcuated and recorded responses. In reality, structures might undergo non­

linear behavior and appreciable amount of permanent deformations.

To-date, most structural engineering applications of system identifica­

tion methods deal with the estimation of parameters for a given mathematical

form representing the structure. In reality, the nonlinear and hysteretic

behavior of complex structures are not well understood at present [34].

Available data on such behavior are obtained from mostly ad hoc and static tests,

results of which are applicable mainly for those special details.
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It is believed that the presence of plastic deformations can be used as

an indicator of structural damage [36J. Therefore, it is important to indentify

the time-history of plastic deformations from recorded earthquake motions.

Preferably, this task should be performed without the use of any specific

form for the hysteretic behavior, which remains unknown for each and every

existing civil engineering structure.

1.2 Objective and Scope

The objective of this investigation is to develop methods, with which.

the hysteretic behavior of structures can be estimated from recorded data.

Relevant literature is reviewed.

The present study consists of two alternative but compatible methods.

Certain common assumptions are made for both methods. For example, because

(a) the earthquake data are normally available from only a small number of

locations in structure, and (b) there exist input as well as output noise in

the records, it is easier to estimate the parameters of the dominant modes

in the record rather than a~~ the elements in the stiffness and the damping

matrices of the complex structure as a whole. This assumption makes it possi­

ble to consider the model as a single-degree-of-freedom (SDOF) system even

when the response spectrum shows the presence of the other modes. The deve­

lopment of two such methods is then presented with numerical examples. Re­

sults are discussed and future research activities are outlined.

2. LITERATURE REVIEW

A simple definition of system identification as given by Sage [24J refers

to those techniques with which mathematical descriptions or models for a system

can be found with the use of a set of known inputs and corresponding outputs.

For most of the system identification techniques, a mathematical form or model

for the structural system is assumed. Then the parameters of the model are
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estimated by using the known inputs and outputs. Therefore, system identifi­

cation consists of two parts, namely the mathematical formulation of the

structural system and the determination of the system parameters ,which

describe the behavior of the system under consideration [25]. Recently,

available literature on the application of system identification in struc­

tural engineering has been reviewed by several investigators including

Rodeman and Yao [23], Hart and Yao [12], and Collins, Young, and Kiefling

[8J.

The system identification techniques can be classified according to the

type of methods used as follows: modal methods, frequency domain, and estima­

tion methods [4J. In modal methods, the damping matrix is assumed to be

diagonalized. Therefore, the differential equations of motion are decoupled.

Finally, it is simplified for the identification of a viscously damped SDOF system

[5,10,22]. A linear and time-invariant system is frequently assumed in methods

applied in the frequency domain. The transfer function is obtained with the

use of Laplace transform or Fo~rier transform [9,20]. Finally, the estimation

methods use the probabilistic and statistical methods in the identification

of linear systems. The least-square method, the maximum-likelihood estimate,

etc., are frequently used in the estimation methods [5,18,28J.

As Ibanez [15] pointed out, almost all the available data reveal some non­

linear phenomena. Any attempt to fit a linear model to a highly nonlinear

structure should fail. Consequently, the techniques used to deal with strong­

motion earthquake data should consider the presence of nonlinear behavior.

The existing methods which assume a non-linear model can also be classified

as either parametric or non-parametric. Parametric methods usually require

either the solution of matrix Ricatti equations or non-linear programming

techniques, and non-parametric methods usually employ the Volterra series or

the Weiner Kernel approach [29J. However, both approaches are computationally
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expensive and often do not provide adequate characterizations of the types of

nonlinearities met within mechanical structural systems [1,13,18,30,32J. In

the following, one example of each is reviewed and one difficulty in dealing

with earthquake data is discussed.

Udwadia and Kuo [29J presented a non-parametric identification technique

for the identification of an arbitrary andmenoryless close-coupled nonlinear

multidegree-of-freedom system. The nonlinearity is given as a series expan­

sion in terms of orthogonal functions. Their model is a lumped-mass system

with masses M~, ~ = 1, ... N, which are assumed to be either known or fairly

well estimated from design drawings. Furthermore, they assume that the re­

storing force can be separated into two independent forces. One of them is

only a function of relative displacement (spring force) and the other is in

terms of relative velocity (damping force) between the masses M~ and M~+l'

This enables them to expand the forces in terms of two different sets of

orthogonal functions. Therefore, they can estimate the coefficients of each

set at those instants of time that the other one is zero. Finally, the co­

efficients of this series is estimated by minimizing an error function. Al­

though the method seems to be insensitive to noise, it is ineffective for the

identification of the structures which have experienced permanent deformation.

Matzen and McNiven [19J presented a method with which the seismic be­

havior of a single story steel structure can be identified.by using a nonlinear

mathematical method. They assume a structural system with linear viscous

damping and Ramberg-Osgood type hysteretic force-deformation relationship.

An error function is minimized to obtain the best match between their model's

response and the structure's response, when both are subjected to the same

excitation. The criterion function is an integral squared error function

that includes errors in both acceleration and displacement. However, when
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real data are used, it is observed that it is difficult to apply the method

to match both response quantities at the same time.

For deteriorating structures, attempts are being made to apply linear

system identification technqiues for those portions of records which exhibit

linear behavior in between relatively few cycles of large inelastic excur­

sions. The changes of parameters in the linear model can then be correlated

to the damage level [6J.

It is generally agreed that certain difficulties exist with the application

of earthquake data. In addition, it should be mentioned that the ground

motion acceleration is coupled to the system response. Such problems have

been considered by Pilkey and Kalinowski [21J and they have called it instru­

mentation problem. One of their examples includes the identification of an

earthquake acceleration record from a shock spectrum. They consider the

observed response as a function of the applied load. Furthermore, some re­

strictions are developed on the assumed relationship. Finally, a curve-

fitting process is tried to obtain the closest similarity between the observed

and the calculated values from the assumed function.

3. HYSTERESIS IDENTIFICATION METHOD

In this part, a relatively simple parametric approach for the identifi­

cation of the behavior of a SDOF non-linear system is presented. This method

has the advantage of not being restricted to any type of inputs.

3.1 System Model

Suppose that the model is a SOOF system as shown in Figure 1 with mass m

which is considered to be time-invariant. It is assumed that the base-accelera­

tion, z(t). and the relative acceleration (with respect to the base), x(t),

have been measured by the instruments located on the structure. It is further

assumed that the restoring force KR depends on the relative displacement and
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the relative velocity. Thus, we have

(1)

Later it will be assumed that the restoring force is the summation of

two separable forces, namely damping and spring forces. Furthermore, it will

be assumed that the damping force is a function of nelative velocity while

the spring force is a function of relative displacement.

To formulate the problem, suppose that the system as shown in Figure 1

behaves nonlinearly in spring force and quasi-linearly in viscoelastic force.

Figure l-c represents the response of the system to the applied load. The

solid line is used to denote the relative displacement and the dashed line

is used to denote the velocity response. Points x2' x6 and xlO are not only

the ending points of the loading paths but also the starting points of the

very next unloading paths. On the other hand, points x4' xs ' and x12 are the

ending points of the unloading paths as well as the starting points of the

next loading paths. The apparent feature of each segment of (fS-x) curve

between the successive two points (e.g., x2 and x4) is that they are mono­

tonically increasing or monotonically decreasing. Similarly if the points of

the maximum or minimum values of velocity response are marked, the same con­

clusion from the (fO-x) curve can be drawn. Therefore, it is inferred that

both force functions in each interval (i.e., t l to t 2, t 2 to t 3, ... ) are

monotonically changing. If Ni is the number of points within interval i,

the restoring force, fR(t), can be written in terms of two polynomials which

one corresponds to spring force and the other to damping force function, i.e.,

(2)

where



and

fS(t) = aO + alx + a2x2
+

fo(t) = b + b * + b *2 +o· 1 2

p + q = N.-l = M,

+ b xP
P

(3)

(4)

(5)

7

Substitution of Equations 3 and 4 into Equation 2 yields:

where

3.2 Identification Procedure

(6)

(7)

Let Ni denote the number of points within each interval, i. Because that

relative acceleration response, x(t), has been measured, numerical integra­

tions will yield the relative velocity response as well as the relative dis-

placement time history. Thus acceleration, velocity, and displacement for

each one of Ni points are known. Writing Equation 6 in terms of the response

of each point yields Ni equations with Ni unknowns as follows:

(8)

+ b *NPp i
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where M= N.-l as given in Equation 5. Equation 8 can be rewritten in matrix
1

form as follows:

r 1
q . ~p

j fR(tj+O) xl xl xl 1
c

fR(tj+~t) 1 q . xP alx2 x2 x2 2

= (9)

aq

fR(tj+K~t) 1 xK+l'
q • .p bl. . xK+lxKtl' xK+l

1 xP
N.

1

Equation 9 can also be written symbolically as

F = XAR (10)

In this equation, elements of X are known and FR can be calculated from the

following equation of motion for the SDOF system as shown in Figure l-a.

mx(t) + fR(t) = -mz(t) (ll)

where mx(t), fR(t) and -mz(t) are respectively the inertia force, restoring

force, and the exc~tation force. In this equation, x(t) and z(t) are known

and only m (mass) and fR(t) are unknown. One of the assumptions herein is

that m is time-invariant. Therefore, it can be estimated from the linear

part of system response by using any standard linear system identification

method. However, to simplify the identification procedure, Equation 11 was

divided by m and the following relation was assumed for the restoring force.

(12)
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Therefore, the restoring forces are also known since the base acceleration,

z(t), and the relative acceleration, x(t), are the available information from

the structure response. Equation 10 can now be solved for the parametric

vector, A, by inverting response vector, X,

(13)

Having the parametric vector, A, calculated, the spring and damping forces at

each point can be determined. However, to distinguish each force from the

other one, the constant c in Equation 7 should be correctly divided to two

subconstants aO and bOwhich are each a part of the spring and damping forces,

respectively. So far the estimation of the parameters of each interval was in­

dependent of the estimates or the information available from the other intervals.

However, dividing the constant c into aO and bO contradicts the advantage of

interval independency unless the damping force has a linear relationship with

velocity. Because there won't be any constant parameter in the damping force

function, it enables us to equate aO to c and bO to zero. If this property

doesn1t exist for the damping force, then one should make use of the previously­

obtained forces. In formulating the problem, it was mentioned that the points

which are at the end of any interval will be used as the starting point of the

very next interval. Therefore, having the forces of the last point of any

interval calculated, one can make use of them as the initial values for the

next interval. For example, suppose that the parametric vector A of interval

i has been calculated. Now each one of the forces, spring and damping forces,

for the starting point of interval iis obtained as follows:
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c

fS(t+Ollt) 1 xl xq
0 0

al
1

fR(t+Ol:lt) = = a (14 )
q

fO(t+Ollt) 0 ........ 0 x, xp
b,,
bp

which results in the following expressions for the forces

and (15 )

We also have these forces from the previous interval. Therefore, the differ-

ence between the two values of one force will give us the constant term of

the other force. For example, assume that the difference between the spring

forces is h. It means that the spring force in the present interval has been

over or under estimated. In order to correct it, one should subtract h from

the present values of spring forces. Indeed, h is actually the same as bO
which we were trying to distinguish from aO.

(16 )

It should be noticed that bo could have been obtained from the difference

between the values of the other force (i.e. damping force). In other words,

a known datum was left unused.
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Equation 16 introduces the last stage of estimation of the unkown para­

meter vector A because each of the two forces can now be determined as

fS(t+nllt) 1 2 q 0 0 0 lxn+l xn+l xn+l . . . . .
fR(t+nllt) = = I

fO(t+nllt) 0 0 0 0 1 *n+l
.1

x~+Jxn+l

Clough and Penzien apply a numerical technique to a SDOF system which is

nonlinear in spring force in order to get the response of the structure to an

arbitrary load [7J. To apply the present method, it was decided to identify

the properties of their example frame (i.e. damping coeff. and elastic force).

Therefore, the response calculated by them and their selected load were

chosen as the known output and input, respectively. Figure 2~a shows the

system properties and the applied load (input). Figure 2-b shows the response

of the system (output). Table 1 represents the estimated parameters for each

one of the intervals.

Table 1. Estimated Restoring Force Function

Interval Restori ng Force Function

0-0.3 52.935x - 3.585i + 1.90lX

0.3-0.6 59.778 + 0.524x - 0.170x2
+ 1.984*

0.6-0.8 25.317 + 13.414x + 7.002*
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The functions are plotted in Figure 3-b. As seen in this plot, the estimated

behavior of structure is almost identical to the actual behavior of structure

seen in Figure 3a.

3.3 Problem of Change in Slope

One of the questions is how to deal with the sudden changes in the pro­

perties of structure. This sudden change may be considered as a slope change

in the mathematical representation ~f eTastic or damping forces. For example,

fitting a low order funotion to an elasto-plastic material results in the

failure of the method. Three following possible ways have been tried in deal­

ing with this problem so far; (1) least square estimates, (2) curve-matching,

(3) initial values which will be respectively discussed.

3.3.1 Least Square Estimates

Hudson [14J represents a least square solution for the case when a com-

plete curve to be fitted consists of two or more submodels, and those have to

be joined at points whose abscissa have to be estimated. Here, from the

practical point of view his technique is described and summarized as some

operations which can be easily programmed.

The technique can be briefly stated for the case of two submodels fl(x;a l )

and f2(x;a2), joined together at x=a. It is desired to find vectors al , a2
and real values a and I which minimize

subject to the following relationships among the parameters:

(19 )
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The following example will clarify the statement of the problem and the para-

meters involved.

Example: Assume that two straight lines joined together at a = a l . Therefore

(20)

and they should be equal at x = al

(21)

AO and A2 define the limits of an interval consisting of n pairs (xi'Yi) where

the {Xi} are distinct and the {Yi} have known weights {Wi}. For our case the

weight vector consists of equal numbers or in other words, {Wi} is a unit vec­

tor. The overall residual sum of squares is

n 2
R = I [Yo - f(x.)]

. 1 1 11=

(22)

and this is to be minimized with respect to both the {ai } and a l .

3.3.1.1 Types of Join*

Hudson introduces four types of join of which only two types are involved

in our problem [14]. Within this framework we are only interested in whether

or not a l coincides with an xi. Therefore the following classification con­

veniently demonstrates the two different types of join.

Type One Type Two

As the classification shows the type-one join, a l , lies strictly between two

successive x values, while, the type-two join coincides with xi.

*Throughout this section, IIJoin ll is an abbreviation for lIabscissa of the join
point ll

•
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3.3.1.2 Estimation of Parameters When the Type of Join is Known

If the type of join is known, the overall least square solution can be

applied whether or not the subscript i is initially unknown. Suppose that i

is known and the join is of type one. Then, the overall least square solution
A

(Appendix A) can be obtained. More specifically, we obtain vectors al and a2
of Equation 20 using the data with abscissas (xl' ... , xi) and (x i+l ' ... ,

xn), respectively. Note that the hat (A) appearing over the vector ai stands

for the estimated values, not the real values.

Having vectors al and a2 estimated, we can solve for the join by setting

A A

fl[a;a l ] = f2[a;a~] (23)

and find (by hypothesis) that there is at least one solution for a in Equation

23, say

A

a = a{ i)

Then we have automatically

A A A A A A

[a l ,a2,a] = [a
l
(i),a2(i),a{i)]

(24)

(25)

More generally, suppose we know that the join is of type one, but that

the subscript i is unknown. Now the subsequent steps can be followed:

First choose a value of i, and estimate aj(i) as before. Find if the

curves have at least one join a*(i) in the right place, i.e.,

xi < a*{i) < xi+l (26)

where the superscript * stands for the IIchosen value ll
• If Equation 26

holds, put
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(27)

where RiCi) and R2(i) are the local residual sum of squares.

If the curves do not join, or if Equation 26 is not satisfied, let

T(i) 700 (28)

Now repeat the computation witn all the other relevant values of i. Finally,

choose the critical value of i from which T(i) is minimized. For convenience,

this set of calculations is called step (1).

3.3.1.3 Join is of Type Two

Now we consider the case where the join is of type two. We have

a = x.,
1

(29)

for some i. Suppose first that i is known. The remaining parameters can

be easily found since the model is linear in them. The least square fit

should be performed while it ;s subjected to the linear constraint

(30)

One way of doing the above estimation is described by Williams [32] which

is in Appendix A. Then the resulting overall residual sum of squares ;s

denoted by SCi).

More generally, if i is not known, we simply repeat the above calcula­

tions and record SCi); we then choose the critical value of i for which SCi)

is minimized. For convenience, this set of calculations is called step

(2).

3.3.1.4 Estimation of Parameters When the Type of Join is Unknown

In this case, the overall solution is based on that type of estimation

which yields the minimum residual sum of squares. Therefore it is necessary

to try the both types of estimation. We can start with step (1) (i.e.
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searching for solutions with a join of type one). Then we start the search

for the solutions with a join of type (2) (i.e. step (2)).

The last word on this method is that it doesn't give a unique answer.

Furthermore, it might not give a satisfactory answer if the number of data

points is insufficient. Finally, the steps should be repeated for the dif­

ferent assumed values of the other force which is computationally expensive.

3.3.2 Curve-Matching Method

Figure 4 represents the slope-change problem which was experienced

during identifying an elasto-plastic type structure (described later). Al­

though the plot is the exaggerated display of the problem, it should be

mentioned that the early plots of the spring-force displacement were clearly

displaying such incompatabilities between the neighboring intervals. Thus

the current method which is a kind of trial-and-error was applied. The

essence of the method is to plot the grossly estimated forces while the re­

cord of each interval estimate is preserved. Then the locations of the un­

desirable portions are marked and are given to the computer programs as a

set of new input. For the second time the method is applied, but only to

the in-trouble intervals. Subdividing the interval is a kind of remedy that

can be used. However, it was sometimes experienced that the preceding opera­

tion should be repeated a few more times. Figure 4 clearly indicates why

the operation might be repeated (i.e. the curves (I), (II), and (III) which

are using different numbers and sequences of points can not solve the problem,

the only way of solving the problem is to subdivide the whole interval to

(1-5) and (5-9) subintervals).

Although, the results were satisfactory, the method appeared to be very

time-inefficient. Moreover, a part of the method requires the engineer1s

judgement which might result in different estimates from engineer to engineer.
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3.3.3 Initial-Values Method

The reason for choosing such a name for the method was the use of the

know~edge of the previously calculated intervals to overcome the slope­

change problem. In this approach, it is assumed while one of the forces,

in-trouble force, faces the slope-change problem, the other one, helping

force, is experiencing a very mild change in its behavior. This assumption

allows us to extend the pattern of the latter force from the previous

interval. Therefore, one shouldn't go through finding matrix X in Equation

10 and inverting it in order to find vector A (in the same ~quation). In­

stead, we use the estimated parameters of the helping force from the last

interval to calculate the values of the forces in the present interval;

then substracting these values from the corresponding restoring forces yields

us the values for the in-trouble forces. On the other hand, we try to use

as few points as possible for the estimation procedure in order to lower the

probability of having any sharp change in the helping force. Furthermore,

if the assumption was not satisfied within the present interval, a significant

discrepancy between the values of the helpoing force in the current interval

and the next-to estimate interval would be expected. Let's suppose this dis­

crepancy is experienced by our detecting subroutine. Therefore, we should re­

turn to the in-trouble interval and try to experience a new arranement within

the points chosen for each submodel. It should be noticed that the worst case

will occur when both forces experience the slope-change problem at the same

time.

The suggested method happened to be the most time-efficient and successful

one among the three recommended ones.

3.4 Identification Using Stimulated Data

A single-degree-of-freedom system, shown in Figure 5, was subjected to

the 1971 San Fernando earthquake. An elasto-plastic stiffness was used for

the system while a linear function was assumed for the damping force vs.
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velocity. A linear function was assumed for the acceleration increment in

order to calculate the response of the frame to the applied load. Figure 6

shows the calculated response. A considerable feature in the response his­

tories is the permanent deformation which is present in the displa~ement

history after 14 seconds have elapsed. This permanent deformation is one of

the worst situations for many of the linear and nonlinear methods. In fact

they are not able to identify the structure parameters, although the structure

has behaved linearly. A good point about the current method as well as the

second one (described later) is their ability in dealing with such problems too.

Figure 7 shows the estimated behavior of the frame.

In order to investigate the sensitivity of the method to measurement noise,

the relative acceleration was added with an independent random variable. The

noise (random variable) generated was from a normal distribution function with

zero mean and 0 standard deviation. The level of the noise, 0, was increased

from one percent of the maximum acceleration amplitude to ten percent. Figures

8 and 9 represent the response and estimated behavior of the structure under

one percent noise, respectively. Similarly Figures 10 and 11 are for the noise

level of ten percent. It is seen that the method is not as sensitive to measure~

ment noise for high amplitude response as it is for low amplitude nesponse.

However, it should be mentioned that as the noise level was increased to

values higher than 10%, the method started to overesimate the behavior of the

structure.

4. DELTA ME7[HOD

Clough and Penzien [7J presented a method of analysis which can be applied

for the development of a system identification technqiue for the non-linear

system. They assume that the structure properties remain constant during a

short time increment 6t, and then establish the condition of dynamic equilibrium

at the beginning and at the end of each interval. The motion of the system
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during the time increment is evaluated approximately on the basis of an

assumed response mechanism. The constant parameters and the incremental form

of equation of motion during a short period of time were two main features

which were used to develop the current method.

4.1 Formulation of Eguation

The model is considered to be a SDOF system as shown in Figure 12. Non­

linear characteristics are assumed for the spring and damping forces (Figure

12-b). Figure 12-c shows an arbitrary applied load and, at last, Figure 12-d

indicates what forces are acting on the mass m.

At any instant of time t the condition of the dynamic equilibrium is ex­

pressed as

(31)

where fr(t), fD(t), fS(t) and p(t) introduce inertia, damping, spring, and

applied forces, respectively. After a short time 6t the equation becomes

(32)

The incremental form of equilibrium equation is derived by subtracting Equation

31 from Equation 32, i.e.,

(33)

Therefore, this equilibrium is assumed to exist during the time interval t.

Recalling the definition of each force yields the incremental forces as follows:
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(34)

6p(t) = p(t+6t) - pet)

In which met), c(t), K(t) represent the mass, damping coefficient, and stiff­

ness coefficient at the time interval t, respectively. These structural pro~

perties are assumed to remain constant during 6t. Moreover it is assumed that

the mass m is unchangeable throughout the entire motion of the structure.

Substituting the force expressions from Equation 33 leads to the final

form of the incremental equilibrium equation for an arbitrary loading.

m6v(t) + c(t) 6V(t) + K(t) 6V(t) = 6p(t) (34)

Since the main object of this study which is the analysis of the earth­

quake data should be followed, the applied load is specified to be a ground-

motion acceleration

Hence

6p(t) = -m6v~(t)

substituting Equation 37 into Equation 35 and dividing both sides by m

yields

(36)

(37)

6V(t) +~ ~v(t) + K(t) 6V(t) = -6V (t)m m g
(38)

Recalling the definitions of damping ratio and natural frequency Equation 38

is reduced to the following
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which is a simple second-order equation in terms of wet). However, this

equation can not be solved for wet) since ~(t) is also an unknown. The solu­

tion to this equation plays a significant role in the accuracy of the finally

resulting estimates.

In the following, two simple approaches are presented and their applica­

tions to the simulated and actual data are evaluated.

4.2 Approach I

In this approach Equation 39 is reduced to a simple second-order equation

in terms of wet). Therefore, a reasonable range of change for ,;, damping ratio,

should be considered. One fact which helps in simplyfing Equation 39 is that

most large structures exhibit light damping [26]. In addition, the effect of

the damping force on equilibrium equation is not as important as those of the

other forces for this kind of loading. Therefore, Equation 39 is solved for

wet) while ~ is assumed to be linear and remain constant during the interval

of interest. This results in a set of estimates for wet) for any specific

value of ,; during that described interval. The response of the structure is,

then, calculated for different couples of wet) and S. That couple is

finally selected which better resembles the measured response for the interval.

It should be mentioned that the following simplified form as given in Equation

40, is expected to have two real roots.

(40)

Choosing one of the roots needs a prior information about the natural frequency.

This prior information and an estimate of the range of change of s can be calcu­

lated by using any 1inear system identification technqiues. The range should

include the estimated ~.
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4.2.1 Example 4.1: Real Data

The computer program developed for the first approach was used to estimate

the parameters of the Union-Bank Building, Los Angeles, from the records ob­

tained during the 1971 San Fernando earthquake. The Union-Bank building is

a 42-story steel-frame structure in downtown Los Angeles which experienced

peak acceleration at mid~height of 20% g (transverse direction) and 13% 9

(longitudinal direction) during this earthquake. At the time of the San

Fernando earthquake, the measuring:instruments were installed in the sub­

basement, on the 19th floor and on the 39th floor, but the instrument on

the 39th floor failed to record. The components of the digitized relative

acceleration, velocity, and displacement at the 19th floor were used as the

response data in the analysis. The sub-basement absolute acceleration was

used as the input to the system. Several assumptions were made on the basis

of the conclusions that Martin [17] and Beck [1] had drawn from analyzing

the data. (I) Data belonged to a single-degree-of-freedom system. Although

this assumption was not in agreement with the Fourier amplitude spectra of

the components of the building response which showed the existence of first

four lower modes, the response amplitudes of the second to the last modes

were much smaller than that of the first mode. (II) System had behaved

linearly. This assumption was actually made due to the fact that the Union­

bank building had experienced minor damage such as plaster cracking and tile

damage during the earthquake. Therefore, the analysis was limited to the

analysis of a linear SDOF system. An attempt was made to find whether there

was any change in the natural frequency of the structure. At the first time,

the time step was set to 0.02 seconds, and the damping ratio was assumed to

be within the 0.02-0.1 range. For five different values of damping ratio (i.e.

0.02, 0.04, 0.06, 0.08, and 0.1) Equation 40 was solved for wet), natural fre­

quency. Unfortunately, it was found that Equation 40 failed to be solved for
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some points. This problem was mostly experienced in the first ten-second

period. The number of the unused points for the rest of the response was

about 10% in comparison to 40% for the first period.

Then as an attempt to reduce the effect of noise, thought to be the

largest factor in creating the problem, the time step was increased. Although,

this remedy appeared to be effective for the last forty-second period of the

response it didn't lead to a considerable improvement for the first ten-second

period. These attempts left only the conclusion that the method is very sen­

sitive to noise. It was further concluded that if the higher modes· participa­

tion in the response was not filtered out, it should be expected that the

method experience difficulties. These conclusions seemed to be more meaningful

by paying attention to a report by Hanks [llJ. He showed that there were signi­

ficant errors in some records at periods less than 16 seconds. Thus, these re­

cords should be high-pass filtered with a cut-off frequency corresponding to a

period of about 16 seconds. However, as it was earlier mentioned the study of

filtering would be left to the future research.

Fi gure 13 represents the effect of increasing the 1ength of the time in­

crement on the reduction of the number of unused points. This effect had been

tested over a period of ten seconds (i.e., 30-40 second period). The figure

reveals that for a linear system a time step of about 30% of the structure

period results in the most use of the available data. Figure 14 indicates

the estimation of the natural frequency. It shows a good agreement with those

results obtained by Beck [1]. The figure also shows that damping ratio is not

that much effective in the estimation approach.

Results of this example show that, for a set of real data, the method is

sensitive to noise. In addition, the method is not reliable if the participa­

tion of the other modes is not ignorable. The reason for this, as discussed



24

earlier in this section, is that the method doesn't work for the first phase

(the first ten seconds) of the data which is corrupted with a high level of

noise as well as a considerable participation of the other modes. However,

for the second phase (the rest of the data), the estimated parameters were

in a good agreement with those obtained by the probabilistic and the statistic

methods. Although, a wrlique set of parameters was not obtained for the un­

corrupted data, the results proved that for the large structure damping force

has a very small effect.

The question which still remains is how the damping force can be esti­

mated when its effect should not be ignored. This question might be answered

by the second approach, however, how effective the method is in dealing with

the nonlinear systems as well as the elastic-force estimation occupy the next

section.

4.4.2 Example 4-2: Simulated Data

The base-ment acceleration and the response of the non-linear SDOF system

of Section 3.4 were used as the input and the output, respectively. Damping

ratio was assumed to be constant and estimated by using the method developed

by Chen and Yao [5,6]. Then it was set to be a constant during the estimation

of spring coefficients. Finally, the elastic forces at any instant were cal­

culated as follows:

(41)

Although this assumption fits this specific example, it should be considered

that the initial value is not always known.

(2) fs(6t) = fS(D) + weD) * (x(6t) - xeD»~

=w(D) * x(6t) (42)
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(3) fS(n~t) = fS((n-l)~t) + w((n-l)~t} * [x(n~t) - x({n-l)~t}J (43)

Therefore, each fS(n~t) corresponding to x(n~t) was obtained. The plot

of elastic force versus displacement was then drawn.

Figure 15 represents the estimated behavior of the structure. The appa­

rent origin-shift in hysteretic behavior explains the common difficulty asso­

ciated with the methods using the previous estimates in estimation of the

present time values. Overstimulation and understimulation of the parameters

are also due to the same problem (past-dependent estimation method). However,

when a prior knowledge about the structure behavior was used in solving Equa­

tion 40, an improved plot was resolved. Figure 16 displays this improvement.

However, there still exists an origin-shift in the hysteretic behavior.

4.3 Approach II

There are three unsatisfactory problems associated with the 1st approach.

First, damping ratio should be estimated by any technique but the present

method itself. Second, the second-order equation, Equation 40, is very sensi­

tive to noise and to the small values of the stiffness coefficient. Finally,

the elastic forces are calculated in such a way that the previously-estimated

elastic forces are involved. Therefore, the error associated with any instant

of the estimation is carried over the rest of the estimation. The present

approach tires to overcome the first two shortcomings of the first approach.

The solution to the last problem will be discussed later.

In this approach, it is assumed that the structural properties remain

constant during the n-th and (n!l)-th steps (i.e., during two successive

time steps). Equation 40 now is repeated twice while two conditions shou~d

be considered

K(t)~v(t) + C(t)~v(t) + ~v(t) + ~Vg(t) = 0

K(t+~t)~v(t+~t) + C(t+~t)~v(t+~t) + ~v(t+~t) + ~Vg(t+~t) = 0

(45)
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where

K(t) = K(t+.6t)

(46)
C(t) = C(t+.6t)

It should be noticed that K(t) and C(t) are respectively representing stiffness

and damping properties. Heretofore these were represented by w2(t) and 2s(t)w(t)

in Equation 40. Now there are two linear equations with two unknowns. Having

these parameters estimated, elastic forces are estimated by following the steps

indicated by Equation 41 through Equation 43.

The first problem which might be experienced is the slope-change problem.

Unlike the first ',method, this problem is overcome very easily. Having the para­

meters estimated at each instant, the detecting subroutine will reveal what

couple points don't follow the pattern of their preceding and following points.

The first point of any couple is re-estimated in such a way that it is in

harmony with the foregoing points, and the second point in such a way which

is in harmony with the coming points.

As a numerical example, the data as given in section 3.4 were used.

Figure 18 represents the estimated behavior of the SDOF nonlinear system. It

is much more imporved than that one obtained using the first approach. However,

the dependence of the present value to the previous values remains to be a

problem.

4.4 Present-to-Past Dependence Problem

Equation 43 indicates that the present estimated value of the spring force

depends on the force estimates of the previous instances. Therefore, if there

is an error associated to the previously-estimated forces, this error will be

automatically carried over to the future estimates of the force. To overcome

this problem, the condition of dynamic equilibrium can be imposed to the
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estimated forces at any instant of time. If the estimated forces couldn't

satisfy the equilibrium condition, the existing discrepancy must be in somehow

divided into the two forces. A point-by-point search revealed that this pro­

blem initiates from those intervals which one of the forces experiences a

sharp change in its property. Furthermore, it was found that the mentioned

discrepancy belonged only to the force in question. The improved

(modified) computer program based on the derived conclusion resulted in a sti­

mated behavior, ~igure 18, for the simulated-data frame which is similar to

as that obtained by the first method.

5. DISCUSSION AND CONCLUDING REMARKS

It is well understood that difficulties exist when these two methods are

applied to noise-corrupted data on the response of an existing structure. At

present, ther:e is no error criterion associated with these methods. One possi­

ble extension is to develop suitable error criteria in order to minimize the

difference between the responses of the real system and the model.

Two improvements can be made for the first method as given herein. Having

measuring instruments which operate in a faster sampling rate will result in

more points within each interval. There are two reasons why having more points

is hel~ful. First, the sum of the degrees of two polynomials chosen for the

forces (i.e. damping and spring forces) might be set to be much fewer than the

number of the points within any interval. This enables us to use a least

square type of error function. Therefore, the optimal estimates of the para­

meters are obtained. Second, the possibility of having a polynomial whose

degree is larger than the real force function is increased. Now we can apply

certain averaging techniques to reduce the effect of noise.

The last suggestion is more related to the laboratory experimental models.

Because the displacement and acceleration of them are measurable, both

quantities are exposed to measurement noise. Therefore, it is suggested that
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the acceleration time history be used as the only available output. Then the

velocity and displacement components are obtained by integrating the accelera­

tion record. This integration process will help to smooth or reduce the effect·~

of noise.

The second method (Delta method) as mentioned earlier is also unable of

dealing with noise of high level if it is present in the data. However, this

method is better in the sense that the averaging or smoothing techni.ques

are applicable to it. For instance, Figure 14 indicates the averaged natural

frequencies of five successive intervals. In spite of this advantage, we should

be careful in using the smoothing techniques for non-linear structures. Be­

cause the averaging procedure shouldn.'t destroy the pattern of the change of

the forces. Moving average [3] and the exponential smoothing [3J are the kinds

of smoothing techniques that could be used in this case.

It is noted earlier that these methods are developed by assuming pre­

dominant model responses. Schiff [26] has made certain comments which seem

to be compatible with this assumption. He states that, because most large

structures exhibit light damping, their identification can be reduced to the

finding of the system1s lower natural frequencies and modal damping. He

further indicates that most identification schemes are based on the property

that a lightly damped multi-degree-of-freedom system can be closely approxi­

mated by a SDOF system of appropriate natural frequency and damping in the

region near each of the system's natural frequencies. In reality, existing

structures are very complex systems and many modes are present in their

response records. Therefore, a natural extension of these methods is to

deal with multi-degree-of-freedom systems.

Sozen [27J believes that the inter-story drift is an important design

consideration. In fact, any inter-story permanent deformations can be signi­

ficant indicators of structural damage. It is expected that the present

study can be extended to obtain the inter-story hysteretic behavior of
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multi-story buildings. The experimental results of Sozen and his associates

[27] will be invaluable in such an extension.
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Appendix A:

FITTING TWO CURVES CONSTRAINED TO JOIN AT x = a

The model is

[

f 1(x, 81)

f(x) =

f 2(x,B2) =

or in a matrix form

!
f, (x, 8, )

f(x) =

f 2(x,82) = [ m-l], x .• x

(A.l )

< x < a

To estimate 8, and 82, the overall residual sum of squares should be set and

minimized with respect to 8, and 82.

(a) Residual sum of sguares (RSS)

N
R = L [y,-f(x.)]2

j=l J J

i 2 N 2
= L [y.-f,(xJ"Sl)] + I [YJ,-f2(xJ.,82)]

j=l J j=i+'

= + (A.3)

to minimize R, its derivatives with respect to each element of 8, and 82

should be equated to zero. However, as far as the mode' has not been subjected

to any restriction, Rl and R2 would be independent of each other and the

following relations stand for Rl and R2
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(A.4 )

Eq. (A.4) simplifies the operation of taking derivatives of Rwith respect
oR oR dR1Because as- and as- can be respectively replaced by as- and

, 2 1
Finally, each one can be carried out independently from the other.

(b) Derivative of R, with respect to S,_

i 2
R1 = I [u

J
.-f1{x

J
.,sl)]

j='

or

T T T TR, = y,Y, - 2Y [x,] S, + S,[x,] fix,] s,

where

(A.5)

(A.6)

Y1 l , n
xl · xl, n

Y2 x2 · x2

Y, = [X ] = (A.7). ,
;i J , nx. · xi1

set

c, = [x]T[x]

It is apparent that C, is symmetric. Eq. (A.6) is now written as

T T TR, = Y, Y, - 2Y,[x,]S, + S,C,S,

Now the derivative of R, with respect to S, can be simply obtained.

(A.8)

(A.9)

(A. , 0)



oRlEquating -0- to zero yields the estimation of 81.
Of.'l

8; =e,l [xlJT Yl
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(A.11 )

[Here superscript * stands for the unconstrained estimateJ. Similarly, 82
can be calculated as follows:

(A. 12)

Therefore, the unconstrained estimates of 81 and 82 should now be restricted

to the constraint that the two curves join at a.

(A. 13)

(c) Unconstrained estimates of 81 and 82 [14,32J

The unconstrained R.S.S. is (p; + P2)' where

* T Tp, = Y, Y, - Y.[x,J8~
J J J J J J

Since f l and f2 are linear in 81 and 82, respectively, the constraint is also

linear in them and can be written

(A.14)

or

where

T (2 n-l m-l)Q = l,a,a, ... , a ,-1, -a, .'.'. ,-a

(A. 15)

(A .16)

Since the unconstrained estimates do not in general satisfy this equation,

there would be
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Therefore, Si and S2 should be replaced by Sl and 82 such that

A A

f,(a,Sl} = f 2(a,S2}

Substituting Eq. (A.l1) and (A.12) into Eq. {A.1?} yields

A *
Sl Sl

_i C-1Q=
A * t
S2 S2

where

o
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(A.'])

(A. 18)

{A.19}

(A.20)
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