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Motivated by the increasing demands on earthquake engineering
and theoretical seismology, a method to calculate the three-dimensional
dynamic Green's functions for layered viscoelastic media is developed in
this study. In seismology, these Green's functions may be used to synthe-
size theoretical seismograms for an extended source including the propaga-
tional effects of geologic layering. In earthquake engineering, these
Green's functions may be used to determine the response of foundations to

external forces and incoming seismic waves when embedded in realistic
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geologic structures. The formulation of the method and the subsequent
application to problems in theoretical seismology are presented in Part I
of this work. The formulation of an integral equation approach involving
the Green's functions used to study boundary-value problems and the sub-
sequent application to problems in earthquake engineering are presented
in Part II of this work.

The derivation of the method and the calculation of the three-
dimensional Green's functions are conducted in the frequency domain by
representing the complete response in terms of semi-infinite integrals
with respect to wavenumber so as to automatically include all types of
waves. If desired, time domain results are then generated through
Fourier synthesis. ‘Realistic attenuation for shear and compressional
waves is introduced at the outset of the formulation. In addition, there
is no frequency limitation, making the method particularly useful for
earthquake engineering apptications. The method is Timited, however, to
the case of horizontally parallel Tayers. The compliete displacement and
stress fields at multiple receiver points anywhere in the layered visco-
elastic medium are efficiently evaluated for different types of sources.

The applications considered in Part I for theoretical seismology
inciude studies of near-field as well as far-field ground motion {although
certain earth-flattening approximations may be -inappropriate at teleseismic
distances); earthquake strong ground motion modeling; wave propagation
in an oceanic crustal configuration; and sensitivity studies on earth
parameters such as layer thickness and material attenuation. These appli-
cations are prefaced by an extensive set of validation tests and demonstrate

the flexibility of the method,
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In Part II, an integral equation formulation based on the dynamic
Green's functions for a tayered viscoelastic medium is developed for use
as a tool in analyzing various radiation and scattering probiems in
elastodynamics. Possible studies include the generation of nonreflecting
boundary conditions for use in properly modeling the extended earth with
finite elements; the response of valleys, canyons and foundations to the
action of incoming seismic waves and external forces; and equivalent
source representation for propagation purposes.

The applications considered in Part II for earthquake engineering
include the dynamic response of foundations embedded in layered visco-
elastic media when excited by external forces and moments. The sensitivity
to depth of foundation embedment, to degree of material attenuation and
to type of lateral contact conditions between the foundation and the
surrounding soil is also studied. Such an analysis resb]ves two pre~.
vailing shortcomings in the present state-of-the-art: 1) the practice of
restricting the soil model to a homogeneous, non-dissipative, purely
elastic half-space; and 2) the practice. of constraining the analysis to

the case of flat foundations.
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CHAPTER 1
INTRODUCTION

1.1 OBJECTIVES AND SCOPE

The development of an efficient method to calculate the three-
dimensional dynamic Green's functions for layered viscoelastic media can
have significant implications in fields such as seismology, earthguake
engineering and dynamic soil mechanics. In seismology, the Green's
functions may be used to synthesize theoretical seismograms for an extended
source. When compared with observed seismograms, the synthetic seismo-
grams serve to increase our understanding of rupture physics as well as
wave propagation in the real Earth. In earthquake engineering, the
Green's functions may be used to determine the response of foundations
when excited by external forces as well as by incoming seismic waves. In
more general terms, the Green's functions coupled with integral equation
formulations may be used to solve a variety of radiation and scattering
problems in elastodynamics.

For the applications considered in this dissertation, it is
necessary to develop the capability of calculating the complete displace-
ment and stress fields at any point in a layered viscoelastic half-space
due to different types of buried concentrated sources. It is also impor-
tant that the method provide accurate solutions across the entire fre-
quency band of interest, The final requirement is that the methodology

remain cost-efficient and highly flexible.



The formulation of the method and the calculation of the three-
dimensional Green's functions are conducted in the frequency domain. The
complete response at a particular frequency is represented in terms of
semi-infinite integrals with respect to wavenumber so as to automatically
include all types of waves. Then, if desired, time domain results are
synthesized through use of a discrete Fast Fourier Transform algorithm.
The appearance of common terms is exploited to expedite the calculation
when considering many source-receiver pairs simultaneously. Also, the
flexibility of the method permits investigations involving sources such
as multipoles and concentrated ring 1oads; fluid layers -as well as solid
layers, etc. The methodology is limited to a model consisting of a set
of horizontally parallel viscoelastic layers overlying a viscoelastic
half-space.

Before delving into the details of the present method, a review

of the state-of-the-art is presented.
1.2 REVIEW OF THE LITERATURE

In recent years, it has become increasingly important to synthe-
size seismic signals. Two different, although related, tools have been
developed for such studies: 1) Fourier syhthesis of frequency dependent
Fourier integrals over wavenumber in which the reflection/conversion/
transmission properties of the Tayering are handled analytically as a
function of frequency and wavenumber (hereafter referred to as the wave-
number integration method); and 2) geometrical ray techniques in which
the time response {s decomposed into an infinite set of ray contributions

(hereafter referred to as the ray-theoretical method). In the



following two subsections, previous studies along these two lines are

briefly reviewed.
1.2.17 Wavenumber Integration Method

In the wavenumber integration approach, the frequency-domain
solutions to the equations of motion in cylindrical coordinates are

written schematically as

@«

Zg?;ég%%f F(ks w2, 2g, L) 3 (kr) dk (1.1)
n 0 '

in which the azimuthal dependence is represented by the Fourier series
expansion, while the depth and radial dependence appear in the integrands,
which correspond to solutions to the equations of motion in the frequency-

wavenumber domain. The arguments k, w, z, z_, L 1in the function F

g2
show the dependence on wavenumber, frequency, receiver and source depth,
and layer properties, respectively. The argument kr of the Bessel
functions Jm reveals the dependence on radial cobservation distance.

Eg. (1.1) is presented as a device to guide the following review of the
contributions made by various authors.

The function F may be obtained as the solution to a set of
linear algebraic equations together with the boundary conditions at the
free surface, the continuity conditions at each layer interface and the
Sommerfeld radiation condition in the underlying half-space. The system
of equations grows linearly with the number of layers, but various matrix

decompositions may be used to take advantage of the block diagonal form

of the system.



The first such matrix decomposition was presented by Thomson
{1950), who reformulated the probhlem in terms of the so-called layer
matrices which transfer the components of motion from interface to
interface in an elastic multilayered medium. Haskell (1953} used
Thomson's matrix formalism in developing a systematic computational
procedure to study surface-wave dispersion for an elastic multilayered
half-space. In surface-wave dispersion computations, the surface-wave
phase velocity is calculated as a function of frequency and layer pro-
perties essentially by finding the surface-wave poles of the function
F.  To construct the dispersion functions with the Thomson-HaskelT
technique, the response at the deepest Tayer interface is related to
the response at the free surface by a product of Tayer matrices; the
elements of which are used to find the dispersion function. Even though
all the quantities necessary to form the functions F are inciuded in
Thomson's formulation, there was apparently no interest in doing so
until Haskell (1960, 1962) evaluated the F functions at the free sur-
face due to plane SH and plane P-SV waves incident at the base of the
layered structure.

The Thomson-Haskell technique becomes unstable for short wave-
Tengths due to the computation of squares of large exponential terms that
must cancel identically (for functions F involving P-SV-Rayleigh waves).
These large exponentials dominate the layer-matrices so that the final
product consists entirely of the spurious remains of trying to numerically
cancel the squared exponential terms.

Thrower (1965), Dunkin (1965) and Watson (1970) modified the

Thomson-Haskell formulation using determinant matrix extensions (Pestel



and Leckie, 1963) in which the minors of the Tayer matrices are propagated
from interface to interface so that the squared exponential terms never
appear, thus controlling the loss of precision; Schwab (1970) points out
that Watson's reduced determinant matrix extension (1970) of the original
Thomson-Haskell formulation is the most efficient of the three extensions
for surface-wave dispersion computations. However, Schwab (1970} also
reveals that the more flexible approach of Knopoff (1964) also contains
the loss-of-precision control feature without recourse to determinant
matrix theory and is 38% faster than Watson's apbroach. Knopoff's
approach is to 1mmediafe1y construct the solution to the set of Tinear
algebraic equations, for F 1in its full determinental form; Then the
determinants are decomposed by means of Laplace's development by minors
(Dickson, 1914) into products of interface matrices which transfer the
amplitudes of up and downgoing waves from layer to layer across each
interface. The general mefhod of “propagator” matrices was introduced
by Gilbert and Backus (7966) who formulate F in terms of the numerical
solution of a set of linear, first order, ordinary differential equations
{see also Richards, 1971 and Kennett, 1972). In the case of homogenecus
Iayeré, the product integral of the "propagator" matrices reduces to

any of the aforementioned methods using minor propagator techniques.

The first attempts to synthesize seismic signals by evaluating
integrals typified by Eq. (1.1) were by Haskell (1964) and Harkrider (1964).
They 1imited their analyses to the surface-wave contributions of the free
surface motion by calculating the residues at the Rayleigh and Love poles
of the F functions (using Thomson-Haskell theory for F). The time

domain response was'obtained through Fourier synthesis after evaluating



the residues at a discrete number of frequencies. Later, Harkrider (1970)
eliminated the instabilities in his surface-wave algorithm by empioying
the determinant matrix version of the original Thomson-Haskell formula-
tion as discussed above,

Hudson (1969) extended the work of Haskell (1964) and Harkrider
(1964) to synthesize seismic signals at teleseismic distances again
using contour integration as described by Lapwood (1949) or Ewing,
Jardetzky and Press (1957). Hudson's analysis is Timited to large epi-
central distances since terms decaying with distance faster than r_]/z
are ignored. The remaining terms are evaluated by using the method of
steepest descents for the first term in the asymptotic expansion of the
Hankel functions. However, as shown by Herrmann (1978}, the truncation
of the terms with poles between the real axis and the steepest descents
path leads to non-causal arrivals. Herrmann {1977) uses contour inte-
gration to study the complete SH-Love wave propagation problem in layered
elastic media. Following the lead of Carpanter (1966), Hudson (1969)
introduced attenuation factors for shear and compressional waves by
multiplying the final results by an empirical factor that depends on the
ray path from source to receiver.

More recently, the reflectivity method of Fuchs and Miller (1971)
became the most widely used wavenumber integration approach. One achieve-
ment in this work was the introduction of attenuation into the layers in
the form of complex velocities. This not only makes the multilayered
medium more realistic (viscoelastic), but also has the desirable feature
of shifting all the singularities of the F integrands off the contour

of integration, thereby allowing the numerical integration to be performed



directly along the real k axis. Hence, the formidable task of searching
for all of the poles of F ds eliminated.

However, Fuchs and Muller introduce several approximations which
1imit the applicability of their method. First of all, their Earth model
consists of a set of nonreflecting layers overlying a deep reflecting
zone. Their source representation is an explosion applied at the surface
of the layered half-space incapable of exciting any shear or surface-wave
motion directly. The compressional waves are propagated down to the
reflecting zone (using transmission coefficients derived from the Thomson-
Haskell layer matrices) after which only the compressional refiection
from the multiples and interconversions of the lower reflecting zone is
considered. Then the reflected compressional wave is transmitted back
to the surface and the vertical and horizontal displacement components
of F are computed by using the first order term in the expansion of the
free-surface reflection coefficients, The second significant approxima-
tion is related to the quadrature scheme used to evaluate the integrals
over wavenumber in Eq. (1.1). Fuchs and Miller numerically integrate
only over wavenumbers corresponding to the body waves (low k values
corresponding to phése velocities higher than the fundamental surface-
wave phase velocity). Moreover, they employ trapezoidal rule of inte-
gration which requires an exhaustive number of evaluations of the inte-

grands whenever the Bessel functions become too osciliatory.
1.2.2 Ray-Theoretical Methods

In the ray-theoretical approach, the total time-dependent wave

field in a Tayered medium is decomposed into contributions attributed to



an infinite set of rays from the source to the point of observation as
in Spencer (1960). Each ray contribution is evaluated by a numerical
solution of the impulse response as in Bortfield (1967), Muller (1968,
1970), or by the Cagniard-deHoop technique (1939, 1960) as in Pekeris,
et al. (1965), Helmberger (1968), Eerveny and Ravindra (1971), Gilbert
and Helmberger (1972), and Wiggins and He]mberger (1974). The solution
for each ray can be obtained exactly (Helmberger, 1968). However, the
number of rays se1e§ted is invariably limited by the computational
difficulties for each ray calculation. Yet, as is pointed out by Hron,
Kanesavich and Alpasian (1974}, if the selection of rays is poor, the
synthetic seismograms are misleading since rays with significant ampli-
tudes may have been omitted.

Hron and Kanasevich (1971) systematized the selection of a set
of rays for a given observation point based on the kinematic and dynamic
characteristics of particular types of rays (e.g., the rays with the
Targest amplitudes are generally those with the Teast number of reflections
and hence the most transmissions). However, in cases where multiples and
interconversions are important (see Kennett, 1974), the number of rays
increases strongly as shown in Table 1 of Miller (1970). For example, to
consider rays up to order seven in a ten layer model, it would require
760804 separate ray calculations for every source-receiver pair even when
conversions from P to S and S to P are neglected. Furthermore,
as pointed out by Chapman (1974), no matter how many rays are selected
from the infinite ray expansion, the response is necessarily band 1imited
in frequency since the theoretical seismograms consist of a series of

pulses that must be lTow-pass filtered to a frequency corresponding to the



transition time for the layers. Yet, when layers sufficiently thih to
obtain the desired high frequency signal are considered, it become in-
efficient to include higher order rays. On the other hand, Miiller (1970)
and Chapman (1974) have shown the importance of multiple reflections in
long period seismograms so that convergence in a homogeneous layered
medium using the ray-theoretical method is at most justified for short
period studies, where the higher order rays are less important in general.

Acknowledging that the ray-theoretical method is at best a high
frequency method, Wiggins and Helmberger (1974) present several approxi-
mations that increase the efficiency of the individual ray calculations.
Chapman (1974) lessens the long-period limitations by considering the
reflections from velocity and density gradients rather than from impedance
mismatches at the layer interfaces. Thereby, the summation of impulses
due to multiple reflections may be replaced by an iterative scheme in-
volving multiple depth integrals at long periods.

In summary, the drawbacks in the ray-theoretical approach inciude
the following: 1) selection of appropriate set of rays is difficult;
2) separate Cagniard paths must be found numerically by Newton's method
for every point on the contouf and for each kinematic group (rays with
same travel time) and for each source-receiver pair before the amplitude
response functions can be sampled at the time points; 3) ray expansion is
convergent only at sufficiently high frequencies; and 4) attenuation for
P and S waves is difficult to include since the response is obtained
directly in the time ddmaih (would have to use Carpenter's empirical

approach (1966) as discussed previously).
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To accomodate the objectives stated in section 1.1, the ray-
theoretical approach is clearly inadequate, while the wavenumber inte-

gration approach shows considerable promise.
1.3 DESCRIPTION OF PRESENT METHOD

In compliance with the objectives stated in section 1.1, the
problem of three-dimensional wave propagation in layered viscoelastic
media is formulated and solved in thé frequency domain by a wavenumber
integration approach. If desired, the response in thé time domain may be
obtained through Fourier synthesis. The azimuthal dependence {s repre-
sented by a Fourier series expansion so that the response at a particular
frequency reduces to the evaluation of a semi-infinite integral over
wavenumber, as typified by Eq. (1.1) of the previous section. The inte-
grands of these Hankel transform-type integral representations over wave-
number correspond to complete solutions of the equations of motion in the
frequency-wavenumber domain.

The kernels of the Hankel transform-type integrals (i.e., the
functions F) contain all the depth dependence, which includes recejver
depth, source depth and viscoelastic layer properties. In the present
wavenumber integration method, the F integrands are evaluated at a
particular frequency and wavenumber without approximation, in contrast
to the reflectivity method of Fuchs and Muller (1971). The F integrands
are given in terms of highly efficient factorizations of the upgoing and
downgoing wave amplitudes in each layer, The factorizations are based
on the generalized reflection and transmission coefficient matrices,

which are formed recursively, from one layer boundary to the next, so as
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to include all the ref}ection/conversion/transmission properties of the
layered medium.

The appearahce of common factors in the factorizations is taken
advantage of when computing the displacement and stress components for
multiple source-receiver depth pairs. Another desirable feature is that
the present approach lends itself to a physical ray interpretation;
analogously to discussions by Cisternas, et al. {1973) and Kennett (1974).

Introduction of realistic attenuation for shear and compressional
waves in each Tayer shifts the singularities of the F {integrands off
the real wavenumber axis, thus permitting the Hankel transform-type inte-
grals to be numerically evaluated along the real wavenumber axis without
recourse to principal values or contour integration} A numerical inte-
gration method is impiemented to economize the integration procedure
while at the same time eliminating the oscillation hazard of the Bessel
functions at large arguments,

The F integrands are sequentially sampled at discrete k points
satisfying the requirement that quartic polynomials accurately inter-
polate the amplitudes of the F integrands over each'5-p01nt integration
interval. Thereby, the numerical integration with the Bessel functions
can be performed analytically over each integration interval, thus avoiding
the oscillation hazards of the Bessel functions. The tail ends of the
- semi-infinite integrals are either handled analytically or else the decay
of the F 1integrands as a function of wavenumber determines the upper
integration 1imit. Since the radial dependence appears only in the
Bessel functions, it is expedient to calculate the integrals for multipie

epicentral distances simultaneously.
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Even thbugh the F integrands become more involved at higher
frequencies, there are no instabilities and hence no frequency limita-
tions. Within the realm 6f the physical model considered (e.g., hori-
zontally parallel viscoelastic layers); there are no Timjtations on the
source-receiver geometry or the layer properties., Since the method is
formulated in the frequency domain, any or all of the Jayer parameters
may include a specified frequency dependence. The procedure is rela-
tively cost-efficient and is highly fTeXibTe, allowing its usage in all
the applications suggested in section 1.1,

Integral representations of the displacement and stress fields
are presented in Chapter 2 for use in Chapter 3 as general solutions to
the equations of motion in cylindrical coordinates. Expressions‘for
source terms such as concentrated point loads and ring loads are also
given. The response of a layered viscoelastic half-space to a buried
- source is formulated in Chapter 3, where the wave propagation problem is
decoupled into vertically and horizontally polarized waves. Preceeded .
by a summary of all the integral representations from Chapter 3, the
method of numerical integration over wavenumber is described in Chapter 4.
Chapter 5 includes validation tests, comparisons and results to verify the
accuracy of the method in addition to exhibiting the flexibility of the
method. Chapter 6 presents a summary of the method and the resu1fs.from
Chapter 5.

Expressions for the reflection and transmission coefficients are
given in Appendix I and modifications for propagation.of vertically
polarized waves at Targe wavenumbers is presented in Appendix II. Static

integral representations of the displacement and stress fields are listed



in Appendix III, and the implementation procedure for point double couple

sources is derived in Appendix IV.
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CHAPTER 2
INTEGRAL REPRESENTATION OF THE DISPLACEMENT AND STRESS FIELDS
2.1 GENERAL SOLUTION OF THE EQUATIONS OF MOTION IN
CYLINDRICAL COORDINATES
General solutions of the inhomogeneous equations of motion for
a uniform isotropic viscoelastic medium are derived in this section.

The equations of motion in cylindrical coordinates (r, &, z) for forced

steady-state vibrations with time dependence exp(iwt) are

gl U
2, _1{, e _C)] M, 2 .
”[v Uy, r(? o Tl () et eu H F= 0
3u
2 ‘l(fg ) r)] a2 N
“[V Ug = ¥\ = 2y T (¥ ) g+ wTeuy + Fp = 0
2 A 2
witu, + () 22 WS, 4 FL = 0

(2.1)

F_ correspond to the components of

in which wu_, u o Fz

r . uz and Fr’ F

)
the displacement and body force per unit volume in the r, 8 and z

directions respectively. The Lamé constants (which mdy be complex) are
denoted by A and yu, while the density and the frequency are represented

by p and w, respectively. In the equations above,
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represents the Laplacian operator, while



au u u au

r r ;] z
= - = )
b ar r rao 82 (2 3)

denotes the dilatation.
Expanding the displacements and body forces in a Fourier series

with respect to the azimuth 6, it is possible to write

i

ur(r, 0, 23 w) j{: Qnurn(r s 2 )cos n(e - eo)

4y

ue(r, 8, Z;\m) = , EE: QnUen A )s1n n(e - eo) (2.4)
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uz(r, 9, 23 w) = jz: QnUzn(ro’ z_)cos n{g - 80)
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Fr(r, 9, Z3 w) = ; :E: QnFrn(r s Z )cos n(e - 60)
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Fe(r, 0, 23 w) = 4ﬂ53 :E: QnFen ro, zo)s1n ne - 60) (2.5)

:E: Qann ros Z )cos n(e - eo)

FZ(r’ 9,-2; m) =
4WB

in which o, is an arbitrary angle and Q, are constants with dimen-
sions of force to be defined later. The constants 4, p and B = (5757%

correspond to a shear modulus, density and shear wave velocity of

reference. The dimensionless variables r z, are defined by

0’
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ro = wr/B z = wz/8 . (2.6)

Substitution from Eqs. (2.4} and (2.5) into Egs. (2.1) leads

after some rearrandgement to the following equations

v (U +tU )t (Gt )%ﬂjﬁ—’l—a
"o nt1 Vrn = Yon o Mo ar, g M
* o,y i—”en) +(Fpy i-Fen) =0 (2.7)
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where g = YT u0'= u/i, Po o/p »
2 2 2
e ot e e (2.8)
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and
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A= + +=—U . (2.9)
n Br‘o ro ro on Bzo

At this point it is convenient to define

i""In(zo’ k) + u3n(zo’ k) =f ro(Urn iuen)‘]nj(kro)dro
0
(2.70)
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and

0

L F]n(zo’ k) + F3n(zo’ k) =f r‘o“:r‘n iF(?)n)‘]nff_'l(kro)dr«a
0

(2.11)

00

an(zo, k) =f rOanJn(kro)dro .
s

By taking appropriate Hankel transforms with respect to o of

Eas. (2.7) and recalling the well-known formulae

[+ 4] 2 d2 2 o«
f rovncpdn‘(kro)drO: (EZT - k )f rodd, (kro)dr (2.12)
5 /

0] 0

do . n o
f s (dro * e ¢)Jnj-_1' (kr )dr_ = % f rood, (kr )dr -, (2.13)
° ' 0

it is possible to show that Eqs. (2.7) reduce to

G ) e v u )T O+
Mol 2 ny Ty * U3, o Yo/"Pp

dz
+(~tFIn+F3n)=0
(2.14)
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where

& ‘f Pobndp (krgddry (2.15)
0
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Substitution from Eq. (2.9) into Eq. (2.15), and use of
Egs. (2.13) and (2.10) leads to

du2n

(2.16)
dz0

An - ku]n *

Recombining Eqs. (2.14) and making use of Eq. (2.16), the
following ordinary second-order differential equations for Uine Yo,

and Uz, are obtained

-QE— - {xn, +2 )k2 + Ugo = (A + n )k du2n +F, =0
Mo 42 o “Mo Pol*1n o Ho’" dz n
zg 0
(2.17)
du 2
1n qa 2 - =
-+ up)k dz, = [(Ao + 2ug) 422 k™ + pé]“Zn Fon = 0
0
(2.18)
and
2 0
d 2,70 -
0

The terms u1n(zo, k) and u2n(zo, k) are coupled through
Egs. (2.17) and (2.18) and are independent of u3n(zo, k} which must
satisfy Eq. (2.19). The terms U, and u, ~are associated with waves
whose particle motion is polarized in vertical planes (P and SV waves),
while the term Uan is associated with waves whose particle motion is

polarized in horizontal planes (SH waves).

A general solution of Egs. (2.17) and (2.18) may be obtained

by the method of variation of parameters. In this case, Uy, ~and Uny,
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are written in the form

yexo-
tu1n(zo, k)} ) -k v’ -k N }nzn(z R k)exp[ v (z ]
_ [

u2n(zo, k) -v k v -k “Bn(zo’ k)exp v(Z ]

\14,(2g> k)exp[v (z, - 2 )])

(2.20)
where the unknown functions ﬂin(zo’ k) (i =1, 4) are to be determined,
while zg and zd are arbitrary constants introduced here for later

0
use, and

2 Po § ) po‘ :
v = [k - (m)] s VOO = [k - (E)] . (2.21)

Requiring that the functions ”1(20’ k) (i =1, 4) satisfy the

conditions
exp[ v ] \

~v(z, - ] > _$o§ (2.2

-V k v -k <n?"nexp[\) ] ‘ 0
\ninexp[p’(zo - zo)]

in which the prime denotes derivative with respect to Z,s leads, after

-k v’ -k v’ nZnexp

substitution from Egs. (2.20) and (2.22) dinto Eqs. (2.17) and (2.18),

to the following system of first order differential equations
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--k v” -k v’ ninexp -v(zo - zgﬂ ) ( 0
-v k v -k nénexp —u’(z0 - zgj] ) 0
2 2 . ‘N >
~vk (v7)~ Wk -(v7) n3nexp[\)(zo - zo)] F]n/u0
vk R vk nanexp[y'(zo . zg)] \Fo/ (h + 20)
(2.23)

Inverting the square matrix appearing on the left-hand side of

Eq. (2.23) and integrating with respect to Z, results in

uP

inZgs K) = AL (K) + 8. (2, k) (i=1, 4) - (2.28)

where Ain(k) (i =1, 4) are coefficients independent of z, to be

determined by boundary or other conditions, and Sin(zo’ kY (i =1, 4)

correspond to the source terms given by

%Sln(zo, k)l i} ]_fo :GIS' exp[v(za - zg)] exp{v(zé - zg)]
Z
SZn(Zo’ k)s Po zg —exp[}’(za - zg)] g%-exp[y‘(za - zgﬂ
F1n(26’ k)
X { dza (2.25)
F2n(26’ k)
{SBn(zo’ k)£ o fzg % exp[—v(zc’) - Zg)] exp[—v(z(‘) - zg)]
2
S4n(zo’ k) Yo z, exp[fv“(zé - zg)] g%-exp‘}u’(zar~ zg)]_
F]n(26= k)
X % dZ(; . (2-26)
F2n(z(;’ k)



The terms associated with "n and Non correspond respectively
to downwardly propagating compressional and shear waves, while those
associated with N3 and Man correspond respectively to upwardly pro-
pagating compressional and shear waves. Particular forms for the source
(z

peint and ring loads.

terms k) are presented later for the case of concentrated

Sin o’

Proceeding in a similar fashion it may be found that the general

solution of Eq. (2.19) is given by

u3n(zo, k) = k {“5n(zo’ k) exp[}v»(zo - Z:i]

* g (zg5 k) exp[v‘(zo . zg)]} (2.27)
where
n1n(20, k) = A1n(k) + Sin(zo’ k) (i =5, 6) (2.28)
and
z
Sz k) = % [‘(z’ ; u)]F (22, K)dz-  (2.29)
5n*“op’ 2“0 kv~ u Py o ~ %0’]"3n\%p? %5 :
5
d
z
Se.(z , k) = . ° ex [— (22 - zdi]F (z-, k)dz- . (2.30)
6n*“o? 2u0 kv~ P 0 ol "an‘%o? o’ T
z
0

In Eq. (2.27} the terms associated with gy, and g, corres-.
pond to down- and upwardly propagating SH waves, respectively. In
writing Eqs. (2.25), (2.26), (2.29) and (2.30), it has been assumed that

the body forces vanish outside the depth range -[zg, zg].
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Having obtained general solutions for u1n, Unp and Ugs it
only remains to invert the Hankel transforms appearing in Egs. (2.10)
to obtain

‘oo

Urn(ro’ Zo) i-Uen(ro° Zo) 3 J/ﬁ k[i-uln(zo’ k) + u3n(20, k)]anjj(kro)dk
0

(2.31)

(=]

U (v ) = f Ky (2> ), (kr )k -
' 0

Substitution from Eqgs. (2.31) into Eqs. (2.4) leads to the
desired integral representation of the general solution of the equations

of motion in cylindrical coordinates.
2.2 INTEGRAL REPRESENTATION FOR THE STRESS COMPONENTS

An integral representation for the stress field corresponding
to the displacement field described in the previous section is obtained
here. The stress-displacement relations in cylindrical coordinates are

given by

rz

Q
"
™o
=
&
+
>
>

zZZ 3z

(2.32)

i]
[y ]
-:"
+
P
>

UTT 9Z
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in which A

in a Fourier

crz(r’

Uaz(r’

™~
|+

1
H

(=]
|

rae r

. Bur+3Ue-—U—e—
or ~ Mrse = Tor r

is defined by Eq. (2.3

au u
$] r
= — ] 4
06 Zu( ) AA

1

>
8, z; w) = 2 Qn‘zrzn

drr= n=0
o
0, Z3 w) = %
dny? =0 102N
s
0. Z3% w) = X
4nr2 n=Q zzn
Y
8, 7, w) = Q.
. Aepl hep DYrn
Y
B8, Z5 w) = Q =
gnr? m=g M ooM
)
9,2;(1.)): " Q Z
oy’ w0 19N
of Egs. (2
. - aUzn T 3
8zn o 3, r,ozn oz
N
zn
2u, 2z, T Ay A

). Expanding the stress components

series with respect to the azimuth

(ro, zo)cos
(ro, zo)sin
(ro, zo)cos
(ro, zo)cos

(ro, zo)cos

(ro, zO)s1n

B

n(e

n(e

.4), (2.32) and (2.33), it can be

leads to

1
far)
~—

shown that

(2.33)
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| U
= 2] -
z +x = 2[\>\0 + uO)An o 3y (2.34)

u ol
0 _ zn
ren Ti: (Urn *ny n) = (g * 2u)) 2u0 3z
2u u
0 o ({2 n+1
Zgyn * T, (MU, + Ugp) =5 [(aro r ) (Ugy * 8gp)

3 -1
iy ) e - “en’]

where b is given by Eq. (2.9). Substitution from Egs. (2.31) and
recalling from Eqs. (2.15) and (2.16) that

3 du,
Ah=f cllang + 22| 9, (kr )k (2.35)

Teads to

Zrzn = Zozn T f k[i T1n{Zgs K} ¥ 0p3,(250 k)] Jnil(kro)dk

s =f Kogpe (2ge K. (kr, )k
0

=]

Zoen ¥ Zggn * f kogan(zs K (kr )dk (2.36)

S 2u -
0 "
Tpen T T (v + nUen) = f Hn(z k)Jn(kro)dk
)

2y
Zgpn * ?0- (nd,, f ko 3n(zgs KN (ke )dk
0



in which

I91n{Zge

922n{Zgs

023n(zo’

933n(Zg

102>

9130 {Zg

=
—
i

ol
—
1

1

k)

k)

1l

k)

k)

Z[Flo + zpo)(%u1n +

(2 2“0)(Eu1n ¥

“ok“sn

Egs. (2.37) results in

021n\

9221
{ ?

033n‘

\ “11n

r
2vk

2 -2
(2k- - B, )

2852(2¢% - 1)-2k2

-2( 2 2

. - 1)-2k

g " (2v

n1n(z ,k)exD[ w(

v*

b“Zn exp

\ﬂ[m E‘Xp [\)

du
0
dUZn) i duoy,
dz0 0 dzO

Finally, substitution from Eqgs.

Jexp -7(:
“3n z ,k)exp{%(z -z ]

2 -2
-(2k“ - By )
-2kv-
2kv”

2kv”
] \
_ 5 ]

el

-2

-2kv

(2k2 -
s 2

28, (2y

-2/ 2
B, (2v

87%)

(2.20) and (2.27) into

- 1)-2k

1)-2k2

(2.37)
(2k?
-2kv”

Z 2kv~
2kv~”

{2.38)
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and

‘023”1 -kv’ kv~ ”Sn(zo’ k)exp[—v’(z0 - zg)]l

u
lc]3n S ol k2 K? NgnlZg k)exp[\)’(z0 - zgi} s

where By is the normalized (complex) shear wave velocity

(2.39)

: _
5, =42 =y (2.40)

and vy 1is the {complex) ratio of the shear wave velocity to the com-

pressional wave velocity

2 Mo u

YORATE I
AO 2“0 A+ 2u

(2.47)

Eqs. (2.33), (2.36), (2.38) and (2.39) provide the desired
integral representation for the stress components in cylindrical coor-

dinates.
2.3 SOURCE TERMS FOR CONCENTRATED POINT LOADS

The source -terms described in Section 2.1 are obtained here for
the particular case of a point load acting at the point of coordinates
(0, 0, zs) as iliustrated in Figure 2.1. The body forces per unit

volume in Cartesian coordinates are given in this case by
Fe(xs ¥y 23 w) = Q) cose s(x)s(y)s(z - 2°)
F (X, ¥y, 23 w) = Q sineoﬁ(x)a(y)a(z - 25) (2.42)

y

F0%, ¥, 23 0) = Que(x)s(y)s(z - 2°)
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z

Figure 2.1. Source-receiver geometry for concentrated
harmonic force acting at point of coordinates
(0, 0, z5).
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where QO represents the vertical component of the concentrated force
while Q] represents the horizontal component of the body force which
acts on a line forming the angle 50 with the x-axis. In cylindrical

coordinates, the components of the body forces per unit volume are

3 s(r )
N AUJ_ _ 4} - S
- (M) y cos(o - 6,) 50 8(z, - 25)
g 0
\3 s(r.)
= _(ﬂ_. T - _..._0._.___ - S
ﬁa (Ei) Q] sin(e so) Zwro a(z0 zo) (2.43)
3 §(r_)
() o i, - 2
ya 7 0 ano 0 0
where the dimensionless coordinates ro, z0 and ZZ = wzs/ 8 have

been used. Comparison of Eq. (2.43) with Eq. (2.5) leads to

FrO(ro,‘zo) o, Feo(ro, Zo) =0,

= 2 _ S
FZO(PO, Zo) = v G(ro)a(zo Zo)
(2.44)
- _ 2 s
Fr1(ro’ Zo) B 'Fel(ro’ Zo) B s G(ro)s(zo B zo) ’

le(ro, Zo) =0,

Equations (2.5) and (2.44) indicate that the vertical component
QO of the concentrated force leads to source terms that are independent
of the azimuth o (n = 0) while the horizontal component Q1 Teads to

source terms that depend on cos(e - eo) and sin{e - eo) (n = 1).
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Substitution from Egs. (2.44) into Egs. (2.11) results in

F10(z » k) =0,

- : s _ -
0 FQO(Zo’ k) = 26(7_0 - Zo) . F30(ZO’ k) =0

(2.45)

- s -
FH(Zo’ k) = —26(20 Zo) , F..{z_.,k)=0.

= Fa(zgs ) 2142,

Finally, Eqs. (2.45) together with ‘Egs. (2‘.25), (2.26), {2.29) and

(2.30) lead to

S]O(Zo’ k) ) exp[Q(zg - zgi]H(zo - ZZ)
)520(20, k) ] v—k; exp[v‘(z(s) - zE)]H(zO - zg)
> = L s 4 . (2.46)
830(20, k) e -exp[qdzo - zoﬂ}ﬂzo - zo)
Sa0(2,0 K) \ - g%~exp[}v’(zg - zgi]H(zg - z,)
gSSO(Zd, k) 0
= (2.47)
lsso(zo’ k) 0
and
511(20’ k) ) 5—expi}(zg - zg)] H(zO - 23) )
52](20, k) : exp[v’(zz - zgi] H(z0 23 \
X - 19 k [ s d s | (2.48)
531(20, k) Po ;—exp.;v(zo . zo)] H(z0 - Zo)
\341(20, k) exp[—v‘(zz - zg)] H(zz 20)
55](20, k)) ] exp[Q’(zg - zg)] H(zO zg)
S vl (2.49)



In the above equations H(x) denotes the Heaviside step function. The
source terms for the vertical component of the concentrated force are
given by Eqs. (2.46) and {2.47), while the source terms for the horizon-
tal component of the force are given by Eqs. (2.48) and (2.49). Equation
(2.47) indicates that a concentrated vertical force will not excite SH
waves. It should be mentioned that the source terms corresponding to
downwardly propagating waves (S], S, and 55) are zero above the
source (z0 < zg) while the source terms associated with upwardly propa-

gating waves (SS’ 54 and 56) are zero below the source (z0 > zg).

2.4 SOURCE TERMS FOR RING LOADS

The solution of a variety of axisymmetric problems in elasticity
may be simplified by considering the response of a viscoelastic medium
to loads distributed on a ring. In this section, the source terms and
some rearrangements of the integral representations described in previous
sections are derived for the case of ring loads.

In the first place a vertical load distributed on a horizontal
ring of radius a as illustrated in Figure 2.2a is considered. Assuming
that the vertical load per unit arc is (Qn/Zﬂa)cos n(e - eo), then the

distribution of body forces in the medium is

Folrs 8, 25 w) = 0

Q

Fz(r, 8, z; w) = ?ﬁ% cos n(e - eo)é(r - a)s(z - z°%) .

Folr, 0, 25 o)
(2.50)

Introducing the dimensionless variables Yor 29> 8¢ = wa/g and

zg = wz*/B , it is possible to rewrite Eq. (2.50) in the form

30



Figure 2.2.

(c)

Azimuthal dependence of concentrated loads
distributed on a horizontal ring of radius
a. Vertical, radial and tangential ring
loads are shown in Figures a, b and c,
respectively, for ring orders n = 0 and

n =1, Figure c for n = 0 cooresponds to
neo-= /2 %a]] other fiqures are for ne0 = Q).



w )\ Qn
F =F_=0; Fz(r, 8, Z; w) = (Ef) E}g;-cos nie - eo)

x §(r, - a )e(z, - zg) . {2.51)

%
Comparison with Eq. (2.5) leads to

s{r - a)}
F = F =0 F :2‘—0““—0—5(2 ...Z(S))_ (2.52)

Subétitution from Eq. (2.52) into Eq. (2.11) results in

F1n(zo’ k) F3n(zo’

(2.53)

S
FZn(Zo’ k) ZJn(kao)é(z0 - 20) .

Comparison with the corresponding terms for a concentrated point load

indicates that the source terms Sgn(zo, k) (i =1, 6) for the vertical

ring load can be expressed as

i _ s
Sin(Zgs k) = Sm(zo, k) (ka)) »  (i=1,4)
(2.54)
yV - oV _
SSn(zo’ k) = Sﬁn(zm’ k) =0

where SiO (zo, k} (i = 1, 4) represent the source terms for a concen-
trated vertical point load as given by Eq. (2.46).

Taking advantage of the particular form of Egs. (2.54), it is
possible to obtain the following integral representation for the Fourier
components (with respect to the azimuth 6} of the displacement and

stress components for a vertical ring load:
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v +]

v v o _
Upp * g = _+_j ku]O(Zo’ k)dn(kao)anﬁ(kro)dk
0

v .
UZrl —f kUZO(ZO’ k)dn(kao)dn(kro)dk
0

@«x

Y v
Zrzn * Zezn g f kGZ]O(Zo’ k)Jn(l‘l‘ao)‘]nﬂ(kro)dk
0
v oo
2 f Kapog(zg» K3 (ka )3 (kr, )k (2.55)
0

xR

ren T e, rn n 1100’ n' "%/ nt e
0
2u
) 0 v ) _
Zopn * _r: (nUm * Uen) =0.

In these equations, the terms “10(20’ k) and GijO(ZO’ k) correspond
to those defined by Egs. (2.20) and (2.38) for the case of a concen-
trated vertical point load. Egs. (2.55) indicate that to obtain the
response for a vertical ring load it is only necessary to introduce the
factor Jn(kao) in the integral representation for a concentrated verti-
cal point 1oad. Another interesting point is that a vertical ring load

does not generate SH waves as shown by the fact that the source terms

v

SSn

Vv
and SGn are zero.



Next, a radial load distributed on a horizontal ring of radius a
as illustrated in Fig. 2.2b is considered. Assuming that the radial load
per unit arc is (Qn/zﬂa)cos n{e - eo), the distribution of body forces

in the medium is

Fr(r, 8, 23 w) Eﬁ% cos n(s - eo)s(r - a)slz - 2°) ,

(2.56)

Fe(r, 0, Z3 w) = Fz(r, 8, 2; w) =0 .

Proceeding in the same fashion as described for a vertical ring load it

is fdund that

FinlZos ) = [Jpkag) - 9, 1tk ]sz, - 25)

F2n(zo’ k) =0 (2.57)
FanlZs K) = [Ipq(kag) - 9, (kag)]s(z, - 25)

from which the source terms S?n(zo, k) (i =1, 6) for a radial ring

1oad are obtained:

H

Sinlzgs K) = Syq(20 )3, (keg) = 3 4q(ka)]/2 (i=1,0)
(2.58)

511025 )91 (kag) + g (kag)] 72 (i=5,6)

R
Sin(zo’ k)

where Sil(zo’ k) (i =1, 6) represent the source terms for a concen-
trated horizontal point Toad as given by Egs. (2.48) and (2.49).
Finally, for a tangential ring load (Qn/2na)sin n{e - eo) per

unit arc as illustrated in Fig. 2.2c the distribution of body forces is
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Fe(r, 8, Z3 w) = é?né“ sin n(e - 60)6(r -a)s(z - 28)
(2.59)
Fr(r, B4 Z3 w) = FZ(Y‘, 8, 23 w) =0
and the source terms S:n( 2 kY (i =1, 6) are
ST(Zgr K) = =54z K3y (kag) + g qtal] e (121, 0)
(2.60)
T a .
STn(Zr K) = 541205 K)[3y 4 (kag) - 3 (ka)]72 (1 = 5, 6)

Given the particular form of the source terms for radial and
tangential ring loads, the following integral representation for the
Fourier components of the displacement and stress components may be

obtained:

o

R, T ) R .. T ). [— ]
(ur,n + Um + (Uen + Uen) = f k| ¥ujq + ugy Jn_ﬂ(kao) Jnﬂ(kro)dk

———
[
.~
=
t
=
= —
>
e
|+
——
[
@
=
i
[y
@
=
S’
i

/ K[ty + gy (kag) Iy (krg )

0

R T _ =+
Uzn l Uzn B +f kuZl‘]nﬂ(kao)Jn(kro)dk
0

R T R
(Zrzn ¥ Z1r~zn) b (Ze zn ezn f k o1 ¥ U231:[ Jn+1(kao)Jnﬂ(kro)dk
o

R T R kr Ydk
(Zrzn Erzn) b (2.6 n ezn f k *oony * 231] Jn-'l(kao)‘]nﬂ( ro)
0
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R T = :
Pon P lggn &7 J{. k”ZZIJnf}(kao)Jn(kro)dk
0

[«4]

R T R TY. ¢
(zrr‘n il ern) N (Zeen ad 268) - +f k0331‘Jni1(kao)‘]n(k‘r‘o)dk

R T Mo R T r T
(zrrn i-Errn) te ?f'[(urn i-Urn) ¥ n(Uen i-Uen):l

o

R T Yo R T R T
(Eern i-zern) +e —"[é(urn i-Urn) ¥ (Uen iUen)]

= fkomdnﬂ(kao)an(kro)dk . (2.61)
0

In these eguations the terms u11(20, k) and Gijl(zo’ k) correspond to
those defined by Eqs. (2.20) and (2.38) for the case of a concentrated

horizontal point load.
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2.5 ATTENUATION

It is weil known that dissipation of energy accompanies trans-
mission of stress waves in solids, even when the waves have small
amplitudes. In general, this conversion of elastic energy into heat
-produces attenuation and dispersion of the stress waves, although the
dispersion is typicaliy smé11 for earthquake waves.

The dissipative properties of solids are commonly measured by
analyzing the decay rate of standing wave amplitudes in free vibration
experiments in the laboratory or the actual decay of waves propagating
in the field, where the amplitude decay will include the effects of
heterogeneities in the Earth.

Analogously to the familiar expression in electrical circuit
theory, the following dimensionless measure of dissipation, 1/Q, is

commonly accepted in seismology (for instance, see Knopoff, 1964):
2n/Q = AE/E . (2.62)

In Eq. (2.62), AE is the amount of energy dissipated per cycle of a
harmonic excitation in a certain volume and E 1is the elastic energy
stored in the same volume when the strain is a maximum. ‘There is consi-
derable evidence from measurements of homogeneous materials in the
laboratory and in the field that the specific attenuation factor, Q, is
substantially independent of frequency.

Various modifications to Hooke's law have been attempted in order
to account for the deviétions in behavior between real materials and per-
fectly elastic materials. One classical modification is the Kelvin-Voigt

solid in which dissipation is attributed to an added stress proportional



to the rate of strain. Ignoring the tensorial relations involved, the

stress-strain relation for a Kelvin-Yoigt solid is

o= ue + p” g%‘ (2.63)
so that the effective shear modulus is complex:

P = u(} + 4 Egi) : (2.64)

The phase velocity for a damped harmonic wave in the Kelvin-V¥oigt solid

is given by .

, 1172
o= |2 1+ (wnt/p)

Vit (/)2 + 1 |

which assumes a value (u/p)1/2, appropriate for an elastic body when

(2.65)

w = 0 and increases with frequency, becoming infinite as w > =
(completely attenuated wave)Q The specific attenuation factor for the

damped harmonic wave is given by

| ]l 5 \I/2
200" ) = 1 - exp|-ax| Yot (wn’/u)” - 1 , (2.66)
1+ (/) 0
Assuming that p” << u or Q >> 1 1leads to
0 & wn/n | (2.67)

so that Q 1is inversely proportional to frequency for the Kelvin-Voigt
solid.
Another classical modification to Hooke's Taw is the Maxwellian

reiation
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jo R
™
(=N

1 'do 1
- .
= 'I',+ ~ O (2.68)

jo %

t

so that the dissipation js attributed to the actual permanent deformation.

The complex shear modulus for the Maxwell solid is

-1
= 1 - 1 “_3.‘.1_..

and the phase velocity is given by
1/2

2 ! : (2.70)

Y TZ
Ve (e
wil

which assumes a value (u/p)]/2 as wu” >« and a value (2pwp”/p)

1/2
as wp” = 0. The corresponding specific attenuation for a damped harmonic

wave 1is approximately
(LI (2.71)

so that (Q 1is proportional to frequency for the Maxwell solid. For both

models, the complex shear modulus is approximately

w* = u(1 +9/Q) . (2.72)

The attenuation model considered in this dissertation for a
layered viscoelastic half-space employs a complex shear modulus defined

in the same way, except that

u* o= (1 + i/QB) (2.73)

where QB is assumed to be frequency independent. The shear wave
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velocity is given by

s = (/)7 = 51+ a0V

in which QB is termed the shear wave specific attenuation factor.

Similarly, the compressional wave velocity is given by

% 4 ox /2
ok = (é~_€%jhi_) = ofl + 1/Qa)1/2 i (2.74)

in which Qa is termed the compressional wave specific attenuation
factor.

Although QB and Q  are assumed to be independent of frequency
for this model, any frequency dependence may be incorporated since the
Green's functions are formed directly in the frequency domain. Further-
more, Futterman (1962) points out that a frequency independent Q is
inconsistent with causality. Since Q'1 =0 at o = 0, then there
would necessarily be a discontinuous slope at the origin and a phase
velocity independent of frequency. Futterman and others have investigated
models in which Q 1is independent of frequency only above a characteris-
tic Tower cutoff frequency. Allowing the phase velocity to be frequency
dependent, reasonable models include the expression in Eq. (2.66) divided
by « or a logarithmic dependence in which the dispersion introduced by
caUsa1ity is of the order Q'], where @0 1is roughly constant over a
rather broad frequency band.

A1l the results presented in this dissertation assume a fre-
quency independent Q. The imaginary parts of the Green's functions as

w > 0 are roughly proportional to 1/2Q, In engineering terminology,



1/2Q corresponds approximately to the critical damping ratio in the
material.

It is useful to point out that &g, QS’ o, Qu may not all be
measurable quantities for a given problem. For example, it is more
common to know the real and imaginary parts of the wave velocities.
Since the formulae in Eqs. (2.73), (2.74) result in increases of the
2)1/4

velocities by factors of (1 + 1/Q , then a more rational definition

for the complex velocities would be

IR L B INS R
B* B ZBQB ’ a* o ZaQu ’ (2.75)

Also, if it is assumed that no dissipation occurs in pure compression,

then Qa may be related to QB by the expression

q =3 (%)2 Q, - (2.76)

o

As discussed in Chapter 4, the effect of introducing complex
velocities into the multilayered half-space not only results in a more
realistic model, but also allows the numerical integration procedure
to be performed along the real wavenumber axis without fecourse to

principal values or contour integration.
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CHAPTER 3
RESPONSE OF A LAYERED VISCOELASTIC HALF-SPACE TO BURIED SOURCES

3.1 MATHEMATICAL FORMULATION

In this Chapter a new procedure to obtain the three-dimensional
response of a layered viscoelastic half-space to buried sources with time
dependence of the type exp[iwt] is described.

The viscoelastic half-space (z > 0) under consideration is
assumed to be formed by N parallel horizontal Tayers overlying a uni-
form half-space as illustrated in Fig. 3.1. The jth layer (Jj =1, N)
has a thickness h.; =z

RS IS T
faces located at depths Z5 and Z5 respectively (z0 = 0). Each of

and is bounded by upper and Tower inter-

tﬁe N + 1 wviscoelastic media forming the layered half-space is charac-
terized by a complex compressional wave velocity ?j’ complex shear wave
velocity Bj and density P (J =1, N+ 1). For the purpose of the
discussion and without loss of generality it will be assumed that the
buried source corresponds to a concentrated point load within the 2th
medium at the point of coordinates (0, 0, 25).

In the jth medium, the displacement vector in cylindrical

coordinates (uﬂ, ug, u;) must satisfy the homogeneous (j # &) or
(

inhomogeneous (j = ¢) equations of motion depending on whether or not
the source is lecated within the jth medium. In addition, the displace-
ment and stress fields must satisfy the traction-free boundary condition
on the surface z = 0 of the half space, the conditions of continuity of

displacements and tractions across each interface, and finally, the

radiation condition in the underiying half-space. In cylindrical
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Figure 3.1. Model for layered viscoelastic half-space
formed by N parallel horizontal layers
overlying a uniform half-space.



coordinates, the traction-free boundary condition on the surface z =0

of the layered half-space is

., =0, o, =0, o_=0 on z=2y=0 (3.1}

i a1 J o i1 J - Jt
Ur‘ Ur N Ue Ue N UZ UZ
(3.2)
j - Jt j - Jtl j - gt - -
Tpg = Opy 2 Op, = Opo 5 0, =0y, ON Z Zj (j =1, N).

In Egs. (3.1) and (3.2), Uiz’ ng s ... etc. correspond to the stress
components in cylindrical coordinates in the jth medium. A detailed
expression for the radiation condition will be given later. At this
point it is sufficient to say that the radiation condition leads to
three additional scalar equations in the underlying half-space (j = N + 1).
In the previous Chapter it was shown that the general sclution of the
equations of motion in a viscoelastic medium involves six undetermined
coefficients. The evaluation of the response of a layered half-space
consisting of N + 1 viscoelastic media in contact reduces then,
essentially, to the determination of 6(N + 1) undetermined coefficients
by imposing the 6(N + 1) restrictions corresponding to the boundary,
continuity and radiation conditions just described.

Recalling the integral representations obtained in Chapter 2, it
is possible to express the displacement and stress components in the

jth medium in the form
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J . J _
ur(r, 8, Z; w) Urn(ro’ zo)cos n(e 60)
. " .
wir, 0, 25 0) 5 = —2 Z Q¥ Ugn(ro, z,)sin n(e - o)
dpur n
J . J _
UZ(T, 6, 23 w) \Uzn(ro’ zo)cos n{e eo)
(3.3)
; j )
oy (rs 0, 73 w) ) Tygn(Tgs Zg)cos n(o - 60)‘
. r .
J . - _ 0 J : -
aez(r, 8, 23 w) Aﬂrz :;:.Qn Zezn(ro’ zo)s1n n(e eo)1>
J . J _
a5 {rs 85 23 w) Iy, n(ror 25)C08 n(o 0,) )
{3.4)
ki ) J _
Grr(r’ 8, 2, w) ) ern(ro’ zo)cos nie eo)
. r .
J . = __© J -
Oee(r’ 0, Z5 w) 4ﬁr2 :;: Qn Zeen(ro’ zo)cos n{e eo)
J ) J : -
ayn(rs 8, 25 w) g (Pe Zg)sin n(e - 8.)
(3.5)
(zjq 222255 2520, zyq==, J=1,N+1)
where r_ = wr/B , z. = wz/B8 , B and u correspond to a shear wave

0 0
velocity and a shear modulus of reference, and QO denotes the vertical

component of the point load while Q1 represents the horizontal component

along the 8 = 8, azimuthal dirvection. The terms Uin 3 sees s
J

zrzn s -.-. » are given by
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where

j Jo_ J J ]

Ur‘n + Uen f k[iuin(zo, k) + u3n(zo, k) Jnﬁ(kro)dk
0
(3.6)

J J

Uzn f kUZn(Zo’ k)Jn(kro)dk
0

hj i J J

“rzn T ven J/. k[i‘jzm(zo’ k) + G23n(zo’ k)t]JnH(kro)dk
0
(3.7)

i . J

2an f kczzn(zo, k)Jn(kY‘ )dk
o

3 . J

Een * Zhon f k033n(zo’ k)Jn(kro)dk
o

] Gy ] e

Brn 2 T (Urn + nUen) = f ko.”n(zo, k)Jn(krO)dk (3.8)
J o 0

. C. . . 2 .

J o J J - J
Zern + 2 Ir (nUrn + Uen) f kU]Bn(Zo’ k)Jn(krO)dk

0
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u%n( > k) n%n(zo, k)exp[—v (z, - 2
J ' J
g {2z 4 k) ma{z , Klexpl-vi{z_ - z
< 2‘1n >: [I‘%(k)-] 2n'“o 0
J J J
22n( k) n3n(z , k)exp[yJ( o " %
%3n(2 . k) n4n(z , k)exp[ 3( 0" zg
/
3 Tin(Zer K)
and
J
u3n(zo’ k) b .
‘ ‘ 5 (2o k)exp[ J( RN
J _ J
lﬁzgn(zoa k} = [13(kﬂ . )
J J
i nz (z_, k)expﬁJ( -z
G%3H(ZO’ k) en*“o i‘7o 0
In Egs. (3.9) and (3.10), 2 - wz;/8 (3 = 0, ), 22+] _—

I%(k) and I%(k) denote the

2kv.c.

N Z -1

Jl (2 ¢ )
2(2y§-1) - 2kec

2

2

(6 x 4)

v3d;

kd.
J

—(2k2cj—1)

-2kvic.
Vit

ok
Vi

ZkaCJ

and

(3 x 2)

-kd.
J

dej
—Ekvjcj
2
2k c,-
( < 1)

2 2
Z(ZYj

Z i
(Zyj~1) - 2k Cj

1) - 2k ¢

{3.10)

Z,» the terms

matrices defined by

p—

JdJ

-kdj

(2k2cj-1)

-2kvic.
Vit
2kvc.
\)JCJ

J

ZkaC

(3.11)
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and
kdj kdj
19 ] S N .| . .
{ 3(k) dj kacJ kacJ (3.12)
Lkzcj kzcj

In the above equations the following notation has been used

B [KZ B (Eyuj)2]1/2 y  voo= [kz - (Eyej)2}1/2

<
I

(3.13)
)2

d. =o/o. » c; = (Bj/E

i 3 j 5 Yj = (Bj/aj)

where p 1is again a density of reference (y = E2 o). In Egs. (3.9) and

(3.10), the terms ngn, ”%n and ng (j =1, N+ 1) are associated with

downwardly propagating P, SV and SH waves, respectively, while the

terms "%n’ ”in and ”gn (i =1, N+ 1) represent the corresponding
upwardly propagating waves. The terms n%n(zo, k) (i=1,6; =1, n+1)

may be written in the form

J _ pd 2 . o
ﬂin(ZOs k) - Ain(k) + Sjﬂsin(zo’ k) s (1 - ]5 65 J = ]s N+ 1)

(3.14)

in which, A?n(k) are undetermined functions of the dimensioniess wave
number k to be determined by the boundary, continuity and radiation
conditions, djm is the Kronecker delta function and S%n(zo, k) are the
source terms given by '



/S%O(zo, k) exp[}Q(zg - zﬁ_])]H(zo - zé)
$%o(zye )  (krvplexp [o7 (s - 22N HGz, - 23)

- d (3.15)
Sgo(zo, k) x ~exp[~vl(zz - zg)]H(zg - zo)
SEo(z,0 K) ) —(k/vi)exp[—vi(z; - zo)]H(zg - z)
séo(zo, k) 0
. = (3.16)
560(20, k) 0
( 5%1(20, k) ( (k/vﬂ)exp[yg(zg - zi'])]H(zo - zg)\
T (I e I
=d 3.17
5§1(Zo’ k) % (k/vg)exp[fvz(zg - zgi]H(zg - zo)
Sil(zo’ k) exp[—vi(zg - zg)]H(zg - Zo)
{Sé](zo, k)} d, ‘exp{yi(zg - z§'1)]H(z0 - zg) ( |
= T 3.18
Sé](zo, k) kvgcﬁ lexp[~v£(z§ - zﬁi]H(zg - 20)

S
where 2z~ =

o wz> /B and H(x)

denotes the Heaviside step function.
Having presented the integral representation for the displacement
and stress field, it becomes clear that the radiation condition in the

bottom half-space (j = N+1) can be expressed by

+1
n

AN+1

Tl =0, A§:1(k) =0, A (k) = 0 (3.19)

corresponding to the condition that only downwardly propagating waves

are considered as z + «.
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Given the particular form of the integral representation provided
by Egs. (3.3) through (3.7), it is possible to sebarate the boundary
condition given by Eq. (3.1), the continuity conditions given by Eq. (3.2)
and the radiation condition given by Eq. (3.19) into two groups of
conditions. The fi}st group of equations corresponds to the boundary,
continuity and radiation conditions for waves with particle motion
polarized in vertical planes (P, SV and Rayleigh waves), and it is

given by

1 - 1 - |
02'“.'(05 k) =0, 022n(09 k) =0 ) : (3.20)

w2, 0=l 0, u2n(z , k) = um(z k)

o
(3 =‘1, N)
o o (3.21)
a2 ) = ol K @ 0 = (e 0
| G =1, N)
AT =0, AT =0 (3.22)

These 4(N + 1) equations will be used in Section 3.2 to determine the
4(N + 1) undetermined coefficients Al (k) (i =1, 4; 3 =N+ 1) on
. J J J J
which Uins Uons 951p and ey depend.
The second group of equations representing the boundary, continuity
and radiation conditions for waves with particle motion polarized in

horizontal planes (SH, Love waves) is

035 (0, k) = 0 (3.23)
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ud (2, K = KL G

0 3n ‘o
(3.24)
h| J _ g+, o
023n(zoi k) - 6231'](20’ k) 3 (J 1: N)
AR (K = 0 (3.25)

These 2(N + 1) equations will be used in Section 3.3, to determine the

2(N + 1) undetermined coefficients A3 (k) (i =5, 653 =1, N+1) on
which u%n and U%3n depend.

Once the coefficients Agn(k) have been found, the displacement
and stress components given by Eqs. {3.3), (3.4) and (3.5) may be ob-
tained by performing the integrations indicated in Egs. (3.6}, (3.7) and

(3.8).
3.2 PROPAGATION OF VERTICALLY POLARIZED WAVES

In this section the 4{(N + 1) undetermined coefficients Agn(k)
(i=1,4;3 =1, N+ 1), or, equivalently, the 4(N + 1) unknown
functions n?n(zo, k) (i=1,4; j =1, N+ 1) appearing in the terms
associated with waves whose particle motion is polarized in vertical
planes (P, SV and Rayleigh waves) are determined by imposing the boundary,

continuity and radiation conditions given by Egs.. (3.20), (3.21) and

(3.22). As discussed in Chapter 1, a variety of procedures have been
proposed by different authbrs to solve the 4(N + 1) Tinear algebraic
equations representing the conditions just mentioned. Most of these
methods are numerically unstable at extremely low and high frequencies.

The new procedure proposed here closely parallels the physics of the

problem and eliminates the frequency limitations.
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Considering Fgs. (3.9) and (3.11), it is possible to write the

boundary and continuity conditions given by Egqs. (3.20) and (3.21) in

the form
k. (2%, - 1) (0, k)
11 1 ”1n
2 ”~
(2k ¢y - 1) —Zkv]c] n2n(0 k)‘
2kv.C "(ZKZC] - 1) n;n(O, k)exp(-v]hé)
- [ (3.26)
- 2k2c] -1 Zkvfc] nln(o, k)exp(—vihé)
N . .
n%n](z > k) fn%n(zg, k)exp(~vjhg)
J+1 3¢, e d
Mo (Z k) i ”2n(zo’ k)exp(-vjh ) ‘
[ J‘H J(k)] J ‘> - [Ij,j“ﬂ(k)] < J _]
n3, (2 k) (z0 k)exp{-v; hg ")
J (i i+1,_] Jj+1
\n4n(20, k) \n4n (ZO: k)exD( J+.‘h0 )/
(3.27)
s I R E IR N+1
where h0 zy -z, (J , N}, h = 0, and
k -v6 -k va
v -k v -k
[1 (k1= P 9
P8 “2ky ¢ d! (2k%c - 1)d7V -2kv.c d7] (2k%c_ - 1)d]
ppp p p q g q q
i -1 -1 ? -1 -1
_.(2k <y - 'l)dp Zkvpcpdp {2k cq - 1)dq Zkvchdq
(3.28)

Inverting the matrices appearing on the left hand side of Egs. (3.26)

and (3.27) leads to



1y (0 k)] 13,05 K)
: - R‘; : (3.29)
n2n(0, k) n4n(0, k)
and
J*1,.3 7.3
n (ZO’ k) . d . /HM(ZO, k) \
j+]( J k) Tj i Rj J ( J k)
Mon Vg2 | Moptég?
. . Ll R . . > {ji=1, N (3.30)
N o0 i+1,,3
HBH(ZO’ k) Rg i T‘l; n3n (ZO’ k)
. - ] . .
3 ¢, L ] J+t, ]
\n4n(20, k) } . n4'ﬂ (7—01 k)

in which Rg and Rg are the 2 x 2 matrices of reflection coefficients

for plane waves impinging on the jth interface from below and above.
respectively, modified to account for transmission path. T? and Tg

are the corresponding 2 x 2 matrices of modified transmission coefficients.

The modified reflection and transmission matrices are given by

-1

2 2
[Ru] : 2k\)-[cT | -(2k - 1) Zk\)-[CT -(2k ¢y - 1)
0
2 . 2 .
(2k cy - 1) —Zkv]c] -(2k ¢y - 1) 2k\)]c.I
1
~-v.h
e Tl 0
]
— —_
d ! u
T, ! X
it ]
----- L------ 3 - » .
i 7 D 01 (0
I
j oo
I

J 1.d
-v.hY  -v<h -v.,-h -y, N
X diag(é 3O o J e 3+l , @ j*1o ) (j =1, N) (3.32)



Explicit expressions for the reflection and transmission coefficients are
presented in Appendix I.
The boundary and continuity conditions given by Egs. (3.29) and

(3.30) may be expressed as

1 _opu ]
ngn(0) = Ring, (0) (3.33)
. . s |
i (20) = 15 2Dy e R G G e (3.38)
. L
a2l = Rind ) e TG g (3.35)
where
J
: n (Z ) k)}
nlzod =3 " ° (3.36)
”%n(zo’ k)s
3n(zgs K)
J = $n3n 0’
N (Zg) (3.37)

The 2 x 1 vector ngn represents the downwardly propagating P and
SV waves in the jth medium, while the 2 x 1 vector ”ﬂn represents
the corresponding upwardly propagating waves. The physical interpreta-
tion of Eqs. (3.33) to 3.35) is quite simple as illustrated in Fig. 3.2.

It must be pointed out that the vectors ngn and nﬂn are independent

of z, if J# e i.e.,

Ajk] . A (k
_ ) A Wo(z) = o) (3.38)

J
Ngn{Zo) . .
EROY B0



Figure 3.2.

j+4
un

Schematic representation of modified reflection/
transmission coefficients for downwardly and up-
wardly propagating waves in the jth medium of the
N-Tayered half-space.
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J-1 J -
(ZO < Zy S Zo s Jfﬂ).
In the medium containing the source (j = 2) ,

(A2, ()
mn(zo) = DT sE (KIN(zg - 2g) (3.39)

o)
|40

A% (k)
n' l + st KNS - z,) | (3.40)

where

s (24, ) | st (241, )
‘ ([ & () = )73no (3.41)

the 2 x 1 vectors Sgn and Sﬁn correspond respectively to the direct
contributions of the source to the downwardly and upwardly propagating
waves in the gth medium.

At this point it is convenient to introduce the following

factorization

3 _susu “U Lo, 0-1 .

nun(zo) = TjTj+1 ve Tz—lnun(zo Yo, (=1, 82-1) (3.42)
J - pU Fuzu U & %] - _

ndn(zo) Rj-]TjTj+] ... T£~]nun(zo Yy, ((G=1,2-1) (3.43)

for the layers above the source, and
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ngln(lo) = i’f;_]‘T‘j’_z . T(anén(lg) s (J =5+ 1, N+ ]) (3‘44)
J _ pdyd 2d 2d oo, 8 o

nun(zo) RjTj_]Tj_2 Tandn(zo) s, (J=ae+ 1, N+1) (3.45)
for the layers below the source. The 2 x 2 matrices %g, ?g and

~

Rg, ﬁg are designated here as generalized transmission and reflection
matrices at the jth interface for reasons to be described shortly. These
matrices are independent of z,-

Substitution from Eqgs. (3.42) and (3.43) into Eqgs. (3.33), (3.34)
and (3.35) shows that the free-boundary condition at z, = 0 and the
continuity conditions at the interfaces above the source (1 < j < ¢ ~ 1)

are satisfied if the generalized transmission and reflection matrices

fg, ﬁg obey the recurrence relations
‘U _ LU
RY = RY (3.46)
TY - (1 - pdpu )-]T” (3 >1) (3.47)
j RV '
“u u dsu  zu .
. = R, + T.R: X
Ry = Ry + TiR 4T (3 >1) (3.48)
and,
,Q, Zﬁ"‘] - éu .Q, Zﬂ."-l (3 49)
"dn\%o 2-1"un\“o . :
Similarly, from Eqs. (3.44), (3.45) it can be shown that the

radiation condition at infinity (A§+] =0, A§+1 = 0) and the continuity

conditions at the interfaces below the source (2 < j < N} given by

Egs. (3.34) and (3.35) are satisfied if the generalized transmission
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-d 5d

and reflection matrices Tj’ Rj obey the recurrence relations

nd

Rysq = O (3.50)

~d ( usd )"] d

T -RRGy) Ty (W) (3.51)

cd _ pd usd  2d i

RS = RS + T{R,TS (3 <N) (3.52)
and

{2 2 gd ¢ ¥ (3.53)

Tunl %o Ldnl“0 ) - :

In Egs. (3.47) and (3.51), I denotes the 2 x 2 identity matrix. The
recurrence relations given by Eqs. (3.47), (3.48), (3.51) and (3.52)
provide a simple procedure to determine the generalized transmission
and reflecticon matrices once the modified transmission and reflection
matrices are known.

The factorization given by Egs. (3.42) to (3.45) provides the
means to determine the field within each layer above or below the source
once the field in the medium containing the source is known. The field
in the medium containing the source (j = &) can be easily obtained by
use of Eqs. (3.39), (3.40), (3.49), (3.53) and (3.54), and by noting
that

(3.54)

The result is



. 9~ 1 -1 S .
ngn(ZO) ey n“ (2 ), (Zo <7y 7] ), (3.55)

-1
* = U pd TN
nd“(zo) ) (I ) RR-]R%) (Sdn R Sun)
2 _ad 2 S g, )
nun(zo) = R, ”dn(zo) , (Zo <z, gzo) . (3.56)

In particular, if the source is located in the underlying half-space

(0 =N+1),

(3.57)
) , (p=N+1)

-
/"—\
N
Q
A
8

N S
< <
(Zo iy % %,

N+]
(3.58)
SN+1 + Ru N+1’ ( 2 <z

ngn( z,)

n’ (2)=S
un{Zo l“
L
(54

S

N7un 0

<m), (b =n+1) .

Equations {3.55) and (3.56) together with Eqs. (3.42) to (3.45) provide a
complete description of the field associated with waves polarized in
vertical planes. The particular form of these equations makes possible
the simultaneous evaluation of the response at a number of observation
locations for a number of different source locations.

The physical interpretation of the generalized reflection and
transmission coeffi;ients is illustrated in Fig, 3.3. In particular,

ﬁ? corresponds to the waves reflected into the j+1 th medium when

upwardly propagating waves impinge on the jth interface. These generalized

reflection coefficients include the multiple reflections, conversions and

transmissions on the layers above the jth interface as shown in Fig. 3.3.
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Figure 3.3.

Schematic representation of generalized ref1eg§10n
and transmission ceoefficients. For example, T¢
corresponds to the waves transmitted into the ©
j+15t medium (including all multiple reflections,
conversions and transmissions in the layers below
the jtN interface) when downwardly propagating
waves impinge on the j'" interface.
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The physical interpretation of the recurrence relations given by Eqs. (3.47)
and (3.48) is illustrated in Fig. 3.4.

The factorization introduced by Eqs. (3.42) to (3.45) can be
easily interpreted in terms of generalized rays. In particular, expan-

d g )] appearing in Eq. (3.47)

sion in series of the matrix (I - Rj Rj_1
leads to
~u u diu  -~u dsu Ldiu u
> = T7 + R.R . + R.R. R R S .
TJ TJ RJRJ-lTJ RJRJ_1RJRJ_1TJ (3.59)

in which the contributions of the multiple reflections become apparent.
By similar expansion of the inverse of the matrices appearing in Egs. (3.47),
(3.51), {3.55) and (3.56) and by use of the recurrence relations, it is
possiblie to obtain an expansion of the response on any layer in terms of
- multiply reflected and transmitted rays.

Finally, if should be mentioned that the dispersion relations
for the layered medium can be easily obtained by determining the zeroes of

ﬁ

- d £u
the determinant of (I - Ry Ry ;).

3.3 PROPAGATION OF VERTICALLY POLARIZED WAVES FOR LARGE

VALUES OF THE WAVENUMBER

For high values of the dimensionless wavenumber k or for very
low frequencies, the procedure described in the previous section needs to
be modified to account for the fact that the differences between terms
associated with P and SV waves become small and may be altered by
numerical roundoff. The integral representation will be modified in such
a way that the dominant terms approach the corresponding static values

as k tends to infinity.
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The inteqgral representation used in the previous section may be

written in the form

J
“In
J - \
u2n Ij i Ij 7“ 7
"3 | I A ¥ ; | j
“21n I falz) 4 O Tan %)
_ =1 13, 1 1, || fommmm o [ e (3.60)
OJ ] : J J
il O e | R A R
“33n _ ., 3%

[] -l
J
Tn

where, the 2 x 2 matrices ng (p =1,2,3; q = 1,2) are obtained by

partitioning the 6 x 6 matrix [I%(k)] defined by Eq. {3.11); the 2 x 1

J

vectors ny (zo) and nﬂn(zo) are defined by Eqs. (3.36) and (3.37); and

J J .
the 2 x 2 matrices Ed(zo) and Eu(zo) are given by
J . -~ __3-1 . j=1 ]
Ed(zo) d1ag(exp[ vj(z0 z i], exp[_\)j(zo.z0 ) )

diag(exp [vj(zo-zg)], exp[vj(zo - zg)])

For high values of k it is necessary to recombine terms main-

(3.61)

Eﬂ(zo)

taining the form of the representation. In this case Eq. (3.60) is written

as



J
u]n
j -
Yon T i jﬂ T -
j 11 ! 12 —j :
%21n e Balzg) p O
) SO T S s i S | PO — S
J 21 22 b
Sonf  Je---e- pommee 0 : Eﬂ(zo)
. == I i
o L_131 P 132 -
|
T1n
in which
. —
o= AT =1,2,3; g = 1,2
pq  pg i (p 9 )
=j ; j -1
Ed(zo) Aj Ed(zo) Aj
=J - J -1
EU(ZO) A.] EU(ZO) AJ
=] - J
Tldn(zo) Aj Tldn(zo)
=J - i
and AS] is the inverse of the 2 x 2 matrix
' (k - VJ) (k = VJ)
A, = -
TN 1)k K -(k. - 1)
.+ , - -k -(g. - o
vJ (KJ KJ vJ

in which <3 = (1 + y?)/(] - yg). Detailed expressions for

Eg and Eﬂ are given in Appendix II.

b4

ndn(zo)
_ (3.62)
an(zo)
(3.63)
(3.64)
TJ
Ipq!
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The modifications introduced have the advantage that as k

tends to infinity

1 1 Lo 1
s S - -(Kj—l) 1 L (Kj-1) -1
v he | | poTTTTT T
- - I - —
y 7‘j (Kj 3)kuoj 2ku0j : (KJ 3)ku0j ZkuOJ
12] 122 ae E (3.65)}
‘ - (x -1)ku0j —ZKUOJ i (k —1)kuoj -ZkuOJ
i jﬂ ) N ==~~~ —m==-mmmmemommee—-
-131 132 i ! i
2(4 Kj)kuoj Zk“oj .: 2(4-¢ )kuoj Zkqu
Beie Ykt b (Bee )k
L( KJ)kuOJ 2kqu : (5 KJ)kqu ZkuOJ |
3 r] 0— »
Eg(zo) " iy exp[.k(zo_zg”‘)] (3.66)
L -k(z-20") 1
) 1 0]
Eﬂ(zo) n L: i exp[k(zo-zg)] (3.67)
k(zo-zO ) 1.

which correspond to the static representation obtained by Muki [1955].

In Eq. (3.65), Moj = uj/ﬁl

Since the modifications introduced for large values of Kk have

not altered the form of the integral representation, it is possibie to
. . —j —j . ,
determine the functions "dn(zo) and nun(zo) (j=1, N+1} using the

same procedure described in Section 3.2. In particular, for layers

above the source



—J LU 2 2 g-1 _
Tlun(zo) TJ Tj‘” 0-1 nun (ZO ) (.] 1, 2 ])
(3.68)
Tn(zg) = Ryl (27 (3=15 2-1)
and
.
- _{+ _ &d su ) ( =d <1 ) 2-1 s
nun( o) (I Ry Ro un TRy %dn ) (Zo 22y < z)
Sy = - 1
r'?m(zo) } ﬁg-1 nﬁn(2§ P (Zﬁ S 23)
(3.69)
where
st o-p s ’s“§n=A S (3.70)

un & Tun % “dn

Expressions similar to those given in Egs. (3.44), (3.45) and (3.56) hold
for layers below the source. The modified source terms §ﬁn and §§n
defined by Eq. (3.70) are given in detail in Appendix II.

The new matrices of generalized transmission and reflection

coefficients are obtained from the recurrence relations

ST

Ro - Ro

TV = (I -pd R )-] i (3 =1)

J J i-1 J

Y=gy 7d Ry Y 5 .

RJ RJ ; RJ_] TJ (j>1) (3.71)
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ad _ ( _su ) =d :

Ty= [-Ry Ryl T (3 < N)

7 _5d , wu 5d = .

T = RS + 1% RS . )

RJ RJ P RJ+] TJ (j < N) (3.72)
in which the new matrices of modified reflection and transmission
coefficients are given by

R - -(ﬁ )h] 71 t(o) (3.73)

o~ 21 22 "u ’
b P E 1T e ] [

T5 1R R - Iy, Eqlzy) 1 0
bl B b L EE bl t--—-1 {------ 4--==-- e e el
54 1 Fu It =] 734 it CEIHL, ]

Ry 4 T AT Y AT 0 B (7)
(3.74)

3.4 PROPAGATION OF HORIZONTALLY POLARIZED WAVES

In this section, the 2{(N+1) undetermined coefficients Agn(k)
(i=5,6; j=1, N+1}, or equivalently, the 2{N+1) unknown functions
ngn(zo, k) (i=5,65 j=1, N+1) appearing in the terms associated with
waves whose particle motion is polarized in horizontal plans (SH, Love
waves) are determined by imposing the boundary, continuity and radiation
conditions given by Egs. (3.23), (3‘24)'and {3.25).

Considering Eqs. (3.10) and (3.12) it is possible to write the
boundary and continuity conditions given by Eqs. (3.23) and (3.24) in

the form
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1 ] il
nsn(oa k) n6n(03 k) eXp( V"ho) (3'75)
JHY, 3 Jj ad
Wzl ) ot 0 eolupd) |
17, . =[17.
[ J+] SJ} J s [ J>J+1] J+T J+‘| s
ngn (2o, K) (z > k) exp(-vi ho)
(3 =1, N) (3.76)
N B T N+ _
where hy zy -z, (3 =1, N), h 0, and
-1 1
17 ] = 3.77
R (3.77)
pp%  YqtqY
gs. (3.75) and {3.76) can be written as
(0, k) = R“n1 (0, k) (3.78)
LT et .
3 Crd U i
5n (ZO’ k) TJ RJ n5n(Z s k)
= (3 = 1,N)  (3.79)
d u J+1
n6n(z s k) Ry T3 (z k)
where
u a1
R, = exp(v]ho) (3.80)
and,
d _ -1 Cend
Tj ZchJd exp( vjho)/Aj

d_ (.. -1 - -1

) exp(-vihg)/a

J
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R? = —(“jcjdg] - “j+]cj+]d311) EXP(‘V3+]hg+1)/Aj
T4 = 29z 005,445, exp(-vjﬂhgﬂ)//lj (3 = 1.N) (3.81)
in which,
Ar = vicadll + vic,dihs (3.82)
NI R JH173+17 341
The terms denoted hére by R?, Rg and Tg, Tg correspond to the

reflection and transmission coefficients for plane SH waves impinging
on the jth interface from below and above, respectively. These coef-
ficients have been modified to account for the transmission path.

Introducing the change in notation

3z =
ndn(zo) - n5n(20’ k)
n(Zg) = mga(zgs k) 5 (G =T, N+ 1), (3.83)

it may be seen that Egs. {3.78) and (3.79) take the same form as
Eqs. (3.33), (3.34) and (3.35) with the exception of being scalar
equations.

Following the same procedure described in Section 3.2, it is

found that the functions ”én and “ﬂn which satisfy the boundary,

continuity and radiation conditions are given by

G gy - FuE s el
nuntZo) T3 T oo T oz )

J _aU Fu zu U L= _ )

”dn(zo) Rj—] Tj Tj+1 . Tz—] nun(z0 ) . (§=1, &-1) (3.84)



for the layers above the source, and

J _xdood 74 2

ndn(zo) = Tj-] TJ 5 oo Ty dn(z )

i _adxd od d o o

nun(zo) Rj Tj—] Tj—Z R | ndn(z ), {(j=2~1, N+1) (3.85)

for the layers below the source. In the medium containing the source

.~ -1
”ﬁn(zo) B (} B RiRE—T) (sﬁn * Rg Sdn)
"dn{Zo) = Rg 1 nﬁn (z§_1) , (zg"I <z, 5'23) (3.86)
(z ) = (1 CRY éd) st 4R 5P
“dn 2-1 "o /\Pdn 2-1 Zun
[} _od e L S )
nntZo) = Ry ng, (25) s (zp <z, 227) . (3.87)

The generalized scalar transmission and reflection coefficients

=d U ad
T j, Tj, Rj

from the modified reflection and transmission coefficients given by

and ﬁg appearing in the above equations are obtained

Egs. (3.80) and (3.81) by use of the recurrence relations

RY = R | (3.88)

fu (] _od au )‘1 (PG IR (3.89)
J J -1

RY = pU + 7d Y 7Y, (> 1) (3.90)
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and

~d B

RN+1 =0

14 - (1 - RY RS )_1Td (3 <N

J J ot J’ -

cd _od L ound ad .

Rj Rj + 15 Rj+] Tj R (3 < N) .

In Egs. {3.86) and (3.87) the source terms Sﬁn
given by

L _ R 1, Lo_ a8 2-1
Sdn - S5n(zo’ k) Sun - S6n(zo k)

(3.91)

(3.92)

(3.93)

g
and Sun are

(3.94)

The procedure just described is valid for all values of k and

does not need to be modified for large values of k.
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CHAPTER 4
NUMERICAL INTEGRATION

4.1 SUMMARY OF INTEGRAL REPRESENTATION

Before presenting the method of integration used to evaluate the
Green's functions it is convenient to summarize the integral representa-
tion derived in Chapters 2 and 3.

The cylindrical components of the displacement and stress fields
in the jth layer associated with a concentrated source located in the

gth medium can be written as

(=0 23 23 ) i} i 2.3 2 .3 ) -
4ﬂ(prur, rfar,s roon. ;Qn(rourn’ s Eeon? To Srrn cos[n(s eo)]

=3 2 23‘):2:(:1 2 ] 2;1)- i
4n(urue, Poog,s T oy Lt Qn roUen’ o Zezn’ o Zern' sin[n(® eo)]

~Na

-3 23 25=§: j i Zj),
4n(pruz, rio,,. ¥ Gee) s Qn rouzn’ Yo Zrzn® "o Zhen cos[n(e—eo)]

(4.1)

where r_ = wr/8, 8 and u correspond to a shear wave velocity and a
shear modulus of reference, QO denotes the vertical component of the point
Toad while Q1 represents the horizontal component of the point load

along the o = o, azimuthal direction. The terms UY ., ...,
J

zr'zn e

.. , are functions of the dimensionless variables o and
z, = wZ/B, and are obtained from the following Hankel transform-type

integrals
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J J J 3
gUrn i-Uen oo si-u1n * U3n
=f K d_,q ke, )dk
J J J h| -
lzrzn t-zezn © lt'az1n * 923n
J J
/Uzn \ /u2n \
J J
L27n >k “2on
J J = J
< Yern T Toen > B < 933n >'k Jn(kro)dk
2¢ . .
J 4 J J J
Lopn T d;ry (Urn * nUﬁn) o f°1n
2c. . R
J J J J ) J
\Zern ¥ djro (nUrn Uen} \031n }

(4.2)
in which cj = (leﬁ)z, dj = EYQJ, Bj and 0 correspond, respectively,
to the shear wave velocity and density in the jth layer, and § and o

are a shear wave velocity and density of reference (u = EQE). The terms
Uins Uons 9210 92210 933n and 11, are associated with waves

polarized in vertical planes (P, SV, Rayleigh), while the terms uq

n

O93n and 9a1, are associated with waves polarized in horizontal planes

(SH, Love). A1l of these terms are functions of k and of the dimen-

sionless variable z . n i
o In the near field, the terms Urn’ zrzn’ ern’

Loon include some particle motion polarized in horizontal planes while
the terms Uen’ Zen® e include some particle motion polarized in

vertical planes. For example,

; T [tk 5 T tkeg)
“w/o‘ “in [ TR | 7 Y3 W]}k‘“‘-
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The terms associated with waves polarized in vertical planes

are obtained from

J
Uin
Jj
U 1
B I R
j 111 12 j d i
%1n pra el | RV "n%o) 1
J 1] i
» = I 1 I """""""""""""""""""""" ' 4 3
%2 A T: E(z.) J (2) s -
______ i v |uto nun 0
c‘j R
33n
J
Tin
where the 2 x 2 matrices I%, I%z, «... are defined by
—kd‘_j vjdj i —kdj vjdj
' -v.d. kd . 1ov.d. -kd.
B I\j : I\} 7] ___:,]__i _______________ :]. _______ :___‘2_‘2_____.._..._..‘__-_____........‘
114 12 T ,
----- e 2kv.c -(2k“c.-1) 1 -2Zkv.c, (2k"c.-1)
g i, |- ;J L
1 J - _ - | 2 - - -~
'"."'E"'." (2k“c.-1) Zk"jcj E (2k“c.-1) Zk"jcj
ER T O P PR —
2(2Yj—1) 2k Cj 2kacJ E 2(2v5-1) - 2k CJ 2k\)JCJ
2 2 . Lo 2y o2 .
_(2yj-1) - 2k ¢ 2kvjcj E (2yj 1) - 2k c; Zkvjc:j ]
(4.4)
while the 2 x 2 matrices Eg(zo) and Eﬂ(zo) are given by
j - N j‘l - -j-]
Ey(z,) = d1ag(exp[—vj(zo-zo )], exp[—vj(zo—zo )]) (4.5)
J = A4 ' _,d ly ool
E- (z,) d1ag(exp[vj(zo zO)J, exp[\»j(z0 zo)]) (4.6)
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In the above equations, vy = [k2 - E/&j)ZJT/Z, v = K2 - (EVBj)ZJT/z,
- 3. = NNy : .
y. = sj/aj, and zY = ij/B (Z0 Zo) in which Z5 defines the

J 0
position of the Tower interface of the jth layer (zg = 0).

The 2 x 1 vectors “3n(zo) and ”3n(zo) correspond to the

amplitudes of the downwardly and upwardly propagating P and SV waves

in the jth layer, These amplitudes are independent of z_. in all layers

0
with exception of the g¢th Tlayer in which the source is located. The

wave amplitudes nﬂn and ng in the jth layer are obtained from the

following factorization

J _ U zu U L oon-1 . )

J =Y (-] . -
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(4.7)

in which I denotes the 2 x 2 identity matrix, zf') = wz®/8, z,

defines the Tocation of the point source, and



exp[vy(z
54 = d ’
d0 2y
-—:exp[u
Yy
Ji—exp[v
AY)
st o=q ¢ *
dl 2
exp[ui(z
The 2 x 2
coefficients ﬁg,
relations
pU _ pu
( R0 Ro
) o0
J (1
AU _ pU
f-d _
RN+1 = (
~d
Tj - (I
nd _ od
Rj Rj

in which the

coefficients

S

-z

0

0

S
LEN

S
0

)

é(zs_zﬂ—1ﬂ

0

- z§'1)]

)

Su1 ) ¢ .
exp[—v;(zo - zoﬂ

matrices of generalized reflection and transmission

A

d zu 2
Rj’ Tj and T

d
J

nA=T
RY ) T4
J-1 J
RY 7Y
3-1 T.]

-1
~d d
Rj+1) Tj
“d  ~d
"1 7

are given by

are obtained from the recurrence

(0 =N)

(3 < N)

(4.9)

2 x 2 matrices of modified reflection and transmission

76



77

d ] pu R L2 R Je,dy i
T; 1R STRERY STty Eq(zg) 10
““;'i‘“" = "'T“{‘i"f" “‘t"i"i‘; ““““““ i"";"t"
t U J+ J J Jt Jt J
Ry 1 T -y 1 I -y 115 0 By (z)

(123 <N (4.10)

Explicit expression for thé modified reflection and transmission coeffi-
cients are given in Appendix I.

To insure the numerical convergence of the integral representation
for large values of the dimensionless wavenumber k, it is necessary to
introduce some modifications to the procedure just described. The general

formalism remains intact except for the following changes:

(1) The matrices (p=1,2,3; g = 1,2) appearing in Eqs. (4.3) and

J
I
Pq
(4.10) are replaced by

™ o= Al (p=1,2,3; q = 1,2) (4.11)

where A31 is the inverse of the 2 x 2 matrix

(k= ;) (k= i)

A= - :¥- (4.12)
J _ k- - -
.vj + (Kj Nk -k (Kj 1) vJ

. . 2 2
.= + v N
in which < (1 YJ)/(1 YJ)
(ii) The diagonal matrices Eg(zo) and Eﬂ(zo) appearing in Egs. (4.3)

and (4.10) are replaced by



. B j -1
Ealz) = Aj Ex(zo) A]
(4.13)
= - J -1
Eu(zo) = Aj Eu(zo) Aj
and,

(ii1) The source terms Sén and Sﬁn appearing in Egs. (4.7) are

replaced by

=L _ I
Sdn - Ag Sdn
(4.14)
= _ )
un Az Sun :

. . = = T = =t
Detailed expressions for Ipq’ £ Eu’ Sdn and Sun as well
as for the resulting modified reflection and transmission coefficients

are presented in Appendix II.

The terms Ugns o3, and I31n associated with w§ves pelarized

in horizontal planes are obtained from

U3 B ; ;
; ) i Ed(zo) 0 ndn(zo)
05an = 12-l 122 ; ; (4.15)
; ; ; 0 EL(zo) | { nya(z,)
13n | 137 I3

which has the same form as Eq. (4.3) except that in this case the quanti-

ties involved are scalars. The terms I%], 1%2, .... , are defined by
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1d J - -
I 1127 k k
Ij J = | -kvic, T] c.d7] .
5 1o ‘ kachJ kachJ (4.16)
J J 2. -1 2 -1
RETEEN PN |k dej K dej )
while
j - - J"]
e (z,) - exp[—vJ(zo - 2] )] (4.17)
J - - _ Sl
Fu(zo) exp[vj(zo zo)] . (4.18)
J J .
The terms ndn(zo) and nun(zo) correspond to the amplitudes
of the downwardly and upwardly propagating SH waves in the Jjth layer.
The wave amplitudes ”én and “an are also obtained from the factoriza-

tion given in Eq. (4.7) except that the terms Sgn and Sﬁn are now

given by
L [
Sdo e 0 s SUO - 0 .
s% = [kvee d7! ! exp|v:(z° - zﬁ']ﬂ (4.19)
d1 Ve PIVetey = 29 : ’

-1
L o a1 4.5 2
Su] = (k“zczdg ) exp[—vg(zo - zoﬂ
The generalized ref1e¢tion and transmission coefficients for the
case of horizontally polarized waves follow the same recurrence relations
presented in £q. (4.9). The modified reflection and transmission coeffi-

cients are also given in this case by Eq. (4.10) with the terms appearing

in that equation defined as in Eqs. (4.16), (4.17) and (4.18). 1In
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particular, these coefficients are given by

U _ el
RY = exp( v1zo)

0
d u [~ - "] - - "] - -])
Tj Rj : Zvjcjdj '(vjcjdj "“j+]cj+1dj+1
T A
d u =1 . -1 . -1
" PN j-1
exp[-vj(zo—zo )] 0
® >
. i 3‘+1]
LO exp[vj+1(zo -z )
(1 <3 <N) (4.20)
in which A = vic clr'1 + vi,.C 47!
NV hRa R R

In the case of horizonfa]ly polarized waves the integral repre-
sentation just described is valid for all values of the dimensionless
wavenumber k and does not need to be modified for large values of k.

The response of a layered viscoelastic medium to Toads distri-
buted over a ring can be obtained by the same procedure just described
except that Eq. (4.2) must be modified as in Eqs. (2.55) and {2.61) of
‘ Chapter 2.
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4,2 METHOD QF INTEGRATION
4,21 Introduction

The Hankel transform-type integral representations of the dis-
placement and stress components in the frequency domain are summarized
in Eq. (4.2) and involve gquantities of the form

«©

In(ro,zo) = J/P F(k,zo) Jn(kro) dk , n=0,1,2 . (4.21)
0

for the concentrated point loads. The kernel F(k,zo) depends upon
wavenumber, frequency, receiver and source depth and layer properties;
whereas, the Bessel functions Jn(kro) depend only upon the product of
wavenumber times normalized epicentral observation distance (rO = wr/g).
An effective procedure to evaluate the F integrands has been presented
in Chapter 3 based on highly efficient factorizations for the upgoing
and downgoing wave amplitudes in each layer (refer to summary in
Egs. (4.3) through (4.7)). A1l that remains then is to develop an
efficient numerical integration scheme capable of handling the oscillatory
nature of the Bessel functions in addition to the vigorous behavior of the

pervasive F integrands (as a function of wavenumber).

4.2.2 Description of Kernel

Before describing the method of integration, it is instructive to

portray the dependence of the F integrands on frequency and wavenumber,



The real parts of two representative F integrands are pictured in
Figure 4.1 for the simple soil models also shown in the figure. The
three-dimensional plots in the left-hand column represent the F inte-
grands for the vertical displacement at the free surface due to a concen-
trated vertical point force at the free surface (viz., U%O); the plots

in the right-haﬁd column represent the F integrands for the tangential
displacement due to a concentrated horizontal point force (viz., U;]).
The axes running from lTeft to right correspond to the dimensionless
wavenumber k which is inversely proportional to the phase velocity

(the range from k =0 to k =2 is shown in the plots). High frequency
is in the foreground and low frequency is in the background.

The poles of the F integrands are shifted off the real Kk
axis by introducing attenuation for shear and compressional waves so that
all the peaks have finite amplitudes. This not only facilitates implemen-
tation of an integration scheme over real k values, but at the same time
models physically realizable attenuation in the Earth. The plots on the
left involve P-SV-Rayleigh waves while those on the right involve SH-Love
waves.

For a half-space with source and receiver at the surface, the
function F s frequency independent as is apparent in the upper left plot
of Figure 4.1, The large undispersed dipole shape corresponds to the
Rayleigh wave for the half-space and the small inflection represents the
compressional wave. For a layer overlying a half-space, higher surface
wave modes appear as the frequency is increased as depicted in the center
plots. All the surface waves are normally dispersed since on a given mode,

the phase velocity decreases as the frequency is increased. In the Tower
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'plots, the two layers which overlie a half-space have the same properties
(velocities, density, attenuation factors and thickness) as used in the
center model. Thereby, at sufficiently high frequencies, when the waves
become insensitive to the underlying half-space, the most fundamental
surface wave modes should match those for the center model. The plots
shown also reveal that the F integrands are uninvolved at large wave-
numbers indicating that the taii-ends of the wavenumber integrals can be
evaluated without difficulty.

The plots in Figure 4.2 illustrate the behavior of the F inte-

grands for a more realistic earth structure, which is defined in Table 5.2.
The source is a vertical point force buried in the sixth of 15 layers.
Also, the lesser amount of attenuation contributes to the more pronounced
behavior. Each plot now represents a different frequency from one cycle/
sec in the top curve to 10 cycles/sec in the bottom curve, and wavenumber
is still displayed horizontally. The component shown corresponds to the
real part of the F integrand for the vertical displacement evaluated at
the surface of the layered half-space {viz., U;O). Clearly, a sophisti-
cated scheme is needed to inner-product the F integrands with the Bessel

functions at each frequency for all wavenumbers.

4.2.3 Upper Limit of Integration and Low Frequency Switchover

Independent of the type of quadrature iﬁbiemented to evaluate
the semi-infinite wavenumber integral in Eq. (4.21), two fundamental de-
cisions must be made: 1) how to determine the upper limit of integration;
and 2) how to determine the switchover k value at which the Tow fre-

quency expansions are used to calculate the F integrands. So long as
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no receiver depth coincides with any source depth, the exponential decay
of the F integrands may be relied upon to define the upper limit of

integration, k,. This reduces the semi-infinite integral in Eq. (4.21)

2
to the following finite integral:

I (w) :fz Flw) 9, dk (4.22)

in which the arguments have been omitted for brevity and clarity.

An alternative procedure is obtained by considering that forlhigh
values of k the F integrands for any frequency tend to the value of
the F integrands in the static case. Taking advantage of this property,
the integral in Eq. (4.21) can be written in the form

kg
In(m) = In(O) +J/ﬂ [F(w) - F(0)] In dk (4.23)
0
in which F(0) represents the static (w=0) F integrands and I(0)
represents the corresponding static (w=0) integrals. The upper limit
of integration, km’ is thereby defined in this case by the convergence
of the dynamic integrands to the static integrands.

The procedﬁre of Eq. (4.23) is particularly useful when source
and receiver are at the same depth, in which case the decay of the F
integrands as a function of k s slow. In Eq. (4.23), the static F
integrands and integrals may correspond to those static integrands and
integrals for a uniform half-space with properties of the layer con-
taining the source-receiver pair. Although the dynamic F integrands

may converge more slowly to the half-space static F 1integrands, the



advantage is that analytic expressions are available for the half-space
static integrands and integrals (see Appendix III).

When using Eq. {4.23) for the proximate source-receiver depths,
it becomes essential to implement the Tow ffequency expansions of the
F integrands at high k in order to insure that [F(w) - F(0}]
properly approaches zero as k 1is increased. The switchover k value
at which the low frequency procedure is used to evaluate the F(w) inte-
grands in either Eq. (4.22) or (4.23) is determined by

K> wh /8 (4.24)

where hmin is the minimum layer thickness. The minimum layer thickness
appears in the inequality because the thinner the layer (or the lower the
frequency), the smaller the value of k at which the differences between
the compressional and shear waves can be accurately calculated. Although
the lTow frequency formulation for the F integrands is valid all the way
back to k equals zero, its use is unnecessary at Tow k values. There-
fore, the ineguality in Eq. (4.24) need only be tested when k 1is larger

than, say, 0.5 divided by the slowest phase velocity of the problem.

4.2.4  Formulation for Method of Integration

The basic philosophy behind the method of integration is to
sampie the F integrands sufficiently fine to allow piecewise polynomials

to interpolate the amplitudes of the F functions between the integration

points. Thereby, the numerical integration over the Bessel functions can be

performed analytically over each integration interval, thus avoiding the

oscillation hazard of the Bessel functions.

87



88

For reasons that will become clearer later in the discussion,
quartic polynomial interpolation is the most effective order scheme to

employ in general. The five integration points on a given interval are

defined as k], k2, kB’ k4, k5 with the quartic polynomial determined by
Far 4 s
F
2
F
1
5 m-1
_ k- K T
Flkz) =D Al =5 . | (4.25)
=1 ‘
m k] k2 k3 k4 kg

in which Ak = k4 - k The normalization inherent in Eq. (4.25) is

2-
chosen with the intention of integrating from k2 to k4 on each inter-
val and overlapping k1 and k5 into the outer intervals in order to

insure a smoother fit to F(k,zo) between k2 and k4.

Introducing matrix notation, the coefficients Am (m=1, 5) are

“uniquely determined by the five F(km,zo) according to

- -1-1
( A1 \ 1 a a2 a3 a4 ( F1\
A, 1 0 0 0 0 F\
_ 2 3 4
{ag p=fv b b0 B Bt Fyp
2 3 4
A4 1 C C c ¢ F4
2 3 4
1 d d d d F
\AS ] L ] \'57
- c] %FE (4.26)
T 5x5  5x1



in which Fm = F(km, z ) and

0

_ ]

2 1
b = — (k3 - k2)

¢ (kg = kp) (4.27)

The elements, Cij (1,3 = 1,b6) of the 5 x 5 matrix [C] appearing in
Eq. (4.26) are

C.[-E =0

C]2 =]

CI3 =0

014 =0

CTS =0

Co. = -bed
21 a{a-b)(a-c)(a-d)

C = -a{bctbd+cd) -bed
22 abcd

acd
23 b{a-b)}{b-c)(b-d)
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25

31

32

33

34

35

41

42

43

44

45

51

52

53

24 ~

-abd

c{a-c)(b-c)(c-d)

abc

d(a-d)(b-d)(c-d)

b(c+d) + cd

a(a-b)(a-c){a-d)

a(b+c+d) + b{c+d) + cd

abed

-a{ctd) - ¢d

b{a-b){b-c)(b-d)

a(b+d) + bd

cla-c)(b-c)(c-d)

-a{b+c) - bc

d{a-d){b-d}(c-d)

~(b+c+d)

a{a-b)(a-c)(a-d)}

_ -{atbtctd)

abcd

(at+c+d)

b{a-b){b-c)({b-d)

-(atb+d)

c(a-c)(b-c)(c-d)

(atb+c)

d(a-d) (b-d)(c-d)

1

ala-b)(a-c)(a-d)

_1
abed

-1

b(a-b)(b~c)(b-d)
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o - ]
54 ~ c(a-c)(b-c)(c-d)

-1
Cs5 = d(ad)(b-a)(c-d) (4.28)

Rewriting the integral appearing in, say, £Eq. (4.22) as a summa-
tion of integrals over each interval (k2’ k,) with F(k;zo) replaced by
the quartic polynomial defined in Egs. (4.25) through (4.28) leads to the

following expression for 1 (ro,zo)

— 1

- :E : T
In = (F]’FZ’FS, F4:F5) [C]

intervals x5

(4.29)

in which superscript T denotes the transpose matrix. The summation in
Eq. (4.29) is carried out over all the intervals of integration from k2
to k4, except for the first interval on which the integration is per-
formed from k1 to k4 since no overlapping is possible from a previous
interval.



It is important to notice in Eq. (4.29) that the product of the
5x5 matrix [C] times the 5x3 matrix of integrals (n=0,1,2) is independ-
dent of source and recefver depth; hence needs to be formed only once
for each epicentral range. Since the integrals in Eq. (4.29) can be
evaluated analytically, the oscillation hazard of the Bessel functions
is completely circumvented and the number of integration points is

restricted to the tolerance desired in sampling the .F integrands.

4.2.5 Sampling/Integration Criteria

After the caiculation for a given frequency is initialized by
evaluating the F -integrands at five equally spaced k points, the
calculation proceeds as follows until k4 exceeds the upper limit of

integration, k The error in passing a quartic polynomial through each

Iz
of the F integrands at the five k points is estimated by forming the
fourth difference of the amplitudes of the F 1integrands on the ith
interval. This fourth difference is then multiplied by Ak 1in order to
estimate the relative error in performing the integral on the ith jnter-
val from k2 to k4, since the integral is roughly proportional to ak.
If the relative error is below a specified tolerance for all the
F components, then the integrals are performed on the jth interval with
the results added to the respective integrals from the previous 1i-1
intervals. Otherwise, a new k point is inserted midway between the
widest spacing of the k points on the ith  interval and the relative
error is resampled, with the F amplitudes from the extra‘ k point

saved for later intervals. To proceed to the next interval after inte-

grating from ks to k4 the F integrands are evaluated at two new
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k points beyond k5 with the step in Ak determined by the maximum
relative error from the previous interval. Of course, if new k points
are already available from the resampling process, then new F integrands
need not be evaluated until the previously stored F 1integrands are

exhausted.

4.2.6 Integration Branch

What remains to be discussed is the technique used to evaluate
integrals of the type appearing in Eq. (4.29). Although formulae are
available for these definite Bessel integrals, the following branch on
the integration procedure for a given interval proves to be the more
efficient methodology. As depicted in Figure 4.3, the integration
branch depends on the magnitude of the argument of the Bessel functions—
namely, the product of dimensionless wavenumber k times dimensionless
epicentral distance o

In region 2 of Figure 4.3, the arguments of the Bessé] functions
are sufficiently large to allow Hankel's asymptotic expansions to replace

the Bessel functions:

Jplkr.) = ﬂ—kz;— [P(n,kro) cos(x) - Q(n,kry) sin(x)] (4.30)

0

1

- n - = an
where y = kro - (2 + I)“ and, with 4 = 4n

(4-1)(8-9) | (5-1)(4-9)(4-25)(4-49) _

P(n,ki'?o) Al o=

21 (8kp )2 4t (gkr )*
0 [¢]
Qln.kr ) o S0 (a-1)(s-9) (s-28) . = (4.31)
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Using trigonometric identities, Eq. (4.30) can be rearranged into the

more convenient form

Jn(kro) = P(n,kro) cos(kro) - Q(n,kro) sin(kro) (4.32)
in which
P(n,kr,) = _|p(n,kr ) cos{% + +)r + Qn,kr) sin ﬂ-+'l);
? G Wkro * 0 2 4 y Iv) 2 4
B _ ]
Q(n,kr ) = 2 1Q(n,kr ) cos{Z + L)r - P(n.kr ) sin(% + L}x
o ﬂkY‘O o 2 4 o 2 4 |

Now, for an interval contained within region 2 (i.e., kyry > X), the Bessel
functions are replaced by the expansions in Eq. (4.32), with the smoothly
varying functions ﬁ(n,kro) and ﬁ(n,kro) inciuded in the polynomial
interpolation of the F integrands. Therewith, the integral on the ith

interval may be written as follows if k1ro > Xt

' TS IR
nro’zo)le‘ [Pn\][c] f IK% cos(kr_)dk

Tx5 5x5 5xb k2 5x1

A Tk
[Qn\][c] f ;Kix]sin(kro)dk

1x5 5x5 5x5 k2

in which

. T . ~NA b»“
diag, [ pn;] = Plnskro) »  diagy [ Qn~] = Qlnokyrg)
and

(e
Km = T » m=1,2,3,4,5 .



In region 1 of Figure 4.3, 4k = k is required to be small

1~k
enough to insure that the Bessel functions oscillate slowly over the inte-
gration interval. Thereby, the entire Bessel function may be included in
the polynomial interpolation of the F integrands, so that the integral

on the ith interval located in region 1 may be writfen as

T T kK

1 (r,z,) eH [, [c] '/.4 H dk (4.35)

155 5x5 5x5 K2 5x]

in which

. ~ B
diag [ Jn*l = Jn(kmro)

and

Ky
f Kmdk = pAk/fm, m=1,2,3,4,5.

k

The degree of smoothness necessary in the Bessel functions for
Eq. (4.35) to be valid in region 1 depends on the accuracy desired in the
numerical integration at a given fregquency. The smoothness provision in
region 1 is exclusively a function of the product ax = Akro, since the
magnitude of Ax determines the number of quadrature points used per
Bessel function oscillation. Realizing that the Bessel function oscilla-
tions have wavelengths of order 2w, then in order to accomodate say
ten quadrature points per oscillation, AX must be restricted to values

less than Ax (with AX = 1) in region 1.
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The restriction on 4Ax in region 1 is virtually inconsequential
in determining the value of Ak during an actual numerical integration.

Since klro < X in region 1, it is straightforward to show that

skr, < ax if and only if

~

Ak < (é’i) . (4.36)
A

independent of o With ax =1 and X = 5, Ak is merely required to
be less than one fifth of kT — a condition automatically satisfied in
general by sampling the F integrands to within a specified error
tolerance. Enforcing the inequality for Ak in Eq. (4.36) (in addition
to the sampling criteria) insures that the so-called “fast" integration
will be valid whenever k}ro < X (which is necessary since the so-called
"asymptotic" integration is never applicable in region 1). The "fast®
integration, on the other hand, is often times valid (i.e., Akro < X)
in region 2 and should be used instead of the "asymptotic" integration
whenever applicable since it is more efficient.

One final point of interest regarding the restriction of ak
for the validity of the integration branch can be made by referring to
Figure 4.3. For integration intervals having k5 less than k* or k1
greater than k>, the inequality in Eq. (4.36) is more stringent than
necessary. In the latter case, k]rb always falls within region 2
indicating that the inequality may be disregarded (since the validity of
the "fast" integration need not be insured with all the integration
intervals situated interior to region 2). In the former case, the inte-
gration intervals lie entirely within region 1, so that the "fast" inte-

gration must be applicable (i.e., must have Akro<'A§); Since,
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however, S(/k} is Targer than ro» it is less constraining to merely

require that

AX
Ak < G (4.37)
Yo/ max |
for k5.< k*,

To complete the description of the method of integration, ex-

pressions for the integrals appearing in Eq. (4.34) are presented:

k

4
cos _ COS =
l conlkr )k = Ak%sin(x)5§
2
k
4 (k-k ﬂ
2 \cos _ 1 cos 1 sin aX
f (m&r)sin(kro)dk AkIZ s1'n(;0 ™ cos(ﬂ[S COS( 2 )]}
k2
k 2
4 -k j
"2 \ cos _ 1 cos ;- 4 - AX
("‘Ak )sin(k‘”o)dk Aklz sm(x)[s (2x)? (S - o8 T)]
k
2

k 3
4 (k=k
2\ cos _ 1 cos 6 AX
f (—E—k—) sin(kro)dk B Ak%z sint¥) [S (ax)? (S T cos 7)]
K..
2

+~ 1 sing— AX b AX
X CDS(X)[(LS.S -c0s )- )2 (S - ¢os —2—)]}



k. . 4
4 k-kz COS(kY‘ )dk = Aksl CUS(}) S - 8 1.5 S - cos AX
sk ) sin\*"o |2 sin (ax)2 \ 2

Ky
48 ax | 1 sin,~ AX
+ : 7 (S - COos 7?) ?"Ei’cos(x) [(2.0 S - cos 7?)
AX) 4
- —;EQ§A(S - CO0S %}) (4.38)
(ax) i
in which

T=1 = _ sin(ax/2
X = glkytky)rg o 8% = tkr , S = -mg_l.

4.2.7 Modifications for Integral Representations Involving
Concentrated Ring Loads

The integral representations of the displacement and stress
components associated with concentrated ring loads are presented in

Egs. (2.55) and (2.67) are are of the form

-]

tanl3grzg) = [ Flkizg)aplka)ager o
0

n=m1, my ml . (4.39)

The distinction between Eqs. (4.39) and (4.21) is clearly the additional
Bessel function Jm(kao) which depends only upon the product of dimen-

sionless wavenumber times normalized ring radius (a0 = wa/B). Also, the
order of the Bessel functions assumes the values v-1, v, v+l where v

is the azimuthal order of the ring source.
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The method of integration previously described for concentrated
point Toads is still applicable; however, four branches must be considered
instead of two, since each Bessel function conforms to the partitioning
portrayed in Figure 4.3. The first branch corresponds to the case in
which both Akro < AX and kao < A;, such that the product of the two
Bessel functions may be included in the polynomial interpclation of the
F integrands, similar to the "fast" integration described by Eq. (4.35).
The second and third branches correspond to the cases in which the "fast”
integration would be applicable for only one of the Bessel functions,
while the "asymptotic" integration would be necessary for the other
Bessel function. In either of these cases, the products of the slowly
varying Bessel function times the Hankel coefficients, 5 and a, of
the other Bessel function are included in the polynomial interpolation
of the F integrands leading to a form similar to that of Eq. (4.34).
The fourth branch corresponds to the case in which both Bessel functions
are oscillating too rapidly to use the "fast" integration. For such a
case, both Bessel functions are replaced by their respective Hankel
expansions from Eq. (4.32). Then the products of the respective ﬁ and
6 coefficients are included in the polynomial interpolation of the F
integrands leaving integrals of {x} with products of cosines and sines
to be evaluated analytically. It should be pointed out that in all four
branches for the ring load integrations, the operational definition
of A§ must be approximately half the value used for the point force
integrations. This is due to the effective wavelength of the oscillations
in the Bessel function product being potentially haif that of each indi-

vidual Bessel function.
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4,2.8 Alternative Sampling/Integration Procedures

In certain instances, the method of sampling described above has
the disadvantage of weighting all the integration intervals the same,
irregardiess of the relative contribution to the summation representing
the total integral. One alternative is toc take advantage of knowing
the physics of the problem so as to require a denser spacing of quadra-
ture points only near the surface wave, body wave and leaky mode poles
of the F integrands. Numerically, this may be achieved by sampling
changes in slope in the determinants for each layer such as the real

part of the following quantities (refer to Chapter 3 for notation):

L, G 12, e, N (4.40)
det[l - Ry Rj]

which is easily shown to be related to the total determinant for P,
SV, Rayleigh wave propagation. In addition, it is advisable to sample

the product of the vertical wavenumbers Vi and ij:

k2N+2

v V Vo,V Vv v (4.41)
al "Bl “a2 "82 7" “aN BN

even though the layer determinants in Eq. (4.40) contain information
about every body wave arrival. The extra kz appearing in the
numerator insures a sufficient number of quadrature pocints near the
leaky wave modes; viz., at phase velocities between infinite (k=0)
and the body wave arrivals (k ~ Ey“max)'
Another nuance to the method of integration is the possibility of

considering a substitute interpolation scheme. A guadratic scheme is
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perhaps the most practica? alternative since the piecewise integrations
would still be executed over every other k point. However, experience
has shown that not only is the fit to the F integrands superior with the
quartic scheme (over the center three points of each five point interval),
but the quadrature points are located more strategically by virtue of
sampling the F integrands at five adjacent k points rather than at_three.
Therefore, the quartic scheme is the most efficient procedure, since the
savings of implementing a three point scheme in lieu of the five point
scheme is relatively insignificant for most problems.

The final alternative to be discussed is a discrete Fourier-
Bessel representation. Although it is possible to conceive of fewer
k points being used in Tow k regions, the savings are more than compensated
elsewhere. Also, intuitively, it makes more sense to densely sample at
low k (where most of the variations in the F integrands occur) and allow

the spacing to increase at large k.

4.2.9 Time Domain Synthesis

To conclude the discussion on the method of integration, it should
be briefly stated that the displacement and stress components are calcu-
lated in the time domain through Fourier synthesis of the frequency

domain components:

iwt
L (rozs t) = ;—ﬂf I(rzs w)e®™t do . (6.82)

A discrete Fast Fourier Transform algorithm is used to numerically

evaluate the integral in Eq. (4.42). Various levels of sophistication
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are possible to synthesize the time domain results: from equal spacing
the frequency points when generating the discrete set of In(r, Z: w), to
unequal spacing with the equally spaced set generated through spline
interpolation, The advantage of unequally spacing the frequency points
is to allow the frequency spacing to widen according to the length of

time signal expected from a particular frequency band.

4.2.10 Summary

An efficient integration scheme has been developed that effec-
tively deals with the hazards encountered in evaluating integrals of the
type in Eq. (4.21) for concentrated point Toads and of the type in
Eq. (4.39) for concentrated ring loads. Since the radial dependence
appears only in the Bessel fntegra]s, it is highly efficient to consider
multiple epicentral ranges simultaneously. Demonstrational plots of the
F integrands were presented along with the strategy used to sequentially
sample the same durﬁng the integration procedure., Finally, the Fourier
synthesis procedure used to transform the frequency domain displacement

and stress components into the time domain was briefly discussed.



CHAPTER 5
VALIDATION, COMPARISONS AND RESULTS

5.1 YALIDATION

The complexity of the numerical procedure used to evaluate the
Green's functions suggests the need for an exhaustive set of vaiidation
calculations prior to employing the method in actual applications. A
suite of five external checks is presented for such a purpose in the
form of comparisons with known solutions. The first three tests validate
the reliability of the numerical procedure when considering a uniform
haltf-space, whereas the final two tests include a finite number of layers.

The first test confirms the accuracy of the displacements at the
surface of a half-space caused by a point force also at the surface,
while the second test allows the point force to be buried in the half-
space. The third validation exercise proceeds to certify the stresses
at depth for a surface point force as well as the free surface displace-
ments for a double couple source at depth. Studies 4 and 5 extend the
third validation to the case of a Tayered ha1f—space;

In all five validation studies of this section, the complete
solution obtained by the present method is compared to the complete
salution obtained by totally unrelated methods. However, an exact
match can only be expected in the first three tests, since the alternate
methods employed in the final two tests do not provide exact soiutions.

The results presented in the comparison section 5.2 serve to further
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validate the present method despite the fact that various assumptions
and approximations are inherent in the other methods. In section 5.3,

a small sample of results is pfeSented to illustrate the flexibility and
applicability of the method.

Perhaps the most demanding validation test conceivable is
evidenced in Part IT of the present work. To obtain accurate solutions
of the integral equations in Part II, it is prerequisite that all the
displacement and stress components be of near-perfect precision at a

mesh of receiver points for ring Toads at the mesh of source points.

5.1.1 Comparison with Contour Integration Appreach (Wong, 1975)

In this first of five external validation exercises, the complex
displacement components at the surface of a uniform half-space (dimension-
less receiver depth z, =‘0) are evaluated as a function of dimensionless
receiver distance L wr/8. The source is a harmonic point force
acting at the free surface so that only four components are independent
(U;](rO,O) = Ulo(ro,o) using the notation of Eq.v(3.3)). The half-space
is defined by a reference shear wave velocity of B and a Poisson's
ratio of 0.33.

The four complex displacement components for a perfectly elastic
ha]f—space (0% damping) using contour integration (Wong, 1975) are
tabulated in Table 5.1 for values of rs from 0 to 5.5. The displace-
ments in the first two columns are for a vertical point force while

those in the last two columns are for a horizontal point force, applied

at the surface of the half~space in both cases.
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e /B[220 (e 00 |22 0] (e o) | 22wl e 00 | 220l (e L0)
W8 W T Pro' o r 200’ w1 o 1 T Yarl oo
Wong's (1975) Results.with 0% Damping
0.0 -.027, .000 .106,  .000 .159, .000 -} -.106, .000
0.5 -.032, .007 .087, -.062 | .146, -.058 | -.089, .058
1.0 -.033, .025 .037, -.102 12, -.106 | -.045, .099
1.5 -.020, .047 | -.029, -.108 .063, -.133 .015, 112
2.0 006, .060 [ -.087, -.077 011, -.137 075, .093
2.5 .041, .058 | -.120, -.017 | -.034, -.120 118, .045
3.0 074, .035 | ~.114, .0b3 | -.064, -,090 132, -.020
3.5 .092, -.005 [ -.070, .110 | -.076, -.054 11, -.084
4.0 .087, -.054 | -.007T, .134 | -.075, -.024 .059, -.132
4.5 .056, -.096 072, .118 | -.065, -.004 | -.014, -.144
5.0 .005, -.120 127, .064 | -.054, .004 | -.088, -.129
5.5 -.054, -.116 .144, -.013 | -.048, .003 | ~-.145, -.077
Present Results with 0.071% Damping (Qa = QB = 5000)
0.0 -.027, .000 .106, .000 .159, .000 | -.1G66, .000
0.5 -.032, .007 .088, -.061 146, -.0568 -,090, .058
1.0 -.033, .025 .037, -.102 12, =105 | -.046, .099
1.5 -.021, .046 { -.028, -,108 062, -.133 013, 112
2.0 .006, .060 { -.087, -.077 .009, -.137 .073, .093
2.5 .041, .07 { -.120, -.017 | -.037, -.120 15, .045
3.0 .073, .03% | -.114, .053 | -.068, -.090 .128, -.020
3.5 .092, -.006 | ~-.07%1, .109 | -,081, -,055 107, -.084
4.0 .087, -.054 | -.002, .134 | -.078, -.024 .056, -.131]
4.5 .057, -.096 072, 117  -.066, -.004 | -.015, -.149
5.0 .006, -.120 127, .063 | -.052, .004 | -.087, -.129
5.5 ~-.054, -.115 .145, -.013 | ~.044, .003 | -.142, -.077
Tabie 5.1

Comparison of the present solution with the contour integration
solution for the response of a uniform half-space to a concentrated
point force acting at the free surface.
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The corresponding results for a nearly elastic half-space

{0.01 % damping or material attenuation coefficients Qa = (= 5000)

B
using the present approach are also compiled in Table 5.1 and match
Wong's results to near-perfect precision. This is an extremely con-
vincing argument that the method of integration is highly reliable since
the branch points are only shifted infinitesimally off the real wave-

number axis by the large material attenuation factors.

5.1.2 ° Comparison with Cagniard Approach (Pekéris and Lifson, 1957)

The comparison with Pekeris and Lifson (1957) extends the vali-
dation to the case of a concentrated vertical force applied at a depth
zZ, in the uniform half-space. The time-dependence of the applied force
is represented by the Heaviside unit function and Poisson's ratio is
taken to be 0.25. Pekeris obtains the exact motion of the surface of
the elastic half-space in the time domain through use of Cagniard’s
:method (1937). Therefore, the validation test is performed in the time
domain with the present results generated through Fourier synthesis as
described in section 4.2.9,

Figure 5.1 displays Pekeris and Lifson's results for the vertical

-component of displacement at various epicentral ranges, r, as a function

of dimensioniess time =< = Bt/ rz + zg' . The arrivals marked P, S,

and R correspond to the compressional, shear, and Rayleigh waves,
respectively; the arrivals marked SP correspond to the diffracted
‘wave which starts as S and upon reaching the surface is converted into

P (for epicentral distances beyond the critical distance of zs/Jf).
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sionless time and should be compared to present solution

in Figure 5.2.
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The high-frequency prominence of the Rayleigh wavé for large values

of r/zS is deceptively exaggerated by the reduced time scale,

The analogous results obtained with the present method for a
neaf]y elastic half-space (Qu = 1000, QS = 500) are shown in Figure 5.2.
Owing to the difficulties associated with obtaining the original figures
of Pekeris and Lifson, the plots are not to the identical scale and
hence are displayed separately. Also, due to the reduced time parameter,
it was necessary to continue the calculations out to extremely high
frequencies to match the resolution for epicentral ranges less than
SZS (Teft-hand column). Therewith, it may be stated that the match
with Pekeris and Lifson's exact solution is once again of near-perfect
precision. The only deficiency prevalent is the lack of acuity of the
S-wave arrival at t =1 1in the right-hand column where the ultra-high

frequency resolution was not pursued.

5.1.3 Comparison with Cagniard~deHoop Abpr6acﬁ (Johﬁson, 1974)

In this subsection, the free surface displacements due to a
buried double couple in a uniform half-space obtained by the present
method are checked against the complete solution obtained by the Cagniard-
deHoop method (Johnson, 1974). As described in Appendix IV, the
Knopoff-deHoop (1958) representation theorem is used in conjunction
with the present method to reciprocally generate the surface motion due
to a buried dislocation by suitably combining the stress tensor solution
evaluated at the depth of the source for a point force acting ét the

free surface.
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The source time dependence is represented by an eight second
ramp function and Poisson's ratio is taken to be 0.25. The attenuation
factors used in the present solution are the same as in the previous
validation study. The depth of the point disTocation is 5 km and the
epicentral distance is 20 km. The surface displacements are evaluated
at an observation azimuth of 22.5 degrees from the strike of the fault,
10 2

o

and are normalized by the shear modulus 3 times 10 m divided by

the source moment Mo"

Six different fundamental orientations of the buried point
dislocation are considered in Figures 5.3 through 5.8; respectively.

A side view of the idealized fault dislocation appears adjacent to the
comparative results in each figure. The vector % defines the normal
to the fault and the vector a 1is the product of the slip vector times
the fault area. If v points from the negative to the positive side
of the fault, then a represents the displacement of the positive side
relative to the negative side,

The upper, center, and Tower curves in each figure correspond,
respectively, to the horizontal displacement component along the direc-
tion of the nodal plane, the vertical displacement component, and the
horizontal displacement component recorded 90 degrees from the nodal
plane, The three displacement components are plotted to the scale
appearing on the left and are displayed as a function of real time.

The results obtained by the Cagniard-deHoop method are distinguished
from the present results by the dots. Once again, as in the previous

two validation studies, the comparisons are of near-perfect precision for
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all components and all fault slip prescriptions. The slight differences
at long time are probably related to having to doubly integfate the
present results {i.e., to convolve with the ramp source function),
whereas Johnson's results are obtained directiy for the ramp time
dependence.

In summary thus far, the comparisons with Wong (1975) and
Pekeris and Lifson (1957) verify the accuracy of the displacements in
a uniform half-space and the c0mpar1§on with Johnson (1974) verifies
the accuracy of the stresses in a uniform half-space. The following
two subsections serve to substantiate the accuracy of the present solu-

tion for horizontally layered media.

5.1.4 Comparison with Finite Element Approach (Day, 1977)

The free surface displacements resulting from the action of a
buried double coupie source are‘fested once again, but now for the case
of a horizontally 1ay;red Earth model. The mode1 consists of two layers
overlying a semi-infinite half-space as shown in Figure 5.9, where the
individual parameters characterizing the layers are deffned; The
attenuation factors apply only to the present solution since the finite
element solution (Day, 1977) contains no material attenuation.

Source depths of 5 km and 1 km are considered and the source
time-dependence is represented by a ramp of one second duration in both
cases. The source is equivalent to the vertical strike-slip dislocation
depicted in Figure 5.3 with the receivers located at epicentral distances
of 5, 15, 25 and 35 km at an azimuth of 22.5 degrees from the strike of
the fault (in a dilatational quadrant). The ground motion is normalized

by the ratio of the shear modulus in the source layer, ﬁ, times 1010 cm2
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to tﬁe source moment, Mo' The finite element vresults have been Tow-pass
filtered down to 0.5 Hz to remove spurious numerical ringing; the
preéent results are computed up to 5 Hz and passed through the same

filter in order to maintain consistency in the comparisons.

The comparison to Day's (1977) finite element resﬁlts for the
deeper source is shown in Figure 5.10 at all four epicentral distances
for the radial component of ground motion, The agreement is remarkable,
especially in light of the vast differences between the two solution
techniques. The slight deviations in phase have periods much Tower than
the expected resclution of two seconds (0,5 Hz). The comparison for the
corresponding azimuthal component of motion is shown in Figure 5.11.

The results for the shallow source are displayed in Figures 5.12
and 5.13 for the radial and azimuthal components of motion; respectively,
Once again, the match Tends tremendous confidence in both methods of
solution. It is interesting to notice that the peak amplitudes for the
shallow source are approximately 50% larger than those for the deeper
source.

What appears to be a late time phase lag in the finite element
results is attributable to the numerical dispersion of the finite element
grid. The origin of this trend in the finite element solution is further
verified in the subsequent validation test with the discrete wavenumber/

finite element method (Olson, 1978).
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Figure 5.10. Comparison of the present solution with the finite
element solution (Day, 1977) for the radial dis-
placement component at the free surface due to a
vertical strike-slip dislocation buried at a depth
of 5 km in the earth model depicted in Figure 5.9,
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the source buried at 5 km.
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5.1.5 Comparison with Discrete Wavenumbér/Finité Elément Approach

In this final validation study, the comparison of the previous
subsection is repeated with the discrete wavenumber/finite element
method (Olson, 1978). Only the 5 km scurce depth is considered and the
comparisons for all three components of ground motion at epicentfa]
distances of 5, 15, 25, and 35 km appear in Figures 5.14, 5;15, 5.16,
and 5.17, respective]y; Day's (1977) finite element results for the
radial and azimuthal components of motion are also included in the
figures. Once again, the agreement is superb and the phase coherence
is nearly perfect.

0lson's discrete wavenumber/finite element method more closely
resembles the present method than Day's finite element method in that
the radial dependence is handled analytically through separation of
variables. The major differences are: 1) the dependence with depth
is calculated using a one-dimensional finite element treatment instead
of the closed form facterization of the present method; 2) the response
is transformed out of the wavenumber domain through Bessel series rather
than direct integration; and 3) the procedure is performed explicitly
in the time domain with no provision for material attenuation. When
the wavelengths of interest are shorter than the changes in the geology
as a function of depth, then Olson's method becomes Jess efficient than

the direct integration method.
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5.2 COMPARISONS

The validation studies of the previous section (i.e., comparisons
with known complete solutions) are complemented in this section by two
comparative studies with known partial solutions (i.e., comparisons with
solutions which include assumptions and/or approximations). Comparisons
to resuits obtained using a generalized ray technique and to results ob-

tained using a surface wave approach are undertaken in the two studies.

5.2.1 Comparison to Generalized Ray Techniques

In the generalized ray technique (Helmberger, 1974}, the time-
dependent wave field for a layered medium is decomposed inte contribu-
tions attributed to an infinite set of rays travelling from the source
to an individual receiver. Each ray contribution can be evaluated
exactly by the Cagniard-deHoop technigue (]939; 1960); However, the
number of rays selected is invariably Timited by the computational
difficulties associated with finding the separate Cagniard paths for
every point on the contour and for each kinematic group (rays with same
travel time), for all source-receiver pairs. To reduce the cost for
the comparisons, certain approximations are used in connection with the
Bessel functions causing the generalized ray results to be Teast reliable
at short distances and long periods. Also, differences can be expected
in the decay of certain waves with distance since the generalized ray
results include no material attenuation.

The soil model employed for the comparison consists 6f a single

layer overlying a semi-infinite half-space as shown in Figure 5.18, where
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Figure 5.18. Source-receiver geometry and earth model,
consisting of a 32 km thick crust over-
Tying a half-space for use in comparison
with the generalized ray solution.
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the individual parameters characterizing the layers are defined (the
specific attenuation factors apply only to the present solution). It
is hoped that by representing the 32 km thick crust by a single layer,
the generalized ray technique will be able to include a sufficient
number of muitiple reflections and interconversions to converge to the
complete solution generated by the present approach.

The source depth is 8 km and the source time-dependence is a
quadratic ramp defined by the time integral of the function appearing at
the top of Figure 5.18. The source is equivalent to a vertical strike-
slip dislocation; receivers are located at epicentral distances of 32,
48, 64, 80, 96, 112 and 128 km at an azimuth of 45 degrees from the
strike (SH node) for the vertical and radial displacements and at an
azimuth of O degrees from the strike {P-SV node) for the transverse
displacements.

The generalized ray results (provided by Don Helmberger) are
compared to the present results in Figures 5.19, 5.20 and 5.21 for the
vertical, radial and transverse displacement components, respectively.
The ground displacements are normalized by the ratio of the shear modulus
in the source layer times 1010 cm2 divided by the scalar moment of the
source. The maximum amplitudes obtained by the respective techniques
are self-scaled to fit within the same height on each figure and are
shown above and below each seismogram. The time scales are shifted
by a time correponding to the direct compressional arrival at each

epicentral distance.
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of 8 km in the earth model depicted in
Figure 5.18.
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RADIAL DISPLACEMENT
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TANGENTIAL DISPLACEMENT
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The phase coherence is nearly perfect at all epicentral distances
considered for ail three displacement components in Figures 5.19 through
5.21. Combined with the excellent overall agreement in ampiitude, these
results lend confidence in the generalized ray technique and further
validate the present method. The deficiencies in amplitude at short
distances in the generalized ray results are due to the approximations
used in connection with the Bessel functions. The discrepancies in
amplitude at the Targer distances are probably related to the differences
between using an elastic model versus a nearly elastic model (material
attenuation factor of QB = 300 included in the present solution). Also0,
the convergence of the generalized ray expansion is impaired by the
increased number of contributing rays at the larger epicentral distances.
Finally, the discrepancies at Tong periods in the generalized ray tech-
nique are enhanced by the approximations made for the Bessel functions
in the generalized ray calculation (especially in the radial displacements).
Several interesting features in the results merit discuésion. In
Figure 5.21, the contributions of the reflections beyond the critical
angle are well illustrated. Beyond the distances at which the SmS and
sSmS  waves are critically refiected (69 and 89 km, respectively), the
amplitudes of these critically reflected waves increase markedly. Thése
wayves eventually combine with other multiple reflections to form a dis-
persive Love wave, The direct SH wave decreases uniformly with distance

according to a dependence of approximately v,

In Figures 5.19 and
5.20, the vertical and radial displacement records are more complicated

since at an azimuth of 45 degrees from the strike they are excited by
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P and SV waves emitted directly by the source as well as by the
accompanying interconverted and multiply reflected waves.

In the next subsection, the present solution will be compared
with both the generalized ray solution and a normal mode solution for
epicentral distances between 100 and 1000 km for the same earth structure.
The effect of using a QB of 10,000 versus a QB of 300 is also investi-

gated at these epicentral distances.

5.2.2 Comparison to Normal Mode Téchnique (Harkrider, 1964, 1970}

The comparisons of the previous subsection are extended to the
case of epicentral distances between 100 and 1000 km. The Tayered earth
structure is the same as that depicted in Figure 5.18 except that
attenuation factors of QB = 10,000 and Qa = 20,000 are used in the
present solution so as to eliminate the predominant effects of damping
for comparative purposes. The source is also the same as shown in

Figure 5.18 except that the duration is 1.5 seconds instead of 0.6 second.

In addition to comparing with the generalized ray solution
(Helmberger, 1974) at these larger distances, the present solution is
matched against a solution constructed by superposition of surface-wave
modes (Harkrider, 1964, 1970). Similar to the present method, the normal
mode technique operates first in the frequency domain so that the number
of layers offers no Timitations, However, the increase in numbgr of
contributing modes with frequency restricts the practicability of the
normal mode technique to frequencies Tower than about 1 or 2 Hz. Also,
the inadequacies of the normal mode sofution for epicentral distances

less than a few source depths (or for any problem in which the ground
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motion is dominated by waves with relatively high horizontal phase
velocities) are difficult to predict in generai. For this probiem,
however, the normal mode solution is expected to provide a closer
match to the complete wavenumber integration solution that the
generalized ray solution since the surface waves will tend to dominate
the ground motion at periods greater than 1 or 2 seconds.

The transverse displacements (SH-Love waves) are shown in
Figure 5.22 for epicentral distances between 100 and 500 km and in
Figure 5.23 for epicentral distances between 600 and 1000 km., The
ground displacements for all three methods are normalized by the ratio
of the shear modulus in the source layer times 1010 cm2 divided by the
scalar moment of the source. The maximum amplitudes obtained by the
respective techniques are self-scaled to fit within the same height on
each figure and are shown above each seismogram. The time scales are
reduced by a time corresponding to the epicentral distance divided by
the shear-wave velocity of the mantle, so as to align zero time with
the first possible critically reflected arrival. The generalized ray
and normal mode results are courtesy of Don Helmberger and David
Harkrider, respectively.

As in the match to the generalized ray results at closer epi-
central distances (see Figure.5.21), the phase coherence and amplitude
agreement is superb. The somewhat Targer time step in the normal mode
calculations and the inadequate number of rays in the generalized ray
calculation accounts for some of the amplitude discrepancies. Also, the
modal superposition only includes the first five surface wave modes,

The results in Figure 5.24 portray the transverse displacements (SH-Love
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Waovenumber Integration —Impulse Response

r Max. Peak Max. Peak
km 0.5584E-0f 0.8948E-02
100 ' 600
0.3027€-0I . 0.7568E ~02
200 700 ﬂL
0.1748E-01 0.7143E-02
300 e e B00 |
 057586~02
0.1375E-0t
400 900
0.52456-02
i ] 0.1127€~0] i
500 | N% 1000
1 1 1 — { 1 1 |
0 40 80 {20 160 0 40 80 120 [£0)
Time (sec)
t-r/4.5

Figure 5.24. Present solution in response to same source used in
Figures 5.22 and 5.23 but with delta-function time
dependence.
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waves) in response. to the same source but with delta-function time
dependence using the present method. The host important feature is the
distinct set of pulses comprising the complete "elastic" (QB = 10,000)
solution, so that the excellent match with the generalized ray results
is not surprising for this simple prob]eﬁ;

Finaliy, the effécts of using a nearly elastic (QB = 300) earth

model versus an "elastic” (Q, = 10,000) earth model in the present wave-

g
number integration approach are investigated in Figure 5.25. Even with-
standing the Tow-pass fiTtering effect of the source, much more high
frequency energy is able to reach the receivers in the "elastic" model.

The maximum peaks for the "elastic" model correspond to the surface

waves which decay with distance according to a dependence of approximately
r-}/z

r-]/Z

The nearTy elastic model experiences an additional decay of
due to the small amount of damping. Otherwise, the wave forms are
quite similar,
This completes the validation/comparison studies with known
sotutions. The next section presents new results using the present

wavenumber integration method for applications in theoretical seismology.

14z
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Wavenumber Integrotion

Qa =20.000 0d=
Qg 10,000 Qg=300
f Mox. Peok Mox. Peak
km - "
3964 X10 1623 Xid
100 ¥
I
| 2624 wi6* 2357X10°
200 [} o
U
I 4 -3
i 1.837 Xi0 J 1411 X0
300 e - N

1523 XI0" 113 %10
400 o

1009 xi0*
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700
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900 wJJL‘M*————
o 7852 %0 0.3995 x16*
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1
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Figure 5.25. Effect on present solution of using a
nearly elastic (Qp = 300) earth mode]
versus an “"elastic" (Q = 10,000) earth
model .
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5.3 RESULTS

In this section, results are presented that further demonstrate
the flexibility of the present method for seismological applications.
Five typical applications are considered: 1) teleseismic ground motion
from a simple source; 2) earthquake modeling; 3) ocean bottom seismology;
4} sensitivity to layer thickness; 5) sensitivity to material attenua-
tion. Additional engineering applications are presented in Part II of

this dissertation.

5.3.1 Teleseismic Ground Motion

Teleseismic ground motion due to a point disTocation is calculated
with the present method. This is in contrast to the relatively close-in
receivers studied elsewhere in this chapter; The idealized earth model
must, however, be kept in mind when interpreting the results. For
instance, the curvature of the layers is neglected so that certain re-
flections off the curved interfaces are neglected (although an earth-
flattening approximation could have been incorporated into the ref]ectioh/
transmission coefficients). Also, the shallow depth of the layering rela-
tive to the teleseismic distances considered prevents the synthesized
waves from penetrating as deeply as teleseismic waves in the real Earth.

The earth structure is approximated by a stack of 11 parallel
layers overlying a semi-infinite half-space. The wave velocities and
attenuation factors for each layer are displayed graphically as a function
of depth in Figure 5.26. OF interest is the low ve10c1ty; Tow attenuation

crustal 1id for this particular geologic site. The layers extend to a
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Basin and Range Site

Velocity (km s-')
2 3 4 5 7 8 9 10 1 12 13 14
T 11 I 3

='500

700

800~

900~

1000L-

Figure 5.26. Velocity and material attenuation profiles
as a function of depth for the 12-Tayer
model of the Basin and Range geologic site.
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depth of 900 km, whereas the epicentral distances considered range up
to 25 degrees of the Earth's arclength (2555 km).

The source corresponds to a vertical strike-slip point dislocation
at the free surface with a time dependence represented by the Heaviside
unit function. Receivers are located at epicentral distances of 444.48,
888.96, 1444.56, 2000.16 and 2555.76 km along an azimuth of 22.5 degrees
from the strike (to eliminate bias due to radiation pattern). The
time response is calculated down to periods of 4 seconds (freguency
content of 0 - 0.25 Hz).

The three components of the calculated teleseismic ground
motion are displayed in Figures 5.27 through 5.31 for the five epicentral
distances, respectively. The radial, verti§a1 and azimuthal displace-
ment components are shown vertically in each figure and are plotted
as a function of time from O to 1000 seconds. The dispTacemehts are
normalized by the ratio of the shear modulus of the first jayer times
10]0 cm2 divided by the source moment and are scaled at each epicentral
distance by the maximum peak found in the three components. This scaling
factor appears at the top of each figure.

In Figure 5.27, the near-field P-SV contribution to the azimuthal
displacement, which, referring to Eq. 4.2, has the form
‘/An k Uy Ji(kr)/(kr)dk , is still noticeable at 444 km, whereas it is
cgmp1ete1y attenuated at the Targer epicentral distances. The calculated
teleseismic ground displacements are dominated by normally dispersed
surface waves followed by an Airy phase with an exponential tail in all

five figures. The scaling factors therefore reflect the maximum surface



14

*90eJuNsS 3vd4) Y3 e burioe

JWL] UL uorjouny dols B SL IDUNOS dYL °GZ'G 94nbBL4 UL UMOYS

[opow Yj4es ayl J40j uoL3ed0iSLp Jurod dL[S-3)LJU3S |ROLIUDA P

40 9 LU3S 9Y3 Wouy S334b3p G°gz 40 yanwize ue bBuoie wy gy vhv

40 90uR3SLp [RAUDOLAD ue e sjudwade(dSLp punodb paje(nd(e) */z°G aunbiy

{038) 3NIL
000! 006 008 004 009 00S 00v 00¢ 002 0ol 0
| 1 1 I 1 i i 1 I i 1
joyipwizo L_

LEITVED)

[01p0:
| Y T T 1 T T Y T 1

OI¥ 1612 = 8|Dd§

Wy 8f'pbp = UDISIQ 01U

9j09§
O,PIX Op/n7l INIWIDVIISIO  Q3IZINVIWHON



148

‘WY 96°888 40 URYSLP

[ed3udoLdd ue 404 92°G 94nbi4 03 s3I nsaa burpuodssduo)

{938) 3WIL

000! 006 008 00L 009 00§ 00Y 00
] I | I I 1 1 I

{D31}13A

I01pDJ

GOIX GI') = 31035
wy 96°888 = 2duoisiq  DijuANd3

¢ 002 00!
1 i
[oyinw)zo kr>\/

|

303§
OIO‘X O/ nrl IN3WIVLSIO  Q3ZITVWYHON

*82°G 94nbL4



149

. "y 99 ypyL 40 SdURISLp
[ed3uddLdd ue 40} 9Z°G dunbL{ 03 SILNSDBA DuLpuOdSdUU0) °62°G aunbL4

(%0s) 3INIL

000! 006 008 00L 009 00¢ 00b 00¢ 002 oot 0
| V ]

gz l.e

JO914I9A

3|09g
oplX°W/nﬁ ININIOVIESIO  QIZITVINHON

101pos

(01X 2¥6" = 203§
wy 96yl = ddupisig  |onuaNd3



150

‘w3 91°000¢ FO ddueISLP
[e43ud0Ldd UR U04 92°G d4nbL4 03 s3|nsad buipuodsauauo) °0g’G dunbi4

(o9s) 3WIL
0001 006 008 ooL 009 00  00b  00¢ 002 00! 0
¥ 1 ] 1 1 T ] 1 1 1 L

[oYinwizo Jé 1/\/\Kr

001} 43

a)03g
mOIX On/nr INIWIOVIASIQ  G3ZITVWHON

e ———

(Ot LbL" = 91038
Wy 91°0002 = 9duDisiQ  |o4yuadld3




151

"Wy 9/°6GG¢ 40 IduelSLp
[e43u20Ldd UR 404 92°G BunbL4 03 S3NSAL BULPUOASDUUO) |E°G 9JnbL

(08s) 3ImIL
0001 006 008  OOL 009 00§ OOy 00 002 00l 0
1 L I LB

1 1 I ¥ Al 1
oynwIzo & ?\/\/\/\(

10314 13A

Nk Ow/n7 INIWIOVIASIQ  QIZIIVWHON

ioipo

¢
91095

o GeS™ = 903§
Wy 91662 = 3duDSIg _|ojuadd]



152

wave amplitudes, teading to the conciusion that the amplitudes decrease

with distance according to a dependence between R_]/2 and R-], where

-1/2 is attributable to

R is the epicentral distance. The factor of R
the geometric radiation of energy, while the additional amplitude decay
can be accounted for in terms of material attenuation. The static dis-
placements resuTting from the step-function source-time history decay with

distance between R_2 and R'3

at these teleseismic distances. It is
possible to identify the small static displacements only at the closest
epicentral distance.

Again, these results demonstrate the ability of the present method
to generate theoretical ground displacements at teleseismic distancés al-

though the idealized earth model may be limited at representing the

realistic Earth.

5.3.2 Earthquake Modeling

The present method has been used by Hartzell (1978) to substan-
tiate a hypothesized source depth for the October: 6, 1974 Acapulco earth-
quake. The recorded displacements (i.e., the doubly integrated accelero-
grams) appear to consist primarily of normally dispersed surface waves,
suggesting that the source was shaliow. However, the recorded depth
(based solely on P-wave arrival times) was 51 km with an epicentral dis-
tance of 25 km.

The predominant energy in the displacement records includes fre-
quencies between 1 Hz and 10 Hz. The phase veijocities vary smoothly
from 3.1 km/sec at 10 Hz to 3.5 km/sec at 1T Hz. Considering the rela-
tively simple surface geology of the Acapulco area, the earth structure

is approximated by a single Tayer overlying a semi-infinite half-space.

three components of recorded ground motion for the Acapulco earthquake
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are enclosed in the box at the right center of the figure. The time
scales are identical for the synthetic and recorded ground motion.

The synthetics resulting from point dislocations of 2.5 km and
deeper are quite dissimilar to the data in comparison to the match ob-
tained for the shallower source depths. The observed surface wave ex-
citation is best reproduced by a point dislocation of approximately 1.0
km depth, whereas the synthetic at the recorded depth of 50 km is com-
pletely dominated by body waves.

Other workers have used the present method for earthquake
modeling involving finite sources (spatial infegra1s over the fault

plane of a discrete mesh of propagating point dislocations).

5.3.3 Ocean Bottom Seismology

Apsel and Orcutt (1977) modified the present method to accomodate
a fluid Tayer overlying a solid layered half-space. The modifications
entailed replacing the free-surface reflection coefficients by their
fluid counterparts and replacing the downgoing and upgoing reflection/
transmission coefficients for the first layer interface by their fluid-
so1id and solid-fluid counterparts, respectively. This fully ;oup1es
an oceanic overburden into the sea floor with all types of body and
surface/interface waves represented in the compiete solution.

Synthetic seismograms are generated for earthquakes on the
Rivera Fracture Zone and Gorda Rise. The normal oceanic crustal model
consists of 7 layers with the individual layer properties given in
Figure 5.33. In order to realistically model the amplitude ratio of

body and surface waves it was necessary to use velocity models with



DEPTH (km)

Normal Oceanic Crust
aj /3B P Qj
1 .
1,473 1.000 66.67
2k n
" 18.98 .
L____________j. E;t:::::::::::::::.

4} .
5_ —
6 - -
7 |
8_ v
o 2
104 -
ul i
' 8.500 3.300 145.35)

3 By oy ;5 Oﬁj:oai hj

1 1.473 1.00 66.67 3.399

¢ .894893 1.550 1.0 18.98 0.170

3 2.886751 5.000 2.07 71.94 0.800

4 3.637307 6.300 2.60 101,63 0.700

5 3.925982 6.800 2.80 113.89 2.600

6 4.156922 7.200 2.96 125.00 3.000

7 4.618802 8,500 3.30 145.35 Lod

Figure 5.33. Material properties as a function of depth
for 7-layer model of Normal Oceanic Crust.
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crustal gradients similar to those found in recent work in oceanic
explosion seismology. The ocean layer extends to a depth of 3.399 km
but unfortunately has an unrealistically large amount of material
damping due to the choice of Qa in the Tiquid Tayer.

Typical results are shown in Figures 5.34 and 5.35 for a re-
ceiver buried at the fluid/solid interface. The source is a concen-
trated point force buried in the oceanic basement, 140 km beneath the
sea floor. The vertical dispTacement at the sea floor is displayed in
Figure 5.34 as a funcfion of time from 0 to 50 seconds for epicentral
ranges from 2 km to 40 km at an increment of 2 km. The synthetics in-
clude energy from O to 8 Hz. The two columns of figures correspond to
vertical and horizontal point forces, respectively. The displacements
are normalized by the shear modulus of the first solid Tayer times the
epicentral distance and the plots are scaled relative to the seismograms
appearing at the top of each column.

The first thing to notice is that much, if not all, the S-wave
"coda" can be realistically modeled as a superposition of higher mode
interface waves without resorting to scattering mechanisms. The dis-
persion of the surface/interface waves becomes more prevalent as the
epicentral distance is increased. It is interesting to observe the
periodic arrivals corresponding to reflections off the surface of the
ocean. The corresponding results for the normal component of stress
at the sea floor are shown in Figure 5.35. Again, it is interesting to

follow the various arrivals as a function of epicentral distance.
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NORMAL. OCEANIC CRUST

Receiver Depths at 3,399 km
Source Depths of 4,399 km

VERTICAL DISPLACEMENT VERTICAL DISPLACEMENT
VERTICAL POINT FORCE HORIZONTAL POINT FORCE

km

L | e L e

Figure 5.34, Calculated displacements at the sea
floor for a concentrated point force
buried at T km beneath the sea floor
for normal oceanic crustal model de-
lineated in Figure 5.33.



Figure 5.35.

NORMAL  OCEANIC  CRUST

Receiver Depths at 3.339 km
Source Depths at 4.399 km
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Corresponding resuits to Figure 5.34
for the normal stress at the sea floor,
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5.3.4 Sensitivity to Layer Thickness

The issue of niodeling continuously varying earth structures with
a set of parallel horizontal layers is examined. Numerous questions can
be asked in such an undertaking. For instance, can thick layers trans-
mit the predominant high frequency energy similar to Tayers whose thick-
ness is on the order of the wavelengths of interest? Also, what are the
effects of allowing the waves to be reflected and refracted by the layer
interfaces compared to the turning and bending associated with a more
continuous profile?

An attempt to answer some of these questions is presented by
studying the sensitivity to Tayer thickness for the geology near the
1940 Imperial Valley earthquake. Four plausible representations of the
depth dependence for the shear wave velocity are shown in Figure 5.36.
The mode] appearing to the left is the so-called continuous model with
a linear gradient overlying a true layer followed by another Tinear
gradient overlying a semi-infinite half-space. The three layered
profiles are all equivalent to the continuous model in the sense that the
layer properties are chosen to preserve the vertical travel time from
the half-space to the free surface as well as the effective material
attenuation in the vertical direction., The true layer and the underlying
half-space are identical in the four models.

The vertical travel time is preserved through each gradient

by independently insuring that both

DRI U
— and —
01 —t B
1 1



IMPERIAL VALLEY SHEAR VELOCITY PROFILE
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Figure 5.36. Imperial Valley shear-wave velocity profile as a

function of depth for four "equivalent" earth
structures.
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are consistent between the models, where the summation extends over
the layers composing the gradient. The material attenuation is pre-
served for vertically emerging waves in an approximate sense by inde-

pendently insuring that both

ot o Tk

are consistent between the models. This is the effective material
attenuation as theorized in Section 2.5 and as demonstrated in the
following subsection. The actual parameters defining the four models
are presented in Tables 5.2 through 5.5.

The vertical displacements due to a vertical point force acting
at a depth of 2 km are shown right to left in Figure 5.37 for the three
layered models depicted in Figure 5.36. The three results are normalized
by the shear modulus in the first layer of the 15-layer model times the
epicentral distance. The first 50 seconds of 100 seconds of time signal
are plotted for each epicentral distance (5-50 km ét an increment of
5 km), and frequencies up to 10 Hz are included in the calculations.

It is important to realize that the Tower frequency surface
waves are virtually unaltered going from 4 to 6 to 15 jayers, since the
long period waves are influenced by an average value of the soil proper-
ties. Also, there exists no prevalent trend in the body waves as a
function of layer thickness. However, it is difficult to interpret the
significance of these results in terms of transmission of high frequency
energy. First of all, the source is Tocated just below the upper |

gradient zone and the reflections off the large impedance mismatch could

16:



B o p Thickness

Layer | km/sec km/sec gm/cm3 QB Qu km

1 .16 .47 1.56 15 95 .2

2 .28 .81 1.68 30 180 .2

3 .40 1.15 1.80 45 270 .2

4 .52 1.49 1.92 60 350 .2

5 .64 1.83 2.04 75 440 .2
6 [t | 20 | 220 | w0 | se0 | 1.0
7 | 203 | aee | 220 | 20 | 0 | 5

8 2.16 4.00 2.445 315 795 .5

9 2.29 .14 2.470 340 820 b

10 2.42 4.28 2.495 365 845 .5

11 2.55 4.42 2.520 390 870 .5

12 2.68 4.56 2.545 415 895 .5

13 2.81 .70 2.570 440 920 .5

14 2.94 .84 2.595 465 945 .5
s [ ae0 | 6.0 | 280 | ea0 | izeo | -

Table 5.2

Material properties for the 15-Tayer model

of the Imperial Valley geologic site.
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_ 8 o P g Thickness
Layer | km/sec km/sec gm/cm QB Qa Kkm
1 217 633 1.65 19.75 123.46 5
2 583 1.667 1.95 70.25 417.54 5
________ T__-___-_____--__________"mn_J_m,_____wJ-------------_-_-_-_--
3 1.400 2.700 2.20 200.00 560.00 1.0
________ | AU ESRpPIEIPRUI DIPNENRUIN SNSRI DR NI,
4 2.185 4.029 2.45 319.24 799.97 2.0
5 2.785 4.671 2.55 435,76 975.03 2.0
________ 1\..._.._.._.__._.........._...........u...............,........‘...‘..-.........-u.._u._..............'_u....._..._.......__,.._._
6 3.900 6.400 2.80 640.00 1280.0 o
Table 5.3

Material properties for the 6-layer model
of the Imperial Valley geologic site.
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A o P 3 Thickness
Layer | km/sec km/sec gm/cm QB Qa cm
1 .316 918 1.80 ~24.24_ 152“2? _______ 1_P _____
_____ %----_];fFE{MC*_f{Jq¥{“Lu_f{f¥l__.--f¥¥%5¥l¢__f¥¥l5¥{"_--J.fl_--_
i 3 2.449 4.326 2.50 361:??..uf¥¥{fgi.___ft§ _____
4 | 3.900 6.400 2.80 640.00 | 1280.00 r w

Table 5.4

Material properties for the 4-tayer model
of the Imperial Valley geologic site.



Zone

or d a 3 Thickness
lLayer | km/sec km/sec gm/cm QB Q& km

1 1-.7 .3-2.0 1.5-2.1 8-80 52-480 1.0

2 1.4 2.7 2.2 200 560 1.0

3 2.0-3.0 3.8-4.9 2.4-2.6 280-480 760-960 4.0

4 3.9 6.4 2.8 640 1280 ®

Table 5.5

Material properties for the continuous model

of the Imperial Valley geologic site.
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Figure 5.37.

IMPERIAL VALLEY SENSITIVITY
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Sensitivity to layer thickness of the vertical dis-
placement at the free surface due to a vertical point
force at 2 km depth for the three layered models re-
presenting the geology at Imperial Valley as defined
in Tables 5.3, 5.4, 5.5 and as shown graphically in

Figure 5,36.
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account for the high frequency content of the body and higher mode sur-
face waves in the 4-layer model. Also, the transmission and reflections
from the underlying material could obscure the comparisons at high fre-
quency. Furthermore, to reduce the computing effort for the three cal-
culations, the Towest phase velocities were not included at high frequency
(where they are not expected to contribute information). It is possible
to conclude, however, that the extra refjections and refractions in the
15-Tayer model have only a second order effect since the body wave re-
gion is no more complicated than in the 4- and 6-Tayer models.

It is interesting tb notice how the surface waves dominate the
signal for epicentral ranges larger than 30 km with the source buried at
a depth of 2 km. The next three figures show the corresponding results
for source depths of 5, 8, and 11 km, respectively. For these deeper
source depths, the long period surface waves remain subordinate in ampli-
tude to the body waves and higher mode surface waves, even at an epicen-
tral distance of 50 km. Again, the seismograms look quite similar as a
function of layer thickness, but the significance of such a result is
beyond the scope of this work.

The analogous results for the tangential displacement due to
horizontal point forces at depths of 2, 5, 8 and 11 km are shown in
Figures 5.41 through 5.44. The same conclusions may be drawn here as
in the previous four figures. ‘

A direct comparison between a continuous model and a finely
Tayered model for Imperial Valley is currently underway using the discrete
wavenumber/finite element method (01son, 1978 -- see Section 5.1.5) and
the present method. Preliminary resulis indicate an excellent match for

all frequencies considerad.
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Figure 5.38. Corresponding sensitivity results to Figure 5.37

for a source depth of 5 km.
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IMPERTAL VALLEY SENSITIVITY
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Figure 5,40, Corresponding Sensitivity resylts to Figure 5,37
for a source depth of 1] km,
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Figure 5.41. Corresponding sensitivity results to Figure 5,37
for the tangential displacement at the free sur-

face due to a horizontal point force at 2 km depth.
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Figure 5.42.
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Corresponding sensitivity results to Figure 5.41

for a source depth of 5 km.
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Figure 5.43, Corresponding Sensitivity resylts to Figure 5,47
for a source depth of 8 km
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Figure 5.44, Corresponding sensitivity results to Figure 5,47
for a source depth of 11 km.
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5.3.5 Sensitivity to Material Attenuation

The sensitivity of the Green's functions to material attenuation
is investigated as a function of frequency and source-receiver geometry.
The sensitivity is expected to show certain trends which can be par-
tially explained in terms of simple geometric ray theory. The results
presented in this subsection are courtesy of recent work done with
Gerald Frazier and Jeff Fried of Del Mar Technical Associates.

The measure of sensitivity to be used is given in terms of the
function G(Qj), which represents the spectral amplitude of one Green's
function component for a particular parameter set Qj of material

attenuation factors, Q and Q (3 =1, 2, ..., number of Tayers).

B
J J
The sensitivity measure, §, of G(Qj) with respect to Qj is defined
as
G(Q:+nQ,) - G(Q,-nQy)
RN N ]
in which
G(Q:+nQ.) = G{Q, +nQ, . Q, +nQ, , -.. ,
™ (5] eyt Tey T ey
B, * 70y Q0 o) (5.2)
n=0.1. (5.3)

In what follows, the function G(Qj) correspeonds to the spectral
amplitude of the azimuthal component of the displacement field at the
free surface resulting from a buried vertical strike-slip point disloca-

tion with delta function time dependence. The receivers are jocated at



B o P Thickness
Layer km/sec km/sec gm/cm QB Qa km
1 0.62 1.88 2.16 17 114 0.021
2 0.64 1.95 2.16 17 120 0.044
3 0.66 2.03 2.16 18 126 0.032
4 0.79 2,13 2.10 22 122 0.113
5 0.93 2.28 2.10 27 123 0.11
6 1.16 2.48 2.10 36 124 0.33
7 1.39 2.75 2.24 45 133 0.27
8 1.47 2.85 2.24 49 137 0.27
9 1.66 3.10 2.47 57 148 0.70
10 1.71 3.20 2.47 59 154 0.10
11 2.94 4.80 2.60 115 231 2.12
12 3.49 5.70 2.76 143 286 6.97
13 3.73 6.10 2.76 156 312 ®
Table 5.6

Material properties for the earth structure of

reference used in sensitivity studies on material

attenuation.
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n 1is approximately given by

1. . wR

Sdirect ™ ;-s1nh i 52?-?%“_ (5.4)

. - J '8
J J

in which the summation over Jj extends over the Tayers traced by the

direct SH-wave. The variable Rj in Eq. (5.4) represents the distance

traveled by the direct shear wave in the Jth layer according to Snell's

law. For small values of nZﬁ__%——
7

» the sensitivity of the direct
Bj :

rays in Eq. (5.4) can be reduced to

wR,
Sdirect ™ Zﬁ ) (5.5)
J J

Referring to the sensitivity values in Table 5.7, the dependence of the
sensitivity on frequency does in fact tend to be proportional to fre-
quency for epicentral distances less than about 10 km, as predicted by
Eq. (5.5) for the direct rays. Since the direct paths are not the most
efficient paths for the more distant receivers, the more complex fre-
quency dependence is not surprising for the epicentral distances greater

than 10 km.



CHAPTER 6
SUMMARY AND CONCLUSIONS

An accurate and effective method for studying wave propagation
in a layered viscoelastic half-space has been presented. The thfee—
dimensional wave propagation problem is formulated and solved in the
frequency domain with thé azimuthal dependence represented by a Fourier
series expansion. The complete response at a particular frequency for
any source-receiver geometry is given in terms of semi-infinite integrals
over wavenumber so as to automatically include all types of waves.

The integrands of these semi-infinite integrals consist of the
product of a kernel that depends upon wavenumber, frequency, source-
receiver geometry and earth structure times a Bessel function that de-
pends upon wavenumber times epicentral distance. Based on the generalized
reflection and transmission coefficient matrices, the kernels are
evaluated in terms of highly efficient factorizations for the upgoing
and downgoing wave amplitudes in each layer. The appearance of common
factors is taken advantage of when computing the displacement and stress
components for multiple source-receiver depth pairs.

The semi-infinite integrals are evaluated by direct integration
along the real wavenumber axis. Basically, the kernels are sequentially
sampled fine enough to allow piecewise polynomials to interpolate the
amplitudes of the kernels between the integration points. Thereby, the
numerical integration over each wavenumber interval is performed analy-

tically, thus avoiding the oscillation hazard of the Bessel functions.
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Also, since the radial dependence appears only in the Bessel functions,
it is efficient to consider multiple epicentral distances simultaneously.

Introduction of realistic attenuation for shear and compressional
waves shifts the singularities of the kernels off the real wavenumber
axis. This facilitates the direct numerical integration along the real
wavenumber axis without having to resort to principal values or contour
integration. Since the response is obtained as a function of frequency,
it is possible to allow any or all the earth parameters to vary with
frequency. In particular, frequency dependeht material attenuation can
be implemented.

Source functions characterized by concentrated point forces, ring
loads and point dislocations are considered in the formulation as well as
in the numerical results., A set of five validation studies is presented
to verify the accuracy and stability of the numerical integration scheme.
The results of all the validation comparisons with other known complete
solutions serve to lend considerable confidence in the method for uniform
as well as layered semi-infinite media (the internal validations in
Part 1I serve to further substantiate the reliability of the method).

The particular studies found in the validation section include
comparisons to the following methods: exact contour integration approach
for a uniform half-space (Wong, 1975); exact Cagniard approach for a
uniform half-space (Pekeris and Lifson, 1957); exact Cagniard-deHoop
approach for a uniform half-space (Johnson, 1974); complete finite element
approach for a layered half-space (Day, 1977); complete discrete wave-

number/finite element approach for a layered half-space (Olson, 1978).
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Studies appearing in the comparison section complement thé vali-
dation exercises in that matches are obtained whére the assumptions and/or
approximations inherent in the partial solutions do not 1imit the results.
The particular studies include comparisons to the generalized ray tech-
nique (Helmberger, 1968) and comparisons to the surface wave approach
(Harkrider, 1964, 1970).

Studies found in the results section further demonstrate the
utilizable flexibility of the method for seismological applications. In
the first study, teleseismic ground motion due to a point dislocation is
calculated at epicentral distances between 4 and 25 degrees of the
earth's arclength. Next, the method is used to substantiate a hypo-
thesized source depth for the October 6, 1974 Acapulco earthquake. In
the third study, wave propagation in an oceanic crustal configuration is
analyzed. The oceanic overburden is fully coupled into the sea floor by
replacing the free-surface reflection coefficients and the first inter-
face reflection and transmission coefficients by their fluid counterparts.
The sensitivity to layer thickness is examined in the fourth study.
Results for three "equivalent" layered profiles (coarse, intermediate and
fine) are compared as a function of time and source-receiver geométry.

The sensitivity to material attenuation as a function of frequency and
source-receiver geometry is examined in the final study.

It is expected that the method and associated computer_program
will prove increasingly useful in various areas of theoretical seismology
and earthquake engineering. Several earthquake engineering applications

are presented in Part II of this dissertation.
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is the Rayleigh determinant for a half-space with the properties of the
surface layer.
The reflection and transmission coefficients for waves impinging

on the jth interface from below are
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APPENDIX II.

MODIFICATIONS FOR LARGE WAVENUMBERS

T (p = 1,2,3; ¢
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where

f)(zo)] -1 (A2.5)

E.{z ) = exp[(vj-vJ

J ©

It is important to notice that

1 0
Eg(zo) " exp[fk(zo-zg'])] k i as ke . (A2.6)
-k(z -z; ) 1
The matrix Eg(zo) defined by Eq. (3.63) may be obtained from
EX(z,) by
Eﬁ(zo) = Eg(zg'] + zg - zo) (A2.7)

In particular, as k =+ o

Eﬂ(zo) ~ exp[k(zo-zgﬂ . _ (A2.8)

o
k(zo-zo) ]

The source terms §§n and §ﬁn defined by Egs. (3.70) may also

be written in the form
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The asymptotic values of the source terms are given by
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The asymptofic values presented in Eqs. (A2.3), (A2.6), (A2.8) and
(A2.10} correspond to the static integral representation obtained by
‘Muki [1955]. (In the static case the parameter B8/« wmust be interpreted

as a length of reference,)
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APPENDIX III.
STATIC INTEGRAL REPRESENTATION OF THE
DISPLACEMENT AND STRESS FIELDS

As discussed in Section 4.2, closed form expressions for the
static displacement and stress fields are necessary in the method of
integration over wavenumber when the receiver depth Z, coincides with
the source depth zz. To evaluate the Hankel transform-type integrals
depicted in Eq. (4.21) for proximate source-receiver depths, the static
integral representations are introduced as demonstrated in Eq. (4.23).

The staticlintegrands (symbolized by F(0) in Eq. (4;23)) for a
semi-infinite viscoelastic half-space having properties of the jth tayer
{which contains both the source and the receiver) follow immediately for
all the displacement and stress components. Utilizing the notation and
normalization of Eq. (4.2), the closed form expressions for the n=9
components are given as:
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in which

- S - s o 5
S = sgn(zo-zo)‘, € = exp(—K‘zo-zo‘) > €y = exp(-K Zo+zbl)" (A.3.2)

Introducing the static integrands from Eqs. (A3.1) into Eqs. (4.2)
and evaluating the integraﬁs analytically leads to the following ex-
pressions for the static integrals (symbolized by In(O) in Eq. {4.23) )
for a semi-infinite viscoelastic half-space having properties of the jth
layer. The n=0 components of the displacement and stress fields are

given by
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APPENDIX IV
MOTION OF THE FREE SURFACE DUE TO A BURIED
DISLOCATION USING RECIPROCITY RELATIONS

The displacement field at the free surface resulting from the
action of a buried dislocation is derived in terms of the stress tensor
solution evaluated at the depth of the dislocation resulting from the
action of a point force at the free surface.

As shown in Figure A4.1, the idealized dislocation occurs at .
a point y on surface S in volume V; The receiver is located at
point X on the free surface of voiume V. Volume V wmay correspond
to the viscoelastic layered half-space consistent with previous usage
in Chapter 3 of the present work.

The 1ocal fault geometry is defined with respect to the unit
vectors é1, é2’ §3 in the Cartesian coordinate system Xys X X3
The x, axis is aligned with the strike of the fault (direction of é1,
which is at an azimuth of B degrees from the receiver). The slip
vector 3(y) 1is constrained to have a rake of y degrees in the plane

defining surface S (see Figure A4.2):
e > o . o : : a
&{y) = Am(Y)[(cosﬂe1 + (smycosa)e2 + (s1nys1n6)e3] . (A4.1)

In Eq. (A4.1), 8 s the dip of the fault plane measured counterclockwise
from the x, axis, such that the projection of the unit normal to

surface S 1in the X0 X5s X3 system is

3(F) = (-sins)é, + (coss)é, , (A4.2)
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Figure A4.2. STip vector orientation on surface S.
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Figure A4.3, Sign convention for slip vector.
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and Aw(y} is the amplitude of the dislocation, i.e., the displacement
of the positive side of the fault relative to the negative side with the
unit normal v(y) positive pointing from the negative side to the posi-
tive side (see Figure A4.3).

Assuming that the displacement and stress components have har-
monic time dependence, it is convenient to apply the Knopoff-deHoop (1958)
representation theorem to volume V of Figure A4.7. In the absence of
body forces in V and assuming continuity of tractions on S, the repre-
sentation theorem in Cartesian coordinates is written in the frequency

domain as

v
U.I-(;Z;w) = ‘“f Hji(ya;;w)Uj(y;w)dS(y), (isj = 152:3)

(A4.3)

in which the point X has been specialized to be on the free surface

(defined by the plane = 0).

X3
In Eq. (A4.3), the factors exp{iwt) have been omitted and

Hji(y,i;m) denotes the J-component of the traction vector at y e S

due to a concentrated point load at X 1in the i-direction, Uj(y;m)
represents the j-component of the displacement vector prescribed at
Y & S, which for this problem is equivalent to the slip vector component
Aj(y) as defined in Eq. (34.1). The summation convention over repeated
indices is understood.
The tractions ﬁji(an;w) are expressed in terms of the
stresses by
LG - Gkl v ) (ha.4)

ji Kis
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in which Tkji(y,i;m) denotes the kj-component of the stress tensor at
§ e S due to a concentrated point load at X in the i-direction.

Eq. (A4.4) is introduced into Eq. (A4.3) in conjunction with
Eq. (A4.2). Then substituting the slip vector a(y) into the right-
hand-side of Eq. (A4,3) Teads, after simplification, to the final
expression for the displacements at X dﬁe to the buried point dislo-

cation at ‘y e S (integration over surface S 1is omitted by not

considering an extended source}:

3w)

-

1]

(cosysing) 1121(§,

(coSycos8) Ty (V,Xsw)
131

+ (1/2 sinysin2s) 122_(?,§;w)
i

(172 sinysin2s) rqs (FiX50) . (A4.5)
1

A11 that remains is to relate the stresses. rkji(§;§;w) in
the X1s Xps X3 system to the stresses in the system of cylindrical
coordinates r, 6, z. Using the notation of Eqs. {3.4), (3.5), the
clockwise rotation of (B + n) degrees from the r, 8, z system to
the X1s Xg5 Xg system (as shown at the bottom of Figure A4.1) is

delineated by



N i (3 _J J -
1, 2 (Orr‘ ¥ Uee‘) ) (Grr. Toe,) COSZB T O SNz
i i i i i i
13 J 1(j i I
To2, T 7 (qrr. * Gae.) "7 \ %y, T %o, cos28 - oy, SinZp
i i i i i
:.;I_j j ] j
Typ, % - Z(Grr. - Uee.) sin2g + Top €os2p
i i i i
J en 4 .
T = - o COSB + o s1n5)
]3i ( rz. 0z
= - (- oj sing + J coss)
Tog, 7 rz, .
i i
T = oj (A4.6)
331 2z,

where the arguments (?, ?; w) have been omitted for brevity and the
superscript Jj indicates the layer in which the stress tensor solution
is monitored.

For completeness and consistehcy with the notation used in
Chapter 3, the stresses appearing in the right-hand-side of Eq. (A4.6)
are presently listed. The stress components for the 1 = 1,2 terms
(concentrated point load at x in the é], éz directions, respectively)

are given as follows:
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“izi Zaz](ro,zo)cos(e-eoi)

ngi zgz1(ro,zo)sin(e-eoi)

Oizi FZQ zizl(ro,zo)cos(e—eoi)
- ~9_%A , i=1,2

) A .

Giri " zir1(ro,zo)cos(e-eoi)

Ggei Ege](ro,zo)cos(e—eoi)

Ggrt zgr](ro,zo)sin(a~é01)

(y=x503) )

(A4.7)

in which the reference angles e—eo for the direction of the concentrated
i
point force at X are determined from Figure A4.7 tc be

B . for i =1

i
B

B i .
1 6"'59 for i

- The stress components for the i =3 terms (concentrated point Toad

at X in the 63 direction) are given as follows:



20

J J
%z, zrzo(ro,zo)
J
g 0

623

J J
0223 | rZQ Zzzﬂ(ro’zo)

-9 . (A4.9)

J 4TTY' J

OrrB Erro(ro’zo)
J J

o . {r .z )
663 660 00
J

o] 0

GY‘B

(y:?(-;w)
The amplitudes Q] and QO’ of the horizontal and vertical concentrated
point loads respectively, in Egs. (A4.7) and (A4.9), are determined
AY)
by realizing in Egs. (A4.3), (A4.4) that H corresponds to stress

if Q0 = Q1 = 1. Dimensionally, Eq. (A4.3) reveals that

M

Unts, A=S(ua R) =1 -2 | _(A4.10)

x
H
so that if U~ 1t as in Eq. (A4.5}, then

MO
0 =0y =2 . (A4.11)

m
In Eqs. (A4.70), (A4.11), A is the area of surface S over which
the slippage occurs; 5 is the ampTitude of the dislocation at a

point on S; MO is the source moment; and u 1is the shear modulus

of the layer containing the point disTocation.
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To summarize, in Eq. (A4.5), the displacements at point X
in the i-direction on the free surface due to a buried dislocation at
point § e S are represented in terms of the stress tensor solution
at v ¢S due to a concentrated point load at point X in the
i-direction on the free surface. The displacements at poiht X in any
direction may be obtained from Eq. (A4.5) by appropriately adding
vectorially the Ui(i;w), (i = 1,2,3). The displacements for an ex-
tended source may be obtained by spatially integrating over surface S
the compdnents appearing on the right-hand-side of Eq; (A4.5),

The variables y and 3§ represent the local rake and dip of
the dislocation and g represents the azimuth of the receiver relative
to the strike of the dislocation. The stress tensor compohents appearing
in Eq. (A4.5) are defined in the Jocal coordinates X1s Xos Xg of the
dislocation. Eq. (A4.6) relates these local stress components to the
stress components in the global cylindrical coordinates r, 6, z. The
individual global stress components are listed in Fgs. (A4.7), (A4.9),

consistent with the notation used in Chapter 3 of the present work.



CHAPTER 1
INTRODUCTION

1.1 OBJECTIVES AND SCOPE

To analyze the effects of soil-structure interaction on the
earthquake response of a s£ructure, it is convenient to partition the
soil-structure system at the interface between the superstructure and
the foundation-soil system. Thereby, the characterization of the inter-
action between the foundation and the surrounding soil may be combined
with a separate analysis of the overhead structure to determine the
aggregate earthquake response of the superstructure.

The completé characterization of the foundation-soil interaction
problem involves the evaluation of the dynamic response of the foundation
when excited by both external forces and incoming seismic waves. In the
complete soil-structure interaction problem, these external forces
correspond to the forces and moments that the superstructure exerts on
the foundation. |

The evaluation of the response of the foundation to external
forces and moments reduces to the problem of determining the "impedance
matrix" for the foundation-soil system and corresponds to a radiation
boundary-value problem. The evaluation of the response of the foundation
to seismic waves is associated with the problem of determining the ™input
motion" matrix for the foundation-soil system and corresponds to a
scattering problem. It is important to realize that the only case in which

the input motion at the foundation level may be equivalent to the surface
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free-field motion is when the foundation 1s nonembedded and the seismic
waves are vertically incident. Otherwise the presence of either founda-
tion embedment or oblique incidence of seismic waves modifies the input
motion at the foundation level.

Once the impedance and input motion matrices for the foundation
are determined, then the compiete soil-structure interaction problem for
any configuration of the superstructure can be formulated and solved,
since there exist generally accepted techniques for modeling the super-
structure. The present work is focussed, however, on the determination
of the impedance matrix for various embedded foundation-soil systems.

A limited number of such force~displacement relations (impedance
matrices) are available at present, most of which are restricted to a
model of the soil corresponding to a homogeneous, non-dissipative, purely
elastic half-space. Also, in most studies, the effect of the embedment
of the foundation into the surrounding soil is neglected by constraining
the analysis to the case of flat foundations.

It is the objective of this study to remove both Timitations by
representing the soil as a Tayered viscoelastic medium and by considering
the effect of foundation embedment into the soil. Also, two different
types of contact between the foundation and the surrounding soil will be
considered: 1) welded contact where the soil moves with the foundation;
and 2) relaxed contact where various degrees of separation are allowed.

Several previous studies have shown the need for incorporating
material damping in the solution, particularly when large strains are
involved or when the medium representing the soil is Tayered. The effects

of material or internal damping are automatically incorporated into the
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present analysis as well as the radiation damping (geometric energy
dissipation}.

Although the formu]ation of the radiation boundary-value problem
presented herein is completely general, only numerical results for har-
monic forced vertical, torsional, rocking, and horizontal vibrations
(i.e., the impedance matrices) of axisymmetric rigid foundations embedded

in layered viscoelastic media will be presented.
1.2 REVIEW OF THE LITERATURE

Reissner (1936, 1937) initiated the study of foundation problems
when he analyzed the response of a flat circular disc bonded to an
elastic half-space and subjected to external harmonic forces and torques.
The problem of fbrced vibrations of a flat rigid foundation resting on
an elastic layer supported on a rigid base has been studied by Arnold,
Bycroft and Warburton (1955), Bycroft (1956), Warburton {1957), and
“Kobori, Minai and Suzuki (1966, 1967), In all these studies, the
complexity of the mixed boundary value problem was avoided by assuming
particular stress distributions under the footing. A circular founda-
tion was considered in the first three studies, while a rectangular
foundation was considered in the latter two works.

On the other hand, Collins (1962) and Paul (1967) considered
the mixed boundary value problem for a rigid circular disc on a layer
supported on a rigid base and presented asymptotic expansiens for low
frequencies. Kashio (1970), Wei (1971), and Luco (1974) reduced the
mathematical formulation of the mixed boundary value problem (for forced

vibrations of a rigid circular foundation on a layer welded to an
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elastic half-space) to the solution of a set of Fredhoim integral equa-
tions, by assuming relaxed boundary conditions under the foundation (i.e.,
no friction exists between the disc and the soil for vertical and

rocking vibrations, while the normal component of stress in the contact
region is assumed to be zero for horizontal vibrations).

Veletsos and Verbic (1873) were the first to consider the har-
monic response of a circular foundation placed on a uniform viscoelastic
half-space. They extended solutions obtained numerically for the elastic
case to the viscoelastic case through use of the correspondence principle.
Unfortunately, such methodology cannot be employed in the analysis of
layered media since the impedance coefficients may exhibit strong fluc-
tuations as a function of frequency.

Although more general with respect to the methed of incorporating
material damping, the studies of Kobori, et al. (7968, 1970, 1971) still
avoided the mixed boundary value problem by assuming a stress distribution
at the contact between the foundation and the soil. Luco (1976b) exten-
ded his previous work (1974) to solve the forced vibration problem of a
rigid circular disc on a multiTayered viscoelastic half-space by once
again reducing the relaxed mixed boundary value problem to the solution
of a set of Fredholm integral equations with the material damping intro-
duced at the outset of the formulation.

Finally, Wong and Luco (1977) formulated an analytical method
app1icab1e to arbitrarily shaped, rigid, flat foundations undergoing any
type of excitation., The numerical solution is based on representing the
displacements in terms of integrals of the discrete Green's functions
for a uniform viscoelastic half space (similar to present approach for

embedded foundations in viscoelastic layered media). When the approach



of Wong and Luco is combined with the Green's functions for a viscoelastic
layered half-space as derived in Part I of this dissertation, the com-
plete foundation-soil interaction problem for arbitrarily shaped flat
foundation(s) pIacéd on a layered viscoetastic medium may be considered
solved,

This leaves only the case of three-dimensional embedded founda-
tions to be discussed. Analytical solutions for embedded foundations
are restricted mainly to the cases of antiplane conditions {e.g., Luco,
1969; Thau and Umek, 1973; Wong and Trifunac, 1974; Luco, et al., 1975)
and plane-strain conditions (e.g., Thau and Umek, 1974; Dravinsky and
Thau, 1976). Analytical solutions for a limited number of problems in-
volving axisymmetric foundations embedded in an elastic half-space have
been derived. Luco (1976a) obtained the exact torsicnal response of a
hemispherical foundtion embedded in an elastic half-space when excited
by both an external torque and an obliquely incident SH wave and Apsel
and Luco (1976) generalized the dynamic torsional response to include
foundations of semi-ellipsoidal shape. Finally, Luco (1976¢c) derived
the static torque-twist relation for a rigid cylinder embedded in a
layered elastic half-space by reducing the problem to the solution of a
system of two integral equations.

A variety of approximate methods have been used to study the
response of embedded foundations. The approximate analytical approach
of Baranov (1967) has been used with some success to study the dynamic
response of a rigid cylindrical foundation embedded in an elastic half-
space, Basically, Baranov's method assumes that the soil reactions of

the base of the foundation are equal to the reactions of a flat foundation
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placed on the surface of the soil while the lateral soil reactions are
evajuated independently. When applied to the case of layered s0il1 depo-
sits, it is assumed that the layers of soil surrounding the cylindrical
foundation act independently of each other and of the underlying half-
space (Beredugo and Novak; 1972; Novak and Beredugo, 1972, 1973; Novak
and Sachs, 1973).

The finite element method (Lysmer and Kuhlemeyer, 1969; Waas,
1972; Lysmer and Waas, 1972; Isenberg and Adham, 1972; Seed and Idriss,
1973) has been used in the past to determine the frequency response of
foundations, but was shown to be incapable of reproducing analytical re-
sults (Scavuzzo, 1970; Tsai, 1973; Luco, et al., 1974a, 1974b; Hadjian,
et al., 1974; Wong, 1975). The ineffectiveness of the finite element
analysis was due mainly to the inability of the finite element grid to
represent the extended earth. Lysmer and Waas (1972) seemed to have
controlled the problems associated with the finite size of the soil model
by implementing special nonreflecting boundary conditions at the hori-
zontal extremes of the grid to simulate a horizontally unbounded medium
acting in anti-plane strain. Waas (1972) and Kausel, et al. (1975) ex-
tended the nonreflecting boundaries to a cylindrical geometry, but to
date, no satisfactory conditions have appeared in the literature for
allowing energy to radiate through the bottom boundary of the grid,
Until the frequency domain finite element treatments include adequate
nonrefiecting boundaries, such analyses will still be incapable of
reproducing certain aspects of analytical solutions, such as the radia-
tion damping at low frequencies (see Kausel and Roesset, 1975).

Day (1977) has studied the embedded foundation problem by per-

forming the finite element analysis in the time domain using the SWIS
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program developed by Frazier (see Frazier, et al., 1973;.Frazier and
Petersen, 1974). The spurious effects due to the finite grid boundaries
are eliminated by providing enough grid exterior to the region of in-
terest so that the transient analysis is completed before the boundary
reflections blemish the signal (frequency response is obtained through
Fourier synthesis)., Although Day's results are encouraging, the proce-
dure is limited in that it is difficult to properly model the material
damping in the soi} over the entire frequency range of interest, Also, it
is diffi;u]t to include all the reflected energy in a layered haif-space
(while at the same time eliminating the spurious reflections from the
artificial boundaries) without supplying an extremely large grid.

This review clearly indicates the need for alternative methods
of solution which are capable of considering foundations of arbitrary
shape embedded in layered media. The next section describes a flexible
approach which is based on solving an integral equation invoiving the

Green's functions for a layered viscoelastic half-space.
1.3 DESCRIPTION OF PRESENT METHOD

To accomplish the objectives delineated in Section 1.7, it is
necessary to devise a method capable of treating arbitrarily shaped
three-dimensional foundations embedded in layered soil deposits. It
is also a prerequisite that the methodology incorporate material damping
(internal dissipation) into the soil as well as radiation damping
(geometric energy dissipation). The final requirement is that the
procedure be cost-efficient.

In the present approach, the problem of determining the dynamic

response of any arbitrarily shaped three-dimensional foundation{(s) will
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be reduced to the solution of an integral equation. The kernel of the
integral equation involves the Green's functions for a layered visco-
elastic half-space so that the differential equations of motion are
automatically satisfied in the volume comprising the soil conjointly
with the continuity conditions at the layer interfaces, the traction-
free conditions at the surface of the Tayered half-space, and the
geometric radiation conditions in the underlying half-space. Such
Green's functions, which properly represent the material dissipation
in the soil medium, are now available as derivéd in Part I of this
dissertation. The boundary conditions at the soil-foundation interface
will be approximated very closely by numerically solving the integral
equation. The procedure experiences no frequency limitation and the
cost is competitive with Day's finite element approach (1977).

In Chapter 2, the general integral equation formulation is
presented for axisymmetric as well as fully three-dimensional foundations
with relaxed as well as welded type contact assumed at the soil-foundation
interface. The integral equations are discretized in Chapter 3 into a
form suitable for numerical solution by standard techniques as well as by
eigenanalysis. Comparisons with known solutions are presented in
Chapter 4 along with several new results including the effects of founda-
tion embedment depth; attenuation in the soil; type of contact between
the foundation and the surrounding soil; and layering in the soil

deposit.



CHAPTER 2
FORMULATION OF THE RADIATION PROBLEM

2.1 STATEMENT OF THE PROBLEM

The principal objective of the present work is to determine the
motion ¢of a foundation embedded in a viscoelastic Tayered half-space
when excited by external forces acting directly on the foundation. These
external forces consist of forces and moments that the foundation exerts
on the surrounding soil and hence this problem corresponds to a radja-
tion problem. The dynamic response of the foundation can be charac-
terized by the "impedance matrix" for the foundation-soil system (viz.,
the dynamic force-displacement relations for the embedded foundation
undergoing the action of external forces).

Secondly, it would be desirable to obtain the motion of the
foundation when excited by incoming seismic waves. This problem corres-
ponds to a diffraction or scattering problem and involves the determina-
tion of the "input motion" matrix for the foundation (viz., the motion
of the foundation assumed massless and the free from external forces
when subjected to the seismic excitation). Since the scattering problem
can be separated into the solution of a propagation problem in the ab-
~sence of the foundation plus the solution of the radiation problem (by
determining the external forces and moments necessary to keep the founda-
tion fixed under the action of the incoming waves), it is sufficient to

consider only the radiation problem.
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With these objectives in mind a general model is considered.
The model geometry is depictéd in Figure 2.1, wheré volume YV~ repre-
sents an intrusion, either rigid or flexible in comparison with the
surrounding soil medium; volume V represents the soil deposit into
which the intrusion is embedded; and surface S (with unit normal 3
pointing into the volume V~°) defines the geometry of the embedded ihtru-
sion. In particular, volume V is assumed to be a multilayered visco-
elastic half-space composed of N parallel layers overlying a half-
space. Each of the layers and the half-space forming volume V is
considered to be a homogeneous, isotropic, viscoelastic, horizontally
infinite slab characterized by shear and compressional wave velocities,
density, energy dissipation factors for shear and compressional waves and
layer thickness. Also, the primary concern involves finding the motion
of the intrusion when external harmonic forces and moments are applied
to it.

The contact at the interfaces between the Tayers is such that
the displacements and tractions are continuous across each interface,
while the normal traction components vanish at the surface of the
layered half-space and the displacement and stress fields cbey the geo-
metric radiation condition for the underlying half-space. Three
different types of boundary conditions are plausible at the soil-intru-
sion interface (i.e., along surface S): 1) displacements prescribed
everywhere on S (e.g., for welded contact between a rigid foundation
and the surrounding soil); 2) tractions prescribed everywhere on S
(e.g., for diffraction by a canyon); or 3) mixed boundary conditions

where the displacements are prescribed on a portion 82 of S while
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Figure 2.1. Model geometry used to study various radiation
and scattering problems in elastodynamics with

surface S defining the boundary between
volumes V and V-.
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the tractions are prescribed on the remaining portion S1 of S so
that the soil is constrained to move with the foundation only on S2
(e.g., when separation exists along 51).

The next section reduces the problem to the solution of an inte-
gral equation involving the Green's functions for the layered viscoelas-
tic half-space so that the differential equations of motion in volume
V are automatically satisfied in compliance with the continuity condi-
tions at the layer interfaces, the traction-free conditions at the sur-
face of the layered half-space, and the geometric radiation conditions
in the underlying ha]f—spacé. The integral equations are obtained
by imposing the boundary conditions on surface S (the soil-intrusion

interface).
2.2 _REDUCTION TO AN INTEGRAL EQUATION

Assuming that the displacement and stress compenents have har-
monic time dependence, it is convenient to apply the Knopoff-deHoop
(1958) representation theorem to volume V of Figure 2.1. In the ab-
sence of body forces in V, the representation theorem in Cartesian

coordinates is written in the frequency domain as
- > > > v > v -+ -+ - - .
() U ) = f {855 0 T,0) - M0 R U] aSE) L G = 12,9)
S
(2.1)

in which



O’ _))(-EV,
e(x) = {1/2 , XeS
1, X eV

In Eq. (2.1), the factors exp(iwt) have been omitted and
eji(?; X) and ﬁji(y; X) denote, respectively, the j-component of
the displacement and traction vectors at y e S due to a concentrated
point load at X in the i-direction, while L&(?) and ¥j(§) repre-
sent, respectively, the j-component of displacement and traction at
y'e S. Also, in Eq. (2.1) and in the sequel, the summation convention
over repeated indices is understood, and the unit normal v is defined
positive pointing intc the volume V-.

Applying Eq. (2.1) to a point X in volume V- Teads directly

to

[ et 0T 6@ - 1,00 4H s@ @2
S S
where X ¢ V* and ?‘g S. For the displacement boundary value problem
(welded contact between the intrusion and the surrounding soil), the
displacements qj(y) are prescribed on S and She integral equation
(2.2) must be solved for the unknown tractions Tj(y) on S. Modifi-
cations to the method of solution for the mixed boundary value problem
are discussed in Section 2.3.

The method of solution proposed here is based on considering a
set of forces ?(?’) distributed over a su}face $” located within

volume V- (refer to Figure 2,2), selected in such a way that the
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Figure 2.2. Model geometry including internal gource
surface S~ on which the forces F are
distributed.



unknown tractions can be represented as

Y AY
[ ) RED SE) = TE) L Tes . @)
S’

Substitution from Eq. (2.3) into the Teft-hand side of Eq. (2.2) and
formally interchanging the order of integration leads to the following

integral equation for the distributed forces F(?’):

N > >, >, pr TN v - - >
jS.JG-ij(x; X ) F.(X ) dsS (X ) = -/-Hj.](.Y9 X) Uj(y) dS(y) (2-4)

J
S
in which
8o %) = 6. %) ML %) dSE) (2.5)
i31% ki35 X Hgtys Y '
S
with ;, X" e V The function éij(;’ X*) s symmetric, i.e.,
~ e U T, =,
G]J(x, X} = Gji(x 1X) (x, x" e V) , (2.6)
as is easily proven by taking
0 = 6,5 &) and T,0) = 0, (55 %) 5 % e v
J Jjk J jk*? ’

in Eq. (2.2).

If X s taken on S-, then Eqs. (2.4) correspond to a system

of symmetric Fredholm integral equations of the first kind for Fj(i').

Once these equatiohs are solved for Fj(i'), substitution into Eq. (2.3)

gives the traction distribution on S from which other quantities of

interest are readily obtained. In particular, the displacement field
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in V can also be obtained by use of

) = [ oG ) G @Gy L Gen) - @)
5~

Two other methods of solution will be discussed and compared |

. presently. Kupradze (1963) proposes to directly solve the original inte-

gral equations (2.2) for the unknown tractions by choosing the points X

to be on a surface (such as $”) within volume V-, so as to ayoid

Vv
the singularities in the Green's functions, Gji and H.., when the points

i
y and X coincide. However, the kernel of the resu1tgng integral
equations is not symmetric. Ohsaki (1973) proposes to solve thé inte-
gral equations (2.7) for F(?‘) with X e S. Given the displacements
lﬁ(?), the unknown tractions are then obtained by substituting ﬁ(?')
back into Eg. (2.3). Formally, Ohsaki's approach in conjunction with a

least squares method of solution (on Eq. (2.7) with X ¢ $) Teads to
0 (2. . > S > > > >
f Gij(x, x”) Fj(x ) dS”(X-) = iji(y, X) Uj(y) ds(y)
5~ S
in which
(4] —r. >, - J —>. - > 2. >
256 1) = [ 0405 0 6505 % as)
S

is symmetric. Thus, Ohsaki's approach is similar to the present
approach, However, the advantage of the present method rests in its

physical connection with work as discussed below.
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-
To show that the distributed forces F(f‘), as a solution to
Eq. (2.4), are the optimal solution from a variational standpoint,
Eq. (2.4) is multipiied by Fi(ﬁ) and integrated over dS*(X) to

give

where Eq. (2.3) has been used to show that the right-hand side of
Eq. (2.8) corresponds to the work done by the tractions on the displace-
ments. The form of Eq. (2.8) suggests that Eq. (2.4) may be obtained

as the condition for an extremal of the following functional:

1(F) = - ff Fi(st) éij(i*-, X°) FJ.(S(”) ds- (%) dS~(x")
§°%8”

Y
v [ f RGN0 1) e e . (29
S5

N
Then, the extremal of W(F) corresponds to the work done by the

+
tractions on the displacements when F s a solution of Eq. {2.4), that
is to say

n(F) =f¥.(3?) U, 657 - (2.10)

J
S

extreme
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The procedures used to obtain approximate solutions to the

integral equations (2.4) are presented in the following chapter.
2.3 CASE OF MIXED BOUNDARY CONDITIONS

For the mixed boundary-value problem, displacements are pre-
scribed on 52 and tractions are prescribed on 51 (refer to Figure
2.3). An example is the case in which separation is allowed to exist
between the embedded foundation and the surrounding soil. Equation (2.2)

is then written more conveniently for the case of mixed boundary condi-

tions as
6.5 ) T.(0) 45, - [ Hoi(Gs B) UG ds. ()
333 %) T5(0) ds, §it¥s %) U5(3) dsy
52 S]
c f WG ) ) - [ 6. B TG ds, ()
jiv? j 2 Jjivw’ J 1
Sy 3

(2.11)
A"
in which Tj is unknown on 52 with Uj prescribed there, while -Uj
A
is unknown on S1 with Tj prescribed there, and X e V.
.

Again, the set of forces F(?’) are selected according to
Eqs. (2.3), (2.7) as in the displacement boundary-value problem for
the case of welded contact. Then, introducing Egs. (2.3), (2.7) into
Eg. (2.11) permits the reduction of the integral equation for the

distributed forces to the form
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Figure 2.3. Model geometry for mixed boundary problem in
which displacements are prescribed on 32
and tractions are prescribed on S].
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P %) 6,05 %) d5,(G) (2.13)

with ?, x* e ¥~ {in particular, on surface S$-°). As before, once the
integral equation (2.72) is solved for the distributed forces ?(?’),
then Eq. (2.3) determines the traction distribution for points y ¢ So,

and Eq. {2.7) determines the displacement field for points x ¢ V and S].

A A
~

Also, since the symmetry relation éij(;; ?’)‘= Gji(i’;x) is readily
+

proven, it can once again be shown that the distributed forces F(?‘),

as a solution to Eq. (2.12), are the optimal solutions in the sense of

variational principles.
2.4 RESPONSE OF RIGID INTRUSIONS — THE IMPEDANCE MATRIX

The response of rigid foundations to the excitation of external
forces and moments involves the determination of the "impedance matrix"
(i.e., the dynamic force-displacement relations) for the foundation-soil

system. In deriving the force-displacement relations for harmonic motion
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(with angular frequency ) of a rigid foundation occupying volume V-,
the displacement vector
>y Jwt > > = \T et >
w@ne™t = (u @), u, (¥ u, () ™, Jes

is expressed in terms of the "generalized displacement", {A}elwt, as

@) = [a(¥) 1o . (2.18)

In Eq. (2.14), {A} 1is the 6x1 vector including the three transiational
and three rotational degrees of freedom for the rigid foundation as is

illustrated in Figure 2.4, such that

_ T
{a} = (AX’ Aya AZ’ ¢X’ ¢y’ ¢Z) ’ . (215)

and [a(y)] 1is the 3x6 influence matrix relating the six components of
rigid body motion {a} to the three components of the displacement
{u}. For small rotations about the origin of the coordinate system, one

finds that

l=lo 1 o -z o x| . (2.16)

LO 0 1 y -X 0 ]

The "generalized force" {1"(m)}e1'mt is defined as

r(w)1e®t = (F., F , Fyo Moo M, M )T elut (2.17)

X y y Z

consisting of the six forces and moments associated with the "generalized
displacement”. The "generalized force" that the rigid foundation exerts

on the soil is obtained for the welded contact problem by
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Figure 2.4.

ModeT geometry and coordinate system for
studying the response of rigid intrusions

to the excitation of external forces and
moments.



" Yo - l
) = [ @1 [16)] as) (2.18)
S

in which §¥(§)} is the 3x1 vector of traction components distributed
on S as a solution of equations (2.4), (2.3) with “{u(¥)} given by
Eq. (2.14).

Since the integral egquations for the distributed forces on S~
depend linearly on the displacements prescribed on S and since the
tractions on S are linear functions of the distributed forces, then
the tractions on S will depend linearly on the displacements on S.

Formally, this relation can be written in the form

37 f[k ¥y ¥y 1y ) das(y?) . V. ¥ eS . (2.19)

Substitution from Egs. (2.19) and (2.14) into Eq. (2.18) leads

to

{r{w)} ff[a )ITIRGs 79 eI Had ds@7) ds(F)  (2.20)
$°7s

or

{r(w)} = [kiw)l{a}

where the 6x6 impedance matrix [k(w)] is given by

ff[a TG 391061 dsG) asG) . (2.21)
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2.5 CASE OF AXISYMMETRIC GEOMETRIES

For axially symmetric geometries with respect to the z axis
(refer to Figure 2.5), it will prove convenient to modify the integral
equation formulation of the previcus three sections to take advantage of
the geometric symmetry of the problem. It is important to realize that
the form of the ihtegral equations remains the same in cylindrical
coordinates provided that the components associated with indices 1, 2, 3
are taken tQ be the radial, azimuthal and vertical components,
respectively.

The objective here is to specialize the integral equations to a
form most suitable for axially symmetric geometries by analytically inte-
grating over the azimuthal coordinate (index 2). In Eq. (2.2}, let
(r, 8, z) be the cylindrical coordinates at yesS,and let (r°, 8-, z7)
be the cylindrical coordinates at X € V*. Then, defining the function
(i)

) (superscript (i) is used to signify no summation in the indicial

notation) as

cos .
. sin(m¢) s 1:193
o1 (my) - , (2.22)
sin L
wCOS(m¢) > 1“2

multiplying Eq. (2.2) by 9(1)(m9’), integrating over 6° between the
limits 0 and 2w, and formally changing the order of integration leads

to (with w omitted as argument in variables for brevity)
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7

N

e

side view

Figure 2.5.

surface of
revolution

top view

Model geometry and coordinate system for studying

problems involving axially symmetric geometries
with respect to a vertical axis.
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AY
fﬁ‘;n].(r, 8, z; v, z7) Tj(r, &, z) ds(r, 6, z)

==J/Fﬁ?i (v, 8, 23 r7, 27) Uj(r, 6, z) d5(r, 8, z) . (2.23)
S

In Eq. (2.23), 14,j = 1 corresponds to the radial direction while
i,J = 2,3 correspends to the azimuthal and vertical directions, respec-
tively, and

2m

EQ.(r, 8, Zy P°, 27) = ] G..(r, 8, 23 P, 87, z°) 9(1)(me‘)de’,
I 2ur- Sy Y

(i =1,2,3) (2.24)

is the j-component (radial, azimuthal or vertical) of the displacement

vector at y(r, 8, z) due to a concentrated ring load (per unit arc-

length) of radius r~ and azimuthal dependence e(i)(me’) acting in the

j-direction through (r-, 6°, z°) (i=1 for radial ring; i=2 for tangen-
tial ring; and i=3 for vertical ring), and

2

Yo 1 v (i)
He. (r, 8, z; v, 27) = H’i (ry 8, 23 v", 87, 27) 8 /(me~}de~” ,
Ji o J

(i =1,2,3) (2.25)

is the corresponding traction at j(r, 8, z) in the j-direction acting
on a plane defined by v (normal pointing into volume V- enclosed by
a surface of revolution §) due to a concentrated ring load at

(r*, 8%, z°) acting in the i-direction with azimuthal dependence

e(i)(me’) .



237

Finally, hdting that

=i s oey = W c e ey ald)
Gji(r’ 6§, z; r°, z7) Gji(r’ Z; r", z7) '/ (ms)}
(j =1,2,3),
V. . .
il VRPN e oy old)
HJ'.](Y', 8, 23 r°, Z) HJ1(Y" Z, r, 2 ) e (me)
(2.26)

substituting from Eq. (2.26) back into Eq. (2.23), and carrying out the

integration over 6 vresults in

v
m e Ly :
f Gji(r’ zy r°, z7) Tj(r, z) we T dL(r, z)

“m m
=fHJ.1.(r, zyre, z27) Uj(r*, z) me " di.{r, z) (2.27)
L
in which
Zn
rep UN(rs 2) :f Us(r, 0, 2) 019 (no) a0
0
(j =1,2,3)
21
™(p, 7) = T.(rs 0, 2) o83 (me) do
'm»:m J s 2} = J s O, m
0 .
(2.28)
with

£ = : (2.29)
1,2, ...

et
.-h
Q
3
=
Ii
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The method of solution of integral equation (2.27) exactly par-
allels that for thé fully 3-D case in integral equation (2.2), except that
now the integrals are carried out along a 1ine L on surface S rather
than over the entire surface S.

The set of forces Fm(i‘) distributed along a line L~” on a

surface S” Tocated within volume V- are required to satisfy

v AY)
m > >, me->, . L = Ity
f ij(y, X) Fk(x ) 'rreml" dL-(x") Tj(y) s (2.30)
L)
. . -> " . . Vm >
in which y(r, z)el and X (r”, z*) e L*. Then introducing Tj(y), as
defined in Eq. (2.30), into the left-hand side of Eq. (2.27) and changing
the order of integration, the integral eguation for the distributed
-5
forces FV(X”) for the axially symmetric, three-dimensional, welded

contact foundation problem becomes

1

~ V
_ m o+ . my=. . Ty o m =, = - >
f ij(x, x") Fj(x ) mer” dLe(x7) _[Hji(y, X) Uj(y) r di(y)

(2.31)

in which G(?) is prescribed along all of L and

>
=
o
¢
o

vV,

) = fe‘{ji(?; %) H5(35 X0) v dL(3) (2.32)
L

with X, X* ¢ S°. In particular, X can be chosen on L’ as well as

X~ once again, and all the reciprocity relations and variational princi-

ples are proven as indicated in Section 2.2. Once the integral equations
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(2.31) have been solved for the distributed forces ?m(i’), the traction
distribution along L can be determined by use of Eq. (2.30).

For the mixed boundary-value problem, where separation is allowed
to exist along Ly, the analogous integral equation to Eq. (2.12) for

three-dimensional axisymmetric foundations is found to be

(2.33)

R . AP . . X#} . .
in which U{y) 1s prescribed along Lys T{y) 1is prescribed along L

and

2 AY
6. (X %) = f G; (73 %) H G5 %) v dLy(9)

LG B G R @) (2.34)
L
with X, X~ ¢ S (in particular, on line L-).
Finally, once the traction distribution is found along L from
Eq. (2.30) with the distributed forces FM(x*) determined by solving
integral Eq. (2.31) for the displacement boundary-value problem or

Eq. (2.33) for the mixed boundary problem, then the impedance matrix

for the axisymmetric foundation may be formed as in Section 2.4 by
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employing the appropriate cylindrical coordinates.

The probiem of determining the 6x6 impedance matrix separates
into two subproblems for the axisymmetric foundation: 1) when torsional
or vertical motions are prescribed); and 2) when rocking about a hori-

zontal axis or horizontal motions are prescribed. The displacement

vector

))Temt L Vel

w@ie™t = (@, u, @), wuF

for the first subproblem is expressed in terms of the 2x1 "generalized

displacement™, ‘{Ao}e1mt, according to

u0 0 0]
r A
Z
ug lo = [0970a0) . (2.35)
0 ¢z
uZ -1 0_

Simitarly for the second problem, the displacement vector is expressed

in terms of the 2x1 "generalized displacement", {A]}e1wt, according to

" 1 (z-h) ]

r A
X Tae. ]

u; =1-1 -(z-h) = [a']{a"} (2.36)
b

1 _ y

uZ LO T i

where the embedment depth, h, has been introduced to later refer the
rocking and coupled rocking-horizontal impedance functions to the bottom

of the foundation.



The force-displacement relations are given in this case by

F, B,
= [K9(w)]
MZ ¢Z
FX) , sAz ‘Fy 1 (2,
= [k (w)] , = [k (w)] (2.37)
Mys lq’y I'MX “0%

where [ko(w)] and [kT(w)] are the 2x2 impedance matrices for the
first and second subproblems, respectively.

Analogous to Eq. {2.19), the traction distribution on 1 will
formally depend linearly on the displacements there for each order m,

i.e.,
AY ~
{T"’(&*)} f (K'Y 3OHUE)y dLG) » §, ¥el o (2.38)
L

Then, the 2x2 impedance matrices [k™{w)] for each subproblem are deter-

mined by

[K™(w)] = f f (LT ¥ I"F)T e e dL(T) dL(F) 5 (2.39)
L L
in which the 3x2 influence matrices [am] are defined from Egs. {2.35),
(2.36) for subproblems 1 and 2, respectively.
The individual terms in the 2x2 impedance matrices are denoted

as follows:
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[k0(u)7 = L [k ()] = (2.40)
0 Ky K o

K

in which KVV and KTT are the uncoupled vertical and torsional

impedance functions for subproblem 1; and K and KMM are the

HH
horizontal and rocking impedance functions for subproblem 2, coupled
through the so-called coupling ijmpedances KHM’ KMH' The coupling im-
pedances are equal due to the symmetry of [Em}, whose symmetry. is in
turn due to the symmetry of [ém] or [ém] depending on the boundary-
value problem'under consideration. A1l other impedance functions are
zero in the full 6x6 impedance matrix due to the geometric symmetry
with respect to the z-axis.

It will be convenient for later use in graphically displaying

the impedance coefficients as a function of frequency for axisymmetric

foundations to introduce the following real and dimensionless stiffness

coefficients kVV’ kTT’ kHH’ kMM’ kHM and damping coefficients Cyy>
CIT> Shne Svme Shm according to

Kyy = nalkyy + 13, cyy)

Ker = Eé3(k + ia_ Cor)

T 7 o T7T

_ (2.41)

Ky = ua(kHH + iag CHH)

Koo = _53(k + ia_ Cym)

MM T HE YOMM o “MM

Kim = Ky = v (kg *
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in which "u™ s a reference shear modulus, "a" 1is the surface radius

o is the dimensionless frequency

of the axisymmetric foundation, and "a
wa/f, with B being a reference shear wave velocity.

Finally, it will be useful to express the 3x3 Green's function
traction matrix §?1(§; ?) in terms of the stresses caused by the

concentrated ring sources. Referring to Figure 2.5, the unit normal

pointing into the volume of revolution V- 1is given by
BT = (vs vy vg) = (cosu(d) L 0, =sim(®) . (2.42)

Using Eq. (2.42) in conjunction with

v R N '
TG 0 = (25 )5l G5 % v @) (2.43)
r

leads directly to

oo 1 r -
v AY) v
m m m R T v
H11 H12 H13 er er zrr
v v Ay
m m m - _[amr” > R v
Hyp Mo Hag : ( 2 )COS‘J’(Y) Zrg Tre  Trg
A" A AY)
m m m R T v
_H31 H32 H33 4. - zrz Zrz Zer N
(y; %) - (¥s x)

N Z7 Z7Z 2z N
=y X)

(2.44)
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in which the superscripts 1 (i = 1,2,3) on the individual stress com-
ponents le refer to the stress components resulting from radial, tan-
gential and vertical concentrated ring loads, respectively, of azimuthal
order m. The factor of '2nr*/r2 was introduced into Egs. (2.43)}, (2;44)
in order to be conﬁistent with the notation used in Part I, Section 2.4,

where the individual stress components Z;j are derived.



CHAPTER 3
METHOD OF ANALYSIS

3.1 DISCRETIZATION

Even for the simplest geometries, the integral equations for the
distributed forces E{?) in Chapter 2 must be solved riumerically by dis-
cretizing the formu]ation;‘ The problem would thereby reduce to the solu-
tion of a set of simultaneous, complex, linear, algebraic equations. The
discretization consists of three basic steps for any three-dimensional or
axisymmetric problem having displacement or mixed boundary conditions.
Therefore, analogous to the integral formulation in Chapter 2, the radia-
tion problem invelving a three-dimensional foundation in welded contact
with the surrounding soil (Section 2:2) will be used to exemplify the
discretized formulation.

The first step in the discretization {s to replace the surface inte-
grals appearing in Eq. {2.4) with formulae of quadrature. Letting

A, (n=1,N) and B.» {m=1,M) represent the quadrature coefficients for

n’
integration over surfaces S” and S, respectively, then Eq. (2.4) may

be written in the following form:

N M

~ ._).._). > Y +‘+ 5
}EZ 650 X )F; (A, = E Hji(ym’ x)uj(ym)sm ) (3.1)
n=1 =1

The second step in the discretization is to impose the integral equation
5
for the discrete set of forces F(X) in Eq. (3.1) to a set of discrete

points on S* which are the same as those used in the quadrature over "

$°:
:
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=

N M -
v
~ Y -3 > ~ - > > =
E Gij(xz, n)Fj(Xn)An = E Hj.}(yma XR)UJ(.Ym)Bms (R' ]sN)' (3-2)
n=1 m=1
The third step in the discretization is to write the integral defining

G.: in terms of the Bm quadrature formula:

M
v
A - > > > - >
i3 Gis %) = D 6503 )My Gps %08, (3.3)
m=1
Now, once the N simultaneous, complex, linear, algebraic equations
in Eq. (3.2) are solved for the N discrete forces F(ﬁh), the discrete

traction distribution on S 1is determined from Eq. (2;3) as

from which other quantities of interest may be obtained.

. : > -+ v > > .
The Green's functions, Gji(ym’ X ) and Hji(ym’ xl), become sin-

%

gular in the 1imit as the point ?2 approaches the point ?m’ so it
would be convenient to insure that no source point i@, (2=1,N) ever
coincides with any receiver point ?m’ (m=1,M). This is most easily
accomplished by requiring that the entire surface S- be sufficiently
offset from the surface S so as to avoid the unnecessary problems
associated with integrals of singular functions. .Details of how to
choose the optimum location of surface S-< as well as the number of

quadrature points (N on surface S+ and M on surface S) will be

discussed in Sections 3.2 and 3,3,



At this point, it is advantageous to introduce the following

matrices (composed of 3 x 3 submatrices) and vectors (composed of 3 x 1

subvectors) in order to cast the discretization into matrix formalism:
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3N 3Mx 1 3Mx1

v
in which [G] and [H] are the Green's function displacement and

traction matrices, respectively; An (n=1,N}) and B (m = 1,M) are the

gquadrature coefficients for integration over S~ and S, respectively

(e.g., coefficients from Simpson's integration rule); {F} are the unknown

discrete forces on S°; {U} are the displacements prescribed on S; and
Vv .

{T} are the tractions on S caused by the displacements {U} from

which other information may be obtained.

Once discretized, Eq. (2.4) may be written in the form
T
R I v
[G]}FA’ = [HB] %U} (3.12)
in which
T

- e

is numerically symmetric and

- L.
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%FA%=[\A\]%F%. (3.15)
It is important to realize that the formulation is completely general
in that the prescribed displacements {U} on S can represent, for
example, the excitation caused by external forces and moments, incoming
seismic waves, shock waves from nuclear explosions, etc.

Inverting the symmetric 3N x 3N matrix [E], and multipiying
through-Eq. (3.12) yields the 3N complex amplitudes of the N unknown

force vectors:

(T ]

Now, the traction distribution on S 1is given in discretized form by

g?}{ﬁ]{pﬂ\% (3.17)

so that substitution from Eq. (3.16) into Eq. (3.17) results in

m ) [ﬁ][é]—][”B]Tg“E ' (3.18)

Assuming that the nodal forces iY}(?K), (K=1,2, ..., M

are obtained from the tractions by the Bi quadrature

1Bl

where
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3‘%=< j > (3.20)

P

then, introducing Eq. (3.18) for the tractions leads to

g?%{k]{ul‘ | (3.21)

in which
1 T

R

The 3Mx3M matrix [ﬁ] in Eq. (3.21) corresponds to the stiffness
matrix representing the viscoelastic material outside the volume V-.
Since the stiffness matrfx [k] connects the nodal forces on S with
the displacements there, the individual components of [ﬁ] can be
utilized as nonreflecting boundary conditions on S -- a major break-
through for finite element modelling of region V-.

0f immediate concern for the present work, however, is that the
6x6 impedance matrix [K] can be written in terms of the stiffness
matrix [R], as insinuated in Section 2.4. Consider the total work
done by the discrete set of tractions on the rigid body displacements

which are defined by Eq. (2.14) for a point y*K, (k = 1,2,...,M) on S:



1]
S —

fﬁ(y)}T;u(;&)gdS(’) ﬁ} '\B\]%u‘s
S
]
T
3}

in which [«] is now the 3Mx6 influence matrix. It is clear from

(3.23)

.
|

Eq. (3.23) that the impedance matrix is related to the stiffness matrix

GRBIEH

by

in which [R] depends upon the frequency of excitation, the geometry of

volume V~, the boundary conditions on S (weided or relaxed), and

the material comprising vojume V. In addition to depending on [k],

the impedance matrix [K] 1is also a function of whether or not the foun-

dation is rigid or flexible through the influence matrix [c].

For the case of mixed boundary conditions, the integral equations

of Section 2.3 are discretized using M; points on surface S, (where
tractions are prescribed) and M2 points on surface 52 (where dis-
placements are prescribed) such that MT + M2 = M. The Green's
function matrices [G] and [gj, the integration coefficient matrix
[‘B.J, and the displacement and traction vectors {U} and {¥} must
all be partitioned in Eqs. (3.5), (3.6), (3.8), (3.10) and (3.11),
respectively.

Since the integrals over 5, are carried out to the boundary

of 52, then the point(s) separating S1 from 52 must be treated as

a double point(s) insofar as the last three rows of the 3(M1+T) X 3N
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matrices [G1(y,:%,)] and [H1(§’k;§£)] for (k=1,2,...,M+1),

(2=1,2,..., N) are the same as the first three rows of the 3M, x 3N
U .

matrices [Gz(yk;ig)] and [Hz(yk;ﬁz)], respectively, for. (k-M1+T,

Mi*2s ooos M), (=1,2,..., N). Also, the 3(M1+T x 3(M,+1) dtagonal

matrix [\BI\] includes the integration coefficient B | as the end

M1+]

point for integration over S] and could be different from the coeffi-

cient BM +1 used as the end point for integration over 52 appearing in
1 ‘

the first three diagonal locations of the M, x 3M, diagonal matrix

[‘BZ\]. The subscripts 1 and’ 2 appearing in the subsequent matrix

analysis refer to observation points ? € S] and } £ 52, respectively.
Therewith, Eq. (2.12) appears in discretized form as

[é]%FAg =[ﬁBZ]T’U } [G]]{})B]; \ (3.25)

in which

- [ed ][l T

is numerically symmetric, {Fp} is defined previously in Eq. (3.15),

and

EAR N R AN (S

ol B

Now, the discrete traction distribution on Sy and disptacement distri-

bution on S] are written as

25:



4B - -

(3.29)

which, after solving Eq. (3.25) for the 3N complex amplitudes of the

N unknown force vectors, appear in the final form as

ol T (B o -
ol [T (el - )

(3.30)

{3.31)

Assuming for the moment that the prescribed tractions {T]}

are zero, then the total work results from the tractions acting on the

displacements as prescribed on 52. Thereby, the only nonzero terms in

the stiffness matrix for the mixed boundary conditions are those

appearing in the 3M2 X 3M2 submatrix
1 T

=[5 6

and the 6 x 6 impedance matrix is determined from

- [« [0

in which [az] .is the 3M2 x & influence matrix relating the

"generalized displacement" to the rigid body displacments at all

points on 52.

Finally, for three-dimensional volumes V-~

(3.32)

(3.33)

)

having axial symmetry

with respect to the vertical axis, the discretization of the integral

equations appearing in Section 2.5 exactly parallels the procedure
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outlined above with the following changes: 1) the components of the
Green's function matrices defined in Egqs. (3.5) and (3.6) involve ring
source functions of order m rather than point forces; 2) the components
of all matrices are expressed in cylindrical coordinates along cylindri-
cal directions instead of in rectangular coordinates along rectanguiar
directions; 3) the integration coefficients Ai (i =1,2, ..., N) and
B, (i = 1,2, ..., M) appearing in Eqs. (3.7) and (3.8), respectively,
must include the factors emwr’ and e respectively, when cal-
culating the quadrature formulae for integratipn over S° and S,
respectively; and 4) the surfaces S and S are actually lines
(L and L”) 1in the axisymmetric formulation and must be treated as
such.

| Therefore, writing out the discretized equations for axisymmetric
geometries would be inconsequential since the discretization for the
fully 3-D case may be directly employed by keeping in mind the afore-
mentioned alterations. The only significant difference, as was dis-
cussed in Section 2.5, is the determination of the impedance matrix in
two steps: 1) m=0 ring load order for torsional and vertical impedances;
and 2) m=1 ring load order for horizontal, rocking and coupling impe-
dances. In both subproblems, the 1nf]uence matrix [um] will be 3M x 2
instead of 3M x 6.

The following two sections discuss in detail how to numerically

implement the discretization analysis of the radiation problem with

applications to axisymmetric geometries in particular.



3.2 SOLUTION BY STANDARD INVERSION

All thaf remains to complete the discretization analysis is to
devise a set of rules governing how many observation points to use on S
and how many source points to use on S7, as well as where to locate
surface S° relative to surface S. The number of observation points,
M, on surface S necessary to numerically perform the discretized inte-
grals in Egs. (3.12) through (3.33) to a certain accuracy depends not
only on the shortest wavelength considered in the radiation problem, but
also depends largely on the location of the internal surface S5°. This
is due to the fact that the closer $° is to S, the more pronoﬁnced
the Green's functions become, thus requiring more observation points to
evaluate the integrals properly. The minimum requirement for the number
of observation points, M, on surface S is that the matrix [é] in
Eq. (3.13) (or [E] in Eq. (3.26) for mixed boundary conditions) be
numerically symmetric.

Yet, if any portion of surface S is so far removed from sur-
face S -that the Green's functions on S resulting from neighboring
sources on S~ become too similar, then the matrix [é] becomes poorly
conditioned even though the symmetry of the individual elements of [é]
may be excellent. Also, requiring that the matrix [é] be numerically
symmetric and well-conditioned is a necessary but not sufficient prescrip-
tion for achieving accurate displacements and tractions on S. What also
must be fathomed is the number of sources, N, to employ on surface S-.

To properly represent the displacements and tractions on S, it

is sometimes necessary to utilize a large number of sources on S~

25¢



(e.g., if mixed boundary conditions are imposed or if corners exist on
S), in which case the surface S~ must be situated closer to the surface
S (to avoid the conditioning problem in [G]). This in turn means in-
creasing the number of observation points, M, on S so as to enable the‘
numerical integrations in Egs. (3.12) through (3.33) to be performed
within a desired error tolerance.

The impact of the errors associated with choosing the number of
observation points, M, on S, the number of source points, N, on S-,
and the Tocation of S~ will be discussed presently, after which some
general rules will be summized for numerical implementation of the dis-
cretization analysis presented in Section 3.1.

Assuming that the number of observation points, M, on § s
chosen sufficiently large (with source surface S specified) to
accurately perform the numerical integrations, then the real question be-
comes how to balance the tradeoff between number of sources, N, needed on
surface S* with the actual location of surface $° interior to sur-
face S. To help resolve this question, the response of a rigid cir-
cular cylinder embedded in a viscoelastic half-space is examined when
excited by external forces and moments.

The axisymmetric cylindrical foundation to be studied has a ratio
of embedment depth h to radius a qua] to 2.0 and three different
surfaces S” are considered on which variocus numbers of ring sources
are located, as shown in Figure 3.1. The spacing of the observation
points on surface S (surface of the cylinder) is sufficiently fine
(h/40) to insure that the numerical integrations are accurate to three

significant digits for any of the internal source surfaces S;, SB, Sé.
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It is important to realize that the Green's function traction
components as defined in Eq. (2.44) will be identically zero on the por-
tion of S which coincides with the free surface of the half-space.
Thereby, the integrals along this portion of S may be disgarded from
the analysis for this particular problem. Also, due to the symmetry
about the vertical axis, only half of the axisymmetric problem need be
considered. The viscoelastic half-space representing volume V Is
characterized by a reference shear wave velocity B, a compressional
wave velocity o = ¥3 B , and specific attenuation factors QB = 50,

QGt = 100 for the shear and compressional waves, respectively.

The foundation impedance coefficients provide a synopsis of the
overall accuracy of the method. Therefore, much of the discussion em-
braces the behavior of the impedance coefficients as a function of number
of ring sources used on S as well as the precise location of S~
interior to surface S of the cylinder. The dependence on frequency,
embedment ratio, material damping and iayering of soil deposit will be
studied exc1usive1y in Chapter 4.

In Figure 3.2, the real parts of the torsional and vertical impe-

dance coefficients at dimensionless frequency a. = wa/B = 0.1 for the

0
rigid cylindrical foundation modeled in Figure 3.1 are plotted versus the
number of ring sources used on each of the internal surfaces Sé, SB, SE.
The impedance coefficients are normalized in Figure 3.2 by their "exact"
values, which were calculated using an extremely refined mesh with the
source surface S5 Tocated closer to the foundation surface S,

It is encouraging to find that for all three source surfaces,

the impedance coefficients fall within three percent of the "exact"
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values over an astoundingly wide range of number of sources {from N=5
to N=38). Also, as the number of sources is increased from N=1 to
N=20, the general trend is to appfoach the "exact" impedances.

However, depending on the location of the source surface $7,
there exists a certain number of sources, after which the impedances be-
gin to diverge when using the standard inversion formulation. This
phenomenon js related to the conditioning problem in reference to the
proximity of the sources on S$°. Further substantiation is possible by‘
noticing that the divergent trend occurs sooner for the source surfaces
further removed from the surface of the cylinder (since the effective
separation of the sources is smaller relative to the distance from $§~
to S). Similar behavior is exhibited in Figure 3.3 for the torsional
impedance coefficient at dimensionless frequencies a, = 0.5, I? 2 and 5.

To summarize thus far, impedances consistently within one per-
cent of the "exact" value are obtainable at all frequencies of practical
interest by utilizing the source surface S; with the sources separated

by approximately a distance h/20. If, for some reason, a more refined

source spacing is required, then the standard inversion technique may

lead to conditioning problems associated with the proximity of the sources

on S”. For such a problem, two alternatives are plausible: 1) resort

to solving the discretized equations with eigenanalysis instead of standérd

inversion {e.q., Gaussian elimination) as will be discussed in Section 3.3

2) Tocate the source surface S nearer to the foundation surface
S, which is by far the inferior countermeasure since the number of obser-
vation points on S would then have to be drastically increased (since

the kernels of the integral equations would be more pronounced},
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To verify that source surface Sg is the most practical choice,
it would be convenient to compare the computed disb]acements and trac-
tions on S caused by the rigid body movements of the foundation for the
different interna1‘source surfaces. It should be mentioned that closing
a source surface other than by uniformly shrinking the surface S causes
the matrix [é] to become nearly singular since one or more columns
would be small relative to the others. Also, the trend in Figqures 3.2
and 3.3 to obtain more accurate results when the source surface is located
nearer to the foundation surface is actually a general prescription.
However, the gain in accuracy is found to be minimal compared to the
increased computational effort required.

In Figure 3.4, the real parts of the vertical displacement along
the mantie of the cylinder are displayed at four representative frequen-
cies a, = .1, .5, 2, 5 (from left to right). The displacements
calculated using the three internal source surfaces Sé, S7. SE of
Figure 3.1 are compared on each plot. Since the contact between the
foundation and soil is of welded type, the forced vertical vibrations
of the rigid cylinder (viz., the "generalized displacement" a, =13
all other components equal zero) should cause the entire foundation to
move rigidly downward an amount unity. Therefore, a heavy line repre-
senting the exact response is drawn down the center of each graph at
unity (imaginary part of response is zero).

| The vertical axis in each plot in Figure 3.4 corresponds to the
observation depth along the mantle of the cylinder (measured from the

free surface); the horizontal axis corresponds to the amplitude of the

real part of the vertical component of displacement. The horizontal
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scale is magnified around values within 20 percent of the exact amplitude
to more easily distinguish the numerical oscillations éssociated with the
Tocation of the internal source surface. The number of sources used (27,
25, 23) and their locations on the three internal source surfaces (Sé,
Sgs Sgs respectively) is depicted by the dots on S;, Sg» S¢ in

Figure 3.1 and corresponds to the optimum number of sources to exploit
on the respective source surfaces, as insinuated in Figures 3.2 and 3.3
(for fhe standard inversion solution technique).

Proceeding with the discussion of Figure 3.4, it should be first
pointed out that all frequencies considered, the displacements most
consistently near the exact response are those obtained using source
surface S;. The largest deviation from the exact value of unity is
0.25 percent except near the bottom corner of the cylinder. At the
corner, the displacements are deficient because the observation. points
are furthest from thé source surface by virtue of uniformly offsetting
the source surface away from a corner (such an issue is nonexistent for
surfaces S smoothly defined). The displacements associated with
source surface Sé are of subordinate accuracy compared to the results
obtained with source surfaces Sg, SB, similar to the impedance coefff—
cients in Fiqgures 3.2 and 3.3. The results are stili reliable, however,
to within 10 percent of the exact value.

Various attempts were made at overcoming the deficiency at the
corner such as considering alternative combinations of sources in the
vicinity of the corner in order to suitably modify the radiation pattern

from the sources there. However, new problems were introduced into the

analysis whenever sources were positioned on more than one internal source
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surface simultaneously. The most effective remedy is to reduce the
spacing of the sources near the corner (and near any other special points)
with a possibly larger source spacing elsewhere. For example, displace-
ments just as accurate as those corresponding to 27 equally spaced ring
sources on S7 as disp]éyed in Figure 3.4 were obtained using 20
unequally spaced ring sources on Sé with finer spacing near the corner
of Sé (comparison not presented). It is impossible to totally eliminate
the deficiency at the corner so long as the source surface is internal

to the observation surface, but later in this section, improved results
will be presented using a refined mesh with the source surface located
nearer to the observation surface.

Before elucidating on the computed traction distribution, one
should be aware that the computed displacement distribution along the
base of the cylinder behaves similarly to the diétribution along the
mantle as just discussed. The real parts of the vertical dispiacement
along the base of the cylinder are shown in Figure 3.5, with the three
internal source surfaces Sé, SZs SE compared on each plot. The exact
response of unity is once again represented by a heavy line at each of
the four frequencies. The horizontal axes correspond to the observation
radius along the base of the cylinder (measured from the axis of the
cylinder) while the vertical axes correspond to the magnified amplitudes.

The computed traction components on the surface of the cylinder
sketched in Figure 3.1 are shown in Figures 3.6 and 3.7 for forced
torsional and vertical vibrations at frequency a, = 1. The traction
distribution in Figure 3.6 is determined with the SB source surface

while the corresponding curves in Figure 3.7 are determined with the Sé
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source surface. The placement of the sources is the same as for the
displacements in Figures 3.4, 3.5 and their exact location on 56, S;
interior to surface S of the cylinder has been repeated in Figures 3.6
and 3.7, respectively, for illustrative purposes.

One striking feature, that was not quite so obvious when studying
the displacements, is the marked effect of the discrete set of forces on
the fluctuations in the traction components. Consider ¥e’ the traction
due to the forced torsional osciliations of the rigid cylinder, sihce
there is but one discrete force component per ring source. As portrayed
by the arrows on the radiation patterns of the sources, the discrete
force components alternate signs going from source to source. This
phenomenon is an attempt to adjust for the singularity in the tractions
at the corner. This is clearly the justification in Figure 3.7, since

v
T. s smoothly behaved far away from the corner, but starts oscillating

]

jn phase with the discrete forces near the corner. On the other hand,

in Figure 3.6, the oscillations linger much further away from the corner,
which is additional motivation for declaring source surface 57 to be
the most effective choice of those surfaces considered.

Even for a surface in absence of a corner, there would inevitably
be spurious fluctuations in the more sensitive traction components due to
the discretization of surface S”, but they would probably be minimal.

If for some reason, it becomes desirable to obtain more accurate displace-
ments and tractions, a refined source spacing is required with the source
surface S7 situated as close as possible to the foundation surface S.

As previously mentioned, such an undertaking involves increased computa-

tional effort since more observation points would be required on S due

27(
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to the more pronounced kernels in the integral equations. Irregardless,
such a refined result will now be presented, after which the general
rules will finally be summized for the standard inversion method of
solution.

The internal source surface used for the refined results in
Figures 3.8 through 3.10 is situated halfway between the foundation
surface and internal source surface 55 of the previous studies. To
ensure that the discretization analysis be performed at least as accu-
rately as for source surface Sé, twice the number of observation points
on S are uséd (M=121) since the kernels of the integral equations are
more distinctive. Both N=29 and N=57 ring sources are considered on
the internal source surface and the refined results are displayed at
dimensionless freguency a0=1.

The vertical displacements along the mantie and the base of the
cylinder in Figure 3.8 are improved over the corresponding results using
source surface Sé ~as shown in Figures 3.4 and 3.5, respectively. The
improvement is experienced with approximately the same number.of source
points (N=29), revealing the importance of the Tocation of the internal
source surface. Furthermore, noticing the insignificant improvement with
N=b57 source points compared to N=29 source points, it may be concluded
that additional refinements in the results are best obtained by continuing
to move the source surface closer to the foundation surface (and at the
same time, increasing the number of observation ﬁoints to impractical
extremes). Similar conclusions may be drawn when comparing the refined
traction distributions in Figure 3.9 {N=29) and in Figure 3.10 (N=57) to

the corresponding traction distributions in Figure 3.7 (surface Sé)'
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In summary of the method of solution by standard inversion, the

following general rules will be stated as suggestions for solving axi-

symmetric radiation probliems:

(1)

First, the number of sources, N, is chosen to provide

a sufficient number of discrete forces to accurately
represent the displacements and tractions on S {nor-
mally 10 or 15 ring sources, unless separation conditions
are imposed or if corners exist on S 1in which case
additional sources would then be inserted on the source
surface near the special points).

Then, the location of internal source surface S$° s
selected as clése to surféce S as is economically
feasible considering that the spacing AS of the M
observation points on S must be reduced as the‘dis-
tance separating the two surfaces decreases. For

most practical applications, the surface S~ should

be offset from surface S a distance equal to 2.5 AS
(by uniformly shrinking surface S) in order to insure
good symmetry in the matrix [é]. The rationale for
iocating the source surface S° close to the observa-
tion surface S 1is not only to avoid the possibility of
a poorly conditioned matrix [é], but also to increase the
accuracy of the discretization analysis as described in

Figures 3.2 through 3.10.

27
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(3) As a final check, the M observation points must be
spaced finely enough to provide at Teast six points
within the smallest wavelength of interest for the
problem. Also, the spacing AS on surface S should
be at most half the spacing of the nearest sources on
surface S, so that the calculated displacement and
tract{on distributions appear reasonably smooth on

surface S.
3.3 SOLUTION BY EIGENANALYSIS

As was mentioned in the previous section, there are two reasons
why an alternative to the "standard inversion" solution technique is
sought. First is the problem of convergence when the number of sources
exceeds a certain number depending on the location of surface S-. The
second problem deals with the need to suppréss the spurious oscillations
in the computed tractions on surface S which result from representing
the traction components directly in terms of the discrete forces. The
second problem was found to be soluble by moving the internal source
surface S° in toward the observation surface S, but is not a practical
solution in the sense that an excessive number of observation points on
surface S may then be required to adequately evaluate the numerical
integrals. On the other hand, the first problem of showing convergence
for any number of sources was determined to be untractable with the stan-

dard inversion approach.
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The alternative approach proposed here aspires to solve both of
the aforementioned problems. Basically, using eigenanalysis, the guan-
tities of interest will be represented in terms of combinations of the
discrete forces {corresponding to a modal analysis of the problem) rather -
than in terms of the discrete forces, themselves. Then by suitably dis-
carding the combinations of forces associated with the higher modes, con-
vergence for any number of sources on a given internal source surface
can be proven. In addition, the artiffcia] oscillations observed in the
traction distributions in Section 2.2 may be reduced. This is under the
assumption that the remaining modes have already converged to the correct
response, so that the higher modes contribute nothing but spurious infor-
mation. |

Proceeding with the eigenanalysis, a solution to the eigenvalue

probiem

(RS RS D RNOIEN .

is sought, in which the jth column of the 3N x 3N matrix [s] corres-
ponds to the eigenvector associated with the eigenvalue appearing‘in the
jth diagonal location of the 3N x 3N diagonal matrix [‘A\]. The
3N x 3N diagonal matrices [‘AT{Z] containing the square roots of the
quadrature coefficients An have been introduced in order to properly
normalize the eigenvailues associated with each mode.

Since the matrix [G] is symmetric and since the matrix
[‘Al{z ] is diagonal, then the matrix ([‘ l/zl[é][‘ 1{2]) is also
symmetric. Therefore, the corresponding eigenvectors of this matrix

appearing in Eq. (3.34) form an orthogonal basis, which allows the
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eigenvector matrix [¢] to be normalized as
T

3 -]
where [I] 1is the 3N x 3N identity matrix.
Post-multiplying Eq. (3.34) by [@]T and utilizing Eq. (3.35)

leads to the following decomposition for the matrix [é]:

O N R

Introducing this decomposition into Eq. (3.16) results in an alternative

expression for the 3N complex amplitudes of the N discrete force

15

in which the 3N x 3N matrix [¢-] is defined by

GRRS(G

and the 3N x 1 vector {nu} is determined from
T

M [‘fj][@H.B] M . | (3.39)

The 3M x 3N matrix [@H ] appearing in Eg, (3.39) is given by
B

[

and the diagonal matrix [‘A:J] contains the inverse of the jth

vectors:

IF

I : (3.37)

eigenvalue in the jth diagonal location (j =1, 2, ..., 3N).
Substitution from Eq. (3.37) into Eq. (3.17) yields an expression

for the discrete traction distribution on S
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7 - [%]ﬁnu% (3.41)

with the corresponding displacement distribution calculated according to

i+ el .2
CRU SRR SR =

The nodal forces are obtained by introducing the tractions from

in which

Eq. (3.41) into Eg. (3.19) and making use of Eq. (3.39):

CANY
(T

Comparison of Eqs. (3.44) and (3.21) permits the stiffness matrix K]

to be written in the form

[k] ) [QHB][\Aﬂ][¢HB]T : (3.45)

Finally, substitution from Eq. (3.45) into Eq. (3.24) gives the 6 x 6

foundation impedance matrix [K] in terms of the eigenformulation

[K} [”“]T[\A‘][”Q] ’ (3.46)
[na] ] [\A:]][CPHE]T[“] (3.47)
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It should Ee pointed out that the Jjth element of the vector
{nu} corresponds to the participation factor for the jth mode, as
represented in Eq. (3.39). Similar interpretations are possible for
the elements of thé matrix [”a]’ as defined in Eq. (3,47), Therewith,
a procedure for discarding the higher modes (that inflict spurious
oscillations into the numerical results) may be devised. Namely, for
any eigenvalue having modulus less than some specified value, the par-
ticipation factors corresponding to that particular eigenvalue are set
to zero. This effectively eliminates the spurious contributions from
the modes associated with the "smallest" eigenvalues in Egs. (3.37)
through (3.47).

The eigenformulation for the case of mixed boundary conditions
proceeds in the same manner and hence will be omitted for brevity. The
remainder of this section is focussed at presenting results similar to
those of Section 3.2 as a function of number of modes used. As in
Section 3.2, the demonstrational foundation is a circular cylinder.of
radius a embedded a depth of h = 2a 1into a viscoelastic half-space.

The internal source surface is chosen to be Sé (see FigUre 3.1),
on which 35 ring sources are available. Thereby, the first 35 torsional
modes, 70 vertical modes, or 105 horizonta]-roéking-coup]ing medes may
be scrutinized in an attempt to understand when and why the higher modes
introduce artificial undulations into the calculated displacement and
traction distributions.

Before analyzing the dependence of the foundation impedances,
and the displacement and traction distributions on the number of modes,

it is instructive to examine the behavior of the eigenvalues as
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catalogued in Tables 3.1 through 3.4. The five columns represent the
real parts of the eigenvalues as calculated when respectively using
35, 27, 14, 9 and 5 ring sources on the internal source surface Sé'
The torsijonal eigenvalues are depicted in Tables 3.1, 3.2 and 3.3 at
dimensioniess frequencies a, = .1, 1 and 5, respectively, while the
vertical eigenvalues are displayed only at a, = 1 in Table 3.4.

The normalization of the eigenvalues is verified by observing
in Table 3.7 that the eigenvalue corresponding to the first torsional
mode may be obtained by utilizing anywhere from 5 to 35 ring soufces.
Of course, only N modes are determined for torsion by N ring sources,
and hence the void locations. By comparing across the colums, it is
not surprising to find that the eigenvalues corresponding to the highest
modes are predicted less accurately than the lower mode eigenvalues,
This is explained by realizing that more than Jj number of sources
is required to accurately represent the eigenvalue corresponding to the

jth'torsidnal mode {or 2 x jth

vertical mode). Such a phenomenon, which
is common to most modal analyses, becomes more striking at higher fre-
quencies, as is evidenced in Table 3.3.

0f equal significance in deciding which modes to discard during
a computation are the relative amplitudes of the corresponding eigen-
values. For cases N=5 or 9, the amplitudes diminish with number of
modes by only two orders of magnitude and therefore, the contribution
from the highest modes may be required. Yet, as was previously pointed
out, the highest modes are necessarily less accurate than the lower modes.
For the case N = 35, one can discard the last few modes without rejecting

any essential information. The suite of 35 ring sources will be utilized

in the remainder of this section for discussion of the effects of number



Torstomalll N-35 | N=27 | n=1a | N=09 N =5
1 2156401 | .214E401 | 2126401 |.211E+01 | .209E+401
2 \920E+00 | .904E+00 | .8BOE+00 |.859E+00 | .724E+00
3 [356E400 | .340EH00 | 3426400 | .342E+00 | .314E400
2 IB6E400 | (158400 | 1556400 | .157E+00 | .254E+00
5 "101E400 | .101E+00 | .978E-01 | .820E-01 | .566E-01
6 .667E-01 | .656E-01 | .607E-01 | .561E-0]
7 '376E-01 | .375E-01 | .457E-01 | .400E-01
8 || .256E-01 | .253E-01 | .277E-01 |.307E-01
9 1826-01 | .175E-01 | .169E-01 | .164E-01
10 "110E-01 | J111E-01 | .116E-01
1 [770E-02 | .774E~02 | .806E-02
12 '577E-02 | .547E-02 | .688E-02
13 \360E-02 | .399E-02 | .547E-02
12 (234E-02 | .223E-02 | .567E-02
15 12036-02 | .177E-02
16 1136-02 | L114E-02
17 '813E-03 | .765E-03
18 '573E-03 .| .610E-03
19 [423E-03 | .422E-03
20 '295£-03 | .277E~03
2] 12376-03 | .227E-03
22 "160E~03 | .162E-03
23 "112E-03 | .105E-03
22 "851E-04 | .853E-04
25 '563E-04 | .GB9E-04
26 451E-04 | .512E-04
27 |324E-04 | .300E-04
28 | 205E-04
29 - 135E-04
30 [271E-05
31 |185E~05
32 405606
33 | 286E-06
3 | 430E-07
35 |318E~07
Table 3.1

Real part of the torsional eigenvalues using N

ring sources

on the internal source surface S; at dimensionless frequency

a

0

= 0.1,
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Torsional :
Mode N = 35 N =27 N= 14 N=29 . N=5
1 . 304E+01 .304E+01 L301E+01 .299E+01 .296E+01
2 . 118E+01 .116E+01 1136401 | - 110E+01 .902E+00
3 .393E+00 . 386E+00 +378E+00 .376E+00 .346E+00
4 L165E+00 | L167E+00 | .163E+00 | .164E+00 | .272E+00
5 .105E+00 | .106E+00 | .T02E+00 | .858E-01 .589E-01
6 .690E-01 .679E-01 | .628E-01 | .582E-01
7 . 385E~01 .384E~01 A468E~01 A1TE-01
8 L261E-01 . 258E-01 .232E-01 .313E-01
9 .185E-01 +178E-01 . 173E-01 .168E-01
10 L 112E-01 .J13E-01 | .118E-01
11 .781E-02 | .785E~02 | .817E-02
12 .585E~02 | .554E~02 | .698E-02
13 .363E-02 .403E-02 .5B3E-02
14 .236E-02 | .226E-02 | ,572E-03
15 .205E-02 | .179E-02
16 .114E-02 | .115E-02
17 .820E-02 | .771E-03
18 .578E-03 | .615E-03
19 LA26E~03 | .425E-03
20 .297E-03 L279E-03
21 .238E-03 | .228E-03
22 .161E-03 | ,163E-03
23 JH13E-03 | L106E-03
24 .855E-04 | ,858E-04
25 .566E-04 | .693E-04
26 LA454E-04 | .514E-04
27 .326E~04 .302E-04
28 .206E~-04
29 .136E-04
30 .272E-05
31 .185E-05
32 .407E-06
33 .287E-06
34 .431E-~Q7
35 .316E-07
Table 3.2

Real part of the torsional eigenvalues using N ring sources
on the internal source surface Sé at dimensionless frequency

a = 1.0.

0
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Torsional
Mode N=35 N =27 N =14 N=29g N=25
1 -.801E+00 }~.799E+00 |~.777E+00 |-.745FE+00 | -.293E+00
2 .608E+00 | .606E+00 | .586E+00 | .484E+D0 | .984F+00
3 .H21E+00 | .518E+00 | .48BE+00 | .415E+00 | .253E+00
4 L219E+00 | ,213E+00 | .T194E+00 | .190E+00 | .238E+00
5 J164E+00 | L164E+00 | .167E+00 | .179E+00 | .657E-01
6 . 795E-01 L791E-01 .947E-01 .869E-01
7 A74E-01 AB7E-01 L436E-01 .| .520E-01
8 .310E-01 .297E-01 L297E-01 .33TE-01
9 169E-01 . 170E-01 .1 78E-01
10 .112E-01 L113E-01 .115E-01
11 .810E-02 ; .765E-02 | .960E-~02
i2 L478E-02 | .B529E-C2 | .757E-02
13 .315E-02 | .304E~02 [~,123E-02
14 2BTE-02 | L23T1E-02 | .722E-03
15 T42E-02 | ,143E-02
16 -.133E-02 |-.135E-02
17 .100E-02 | .945E-03
18 JOTE-03 | .746E-03
19 B10E-G3 | .507E-03
20 .350E-03 | .329F-03
21 .280E-03 | .267E-Q3
22 .186E~-03 | .189E~03
23 .130E-03 | .121E-03
24 .973E~-04 | .980E~04
25 .B637E-04 | .783E-04
26 .516E~04 | .576E-04
27 .367E-04 | .339E-04
28 .229E-04
29 .151E-04
30 .299E-05
31 .213E-05
32 A40E-06
33 .310E-06
34 .456E-07
35 .334E-07
Table 3.3

Real part of the torsional eigenvalues using N ring sources
on the internal source surface Sé at dimensionless frequency

a0 = 5,0.
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Vertical :
Mode N =.35. N=27 | N=14 N.=.9. N.=.5
1 -.293E+01 | -.292E+07 [-,288E+01 |-.279E+01 |-.251E+01
2 .862E+00 | .859E+00 | .848E+00 | .820E+Q0 | .721E+00
3 -459E+00 | .446E+00 | .432E+00 | .428E+00 | .451E+00
4 .322E+00 | ,328E+00 | .322E+00 | .304E+00 | .40TE+00
5 .278E+00 | .275E+00 | .275E+00 | .293E+00 | .261E+00
6 .229E+00 | .229E+00 [ .23TE+00 | .204E+0Q0 | .210E+00
7 .146E+00 | .146E+00 | .148E+00 | .122E+00 | .157E+Q0
8 L127E+00 | L125E+00 | .127E+00 | .101E+00 | .117E+Q0
9 .943E-01 | .944E-01 |} .888E-01 | .975E-01 | .701E-O1
10 .767E-01 | .771E-01 | .815E-01 | .751E-01 | .168E-01
11 .613E-01 | .619E-~01 | .560E-01 | .657E-O01
12 .457E-01 | .462E-01 | .432E-01 | .584E-01
13 .404E-01 | ,401E-0T { .354E-~01 | .306E-O1
14 .326E-01 | .326E~01 { .33CE-01 | .224E-0]
15 .295E-01 | .288E-01 | ,284E-01 | ,174E~0]
16 .263E-01 | .256E-01 | ,259E-01 | .108E~0]
17 (196E-01 | .193E-01 | .212E-01 | .855E-02
18 J171E-0T | .176E-01 | .T91E-01 | .431E-02
19 J123E-01 | .122E~01 | .164E-0] :
20 .116E-01 | .109E-01 | .132E-~01
21 .9356E-02 | .933E~02 | .838E-02
22 .727E-02 | .694E~02 | .620E-~02
23 .627E-02 | .660E-02 | ,396E-02
24 .571E-02 | .562E-0Z2 | .340E-02
25 .487E-02 | ,492E-02 | .312E-02
26 .393E-02 | .388E-02 | ,307E-02
27 .366E-02 | .351E-02 | .277E-02
28 .309E-02 | .306E-02 | .354E-03 |}
29 .252E-02  .223E-02
30 .208E-02 ) .210E-02
31 J157E-02 | .163E-02
32 .141E-02 | .1471E-02
33 .122E-02 | .115E-02
34 -109E-~02 | .107E~02
35 .918E-03 | .859E-03
Table 3.4

Real part of the vertical eigenvalues using N ring sources
on the internal source surface Sé at dimensionless frequency

aO = 1.0.

285



Vertical
Mode N = 35 N = 27 = 14
36 .786E~03 | .746E~03
37 .b658E-03 | .711E-03
38 .558E-03 | .576E-03
39 .536E-03 | .557E-03
40 .387E-03 | .387E-03
41 L275E-03 | .270E-03
42 .252E-03 | .222E-03
43 .223E-03 | .165E-03
44 .166E-03 | .156E-03
45 .155E-03 | .149E-03
46 L123E-03 | L113E-03
47 L118E-03 | .106E-03
48 .950E-04 | .858E-04
49 .861E~04 | .745E-~04
50 L791E-04 | .712E-04
51 .572E-04 | .673E-04
52 .557E-04 | .527E-04
53 .451E~04 | .519E~04
54 .329E-04 | .286E-~04
55 L174E-04
56 . 122E-04
57 .106E-04
58 .783E-05
59 .381E-05
60 .298E-05
61 .194E-05
62 .137E~05
63 A79E-06
64 .343E-06
65 L2T1E-086
66 .142E-06
67 .444E-07
68 .435E-07
69 J408E-07
70 -.101E-Q7

Table 3.4 (continued)
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of modes on the foundation impedance functions as well as on thé dis-
placement and traction distributions.

The torsional and vertical stiffness coefficients are displayed
as a function of number of modes utilized in Figures 3.11 and 3.12.
respectively. The different curves represent the five dimensionless
frequencies a, = .1, .5, 1, 2, 5. In accordance with the decrease in
amplitude of the eigenvalues, convergence is achieved as more modes are
added at all fréquencies. Of particular Tnteresf is naturally the larger
number of modes necessary at high frequency to achieve the same degree
of convergence experienced at Tow frequency. Of major importance,
however, is the divergent trend beginning afound 33 modes for the tor-
sional stiffness and around 60 modes (35 sources used) for the verticaI
stiffness. This is precisely the conditioning problem due to the proxi-
mity of the individual sources on the internal source surface, as dis-
cussed in Section 3.2. Such a conditioning problem was determined to be
insurmountable with the "standard inversion" method of solution in the
previous section, On the other hand, the eigenanalysis offers an
immediate solution to the probiem with no 1imitation on the proximity of
sources. The resolution is to use as many sources as desired and then
truncate the modal summation after a specified convergence is achieved,
before including any possibly spurious higher modes.

In Figure 3.13, the real parts of the vertica1 displacement along
the mantle of the cylinder are displayed at three representative fre-
quencies a, = .1, 1, 5 (from left to right). The different curves
on each plot correspond to various numbers of modes used, as indicated.

Comparing the displacement distribution at a, =5 (using 52 out of 70
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Number of Modes

Effect of number of modes utilized (out of a
possible 35 modes) on the torsional stiffness
coefficient for a cylinder with embedment
ratio h/a = 2.0 and internal source surface
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modes} to the corresponding displacement distribution in Figure 3.4
(standard inversion with 27 sources) reveals that the eigen generated
displacements are consistently closer to the exact response of unity,
although the differences are on the order of only one percent. Similar
comparisons can be made between the torsional traction distribution along
the mantle in Figure 3.14 with the analogous distribution displayed in
Figure 3.7 at dimensionless frequency a, = 1.0.

In summary, an alternative to the "standard inversion" formula-
tion has been presented in which all the quantities of interest are
expressed in terms of modal summations, with each mode'corresponding to a
unique combination of the discrete forces. The limitation on the number
(or proximity) of sources evidenced in the “standard inversion" method
of solution has been eliminated by truncating tﬁe modal sumﬁation when
convergence is achieved., Although one may thereby utilize as many sources
as desired on a given internal source surface, the numerical osci]lations
in the displacement and traction components near a corner of the founda-
tion surface may be reduced more effectively by locating the internal

source surface closer to the foundation surface,
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CHAPTER 4
RESULTS AND COMPARISONS

4.1 IMPEDANCE FUNCTIONS FOR EMBEDDED FOUNDATIONS

As an application of the method described in thé previous chap-
ters, the impedance functions for rigid cylindrical foundations embedded
in a uniform viscoelastic half-space are calcu1ated; The effects on the
impedance functions of the embedment depth, the type of contact between
the foundation and the surrounding soil, and the attenuation in the soil
are studied. In addition, the conseguences of introducing layering into
the soil deposit are examined, and a number of comparisons with results
obtained by other methods are presented.

In this section, a study is made on the effects of embedment depth
for cylindrical foundations having embedment ratios h/a (embedment depth
h to foundation radius a) equal to 0,25, 0.5, 1.0, and 2.0, as shown
in Figure 4.1. In each case, the cylindrical foundation is embedded in
a uniform viscoelastic half—space and the impedance functiéns are
referred to the center of the bottom of the foundation. The visco-
elastic half-space represents the soil medium comprising volume V and
is characterized by a shear wave velocity B, a compressional wave velo-
city o = ¥3 8, and specific attenuation factors‘for shear and compres-

sional waves, Q, = 50 and Qa = 100, respectively (i.e., material damping

B
ratios of 0.01 and 0.005 for shear waves and compressional waves,
respective]y;

The discretization of the Tine L~ {on the surface of revolutign

S+ containing the concentrated ring sources) and the line L (on the
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periphery of the foundation defined by surface of revolution S con-
taining the observation points) is shown graphically in Figure 4.1 for
the various cylinders. Also, the number of source points, N, on L-,
the number of observation points, M, on L, the spacing AL of points
on L, and the offset of L-L~ of internal 1ine L~ relative to L can
be found as subcaptions below each foundation dispiayed. Accuracy tests
such as these presented in Section 3.2 confirm that the discretizations
in Figure 4.1 are extremely conservative, especially since only the
foundation impedance functions are to be studied in this section.

In addition to analyzing the effects of varying the embedment
ratios, the results will serve another important purpose. Recently,
Day (1977) was able to accurately obtain the same impedance functions
for the welded contact prbb]em using the finite element method as dis-
cussed in Section 1.2. Therefore, the reliability of both methods will
be established through comparison of the impedance functions for cylin-
ders embedded in a uniform half-space. |

The five complex impedance functions normalized as in Eq. (2.47)
are plotted against dimensionless frequency a, = wa/B in Fiqures 4.2
through 4.11, for the various embedment ratios. The real parts of the
impedance functions will be referred to as stiffness coefficients while
the corresponding imaginary parts divided by the dimensionless frequency
will be referred to as damping coefficients. In each figure, the dimen-
sionless stiffness or damping coefficients are compared to those obtained
by Day (1977) for embedment ratios of 0.5, 1.0, and 2.0 in the range of
dimensionless frequency between zero and six. The results obtained with

the present method are distinguished by solid lines while Day's results
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are displayed with dashed lines. In interpreting these comparisons, it
must be kept in mind that Day's transient finite element results were
obtained for a perfectly elastic soil deposit (no material attenuation)
while the present integral equation results include a small amount of
material damping.

It may be observed that the embedment ratio (h/a) has a marked
effect on the torsional stiffness coefficients (Figure 4.2) -~ an in-~
crease in the embedment ratio Teads to an increase in the stiffness
kpp at all frequencies. In particular, the torsional stiffness in-
creases almost Tinearly with embedment ratio for a fixed dimensionless
frequency a,- Also, the torsional stiffness is a decreasing function
of frequency until it approaches an asymptotic value for each embedment
ratio.

It may be seen in Figure 4.2 that there is close agreement be-
tween the finite element and integral equation resuits. The only signi-
ficant differences appear at high frequencies where the finite element
results are slightly lower than the corresponding results obtained by
the present method. The difference at high frequency is propertional
to ag indicating that the discrepancy is due to the finite element
approximation of the mass distribution of the soil model adjacent to the
foundation surface. There are several indications that this discrepancy
at large a, is associated with errors in the finite element results.
Firstly, the material damping introduced in the integral equation method
tends to slightly reduce the stiffness coefficients at high frequency
(as will be discussed in more detail in Section 4.2). Since the transient

finite element results do not incorporate materia] damping into the



analysis, then the finite element stiffnesses should be higher than those
obtained by the present method as the frequency is increased. Secondly,
a comparison of Day's finite element results for the torsional impedance
of a hemispherical foundation to the analytical solution obtained by
Luco (1976) reveals that the finite element method tends to underesti-
mate the stiffness at high frequencies with the error proportional to
0.12 ag (see Day, 1977, pp. 76-77). Finally, there are similar dis-
crepancies at high frequencies in the tortional damping coefficients
(Figure 4.3), but it is the integral equation results that appear to
more closely approach the exact asymptotic values at high frequencies
for the rigid cylinders embedded in a uniform half-space.

The torsional damping coefficients (Figure 4.3) increase almost
linearly with (h/a) for a fixed a. In particular, it may be shown
for high values of 2y that the radiation damping for different embed-
ment ratios is in the ratio of the moments of inertia about the vertical
axis of the corresponding soil-foundation contact areas. In general,
the torsional damping‘coefficients are increasing functions of frequency
until the asymptotic values are reached. The asymptotic values are
shown in Figure 4.3 by 1ines adjacent to the results for differenf‘embed-
ment ratios. An exception to this behavior may be seen at low frequencies
where material damping causes an increase in the values of the damping
coefficients (see Section 4.2 for more details).

In summary for the torsional stiffness kTT and torsional
damping coefficients Crpo excellent agreement with Day's transient
finite element results has been achieved with the slight discrepancies

completely accounted for. Both the torsional stiffness and damping
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coefficients are approximately 1inear functions of embedment ratio for

a given frequency. Also, both are freguency dependent and consequently,
the soil reaction may not be represented accurately by a constant spring-
dashpot system even for a uniform half-space (the frequency dependence
will naturally be even more pronounced when considering layered media).

The comparisons for the other impedance functions further
establish the reliability of both methods. The most significant
differences occur for the vertical and horizontal stiffness coefficients
at high frequencies and are probably associated once again with short-
comings of the finite element method for small wavelengths.

Unlike the torsional impedances, the vertical impedances (Figures
4.4, 4.5) are relatively independent of frequency for all embedment
ratios except for the broad minimum in the stiffness coefficients
occurring in the vicinity of a, = 3 for embedment ratios less thén
unity. The vertical damping coefficients (Figure 4.5) increase 1inearly
and strongly with embedment ratio while the effect of embedment on the
vertical stiffness is not as marked. Once again, the agreement with Day
is good with the largest differences related to the frequency limitation
of the finite element approach,

The behavior of the horizontal impedances shown in Figures 4.6
and 4.7 is similar to that of the vertical impedances shown in Figures
4.4 and 4.5. The dependence on frequency is minimal and the horizontal
damping coefficients increase more strongly with embedment ratio than

the horizontal stiffness coefficients.
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For the rocking and coupling impedances shown in Figures 4.8-4.11,
it must be stated that the point of reference is at the center of the
base of the cylinder. The behavior of the rocking impedance coefficients
presented in Figures 4.8 and 4.9 as a function of frequency closely re-
sembles the frequency dependence of the torsional impedance functions.
The coupiing impedances illustrated in Figures 4.10 and 4.11 are vir-
tually frequency independent. One distinguishing feature for the rocking
and coupling impedances is that the increase with embedment ratio is
stronger than Tinear.

The computed values for the five damping coefficients are com-
pared to the exact asymptotic values for a, approaching infinity in
Table 4.1. Day's finite element results calculated at a, = 6 are
displayed in column two for each radiation damping coefficient. The
present integral equation results calculated at a, = 10 are displayed
in column three for each damping coefficient. The resu1%s shown in
Table 4.1 indicate that both the transient finite element method and
the integral equation method provide sufficiently accurate results
(less than 10% error at high frequency) for most practical applications.
These results aiso confirm that the integral equation method of solution
leads to slightly better accuracy.

Values for the impedance functions calculated by the present
integral equation method are tabulated in Appendix I. Results are
presented at ten representative dimensionless frequencies for each of
the four cylindrical foundations studied with the integral equation
method in Figures 4.2 through 4.11 (embedment ratios of 0.25, 0.5, 1.0,
2.0).
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The next section analyzes the effects of varying the amount of
material damping in the soil, while Section 4.3 considers the effects of

lateral separation on the impedance functions for cylindrical foundations.

4.2 EFFECTS OF MATERIAL ATTENUATION ON THE IMPEDANCE FUNCTIONS

It is the purpose of this section to describe in detail the
effects of including physica11y realizable material attenuation into the
soil model. The effects of material damping on the impedance functions
are investigated by considering the cylindrical féundation with an embed-
ment ratio of 0.25 as modelled in Figure 4.1 and by calculating the
impedance functions for various degrees of material damping in the soil.
The material damping in the viscoelastic half-space is assumed to be
of the hysteretic type.

The impedance functions are evaluated for shear wave material
damping ratios of 1, 5 and 10 percent, corresponding to specific
attenuation factors for shear waves, QB’ of 50, 10 and 5, respectively
(specific attenuation factors for compressional waves, Qa, are 100, 20,
and 10 for the three cases considered). The five complex impedances
normalized as in Eq. (2.41) are presented in Figures 4.12 through‘4.21
as a function of dimensionless frequency, a,» for the three different
values of material damping.

In general, the results obtained indicate that material damping
tends to reduce the stiffness coefficients at high frequencies. This
trend begins at moderate frequencies and broadens as the frequency is
increased. At Tow frequencies, the degree of material damping has
negligible influence on the stiffness coefficients (Figures 4.12, 4.14,

4,16, 4.18, 4.20).
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Conversely, the effects of material damping on the damping
coefficients are quite marked at low frequencies and decrease as the
frequency increases (Figures 4.13, 4.15, 4.17, 4.19, 4.21). The trend
in the radiation damping coefficients is an increase in amplitude as the
material damping is increased.

For hysteretic type material damping, the damping ratio,

g, = E%E » 1s independent of frequency and is analogous to the precen-

B
tage of critical damping under resonant conditions, or during free vibra-
tions. For this type of material damping, it can be shown that the

damping coefficients tend to ZEB/aO as a_ approaches zero (see Luco,

0
1976b). To give a rough idea of the practical ranges of Eg and hence
QS, one should realize that the hysteretic damping constant EB is
strain dependent: values for low strain may be less than 0.02, while
for high strains gB may reach values of 0.15 or 0.20,

It is important to mention that the integral formulation employed
can also be used to investigate other attenuation mechanisms in addition

to the hysteretic type just described,
4.3 EFFECTS OF CONTACT CONDITIONS ON THE IMPEDANCE FUNCTIONS

In many situations, it is not realistic to aésume that the founda-
tion is in welded contact with the surrounding soit. The presence of
backfill or the possible inelastic deformation of the top soil layers
suggest that a more realistic model for the contact conditions must allow
for the lateral separation between the foundation and the s¢il. The
effects of Tateral separation are investigated by considering various

degrees of contact between a cylindrical foundation of embedment ratio



2.0 and the surrounding scil represented by a uniform viscoelastic
half-space (58 = 0.01, a/8 = /3). Four cases are considered: in the
first case, the foundation is perfectly welded to the surrounding soil
(0% separation); in the second case, the top 25% of the lateral boundary
of the foundation acts independently from the soil while the rest of
the foundation remains in welded contact (25% separation); the third
and fourth cases correspond to 50% and 75% separation, respectively.
The torsional stiffness and torsional damping coefficients
plotted versus dimensionless frequency are shown in Figures 4.22 and
4.23, respectively, for the four different degrees of contact. The
torsional stiffness, kTT (Figure 4.22), undergoes a dramatic reduction
in amplitude at all frequencies as the percentage of lateral separation
is increased. Another interesting feature is the fluctuations intro-
duced by the separation conditions. Both the reduction in amplitude
and the fluctuations are easily interpretted by considering the physics
of the separation problem. The separation zone acts as if the soil
surrounding the foundation in this region were extremely soft so that
the stiffness of the soil to the rigid body movements is effectively
zero in this region. Therefore, the separation condition could be
approximated by considering a soft lTayer instead of the separation zone
and carrying out the analysis as if welded contact were prescribed.
Similar reductions in amplitude and appearances of fluctuations
as a function of frequency are exhibited in Figure 4.23 for the tor-
sional damping ceoefficient, Crr- At high frequencies, it appears as
though the reduction is Tinearly proportional to the percentage of

separation. It is interesting to notice that the damping coefficients
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for a cylindrical foundation with an embedment ratio of h/a = 2.0 and
with lateral separation on the top 50% of the mantle are very close to
the corresponding damping coefficients for a cylindrical foundation
welded to the soil and with an "effective" embedment ratio of h/a = 1.0
(refer to Figures 4.23 and 4.3).

To summarize, with the torsional impedances serving as typical
results, the reduction in amplitude is directly attributable to the
reduced contact area on which the soil resists the movements of the -
foundation. The fluctuations as a function of frequency appear analo-
gously to problems in which the soil deposit is layered. If not for
the fluctuations, the Tateral separation conditions would lead to re-
sults similar to those for foundations less deeply embedded ("effective"
embedment would be approximately the total embedment depth h minus

the depth of the separation zone).
4.4 COMPARISON WITH FINITE ELEMENT FOR LAYERED CASE

Until this section, all the results presented were for foundations
embedded in uniform semi-infinite media. Now, the case of a rigid ¢ylin-
drical foundation of radius a = 40 feet embedded to a depth h = 16
feet in a layered soil deposit is to be considered. The so0il deposit
consists of two parallel viscoelastic layers overlying a uniform visco-
elastic half-space and the soil properties are listed in Table 4.2.

Both the time domain finite element method and the present inte-
gral equation method were used to solve the radiation problem. Since
the present method is based on solving integral equations involving thé

Green's functions, there is virtually no additional effort required to



£ o P 3 Thickness
Layer | ft/sec | ft/sec } 1b/ft QB Qu ft
1 980 2400 133 100 200 16
2 1270 2540 133 100 200 16
3 1380 2760 133 150 | 300 w
Table 4.2

Material properties for the earth structure used
in comparison with finite element solution for
simple layered problem.

32



32

include the layers in the model because the Green's functions for the
viscoelastic layered half-space are readily obtainable as in Part I of
this dissertation.

The rigid cylindrical foundation considered has an embedment
ratio of 16/40 as shown in Figure 4.24 and is assumed to be in welded"
contact with the sourrounding soil. Relatively large specific attenuation
factors (QB = 100 corresponding to a material damping ratio of 0.5) were
chosen for the comparisons since the finite element results correspond to
the case of no material damping.

The horizontal, rocking and coupling impedance functions,
referred to the center of the base of the foundation, are tabulated ih
Table 4.3 at seven representative frequencies. The stiffness and
damping éoefficients have been normalized as in Eq. (2.41) by the shear
modulus and shear wave velocity of the top layer. Comparing the results
obtained in Table 4.3, good agreement is found particularly at low fre-
guencies. Realizing how vastly different are the two solution tech-
niques, considerable confidence should be given to the results of both
methods for such a complex problem.

In the next section, a more complex layering profile extending

to a depth of 20 times the foundation embedment is considered.
4.5 QTHER RESULTS

In this section, the present method (numerical solution to
integral equations involving the dynamic Green's functions for layered
viscoelastic media) is applied to a typical foundation embedded in &

typical soil medium, In particular, the soil-foundation system to be
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analyzed is shown in Figure 4.25 where the foundation is a rigid (in
comparison with the surrounding soil) circular cylinder of radius 40 feet
and embedment depth 18 feet. The soil deposit consists of six parallel
viscoelastic layers overlying a uniform viscoelastic half-space with the
layer properties given in Table 4.4.

The foundation is discretized as in Figure 4.26 according to the
suggestions presented‘at the end of Section 3.2. First, the number of
ring sources, N, to be used on the internal source surface is chosen con-
servatively to be 26. The location of the source surface S° 1is chosen
to be offset from the observation surface S by 2.5 feet and the spacing
AL on a 1ine on surface S s taken to be 1.0 feet (so that M = 59).
Thereby, accurate final results (impedance functions) as well as accurate
intermediate results {displacement and traction distribution on S) are
insured.

The horizontal, rocking and coupling impedances, normalized as in
Eq. (2.41) by the shear modulus and shear wave ve1ocfty of the top layer,
are displayed in Figure 4.27. The impedances are referred to the center
of the base of the foundation and welded contact is assumed at the boun-
dary between the foundation and the surrounding soil. As a general ob-
servation, one should notice the strong dependence on frequency in all
the stiffness and damping coefficients, so that the soil reaction can in
no way be represented by a constant spring-dashpot system.

Of particular distinction is the considerable reduction of the
damping coefficients Cune SuMe Suue especially at low frequencies, com-
pared to the respective stiffness coefficients kHH’ kMM’ kMH' This

reduction is explained by the fact that the tayers urideryling the
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Figure 4.25. Problem geometry and a 7-Tayer model for analysis
of the embedded foundation of the Millikan Library
at California Institute of Technology.



P

Thickness

Layer ft/sec ft/sec Tb/Ft3 Q Q, ft
1 630 1260 133 50 100 6
2 1110 2220 133 50 100 12
3 1380 2760 133 50 100 14
4 1600 3200 133 50 100 34
5 20060 4000 133 50 100 270
6 2500 5000 133 50 100 53
7 3100 6200 133 50 100 %
Tahle 4.4

Material properties for a 7-layer model of the
Millikan Library geologic site at California

Institute of Technalogy.
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Figure 4.26. Boundary geometry, coordinate system and
discretization used for analysis of model
described in Figure 4.25.
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Dimensionless Frequency, a,
Figure 4.27. Dimensionless impedance coefficients for

cylindrical foundation embedded in layered
viscoelastic half-space as depicted in
Table 4.4 and Figures 4.25 and 4.26.
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foundation are stiffer than the surface layers, retarding the radiation
of energy away from the foundation at low frequencies_.

The behavior of the damping coefficients at Tow frequency and
the behavior of the stiffness coefficients at high fregquency offers no
surprises in 1ight of the discussion concerning material damping in
Section 4.2. The frequency dependence of the horizontal and rocking
stiffnesses are quite similar and the coupling stiffness is rather
insignificant.

These results indicate that the present integral equation formu-
lation used in conjunction with the Green's functions for layered visco-
elastic media provides an excellent technique to obtain the response of

foundations embedded in Tayered viscoelastic media.
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CHAPTER 5
SUMMARY AND CONCLUSIONS

The integral equation formulation used in conjunction with the
Green's functions for layered viscoelastic media provides an accurate
and effective method for studying the response of foundations embedded
in layered viscoelastic media. Such an analysis resolves two prevailing
shortcomings in the present state-of-the-art: 1) the practice of re-
stricting the soil model to a homogeneous, non-dissipative, purely
elastic half-space; and 2) the practice of constraining the analysis to
the case of flat foundations. The flexibility of the integral equation
method'permits its application to a wide variety of problems such as the
generation of nonreflecting boundary conditions for use in properly
modeling the extended earth with finite elements; the response of valleys
and canyons to incoming waves; and the equivalent source representation
for propagation purposes.

Extensive internal checks and comparisons with available results
were presented in Chapters 3 and 4, respectively, to document the accuracy
of the method. Guidelines for efficient impiementation of the discretiza-
tion and subsequent numerical solution of the integral equations were also
enumerated.

Basically, to accurately represent the displacements and tractions
on the surface of the foundation, the number of sources chosen on the
internal source surface must be sufficient for the probTem considered

(more sources necessary when corners exist on the foundation surface or
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when mixed boundary conditions are imposed). For axisymwetric foundations,
it 1s demonstrated that 10 or 15 ring sources are adequate. The Toca-
tion of the internal source surface is selected as close to the surface

of the foundation as is economically feasible considering that fhe closer
the internal surface, the more pronounced the Green's functions become,
thus requiring more observation points to accurately evaluate the numeri-
cal integrals. For axisymmetric foundations, it is suggested to demar-
cate the internal source surface by uniformly shrinking the foundation
surface an amount 2 1/2 times the spacing of the observation points on the
foundation surface.

The effects of embedment on the impedance functions for cylindri-
cal foundations reveal that embedment has a marked influence on the res-
ponse. Both the stiffness and damping coefficients (real and imaginary
part of the impedance, respectively) increase with increasing embedment |
at all frequencies and for all components. In general, the damping
coefficients are more strongly influenced by the embedment than the
corresponding stiffness coefficients. However, as a function of frequency,
the various impedance functions tend to preserve their shape as the
embedment is changed. Yet, the impedance functions are frequency depen-
dent and consequently, the soil reaction may not be accurately modeled
with a constant spring-dashpot system.

| The effects‘of material damping on the impedance functions are
to reduce the stiffness coefficients at high frequencies and to increase
the damping coefficients at low frequencies. Hysteretic type material
damping was assumed in all the results, but the integral equation

analysis can also be used to investigate other attenuation mechanisms.
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The effects of considering various degrees of lateral separation
at the contact between cy]ind?ica] foundations and the surrounding soil
Tead to the conclusion that the reduction in amplitude of the impedance
functions is directly ascribable to the reduced contact area on which the
soil resists the movements of the foundatior, Also, the fluctuations
introduced into the impedances as a function of frequency are attributdble
to the lateral zone of separation where the stiffness of the soil to the
foundation movements is effectively zero (similar to imposing an extremely
soft layer in place of the separation zone),

With the ever increasing speed and capacity of the modern computer,
the present integral equation method should be capable of performing three-
dimensional analysis of nonaxisymmetric problems. Alse, once the input
motion for the foundation-soil system is determined by this same integral
equation approach, then the complete soil-structure interaction problem

may be solved with the foundations embedded in Tayered viscoelastic media.
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