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Motivated by the increasing demands on earthquake engineering

and theoretical seismology, a method to calculate the three-dimensional

dynamic Green's functions for layered viscoelastic media is developed in

this study. In seismology, these Green's functions may be used to synthe

size theoretical seismograms for an extended source including the propaga

tional effects of geologic layering. In earthquake engineering, these

Green1s functions may be used to determine the response of foundations to

external forces and incoming seismic waves when embedded in realistic
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geologic structures. The formulation of the method and the subsequent

application to problems in theoretical seismology are presented in Part I

of this work. The formulation of an integral equation approach involving

the Green's functions used to study boundary-value problems and the sub

sequent application to problems in earthquake engineering are presented

in Part II of this work.

The derivation of the method and the calculation of the three

dimensional Green's functions are conducted in the frequency domain by

representing the complete response in terms of semi-infinite integrals

with respect to wavenumber so as to automatically include all types of

waves. If desired, time domain results are then generated through

Fourier synthesis. Realistic attenuation for shear and compressional

waves is introduced at the outset of the formulation. In addition, there

is no frequency limitation, making the method particularly useful for

earthquake engineering applications. The method is limited, however, to

the case of horizontally parallel layers. The complete displacement and

stress fields at multiple receiver points anywhere in the layered visco

elastic medium are efficiently evaluated for different types of sources.

The applications considered in Part I for theoretical seismology

include studies of near-field as well as far~field ground motion (although

certain earth-flattening approximations may be inappropriate at teleseismic

distances); earthquake strong ground motion modeling; wave propagation

in an oceanic crustal configuration; and sensitivity studies on earth

parameters such as layer thickness and material attenuation. These appli

cations are prefaced by an extensive set of validation tests and demonstrate

the flexibility of the method.
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In Part II, an integral equation formulation based on the dynamic

Green's functions for a layered viscoelastic medium is developed for use

as a tool in analyzing various radiation and scattering problems in

elastodynamics. Possible studies include the generation of nonreflecting

boundary conditions for use in properly modeling the extended earth with

finite elements; the response of valleys, canyons and foundations to the

action of incoming seismic waves and external forces; and equivalent

source representation for propagation purposes.

The applications considered in Part II for earthquake engineering

include the dynamic response of foundations embedded in layered visco

elastic media when excited by external forces and moments. The sensitivity

to depth of foundation embedment. to degree of material attenuation and

to type of lateral contact conditions between the foundation and the

surrounding soil is also studied. Such an analysis resolves two pre

vailing shortcomings in the present state-of~the-art: 1) the practice of

restricting the soil model to a homogeneous. non-dissipative. purely

elastic half-space; and 2) the practice of constraining the analysis to

the case of flat foundations.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES AND SCOPE

The development of an efficient method to calculate the three

dimensional dynamic Green's functions for layered viscoelastic media can

have significant implications in fields such as seismology, earthquake

engineering and dynamic soil mechanics. In seismology, the Green's

functions may be used to synthesize theoretical seismograms for an extended

source. When compared with observed seismograms, the synthetic seismo

grams serve to increase our understanding of rupture physics as well as

wave propagation in the real Earth. In earthquake engineering, the

Green's functions may be used to determine the response of foundations

when excited by external forces as well as by incoming seismic waves. In

more general terms, the Green's functions coupled with integral equation

formulations may be used to solve a variety of radiation and scattering

problems in elastodynamics.

For the applications considered in this dissertation, it is

necessary to develop the capability of calculating the complete displace

ment and stress fields at any point in a layered viscoelastic half-space

due to different types of buried concentrated sources. It is also impor

tant that the method provide accurate solutions across the entire fre

quency band of interest. The final requirement is that the methodology

remain cost-efficient and highly flexible.



The formulation of the method and the calculation of the thtee

dimensional Green's functions are conducted in the frequency domain. The

complete response at a particular frequency is represented in terms of

semi-infinite integrals with respect to wavenumber so as to automatically

include all types of waves. Then, if desired, time domain results are

synthesized through use of a discrete Fast Fourier Transform algorithm.

The appearance of common terms is exploited to expedite the calculation

when considering many source-receiver pairs simultaneously. Also, the

f1 exibil ity of the method permits investigations invo1 ving sources such

as multipoles and concentrated ring loads, fluid layers "as well as solid

layers, etc. The methodology is limited to a model consisting of a set

of horizontally parallel viscoelastic layers overlying a viscoelastic

half-space.

Before delving into the details of the present method, a review

of the state-of-the-art is presented.

1.2 REVIEW OF THE LITERATURE

In recent years, it has become increasingly important to synthe

size seismic signals. Two different, although related, tools have been

developed for such studies: 1) Fourier synthesis of frequency dependent

Fourier integrals over wavenumber in which the reflection/conversion/

transmission properties of the layering are handled analytically as a

function of frequency and wavenumber (hereafter referred to as the wave

number integration method); and 2) geometrical ray techniques in which

the time response is decomposed into an infinite set of ray contributions

(hereafter referred to as the ray-theoretical method). In the
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following two subsections, previous studies along these two lines are

briefly reviewed.

1.2.1 Wavenumber Integration Method

In the wavenumber integration approach, the frequency-domain

solutions to the equations of motion in cylindrical coordinates are

written schematically as

3

00

2:~~~~~~1 f Fn(k, w, z, zs' L) Jm(kr) dk
n a

(1.1)

in which the azimuthal dependence is represented by the Fourier series

expansion, while the depth and radial dependence appear in the integrands,

which correspond to solutions to the equations of motion in the frequency

wavenumber domain. The arguments k, w, z, zs' L in the function F

show the dependence on wavenumber, frequency, receiver and source depth,

and layer properties, respectively. The argument kr of the Bessel

functions Jm reveals the dependence on radial observation distance.

Eq. (1.1) is presented as a device to guide the following review of the

contributions made by various authors.

The function F may be obtained as the solution to a set of

linear algebraic equations together with the boundary conditions at the

free surface, the continuity conditions at each layer interface and the

Sommerfeld radiation condition in the underlying half-space. The system

of equations grows linearly with the number of layers, but various matrix

decompositions may be used to take advantage of the block diagonal form

of the system.



The first such matrix decomposition was presented by Thomson

(1950), who reformulated the problem in terms of the so-called layer

matrices which transfer the components of motion from interface to

interface in an elastic multilayered medium. Haskell (1953) used

Thomson's matrix formalism in developing a systematic computational

procedure to study surface-wave dispersion for an elastic multilayered

half-space. In surface-wave dispersion computations, the surface-wave

phase velocity is calculated as a function of frequency and layer pro

perties essentially by finding the surface-wave poles of the function

F. To construct the dispersion functions with the Thomson-Haskell

technique, the response at the deepest layer interface is related to

the response at the free surface by a product of layer matrices, the

elements of which are used to find the dispersion function. Even though

all the quantities necessary to form the functions F are included in

Thomson's formulation, there was apparently no interest in doing so

until Haskell (1960, 1962) evaluated the F functions at the free sur

face due to plane SH and plane P-SV waves incident at the base of the

layered structure.

The Thomson-Haskell technique becomes unstable for short wave

lengths due to the computation of squares of large exponential terms that

must cancel identically (for functions F involving P-SV-Rayleigh waves).

These large exponentials dominate the layer-matrices so that the final

product consists entirely of the spurious remains of trying to numerically

cancel the squared exponential terms.

Thrower (1965), Dunkin (1965) and Watson (1970) modified the

Thomson-Haskell formulation using determinant matrix extensions (Pestel
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and Leckie, 1963) in which the minors of the layer matrices are propagated

from interface to interface so that the squared exponential terms never

appear, thus controlling the loss of precision. Schwab (1970) points out

that Watson's reduced determinant matrix extension (1970) of the original

Thomson-Haskell formulation is the most efficient of the three extensions

for surface-wave dispersion computations. However, Schwab (1970) also

reveals that the more flexible approach of Knopoff (1964) also contains

the loss-of-precision control feature without recourse to determinant

matrix theory and is 38% faster than Watson's approach. Knopoff's

approach is to immediately construct the solution to the set of linear

algebraic equati,ons, for F in its full determinental form. Then the

determinants are decomposed by means of Laplace's development by minors

(Dickson, 1914) into products of interface matrices which transfer the

amplitudes of up and downgoing waves from layer to layer across each

interface. The general method of "propagator" matrices was introduced

by Gilbert and Backus (1966) who formulate F in terms of the numerical

solution of a set of linear, first order, ordinary differential equations

(see also Richards, 1971 and Kennett, 1972). In the case of homogeneous

layers, the product integral of the "propagator" matrices reduces to

any of the aforementioned methods using minor propagator techniques.

The first attempts to synthesize seismic signals by evaluating

integrals typified by Eq. (1.1) were by Haskell (1964) and Harkrider (1964).

They limited their analyses to the surface-wave contributions of the free

surface motion by calculating the residues at the Rayleigh and Love poles

of the F functions (using Thomson-Haskell theory for F). The time

domain response was obtained through Fourier synthesis after evaluating
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the residues at a discrete number of frequencies. Later, Harkrider (1970)

eliminated the instabilities in his surface-wave algorithm by employing

the determinant matrix version of the original Thomson-Haskell formula

tion as discussed above.

Hudson (1969) extended the work of Haskell (1964) and Harkrider

(1964) to synthesize seismic signals at teleseismic distances again

using contour integration as described by Lapwood (1949) or Ewing,

Jardetzky and Press (1957). Hudson's analysis is limited to large epi

central distances since terms decaying with distance faster than r- l / 2

are ignored. The remaining terms are evaluated by using the method of

steepest descents for the first term in the asymptotic expansion of the

Hankel functions. However, as shown by Herrmann (1978), the truncation

of the terms with poles between the real axis and the steepest descents

path leads to non-causal arrivals. Herrmann (1977) uses contour inte

gration to study the complete SH~Love wave propagation problem in layered

elastic media. Following the lead of Carpanter (1966), Hudson (1969)

introduced attenuation factors for shear and compressional waves by

multiplying the final results by an empirical factor that depends on the

ray path from source to receiver.

More recently, the reflectivity method of Fuchs. and Muller (1971)

became the most widely used wavenumber integration approach. One achieve

ment in this work was the introduction of attenuation into the layers in

the form of complex velocities. This not only makes the multilayered

medium more realistic (viscoelastic), but also has the desirable feature

of shifting all the singularities of the F integrands off the contour

of integration, thereby allowing the numerical integration to be performed
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directly along the real k axis. Hence, the formidable task of searching

for all of the poles of F is eliminated.

However, Fuchs and Muller introduce several approximations which

limit the applicability of their method. First of all, their Earth model

consists of a set of nonreflecting layers overlying a deep reflecting

zone. Their source representation is an explosion applied at the surface

of the layered hal f-space incapable of exciting any shear or surface-wave

motion directly. The compressional waves are propagated down to the

reflecting zone (using transmission coefficients derived from the Thomson

Haskell layer matrices) after which only the compressional reflection

from the multiples and interconversions of the lower reflecting zone is

considered. Then the reflected compressional wave is transmitted back

to the surface and the vertical and horizontal displacement components

of F are computed by using the first order term in the expansion of the

free-surface reflection coefficients. The second significant approxima

tion is related to the quadrature scheme used to evaluate the integrals

over wavenumber in Eq. (1.1). Fuchs and MUller numerically integrate

only over wavenumbers corresponding to the body waves (low k values

corresponding to ph~se velocities higher than the fundamental surface

wave phase velocity). Moreover, they employ trapezoidal rule of inte

gration which requires an exhaustive number of evaluations of the inte

grands whenever the Bessel functions become too oscillatory.

1.2.2 Ray-Theoretical Methods

In the ray-theoretical approach, the total time-dependent wave

field in a layered medium is decomposed into contributions attributed to
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an infinite set of rays from the source to the point of observation as

in Spencer (1960). Each ray contribution is evaluated by a numerical

solution of the impulse response as in Bortfield (1967), MUller (1968,

1970), or by the Cagniard-deHoop technique (1939, 1960) as in Pekeris,
u

et al. (1965), Helmberger(1968), Cerveny and Ravindra (1971), Gilbert

and Helmberger (1972), and Wiggins and Helmberger (1974). The solution

for each ray can be obtained exactly (Helmberger, 1968). However, the

number of rays selected is invariably limited by the computational

difficulties for each ray calculation. Yet, as is pointed out by Hron,

Kanesavich and Alpaslan (1974), if the selection of rays is poor, the

synthetic seismograms are misleading since rays with significant ampli

tudes. may have been omitted.

Hron and Kanasevich (1971) systematized the selection of a set

of rays for a given observation point based on the kinematic and dynamic

characteristics of particular types of rays (e.g., the rays with the

largest amplitudes are generally those with the least number of reflections

and hence the most transmissions). However, in cases where multiples and

interconversions are important (see Kennett, 1974), the number of rays

increases strongly as shown in Table 1 of MUller (1970). For example, to

consider rays up to order seven in a ten layer model, it would require

760804 separate ray calculations for every source-receiver pair even when

conversions from P to Sand S to P are neglected. Furthermore,

as pointed out by Chapman (1974), no matter how many rays are selected

from the infinite ray expansion, the response is necessarily band limited

in frequency since the theoretical seismograms consist of a series of

pulses that must be low-pass filtered to a frequency corresponding to the
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transition time for the layers. Yet, when layers sufficiently thin to

obtain the desired high frequency signal are considered, it become in

efficient to include higher order rays. On the other hand, MUller (1970)

and Chapman (1974) have shown the importance of multiple reflections in

long period seismograms so that convergence in a homogeneous layered

medium using the ray-theoretical method is at most justified for short

period studies, where the higher order rays are less important in general.

Acknowledging that the ray-theoretical method is at best a high

frequency method, Wiggins and He1mberger (1974) present several approxi

mations that increase the efficiency of the individual ray calculations.

Chapman (1974) lessens the long-period limitations by considering the

reflections from velocity and density gradients rather than from impedance

mismatches at the layer interfaces. Thereby, the summation of impulses

due to multiple reflections may be replaced by an iterative scheme in

volving multiple depth integrals at long periods.

In summary, the drawbacks in the ray-theoretical approach include

the following: 1) selection of appropriate set of rays is difficult;

2) separate Cagniard paths must be found numerically by Newton1s method

for every point on the contour and for each kinematic group (rays with

same travel time) and for each source-receiver pair before the amplitude

response functions can be sampled at the time points; 3) ray expansion is

convergent only at sufficiently high frequencies; and 4) attenuation for

P and S waves is difficult to include since the response is obtained

directly in the time domain (would have to use Carpenter's empirical

approach (1966) as discussed previously).
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To accomodate the objectives stated in section 1.1, the ray

theoretical approach is clearly inadequate, while the wavenumber inte

gration approach shows considerable promise.

1.3 DESCRIPTION OF PRESENT METHOD

In compliance with the objectives stated in section 1.1, the

problem of three-dimensional wave propagation in layered viscoelastic

media is formulated and solved in the frequency domain by a wavenumber

integration approach. If desired, the response in the time domain may be

obtained through Fourier synthesis. The azimuthal dependence is repre

sented by a Fourier series expansion so that the response at a particular

frequency reduces to the evaluation of a semi-infinite integral over

wavenumber, as typified by Eq. (1.1) of the previous section. The inte

grands of these Hankel transform-type integral representations over wave

number correspond to complete solutions of the equations of motion in the

frequency-wavenumber domain.

The kernels of the Hankel transform-type integrals (i.e., the

functions F) contain all the depth dependence, which includes receiver

depth, source depth and viscoelastic layer properties. In the present

wavenumber integration method, the F integrands are evaluated at a

particular frequency and wavenumber without approximation, in contrast

to the reflectivity method of Fuchs and Muller (1971). The F integrands

are given in terms of highly efficient factorizations of the upgoing and

downgoing wave amplitudes in each layer. The factorizations are based

on the generalized reflection and transmission coefficient matrices,

which are formed recursively, from one layer boundary to the next, so as
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to include all the reflection/conversion/transmission properties of the

layered medium.

The appearahce of common factors in the factorizations is taken

advantage of when computing the displacement and stress components for

multiple source-receiver depth pairs. Another desirable feature is that

the present approach lends itself to a physical ray interpretation,

analogously to discussions by Cisternas, et al. (1973) and Kennett (1974).

Introduction of realistic attenuation for shear and compressional

waves in each layer shifts the singularities of the F integrands off

the real wavenumber axis, thus permitting the Hankel transform~type inte~

grals to be numerically evaluated along the real wavenumber axis without

recourse to principal values or contour integration. A numerical inte

gration method is implemented to economize the integration procedure

while at the same time eliminating the oscillation hazard of the Bessel

functions at large arguments.

The F integrands are sequentially sampled at discrete k points

satisfying the requirement that quartic polynomials accurately inter

polate the amplitudes of the F integrands over each 5-point integration

interval. Thereby, the numerical integration with the Bessel functions

can be performed analytically over each integration interval, thus avoiding

the oscillation hazards of the Bessel functions. The tail ends of the

semi-infinite integrals are either handled analytically or else the decay

of the F integrands as a function of wavenumber determines the upper

integration limit. Since the radial dependence appears only in the

Bessel functions, it is expedient to calculate the integrals for multiple

epicentral distances simultaneously.
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Even thbugn the F integrands become more involved at higher

frequencies, there are no instabilities and hence no frequency limita

tions. Within the realm of the physical model considered (e.g. , hori

zontally parallel viscoelastic layers), there are no limitations on the

source-receiver geometry or the layer properties. Since the method is

formulated in the frequency domain, any or all of the layer parameters

may include a specified frequency dependence. The procedure is rela

tively cost-efficient and is highly flexible, allowing its usage in all

the applications suggested in section 1.1.

Integral representations of the displacement and stress fields

are presented in Chapter 2 for use in Chapter 3 as general solutions to

the equations of motion in cylindrical coordinates. Expressions for

source terms such as concentrated point loads and ring loads are also

given. The response of a layered viscoelastic half-space to a buried

source is formulated in Chapter 3, where the wave propagation problem is

decoupled into vertically and horizontally polarized waves. Preceeded

by a summary of all the integral representations from Chapter 3, the

method of numerical integration over wavenumber is described in Chapter 4.

Chapter 5 includes validation tests., comparisons and results to verify the

accuracy of the method in addition to exhibiting the flexibility of the

method. Chapter 6 presents a summary of the method and the results from

Chapter 5.

Expressions for the reflection and transmission coefficients are

given in Appendix I and modifications for propagation of vertically

polarized waves at large wavenumbersis presented in Appendix II. Static

integral representations of the displacement and stress fields are listed
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in Appendix III, and the implementation procedure for point double couple

sources is derived in Appendix IV.
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CHAPTER 2

INTEGRAL REP~ES!NTATION OF THE DISPLACEMENT AND STRESS FIELDS

2.1 GENERAL SOLUTION OF THE EQUATIONS OF MOTION IN
CYLINDRICAL COORDINATES

General solutions of the inhomogeneous equations of motion for

a uniform isotropic viscoelastic medium are derived in this section.

The equations of motion in cylindrical coordinates (r t et z) for forced

steady-state vibrations with time dependence exp(iwt) are

1.{iur
1(aue U)] (A + ]1) at. + 2--2-+-L. + pUr + F = 0r rae r ar w r

]1 ['i72Ue
_ l(Ue _ aU r )J (A + ]1) at. + 2 + Fe 02 rae + =r r rae w PUe

2 (A + ]1) ~ 2 Fz 0li!V U + + w pUz + =z az

(2.1)

in which urt ue' Uz and Fr , Fe' Fz correspond to the components of

the displacement and body force per unit volume in the r, e and z

directions respectively. The Lame constants (which may be complex) are

denoted by A and ]1, while the density and the frequency are represented

by p and w, respectively. In the equations above,

(2.2)

represents the Laplacian operator, while
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denotes the dilatation.

(2.3)

15

Expanding the displacements and body forces in a Fourier series

with respect to the azimuth 8, it is possible to write

r
Uz(r, 8, z; w) =~L QnUzn(ro' zo)cos n(8 - 8

0
)

41T]Jr n=O

3
Fr(r, 8, z; w) = w_3 L QnFrn(ro' Zo)cos n(8 - 8

0
)

41TS n=O

3
F8(r, 8, z; w) = w_3 L Q/8n(rO' zo)si.n n(8 - 8

0
) (2.5)

41TS n=O

3
Fz(r, 8, z; w) = w_3 L QnFzn(ro' zo)cos n(8 - 8

0
)

41TS n=O

in which 8
0

is an arbitrary angle and Qn are constants with dimen

sions of force to be defined later. The constants ;, p and S = (;/p)~

correspond to a shear modulus, density and shear wave velocity of

reference. The dimensionless variables ro' Zo are defined by



(2.6)
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Substitution from Eqs. (2.4) and (2.5) into Eqs. (2.1) leads

after some rearrangement to the following equations

2 d~n
~oVnUzn + (A + ~ ) --~-- + P U + F = 0o 0 aZo 0 zn zn

where Ao = A/~, ~o = ~/~, Po = pip ,

and

At this point it is convenient to define

00

~uln(zo' k) + u3n(zo' k) = / ro(Urn ~ Uen)Jn+l(kro)dro
o

(2.8)

(2.9)

(2.10)
00

u2n (zo' k) =f roUznJn(kro)dro
o



and

00

.:.Fln(zo' k) + F3n (zo' k) =1 ro(Frn':'Fen)Jn+l(kro)dro
o

00

F2n (zO' k) = f r/znJn(kro)dro .
o

(2.11)
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By taking appropriate Hankel transforms with respect to ro of

Eqs. (2.7) and recalling the well-known formulae

(2.12)

it is possible to show that Eqs. (2.7) reduce to

+ (+F l + F3 ) = a- n n
(2.14)

II (~ - k2 + Po) U + (Ao + llo) _d_ f::.. n + F = a
o dz2 IlO 2n dzo 2n

o

where

00

6.n =f ro6.nJn(kro) dr0 •

o
(2.15)



Substitution from Eq. (2.9) into Eq. (2.15), and use of

Eqs. (2.13) and (2.10) leads to

dU 26 = kU
ln

+ n
n dzo

Recombining Eqs. (2.14) and making use of Eq. (2.16), the

(2.16)
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following ordinary second-order differential equations for uln ' u2n
and u3n are obtained

~o d:i - ('0 + 2"0)k
2

+ poJuln - ('0 + "o)k :~~n + Fln =0

(2.17)

dU l [ d
2

2 ]- (A + lJ )k n - (Ao + 2lJ o) - - lJ k + p u - F2n = 0
o 0 dzo dz2 0 0 2n

o

(2.18)

and

lJ(d
2

_ k2+
PO )U +F =0.

o dz2 lJo 3n 3n
o

(2.19)

The terms uln(zo' k) and u2n (zo' k) are coupled through

Eqs. (2.17) and (2.18) and are independent of u3n (zo' k) which must

satisfy Eq. (2.19). The terms uln and u2n are associated with waves

whose particle motion is polarized in vertical planes (P and SV waves),

while the term u3n is associated with waves whose particle motion is

polarized in horizontal planes (SH waves).

A general solution of Eqs. (2.l7) and (2.18) may be obtained

by the method of variation of parameters. In this case, uln and u2n



are written in the form

I

nln(zo' k)exp[-v(zo - z~)J

\"In(Zo' kl [-k v -' -k v] n2n (zo' k)exp[-v-'(zo - z~)J

u2n (zo' k) -v k v -k n3n(zo' k)exp [v(zo - z~)J

T)4n(zo' k)exp tv-'(zo - z~)]

(2.20)

where the unknown functions nin(zo' k) (i =1,4) are to be determined,

while z~ and z~ are arbitrary constants introduced here for later

use, and

Requiring that the functions ni(zo' k) (i = 1, 4) satisfy the

conditions

nlnexp[-v(zo - z~)]

[ -k
v-' -k v'] n2nexp [-v-'(zo - z~)J JOJ (2.22)
k -k n3nexp[v(zo - z~)] -to-v v

n4nexp [v-' (zo - Zo)]

in which the prime denotes derivative with respect to zo' leads, after

substitution from Eqs. (2.20) and (2.22) into Eqs. (2.17) and (2.18),

to the following system of first order differential equations
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k v

nlnexP[-v(io - z~)]

n2nexp [-V" (Zo - z~)]

n3nexp [v(Zo - z~)]

n4nexp[v"(Zo - Z~)]v"k2-v

v.. -k

v"k2-v

-v

-vk

-k

(2.23)

Inverting the square matrix appearing on the left-hand side of

Eq. (2.23) and integrating with respect to Zo results in

(2.24)

where Ain(k) (i = l~ 4) are coefficients independent of Zo to be

determined by boundary or other conditions~ and Sin(zo~ k) (i = l~ 4)

correspond to the source terms given by

l
Sln(Zo~ k) l
S2n(zo~ k) ~

l
Fln(Z;~ k)!

x dz"
F (z" k) 02n 0'

(2.25)

(2.26)



(2.27)

The terms associated with nln and n2n correspond respectively

to downwardly propagating compressional and shear waves, while those

associated with n3n and n4n correspond respectively to upwardly pro

pagating compressional and shear waves. Particular forms for the source

terms Sin(zo' k) are presented later for the case of concentrated

point and ring loads.

Proceeding in a similar fashion it may be found that the general

solution of Eq. (2.19) is given by

"30(zo' k) = k t"So(zo' k) exp[-v'(Zo - z~)J

, + "60(zo' k) exp[v'(Zo - Z~)J}

where
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and

(i = 5, 6) (2.28)

(2.29)

zd

560(zo' k) = 2~0 k~'fo exp[-v'(Z~ - z~ij F30(Z~' k)dz~ . (2.30)

Zo

In Eq. (2.27) the terms associated with n5n and n6n corres

pond to down- and upwardly propagating SH waves, respectively. In

writing Eqs. (2.25), (2.26), (2.29) and (2.30), it has been assumed that

the body forces vanish outside the depth range -[ z~, z~J.



Having obtained general solutions for uln ' u2n and u3n ' it

only remains to invert the Hankel transforms appearing in Eqs. (2.10)

to obtain

·00

Urn(ro' zo) !- Uen(ro' zo) = f k[~ uln(zo' k) + u3n (zo' k)]Jn2:.l (kro)dk
o

(2.31)
00

Uzn(ro' zo) = f ku 2n (zo' k)Jn(kro)dk .
o

Substitution from Eqs. (2.31) into Eqs. (2.4) leads to the

desired integral representation of the general solution of the equations

of motion in cylindrical coordinates.

2.2 INTEGRAL REPRESENTATION FOR THE STRESS COMPONENTS

An integral representation for the stress field corresponding

to the displacement field described in the previous section is obtained

here. The stress-displacement relations in cylindrical coordinates are

given by

_euz aur )arz -J.l-+-ar az

(aue auz)aez = J.l az + rae

au zazz = 2J.l- + Al:iaz

aU r
(2.32)

orr = 2J.l- + At:.az
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(
auB Ur)° = 211 - + - . + At:,68 rae r

in which f:, is defined by Eq. (2.3). Expanding the stress components

in a Fourier series with respect to the azimuth e leads to

r
2
'"0rz(r, 8, z; w) = o_~ Q Erzn (ro' zo)cos n(e - eo)

4lfr2 n=O n

/",
0zz(r, e, z; w) = o_~ Q E (ro' zo)cos n(e - Bo)

4lfr2 n=O n zzn

(2.33)

r

2

'"0ee(r, 6, z; w) = o_~ Q EeB (r, z )cos n(e - e )
4lfr2 n=O n n 0 0 0

By use of Eqs. (2.4), (2.32) and (2.33), it can be shown that

aU
E + E = 11 zn :+ n U + a (U + U )
rzn - ezn 0 ar0 r0 zn azo rn - en
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[
' aUzn)

~ + ~ - 2 (Ao + ~o)~nrrn een - - ~o ~

- (_a _~) (U - U )]
ar0 r0 rn en

(2.34)

where ~n is given by Eq. (2.9). Substitution from Eqs. (2.31) and

recalling from Eqs. (2.15) and (2.16) that

leads to

00

~rzn ~ Lezn = / k[~ 021n(zo' k) + 023n(zo' k)JJn~l(kro)dk
o

00

Lzzn =/ ko22n (zo' k)Jn(kro)dk
o

00

~rrn + Leen + / ko33n (zo' k)Jn(kro)dk
o

2~
00

L + 0 (U + nU ) =1 kolln(zo' k)Jn(kro)dkrrn r rn en
0

0

2~
00

~ern +~ (nU + U ) =/ ko13n (zo' k)Jn(kro)dkr 0 rn en
0

(2.35)

(2.36)



in which

(
dU2n) dU2n

0 lln (zo' k) = (AO + 2\1 ) kU l + -d- - 2fl -d-o n zoo Zo

Finally, substitution from Eqs. (2.20) and (2.27) into

Eqs. (2.37) results in

(2.37)
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0"2ln 2vk -(2k2 _ 6-2)
0

0"22n (2k2 _ S-2) -2kv"
0

= fl -2 2 20 2kv"0"33n 2So (2y - 1)-2k

O"nn S-2(2i - 1)-2k2 2kv"
0

nln(zO,k)exp[-v(zo - z~)J

n2n(zo,k)exp [-v"(Zo - z~)]

x n3 (z ,k)exp rv(z _ zd)l
n 0 L 0 o~

n4n(zo,k)exp [v"'(zo - z~)J

-2kv (2k2 - -2
So

(2k2 _ s-2) -2kv'"
0

2S-2(2y2 - 1)-2k2 2kv'"
0

s-2(2i - 1)-2k2 2kv'"
0

(2.38)



and

26

where 8
0

is the normalized (complex) shear wave velocity

(2.40)

and y is the (complex) ratio of the shear wave velocity to the com-

pressional wave velocity

(2.41)

Eqs. (2.33), (2.36), (2.38) and (2.39) provide the desired

integral representation for the stress components in cylindrical coor-

dinates.

2.3 SOURCE TERMS FOR CONCENTRATED POINT LOADS

The source terms described in Section 2.1 are obtained here for

the particular case of a point load acting at the point of coordinates

(0,0, zS) as illustrated in Figure 2.1. The body forces per unit

volume in Cartesian coordinates are given in this case by

FX(X, y, w) coseoo(x)o(y)o(z
s

z; = Q - z )1

Fy(x, y, z; w) = Q sineoo(x)o(y)o(z _ zs) (2.42)1

Fz(x, y, z; w) = QOo(x)o(y)o(z - zs)
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8
.-:-------..----~x

Y (O,O,ZS)

Z

Figure 2.1. Source-receiver geometry for concentrated
harmonic force acting at point of coordinates
(0. O. Zs).



where QO represents the vertical component of the concentrated force

while Ql represents the horizontal component of the body force which

acts on a line forming the angle eo with the x-axis. In cylindrical

coordinates, the components of the body forces per unit volume are

Fr (i )3 Ql cos(e - eo)
o(ro)

zS)= 2-i"fr o(zo
0

0

Fe = -(iY
o(r )

_ zs)Ql sin(e - 8
0

) 2'ITr: o(zo (2.43)
0

( )

3 0(r )
F = ~ Q __0_ o(z _ zs)
z i3 0 2'ITr0 0 0

where the dimensionless coordinates ro' Zo and z~ = wzSj i3 have

been used. Comparison of Eq. (2.43) with Eq. (2.5) leads to

FzO(ro' zo) = ~ o(r )o(z - zs)ro 0 0 0

(2.44)

Equations (2.5) and (2.44) indicate that the vertical component

Qo of the concentrated force leads to source terms that are independent

of the azimuth e (n = 0) while the horizontal component Ql leads to

source terms that depend on cos(e - eo) and sin(e - eo) (n = 1).
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Substitution from Eqs. (2.44) into Eqs. (2.11) results in

29

(2.45)

Finally, Eqs. (2.45) together with 'Eqs. (2.25), (2.26), (2.29) and

(2.30) 1ead to

S10(zo' k)

S20(zo' k)

S30(zo' k)

S40(zo' k)

(2.46)

and

(2.47)

Sll(zo' k)

S21(zo' k)

S31 (zo' k)

S41 (zo' k)

~ exp[v(z~ - z~)] H(zo - z~) )

exp [v~ (z~ - z~)J H(zo - z~) l
~ exp [-v(z~ - z~)] H(z~ - Zo)·{

eXP[-viz~ - z~)] H(Z~ - zo) )

(2.48)

(2.49)



In the above equations H(x) denotes the Heaviside step function. The

source terms for the vertical component of the concentrated force are

given by Eqs. (2.46) and (2.47). while the source terms for the horizon

tal component of the force are given by Eqs. (2.48) and (2.49). Equation

(2.47) indicates that a concentrated vertical force will not excite SH

waves. It should be mentioned that the source terms corresponding to

downwardly propagating waves (Sl' S2 and S5) are zero above the

source (zo < z~) while the source terms associated with upwardly propa

gating waves (S3' S4 and S6) are zero below the source (zo > z~).

2.4 SOURCE TERMS FOR RING LOADS

The solution of a variety of axisymmetric problems in elasticity

may be simplified by considering the response of a viscoelastic medium

to loads distributed on a ring. In this section. the source terms and

some rearrangements of the integral representations described in previous

sections are derived for the case of ring loads.

In the first place a vertical load distributed on a horizontal

ring of radius ~ as illustrated in Figure 2.2a is considered. Assuming

that the vertical load per unit arc is (Qn/2na)cos n(e - eo)' then the

distribution of body forces in the medium is

(2.50)
Qn s

Fz(r. e. z; w) = 2na cos n(e - eo)o(r - a)o(z - z )

Introducing the dimensionless variables roo zoo ao = wafs and

z~ = wzs/S • it is possible to rewrite Eq. (2.50) in the form

30



n=O

(0)

( b)

(c)

n =1

31

Figure 2.2. Azimuthal dependence of concentrated loads
distributed on a horizontal ring of radius
a. Vertical, radial and tangential ring
loads are shown in Figures a, band c,
respectively, for ring orders n = 0 and
n = 1. Fi9ure c for n = 0 cooresponds to
n8 = rr/2 (all other figures are for n8 =, 0 . 0 0).
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Comparison with Eq. (2.5) leads to

Frn = Fen = D Fzn = 2
o(ro - ao)

o(zo - z~)ao

Substitution from Eq. (2.52) into Eq. (2.11) results in

Fln(zo' k) F3n (zo' k) = D ;

F2n (zo' k) = 2Jn(kao)0(zo _ zs)
0

(2.52)

(2.53)

Comparison with the corresponding terms for a concentrated point load

indicates that the source terms S~n(zo' k) (i = 1, 6) for the vertical

ring load can be expressed as

(i=1,4)

(2.54)

where SiD (zo' k) (i = 1,4) represent the source terms for a concen

trated vertical point load as given by Eq. (2.46).

Taking advantage of the particular form of Eqs. (2.54), it is

possible to obtain the following integral representation for the Fourier

components (with respect to the azimuth e) of the displacement and

stress components for a vertical ring load:



00

u~n ±. u~n = ±.1 kulO(zo' k)Jn(kao)Jn+l(kro)dk
o

00

u~n = f ku 20 (zo' k)J n(kao)J n(kro)dk
o

00

= ±. ~ ko2l0 (zo, k)Jn(kao)Jn+l(kro)dk
o

00

E~zn =~ ko220 (zo' k)Jn(kao)Jn(kro)dk
o

00

E~rn + E~en=l ko330 (zo' k)Jn(kao)Jn(kro)dk
o

(2.55)
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00

= f kollO(zo, k)Jn(kao)Jn(kro)dk
o

2f.1
EVe +~ (nUV + UV

e ) = 0 .rn r0 rn n

In these equations, the terms uiO(zo' k) and 0ijO(zo' k) correspond

to those defined by Eqs. (2.20) and (2.38) for the case of a concen

trated vertical point load. Eqs. (2.55) indicate that to obtain the

response for a vertical ring load it is only necessary to introduce the

factor In(kao) in the integral representation for a concentrated verti

cal point load. Another interesting point is that a vertical ring load

does not generate SH waves as shown by the fact that the source terms
V V

S5n and S6n are zero.



Next, a radial load distributed on a horizontal ring of radius ~

as illustrated in Fig. 2.2b is considered. Assuming that the radial load

34

per unit arc is

in the medium is

(Q/27Ta)cos n(e - eo)' the distribution of body forcesn .

Fr(r, e, w)
Qn n(e - eo)o(r - a)o(z - zs)z; = - cos ,27Ta

(2.56)

Fe(r, 8, z; w) = Fz(r, 8, z; w) = a .

Proceeding in the same fashion as described for a vertical ring load it

is found that

F2n (zo' k) = a

F3n (zo, k) = [In+l(kao) - In_l(kao)]o(zo - z~)

(2.57)

from which the source terms S~n(zo' k) (i = 1, 6) for a radial ring

load are obtained:

R
k) = Sil(zo' k) [Jn_1(ka0) - Jn+1(ka0)] /2 (i=1,4)Sin(zo'

(2.58)
R k) =S'l (z , k)[Jn_l(kao) + In+l(kao)] 12 (;=5,6)Sin(zo' 1 a

where Sil(zo' k) (i = 1, 6) represent the source terms for a concen

trated horizontal point load as given by Eqs. (2.48) and (2.49).

Finally, for a tangential ring load (Qn/27Ta)sfn n(8 - 8
0

) per

unit arc as illustrated in Fig. 2.2c the distribution of body forces is



(2.59)

and the source terms $~n(zo' k) (i ~ 1,6) are
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(2.60)

Given the particular form of the source terms for radial and

tangential ring loads, the following integral representation for the

Fourier components of the displacement and stress components may be

obtained:

co

(U~n + u~J.-:. (U~n + U~n) = f k[+U ll + u31]Jn+l(kao) In.-:.l(kro)dk
o

co

(U~n - U~n)'-:' (U~n - U~n) =I k['-:'U ll + u31]Jn_l(kao) In+l(kro)dk
o

co

U~n ~ U~n = +~ kU21Jn+l(kao)Jn(kro)dk
o

co

(E~zn + E~zn) ~ (E~zn + l:~zn) = f k[+0211 + °231] In+1(kao)Jn.-:.l (kro)dk
o

co

(E~zn - E~zn) ~ (E~zn - E~zn) = f k[~0211 + 0231] In-l (kao)Jn.-:.l (kro)dk
o



r. ~zn ~. r.~zn = + f k022l Jh+1(kao)J n(kro)dk
o

00

(l:~rn ~ r.~rn) + (l:~en ~ l:~e) =+f k0331Jn::"l(kao)Jn(kro)dk
o

(r. R + r.T ) + 2 ].10 [(uR + UT .) + n(ur + UT )]rrn - rrn r0 . rn - rn en - en

00

=+f kolllJ n::..l (kao)Jn(kro)dk
o

(r. R + r. T ) + 2 ].10 rn(uR + uT ) + (uR + uT )Jern - ern r0 L rn - rn en - en

00

= ~ k0131Jn::..l(kao)Jn(kro)dk
o

(2.61)
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In these equations the terms uil(zo' k) and 0ijl(zo, k) correspond to

those defined by Eqs. (2.20) and (2.38) for the case of a concentrated

horizontal point lQad.



2.5 ATTENUATION

It is well known that dissipation of energy accompanies trans

mission of stress waves in solids, even when the waves have small

amplitudes. In general, this conversion of elastic energy into heat

produces attenuation and dispersion of the stress waves, although the

dispersion ;s typically small for earthquake waves.

The dissipative properties of solids are commonly measured by

analyzing the decay rate of standing wave amplitudes in free vibration

experiments in the laboratory or the actual decay of waves propagating

in the field, where the amplitude decay will include the effects of

heterogeneities in the Earth.

Analogously to the familiar expression in electrical circuit

theory, the following dimensionless measure of dissipation, l/Q, is

commonly accepted in seismology (for instance, see Knopoff, 1964):

37

27T/Q = lIE/E (2.62)

In Eq. (2.62), LIE is the amount of energy dissipated per cycle of a

harmonic excitation in a certain volume and E is the elastic energy

stored in the same volume when the strain is a maximum. There is consi

derable evidence from measurements of homogeneous materials in the

laboratory and in the field that the specific attenuation factor, Q, is

substantially independent of frequency.

Various modifications to Hooke's law have been attempted in order

to account for the deviations in behavior between real materials and per

fectly elastic materials. One classical modification is the Kelvin-Voigt

solid in which dissipation is attributed to an added stress proportional



to the rate of strain. Ignoring the tensorial relations involved, the

stress-strain relation for a Kelvin-Voigt solid is

38

(2.63)

so that the effective shear modulus is complex:

(2.64)

The phase velocity for a damped harmonic wave in the Kelvin-Voigt solid

is given by

c = [2; (2.65)

which assumes a value (~/p)1/2, appropriate for an elastic body when

w = 0 and increases with frequency, becoming infinite as w -+ 00

(completely attenuated wave). The specific attenuation .factor for the

damped harmonic wave is given by

1 - (2.66)

Assuming that ~~« ~ or Q» 1 leads to

so that Q is inversely proportional to frequency for the Kelvin-Voigt

solid.

Another classical modification to Hooke's law is the Maxwellian

relation



(2.68)
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so that the dissipation is attributed to the actual permanent deformation.

The complex shear modu1 us for the Maxwell sol id is

].1* ::::: ].1 (1 _i +)-1
].1 w '

and the phase velocity is given by

C ::::: [_2: _r===l=2~] 1/2 ,
1 + (w» + 1

(2.69)

(2.70)

which assumes a value (].1/p)1/2 as w].1~ + 00 and a value (2].1w].1~/p)1/2

as w].1~ + O. The corresponding specific attenuation for a damped harmonic

wave is approximately

so that Q is proportional to frequency for the Maxwell solid. For both

models, the complex shear modulus is approximately

(2.72)

The attenuation model considered in this dissertation for a

layered viscoelastic half-space employs a complex shear modulus defined

in the same way, except that

(2.73)

where Q
S

is assumed to be frequency independent. The shear wave



velocity is given by

s* = ().l*/p) 1/2 = s(l + i/QS) 1/2 ,

in which QS is termed the shear wave specific attenuation factor.

Similarly, the compressional wave velocity is given by

40

(2.74)

in which Q is termed the compressional wave specific attenuation
ex

factor.

Although Qs and Q
ex

are assumed to be independent of frequency

for this model, any frequency dependence may be incorporated since the

Green's functions are formed directly in the frequency domain. Further

more, Futterman (1962) points out that a frequency independent Q is

inconsistent with causality. Since Q-l =° at w = 0, then there

would necessarily be a discontinuous slope at the origin and a phase

velocity independent of frequency. Futterman and others have investigated

models in which Q is independent of frequency only above a characteris

tic lower cutoff frequency. Allowing the phase velocity to be frequency

dependent, reasonable models include the expression in Eq. (2.66) divided

by w or a logarithmic dependence in which the dispersion introduced by

causality is of the order Q-l, where Q is roughly constant over a

rather broad frequency band.

All the results presented in this dissertation assume a fre

quency independent Q. The imaginary parts of the Green's functions as

w ~ 0 are roughly proportional to 1/2Q. In enqineering terminology,



1/2Q corresponds approximately to the critical damping ratio in the

material.

It is useful to point out that 8, QS' a, Qa may not all be

measurable quantities for a given problem. For example, it is more

common to know the real and imaginary parts of the wave velocities.

Since the formulae in Eqs. (2.73), (2.74) result in intreases of the

velocities by factors of (l + 1/Q2)1/4, then a more rational definition

for the complex velocities would be

41

(2.75)

Also, if it is assumed that no dissipation occurs in pure compression,

then Qa may be related to Os by the expression

(2.76)

As discussed in Chapter 4, the effect of introducing complex

velocities into the multilayered half-space not only results in a more

realistic model, but also allows the numerical integration procedure

to be performed along the real wavenumber axis without recourse to

principal values or contour integration.



CHAPTER 3

RESPONSE OF A LAYERED VISCOELASTIC HALF-SPACE TO BURIED SOURCES

3.1 MATHEMATICAL FORMULATION

In this Chapter a new procedure to obtain the three-dimensional

response of a layered viscoelastic half-space to buried sources with time

dependence of the type exp[iwt] is described.

The viscoelastic half-space (z ~ 0) under consideration is

assumed to be formed by N parallel horizontal layers overlying a uni

form half-space as illustrated in Fig. 3.1. The jth layer (j = 1, N)

has a thickness hj = Zj - Zj_l and is bounded by upper and lower inter

faces located at depths z. 1 and z., respectively (zO = 0). Each ofJ- J
the N + 1 viscoelastic media forming the layered half-space is charac-

terized by a complex compressional wave velocity J' complex shear wave

velocity Sj and density Pj (j = 1, N + 1). For the purpose of the

discussion and without loss of generality it will be assumed that the

buried source corresponds to a concentrated point load within the tth

medium at the point of coordinates (0, 0, zS).

In the jth medium, the displacement vector in cylindrical

coordinates (u~, u~, ui) must satisfy the homogeneous (j t t) or

inhomogeneous (j = t) equations of motion depending on whether or not

the source is located within the jth medium. In addition, the displace-

ment and stress fields must satisfy the traction-free boundary condition

on the surface z = 0 of the half space, the conditions of continuity of

displacements and tractions across each interface, and finally, the

radiation condition in the underlying half-space. In cylindrical
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Figure 3.1. Model for layered viscoelastic half-space
formed by N parallel horizontal layers
overlying a uniform half-space.



coordinates, the traction-free boundary condition on the surface z = 0

of the layered half-space is

44

1(Jrz = 0 ,
1 _

(Jez - 0 , on z = zo = 0 (3.1)

while the continuity conditions across interfaces are

j+l
= °rz '

. J'+1
u~ = ue '

= j+l
(Jez on z

(3.2)

= z. (j = 1, N).
J

In Eqs. (3.1) and (3.2), a~z' a~z ' ... etc. correspond to the stress

components in cylindrical coordinates in the jth medium. A detailed

expression for the radiation condition will be given later. At this

point it is sufficient to say that the radiation condition leads to

three additional scalar equations in the underlying half-space (j = N + 1).

In the previous Chapter it was shown that the general solution of the

equations of motion in a viscoelastic medium involves six undetermined

coefficients. The evaluation of the response of a layered half-space

consisting of N + viscoelastic media in contact reduces then,

essentially, to the determination of 6(N + 1) undetermined coefficients

by imposing the 6(N + 1) restrictions corresponding to the boundary,

continuity and radiation conditions just described.

Recalling the integral representations obtained in Chapter 2, it

is possible to express the displacement and stress components in the

jth medium in the form



u; (r, e, z; w)

u~(r, e, z; w)

ui (r, 8, Z; w)
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(3.3)

(3.4)

(3.5)

(Zj_l ~ Z ~ Zj' Zo = 0, ZN+l = 00, j = 1, N + 1)

where ro = wr/s , Zo = wz/S , S and ~ correspond to a shear wave

velocity and a shear modulus of reference, and QO denotes the vertical

component of the point load while Ql represents the horizontal component

along the e = 8
0

azimuthal direction.
j

Lrzn ' .... , are gi ven by

The terms j
Urn ' .... ,



00

U~n ~ U~n = f k[~U~n(Zo' k) + U~n(Zo' k)JJn~l (kro)dk
o

00

U~n = f kU~n(Zo' k)Jn(kro)dk

o

c.o

E~zn ~ E~en f k[~0~ln(Zo' k) + 0~3n(Zo' k))Jn~l(kro)dk
o

00

E~zn = f k0~2n (zo' k)Jn(kro)dk
o

00

E~rn + L~en = f k0~3n(Zo' k)Jn(kro)dk
o

(3.6)

(3.7)

46

where

E
j + 2 --..:.L
ern d.r

J 0

00

(nu j
+ uj

) = frn en
o



u~n(Zd' k)

U~n(Zo' k) n1n(Zo' k)eXp[-vj(ZO - Z~-l)J

o~ln(ZO' k)
[I1(k)]

n~n(Zo' k)eXP[-vj(ZO - Z~-18
(3.9)

o~2n(ZO' k) n~n(Zo' k)exp [v j (zO - Z~)J

0~3n(ZO' k) n~n(Zo' k)eXP[vj(ZO - Z~)J

011n(ZO' k)

and

} 01n{zo' k)

[I~ (k)]
{ n~n(zo' k)exp [-Vj (zo - z~ -1)]1

lcr~3n{Zo' k) = (3.10)

n~n(zo' k)exp [Vj(Zo - z~)J
0~3n(zo' k)

In Eqs. (3.9) and (3.10), Z~ = wz/s (j = 0, N), z~+l = z~, the terms

I~(k) and I~(k) denote the (6 x 4) and (3 x 2) matrices defined by

-kd. v-=d. -kd. v -:d .
J J J J J J

-v.d. kd. v.d. -kd.J J J J J J

2kv.c. 2 -2kv.c. (2k2cr1)-(2k c.-1)

[I~(k)J
_ 1 J J J J J
-cr-

(2k2c.- 1) -2kv-:c. (2k2cr1) -2kv-:c.J J J J J J
2 2 2kv-:c. 2 2 2kv-:c.2(2y.-1) - 2k c. 2(2y .-1) - 2k c.
J J J J J J J J

2 2 2kv-:c. 2 2 2kv-:c.(2y
r

1) - 2k cj (2y.-1) - 2k c·
J J J J J J

(3.11)

47
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and

kd. kd.
J J

[I~(k)J _ 1
-kv~c. kv ~c .-cr- J J J JJ
2 k2c.k c.

J J

(3.12)

In the above equations the following notation has been used

is again a density of referencewhere p

-2c. ;: (S./S) , y. = (S./a.)
J J J J J

(~ = "(32 p).

(3.13)

In Eqs. (3.9) and

1, N + 1) represent the corresponding

The terms n1n(Zo' k) (i = 1,6; j = 1, n + 1)upwardly propagating waves.

(3.10), the terms n1n' n~n and n~n (j = 1, N+ 1) are associated with

downwardly propagating P, SV and SH waves, respectively, while the

t j j d j (J'erms n3n' n4n an n6n

may be written in the form

(3.14)

in which, A1n(k) are undetermined functions of the dimensionless wave

number k to be determined by the boundary, continuity and radiation

conditions, 0j£ is the Kronecker delta function and S~n(zo' k) are the

source terms given by



Sfo(zo'
k) l eXP[I!Q,(Z~ - z~-l)JH(Zo - z~)

S~o(zo' k) (k/v£)exp[v£(z~ - z~-l)JH(Zo _ Zs)
0

S~o(Zo' k) }
dQ,

-exp[-v (zs - zQ,)] H(zs - z )Q, 0 0 0 0

S~o(zo' k) -(k/v£)exp[-v£(z~ - zo)J H(z~ - zo)

r~o(zo' kll
{:1=

S~o(zo' k)

(3.15)

(3.16)
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S~l(Zo' k) (k/vQ,)exp[vQ,(Z~ - z~-l)JH(Zo _ zs)
0

Q, k) exp[v£(z~ - z~-l)JH(Zo - Z~)S2l(Zo'
= dQ,

(k/vQ,)exp[-vQ,(Z~ - Z~)JH(Z~
(3.17)

Q,
S3l(zo' k) - Z )

0

S~l(zo' k) exp[-v~(z~ - z~)JH(Z~ - zo)

(3.18)

s s - ( )where Zo = wZ Is and H x denotes the Heaviside step function.

Having presented the integral representation for the displacement

and stress field, it becomes clear that the radiation condition in the

bottom half-space (j N+l) can be expressed by

AN+l(k) = 0 AN+l(k) = a AN+l(k) = a
3n '4n '6n (3.19)

corresponding to the condition that only downwardly propagating waves

are considered as Z ~ 00.



Given the particular form of the integral representation provided

by Eqs. (3.3) through (3.7), it is possible to separate the boundary

condition given by Eq. (3.1), the continuity conditions given by Eq. (3.2)

and the radiation condition given by Eq. (3.19) into two groups of

conditions. The first group of equations corresponds to the boundary,

continuity and radiation conditions for waves with particle motion

polarized in vertical planes (P, SV and Rayleigh waves), and it is

given by

5C

(3.20)

·+1 .
= u~n (z~, k) ,

These 4(N + 1) equations will be used in Section 3.2 to determine the

4(N + 1) undetermined coefficients A~n(k) (i = 1, 4; j = N+ 1) on

j j j d j dwhich u1n ' u2n ' 021n an 022 epend.

The second group of equations representing the boundary, continuity

and radiation conditions for waves with particle motion polarized in

horizontal planes (SH, Love waves) is

(3.23)



uj (zj k) uj +1(zj k) , (j = 1, N)3n 0' 3n 0'

j (j k) j+1 j (j 1, N)0 23n zo; 0 23n (zo' k) ,

AN+l(k) = 06

(3.24)

(3.25)
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These 2(N + 1) equations will be used in Section 3.3, to determine the

2(N + 1) undetermined coefficients A~n(k) (i = 5,6; j = 1, N + 1) on

which jand 0 23n depend.

Once the coefficients A~n(k) have been found, the displacement

and stress components given by Eqs. (3.3), (3.4) and (3.5) may be ob

tained by performing the integrations indicated in Eqs. (3.6), (3.7) and

(3.8).

3.2 PROPAGATION OF VERTICALLY POLARIZED WAVES

In this section the 4(N + 1) undetermined coefficients A~n(k)

(i = 1, 4; j = 1, N + 1), or, equivalently, the 4(N + 1) unknown

functions n~n(zo' k) (i = 1,4; j = 1, N + 1) appearing in the terms

associated with waves whose particle motion is polarized in vertical

planes (P, SV and Rayleigh waves) are determined by imposing the boundary,

continuity and radiation conditions given by Eqs., (3.20), (3.21) and

(3.22). As discussed in Chapter 1, a variety of procedures have been

proposed by different authors to solve the 4(N + 1) linear algebraic

equations representing the conditions just mentioned. Most of these

methods are numerically unstable at extremely low and high frequencies.

The new procedure proposed here closely parallels the physics of the

problem and eliminates the frequency limitations.



52

Considering Eqs. (3.9) and (3.11), it is possible to write the

boundary and continuity conditions given by Eqs. (3.20) and (3.21) in

the form

(3.26)

(3.27)

where hj
= zj j-l (j = 1, N) hN+1

= 0, andz
0 0 0 ' 0

k -v ~ -kp

v -k vq[Ip,q(k)] = P
-1 (2k2c - 1)d-1 -1-2kv c d -2kvqCqdqP p p p p

( 2 -1 2kv c d-1 (2k2c - 1)d-1- 2k c - l)dp P p P P q q

-k

(2k2
Cq _ l)d~l

~ -1-2kvqcqdq

(3.28)

Inverting the matrices appearing on the left hand side of Eqs. (3.26)

and (3.27) leads to



t'~n(O' k) 1 ~ ,,1n(0, k) ~
n1n(0, k) }

= [R~J 1 (0 k)
n4n '

and

j+1 j k) j ( j k)nln (zo' n1n la,
T~ I

R~j+1 j I j ( jk) J I J k)n2n (Zo' I n2n la,
I

= I (j = 1, N)
j ( j -----,----- j+1 jk) I k)n3n zo' ·d I

T~ n3n (la,R. I

J I J
j ( j I j+1 j

n4n la, k) n4n (la, k)

(3.29)

(3.30)

in which Rj and R~ are the 2 x 2 matrices of reflection coefficients

for plane waves impinging on the jth interface from below and above,

respectively, modified to account for transmission path. Tj and T~

are the corresponding 2 x 2 matrices of modified transmission coefficients.

The modified reflection and transmission matrices are given by

(3.31 )

T~
I

R~I

J I JI
I

[I j +1,j(k)]-1[I j ,j+l(k)]
_____ J. ______ =I

R~
I

T~I

J I JI
I

C"h

j -v~hj hj+1 j+1
-v e-Vj+lho )x diage JO, e J a e j+1 0 (j = 1, N) (3.32)



Explicit expressions for the reflection and transmission coefficients are

presented in Appendix I.

The boundary and continuity conditions given by Eqs. (3.29) and

(3.30) may be expressed as

5

n~n(O) = R~n~n(O)

j+1( j) d' . + R~ j+l(zj)= T.nJ (zJ) (j = 1, N)ndn Zo J dn 0 Jnun 0

nj (zj)
d' . + T~nj+l(zj)= R.nJ (zJ) (j = 1, N)un 0 J dn 0 J un 0

where

n~n(Zo)
= tn~n(zo. k) )

k) jn~n(zo'

n~n(zo) = 1"1n(zo. k) J
n~n(zo' k)

(3.33)

(3.34 )

(3.35)

(3.36)

(3.37)

The 2 x 1 vector represents the downwardly propagating P and

SV waves in the jth medium, while the 2 x 1 vector n~n represents

the corresponding upwardly propagating waves. The physical interpreta

tion of Eqs. (3.33) to 3.35) is quite simple as illustrated in Fig. 3.2.

It must be pointed out that the vectors

of Zo if j f £; i.e.,

j j
ndn and nun are independent

(3.38)
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Figure 3.2. Schematic representation of modified reflection/
transmission coefficients for downwardly and up
wardly propagating waves in the jth medium of the
N-layered half-space.



(
. 1 .

zJ - < z < zJ ,
o - 0 - 0
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In the medium containing the source (j = £) ,

(3.39)

where

(
£-1 £)z < Z < Zo - 0 - 0

- z )o ' (3.40)

(3.41)

the 2 x 1 vectors S~n and S~n correspond respectively to the direct

contributions of the source to the downwardly and upwardly propagating

waves in the £th medium.

At this point it is convenient to introduce the following

factorization

n~n(zo)
AU AU AU £(£-1) (j 1, £-1) (3.42)= T}j+l T£_lnun Zo , =

n~n(Zo)
AU AUA U AU £ £-1) (j 1, £ - 1) (3.43 )= R·1T.T·+1 '" T£_lnun(zo =
J- J J

for the layers above the source, and
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(j = 9, + 1, N + 1) (3.44)

(j = £ + 1, N + 1) (3.45)

AU Ad
The 2 x 2 matrices T., T. and

J J

designated here as generalized transmission and reflection

for the layers below the source.
AU Ad
R., R. are

J J

matrices at the jth interface for reasons to be described shortly. These

matrices are independent of zoo

Substitution from Eqs. (3.42) and (3.43) into Eqs. (3.33), (3.34)

and (3.35) shows that the free-boundary condition at Zo = 0 and the

continuity conditions at the interfaces above the source (1 2 j 2 £ - 1)

are satisfied if the generalized transmission and reflection matrices
AU AU
T., R. obey the recurrence relations

J J

AU
RURo

=
0

(I fl
AU dAu u (j 1)T. -R,R' l T. >
J J J- J -

AU U dAu AU (j 1)R. = R. + T.R. 1T. >
J J J J- J -

(3.46)

(3.47)

(3.48)

and,

(3.49)

Similarly, from Eqs. (3.44), (3.45) it can be shown that the

radiation condition at infinity (A~+l = 0, A~+l = 0) and the continuity

conditions at the interfaces below the source (£ 2 j 2 N) given by

Eqs. (3.34) and (3.35) are satisfied if the generalized transmission



and reflection matrices obey the recurrence relations
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and

Ad
= 0RN+l

Ad ( UAd) -1 d (j ~ N)T. = I - RjRj +l TjJ

Ad d uAd Ad
(j ~ N)R. = R. + T.R. IT.

J J J J+ J

(3.50)

(3.51)

(3.52)

(3.53)

In Eqs. (3.47) and (3.51), 1 denotes the 2 x 2 identity matrix. The

recurrence relations given by Eqs. (3.47), (3.48), (3.51) and (3.52)

provide a simple procedure to determine the generalized transmission

and reflection matrices once the modified transmission and reflection

matrices are known.

The factorization given by Eqs. (3.42) to (3.45) provides the

means to determine the field within each layer above or below the source

once the field in the medium containing the source is known. The field

in the medium containing the source (j = ~) can be easily obtained by

use of Eqs. (3.39), (3.40), (3.49), (3.53) and (3.54), and by noting

that

(3.54)

The result is



f1~n(Zo) (I "d" r1
(S9. + RdS 9, )R9,R~,_1 un 9, dn

9 ' U r 9, (z 9,- 1) i 9,- 1 s )
f1dn(zo) R (z ~ z < Z ,

9,- 1 tun 0 o - 0 - 0

n~n(zo) (I
AU Adr l

(s£ + RU s£)= - R£_lR£ dn £-1 un

n~n(zo) =
Ad £ (zs < z < z£ ) ,R£ ndn(zo) ,

0-- 0- 0

(3.55)

(3.56)
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In particular, if the source is located in the underlying half-space

(£ = N + 1) ,

( SN+l
) un

= 1a ,

(
N s), z < z < zo - 0 - 0

( zs < z < 00)
o - 0 '

(£=N+1)
(3.57)

~ RUSN+l (zN < z < zS)
Nun' 0 - 0 - 0

=

tSN+l AU N+'l (S
dn + RNS , z < zun 0 - 0

(£ = N + 1) .
(3.58)

Equations (3.55) and (3.56) together with Eqs. (3.42) to (3.45) provide a

complete description of the field associated with waves polarized in

vertical planes. The particular form of these equations makes possible

the simultaneous evaluation of the response at a number of observation

locations for a number of different source locations.

The physical interpretation of the generalized reflection and

transmission coefficients is illustrated in Fig. 3.3. In particular,

Rj corresponds to the waves reflected into the j+l th medium when

upwardly propagating waves impinge on the jth interface. These generalized

reflection coefficients include the multiple reflections. conversions and

transmissions on the layers above the jth interface as shown in Fig. 3.3.
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Figure 3.3. Schematic representation of generalized refle~~ion

and transmission coefficients. For example, T
corresponds to the waves transmitted into the J
j+lst medium (including all multiple reflections,
conversions and transmissions in the layers below
the jth interface) when downwardly propagating
waves impinge on the jth interface.
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The physical interpretation of the recurrence relations given by Eqs. (3.47)

and (3.48) is illustrated in Fig. 3.4.

The factorization introduced by Eqs. (3.42) to (3.45) can be

easily interpreted in terms of generalized rays. In particular~ expan-

. ( d ~u )-1sion in series of the matrlx I - Rj Rj _l appearing in Eq. (3.47)

leads to

(3.59)

in which the contributions of the multiple reflections become apparent.

By similar expansion of the inverse of the matrices appearing in Eqs. (3.47),

(3.51), (3.55) and (3.56) and by use of the recurrence relations, it is

possible to obtain an expansion of the response on any layer in terms of

multiply reflected and transmitted rays.

Finally, it should be mentioned that the dispersion relations

for the layered medium can be easily obtained by determining the zeroes of
d ~uthe determinant of (I - RN RN_l ).

3.3 PROPAGATION OF VERTICALLY POLARIZED WAVES FOR LARGE
VALUES OF THE WAVENUMBER

For high values of the dimensionless wavenumber k or for very

low frequencies, the procedure described in the previous section needs to

be modified to account for the fact that the differences between terms

associated with P and SV waves become small and may be altered by

numerical roundoff. The integral representation will be modified in such

a way that the dominant terms approach the corresponding static values

as k tends to infinity.
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The integral representation used in the previous section may be

written in the form

63

j
u1n

uj I

2n
T~1

I

I~ 2I
I

j I

E~(Zo)
I______ J. ______
I 0cr21n I I

I~l
I

I~2
I

= I ---------+---------j I
I I

E~(Zo)cr22n ______ J. ______
0 I

I I

j I

I~2
I

j 131
I
Icr33n I
I

j
crll n

--------- (3.60)

where, the 2 x 2 matrices I j (p = 1,2,3; q = 1,2) are obtained bypq

partitioning the 6 x 6 matrix [I~(k)J defined by Eq. (3.11); the 2 x 1

vectors n~n(Zo) and n~n(Zo) are defined by Eqs. (3.36) and (3.37); and

the 2 x 2 matrices E~(Zo) and E~(Zo) are given by

E~(Zo) = diag(exp[-v j (Zo-Z;-l)], eXP[-Vj(Zo-Z;-l)])

(3.61)

For high values of k it is necessary to recombine terms main-

taining the form of the representation. In this case Eq. (3.60) is written

as



uj
1n
ju2n -j I -jI

I" I 112j I

I~(zo)
I

I I
00 21n ------ ...------ I

I
-j I

-J I I
= 121 I 122 ---------~--------j I I

It (zo)
0 22n I

0
I------ ... ------ I

-j I -j I

j I I131 I 1320 33n I
I

j
0 nn

in which
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(p = 1,2,3; q = 1,2)

and A~l is the inverse of the 2 x 2 matrix
J

(3.63)

[

(k - v.)
1 J

A. = --
J K.

J V.+(K.
J J

- l)k
(3.64)

2 2 for -Ijin which K j = {1 + Yj)/(l - Yj)' Detailed expressions pq'

E~ and E~ are given in Appendix II.



The modifications introduced have the advantage that as k

tends to infinity

I
I 1 1I
I
I
I

-(K.-l) 1 I (Kr1) -1I

lei -j J I

112
______________________L_______________________

11 I
I

(K.-3)klJ . -2klJ . I -(K.-3)klJ . 2klJ .I

-j -j J OJ OJ I J OJ OJ
I (3.65)121 122

'U
I

(K.-1)klJ . -2klJ . I (K .-1) kjl . -2kjl .IJ OJ OJ I J OJ OJ
-j -j ----------------------~-----------------------131 132 I

2(4-K.)kjl . 2kjl . I 2(4-K.)klJ . 2kjl .IJ OJ OJ I J OJ OJ
I
I

(5-K.)klJ . 2kjl . I (5-K .) kjl . 2kjl .IJ OJ OJ I J OJ OJ

[1 ~]f~(zo) 'U exp [-k(Zo_z~-l )J (3.66)
j -1-k(z -z )o 0

E-j(z ) 'U [Zo-Z~-l) ~] exp [k(Zo-z~)J (3.67)u 0

which correspond to the static representation obtained by Muki [1955J.

In Eq. (3.65), jloj = jl/;.

Since the modifications introduced for large values of k have

not altered the form of the integral representation, it is possible to

determine the functions n~n(Zo) and n~n(Zo) (j=l, N+l) using the

same procedure described in Section 3.2. In particular, for layers

above the source

65



(j=l, 9--1)
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(3.68)

and

(j=1,9--1)

where

(3.69)

sutn = A S99- un (3.70)

Expressions similar to those given in Eqs. (3.44), (3.45) and (3.56) hold

for layers below the source. The modified source terms s~n and s~n

defined by Eq. (3.70) are given in detail in Appendix II.

The new matrices of generalized transmission and reflection

coefficients are obtained from the recurrence relations

( )
-1

~ -.ct:I~ :;;UT.. = 1- R. R. 1 T.
J J J- J

~ ~ -.;=(\~ :;;UR. = R. + T. R. 1 T.
J J J J- J

(j ?- 1)

(j?-1) (3.71)



~ n<l Ttl ~ ,;:dR. = R. + T. R·+l T.
J J J J J

(j .2- N)

(j .2- N) (3.72)
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in which the new matrices of modified reflection and transmission

coefficients are given by

(3.73)

[ ~: ~]
-~-t-~-

J I J

. 1 I • ] -1 [ . : . 1 ]

[

. -J+ I -J -J -J+

= -~~~~--~-~~~- -~~~~-~-~~~--
-j+l I -j -j I -j+l

-1 21 : 122 -1 21 : 122I I

[

fj (zj) ! 0 ]do:
--------~----------
o : fj+l(zj}

: u 0

(3.74)

3.4 PROPAGATION OF HORIZONTALLY POLARIZED WAVES

In this section, the 2(N+l} undetermined coefficients A~n(k}

(i=5,6; j=l, N+l), or equivalently, the 2(N+l} unknown functions

n~n(zo' k) (i=5,6; j=l, N+l) appearing in the terms associated with

waves whose particle motion is polarized in horizontal plans (SH, Love

waves) are determined by imposing the boundary, continuity and radiation

conditions given by Eqs. (3.23), (3.24) and (3.25).

Considering Eqs. (3.10) and (3.12) it is possible to write the

boundary and continuity conditions given by Eqs. (3.23) and (3.24) in

the form



(3.75)
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k) eXP(-v~h~) )
J t

k) eXP(-Vj+lh~+l))

where hj = zj - zj-1 (Jo = 1 N) hN+1 = 0, and
o 0 0 " 0

(j = 1, N) (3.76)

(3.77)

Eqs. (3.75) and (3.76) can be written as

(3.78)

0+1 °

l
"~n (Z~. k) 1
nJ (zJ k)
6n 0'

where

and,

1,N) (3.79)

(3.80)

d -1 jT. = 2v~Cod. exp(-vJ~ho)/6J.J J J J
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Tu. 2 d-1 (;>hj +1)1J = vj+1 Cj+1 j+1 exp -vj +1 0 ~j

in which,

(j = 1,N) (3.81)

(3.82)

The terms denoted here by Rj, R~ and Tj, T~ correspond to the

reflection and transmission coefficients for plane SH waves impinging

on the jth interface from below and above, respectively. These coef-

ficients have been modified to account for the transmission path.

Introducing the change in notation

n~n(Zo) = n~n(Zo' k)

n~n(Zo) = nin(Zo' k) (j = 1, N + 1) , (3.83),

it may be seen that Eqs. (3.78) and (3.79) take the same form as

Eqs. (3.33), (3.34) and (3.35) with the exception of being scalar

equations.

Following the same procedure described in Section 3.2, it is

found that the functions n~n and n~n which satisfy the boundary,

continuity and radiation conditions are given by

j AU AU
n (Z) = T

J
. T

J
'+lun 0

(j=l, £-1) (3.84)



for the layers above the source, and

70

(3.85)

for the layers below the source. In the medium containing the source

(3.86)

(3.87)

The generalized scalar transmission and reflection coefficients
Ad AU Ad AU
T j' Tj , Rj and Rj appearing in the above equations are obtained

from the modified reflection and transmission coefficients given by

Eqs. (3.80) and (3.81) by use of the recurrence relations

AU
RURo =

0

AU
(1 d AU rl T~ ,T. = - R. R. 1 JJ J J-

AU U d AU AUR. = R. + T. R. 1 T.
J J J J- J

(j~l)

(j ~ 1)

(3.88)

(3.89)

(3.90)



and
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Ad d u Ad Ad
R. = R. + T. R'+l T. ,

J J J J J

(j 2. N)

(3.91)

(3.92)

(3.93)

In Eqs. (3.86) and (3.87) the source terms 52 and 52 aredn un

given by

(3.94)

The procedure just described is valid for all values of k and

does not need to be modified for large values of k.



CHAPTER 4

NUMERICAL INTEGRATION

4.1 SUMMARY OF INTEGRAL REPRESENTATION

Before presenting the method of integration used to evaluate the

Green1s functions it is convenient to summarize the integral representa-

tion derived in Chapters 2 and 3.

The cylindrical components of the displacement and stress fields

in the jth layer associated with a concentrated source located in the

~th medium can be written as

(- j 2 j r2G~r) =1: Qn(roU~n' r2 j 2 . )47f flrUe, reGez' 0 Lezn ' ro L~rn sin[n(e-eo)]
n=O

(- j 2 j r2G~e) =1: Qn(roU~n' r2 j r~ L~en) cos[n(e-eo)]47f flruz' r Gzz ' Lzzn '
n=O 0

(4.1)

where ro = wr/s, sand fl correspond to a shear wave velocity and a

shear modulus of reference, Qo denotes the vertical component of the point

load while Ql represents the horizontal component of the point load

along the e = eo azimuthal direction. The terms U;n' ... ,

L;zn ' ... , are functions of the dimensionless variables ro and

Zo = wZ/S, and are obtained from the following Hankel transform-type

integrals
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~j
zzn

o

j
00 (J22n

(J~3n k In(kro)dk

j
(Jl1n

(4.2)

in which cj = (Sj/S)2, dj =p/P j , Sj and Pj correspond, respectively,

to the shear wave velocity and density in the jth layer, and sand P
are a shear wave velocity and density of reference (~= s2p). The terms

uln ' u2n ' (J2ln' (J22n' (J33n and 0lln are associated with waves

polarized in vertical planes (P, SV, Rayleigh), while the terms u3n '

023n and 03ln are associated with waves polarized in horizontal planes

(SH, Love). All of these terms are functions of k and of the dimen-

sionless variable zoo In the near field, the terms Urn' ~rzn' ~rrn'

~een include some particle motion polarized in horizontal planes while

the terms Ue ' ~e ' ~ include some particle motion polarized inn zn ern
vertical planes. For example,



The terms associated with waves polarized in vertical planes

are obtained from
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juln
ju2n

------
j

°2ln
j =

°22n
------

j
°33n
j0" n

I
• I •

IJ I IJ
" : 12 .: .

-----t----- [EJ
(z ) : 0 ] { n

J
(z ) 1

I~l I I~2 --~--~--t--~----- --~~--~--)'
-----f----- 0 : EJ (z ) nJ (z )

. j I U 0 un 0

I~l 132

(4.3)

where the 2 x 2 matrices Ii, Ii2' .... are defined by

I

I~l ! I~2
I-----,.-----

j : I j
121 : 22

I-----"1-----
I~l 1 I~2

-kd. v~d. I -kd. v ~d .
J J J I J J J

I
I

-v.d. kd. I v.d. -kd.I

J J J I J J J
I

---------------------~-------~----------------~---------~

2 I

(2k2
Cj -1)2kv ·c . I -2kv.c.-(2k c.-1) I

d~1 J J J I J J
I= I

J (2k2
Cj -l) -2kv-:c. I (2k2

Cj -l) -2kv~c .I

J J I J J
I

-----------------------------~---------------------------
2 2k2c.

I 2 2
2kv~c . I 2b<c.2(2yj-l) - I 2(2Yj-l) - 2k cjJ J J I J JI

(2y~-l) 2k2c.
I

2 22kvjc j
I

2kv~c .- I -(2y.-l) - 2k c·
J I J J J JI

(4.4)

while the 2 x 2 matrices E~(Zo) and E~(Zo) are given by

E~(Zo) = diag(exp[-v/Zo-z~-l)] , eXP[-vj(Zo-Z~- l )J) (4.5)



In the ~bove equations, "J' = [k2 - S/~.)2Jl/2,,,~ = [k2 - (S/SJ.)2 J
l 12,

. J J

y. = S./a., and zj = wz./s (ZN+l = zN) in which z. defines the
J J J 0 J 0 0 J

position of the lower interface of the jth layer (z~ = 0).

The 2 x 1 vectors n~n(zo) and n~n(zo) correspond to the

amplitudes of the downwardly and upwardly propagating P and SV waves

in the jth layer. These amplitudes are independent of Zo in all layers

with exception of the lth layer in which the source is located. The

wave amplitudes n~n and n~n in the jth layer are obtained from the

following factorization
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(j = 1, 1-1)

(j = 1, 1-1)

(j = 1+1, N+l)

(j = 1+1, N+l)

= (1

(Z1-l s)
< z < Zoo - 0

(
ZO
l-1 < z < zs)

- 0 0

(4.7)

in which I s s -denotes the 2 x 2 identity matri'x, Zo = wZ Is, Zs

defines the location of the point source, and



sy,
eXP[v9,(Z~ - Z~-l)J

R,
exp[-vR,(Z~ - Z~)J

= dQ, Suo = -ddO
k. [~( S Q,- 1)J R,

k [~( S Z~)Jv~ exp VQ, zo-zo -;; exp -v Z -vR, R, 0

k [ s R,-l )J ~ exp [-v (zs - zR,)]vR, exp vR,(zo - Zo
R,

dQ, sQ, dQ,
vR, R, 0 0

Sdl = =
exp[v£(z~ - z~-l)J

ul
exp[-v~(z~ - z~)J

The 2 x 2 matrices of generalized reflection and transmission
"U Ad AU "dcoefficients Rj , Rj , Tj and Tj are obtained from the recurrence

relations
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AU
RUR =

0 0

"U ( d "u r1
T~T. = 1 - R

j
R

j
_lJ J

"U U d AU AUR. = R.+T.R· l T.
J J J J- J

Ad
= 0RN+l

"d
(1 U Ad rl

T~T - - Rj Rj +lj - J

Ad
R~ + T~

Ad AdR. = Rj +l T.
J J J J

(j ~ 1)

(j ~ 1)

(j ~ N)

(j ~ N)

(4.9)

in which the 2 x 2 matrices of modified reflection and transmission

coefficients are given by



77

(1 2.. j 2.. N) (4.10)

Explicit expression for the modified reflection and transmission coeffi-

cients are given in Appendix I.

To insure the numerical convergence of the integral representation

for large values of the dimensionless wavenumber k, it is necessary to

introduce some modifications to the procedure just described. The general

formalism remains intact except for the following changes:

(i) The matrices I~q (p = 1,2,3; q = 1,2) appearing in Eqs. (4.3) and

(4.10) are replaced by

(p = 1,2,3; q = 1,2) (4.11)



(4.13)

and,

(iii) The source terms S~n and S~n appearing in Eqs. (4.7) are

replaced by

(4.14)

Tj -Ej r j -Q, -Q,Detailed expressions for pq' d' u' Sdn and Sun as well

as for the resulting modified reflection and transmission coefficients

are presented in Appendix II .

The terms u3n , 0 23n and 0 31n associated with waves polarized

in horizontal planes are obtained from
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j j
I~2u3n III

[ :~(ZO) o Hn~n(Zo) Jj j j
0 23n = 121 122 (4.15)

E~(Zo) n~n(zo)
j

I~l I~20 13n

which has the same form as Eq. (4.3) except that in this case the quanti

ties involved are scalars. The terms I~l' I~2' .... , are defined by



I~ 1 I~2 k k

I~l
j -1 -1122 -kv-:c.d. kv-:c.d.

J J J J J J

I~l
j k2C.d: l 2 -1132 J J k Cjdj

while

E~ (zo) = exp [-v-: (z - z~-l)JJ 0

~~(zo) = eXP[vj(zo - z~)J

(4.16)

(4.17)

(4.18)
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The terms n~n(zo) and n~n(zo) correspond to the amplitudes

of the downwardly and upwardly propagating SH waves in the jth layer.

The wave amplitudes n~n and n~n are also obtained from the factoriza

tion given in Eq. (4.7) except that the terms S~n and S~n are now

given by

Q,
SdO = 0 , Q, -SuO - 0 ,

-1
exp[v~(z~ - z~-l)] ,Q,

= (kV~CQ,d;1
)Sdl

sQ, ( -1 r1
exp[-v~(z~ - z~)Jul = kv~cQ,dQ,

(4.19)

The generalized reflection and transmission coefficients for the

case of horizontally polarized waves follow the same recurrence relations

presented in Eq. (4.9). The modified reflection and transmission coeffi

cients are also given in this case by Eq. (4.10) with the terms appearing

in that equation defined as in Eqs. (4.16), (4.17) and (4.18). In



particular, these coefficients are given by
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[
T~

R~
J

Rj]
T~

J

(1 .5.. j .5.. N) (4.20)

In the case of horizontally polarized waves the integral repre-

sentation just described is valid for all values of the dimensionless

wavenumber k and does not need to be modified for large values of k.

The response of a layered viscoelastic medium to loads distri

buted over a ring can be obtained by the same procedure just described

except that Eq. (4.2) must be modified as in Eqs. (2.55) and (2.61) of

Chapter 2.



4.2 METHOD OF INTEGRATION

4.2.1 Introduction

The Hankel transform-type integral representations of the dis-

placement and stress components in the frequency domain are summarized

in Eq. (4.2) and involve quantities of the form
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00

In(ro'zo) = ~ F(k,zo) In(kro) dk ,
o

n = 0,1,2 . (4.21)

for the concentrated point loads. The kernel F(k,zo) depends upon

wavenumber, frequency, receiver and source depth and layer properties;

whereas, the Bessel functions In(kro) depend only upon the product of

wavenumber times normalized epicentral observation distance (ro = wr/S).

An effective procedure to evaluate the F integrands has been presented

in Chapter 3 based on highly efficient factorizations for the upgoing

and downgoing wave amplitudes in each layer (refer to summary in

Eqs. (4.3) through (4.7)). All that remains then is to develop an

efficient numerical integration scheme capable of handling the oscillatory

nature of the Bessel functions in addition to the vigorous behavior of the

pervasive F integrands (as a function of wavenumber).

4.2.2 Description of Kernel

Before describing the method of integration, it is instructive to

portray the dependence of the F integrands on frequency and wavenumber.



The real parts of two representative F integrands are pictured in

Figure 4.1 for the simple soil models also shown in the figure. The

three-dimensional plots in the left-hand column represent the F inte

grands for the vertical displacement at the free surface due to a concen

trated vertical point force at the free surface (viz.~ U10); the plots

in the right-hand column represent the F integrands for the tangential

displacement due to a concentrated horizontal point force (viz., U11)'

The axes running from left to right correspond to the dimensionless

wavenumber k which is inversely proportional to the phase velocity

(the range from k = 0 to k = 2 is shown in the plots). High frequency

is in the foreground and low frequency is in the background.

The poles of the F integrands are shifted off the real k

axis by introducing attenuation for shear and compressional waves so that

all the peaks have finite amplitudes. This not only facilitates implemen

tation of an integration scheme over real k values, but at the same time

models physically realizable attenuation in the Earth. The plots on the

left involve P-SV-Rayleigh waves while those on the right involve SH-Love

waves.

For a half-space with source and receiver at the surface, the

function F is frequency independent as is apparent in the upper left plot

of Figure 4.1. The large undispersed dipole shape corresponds to the

Rayleigh wave for the half-space and the small inflection represents the

compressional wave. For a layer overlying a half-space, higher surface

wave modes appear as the frequency is increased as depicted in the center

plots. All the surface waves are normally dispersed since on a given mode,

the phase velocity decreases as the frequency is increased. In the lower
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plots, the two layers which overlie a half-space have the same properties

(velocities, density, attenuation factors and thickness) as used in the

center model. Thereby, at sufficiently high frequencies, when the waves

become insensitive to the underlying half-space, the most fundamental

surface wave modes should match those for the center model. The plots

shown also reveal that the F integrands are uninvolved at large wave

numbers indicating that the tail-ends of the wavenumber integrals can be

evaluated without difficulty.

The plots in Figure 4.2 illustrate the behavior of the F inte

grands for a more reaiistic earth structure, which is defined in Table 5.2.

The source is a vertical point force buried in the sixth of 15 layers.

Also, the lesser amount of attenuation contributes to the more pronounced

behavior. Each plot now represents a different frequency from one cycle/

sec in the top curve to 10 cycles/sec in the bottom curve, and wavenumber

is still displayed horizontally. The component shown corresponds to the

real part of the F integrand for the vertical displacement evaluated at

the surface of the layered half-space (viz., U1o)' Clearly, a sophisti

cated scheme is needed to inner-product the F integrands with the Bessel

functions at each frequency for all wavenumbers.

4.2.3 Upper Limit of Integration and Low Frequency Switchover

Independent of the type of quadrature implemented to evaluate

the semi-infinite wavenumber integral in Eq. (4.21), two fundamental de

cisions must be made: 1) how to determine the upper limit of integration;

and 2) how to determine the switchover k value at which the low fre-

quency expansions are used to calculate the F integrands. So long as
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Figure 4.2. Real part of the vertical displacement
component at the free surface in the
frequency-wavenumber domain due to a
concentrated force buried in the layered
half-space model depicted in Table 5.2.
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no receiver depth coincides with any source depth, the exponential decay

of the F integrands may be relied upon to define the upper limit of

integration, k
1

. This reduces the semi-infinite integral in Eq. (4.21)

to the following finite integral:
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(4.22)

in which the arguments have been omitted for brevity and clarity.

An alternative procedure is obtained by considering that for high

values of k the F integrands for any frequency tend to the value of

the F integrands in the static case. Taking advantage of this property,

the integral in Eq. (4.21) can be written in the form

[F(w) - F(O)] In dk (4.23)

in which F(O) represents the static (w=O) F integrands and 1(0)

represents the corresponding static (w=O) integrals. The upper limit

of integration. k
1

, is thereby defined in this case by the convergence

of the dynamic integrands to the static integrands.

The procedure of Eq. (4.23) is particularly useful when source

and receiver are at the same depth. in which case the decay of the F

integrands as a function of k is slow. In Eq. (4.23), the static F

integrands and integrals may correspond to those static integrands and

integrals for a uniform half-space with properties of the layer con

taining the source-receiver pair. Although the dynamic F integrands

may converge more slowly to the half-space static F integrands. the



advantage is that analytic expressions are available for the half-space

static integrands and integrals (see Appendix III).

When using Eq. (4.23) for the proximate source-receiver depths,

it becomes essential to implement the low frequency expansions of the

F integrands at high k in order to insure that [F(w) - F(O)]

properly approaches zero as k is increased. The switchover k value

at which the low frequency procedure is used to evaluate the F(w) inte

grands in either Eq. (4.22) or (4.23) is determi ned by
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k > w h . Is- mln (4.24)

where hmin is the minimum layer thickness. The minimum layer thickness

appears in the inequality because the thinner the layer (or the lower the

frequency), the smaller the value of k at which the differences between

the compressional and shear waves can be accurately calculated. Although

the low frequency formulation for the F integrands is valid all the way

back to k equals zero, its use is unnecessary at low k values. There

fore, the inequality in Eq. (4.24) need only be tested when k is larger

than, say, 0.5 divided by the slowest phase velocity of the problem.

4.2.4 Formulation for Method of Integration

The basic philosophy behind the method of integration is to

sample the F integrands sufficiently fine to allow piecewise polynomials

to interpolate the amplitudes of the F functions between the integration

points. Thereby, the numerical integration over the Bessel functions can ·be

performed analytically over each integration interval, thus avoiding the

oscillation hazard of the Bessel functions.



For reasons that will become clearer later in the discussion,

quartic polynomial interpolation is the most effective order scheme to

employ in general. The five integration points on a given interval are

defined as kl , k2, k3, k4, k5 with the quartic polynomial determined by

88

(4.25)

in which ~k = k4 - k2. The normalization inherent in Eq. (4.25) is

chosen with the intention of integrating from k2 to k4 on each inter

val and overlapping k
l

and k
5

into the outer intervals in order to

insure a smoother fit to F(k,zo) between k
2

and k
4

.

Introducing matrix notation, the coefficients Am (m = 1, 5) are

uniquely determined by the five F(k.m,zo) according to

= 1

1

= [cJ
5x5

a2 a3 a4 -1
a Fl

a a a a F2

b b2 b3 b4 F3

c c2 c3 c4 F4

d d2 d3 d4 F5

(4.26)



(4.27)
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The elements, Cij (i,j = 1,5) of the 5 x 5 matrix [C] appearing in

Eq. (4.26) are

Cll = a

C12 = 1

C13 = a

C14 = a

C15 = a

-bed
C2l = a(a-b)(a-e)(a-d)

C = -a(be+bd+ed)-bed
22 abed

aed
C23 = b(a-b)(b-e)(b-d)



-abd
C24 = e(a-e)(b-e)(c-d)

abc
C25 = d(a-d)(b-d)(e-d)

_ b(e+d) + cd
C31 - a(a-b)(a-e)(a-d)

C = a(b+e+d) + b(c+d) + cd
32 abed

_ -a(e+d) - cd
C33 - b(a-b)(b-e)(b-d)

C - a(b+d) + bd
34 - e(a-e)(b-e)(c-d)

_ -a(b+c) - be
C35 - d(a-d)(b-d)(c-d)

C . - -~b+e+d~
41 - a(a-b (a-c) a-d)

c = -(a+b+e+d)
42 abed

~a+e+d~
C43 = b(a-b (b-e) b-d)

_ . -(a+b+d~
C44 - e(a-e)(b-c) c-d)

_ (a+b+e)
C45 - d(a-d)(b-d)(c-d)

_ 1
C51 - a(a-b)(a-c)(a-d)

-1
C53 = b(a-b)(b-c)(b-d)
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1
CS4 = c(a-c)(b-c)rc:.:df

-1
C55 = d(a-d)(b-d)(c-d)

(4.28)
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Rewriting the integral appearing in, say, Eq. (4.22) as a summa

tion of integrals over each interval (k2, k4) with F(k,zo) replaced by

the quartic polynomial defined in Eqs. (4.25) through (4.28) leads to the

following expression for In(ro'zo):

1

(k::2)

k4

(k::2f
In = L: (Fl , F2, F3, F4' F5) [C]T J (kr )dkn 0

intervals 1x5 5x5 3
k2 (k:~2 )

(k-k2f
' ~k

5xl

(4.29)

in which superscript T denotes the transpose matrix. The summation in

Eq. (4.29) is carried out over all the intervals of integration from k2
to k4, except for the first interval on which the integration is per

formed from kl to k4 since no overlapping is possible from a previous

i nterva1.



It is important to notice in Eq. (4.29) that the product of the

5x5 matrix [C] times the 5x3 matrix of integrals (n=O,1,2) is independ

dent of source and receiver depth; hence needs to be formed only once

for each epicentral range. Since the integrals in Eq. (4.29) can be

evaluated analytically, the oscillation hazard of the Bessel functions

is completely circumvented and the number of integration points is

restricted to the tolerance desired in sampling the F integrands.

4.2.5 Sampling/Integration Criteria

After the calculation for a given frequency is initialized by

evaluating the Fintegrands at five equally spaced k points, the

calculation proceeds as follows until k4 exceeds the upper limit of

integration, k£. The error in passing a quartic polynomial through each

of the F integrands at the five k points is estimated by forming the

fourth difference of the amplitudes of the F integrands on the i th

interval. This fourth difference is then multiplied by ~k in order to

estimate the relative error in performing the integral on the i th inter

val from k2 to k4, since the integral is roughly proportional to Ak.

If the relative error is below a specified tolerance for all the

F components, then the integrals are performed on the i th interval with

the results added to the respective integrals from the previous i-l

intervals. Otherwise, a new k point is inserted midway between the

widest spacing of the k points on the i th interval and the relative

error is resampled, with the F amplitudes from the extra k point

saved for later intervals. To proceed to the next interval after inte

grating from k2 to k4 the F integrands are evaluated at two new

92



k points beyond k5 with the step in ~k determined by the maximum

relative error from the previous interval. Of course, if new k points

are already available from the resampling process, then new F integrands

need not be evaluated until the previously stored F integrands are

exhausted.

4.2.6 Integration Branch

What remains to be discussed is the technique used to evaluate

integrals of the type appearing in Eq. (4.29). Although formulae are

available for these definite Bessel integrals, the following branch on

the integration procedure for a given interval proves to be the more

efficient methodology. As depicted in Figure 4.3, the integration

branch depends on the magnitude of the argument of the Bessel functions-

namely, the product of dimensionless wavenumber k times dimensionless

epiceritral distance roo

In region 2 of Figure 4.3, the arguments of the Bessel functions

are sufficiently large to allow Hankel's asymptotic expansions to replace

the Bessel functions:

In(kro) = ~rrk~o [p(n,kro) cos(xl - Q(n,kro) Sin(xl]

where x = kro - (~+ t)'IT and, with .6 = 4n2

P(n,kr ) tV 1 _ (.6-1 )(.6-9) + (.6-1 )(.6,..9)(.6-25)(.6-49) ~

o 2!(Skr )2 4!(Skr )4
o 0

Q(n,kr ) tV t.6
Sk
-1)T _ (.6-1)(.6-9) (~-25) + ...

oro 3! (Skr )
o

(4.30)

(4.31)



Using trigonometric identities, Eq. (4.30) can be rearranged into the

more convenient form

9!

A· A

In(kro) = P'(n,kro) cos(kro) - Q(n,kro) sin(kro)

in which

(4.32)

p(n,kro) =,J .~ro [p(n,kro) cos(% + ~). + Q(n,kro) sin(~ + ~)'J

Q(n,kr0) = J.~ro [Q(n,kro) cos(% + i)· - P(n,kro) sin(~ + }).J .

Now, for an interval contained within region 2 (i.e., k1ro > x), the Bessel

functions are replaced by the expansions in Eq. (4.32), with the smoothly
A A

varying functions P(n,kro) and Q(n,kro) included in the polynomial

interpolation of the F integrands. Therewith, the integral on the i th

interval may be written as follows if k,ro > x

cos(kr )dk
o

in which

and

= (k-k2)m-l
Km ~k ' m= 1,2,3,4,5 .



In region 1 of Figure 4.3, ~k = k4 - k2 is required to be small

enough to insure that the Bessel functions oscillate slowly over the inte-

gration interval. Thereby, the entire Bessel function may be included in

the polynomial interpolation of the F integrands, so that the integral

on the i th interval located in region 1 may be written as
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(4.35)

in which

and

The degree of smoothness necessary in the Bessel functions for

Eq. (4.35) to be valid in region 1 depends on the accuracy desired in the

numerical integration at a given frequency. The smoothness provision in

region 1 is exclusively a function of the product ~x = ~kr , since theo
magnitude of ~x determines the number of quadrature points used per

Bessel function oscillation. Realizing that the Bessel function osci1la-

tions have wavelengths of order 2~, then in order to accomodate say

ten quadrature points per oscillation, ~x must be restricted to values

less than ~i (with ~i = 1) in region 1.



The restriction on 6X in region 1 is virtually inconsequential

in determining the value of 6k during an actual numerical integration.

Since klro < x in region l~ it is straightforward to show that

6kr0 < 6X if and only if

9;

6k < (M) k
A 1 ~x

(4.36)

independent of roo With 6i = 1 and x = 5~ 6k is merely required to

be less than one fifth of kl -- a condition automatically satisfied in

general by sampling the F integrands to within a specified error

tolerance. Enforcing the inequality for 6k in Eq. (4.36) (in addition

to the sampling criteria) insures that the so-called IIfast" integration

will be valid whenever klro < x (which is necessary since the so-called

"asymptotic" integration is never applicable in region 1). The IIfast ll

integration~ on the other hand~ is often times valid (i.e.~ 6kr < x)
o

in region 2 and should be used instead of the lIasymptotic" integration

whenever applicable since it is more efficient.

One final point of interest regarding the restriction of 6k

for the validity of the integration branch can be made by referring to

Figure 4.3. For integration intervals having kS less than k* or kl
greater than kS~ the inequality in Eq. (4.36) is more stringent than

necessary. In the latter case~ klro always falls within region 2

indicating that the inequality may be disregarded (since the validity of

the "fast" integration need not be insured with all the integration

intervals situated interior to region 2). In the former case~ the inte-

gration intervals lie entirely within region l~ so that the IIfast li inte

gration must be applicable (i.e.~ must have 6kr <6x). Since~
o



however, x/kl is larger than ro' it is less constraining to merely

require that
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(4.37)

for kS < k*.

To complete the description of the method of integration, ex

pressions for the integrals appearing in Eq. (4.34) are presented:

k

14 (k-k2)COS ( )
~ sin kro dk

k2

= ilk ~l c~s ex) 5 +_1 si n(X) [5 - cos (t:.
2
x )JIl2 SlnilX cos x

- 1 sin(- [ (ilX)]\+ t:.x cos x) 5 - cos :r

1
1 cos (- [ 6 ( t:.x )J

= ilk 2 sin x) 5 - (ilX)2 5 - cos :r

- 1 sin(-) [( ilX). 6 ( ilX)] ~+ t,X cos xl. 5 S - cos:r - C~x) 2 5 - cos:r ~



[ 5 -~ (1. 5 5 - cos !.I2X)
(!.Ix)
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+("~)4 (5 - cos "ZX)] +;X ~~~(X) [(Z.O 5- cos "ZX)

in which

(4.38)

!.Ix = !.Ikr
o

4.2.7 Modifications for Integral Representations Involving
Concentrated Ring Loads

The integral representations of the displacement and stress

components associated with concentrated ring loads are presented in

Eqs. (2.55) and (2.61) are are of the form

00

Imn(ao,ro'zo) = [ F(k,zo)Jm(kao)Jn(kro)dk ,
o

n = m-l, m, m+l . (4.39)

The distinction between Eqs. (4.39) and (4.21) is clearly the additional

Bessel function J (ka ) which depends only upon the product of dimenm 0

sionless wavenumber times normalized ring radius (ao = wa/S). Also, the

order of the Bessel functions assumes the values v-l, v, v+l where v

is the azimuthal order of the ring source.



The method of integration previously described for concentrated

point loads is still applicable; however, four branches must be considered

instead of two, since each Bessel function conforms to the partitioning

portrayed in Figure 4.3. The first branch corresponds to the case in
A A

which both Akro < Ax and ka
o

< AX, such that the product of the two

Bessel functions may be included in the polynomial interpolation of the

F integrands, similar to the "fast" integration described by Eq. (4.35).

The second and third branches correspond to the cases in which the "fast"

integration would be applicable for only one of the Bessel functions,

while the "asymptotic" integration would be necessary for the other

Bessel function. In either of these cases, the products of the slowly
A A

varying Bessel function times the Hankel coefficients, P and Q, of

the other Bessel function are included in the polynomial interpolation

of the F integrands leading to a form similar to that of Eq. (4.34).

The fourth branch corresponds to the case in which both Bessel functions

are oscillating too rapidly to use the "fast" integration. For such a

case, both Bessel functions are replaced by their respective Hankel
A

expansions from Eq. (4.32). Then the products of the respective P and
A

Q coefficients are included in the polynomial interpolation of the F

integrands leaving integrals of {K} with products of cosines and sines

to be evaluated analytically. It should be pointed out that in all four

branches for the ring load integrations, the operational definition

of A~ must be approximately half the value used for the point force

integrations. This is due to the effective wavelength of the oscillations

in the Bessel function product being potentially half that of each indi-

vidual Bessel function.

lOa



4.2.8 Alternative Sampling/Integration Procedures

In certain instances, the method of sampling described above has

the disadvantage of weighting all the integration intervals the same,

irregardless of the relative contribution to the summation representing

the total integral. One alternative is to take advantage of knowing

the physics of the problem so as to require a denser spacing of quadra

ture points only near the surface wave, body wave and leaky mode poles

of the F integrands. Numerically, this may be achieved by sampling

changes in slope in the determinants for each layer such as the real

part of the following quantities (refer to Chapter 3 for notation):
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[
1AU AdJ-' j = 1, 2, .•• , N

det I R. 1 R._ J - J

(4.40)

which is easily shown to be related to the total determinant for P,

SV, Rayleigh wave propagation. In addition, it is advisable to sample

the product of the vertical wavenumbers Vaj

k2N+2
(4.41 )

even though the layer determinants in Eq. (4.40) contain information

about every body wave arrival. The extra k2 appearing in the

numerator insures a sufficient number of quadrature points near the

leaky wave modes; viz., at phase velocities between infinite (k;O)

and the body wave arrivals (k ~ S/amax )'

Another nuance to the method of integration is the possibility of

considering a substitute interpolation scheme. A quadratic scheme is



perhaps the most practical alternative since the piecewise integrations

would still be executed over every other k point. However, experience

has shown that not only is the fit to the F integrands superior with the

quartic scheme (over the center three points of each five point interval),

but the quadrature points are located more strategically by virtue of

sampling the F integrands at five adjacent k points rather than at three.

Therefore, the quartic scheme is the most efficient procedure, since the

savings of implementing a three point scheme in lieu of the five point

scheme is relatively insignificant for most problems.

The final alternative to be discussed is a discrete Fourier-

Bessel representation. Although it is possible to conceive of fewer

k points being used in low k regions, the savings are more than compensated

elsewhere. Also, intuitively, it makes more sense to densely sample at

low k (where most of the variations in the F integrands occur) and allow

the spacing to increase at large k.

4.2.9 Time Domain Synthesis

To conclude the discussion on the method of integration, it should

be briefly stated that the displacement and stress components are calcu

lated in the time domain through Fourier synthesis of the frequency

domain components:
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00

In ( r , z; t) = 2\ fIn (r , z; w) e i wt dw .
_00

(4.42)

A discrete Fast Fourier Transform algorithm is used to numerically

evaluate the integral in Eq. (4.42). Various levels of sophistication



are possible to synthesize the time domain results: from equal spacing

the frequency points when generating the discrete set of In(r, Z; w), to

unequal spacing with the equally spaced set generated through spline

interpolation. The advantage of unequally spacing the frequency points

is to allow the frequency spacing to widen according to the length of

time signal expected from a particular frequency band.

4.2.10 Summary

An efficient integration scheme has been developed that effec

tively deals with the hazards encountered in evaluating integrals of the

type in Eq. (4.21) for concentrated point loads and of the type in

Eq. (4.39) for concentrated ring loads. Since the radial dependence

appears only in the Bessel integrals, it is highly efficient to consider

mUltipleepicentral ranges simultaneously. Demonstrational plots of the

F integrands were presented along with the strategy used to sequentially

sample the same during the integration procedure. Finally, the Fourier

synthesis procedure used to transform the frequency domain displacement

and stress components into the time domain was briefly discussed.
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CHAPTER 5

VALIDATION, COMPARISONS AND RESULTS

5.1 VALIDATION

The complexity of the numerical procedure used to evaluate the

Green's functions suggests the need for an exhaustive set of validation

calculations prior to employing the method in actual applications. A

suite of five external checks is presented for such a purpose in the

form of comparisons with known solutions. The first three tests validate

the reliability of the numerical procedure when considering a uniform

half-space, whereas the final two tests include a finite number of layers.

The first test confirms the accuracy of the displacements at the

surface of a half-space caused by a point force also at the surface,

while the second test allows the point force to be buried in the half

space. The third validation exercise proceeds to certify the stresses

at depth for a surface point force as well as the free surface displace

ments for a double couple source at depth. Studies 4 and 5 extend the

third validation to the case of a layered half-space.

In all five validation studies of this section, the complete

solution obtained by the present method is compared to the complete

solution obtained by totally unrelated methods. However, an exact

match can only be expected in the first three tests, since the alternate

methods employed in the final two tests do not provide exact solutions.

The results presented in the comparison section 5.2 serve to further
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validate the present method despite the fact that various assumptions

and approximations are inherent in the other methods. In section 5.3,

a small sample of results is presented to illustrate the flexibility and

applicability of the method.

Perhaps the most demanding validation test conceivable is

evidenced in Part II of the present work. To obtain accurate solutions

of the integral equations in Part II, it is prerequisite that all the

displacement and stress components be of near-perfect precision at a

mesh of receiver points for ring loads at the mesh of source points.

5.1.1 Comparisbn_wi~. Cbntourl~t~tati6nAppr6ach(Wong,1975)

In this first of five external validation exercises, the complex

displacement components at the surface of a uniform half-space (dimension

less receiver depth Zo = 0) are evaluated as a function of dimensionless

105

receiver distance r = wrlS.a The source is a harmonic point force

acting at the free surface so that only four components are independent

(U~l(ro'o) = U~o(ro'o) using the notation of Eq. (3.3)). The half-space

is defined by a reference shear wave velocity of S and a Poisson1s

ratio of 0.33.

The four complex displacement components for a perfectly elastic

half-space (0% damping) using contour integration (Wong, 1975) are

tabulated in Table 5.1 for values of ro from 0 to 5.5. The displace

ments in the first two columns are for a vertical point force while

those in the last two columns are for a horizontal point force, applied

at the surface of the half-space in both cases.



ro =: wr/s
ro 1 ro 1 ro 1 ro 1
4 U o(r ,0) 4'1T Uzo(ro'O) 4'1T Ur1 (ro'0) 4'Tf Ue1 (ro'0)

'IT r 0

IHong IS (1975) Results with 0%. Damping I
0.0 -.027 , .000 .106, .000 .159, .000 -.106, .000
0.5 -.032, .007 .087, -.062 .146, -.058 -.089, .058
1.0 -.033, .025 .037, -.102 .112, -.105 -.045, .099
1.5 -.020, .047 -.029, -.108 .063, -.133 .015, .112
2.0 .006, .060 -.087, - .077 .011 , -.137 .075, .093
2.5 .041, .058 -.120, -.017 - .034, - .120 . 118, .045
3.0 .074, .035 -.114, .053 -.064, -.090 . 132, -.020
3.5 .092, -.005 -.070, .110 -.076, -.054 .111, -.084
4.0 .087, -.054 -.001, .134 ·-.075, -.024 .059, -.132
4.5 .056, -.096 .072, .118 -.065, -.004 -.014, -.144
5.0 .005, -.120 .127, .064 -.054, .004 -.088, -.129
5.5 -.054, - .116 .144, - .013 -.048, .003 - .145, -.077

Present Results with 0.01% Damping (Q=: Q =: 5000)
ct S

0.0 -.027 , .000 .106, .000 .159, .000 -. 106, .000
0.5 -.032, .007 .088, -.061 .146, -.058 -.090, .058
1.0 -.033, .025 .037, -.102 .112, - .105 -.046, .099
1.5 -.021, .046 -.028, - .108 .062, - .133 .013, .112
2.0 .006, .060 -.087, -.077 .009, - .137 .073, .093
2.5 .041 , .057 -.120, -.017 -.037, - .120 .115, .045
3.0 .073, .035 -.114, .053 -.068, -.090 .128, -.020
3.5 .092, -.006 -.071 , .109 - .081 , -.055 .107, -.084
4.0 .087, -.054 -.002, .134 -.078, -.024 .056, -.131
4.5 .057, -.096 .072 , .117 -.066, -.004 -.015, -.149
5.0 .006, - .120 .127, .063 -.052, .004 -.087, - .129
5.5 -.054, - .115 .145, -.013 -.044, .003 -. 142, -.077

Table 5.1

Comparison of the present solution with the contour integration
solution for the response of a uniform half-space to a concentrated
point force acting at the free surface.
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The corresponding results for a nearly elastic half-space

(0.01 %damping or material attenuation coefficients Q
a

= Qs = 5000)

using the present approach are also compiled in Table 5.1 and match

Wong's results to near-perfect precision. This is an extremely con-

vincing argument that the method of integration is highly reliable since

the branch points are only shifted infinitesimally off the real wave-

number axis by the large material attenuation factors.

5. 1.2 Compa ri s~!!.,!'ith .Ca.9.!J i ard. ApproacllJ Peker~~nd .-L i fson ~ 1957)

The comparison with Pekeris and Lifson (1957) extends the vali

dation to the case of a concentrated vertical force appl ied at a depth

Zs in the uniform half-space. The time-dependence of the applied force

is represented by the Heaviside unit function and Poisson1s ratio is

taken to be 0.25. Pekeris obtains the exact motion of the surface of

the elastic half-space in the time domain through use of Cagniard1s

method (1937). Therefore; the validation test is performed in the time

domain with the present results generated through Fourier synthesis as

described in section 4.2.9.

Figure 5.1 displays Pekeris and Lifson1s results for the vertical

component of displacement at various epicentral ranges, r, as a function

of dimensionless time T = st/"r2 + z; The arrivals marked P, S,

and R correspond to the compressional, shear, and Rayleigh waves,

respectively; the arrivals marked SP correspond to the diffracted

wave which starts as S and upon reaching the surface is converted into

P (for epicentral distances beyond the critical distance of zsll2).
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Figure 5.1. Pekeris-Cagniard solution for the vertical displacement
components at the free surface due to a concentrated
vertical force buried in a uniform half-space (Pekeris.
1957). Results are displayed as a function of dimen
sionless time and should be compared to present solution
in Figure 5.2.



109

2.01.51.0

f31
Reduced Time T= -

Jr2+z~

~
Reduced Time T- 

-Jr2+z~

o

~;I ~ ".25Z,

-.6"""" IH,t0~; I'"

=;1 ~= .
5Z

S '~I "~ 5Z-.2 r = S

-.6, , , , I ' , , , I' -,-,-I'--I-II 'I -.4 .
'" I' 'I' '1""1' "I

~:I·~'I~-+++-l-+--.-...+-.-.;:':::::;=12:+=,:Z;:+:f+',=..-l''I -~I "I I" 1 j "10Z, " "

~;1-1---...., ++1~....-../-+-++.-...+---+,_=.;-+Z~+I............, ,+-I....,-+1'1 -:1,"'I' 1,:1 P 20:, "" ,

=;1. ' , , .~ ':~l_,''''~~~: 'I _~ -"-"-1-'-'-'--I-"A "40~~"""",
~~I, "" ~'5Z:" 1 ,,' ~:!...,,"""" 1 dP'O,~Z'" 1 ,,'

.5 1.0 1.5 2.0 0 .5

Figure 5.2. Present solution for the vertical displacement components
at the free surface due to a concentrated vertical force
buried in a uniform half-space. Results are displayed as
a function of dimensionless time and should be compared
to the Pekeris-Cagniard solution in Figure 5.1.



The high-frequency prominence of the Rayleigh wave for large values

of r/z s is deceptively exaggerated by the reduced time scale.

5.1.3 Comparison with Cagniard-deH~~~~ppr6ath (J6hn~on, 1974)

In this subsection, the free surface displacements due to a

buried double couple in a uniform half-space obtained by the present

method are checked against the complete solution obtained by the Cagniard

deHoop method (Johnson, 1974). As described in Appendix IV, the

Knopoff-deHoop (1958) representation theorem is used in conjunction

with the present method to reciprocally generate the surface motion due

to a buried dislocation by suitably combining the stress tensor solution

evaluated at the depth of the source for a point force acting qt the

free surface.
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The source time dependence is represented by an eight second

ramp function and Poisson1s ratio is taken to be 0.25. The attenuation

factors used in the present solution are the same as in the previous

validation study. The depth of the point dislocation is 5 km and the

epicentral distance is 20 km. The surface displacements are evaluated

at an observation azimuth of 22.5 degrees from the strike of the fault,

and are normalized by the shear modulus v times lOla cm2 divided by

the source moment Mo'

Six different fundamental orientations of the buried point

dislocation are considered in Figure~ 5.3 through 5.8, respectively.

A side view of the idealized fault dislocation appears adjacent to the

comparative results in each figure. The vector ~ defines the normal

to the fault and the vector a is the product of the slip vector times

the fault area. If t points from the negative to the positive side

of the fault, then a represents the displacement of the positive side

relative to the negative side.

The upper, center, and lower curves in each figure correspond,

respectively, to the horizontal displacement component along the direc

tion of the nodal plane, the vertical displacement component, and the

horizontal displacement component recorded 90 degrees from the nodal

plane. The three displacement components are plotted to the scale

appearing on the left and are displayed as a function of real time.

The results obtained by the Cagniard-deHoop method are distinguished

from the present results by the dots. Once again, as in the previous

two validation studies, the comparisons are of near-perfect precision for

111



.
_
~

U
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/

L-
-

8
=9

00
\.1

0
@I

o
-+ 1
I
~

st
rik

e-
sl

ip
di

slo
ca

tio
n

L
a

=s
_-

---
.;;

;;;
;;-

....
.-

--
U z

st
rik

e:
;

2
2

Y
=

f3
~i
p

=
90

°
=8

Uy
'--

I
ra

ke
=

0°
=

y

-3
XI

O
0.

5

0.
0

-0
.5

-1
.0

-
1.

5

-2
.0

-2
.5

-3
.0

>< o
::;

;
.....

.
:3 :::

L
~ z w ::;

;
w u « -
J

C
l..

i
f
)

C
l

C
l

W N :J « ::E a: o zo -
0

II
I

I
I
II

I
I

I
II

I
I

I
II

I
I

I
I
I

I
I

I
II

I
I

I
II

I
I

I
II

I
I

I
I

o
1.0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
3.

C
om

pa
ris

on
o

f
th

e
pr

es
en

t
so

lu
ti

on
w

it
h

th
e

C
ag

ni
ar

d
de

H
oo

p
so

lu
ti

on
fo

r
th

e
re

sp
on

se
o

f
a

un
if

or
m

ha
lf

-s
pa

ce
to

a
bu

ri
ed

st
ri

k
e-

sl
ip

d
is

lo
ca

ti
o

n
w

ith
90

°
di

p
(J

oh
ns

on
,

19
74

).

.....
.

-
-
'

N



Ux
-

a
u

•
•
•
•
•

w
~
-
-
-
·
_
=
=
·
..=

==
==

=·
_=

··

Q
a

-3
>

C
XI

O
0

05
J

di
p-

sl
ip

di
slo

ca
tio

n

:i
:

.....
..
~

0.
0

Uz
8~
90
'l
t

'::
1.

.
I
-

-0
.5

:z U
J

-1
.0

:E

-+

U
J

11

u

-1.5
!

<% ..
.J a.
.

-2
.0

st
rik

e
=

22
S

=
f3

(
/
)

0
di

p
=

90
°

=8
-2

.5
0

Uy
U

J
..

ra
ke

=
90

°
=

r
N :J <% :E a
:

0 z
"'

\.,
--

--
--

-
---

--

II
I

I
I
II

I
I

I
II

I
I

I
II

I
II

II
I

I
I
II

I
I

I
II

I
I

I
II

I
I

I
I

o
1.

0
2.

0
3.

0
4.

0
5.

0
6,

0
7.

0
.

8.
0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
4.

C
om

pa
ris

on
of

th
e

pr
es

en
t

so
lu

ti
on

w
it

h
th

e
C

ag
ni

ar
d

de
H

oo
p

so
lu

ti
on

fo
r

th
e

re
sp

on
se

o
f

a
un

if
or

m
ha

lf
-s

pa
ce

to
a

bu
ri

ed
d

ip
-s

li
p

di
sl

oc
at

io
n

w
ith

90
°

di
p

(J
oh

ns
on

,
19

74
).

-
-
'

-
-
'



...
.-

1
..

..
..

..
.....

....

U
x

-
-
_

..
-.

,.
....

--
0

0
-3

><
XI

O
0

02
5

1
Is

tri
ke

-s
lip

di
slo

ca
tio

n
::?

:
-...

.
--

--
--

--
--

:::>
0.

0
I:

::
t.

.
liz

r
-0

.2
5

/I
0

~

~

o
a

z w

-0
5

0
I

::?
:

w u
-0

.7
5

<
:t

-.
J

a.
.

-1
.0

0
st

rik
e:

22
.5

°
:

{3
en a

-1
.3

0
di

p
:

45
°

:8
0

Uy
w

L
ra

ke
:

0°
I'

J

:r
-.

J
<

:t ::?
:

a
:

0 z

II
I

I
I
II

II
I
II

I
I

I
II

II
I
II

I
I

I
II

I
I

I
II

I
I

I
II

I
I

I
I

o
1.

0
2.

0
3.

0
4.

0
5.

0
6.

0
7.

0
8.

0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
5.

C
om

pa
ris

on
o

f
th

e
pr

es
en

t
so

lu
ti

on
w

ith
th

e
C

ag
ni

ar
d

de
H

oo
p

so
lu

ti
on

fo
r

th
e

re
sp

on
se

of
a

un
if

or
m

ha
lf

-s
pa

ce
to

a
bu

ri
ed

st
ri

k
e-

sl
ip

di
sl

oc
at

io
n

w
it

h
45

°
di

p
(J

oh
ns

on
,

19
74

).
.....

.
.....

.
.J

:::
:,



U
x

---
-J

di
p-

sl
ip

di
slo

ca
tio

n

V8
: 4

50
II

~
~

~
a

U
z
-
-
-
-
-
-
-

...
...

...
_

_
~

_
_

..
..

..

st
rik

e:
2

2
.5

°:
{3

di
p

:
45

°
=
a

Uy
•

I
ra

ke
:

90
0

:
y

XI
0

3

0.
50

0.
0

-0
.5

0

-1
.0

0

-1
.5

0

-2
.0

0

-2
.5

0

I


Z U
J
~ U

J
U eX -
J c.
.
~ C

l

C
l

U
J

N ::::
;

eX :E 0
:: o Zo -
0 >< o
~ .....

.. ::> 1::
:1.

.

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I
I
I

I
I

I
II

I
I

I
II

I
I

I
I

I
I

I
I
I

I
I

I
I
I

o
1.

0
2.

0
3.

0
4.

0
5.

0
6.

0
7.

0
8.

0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
6.

C
om

pa
ris

on
of

th
e

pr
es

en
t

so
lu

ti
on

w
it

h
th

e
C

ag
ni

ar
d

de
H

oo
p

so
lu

ti
on

fo
r

th
e

re
sp

on
se

of
a

un
if

or
m

ha
lf

-s
pa

ce
to

a
bu

ri
ed

d
ip

-s
li

p
di

sl
oc

at
io

n
w

ith
45

°
di

p
(J

oh
ns

on
,

19
74

).

-
J

-
J

(J
1



~
-

--
-

"~
~-
--
--
--
--
-

~-
--

--
--

--
-~

--
--

"-
--

--
U

x

2 Q >
C 0

-3
::;

;:
X!O

st
rik

e-
sl

ip
di

slo
ca

tio
n

.....
.

~-
--
--
--
--
--
--
-

:::
>

10,
~

I::
i..

v
f
-

0.
8

Uz

~
_1@

z w ::;
;:

0.
6

,
w

...
.~"

iii
:~

0
_

U
a

ex
0.

4
-
J a.
.

0
2
t

st
rik

e
=

22
.5

°
=

{3
r.n 0

0.
0

di
p

=
0°

=
8

0 w
-0

.2
N

ra
ke

=
0°

=
r

:::
:i

ex ::;
;: cr 0 z

Uy

II
I

I
I
II

I
I

I
I

I
I

I
I
II

I
I

I
II

I
I

I
II

I
I

I
II

I
I

I
II

I
I

I
I

o
1.

0'
2.

0
3.

0
4.

0
5.

0
6.

0
7.0

8.
0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
7.

C
om

pa
ris

on
of

th
e

pr
es

en
t

so
lu

ti
on

w
ith

th
e

C
ag

ni
ar

d
de

H
oo

p
so

lu
ti

on
fo

r
th

e
re

sp
on

se
o

f
a

un
if

or
m

ha
lf

-s
pa

ce
to

a
bu

ri
ed

st
ri

k
e-

sl
ip

di
sl

oc
at

io
n

w
ith

00
di

p
(J

oh
ns

on
,

19
74

).

-
'

-
'



st
rik

e:
22

.5
°

:
f3

dip
:

0°
:8

ra
ke

:
90

°
:r

di
p-

sl
ip

di
slo

ca
tio

n
~ 11

_
t
~
~
-

a

/;
.:

--
--

--
-

v
--

--
-

0 -
9 >< 0

X
I0

3
:i!

: -. :>
2;

5
1:

:1
..

~
2.

0
;z w :i!

:
1.5

w u ex
1.

0
-
J a. en

0.
5

0
0.

0
0 w

-0
.5

N ::J ex :i!
:

0
:

0 Z

II
I

I
I
I

I
I

I
I
II

I
I

I
I

I
I

I
I
II

I
I

I
II

I
I

I
II

I
I

I
II

I
I

I
I

o
1.0

2.
0

3.
0

4.
0

5.
0

6.
0

7.0
8.

0

TI
M

E
(s

ec
)

F
ig

ur
e

5.
8.

C
om

pa
ris

on
o

f
th

e
pr

es
en

t
so

lu
ti

on
w

it
h

th
e

C
ag

ni
ar

d
de

H
oo

p
so

lu
ti

on
fo

r
th

e
re

sp
on

se
of

a
un

if
or

m
ha

lf
-s

pa
ce

to
a

bu
ri

ed
d

ip
-s

li
p

di
sl

oc
at

io
n

w
it

h
0°

di
p

(J
oh

ns
on

,
19

74
).

-
'

-
'

-...
..J



all components and all fault slip prescriptions. The slight differences

at long time are probably related to having to doubly integrate the

present results (i.e., to convolve with the ramp source function),

whereas Johnson's results are obtained directly for the ramp time

dependence.

In summary thus far, the compari sons with Wong (1975) and

Pekeris and Lifson (1957) verify the accuracy of the displacements in

a uniform half-space and the comparison with Johnson (1974) verifies

the accuracy of the stresses in a uniform half-space. The following

two subsections serve to substantiate the accuracy of the present solu

tion for horizontally layered media.

5.1.4 ~omparls9.0 wit~. Fin.i~-s1erilent_~proach..JQ?:y,1977)

The free surface displacements resulting from the action of a

buried double couple source are tested once again, but now for the case

of a horizontally layered Earth model. The model consists of two layers

overlying a semi-infinite half-space as shown in Figure 5.9, where the

individual parameters characterizing the layers are defined. The

attenuation factors apply only to the present solution since the finite

element solution (Day, 1977) contains no material attenuation.

Source depths of 5 km and 1 km are considered and the source

time-dependence is represented by a ramp of one second duration in both

cases. The source is equivalent to the vertical strike-slip dislocation

depicted in Figure 5.3 with the receivers located at epicentral distances

of 5, 15, 25 and 35 km at an azimuth of 22.5 degrees from the strike of

the fault (in a dilatational quadrant). The ground motion ;s normalized
.. 10 2

by the ratio of the shear modulus in the source layer, ~, tlmes 10 cm
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to the source moment, Mo' The finite element results have been low-pass

filtered down to 0.5 Hz to remove spurious numerical ringing; the

present results are computed up to 5 Hz and passed through the same

filter in order to maintain consistency in the comparisons.

The comparison to Day's (1977) finite element results for the

deeper source is shown in Figure 5.10 at all four epicentral distances

for the radial component of ground motion. The agreement is remarkable,

especially in light of the vast dtfferences between the two solution

techniques. The slight deviations in phase have periods much lower than

the expected resolution of two seconds (0.5 Hz). The comparison for the

corresponding azimuthal component of motion is shown in Figure 5.11.

The results for the sha 11 ow source are displ ayed in Figures 5.12

and 5.13 for the radial and azimuthal components of motion, respectively.

Once again, the match lends tremendous confidence in both methods of

solution. It is interesting to notice that the peak amplitudes for the

shallow source are approximately 50% larger than those for the deeper

source.

What appears to be a late time phase lag in the finite element

results is attributable to the numerical dispersion of the finite element

grid. The origin of this trend in the finite element solution is further

verified in the subsequent validation test with the discrete wavenumber!

finite element method (Olson, 1978).
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In this final validation study, the comparison of the previous

subsection is repeated with the discrete wavenumber/finite element

method (Olson, 1978). Only the 5 km source depth is considered and the

compari sons for all three components of ground moti on at epicentra1

distances of 5,15,25, and 35 km appear in Figures 5.14,5.15,5.16,

and 5.17, respectively. Day l s (1977) finite element results for the

radial and azimuthal components of motion are also included in the

figures. Once again, the agreement is superb and the phase coherence

is nearly perfect.

01son 1 s discrete wavenumber/finite element method more closely

resembles the present method than Day's finite element method in that

the radial dependence is handled analytically through separation of

variables. The major differences are; 1) the dependence with depth

is calculated using a one-dimensional finite element treatment instead

of the closed form facterization of the present method; 2) the response

is transformed out of the wavenumber domain through Bessel series rather

than direct integration; and 3) the procedure is performed explicitly

in the time domain with no provision for material attenuation. When

the wavelengths of interest are shorter than the changes in the geology

as a function of depth, then 01son1s method becomes less efficient than

the direct integration method.
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5.2 COMPARISONS

The validation studies of the previous section (i.e., comparisons

with known complete solutions) are complemented in this section by two

comparative studies with known partial solutions (i.e., comparisons with

solutions which include assumptions and/or approximations). Comparisons

to results obtained using a generalized ray technique and to results ob

tained using a surface wave approach are undertaken in the two studies.

5.2.1 Comparison to §eneralizedRqyTechnigues

In the generalized ray technique (He1mberger, 1974), the time

dependent wave field for a layered medium is decomposed into contribu

tions attributed to an infinite set of rays travelling from the source

to an individual receiver. Each ray contribution can be evaluated

exactly by the Cagniard-deHoop technique (1939, 1960). However, the

number of rays selected is invariably limited by the computational

difficulties associated with finding the separate Cagniard paths for

every point on the contour and for each kinematic group (rays with same

travel time), for all source-receiver pairs. To reduce the cost for

the comparisons, certain approximations are used in connection with the

Bessel functions causing the generalized ray results to be least reliable

at short distances and long periods. Also, differences can be expected

in the decay of certain waves with distance since the generalized ray

results include no material attenuation.

The soil model employed for the comparison consists of a single

layer overlying a semi-infinite half-space as shown in Figure 5.18, where

l~
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Figure 5.18. Source-receiver geometry and earth model,
consisting of a 32 km thick crust over
lying a half-space for use in comparison
with the generalized ray solution.



the individual parameters characterizing the layers are defined (the

specific attenuation factors apply only to the present solution). It

is hoped that by representing the 32 km thick crust by a single layer,

the generalized ray technique will be able to include a sufficient

number of multiple reflections and interconversions to converge to the

complete solution generated by the present approach.

The source depth is 8 km and the source time-dependence is a

quadratic ramp defined by the time integral of the function appearing at

the top of Figure 5.18. The source is equivalent to a vertical strike-

slip dislocation; receivers are located at epicentral distances of 32,

48, 64, 80, 96, 112 and 128 km at an azimuth of 45 degrees from the

strike (SH node) for the vertical and radial displacements and at an

azimuth of 0 degrees from the strike (P-SV node) for the transverse

displacements.

The generalized ray results (provided by Don Helmberger) are

compared to the present results in Figures 5.19, 5.20 and 5.21 for the

vertical, radial and transverse displacement components, respectively.

The ground displacements are normalized by the ratio of the shear modulus

in the source layer times 1010 cm2 divided by the scalar moment of the

source. The maximum amplitudes obtained by the respective techniques

are self-scaled to fit within the same height on each figure and are

shown above and below each seismogram. The time scales are shifted

by a time correponding to the direct compressional arrival at each

epicentral distance.
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Figure 5.19. Comparison of the present solution with
the generalized ray solution (Helmberger,
1974) for the vertical displacement com
ponent at the free surface due to a vertical
strike-slip dislocation buried at a depth
of 8 km in the earth model depicted in
Figure 5.18.
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RADIAL DISPLACEMENT
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TANGENTIAL DISPLACEMENT

odegrees from strike

o

" 32 km
-4

W.!.' 3.65 XIO
-4

GR.' 260 XIO

J
~ r =48

Jt 'N.!.' 2.47 X10-
4

o~ ----.~..-----G.R.-,-2.13-XI0-,---4-

, '64
-4

'N.!.' 1.85 XIOO+-----J'---;_--.,..-------::ii_4--
G.R.' 1.75 XIO

o+---'- ..J

r= 80
-4

'N.!.' 1.43 XIO

G.R.' 2.01 XIO-4

O+------.J

r' 96
-4

'N.!.' 1.17 XIO
-4

G.R.' 1.05 X10

ol~-------~~ A" i, _~~-'~I-.1:2..:..0...:.c93:...X;.:.;.10--4;----
JL..Jr G.R.' 0.77 X10- 4

o-t--- .J
-4

G.R.' 0.66 XIO

-4
'N.!.' 0.80 XIO

3025

r'128

-- wavenumber integration
------ generalized ,ay

15

TIme t-,/6.2

\05o

Figure 5.21. Corresponding comparison to Figure 5.19
for the azimuthal displacement component.



The phase coherence is nearly perfect at all epicentral distances

considered for all three displacement components in Figures 5.19 through

5.21. Combined with the excellent overall agreement in amplitude, these

results lend confidence in the generalized ray technique and further

validate the present method. The deficiencies in amplitude at short

distances in the generalized ray results are due to the approximations

used in connection with the Bessel functions. The discrepancies in

amplitude at the larger distances are probably related to the differences

between using an elastic model versus a nearly elastic model (material

attenuation factor of Qs ~ 300 included in the present solution). Also,

the convergence of the generalized ray expansion is impaired by the

increased number of contributing rays at the larger epicentral distances.

Finally, the discrepancies at long periods in the generalized ray tech

nique are enhanced by the approximat~ons made for the Bessel functions

in the generalized ray calculation (especially in the radial displacements).

Several interesting features in the results merit discussion. In

Figure 5.21, the contributions of the reflections beyond the critical

angle are well illustrated. Beyond the distances at which the SmS and

sSmS waves are critically reflected (69 and 89 km, respectively), the

amplitudes of these critically reflected waves increase markedly. These

waves eventually combine with other multiple reflections to form a dis

persive Love wave. The direct SH wave decreases uniformly with distance

according to a dependence of approximately r- l . In Figures 5.19 and

5.20, the vertical and radial displacement records are more complicated

since at an azimuth of 45 degrees from the strike they are excited by
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P and SV waves emitted directly by the source as well as by the

accompanying interconverted and multiply reflected waves.

In the next subsection, the present solution will be compared

with both the generalized ray solution and a normal mode solution for

epicentral distances between 100 and 1000 km for the same earth structure.

The effect of using a Qs of 10,000 versus a Qs of 300 is also investi

gated at these epicentral distances.

5.2.2 Compari~on .~~Q!ma~~~6d~ Te~~2l~~lHarkrider, 1964, 1970)

The comparisons of the previous subsection are extended to the

case of epicentral distances between 100 and 1000 km. The layered earth

structure is the same as that depicted in Figure 5.18 except that

attenuation factors of Q
S

= 10,000 and Q
a

= 20,000 are used in the

present solution so as to eliminate the predominant effects of damping

for comparative purposes. The source is also the same as shown in

Figure 5.18 except that the duration is 1.5 seconds instead of 0.6 second.

In addition to comparing with the generalized ray solution

(Helmberger, 1974) at these larger distances, the present solution is

matched against a solution constructed by superposition of surface-wave

modes (Harkrider, 1964, 1970). Similar to the present method, the normal

mode technique operates first in the frequency domain so that the number

of layers offers no limitations. However, the increase in number of

contributing modes with frequency restricts the practicability of the

normal mode technique to frequencies lower than about 1 or 2 Hz. Also,

the inadequacies of the normal mode solution for epicentral distances

less than a few source depths (or for any problem in which the ground
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motion is dominated by waves with relatively high horizontal phase

velocities) are difficult to predict in general. For this problem,

however, the normal mode solution is expected to provide a closer

match to the complete wavenumber integration solution that the

generalized ray solution since the surface waves will tend to dominate

the ground motion at periods greater than 1 or 2 seconds.

The transverse displacements (SH-Love waves) are shown in

Figure 5.22 for epicentral distances between 100 and 500 km and in

Figure 5.23 for epicentral distances between 600 and 1000 km. The

ground displacements for all three methods are normalized by the ratio

of the shear modulus in the source layer times lola cm2 divided by the

scalar moment of the source. The maximum amplitudes obtained by the

respective techniques are self-scaled to fit within the same height on

each figure and are shown above each seismogram. The time scales are

reduced by a time corresponding to the epicentral distance divided by

the shear-wave velocity of the mantle, so as to align zero time with

the first possible critically reflected arrival. The generalized ray

and normal mode results are courtesy of Don Helmberger and David

Harkrider, respectively.

As in the match to the generalized ray results at closer epi

central distances (see Figure 5.21), the phase coherence and amplitude

agreement is superb. The somewhat larger time step in the normal mode

calculations and the inadequate number of rays in the generalized ray

calculation accounts for some of the amplitude discrepancies. Also, the

modal superposition only includes the first five surface wave modes.

The results in Figure 5.24 portray the transverse displacements (SH-Love
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Figure 5.24. Present solution in response to same source used in
Figures 5.22 and 5.23 but with delta-function time
dependence.



waves) in response; to the same source but with delta-function time

dependence us ing the present method. The most important feature is the

distinct set of pulses comprising the complete lIel astic ll (Qs :; 10,000)

solution, so that the excellent match with the generalized ray results

is not surprising for this simple problem.

Finally, the effects of using a nearly elastic (Qs = 300) earth

model versus an lI el as tic" (QS co 10,000) earth model in the present wave

number integration approach are investigated in Figure 5.25. Even with

standing the low-pass filtering effect of the source, much more high

frequency energy is able to reach the receivers in the lI el as tic" model.

The maximum peaks for the lI el as tic ll model correspond to the surface

waves which decay with distance according to a dependence of approximately

r- l / 2. The nearly elastic model experiences an additional decay of

r- l / 2 due to the small amount of damping. Otherwise, the wave forms are

quite similar.

This completes the validation/comparison studies with known

solutions. The next section presents new results using the present

wavenumber integration method for applications in theoretical seismology.
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5.3 RESULTS

In this section, results are presented that further demonstrate

the flexibility of the present method for seismological applications.

Five typical applications are considered: 1) teleseismic ground motion

from a simple source; 2) earthquake modeling; 3) ocean bottom seismology;

4) sensitivity to layer thickness; 5) sensitivity to material attenua

tion. Additional engineering applications are presented in Part II of

this dissertation.

5.3.1 Teleseismic Grqu~~Motion

Teleseismic ground motion due to a point dislocation is calculated

with the present method. This is in contrast to the relatively close-in

receivers studied elsewhere in this chapter. The idealized earth model

must, however, be kept in mind when interpreting the results. For

instance, the curvature of the layers is neglected so that certain re

flections off the curved interfaces are neglected (although an earth

flattening approximation could have been incorporated into the reflection/

transmission coefficients). Also, the shallow depth of the layering rela

tive to the teleseismic distances considered prevents the synthesized

waves from penetrating as deeply as teleseismic waves in the real Earth.

The earth structure is approximated by a stack of 11 parallel

layers overlying a semi-infinite half-space. The wave velocities and

attenuation factors for each layer are displayed graphically as a function

of depth in Figure 5.26. Of interest is the low velocity, low attenuation

crustal lid for this particular geologic site. The layers extend to a
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depth of 900 km, whereas the epicentral distances considered range up

to 25 degrees of the Earth's arclength (2555 km).

The source corresponds to a vertical strike-slip point dislocation

at the free surface with a time dependence represented by the Heaviside

unit function. Receivers are located at epicentral distances of 444.48,

888.96, 1444.56,2000.16 and 2555.76 km along an azimuth of 22.5 degrees

from the strike (to eliminate bias due to radiation pattern). The

time response is calculated down to periods of 4 seconds (frequency

content of a - 0.25 Hz).

The three components of the calculated teleseismic ground

motion are displayed in Figures 5.27 through 5.31 for the five epicentral

distances, respectively. The radial, vertical and azimuthal displace-

ment components are shown vertically in each figure and are plotted

as a function of time from a to 1000 seconds. The displacements are

normalized by the ratio of the shear modulus of the first layer times

1010 cm2 divided by the source moment and are scaled at each epicentral

distance by the maximum peak found in the three components. This scaling

factor appears at the top of each figure.

In Figure 5.27, the near-field P-SV contribution to the azimuthal

displacement, which, referring to Eq. 4.2, has the form
OQfa k Uln Jl(kr)/(kr)dk, is still noticeable at 444 km, whereas it is

completely attenuated at the larger epicentral distances. The calculated

teleseismic ground displacements are dominated by normally dispersed

surface waves followed by an Airy phase with an exponential tail in all

five figures. The scaling factors therefore reflect the maximum surface
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wave amplitudes, leading to the conclusion that the amplitudes decrease

with distance according to a dependence between R- l / 2 and R- l , where

R is the epicentral distance. The factor of R- l / 2 is attributable to

the geometric radiation of energy, while the additional amplitude decay

can be accounted for in terms of material attenuation. The static dis-

placements resulting from the step-function source-time history decay with

distance between R-2 and R- 3 at these teleseismic distances. It is

possible to identify the small static displacements only at the closest

epicentral distance.

Again, these results demonstrate the ability of the present method

to generate theoretical ground displacements at teleseismic distances al-

though the idealized earth model may be limited at representing the

realistic Earth.

5.3.2 Earthquake Modeling

The present method has been used by Hartzell (1978) to substan

tiate a hypothesized source depth for the October, 6, 1974 Acapulco earth

quake. The recorded displacements (i.e., the doubly integrated accelero-

grams) appear to consist primarily of normally dispersed surface waves,

suggesting that the source was shallow. However, the recorded depth

(based solely on P-wave arri~al times) was 51 km with an epicentral dis

tance of 25 km.

The predominant energy in the displacement records includes fre

quencies between 1 Hz and 10 Hz. The phase velocities vary smoothly

from 3.1 km/sec at 10 Hz to 3.5 km/sec at 1 Hz. Considering the rela

tively simple surface geology of the Acapulco area, the earth structure

is approximated by a single layer overlying a semi-infinite half-space.

three components of recorded ground motion for the Acapulco earthquake
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are enclosed in the box at the right center of the figure. The time

scales are identical for the synthetic and recorded ground motion.

The synthetics resulting from point dislocations of 2.5 km and

deeper are quite dissimilar to the data in comparison to the match ob

tained for the shallower source depths. The observed surface wave ex

citation is best reproduced by a point dislocation of approximately 1.0

km depth, whereas the synthetic at the recorded depth of 50 km is com

pletely dominated by body waves.

Other workers have used the present method for earthquake

modeling involving finite sources (spatial integrals over the fault

plane of a discrete mesh of propagating point dislocations).

5.3.3 Ocean Bottom Seismology

Apsel and Orcutt (1977) modified the present method to accomodate

a fluid layer overlying a solid layered half-space. The modifications

entailed replacing the free-surface reflection coefficients by their

fluid counterparts and replacing the downgoing and upgoing reflection/

transmission coefficients for the first layer interface by their fluid

solid and solid-fluid counterparts, respectively. This fully couples

an oceanic overburden into the sea floor with all types of body and

surface/interface waves represented in the complete solution.

Synthetic seismograms are generated for earthquakes on the

Rivera Fracture Zone and Gorda Rise. The normal oceanic crustal model

consists of 7 layers with the individual layer properties given in

Figure 5.33. In order to realistically model the amplitude ratio of

body and surface waves it was necessary to use velocity models with
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Normal Oceanic Crust
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Figure 5.33. Material properties as a function of depth
for 7-layer model of Normal Oceanic Crust.



crustal gradients similar to those found in recent work in oceanic

explosion seismology. The ocean layer extends to a depth of 3.399 km

but unfortunately has an unrealistically large amount of material

damping due to the choice of Q in the liquid layer.
a.

Typical results are shown in Figures 5.34 and 5.35 for a re-

ceiver buried at the fluid/solid interface. The source is a concen-

trated point force buried in the oceanic basement, 1.0 km beneath the

sea floor. The vertical displacement at the sea floor is displayed in

Figure 5.34 as a function of time from a to 50 seconds for epicentral

ranges from 2 km to 40 km at an "increment of 2 km. The synthetics in

clude energy from 0 to 8 Hz. The two columns of figures correspond to

vertical and horizontal point forces, respectively. The displacements

are normalized by the shear modulus of the first solid layer times the

epicentral distance and the plots are scaled relative to the seismograms

appearing at the top of each column.

The first thing to notice is that much, if not all, the S-wave

tlcoda" can be realistically modeled as a superposition of higher mode

interface waves without resorting to scattering mechanisms. The dis-

persion of the surface/interface waves becomes more prevalent as the

epicentral distance is increased. It is interesting to observe the

periodic arrivals corresponding to reflections off the surface of the

ocean. The corresponding results for the normal component of stress

at the sea floor are shown in Figure 5.35. Again, it is interesting to

follow the various arrivals as a function of epicentral distance.
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NORMAL OCEANIC CRUST
Receiver Depths at 3.399 km
Source Depths al 4.399 km

VERTICAL DISPLACEMENT
HORIZONTAL POINT FORCE

Figure 5.34. Calculated displacements at the sea
floor for a concentrated point force·
buried at 1 km beneath the sea floor
for normal oceanic crustal model de
lineated in Figure 5.33.
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NORMAL OCEANIC CRUST
Receiver Depths at 3.399 km
Source Depths at 4.399 km

NORMIIL STRESS NORMAL STRESS
VERTICAL POINT FORCE HORIZONTAL POINT FORCE

159

··~t~~--
.._~--

.._~.~-

··-4~·~

"-4i'~--

"--+1f,~--

"--+f'~'--

"-~r'I'~---

---4'~_._-

---~-v-~-

---~-

--~

--~~--

.._~

--~

--~

km -------

.._~~

"-iH~
.._~~-~-

'''--f~~~~.-h; ~-

"---ilt~~

··-4.tVI~t1~

----1Jrv'~~--

--~-

--~

--4t{~

"--4W~

--~

--~

--~~------
Figure 5.35. Corresponding results to Figure 5.34

for the normal stress at the sea floor.



The issue of modeling continuously varying earth structures with

a set of parallel horizontal layers is examined. Numerous questions can

be asked in such an undertaking. For instance, can thick layers trans

mit the predominant high frequency energy similar to layers whose thick

ness is on the order of the wavelengths of interest? Also, what are the

effects of allowing the waves to be reflected and refracted by the layer

interfaces compared to the turning and bending associated with a more

continuous profile?

An attempt to answer some of these questions is presented by

studying the sensitivity to layer thickness for the geology near the

1940 Imperial Valley earthquake. Four plausible representations of the

depth dependence for the shear wave velocity are shown in Figure 5.36.

The model appearing to the left is the so-called continuous model with

a linear gradient overlying a true layer followed by another linear

gradient overlying a semi-infinite half-space. The three layered

profiles are all equivalent to the continuous model in the sense that the

layer properties are chosen to preserve the vertical travel time from

the half-space to the free surface as well as the effective material

attenuation in the vertical direction. The true layer and the underlying

half-space are identical in the four models.

The vertical travel time is preserved through each gradient

by independently insuring that both
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IMPERIAL VALLEY SHEAR VELOCITY PROFILE
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Figure 5.36. Imperial Valley shear-wave velocity profile as a
function of depth for four "equivalent" earth
structures.
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are consistent between the models, where the summation extends oyer

the layers composing the gradient. The material attenuation is pre-

served for vertically emerging waves in an approximate sense by inde-

pendently insuring that both

" h.
L...J a. Q

• 1 a.
1 1

and

are consistent between the models. This is the effective material

attenuation as theorized in Section 2.5 and as demonstrated in the

following subsection. The actual parameters defining the four models

are presented in Tables 5.2 through 5.5.

The vertical displacements due to a vertical point force acting

at a depth of 2 km are shown right to left in Figure 5.37 for the three

layered models depicted in Figure 5.36. The three results are normalized

by the shear modulus in the first layer of the 15-layer model times the

epicentral distance. The first 50 seconds of 100 seconds of time signal

are plotted for each epicentral distance (5-50 km at an increment of

5 km), and frequen~ies up to 10 Hz are included in the calculations.

It is important to realize that the lower frequency surface

waves are virtually unaltered going from 4 to 6 to 15 layers, since the

long period waves are influenced by an average value of the soil proper

ties. Also, there exists no prevalent trend in the body waves as a

function of layer thickness. However, it is difficult to interpret the

significance of these results in terms of transmission of high frequency

energy. First of all, the source is located just below the upper

gradient zone and the reflections off the large impedance mismatch could



B (). p Thickness
Laye'r km!sec km!sec gm!cm3 Qs Q(). km

1 .16 .47 1.56 15 95 .2

2 .28 .81 1.68 30 180 .2

3 .40 1.15 1.80 45 270 .2

4 .52 1.49 1.92 60 350 .2

5 .64 1.83 2.04 75 440 .2
-------- --------~----_ .... _-,- ---_ .... ---,_.- -_._ ..... _,---,- -_ ...,,------ ------------

6 1.40 2.70 2.20 200 560 1.0
-------- ------------------- .... _-------- ---- ........... - ..... -,..~------- ------------

7 2.03 3.86 2.420 290 770 .5

8 2.16 4.00 2.445 315 795 .5

9 2.29 4.14 2.470 340 820 .5

10 2.42 4.28 2.495 365 845 .5

11 2.55 4.42 2.520 390 870 .5

12 2.68 4.56 2.545 415 895 .5

13 2.81 4.70 2.570 440 920 .5

14 2.94 4.84 2.595 465 945 .5
-------- -------- --------- ---------- -------- ----,----- ------------

15 3.90 6.40 2.800 640 1280 00

Table 5.2

Material properties for the l5-layer model
of the Imperial Valley geologic site.
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s Ct p 3 Thickness
Layer km/sec km/sec gm/cm Qs Q

Ct
km

1 .217 .633 1.65 19.75 123.46 .5

2 .583 1.667 1.95 70.25 411 .54 .5
-------- - ... ----------,------- -_._-- ........ _- _.".. _------- --------- ------------

3 1.400 2.700 2.20 200.00 560.00 1.0
-------- -~----7------------ -------~--, ----_.----- --------, ------------

4 2.185 4.029 2.45 319.24 799.97 2.0

5 2.785 4.671 2.55 435.76 915.03 2.0
-------- --------- -------------------- -------------------- ------------

6 3.900 6.400 2.80 640.00 1280.00 00

Table 5.3

Material properties for the 6-layer model
of the Imperial Valley geologic site.
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fl ex p 3 Thickness
Layer km/sec km/sec gm/cm Qs Q

ex
em

1 .316 .918 1.80 24.24 152.92 1.0
------- --------- --------- --------- --------- --------- -----------

2 1.400 2.700 2.20 200.00 560.00 1.0
------- --_._----- --------- --------- --------- --------- -----------

3 2.449 4.326 2.50 361.78 849.43 4.0
------- --------- --------- --------, ... --------- --------- -----------

4 3.900 6.400 2.80 640.00 1280.00 00

Table 5.4

Material properties for the 4-layer model
of the Imperial Valley geologic site.
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Zone
or (3 a

gm/cm3 Thickness
Layer km/sec km/sec Q(3 Q km

a

1 .1-.7 .3-2.0 1. 5··2.1 8-80 52-480 1.0

2 1.4 2.7 2.2 200 560 1.0

3 2.0-3.0 3.8-4.9 2.4-2.6 280-480 760-960 4.0

4 3.9 6.4 2.8 640 1280 00

Table 5.5

Material properties for the continuous model
of the Imperial Valley geologic site.
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IM'ERIAL VALLEY SENSITIVITY
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Figure 5.37. Sensitivity to layer thickness of the vertical dis
placement at the free surface due to a vertical point
force at 2 km depth for the three layered models re
presenting the geology at Imperial Valley as defined
in Tables 5.3, 5.4, 5.5 and as shown graphically in
Figure 5.36.



account for the high frequency content of the body and higher mode sur

face waves in the 4-layer model. Also, the transmission and reflections

from the underlying material could obscure the comparisons at high fre

quency. Furthermore, to reduce the computing effort for the three cal

culations, the lowest phase velocities were not included at high frequency

(where they are not expected to contribute information). It is possible

to conclude, however, that the extra reflections and refractions in the

15-layer model have only a second order effect since the body wave re

gion is no more complicated than in the 4- and 6-layer models.

It is interesting to notice how the surface waves dominate the

signal for epicentral ranges larger than 30 km with the source buried at

a depth of 2 km. The next three figures show the corresponding results

for source depths of 5, 8, and 11 km, respectively. For these deeper

source depths, the long period surface waves remain subordinate in ampli

tude to the body waves and higher mode surface waves, even at an epicen

tral distance of 50 km. Again, the seismograms look quite similar as a

function of layer thickness, but the significance of such a result is

beyond the scope of this work.

The analogous results for the tangential displacement due to

horizontal point forces at depths of 2, 5, 8 and 11 km are shown in

Figures 5.41 through 5.44. The same conclusions may be drawn here as

in the previous four figures.

A direct comparison between a continuous model and a finely

layered model for Imperial Valley is currently underway using the discrete

wavenumber/finite element method (Olson, 1978 -- see Section 5.1.5) and

the present method. Preliminary results indicate an excellent match for

all frequencies considered.
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Figure 5.38. Corresponding sensitivity results to Figure 5.37
for a source depth of 5 km.
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Figure 5.39. Corresponding sensitivity results to Figure 5.37
for a Source depth of 8 km.
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Figure 5.41. Corresponding sensitivity results to Figure 5.37
for the tangential displacement at the free sur
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Figure 5.42. Corresponding sensitivity results to Figure 5.41
for a source depth of 5 km.
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The sensitivity of the Green1s functions to material attenuation

is investigated as a function of frequency and source-receiver geometry.

The sensitivity is expected to show certain trends which can be par

tially explained in terms of simple geometric ray theory. The results

presented in this subsection are courtesy of recent work done with

Gerald Frazier and Jeff Fried of Del Mar Technical Associates.

The measure of sensitivity to be used is given in terms of the

function G(Qj)' which represents the spectral amplitude of one Green's

function component for a particular parameter set Qj of material

attenuation factors, QQ and Q (j::; 1, 2, ... ~ number of layers).
IJj· <Xj

The sensitivity measure, S, of G(Qj) with respect to Qj is defined

as

176

(5.1)

in which

G(Q·+nQ.)
J J

(5.2)

n=O.l. (5.3)

In what follows, the function G(Qj) corresponds to the spectral

amplitude of the azimuthal component of the displacement field at the

free surface resulting from a buried vertical strike-slip point disloca

tion with delta function time dependence. The receivers are located at



13 a
gm/cm3 Thickness

Layer km/sec km/sec Qs Qa km

1 0.62 1.88 2.16 17 114 0.021

2 0.64 1.95 2.16 17 120 0.044

3 0.66 2.03 2.16 18 126 0.032

4 0.79 2.13 2.10 22 122 0.113

5 0.93 2.28 2.10 27 123 0.11

6 1. 16 2.48 2.10 36 124 0.33

7 1.39 2.75 2.24 45 133 0.27

8 1.47 2.85 2.24 49 137 0.27

9 1.66 3.10 2.47 57 148 0.10

10 1. 71 3.20 2.47 59 154 0.10

11 2.94 4.80 2.60 115 231 2.12

12 3.49 5.70 2.76 143 286 6.97

13 3.73 6.10 2.76 156 312 00

Table 5.6

Material properties for the earth structure of
reference used in sensitivity studies on material
attenuation.
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GREEW S FUNCTION SENS ITI VITY

Source Epicentra1 Distance (km)
Depth
(km) 1 10 30 70

f :::: 1 Hz
I

.484 .1'6 1.1
I

2.1 1.4I

2.4 . 15 .36
I

1.3 1.9I

6.9 .20 .21
I

.44 .68I

15.0 .25 .26
I
I .33 .45

I I

1--------
_______ •__ ~, _____... _____ ..J________

\ f :::: 2 Hz

.484 .28
I

2.8 I 1.2 1.4
I

2.4 .27 .27 I 1.2 2.7
I

6.9 .32 .46 I .82 1.5
I

15.0 .41 .51 I .70 .98
I I

1-------- -------~---------------~-------I
I

f :::: 5 Hz I
I
I

I I

.484 .71 .92 I 3.1 I 3.4I I

2.4 .62 .95 I 2.2 I 3.5I I

6.9 .67 1.0 I 1.6 I 3.2I I

15.0 .89 1.1 I 1.6 I 2.6I I

1--------
_______ L________ L______ L_______

f :::: 10 Hz
I

.484 1.4 2.6 I 6.5 11.0I

2.4 1.3 2.0 I 4.4 5.0I

6.9 1.5 2.0 I 3.5 3.1I

15.0 2. 1 2.2 I 3.3 2.4I I

------- _______ L________ l ______ ~-------

f :::: 20 Hz
I

.484 2.7 5.3 I -.90 3.6I

2.4 2.6 4.4 I 2.7 1.9I

6.9 3.0 4.1 I 6.1 6.5I

15.0 3. 1 4.5 I 6.9 4.8:

Table 5.7

Sensivity values of azimuthal displacement for
changes in material attenuation factor QS in
all layers of earth structure defined in Table 5.6.
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n is approximately given by

Sd' t '\, 1 sinh[n ".~RL_J
lrec n . ~ t:Sj -~

(5.4 )

180

in which the summation over j extends over the layers traced by the

direct SH-wave. The variable Rj in Eq. (5.4) represents the distance

traveled by the direct shear wave in the jth layer according to Snell's

". wRjlaw. For small values of n~ 2S Q ,the sensitivity of the direct
j j Sj

rays in Eq. (5.4) can be reduced to

L
wR.

S '\, J
direct 2S. Qa

j J"j

(5.5)

Referring to the sensitivity values in Table 5.7, the dependence of the

sensitivity on frequency does in fact tend to be proportional to fre

quency for epicentral distances less than about 10 km, as predicted by

Eq. (5.5) for the direct rays. Since the direct paths are not the most

efficient paths for the more distant receivers, the more complex fre

quency dependence is not surprising for the epicentral distances greater

than 10 km.



CHAPTER 6

SUMMARY AND CONCLUSIONS

An accurate and effective method for studying wave propagation

in a layered viscoelastic half-space has been presented. The three

dimensional wave propagation problem is formulated and solved in the

frequency domain with the azimuthal dependence represented by a Fourier

series expansion. The complete response at a particular frequency for

any source-receiver geometry is given in terms of semi-infinite integrals

over wavenumber so as to automatically include all types of waves.

The integrands of these semi-infinite integrals consist of the

product of a kernel that depends upon wavenumber, frequency, source

receiver geometry and earth structure times a Bessel function that de

pends upon wavenumber times epicentral distance. Based on the generalized

reflection and transmission coefficient matrices, the kernels are

evaluated in terms of highly efficient factorizations for the upgoing

and downgoing wave amplitudes in each layer. The appearance of common

factors is taken advantage of when computing the displacement and stress

components for mUltiple source-receiver depth pairs.

The semi-infinite integrals are evaluated by direct integration

along the real wavenumber axis. Basically, the kernels are sequentially

sampled fine enough to allow piecewise polynomials to interpolate the

amplitudes of the kernels between the integration points. Thereby, the

numerical integration ove~ each wavenumber interval is performed analy

tically, thus avoiding the oscillation hazard of the Bessel functions.
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Also, since the radial dependence appears only in the Bessel functions,

it is efficient to consider multiple epicentral distances simultaneously.

Introduction of realistic attenuation for shear and compressional

waves shifts the singularities of the kernels off the real wavenumber

axis. This facilitates the direct numerical integration along the real

wavenumber axis without having to resort to principal values or contour

integration. Since the response is obtained as a function of frequency,

it is possible to allow any or all the earth parameters to vary with

frequency. In particular, frequency dependent material attenuation can

be implemented.

Source functions characterized by concentrated point forces, ring

loads and point dislocations qre considered in the formulation as well as

in the numerical results. A set of five validation studies is presented

to verify the accuracy and stability of the numerical integration scheme.

The results of all the validation comparisons with other known complete

solutions serve to lend considerable confidence in the method for uniform

as well as layered semi-infinite media (the internal validations in

Part II serve to further substantiate the reliability of the method).

The particular studies found in the validation section include

comparisons to the following methods: exact contour integration approach

for a uniform half-space (Wong, 1975); exact Cagniard approach for a

uniform half-space (Pekeris and Lifson, 1957); exact Cagniard-deHoop

approach for a uniform half-space (Johnson, 1974); complete finite element

approach for a layered half-space (Day, 1977); complete discrete wave

number/finite element approach for a layered half-space (Olson, 1978).
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Studies appearing in the comparison section complement the vali

dation exercises in that matches are obtained where the assumptions and/or

approximations inherent in the partial solutions do not limit the results.

The particular studies include comparisons to the generalized ray tech

nique (Helmberger, 1968) and comparisons to the surface wave approach

(Harkrider, 1964, 1970).

Studies found in the results section further demonstrate the

utilizable flexibility of the method for seismological applications. In

the first study, teleseismic ground motion due to a point dislocation is

calculated at epicentral distances between 4 and 25 degrees of the

earth's arclength. Next, the method is used to substantiate a hypo

thesized source depth for the October 6, 1974 Acapulco earthquake. In

the third study, wave propagation in an oceanic crustal configuration is

analyzed. The oceanic overburden is fully coupled into the sea floor by

replacing the free-surface reflection coefficients and the first inter

face reflection and transmission coefficients by their fluid counterparts.

The sensitivity to layer thickness is examined in the fourth study.

Results for three lI equ ivalent ll layered profiles (coarse, intermediate and

fine) are compared as a function of time and source-receiver geometry.

The sensitivity to material attenuation as a function of frequency and

source-receiver geometry is examined in the final study.

It is expected that the method and associated computer program

will prove increasingly useful in various areas of theoretical seismology

and earthquake engineering. Several earthquake engineering applications

are presented in Part II of this dissertation.
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where

r~po = -4kvl (2k
2

- cil)/~R

r~so = [(2k2 - c;1)2 + 4k2V1Vi]/~R (Al .3)

(Al .4)
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is the Rayleigh determinant for a half-space with the properties of the

surface 1ayer.

The reflection and transmission coefficients for waves impinging

on the jth interface from below are

r~pj = _{4k20
2
(j,j+l)(k2 - vj vj)(k2 + Vj+lvj+l)

- 4k2D(j,j+l) [dj (k2 - vjvj) - dj+l (k2 + vj+1Vj+l)]

+ [(dj +1 - dj )2 k2 + (dj +1vj+l + djvj) (dj+1vj+l - djVjU}/,(j,j+l)

r~Sj = 2kVj+l{4k202(j,j+l)(k
2 - VjVj) + 20(j,j+l)[2dj +1k2 - dj (k2 - VjVj)J

+ dj +1(dj+1 - dj )l/'(j,j+l)

r~pj = -2kVj +l{4k202(j,j+l)(k2 - Vjvj) + 20(j,j+l)[2dj+1k2 - dj (k2 - VjVj)]

+ dj+1(dj+1 - dj)}/,(j,j+l)

r~Sj = {4k
2
0
2
(j,j+l)(k

2
- vj vj)(k

2
+ vj+1Vj+l)

- 4k2D(j,j+l)[dj (k2 - vjvj) - dj+l (k 2 + vj+1Vj+l)]

+ [(dj +1 - d)2k2 + (dj+1vj+l - djvj)(dj+1Vj+l + djV)]}/,(j,j+l)

(A1. 5)



APPENDIX II.

MODIFICATIONS FOR LARGE WAVENUMBERS

The matrices T~q (p = 1,2,3; q = 1,2) appearing in the integral

representation described in Section 3 are given by

[

(K.-3)kC. - r.
_j _ -1 J J J
121 - dj

(K .-1) kc. - r ~
J J J

[

-(K .-3) kc. + r
J
.

_j _ -1 J J
122 - d

j
(K .- 1) kc. - r ~

J J J

+2kc j +:1]
-2kc. - v~

J J

[

(4-K .)2kc.
J J

= Tj = d-1
32 j K.-3

(5-K.) kc. - (--.L-+1)r-:
J J K j J

(A2.1)

v. = (v.-k)/(k2 -v.v-:), v-: = (v-:-k)/(k2 -v.v-:)
J J J J J J J J

r. = a· + v., r~ = a. + (K.-l)v~
J J J J J J J
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The terms r j , rj, vj and

values of these matrices as

V-: are order
J

k + 00 are

11k as k + 00. The asymptotic
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1 1 I
1I

I
I
I

-(K.-1) 1 I (K .-1) -1I

-j -j J I JI112 121 ----------------------~----------------------I

(K .-3)kll . - 2kll .
I

-( K.-3) kll . 2kll .I

~j -j J OJ OJ I J oJ OJI121 122 '" I

(K .- 1) kll . - 2kll .
I

(K. -1) kl1 . -kll .I
J OJ OJ I J OJ OJ

-j -j I

----------------------~----------------------131 132 I

2(4-K.)kll . 2kl1 .
I

2(4- K.)kll . 2kll .I
J OJ OJ I J OJ OJI

I

(5-K.)kll • 2klloj
I

(5-Kj )klloj 2kll .I
J OJ I OJI

(A2.3)

where lloj = ll/~ .
The matrix I~(zo) defined by Eq. (3.63) may be written in the

form

(V.-k) . 1-v-:-l.- E.(z _zJ-)
J Kj J 0 0

x

(

V. - k)f ' J .1- k + -,J (l+K.)c.k + r-: E.(Zo-ZJ
o

- )
. K· J J J J

J

_v. [k + ( Kr 1) (v-:_k)l E.(z _zj -1)
J Kj J J Jo 0

(A2.4)



where
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(A2.5)

It is important to notice that

(A2.6)

The matrix E~(Zo} defined by Eq. (3.63) may be obtained from

E~(Zo) by

(A2.7)

In particular, as k + 00

(A2.8)

The source terms -£ and $£ defined by Eqs. (3.70) may alsoSdn un
be written in the form

(s £-1)
{ - s '-1)

Z'-lJ
v z-z

-£
(k/v£)e £ 0 0 -1 + v£kE£(zo - Zo

SdO = ( -1 - 1l+K£}c£d£ k + a£d£ 1 + [(l+K }c k + r~]kE (zs -£ £ £ £ 0

v (z£_zs)
{ - , s

zJ
-(k/v~}e £ 0 0 -1 + v~kE (z - z )

-£ £ £ 0 0£S =
( ) -1 -1uO l+K£ c£d£ k + a£d£ 1 + [(l+K }c k + r-']kE (z£ -£ £ £ £ 0



(A2.9)

The asymptotic values of the source terms are given by

194

as k -+ 00 • (A2.10)

The asymptotic values presented in Eqs. (A2.3), (A2.6), (A2.8) and

(A2.10) correspond to the static integral representation obtained by

Muki [1955J. (In the static case the parameter S/w must be interpreted

as a length of reference.)



APPENDIX III.

STATIC INTEGRAL REPRESENTATION OF THE

DISPLACEMENT AND STRESS fIELDS

As discussed in Section 4.2, closed form expressions for the

static displacement and stress fields are necessary in the method of

integration over wavenumber when the receiver depth Zo coincides with

the source depth z~. To evaluate the Hankel transform-type integrals

depicted in Eq. (4.21) for proximate source-receiver depths, the static

integral representations are introduced as demonstrated in Eq. (4.23).

The staticintegrands (symbolized by F(O) in Eq. (4.23)) for a

semi-infinite viscoelastic half-space having properties of the jth layer

(which contains both the source and the receiver) follow immediately for

all the displacement and stress components. Utilizing the notation and

normalization of Eq. (4.2), the closed form expressions for the n~O

components are given as:

u10 = 2K~j t[+H (ZO-Z~)}l +[2K2H-l)ZoZ~ - K(yH(zo-z~)- ($)}2}

U~o = 2icjtHY~-l) h-z~I- H+l)}l +[2K2(yH'o'~ -KH+l)(vz~)

+ (:~:~)}2J
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(A3.1)

U~l = 2K~j {HYH (ZO-Z~ )}1 -rK2(yHV~ ++~+1 )(zo-z~)

-($)] 021
a~lO +aLa = - \ HyH(vz~)Je1 +[2K2(+)V~ ++1+1)Zo

-K(yH'~}21
-a~lO +aLa = -I[-+H (Zo-Z~) -2S}1 + [2K2(yHv~ +K(+h

-K(yHZ~ -2hj
a~2a = -I HyH IZo-z~1 -Y1}1 +[2K2(Y~-l )zoz~ +KH+1)zo

( 2 ) S 2J ~+ KYj-' Zo + Yj e2)

ab = - {HYHIzo-Z~I- 3(yHJe1 +[-2K2H-l)V~

-+1+1)zo +K(7yHZ~ +ey~:1~~1- 3)}2}

al ll = - \HyH IZo-Z~1 -H-2)}1 +[-2K2H-lhZ~

-+HZo + 3KH+~ + (yHhl
(j~ll = - {-e, - e2}
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in which

Introducing the static integrands from Eqs. (A3.1) into Eqs. (4.2)

and evaluating the integrals analytically leads to the following ex

pressions for the static integrals (symbolized by I (0) in Eq. (4.23) )
n

for a semi-infinite viscoelastic half-space having properties of the jth

layer. The n=O components of the displacement and stress fields are

given by
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3(i+l )0(0+6 )
+ J s

+ 3(Y~~1)0 (30+0 )
J s s

R5
2
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y~O + (7Y~ - 60~)O 1J . J J S

R3
2

with the corresponding n=l components given as



. -1
UJ

= 2c.
zl J

20(

2i R2 -. (8+0 ) ~+~ s
i-1 R2

J

'OJ _ 'OJ
"'rz "'e1 z1

{
-3(i-1) 3o(i-1)00 3(i+1) + 24(i-1) 0

2
+ 120 (0+0 )

= _ J + J S + _.>I..J -JJ:o!----..::.s--=-_~s _...;::s~

R5 R7 R5
1 2 2



J. 2c. ( . .) {-3(i-1) (2y 2._1) 3o(i-1)oo (0+0)2
E + --.L UJ + UJ . = _ J +~ _ J S S
rr 1 d.r r 1 81 R5 R3 R7

J 0 1 1 2

3(i+1)02 + (5y~-1)0 (6+0) l+2)
J J S S + J {

- R5 R3 (
22)
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in which

o = Zo = !:...

r r'o

(A3.4)



APPENDIX IV

MOTION OF THE FREE SURFACE DUE TO A BURIED

DISLOCATION USING RECIPROCITY RELATIONS

The displacement field at the free surface resulting from the

action of a buried dislocation is derived in terms of the stress tensor

solution evaluated at the depth of the dislocation resulting from the

action of a point force at the free surface.

As shown in Figure A4.l, the idealized dislocation occurs at

a point y on surface S in volume V. The receiver is located at

point x on the free surface of volume V. Volume V may correspond

to the viscoelastic layered half-space consistent with previous usage

in Chapter 3 of the present work.

The local fault geometry is defined with respect to the unit

vectors el , e2, e3 in the Cartesian coordinate system xl' x2' x3.

The xl axis is aligned with the strike of the fault (direction of el ,

which is at an azimuth of a degrees from the receiver)~ The slip

vector ley) is constrained to have a rake of y degrees in the plane

defining surface S (see Figure A4.2):

(M.l)

In Eq. (A4.l), 0 is the dip of the fault plane measured counterclockwise

from the x2 axis, such that the projection of the unit normal to

surface S in the xl' x2' x3 system is

(M.2)
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Figure A4.2. Slip vector orientation on surface S.

s
Figure A4.3. Sign convention for slip vector.
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and ~ (y) is the amplitude of the dislocation, i.e., the displacement
00

of the positive side of the fault relative to the negative side with the

unit normal ~(y) positive pointing from the negative side to the posi

tive side (see Figure A4.3).

Assuming that the displacement and stress components have har

monic time dependence, it is convenient to apply the Knopoff-deHoop (1958)

representation theorem to volume V of Figure A4.1. In the absence of

body forces in V and assuming continuity of tractions on $, the repre

sentation theorem in Cartesian coordinates is written in the frequency

domain as

205

Ui Cx;w) ;:: -f ~ji cY,x;w)U j ey; w)dSCy),
$

(i,j ::: 1,2,3)

eM.3)

in which the point x has been specialized to be on the free surface

(defined by the plane x3 ;:: 0).

In Eq. (A4.3), the factors exp(iwt) have been omitted and
\>

Hji(y,X;w) denotes the j-component of the traction vector at y E $

due to a concentrated point load at x in the i-direction. Uj(;;w)

represents the j-component of the displacement vector prescribed at

; E $, which for this problem is equivalent to the slip vector component

~j(Y) as defined in Eq. (M.l). The summation convention over repeated

indices is understood.
\>

The tractions Hji(y,x;w) are expressed in terms of the

stresses by

eM.A)



in which Tko (~,~;w) denotes the kj-component of the stress tensor at
Ji

~ £ S due to a concentrated point load at ~ in the i-direction.

Eq. (A4.4) is introduced into Eq. (A4.3) in conjunction with

Eq. (A4.2). Then substituting the slip vector a(~) into the right

hand-side of Eq. (A4.3) leads, after simplification, to the final

expression for the displacements at ~ due to the buried point dislo

cation at ~ £ S (integration over surface S is omitted by not

considering an extended source):

- (sinycos2s) '23.(;,~;w)
1

+ (1/2 sinysin2o) '22. (y,~;w)
1
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- (1/2 sinysin2a) '33. (y,~;w)
1

(A4.5)

All that remains is to relate the stresses T
k

. (y,~;w) in
J i

the xl' x2' x3 system to the stresses in the system of cylindrical

coordinates r, e, z. Using the notation of Eqs. (3.4), (3.5), the

clockwise rotation of (8 + TI) degrees from the r, e. z system to

the xl' x2' x3 system (as shown at the bottom of Figure A4.1) is

delineated by



oj ) cos2S + O~r.. sin28
ee i 1

20i

j
<1er . sin2s

1

(M. 6)

where the arguments (y,~; w) have been omitted for brevity and the

superscript j indicates the layer in which the stress tensor solution

is monitored.

For completeness and consistency with the notation used in

Chapter 3, the stresses appearing in the right-hand-side of Eq. (A4.6)

are presently listed. The stress components for the i = 1,2 terms

(concentrated point load at x in the el , e2 directions, respectively)

are given as follows:



in which the reference angles a-a for the direction of the concentratedo.,
-+point force at x are determined from Figure A4.l to be
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__ {S ,
a-a

°i . S + ~ ,

for i = 1

for i = 2

The stress components for the i = 3 terms (concentrated point load

at x in the e3 direction) are given as follows:



j
(jrz

3

o

(M.9)

o
+ + )(y,x;w

The amplitudes Ql and QO' of the horizontal and vertical concentrated

point loads respectively, in Eqs. (A4.7) and (A4.9), are determined
v

by realizing in Eqs. (M.3), (M.4) that H corresponds to stress

if QO = Ql = 1. Dimensionally, Eq. (A4.3) reveals that

M
U 'V T -6 A = .!. (].l -6 A) = T --.Q.

00 ].l 00 ].l

so that if U 'V T as in Eq. (A4.5), then

(M.10)

(M.ll)

In Eqs. (M.1O), (M.ll ),A is the area of surface S over which

the slippage occurs; -6 is the amplitude of the dislocation at a
00

point on S; Mo is the source moment; and ].l is the shear modulus

of the layer containing the point dislocation.



To summarize, in Eq.(A4.5), the displacements at point x

in the i-direction on the free surface due to a buried dislocation at

point ys S are represented in terms of the stress tensor solution

at y s S due to a concentrated point load at point x in the

i-direction on the free surface. The displacements at point x in any

direction may be obtained from Eq. (A4.5) by appropriately adding

vectorially the Ui(x;w), (i = 1,2,3). The displacements for an ex

tended source may be obtained by spatially integrating over surface S

the components appearing on the right-hand-side of Eq. (A4.5).

The variables y and Q represent the local rake and dip of

the dislocation and S represents the azimuth of the receiver relative

to the strike of the dislocation. The stress tensor components appearing

in Eq. (A4.5) are defined in the local coordinates xl' x2' x3 of the

dislocation. Eq. (A4.6) relates these local stress components to the

stress components in the global cylindrical coordinates r, 8, z. The

iridividual global stress components are listed in Eqs. (A4.7), {A4.9),

consistent with the notation used in Chapter 3 of the present work.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES AND SCOPE

To analyze the effects of soil-structure interaction on the

earthquake response of a structure, it is convenient to partition the

soil-structure system at the interface between the superstructure and

the foundation-soil system. Thereby, the characterization of the inter

action between the foundation and the surrounding soil may be combined

with a separate analysis of the overhead structure to determine the

aggregate earthquake response of the superstructure.

The complete characterization of the foundation-soil interaction

problem involves the evaluation of the dynamic response of the foundation

when excited by both external forces and incoming seismic waves. In the

complete soil-structure interaction problem, these external forces

correspond to the forces and moments that the superstructure exerts on

the foundation.

The evaluation of the response of the foundation to external

forces and moments reduces to the problem of determining the lIimpedance

matrix ll for the foundation-soil system and corresponds to a radiation

boundary-value problem. The evaluation of the response of the foundation

to seismic waves is associated with the problem of determining the lIinput

motion ll matrix for the foundation-soil system and corresponds to a

scattering problem. It is important to realize that the only case in which

the input motion at the foundation level may be equivalent to the surface
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free-field motion is when the foundation is nonembedded and the seismic

waves are vertically incident. Otherwise the presence of either founda

tion embedment or oblique incidence of seismic waves modifies the input

motion at the foundation level.

Once the impedance and input motion matrices for the foundation

are determined, then the complete soil~structure interaction problem for

any configuration of the superstructure can be formulated and solved,

since there exist generally accepted techniques for modeling the super

structure. The present work is focussed, however, on the determination

of the impedance matrix for various embedded foundation-soil systems.

A limited number of such force-displacement relations (impedance

matrices) are available at present, most of which are restricted to a

model of the soil corresponding to a homogeneous, non-dissipative, purely

elastic half-space. Also, in most studies, the effect of the embedment

of the foundation into the surrounding soil is neglected by constraining

the analysis to the case of flat foundations.

It is the objective of this study to remove both limitations by

representing the soil as a layered viscoelastic medium and by considering

the effect of foundation embedment into the soil. Also, two different

types of contact between the foundation and the surrounding soil will be

considered: 1) welded contact where the soil moves with the foundation;

and 2) relaxed contact wh~re various degrees of separation are allowed.

Several previous studies have shown the need for incorporating

material damping in the solution, particularly when large strains are

involved or when the medium representing the soil is layered. The effects

of material or internal damping are automatically incorporated into the
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present analysis as well as the radiation damping (geometric energy

dissipation).

Although the formulation of the radiation boundary-value problem

presented herein is completely general, only numerical results for har

monic forced vertical, torsional, rocking, and horizontal vibrations

(i.e., the impedance matrices) of axisymmetric rigid foundations embedded

in layered viscoelastic m~dia will be presented.

1.2 REVIEW OF THE LITERATURE

Reissner (1936, 1937) initiated the study of foundation problems

when he analyzed the response of a flat circular disc bonded to an

elastic half-space and subjected to external harmonic forces and torques.

The problem of forced vibrations of a flat rigid foundation resting on

an elastic layer supported on a rigid base has been studied by Arnold,

Bycroft and Warburton (1955), Bycroft (1956), Warburton (1957), and

Kobori, Minai and Suzuki (1966, 1967). In all these studies, the

complexity of the mixed boundary value problem was avoided by assuming

particular stress distributions under the footing. A circular founda

tion was considered in the first three studies, while a rectangular

foundation was considered in the latter two works.

On the other hand, Collins (1962) and Paul (1967) considered

the mixed boundary value problem for a rigid circular disc on a layer

supported on a rigid base and presented asymptotic expansions for low

frequencies. Kashio (1970), Wei (1971), and Luco (1974) reduced the

mathematical formulation of the mixed boundary value problem (for forced

vibrations of a rigid circular foundation on a layer welded to an
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elastic half-space) to the solution of a set of Fredholm integral equa

tions, by assuming relaxed boundary conditions under the foundation (i.e.,

no friction exists between the disc and the soil for vertical and

rocking vibrations, while the normal component of stress in the contact

region is assumed to be zero for horizontal vibrations).

Veletsos and Verbic (1973) were the first to consider the har

monic response of a circular foundation placed on a uniform viscoelastic

half-space. They extended solutions obtained numerically for the elastic

case to the viscoe1astic case through use of the correspondence principle.

Unfortunately, such methodology cannot be employed in the analysis of

layered media since the impedance coefficients may exhibit strong fluc

tuations as a function of frequency.

Although more general with respect to the method of incorporating

material damping, the studies of Kobori, et al. (1968,1970,1971) still

avoided the mixed boundary value problem by assuming a stress distribution

at the contact between the foundation and the soil. Luco (1976b) exten

ded his previous work (1974) to solve the forced vibration problem of a

rigid circular disc on a multilayered viscoelastic half-space by once

again reducing the relaxed mixed boundary value problem to the solution

of a set of Fredholm integral equations with the material damping intro

duced at the outset of the formulation.

Finally, Wong and Luco (1977) formulated an analytical method

applicable to arbitrarily shaped, rigid, flat foundations undergoing any

type of excitation. The ,numerical sol ution is based on representing the

displacements in terms of integrals of the discrete Green's functions

for a uniform viscoelastic half space (similar to present approach for

embedded foundations in viscoelastic layered media). When the approach



of Wong and Luco is combined with the Green's functions for a viscoelastic

layered half-space as derived in Part I of this dissertation, the com

plete foundation-soil interaction problem for arbitrarily shaped flat

foundation(s) placed on a layered viscoelastic medium may be considered

solved.

This leaves only the case of three-dimensional embedded founda

tions to be discussed. Analytical solutions for embedded foundations

are restricted mainly to the cases of anti plane conditions (e.g., Luco,

1969; Thau and Umek, 1973; Wong and Trifunac, 1974; Luco, et al., 1975)

and plane-strain conditions (e.g., Thau and Umek, 1974; Dravinsky and

Thau, 1976). Analytical solutions for a limited number of problems in

volving axisymmetric foundations embedded in an elastic half-space have

been derived. Luco (1976a) obtained the exact torsional response of a

hemispherical foundtion embedded in an elastic half-space when excited

by both an external torque and an obliquely incident SH wave and Apsel

and Luco (1976) generalized the dynamic torsional response to include

foundations of semi-ellipsoidal shape. Finally, Luco (1976c) derived

the static torque-twist relation for a rigid cylinder embedded in a

layered elastic half-space by reducing the problem to the solution of a

system of two integral equations.

A variety of approximate methods have been used to study the

response of embedded foundations. The approximate analytical approach

of Baranov (1967) has been used with some success to study the dynamic

response of a rigid cylindrical foundation embedded in an elastic half

space. Basically, Baranov's method assumes that the soil reactions of

the base of the foundation are equal to the reactions of a flat foundation
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placed on the surface of the soil while the lateral soil reactions are

evaluated independently. When applied to the case of layered soil depo

sits, it is assumed that the layers of soil surrounding the cylindrical

foundation act independently of each other and of the underlying half

space (Beredugo and Novak, 1972; Novak and Beredugo, 1972, 1973; Novak

and Sachs, 1973).

The finite element method (Lysmer and KUhlemeyer, 1969; Waas,

1972; Lysmer and Waas, 1972; Isehberg and Adham, 1972; Seed and Idriss,

1973) has been used in the past to determine the frequency response of

foundations, but was shown to be incapable of reproducing analytical re

sults (Scavuzzo, 1970; Tsai, 1973; Luco, et al., 1974a, 1974b; Hadjian,

et al., 1974; Wong, 1975). The ineffectiveness of the finite element

analysis was due mainly to the inability of the finite element grid to

represent the extended earth. Lysmer and Waas (1972) seemed to have

controlled the problems associated with the finite size of the soil model

by implementing special nonreflecting boundary conditions at the hori

zontal extremes of the grid to simulate a horizontally unbounded medium

acting in anti-plane strain. Waas (1972) and Kausel, et al. (1975) ex

tended the nonreflecting boundaries to a cylindrical geometry, but to

date, no satisfactory conditions have appeared in the literature for

allowing energy to radiate through the bottom boundary of the grid.

Until the frequency domain finite element treatments include adequate

nonreflecting boundaries, such analyses will still be incapable of

reproducing certain aspects of analytical solutions, such as the radia

tion damping at low frequencies (see Kausel and Roesset, 1975).

Day (1977) has studied the embedded foundation problem by per

forming the finite element analysis in the time domain using the SWIS
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program developed by Frazier (see Frazier~ et al.~ 1973; Frazier and

Petersen~ 1974). The spurious effects due to the finite grid boundaries

are eliminated by providing enough grid exterior to the region of in

terest so that the transient analysis is completed before the boundary

reflections blemish the signal (frequency response is obtained through

Fourier synthesis). Although Day's results are encouraging, the proce

dure is limited in that it is difficult to properly model the material

damping in the soil over the entire frequency range of interest. A1so~ it

is difficult to include all the reflected energy in a layered half-space

(while at the same time eliminating the spurious reflections from the

artificial boundaries) without supplying an extremely large grid.

This review clearly indicates the need for alternative methods

of solution which are capable of considering foundations of arbitrary

shape embedded in layered media. The next section describes a flexible

approach which is based on solving an integral equation involving the

Green's functions for a layered viscoelastic half-space.

1.3 DESCRIPTION OF PRESENT METHOD

To accomplish the objectives delineated in Section 1.1, it is

necessary to devise a method capable of treating arbitrarily shaped

three-dimensional foundations embedded in layered soil deposits. It

is also a prerequisite that the methodology incorporate material damping

(internal dissipation) into the soil as well as radiation damping

(geometric energy dissipation). The final requirement is that the

procedure be cost-efficient.

In the present approach~ the problem of determining the dynamic

response of any arbitrarily shaped three-dimensional foundation(s) will
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be reduced to the solution of an integral equation. The kernel of the

integral equation involves the Green's functions for a layered visco

elastic half-space so that the differential equations of motion are

automatically satisfied in the volume comprising the soil conjointly

with the continuity conditions at the layer interfaces, the traction

free conditions at the surface of the layered half-space, and the

geometric radiation conditions in the underlying half-space. Such

Green's functions, which properly represent the material dissipation

in the soil medium, are now available as derived in Part I of this

dissertation. The boundary conditions at the soil-foundation interface

will be approximated very closely by numerically solving the integral

equation. The procedure experiences no frequency limitation and the

cost is competitive with Day's finite element approach (1977).

In Chapter 2, the general integral equation formulation is

presented for axisymmetric as well as fully three-dimensional foundations

with relaxed as well as welded type contact assumed at the soil-foundation

interface. The integral equations are discretized in Chapter 3 into a

form suitable for numerical solution by standard techniques as well as by

eigenanalysis. Comparisons with known solutions are presented in

Chapter 4 along with several new results including the effects of founda

tion embedment depth; attenuation in the soil; type of contact between

the foundation and the surrounding soil; and layering in the soil

deposit.
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CHAPTER 2

FORMULATION OF THE RADIATION PROBLEM

2.1 STATEMENT OF THE PROBLEM

The principal objective of the present work is to determine the

motion of a foundation embedded in a viscoelastic layered half-space

when excited by external forces acting directly on the foundation. These

external forces consist of forces and moments that the foundation exerts

on the surrounding soil and hence this problem corresponds to a radia

tion problem. The dynamic response of the foundation can be charac

terized by the "impedance matrix" for the foundation-soil system (viz.,

the dynamic force-displacement relations for the embedded foundation

undergoing the action of external forces).

Secondly, it would be desirable to obtain the motion of the

foundation when excited by incoming seismic waves. This problem corres

ponds to a diffraction or scattering problem and involves the determina

tion of the "input motion" matrix for the foundation (viz., the motion

of the foundation assumed massless and the free from' external forces

when subjected to the seismic excitation). Since the scattering problem

can be separated into the solution of a propagation problem in the ab

sence of the foundation plus the solution of the radiation problem (by

determining the external forces and moments necessary to keep the founda

tion fixed under the action of the incoming waves), it is sufficient to

consider only the radiation problem.

219



With these objectives in mind a general model is considered.

The model geometry is depicted in Figure 2.1, where volume V~ repre-

sents an intrusion, either rigid or flexible in comparison with the

surrounding soil medium; volume V represents the soil deposit into
+which the intrusion is embedded; and surface $ (with unit normal v

pointing into the volume V~) defines the geometry of the embedded intru

sion. In particular, volume V is assumed to be a multilayered visco

elastic half-space composed of N parallel layers overlying a half

space. Each of the layers and the half-space forming volume V is

considered to be a homogeneous, isotropic, viscoelastic, horizontally

infinite slab characterized by shear and compressional wave velocities,

density, energy dissipation factors for shear and compressional waves and

layer thickness. Also, the primary concern involves finding the motion

of the intrusion when external harmonic forces and moments are applied

to it.

The contact at the interfaces between the layers is such that

the displacements and tractions are continuous across each interface,

while the normal traction components vanish at the surface of the

layered half-space and the displacement and stress fields obey the geo

metric radiation condition for the underlying half-space. Three

different types of boundary conditions are plausible at the soil-intru

sion interface (i.e., along surface $):1) displacements prescribed

everywhere on S (e.g., for welded contact between a rigid foundation

and the surrounding soil); 2) tractions prescribed everywhere on S

(e.g., for diffraction by a canyon); or 3) mixed boundary conditions

where the displacements are prescribed on a portion $2 of $ while
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Figure 2.1. Model geometry used to study various radiation
and scattering problems in elastodynamics with
surface S defining the boundary between
volumes V and V~.



the tractions are prescribed on the remaining portion $1 of $ so

that the soil is constrained to move with the foundation only on $2

(e.g., when separation exists along $1).

The next section reduces the problem to the solution of an inte-

gra1 equation involving the Green's functions for the layered viscoelas

tic half-space so that the differential equations of motion in volume

V are automatically satisfied in compliance with the continuity condi-

tions at the layer interfaces, the traction-free conditions at the sur

face of the layered half-space, and the geometric radiation conditions

in the underlying half-space. The integral equations are obtained

by imposing the boundary conditions on surface $ (the soil-intrusion

interface) .

2.2 .REDUCTION TO AN INTEGRAL EQUATION

Assuming that the displacement and stress components have har-

monic time dependence, it is convenient to apply the Knopoff-deHoop

(1958) representation theorem to volume V of Figure 2.1. In the ab

sence of body forces in V, the representation theorem in Cartesian

coordinates is written in the frequency domain as

e;(x) Ui(x) = ![GjiCy; x) ~jCY) ~ji(Y; x) Uj(y)J d$(y), (i,j = 1,2,3)
$

(2.1)

in which
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o X E: V..

223

dx) = 1/2

1

-+
X E: S

-+
X E: V

In Eq. (2.1), the factors exp(iwt) have been omitted and
\)

G.. (Y; x) and H.. (Y; x) denote, respectively, the j-component ofJl Jl
the displacement and traction vectors at YE: S due to a concentrated

\)

point load at x in the i-direction, while Uj(y) and TjO) repre-

sent, respectively, the j-cornponent of displacement and traction at

y E: S. Also, in Eq. (2.1) and in the sequel, the summation convention
-+over repeated indices is understood, and the unit normal \) is defined

positive pointing into the volume V".

Applying Eq. (2.1) to a point x in volume V" leads directly

to

(2.2)

-+ -+where x E: V" and y E: S. For the displacement boundary value problem

(welded contact between the intrusion and the surrounding soil), the

displacements Uj(Y) are prescribed on S and the integral equation
\)

(2.2) must be solved for the unknown tractions Tj(Y) on S. Modifi-

cations to the method of solution for the mixed boundary value problem

are discussed in Section 2.3.

The method of solution proposed here is based on considering a

set of forces F(x") distributed over a surface S.. located within

volume V" (refer to Figure 2.2), selected in such a way that the



Figure 2.2. Model geometry including internal ~ource

surface $' on which the forces Fare
distributed.
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unknown tractions can be represented as
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(2.3)

Substitution from Eq. (2.3) into the left-hand side of Eq. (2.2) and

formally interchanging the order of integration leads to the following

integral equation for the distributed forces F(x~):

in which

(2.5)

with -+ -+x, x~ s V • The function
A -+-+
G.. (x; x~)
lJ is symmetric, i.e.,

A-+-+ A +
G•• (x; x~) = G.• (x~;x)

lJ Jl

as is easily proven by taking

(x, x~ E V) , (2.6)

\l \l

(-+) (-+ -+) (-+) (-+-+)Uj Y = Gjk y; x~ and Tj y = Hjk y; x -+
x~ s V~

in Eq. (2. 2) .

If x is taken on S~, then Eqs. (2.4) correspond to a system

of symmetric Fredholm integral equations of the first kind for FjC~~).

Once these equations are solved for Fj(X~), substitution into Eq. (2.3)

gives the traction distribution on S from which other quantities of

interest are readily obtained. In particular, the displacement field



in V can also be obtained by use of

Uj(x) =1Gjk(x; X") Fk(x'") dS'"(x'"), (x E: V) (2.7)
S'"

Two other methods 0 f sol ut i on wi 11 be di scussed and compared

presently. Kupradze (1963) proposes to directly solve the original inte

gral equations (2.2) for the unknown tractions by choosing the points x
to be on a surface (such as S.. ) within volume V", so as to avoid

\)

the singularities in the Green's functions, Gji and Hji , when the points

y and x coincide. However, the kernel of the resulting integral

equations is not symmetric. Ohsaki (1973) proposes to solve the inte

gral equations (2.7) for F(x") with x E: S. Given the displacements

Uj (y), the unknown tractions are then obtained by sUbstituting F(x")
back into Eq. (2.3). Formally, Ohsaki's approach in conjunction with a

least squares method of solution (on Eq. (2.7) with x E: S) leads to

in which

o (-+ -+ f (-+ -+ -+ -+.. -+Gij x; X") = Gki y; x) Gkj(y; x ) dS(y)
S

is symmetric. Thus, Ohsaki's approach is similar to the present

approach. However, the advantage of the present method rests in its

physical connection with work as discussed below.
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To show that the distributed forces F(x~), as a solution to

Eq. (2.4), are the optimal solution from a variational standpoint,

Eq. (2.4) is multiplied by Fi(x) and integrated over dS~(x) to

give

22i

(2.8)

where Eq. (2.3) has been used to show that the right-hand side of

Eq. (2.8) corresponds to the work done by the tractions on the displace

ments. The form of Eq. (2.8) suggests that Eq. (2.4) may be obtained

as the condition for an extremal of the following functional:

-}-

Then, the extremal of rr(F) corresponds to the work done by the
-}-

tractions on the displacements when F is a solution of Eq. (2.4), that

is to say

-}-

rr(F)

extreme f v -}- -}- -}-
= T.(y) U.(y) dS(y)

J J
S

(2.10)



The procedures used to obtain approximate solutions to the

integral equations (2.4) are presented in the following chapter.

2.3 CASE OF MIXED BOUNDARY CONDITIONS

For the mixed boundary-value problem, displacements are pre

scribed on S2 ana tractions are prescribed on Sl (refer to Figure

2.3). An example is the case in which separation is allowed to exist

between the embedded foundation and the surrounding soil. Equation (2.2)

is then written more conveniently for the case of mixed boundary condi-

tions as

(2.11)

228

Again,

v
in whi ch T.

J

is unknown on

is unknown on S2 with U
J
' prescribed there, while U.

v J
51 with Tj prescribed there, and xE V~.

++
the set of forces F(x~) are selected according to

Eqs. (2.3), (2.7) as in the displacement boundary-value problem for

the case of welded contact. Then, introducing Eqs. (2.3), (2.7) into

Eq. (2.11) permits the reduction of the integral equation for the

distributed forces to the form



Figure 2.3. Model geometry for mixed boundary problem in
which displacements are prescribed on 52
and tractions are prescribed on 51.
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(2.12)
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in which

(2.13)

with t x~ E: V~ (in particular, on surface S~). As before, once the

integral equation (2.12) is solved for the distributed forces F(~~),

then Eq. (2.3) determines the traction distribution for points y E: S2'

and Eq. (2.7) determines the displacement field for points x E: V and Sl'
A A

Also, since the symmetry relation Gij(X; x~) = Gji(X~;x) is readily
-+-

proven, it can once again be shown that the distributed forces F(~~),

as a solution to Eq. (2.12), are the optimal solutions in the sense of

variational principles.

2.4 RESPONSE OF RIGID INTRUSIONS -- THE IMPEDANCE MATRIX

The response of rigid foundations to the excitation of external

forces and moments involves the determination of the "impedance matrix"

(i.e., the dynamic force-displacement relations) for the foundation-soil

system. In deriving the force-displacement relations for harmonic motion



(with angular frequency w) of a rigid foundation occupying volume V',

the displacement vector

is expressed in terms of the "generalized displacement", {lI}eiwt , as

231

(2.14)

In Eq. (2.14), {1I} is the 6xl vector including the three translational

and three rotational degrees of freedom for the rigid foundation as is

illustrated in Figure 2.4, such that

(2.15)

and [a(y)] is the 3x6 influence matrix relating the six components of

rigid body motion {1I} to the three components of the displacement

{u}. For small rotations about the origin of the coordinate system, one

finds that

1

[a(y)] = 0

o

o

o

o

o

o

-z

y

z

o

-x

-y

x

o

(2.16)

The "generalized force" {r(w)}e iwt is defined as

() iwt ( F F M)T iwt{r w }e = Fx' y' z' Mx' My' z e (2.17)

consisting of the six forces and moments associated with the "generalized

displacement". The 'Igeneralized force ll that the rigid foundation exerts

on the soil is obtained for the welded contact problem by
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Figure 2.4. Model geometry and coordinate system for
studying the response of rigid intrusions
to the excitation of external forces and
moments.



(2.18)
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in which I~(y)} is the 3xl vector of traction components distributed

on S as a solution of equations (2.4), (2.3) with {u(y)} given by

Eq. (2.14).

Since the integral equations for the distributed forces on S~

depend linearly on the displacements prescribed on S and since the

tractions on S are linear functions of the distributed forces, then

the tractions on S will depend linearly on the displacements on S.

Formally, this relation can be written in the form

{~(y)} =f [k(y; y~)]{u(y~)} dS(y~) ,
S

-+ -+.. Sy, Y E: • (2.19)

Substitution from Eqs. (2.19) and (2.14) into Eq. (2.18) leads

to

{r(w)} = f f [a(y)]T[k(y; y~)][a(y~)]g} dS(y~) dS(y) (2.20)
S S

or

{r(w)} = [k(w)]{~}

where the 6x6 impedance matrix [k(w)] is given by

[k(w)] = f f [a(y)]T[key; y~) ][aCy~)] dSCy~) dS(v)

S S

(2.21)



2.5 CASE OF AXISYMMETRIC GEOMETRIES

For axially symmetric geometries with respect to the z axis

(refer to Figure 2.5), it will prove convenient to modify the integral

equation formulation of the previous three sections to take advantage of

the geometric symmetry of the problem. It is important to realize that

the form of the integral equations remains the same in cylindrical

coordinates provided that the components associated with indices 1, 2, 3

are taken to be the radial, azimuthal and vertical components,

respectively.

The objective here is to specialize the integral equations to a

form most suitable for axially symmetric geometries by analytically inte-

grating over the azimuthal coordinate (index 2). In Eq. (2.2), let

(r, 8, z) be the cylindrical coordinates at YES, and let (r~, 8~, z~)

-+
be the cylindrical coordinates at x E V~. Then, defining the function

8(i) (superscript (i) is used to signify no summation in the indicial

notation) as

cos(
sin m¢) ,
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sin ( )-cos m<jl , i=2

(2.22)

multiplying Eq. (2.2) by 8(i)(m8~), integrating over 8~ between the

limits 0 and 2n, and formally changing the order of integration leads

to (with w omitted as argument in variables for brevity)



z
side view

y
top view

23~

Figure 2.5. Model geometry and coordinate system for studying
problems involving axially symmetric geometries
with respect to a vertical axts.



IG~.(r, 8, z; r~, z~) ~ .(r, 8, z) dS(r, 8, z)
Jl J

S

= f Rj i (r, 8, z; r ~, z~) Uj (r , 8, z) dS (r, 8, z) .
S

(2.23)

23c

In Eq. (2.23), i,j = 1 corresponds to the radial direction while

i,j = 2,3 corresponds to the azimuthal and vertical directions, respec

tively, and

21f
= _1_[ G.. (r,

21Tr~ 0 Jl
8 Z • r~ 8~ z~) 8(i)(m8~)d8~,, , , ,

(i = 1,2,3) (2.24)

is the j-component (radial, azimuthal or vertical) of the displacement

vector at y(r, 8, z) due to a concentrated ring load (per unit arc

length) of radius r~ and azimuthal dependence 8(i)(m8~) acting in the

i-direction through (r~, 8~, z~) (i=l for radial ring; i=2 for tangen

tial ring; and i=3 for vertical ring), and

(i = 1,2,3) (2.25)

is the corresponding traction at y(r, 8, z) in the j-direction acting

on a plane defined by ~ (normal pointing into volume V~ enclosed by

a surface of revolution $) due to a concentrated ring load at

(r~, 8~, z~) acting in the i-direction with azimuthal dependence

8 (i) (me ~) .



Finally, noting that

-Gj (e ~~) Gm ( ~ z~) e(j) (me).. r, ,z;r,z = •. r,z;r,
Jl Jl

(j = 1,2,3),
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v.
-JH.. (r,

Jl

(2.26)

substituting from Eq. (2.26) back into Eq. (2.23), and carrying out the

integration over e results in

in which

(2.27)

2IT

ITEm uj(r, z) =1 Uj(r, e, z) e(j)(me) de

0
(j = 1,2,3)

2IT
v =1 v

e, z) e(j)(me) deITE T~(r, z) Tj(r,m J
0

(2.28)

with

for m = 0

for m = 1,2,
(2.29)



The method of solution of integral equation (2.27) exactly par

allels that for the fully 3-D case in integral equation (2.2), except that

now the integrals are carried out along a line L on surface S rather

than over the entire surface S.
-:m-+The set of forces F (x~) distributed along a line L~ on a

surface S~ located within volume V~ are required to satisfy
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(2.30)

in which y(r, z) E L and x(r~, z~) E V'. Then introducing ~j(y), as

defined in Eq. (2.30), into the left-hand side of Eq. (2.27) and changing

the order of integration, the integral equation for the distributed
-+m -+

forces F (x~) for the axially symmetric, three-dimensional, welded

contact foundation problem becomes

(2.31)

-+
in which U(y) is prescribed along all of Land

(2.32)

with X, x~ E S~.
-+In particular, x can be chosen on L~ as well as

-+
x~ once again, and all the reciprocity relations and variational princi-

ples are proven as indicated in Section 2.2. Once the integral equations



(2.31) have been solved for the distributed forces frn(x~), the traction

distribution along L can be determined by use of Eq. (2.30).

For the mixed boundary-value problem, where separation is allowed

to exist along Ll , the analogous integral equation to Eq. (2.12) for

three-dimensional axisymmetric foundations is found to be
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(2.33)

in which UcY)
and

is prescribed along is prescribed along Ll

~m -+ -+
G•. (x; x~)
lJ

(2.34)

with -+ -+x, x~ E S~ (in particular, on line L~).

Finally, once the traction distribution is found along L from

Eq. (2.30) with the distributed forces Fm(x~) determined by solving

integral Eq. (2.31) for the displacement boundary-value problem or

Eq. (2.33) for the mixed boundary problem, then the impedance matrix

for the axisymmetric foundation may be formed as in Section 2.4 by



employing the appropriate cylindrical coordinates.

The problem of determining the 6x6 impedance matrix separates

into two sUbproblems for the axisymmetric foundation: 1) when torsional

or vertical motions are prescribed); and 2) when rocking about a hori

zontal axis or horizontal motions are prescribed. The displacement

vector

(-+) iwt ((-+) (-+) (-+)) T iwt -+{u y}e = ur y , ue y , Uz Y e ,y E L

for the first subproblem is expressed in terms of the 2x1 "genera1ized

disp1acement", {liO}e iwt , according to

0
0 0ur

t: j
0

0 [aOJ{li O} (2.35)ue = r =

0
0U

Z

Similarly for the second problem, the displacement vector is expressed

in terms of the 2x1 "genera1ized disp1acement", {1I
1}e iwt , according to

u1 1 (z~h)r

{::lu1 = -1 -(z-h) = [a1J{[l1} (2.36)e

u1 0 -rz

where the embedment depth, h, has been introduced to later refer the

rocking and coupled rocking-horizontal impedance functions to the bottom

of the foundation.
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The force-displacement relations are given in this case by
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t::} = [kO(W)]{::}

I::J = [k
1

(w)] 1::} ,r~j = [k
1(W){:x} (2.37)

where [kO(w)] and [kl (w)] are the 2x2 impedance matrices for the

first and second subproblems, respectively.

Analogous to Eq. (2.19), the traction distribution on L will

formally depend linearly on the displacements there for each order m,

i . e. ,

I~rney)I=f [KrnG; y,) HurneY')) dL(:y-) ,

L

-+ -+ ... Ly, Y E: . (2.38)

Then, the 2x2 impedance matrices [km(w)] for each subproblem are deter

mined by

[km(w)] = ~~[am(y)]T[km(y; y"')][am(y... )] TIE:mr'" dL(Y"') dL(y) , (2.39)

L L

in which the 3x2 influence matrices [am] are defined from Eqs. (2.35),

(2.36) for subproblems 1 and 2, respectively.

The individual terms in the 2x2 impedance matrices are denoted

as follows:



(2.40)
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in which KVV and KTT are the uncoupled vertical and torsional

impedance functions for subproblem 1; and KHH and KMM are the

horizontal and rocking impedance functions for subproblem 2, coupled

through the so-called coupling impedances KHM , KMH . The coupling im

pedances are equal due to the symmetry of [kmJ, whose symmetry is in

turn due to the symmetry of [GmJ or [GmJ depending on the boundary-

value problem under consideration. All other impedance functions are

zero in the full 6x6 impedance matrix due to the geometric symmetry

with respect to the z-axis.

It will be convenient for later use in graphically displaying

the impedance coefficients as a function of frequency for axisymmetric

foundations to introduce the following real and dimensionless stiffness

coefficients kVV ' kTT , kHH , kMM , kHM and damping coefficients cvv '

cTT ' cHH ' cMM ' cHM according to

(2.41)



in which "11" is a reference shear modulus, "a" is the surface radius

of the axisymmetric foundation, and "ao" is the dimensionless frequency

U}a/f" with S bei ng a reference shear wave velocity.

Finally, it will be useful to express the 3x3 Green's function
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\I
m (-+ -+)traction matrix H.. y; x
Jl

concentrated ring sources.

in terms of the stresses caused by the

Referring to Figure 2.5, the unit normal

pointing into the volume of revolution V~ is given by

(2.42)

Using Eq. (2.42) in conjunction with

(2.43)

leads di rectly to

\1m \1m \1m ~R ~T ~VHll H12 H13 rr rr rr
\I \1m \1m (21fr~ ) () ~R ~T ~VmH2l H22 H23 = - 7 cOSIjJ y re re re
\1m \1m \1m ~R ~T ~VH3l H32 H33 rz rz rz

(-+ -+ rY; ~)y; x)

r;R ~T r;V
zr zr zr

(21fr~) . C~) r;R ~T ~V- 7 SlnljJ y ze ze ze

r;R ~T rYzz zz zz
(y; ~)

(2.44)



in which the superscripts i (i =1,2,3) on the individual stress com

ponents ~~j refer to the stress components resulting from radial, tan

gential and vertical concentrated ring loads, respectively, of azimuthal

order m. The factor of 2Tfr"/r2 was introduced into Eqs. (2.43), (2.44)

in order to be consistent with the notation used in Part I, Section 2.4,

iwhere the individual stress components ~kj are derived.
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CHAPTER 3

METHOD OF ANALYSIS

3.1 DISCRETIZATION

Even for the simplest geometries, the integral equations for the

distributed forces ftx) in Chapter 2 must be solved humerically by dis

cretizing the formulation.' The problem would thereby reduce to the solu

tion of a set of simultaneous, complex, linear, algebraic equations. The

discretization consists of three basic steps for any three-dimensional or

axisymmetric problem having displacement or mixed boundary conditions.

Therefore, analogous to the integral formulation in Chapter 2, the radia

tion problem involving a three-dimensional foundation in welded contact

with the surrounding soil (Section 2.2) will be used to exemplify the

discretized formulation.

The first step in the discretization is to replace the surface inte

grals appearing in Eq. (2.4) with formulae of quadrature. Letting

An' (n=l,N) and Bm, (m=l,M) represent the quadrature coefficients for

integration over surfaces S~ and S, respectively, then Eq. (2.4) may

be written in the following form:

(3.1)

The second step in the discretization is to impose the integral equation
++

for the discrete set of forces F(xn) in Eq. (3.1) to a set of discrete

points on S~ which are the same as those used in the quadrature over
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M

=I: ~jiCYm; XR,)Uj(Ym)Bm,
m=l

(R,=l,N). (3.2)
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The third step in the discretization is to write the integral defining
A

G.. in terms of the Bmquadrature formula:
lJ

t~

Gij(X,Q,; Xn) =I: Gki(ym; X,Q,)~kj(Ym; Xn)Bm .
m=l

(3.3)

Now, once the N simultaneous, complex, linear, algebraic equations

in Eq. (3.2) are solved for the N discrete forces F(Xn), the discrete

traction distribution on S is determined from Eq. (2.3) as

N

~j(Ym) =I: ~jk(Ym; Xn)Fk(Xn)An '
n=l

(3.4)

from which other quantities of interest may be obtained.
v

The Green's functions, GJ.1.(Ym; x) and H.. (Y; X), become sin-R, Jl m ,Q,
gular in the limit as the point X approaches the point y, so it,Q, m
would be convenient to insure that no source point x, (,Q,=l,N) ever,Q,
coincides with any receiver point y, (m=l,M). This is most easily, m

accomplished by requiring that the entire surface S~ be sufficiently

offset from the surface S so as to avoid the unnecessary problems

associated with integrals of singular functions., Details of how to

choose the optimum location of surface s~ as well as the number of

quadrature points (N on surface SA and M on surface $) will be

discussed in Sections 3.2 and 3.3.



At this point, it is advantageous to introduce the following

matrices (composed of 3 x 3 submatrices) and vectors (composed of 3 x

subvectors) in order to cast the discretization into matrix formalism:
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[Gij(Y" X,)J! [Gij(Y" X2)J 1 ... 1 [GijCY" XN)]
I I I
I I I-------------T---------------T---------------r--------------

[Gij (Y2, X,)]j [Gij (Y2, X2)J! 1 [Gij CY2' XN)J
I I I-------------T---------------T---------------r--------------

• I I I
I I I
I I I
I I I
I I I
I I I

-------------T--·-~----------T---------------T--------------

[GijCYm• X1lJ! [G;/Ym• ~9]j j [GijeYw XNl]

3M x 3N

(3.5)

[V -+ -+ J: [v -+ -+ J: :[V ]Hij(y" x,): Hij(y" x2) : : HijCy" xN)
I I I
I I I •

-------------~---------------~---------------4--------------I I I

[
V -+ -+ J: [v -+ -+ J: :[ J
Hij (y2, x,)! Hij (Y2' x2) l I ~ijCY2' x

N
)

I I I------ ~---------------~---------------4-------- _
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

-------------~---------------~---------------~--------------

rv -+ -+ J: [v -+ -+ J: :[v -+ -+ J
LHij(ym, x,): Hij (Y2' x2) : : H;j(Yw xN)

I I I

3M x 3N

(3.6)



[A~ A, :J i[ 0 Ji ![ 0 J
I I I

-----------~-------------~-------------~-------~---

[ 0 Ji[ A~ AZ :J j [ 0 J
['A,] = -----------r-------------t-------------t-----------

I I· I
I I I
I I I
I I I
I I I
I I I

-----------~ L L _

I I I

[ OJ i[ a Ji i[ A~ AN : J
: : : N

3N x 3N

(3.7)

[B~ B, :J: [ 0 J! i[ 0 J
I I I

-----------+-------------1-------------1------------

[ 0 Ji [B~ BZ:J j[ 0 J
['B,] = -----------t----~--------1-------------1------------

I I I
I I I
I I I
I I I
I I I
I I I
I I I-----------T-------------,-------------,------------

[ 0 Ji[ 0 Ji i

3M x 3M

(3.8)
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\ -7 I \ -7) 1 \ v -7 }
IFi(xl ) IUi(Yl \ ITi(Yl)\

\ -7 1 f -+ I \ v -7' I

\ FI=

IF i (x2) \
~ U1=

IU i (Y2)\
~ v 1

ITi (Y2)\
(3.9)

, tT \ = (3.10), t ~ (3.11)

~ (-7) \ (-7 1 ~ v 1
tFi xN \ lUi YM)\ ITiCYM)\

3Nxl 3Mxl 3Mxl

v
in which [G] and [H] are the Green's function displacement and

traction matrices, respectively; An (n = 1,N) and Bm (m = 1,M) are the

quadrature coefficients for integration over S~ and S, respectively

(e.g., coefficients from Simpson's integration rule); {F} are the unknown

discrete forces on S~; {U} are the displacements prescribed on S; and
v

{T} are the tractions on S caused by the displacements {U} from

which other information may be obtained.

Once discretized, Eq. (2.4) may be written in the form
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(3.12)

in which

(3.13)

is numerically symmetric and

(3.14)



~ 1 - [, ] I 1IFA ~ - A, I F \ . (3.15)
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It is important to realize that the formulation is completely general

in that the prescribed displacements {U} on S can represent, for

example, the excitation caused by external forces and moments, incoming

seismic waves, shock waves from nuclear explosions, etc.
\!

Inverting the symmetric 3N x 3N matrix [G], and multiplying

through Eq. (3.12) yields the 3N complex amplitudes of the N unknown

force vectors:

Now, the traction distribution on S

(3.16)

is given in discretized form by

(3.17)

so that substitution from Eq. (3.16) into Eq. (3.17) results in

(3.18)

Assuming that the nodal forces ~(YK)' (K = 1,2, ... , M)

are obtained from the tractions by the Bi quadrature

where



(3.20)
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then, introducing Eq. (3.18) for the tractions leads to

(3.21)

in which

(3.22)

The 3Mx3M matrix [K] in Eq. (3.21) corresponds to the stiffness

matrix representing the viscoelastic material outside the volume V~.

Since the stiffness matrix [K] connects the nodal forces on S with

the displacements there, the individual components of [K] can be

utilized as nonreflecting boundary conditions on S

through for finite element modelling of region V~.

a major break-

Of immediate concern for the present work, however, is that the

6x6 impedance matrix [K] can be written in terms of the stiffness

matrix [K], as insinuated in Section 2.4. Consider the total work

done by the discrete set of tractions on the rigid body displacements

which are defined by Eq. (2.14) for a point YK, (k = 1,2, ... ,M) on S:



(3.23)
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in which [a] is now the 3Mx6 influence matrix. It is clear from

Eq. (3.23) that the impedance matrix is related to the stiffness matrix

by

(3.24)

in which [K] depends upon the frequency of excitation, the geometry of

volume V~, the boundary conditions on S (welded or relaxed), and

"the material comprising volume V. In addition to depending on [K],

the impedance matrix [K] is also a function of whether or not the foun

dation is rigid or flexible through the influence matrix [a].

For the case of mixed boundary conditions, the integral equations

of Section 2.3 are discretized using M1 points on surface Sl (where

tractions are prescribed) and M2 points on surface S2 (where dis

placements are prescribed) such that Ml + M2 = M. The Green's
v

function matrices [G] and [H], the integration coefficient matrix

['BJ, and the displacement and traction vectors {U} and {~} must

all be partitioned in Eqs. (3.5), (3.6), (3.8), (3.l0) and {3.11},

respectively.

Since the integrals over Sl are carried out to the boundary

of S2' then the point(s) separating Sl from S2 must be treated as

a double point(s) insofar as the last three rows of the 3(M1+l) x 3N



matrices [G l (Yk;X,Q,)] and [H l CYk;X,Q,)] for (k=l ,2, ... ,Ml+l),

(t=1,2, ... , N) are the same as the first three rows of the 3M2 x 3N
\!

matrices [G2(Yk;xt )] and [H2(Yk;x
t
)], respectively, for (k-Ml+l,

Ml +2, ... , M), ( =1,2, ... , N). Also, the 3(Ml+l x 3(Ml+l) diagonal

matrix ['Bl ,] includes the integration coefficient B
M1

+l as the end

point for integration over Sl and could be different from the coeffi

cient BM +1 used as the end point for integration over S2 appearing in
1

the first three diagonal locations of the 3M2 x 3M2 diagonal matrix

['B2,]. The subscripts 1 and ~ appearing in the subsequent matrix

analysis refer to observation points y E 51 and yE S2' respectively.

Therewith, Eq. (2.12) appears in discretized form as

25~

(3.25)

in which

(3.26)

is numerically symmetric, {FA} is defined previously in Eq. (3.15),

and

(3.27)

(3.28)

Now, the discrete traction distribution on S2 and displacement distri

bution on Sl are written as



(3.29)
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which, after solving Eq. (3.25) for the 3N complex amplitudes of the

N unknown force vectors, appear in the final form as

Iv t [VJPJ-l(r~ Jl I r,J\V ~)IT2 \ = H2 LG LHB2 lU21 - LGl tTBl \

Iud = [G1][GJWBJU2\ - [G1WB11)

(3.30)

(3.31)

v
Assuming for the moment that the prescribed tractions {Tl }

are zero, then the total work results from the tractions acting on the

displacements as prescribed on S2. Thereby, the only nonzero terms in

the stiffness matrix for the mixed boundary conditions are those

appearing in the 3M2 x 3M2 submatrix

-1 T

[KJ= [HBJa] [HB2]
and the 6 x 6 impedance matrix is determined from

(3.32)

(3.33)

in which [a2] is the 3M2 x 6 influence matrix relating the

"generalized displacement" to the rigid body displacments at all M2

points on S2.

Finally, for three-dimensional volumes V' having axial symmetry

with respect to the vertical axis, the discretization of the integral

equations appearing in Section 2.5 exactly parallels the procedure



outlined above with the following changes: 1) the components of the

Green's function matrices defined in Eqs. (3.5) and (3.6) involve ring

source functions of order m rather than point forces; 2) the components

of all matrices are expressed in cylindrical coordinates along cylindri

cal directions instead of in rectangular coordinates along rectangular

directions; 3) the integration coefficients Ai (i = 1,2, ... , N) and

Bi (i = 1,2, ... , M) appearing in Eqs. (3.7) and (3.8), respectively,

must include the factors EmTIr~ and E TIr, respectively, when cal-m.

culating the quadrature formulae for integration over S~ and S,

respectively; and 4) the surfaces S and s~ are actually lines

(L and L~) in the axisymmetric formulation and must be treated as

such.

Therefore, writing out the discretized equations for axisymmetric

geometries would be inconsequential since the discretization for the

fully 3-D case may be directly employed by keeping in mind the afore-

mentioned alterations. The only significant difference, as was dis-

cussed in Section 2.5, is the determination of the impedance matrix in

two steps: 1) m=O ring load order for torsional and vertical impedances;

and 2) m=l ring load order for horizontal, rocking and coupling impe

dances. In both subproblems, the influence matrix [am] will be 3M x 2

instead of 3M x 6.

The following two sections discuss in detail how to numerically

implement the discretization analysis of the radiation problem with

applications to axisymmetric geometries in particular.
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3.2 SOLUTION BY STANDARD INVERSION

All that remains to complete the discretization analysis is to

devise a set of rules governing how many observation points to use on S

and how many source points to use on S~, as well as where to locate

surface S~ relative to surface S. The number of observation points,

M, on surface S necessary to numer'ically perform the discretized inte-

grals in Eqs. (3.12) through (3.33) to a certain accuracy depends not

only on the shortest wavelength considered in the radiation problem, but

also depends largely on the location of the internal surface S~. This

is due to the fact that the closer S~ is to S, the more pronounced

the Green's functions become, thus requiring more observation points to

evaluate the integrals properly. The minimum requirement for the number
A

of observation points, M, on surface S is that the matrix [G] in
~

Eq. (3.13) (or [G] in Eq. (3.26) for mixed boundary conditions) be

numerically symmetric.

Yet, if any portion of surface S~ is so far removed from sur-

face Sthat the Green's functions on S resulting from neighboring
A

sources on S~ become too similar, then the matrix [G] becomes poorly
A

conditioned even though the symmetry of the individual elements of [G]

may be excellent. Also, requiring that the matrix [G] be numerically

symmetric and well-conditioned is a necessary but not sufficient prescrip

tion for achieving accurate displacements and tractions on S. What also

must be fathomed is the number of sources, N, to employ on surface S~.

To properly represent the displacements and tractions on S, it

is sometimes necessary to utilize a large number of sources on S~

25€



(e.g., if mixed boundary conditions are imposed or if corners exist on

S), in which case the surface S~ must be situated closer to the surface

S (to avoid the conditioning problem in [G]). This in turn means in

creasing the number of observation points, M, on S so as to enable the

numerical integrations in Eqs. (3.12) through (3.33) to be performed

within a desired error tolerance.

The impact of the errors associated with choosing the number of

observation points, M, on S, the number of source points, N, on S~,

and the location of S~ will be discussed presently, after which some

general rules will be summized for numerical implementation of the dis

cretization analysis presented in Section 3.1.

Assuming that the number of observation points, M, on S is

chosen sufficiently large (with source surface S~ specified) to

accurately perform the numerical integrations, then the real question be

comes how to balance the tradeoff between number of sources. N. needed on

surface S~ with the actual location of surface S~ interior to sur

face S. To help resolve this question, the response of a rigid cir

cular cylinder embedded in a viscoelastic half-space is examined when

excited by external forces and moments.

The axisymmetric cylindrical foundation to be studied has a ratio

of embedment depth h to radius ~ equal to 2.0 and three different

surfaces S~ are considered on which various numbers of ring sources

are located, as shown in Figure 3.1. The spacing of the observation

points on surface S (surface of the cylinder) is sufficiently fine

(h/40) to insure that the numerical integrations are accurate to three

significant digits for any of the internal source surfaces S~, Sb' S~.
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It is important to realize that the Green's function traction

components as defined in Eq. (2.44) will be identically zero on the por-

tion of S which coincides with the free surface of the half-space.

Thereby, the integrals along this portion of S may be disgarded from

the analysis for this particular problem. Also, due to the symmetry

about the vertical axis, only half of the axisymmetric problem need be

considered. The viscoelastic half-space representing volume V is

characterized by a reference shear wave velocity S, a compressional

wave velocity a 13 S , and specific attenuation factors Q
S

= 50,

Q = lOa for the shear and compressional waves, respectively.
a

The foundation impedance coefficients provide a synopsis of the

overall accuracy of the method. Therefore, much of the discussion em

braces the behavior of the impedance coefficients as a function of number

of ring sources used on S~ as well as the precise location of S~

interior to surface S of the cylinder. The dependenc~ on frequency,

embedment ratio, material damping and layering of soil deposit will be

studied exclusively in Chapter 4.

In Figure 3.2, the real parts of the torsional and vertical impe

dance coefficients at dimensionless frequency ao = wafs = 0.1 for the

rigid cylindrical foundation modeled in Figure 3.1 are plotted versus the

number of ring sources used on each of the internal surfaces S~, Sb' S~.

The impedance coefficients are normalized in Figure 3.2 by their "exact"

values, which were calculated using an extremely refined mesh with the

source surface s~ located closer to the foundation surface S.

It is encouraging to find that for all three source surfaces,

the impedance coefficients fall within three percent of the "exact"
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values over an astoundingly wide range of number of sources (from N=5

to N=38). Also, as the number of sources is increased from N=l to

N=20, the general trend is to approach the "exact" impedances.

However, depending on the location of the source surface S',

there exists a certain number of sources, after which the impedances be

gin to diverge when using the standard inversion formulation. This

phenomenon is related to the conditioning problem in reference to the

proximity of the sources on S'. Further substantiation is possible by

noticing that the divergent trend occurs sooner for the source surfaces

further removed from the surface of the cylinder (since the effective

separation of the sources is smaller relative to the distance from S'

to S). Similar behavior is exhibited in Figure 3.3 for the torsional

impedance coefficient at dimensionless frequencies ao = 0.5, 1,2 and 5.

To summarize thus far, impedances consistently within one per

cent of the "exact'! value are obtainable at all frequencies of practical

interest by utilizing the source surface S~ with the sources separated

by approximately a distance h/20. If, for some reason, a more'refined

source spacing is required, then the standard inversion technique may

lead to conditioning problems associated with the proximity of the sources

on S'. For such a problem, two alternatives are plausible: 1) resort

to solving the discretized equations with eigenanalysis instead of standard

inversion (e.g., Gaussian elimination) as will be discussed in Section 3.3;

2) locate the source surface S" nearer to the foundation surface

S, which is by far the inferior countermeasure since the number.of obser

vation points on S would then have to be drastically increased (since

the kernels of the integral equations would be more pronounced).
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To verify that source surface S; is the most practical choice,

it would be convenient to compare the computed displacements and trac

tions on S caused by the rigid body movements of the foundation for the

different internal source surfaces. It should be mentioned that closing

a source surface other than by uniformly shrinking the surface S causes
A

the matrix [G] to become nearly singular since one or more columns

would be small relative to the others. Also, the trend in Figures 3.2

and 3.3 to obtain more accurate results when the source surface is located

nearer to the foundation surface is actually a general prescription.

However, the gain in accuracy is found to be minimal compared to the

increased computational effort required.

In Figure 3.4, the real parts of the vertical displacement along

the mantle of the cylinder are displayed at four representative frequen

cies ao = .1, .5,2,5 (from left to right). The displacements

calculated using the three internal source surfaces S~, Sb' S~ of

Figure 3.1 are compared on each plot. Since the contact between the

foundation and soil is of welded type, the forced vertical vibrations

26~

of the rigid cylinder (viz., the "generalized displacement" t:. = l'z '
all other components equal zero) should cause the entire foundation to

move rigidly downward an amount unity. Therefore, a heavy line repre

senting the exact response is drawn down the center of each graph at

unity (imaginary part of response is zero).

The vertical axis in each plot in Figure 3.4 corresponds to the

observation depth along the mantle of the cylinder (measured from the

free surface); the horizontal axis corresponds to the amplitude of the

real part of the vertical component of displacement. The horizontal
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scale is magnified around values within 20 percent of the exact amplitude

to more easily distinguish the numerical oscillations associated with the

location of the internal source surface. The number of sources used (27~

25~ 23) and their locations on the three internal source surfaces (S~,

Sb~ S~, respectively) is depicted by the dots on S~, Sb' S~ in

Figure 3.1 and corresponds to the optimum number of sources to exploit

on the respective source surfaces, as insinuated in Figures 3.2 and 3.3

(for the standard inversidn solution technique).

Proceeding with the discussion of Figure 3.4, it should be first

pointed out that all frequencies considered, the displacements most

consistently near the exact response are those obtained using source

surface S·~. The largest deviation from the exact value of unity is

0.25 percent except near the bottom corner of the cylinder. At the

corner, the displacements are deficient because the observation· points

are furthest from the source surface by virtue of uniformly offsetting

the source surface away from a corner (such an issue is nonexistent for

surfaces S smoothly defined). The displacements associated with

source surface S~ are of subordinate accuracy compared to the results

obtained with source surfaces S~, Sb' similar to the impedance coeffi

cients in Figures 3.2 and 3.3. The results are still reliable, however,

to within 10 percent of the exact value.

Various attempts were made at overcoming the deficiency at the

corner such as considering alternative combinations of sources in the

vicinity of the corner in order to suitably modify the radiation pattern

from the sources there. However, new problems were introduced into the

analysis whenever sources were positioned on more than one internal source

26:



surface simultaneously. The most effective remedy is to reduce the

spacing of the sources near the corner (and near any other special points)

with a possibly larger source spacing elsewhere. For example, displace

ments just as accurate as those corresponding to 27 equally spaced ring

sources on S~ as displayed in Figure 3.4 were obtained using 20

unequally spaced ring sources on S~ with finer spacing near the corner

of S~ (comparison not presented). It is impossible to totally eliminate

the deficiency at the corner so long as the source surface is internal

to the observation surface, but later in this section, improved results

will be presented using a refined mesh with the source surface located

nearer to the observation surface.

Before elucidating on the computed traction distribution, one

should be aware that the computed displacement distribution along the

base of the cylinder behaves similarly to the distribution along the

mantle as just discussed. The real parts of the vertical displacement

along the base of the cylinder are shown in Figure 3.5, with the three

internal source surfaces S~, Sb' S~ compared on each plot. The exact

response of unity is once again represented by a heavy line at each of

the four frequencies. The horizontal axes correspond to the observation

radius along the base of the cylinder (measured from the axis of the

cylinder) while the vertical axes correspond to the magnified amplitudes.

The computed traction components on the surface of the cylinder

sketched in Figure 3.1 are shown in Figures 3.6 and 3.7 for forced

torsional and vertical vibrations at frequency ao = 1. The traction

distribution in Figure 3.6 is determined with the Sb source surface

while the corresponding curves in Figure 3.7 are determined with the S~
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source surface. The placement of the sources is the same as for the

displacements in Figures 3.4, 3.5 and their exact location on Sb' S~

interior to surface S of the cylinder has been repeated in Figures 3.6

and 3.7, respectively, for illustrative purposes.

One striking feature, that was not quite so obvious when studying

the displacements, is the marked effect of the discrete set of forces on
'J

the fluctuations in the traction components. Consider Te, the traction

due to the forced torsional oscillations of the rigid cylinder, since

there is but one discrete force component per ring source. As portrayed

by the arrows on the radiation patterns of the sources, the discrete

force components alternate signs going from source to source. This

phenomenon is an attempt to adjust for the singularity in the tractions

at the corner. This is clearly the justification in Figure 3.7, since
'J

Te is smoothly behaved far away from the corner, but starts oscillating

in phase with the discrete forces near the corner. On the other hand,

in Figure 3.6, the oscillations linger much further away from the corner,

which is additional motivation for declaring source surface S~ to be

the most effective choice of those surfaces considered.

Even for a surface in absence of a corner, there would inevitably

be spurious fluctuations in the more sensitive traction components due to

the discretization of surface S~, but they would probably be minimal.

If for some reason, it becomes desirable to obtain more accurate displace-

ments and tractions, a refined source spacing is required with the source

surface S~ situated as close as possible to the foundation surface S.

As previously mentioned, such an undertaking involves increased computa

tional effort since more observation points would be required on S due
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to the more pronounced kernels in the integral equations. Irregardless,

such a refined result will now be presented, after which the general

rules will finally be summized for the standard inversion method of

solution.

The internal source surface used for the refined results in

Figures 3.8 through 3.10 is situated halfway between the foundation

surface and internal source surface S; of the previous studies. To

ensure that the discretization analysis be performed at least as accu

rately as for source surface Si' twice the number of observation points

on S are used (M=121) since the kernels of the integral equations are

more distinctive. Both N=29 and N=57 ring sources are considered on

the internal source surface and the refined results are displayed at

dimensionless frequency ao=l.

The vertical displacements along the mantle and the base of the

cylinder in Figure 3.8 are improved over the corresponding results using

source surface Si as shown in Figures 3.4 and 3.5, respectively. The

improvement is experienced with approximately the same number of source

points (N=29), revealing the importance of the location of the internal

source surface. Furthermore, noticing the insignificant improvement with

N=57 source points compared to N=29 source points, it may be concluded

that additional refinements in the results are best obtained by continuing

to move the source surface closer to the foundation surface (and at the

same time, increasing the number of observation points to impractical

extremes). Similar conclusions may be drawn when comparing the refined

traction distributions in Figure 3.9 (N=29) and in Figure 3.10 (N=57) to

the corresponding traction distributions in Figure 3.7 (surface S~).
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In summary of the method of solution by standard inversion, the

following general rules will be stated as suggestions for solving axi-

symmetric radiation problems:

(1) First, the number of sources, N, is chosen to provide

a sufficient number of discrete forces to accurately

represent the displacements and tractions on S (nor

mally 10 or 15 ring sources, unless separation conclitions

are imposed or if corners exist on S in which case

additional sources would then be inserted on the source

surface near the special points).

(2) Then, the location of internal source surface S~ is

selected as close to surface S as is economically

feasible considering that the spacing AS of the M

observation points on S must be reduced as the dis-

tance separating the two surfaces decreases. For

most practical applications, the surface S~ should

be offset from surface S a distance equal to 2.5 AS

(by uniformly shrinking surface S) in order to insure
A

good symmetry in the matrix [GJ. The rationale for

locating the source surface S~ close to the observa-

tion surface S is not only to avoid the possibility of
A

a poorly conditioned matrix [G.], but also to increase the

accuracy of the discretization analysis as described in

Figures 3.2 through 3.10.
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(3) As a final check, the M observation points must be

spaced finely enough to provide at least six points

within the smallest wavelength of interest for the

problem. Also, the spacing ~S on surface S should

be at most half the spacing of the nearest sources on

surface S~, so that the calculated displacement and

traction distributions appear reasonably smooth on

surface S.

3.3 SOLUTION BY EIGENANALYSIS

As was mentioned in the previous section, there are two reasons

why an alternative to the "standard inversion ll solution technique is

sought. First is the problem of convergence when the number of sources

exceeds a certain number depending on the location of surface S~. The

second problem deals with the need to suppress the spurious oscillations

in the computed tractions on surface S which result from representing

the traction components directly in terms of the discrete forces. The

second problem was found to be soluble by moving the internal source

surface S~ in toward the observation surface S, but is not a practical

solution in the sense that an excessive number of observation points on

surface S may then be required to adequately evaluate the numerical

integrals. On the other hand, the first problem of showing convergence

for any number of sources was determined to be untractable with the stan

dard inversion approach.
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The alternative approach proposed here aspires to solve both of

the aforementioned problems. Basically, using eigenanalysis, the quan

tities of interest will be represented in terms of combinations of the

discrete forces (corresponding to a modal analysis of the problem) rather

than in terms of the discrete forces, themselves. Then by suitably dis-

carding the combinations of forces associated with the higher modes, con

vergence for any number of sources on a given internal source surface

can be proven. In addition, the artificial oscillations observed in the

traction distributions in Section 2.2 may be reduced. This is under the

assumption that the remaining modes have already converged to the correct

response, so that the higher modes contribute nothing but spurious infor-

mati on.

Proceeding with the eigenanalysis, a solution to the eigenvalue

problem

is sought, in which the jth column of the 3N x 3N matrix [~] corres-

ponds to the eigenvector associated with the eigenvalue appearing in the

jth diagonal location of the 3N x 3N diagonal matrix ['A,]. The

3N x 3N diagonal matrices ['Al!2J containing the square roots of the

quadrature coefficients An have been introduced in order to properly

normalize the eigenvalues associated with each mode.

Since the matrix [G] is symmetric and since the matri'x

['Al~2 J is diagonal, then the matrix (['A!!2J[G]['Al(2J) is also

symmetric. Therefore, the corresponding eigenvectors of this matrix

appearing in Eq. (3.34) form an orthogonal basis, which allows the

27



eigenvector matrix [~J to be normalized as

[.][.f" [I] (3.35)

27l

where [IJ is the 3N x 3N identity matrix.

Post-multiplying Eq. (3.34) by [\l\JT and utilizing Eq. (3.35)

leads to the following decomposition for the matrix [GJ:

Introducing this decomposition into Eq. (3.16) results in an alternative

expression for the 3N complex amplitudes of the N discrete force

vectors:

(3.37)

in which the 3N x 3N matrix [\l\~J is defined by

and the 3N x 1 vector {nu} is determined from

T

\nul = ['A~lJ[\l\HBJ ~ul

The 3M x 3N matrix [<PH J appearing in Eq. (3.39) is given by
B

(3.38)

(3.39)

(3.40)

and the diagonal matrix ['>.~J contains the inverse of the jth

eigenvalue in the jth diagonal location (j ~ 1,2, ... , 3N).

Substitution from Eq. (3.37) into Eq. (3.17) yields an expression

for the discrete traction distribution on S



(3.41 )
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with the corresponding displacement distribution calculated according to

\ul = [06) h\ (3.42)

in which

(3.43)

The nodal forces are obtained by introducing the tractions from

Eq. (3.41) into Eq. (3.19) and making use of Eq. (3.39):

lJi = [oHBJlnul

= ([OHJ [~ A:.1]hJ)Iu\ . (3.44)

Comparison of Eqs. (3.44) and (3.21) permits the stiffness matrix [K]

to be written in the form

(3.45)

Finally, substitution from Eq. (3.45) into Eq. (3.24) gives the 6 x 6

foundation impedance matrix [K] in terms of the eigenformu1ation

(3.46)

in which

(3.47}



It should be pointed out that the jth element of the vector

{nu} corresponds to the participation factor for the jth mode, as

represented in Eq. (3.39). Similar interpretations are possible for

the elements of the matrix [n J. as defined in Eq. (3.47). Therewith.
ct

a procedure for discarding the higher modes (that inflict spurious

oscillations into the numerical results) may be devised. Namely. for

any eigenvalue having modulus less than some specified value, the par

ticipation factors corresponding to that particular eigenvalue are set

to zero. This effectively eliminates the spurious contributions from

the modes associated with the "smallestll eigenvalues in Eqs. (3.37)

through (3.47).

The eigenformulation for the case of mixed boundary conditions

proceeds in the same manner and hence will be omitted for brevity. The

remainder of this section is focussed at presenting results similar to

those of Section 3.2 as a function of number of modes used. As in

Section 3.2. the demonstrational foundation is a circular cylinder. of

radius ~ embedded a depth of h ~ 2a into a viscoelastic half-space.

The internal source surface is chosen to be S~ (see Figure 3.1).

on which 35 ring sources are available. Thereby. the first 35 torsional

modes. 70 vertical modes. or 105 horizontal-rocking-coupling modes may

be scrutinized in an attempt to understand when and why the higher modes

introduce artificial undulations into the calculated displacement and

traction distributions.

Before analyzing the dependence of the foundation impedances.

and the displacement and traction distributions on the number of modes.

it is instructive to examine the behavior of the eigenvalues as
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catalogued in Tables 3.1 through 3.4. The five columns represent the

real parts of the eigenvalues as calculated when respectively using

35, 27, 14, 9 and 5 ring sources on the internal source surface S~.

The torsional eigenvalues are depicted in Tables 3.1, 3.2 and 3.3 at

dimensionless frequencies ao = .1, 1 and 5, respectively, while the

vertical eigenvalues are displayed only at ao =1 in Table 3.4.

The normalization of the eigenvalues is verified by observing

in Table 3.1 that the eigenvalue corresponding to the first torsional

mode may be obtained by utilizing anywhere from 5 to 35 ring sources.

Of course, only Nmodes are determined for torsion by N ring sources,

and hence the void locations. By comparing across the columns, it is

not surprising to find that the eigenvalues corresponding to the highest

modes are predicted less accurately than the lower mode eigenvalues.

This is explained by realizing that more than j number of sources

is required to accurately represent the eigenvalue corresponding to the

jthtorsi~na1 mode (or 2 x jth vertical mode). Such a phenomenon, which

is common to most modal analyses, becomes more striking at higher fre-

quencies, as is evidenced in Table 3.3.

Of equal significance in deciding which modes to discard during

a computation are the relative amplitudes of the corresponding eigen

values. For cases N=5 or 9, the amplitudes diminish with number of

modes by only two orders of magnitude and therefore, the contribution

from the highest modes may be required. Yet, as was previously pointed

out, the highest modes are necessarily less accurate than the lower modes.

For the case N= 35, one can discard the last few modes without rejecting

any essential information. The suite of 35 ring sources will be utilized

in the remainder of this section for discussion of the effects of number
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Tarsi anal
N = 14 N= ~ .t'A ;:: 5Mode N = 35 N = 27

1 .215E+Ol .214E+Ol •.212E+Ol .211 E+Ol .209E+Ol
2 .920E+00 .904E+00 •880E+00 .859E+00 •724E+00
3 . 356E+00 .349E+00 •342E+00 .342E+00 .314E+00
4 .156E+00 .158E+00 .155E+00 .157E+00 . 254E+00
5 .101E+00 .101 E+OO .978E-Ol .820E-Ol .566E-Ol
6 .667E-01 .656E-01 .607E-Ol .561 E-01
7 .376E-Ol .375E-Ol .457E-Ol AOOE-Ol
8 .256E-01 •. 253£-01 •277E-01 .307E-01
9 .182E-Ol .175E-Ol .169E-01 .164E-Ol

10 .110E-01 .111 E-Ol .116E-01
11 . 770E-02 •774E-02 ·.806E-02
12 .577E-02 .547E-02 .688E-02
13 .360E-02 .399E-02 .547E-02
14 .234E-02 . 223E:"'02 .567E-02
15 .203E-02 .177E-02
16 .113E-02 .114E-02
17 .813E-03 .765E-03
18 .573E-03 .610E-03
19 .423£-03 .422£-03
20 .295E-03 .277E-03
21 .237E-03 .227E-03
22 .160E-03 .162E-03
23 .112E-03 .105E-03
24 .851E-04 .853E-04
25 .563E-04 .689E-04
26 .451E-04 .512E-04
27 . 324E-04 .300E-04
28 .205E-04
29 .135E-04
30 .271 E-05
31 .185E-05
32 .405E-06
33 .286E-06.
34 .430E-07
35 .318E-07

Tao1 e 3.1

Real part of the torsional eigenvalues using N ring sources
on the internal source surface S~ at dimensionless frequency
ao=O.l.
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Torsional
Mode N= 35 N =27 N= 14 N= 9 N = 5

1 .304E+Ol .304E+Ol .301 E+01 .299E+Ol . 296E+01
2 .118E+Ol .116E+01 .113E+01 .110E+01 .902E+00
3 . 393E+00 . 386E+00 .·378E+00 . 376E+00 . 346E+00
4 .165E+00 .167E+00 .163E+00 .164E+00 .272E+00
5 .105E+00 .106E+00 .102E+00 .858E-01 .589E-Ol
6 .690E-01 .679E-Ol .628E-Ol .582E-01
7 .385E-01 .384E-01 .468E-Ol All E-01
8 .261E-01 .258E-01 .·232E-Ol .313E-01
9 .185E-01 .178E-01 .173E-01 .168E-Ol

10 .112E-01 .113E-01 .118E-Ol
11 .781E-02 .785E-02 .817E-02
12 .585E-02 .554E-02 .698E-02
13 .363E-02 .403E-02 .553E-02
14 .236E-02 .226E-02 . 572E-03
15 .205E-02 .179E-02
16 .114E-02 .115E-02
17 .820E-02 .771 E-03
18 .578E-03 .615E-03
19 .426E-03 .425E-03
20 .297E-03 .279E-03
21 .238E-03 .228E-03
22 .161E-03 .163E-03
23 .113E-03 .106E-03
24 .855E-04 .858E-04
25 .566E-04 .693E-04
26 .454E-04 .514E-04
27 .326E-04 .302E-04
28 .206E-04
29 .136E-04
30 . 272E-05
31 .185E-05
32 .407E-06
33 .287E-06
34 .431E-07
35 .316E-07

Table 3.2

Real part of the torsional eigenvalues using N ring sources
on the internal source surface Sa at dimensionless frequency
ao = 1.0.
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Torsional
Mode N= 35 N = 27 N = 14 N = 9 N = 5

1 - .801 E+OO -.799E+00 -.777E+00 -.745E+00 -.293E+00
2 .608E+00 .606E+00 .586E+00 .484E+00 .984E+00
3 .521E+00 .518E+00 .488E+00 .415E+00 .253E+00
4 .219E+00 .213E+00 .194E+00 .190E+00 . 238E+00
5 .164E+00 .164E+00 .167E+00 .179E+00 .657E-01
6 .795E-01 .791 E-01 .947E-01 .869E-01
7 .474E-01 .467E-01 .436E-01 .520E-01
8 .310E-01 .297E-01 .297E-01 .331E-01
9 .169E-01 .170E-01 .178E-01

10 .112E-01 .113E-01 .115E-01
11 .810E-02 .765E-02 .960E-02
12 .478E-02 .529E-02 .757E-02
13 .315E-02 .304E-02 -.123E-02
14 .267E-02 .231E-02 .722E-03
15 .142E-02 .143E-02
16 -.133E-02 -.135E-02
17 .100E-02 .945E-03
18 .701E-03 .746E-03
19 .510E-03 .507E-03
20 .350E-03 .329E-03
21 .280E-03 .267E-03
22 .186E-03 .189E-03
23 .130E-03 .121 E-03
24 .973E-04 .980E-04
25 .637E-04 .783E-04
26 .516E-04 .576E-04
27 .367E-04 .339E-04
28 .229E-04

I 29 .151E-04
30 .299E-05
31 .213E-05
32 .440E-06
33 .310E-06
34 .456E-07
35 .334E-07

Table 3.3

Real part of the torsional eigenvalues using N ring sources
on the internal source surface S~ at dimensionless frequency
ao = 5.0.
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Vertical
Mode N ::: 35 N :;; 27 N ::: 14 N:::9 N ::: 5

1 -.293E+01 -.292HOl -.288E+Ol -.279E+Ol -.251 HOl
2 .862E+00 .859HOO .848E+00 .820HOO .721E+00
3 .459E+00 .446E+00 .432HOO .428E+00 .451E+00
4 . 322E+00 .328E+00 .322HOO .304E+00 .401E+00
5 . 278E+00 .275E+00 .275E+00 .293HOO .261 HOO
6 .229HOO . 229E+00 .231E+00 .204E+00 .210E+00
7 .146E+00 . 146E+00 .148HOO .122E+00 .157E+00
8 .127E+00 .125E+00 .127E+00 .101 E+OO .117E+00
9 .943E-Ol .944E-Ol .888E-Ol .975E-Ol .701 E-01

10 .767E-Ol .771 E-Ol .815E-Ol .751E-01 .168E-Ol
11 .613E-Ol .619E-Ol .560E-Ol .657E-Ol
12 .457E-Ol .462E-Ol .432E-01 .584E-Ol
13 .404E..Ol .401 E-01 .354E-Ol .306E-Ol
14 .326E-Ol .326E-Ol .330E-Ol .224E-Ol
15 . 295E-Ol . 288E-Ol .284E-Ol .174E-Ol
16 .263E-Ol .256E-Ol .259E-01 .108E-Ol
17 .196E-Ol .193E-Ol .212E-Ol .855E-02
18 .171 E-Ol .176E-Ol .191 E-01 .431E-02
19 .123E-Ol .122E-Ol .164E-Ol
20 .116E-Ol .109E-Ol .132E-Ol
21 .935E-02 .933E-02 .838E-02
22 .727E-02 .694E-02 .620E-02
23 .627E-02 .660E-02 .396E-02
24 .571 E-02 .562E-02 .340E-02
25 .487E-02 .492E-02 .312E-02
26 .393E-02 .388E-02 .307E-02
27 .366E-02 .351E-02 .277E-02
28 .309E-02 .306E-02 .354E-03
29 .252E-02 .223E-02
30 .208E-02 .210E-02
31 .157E-02 .163E-02
32 .141E-02 .141E-02
33 .122E-02 .115E-02
34 .109E-02 .107E-02
35 .918E-03 .859E-03

Table 3.4

Real part of the vertical eigenvalues usinq N ring sources
on the internal source surface S~ at dimensionless frequency
a
o

::: 1.0.

285



Vertical
Mode N= 35 N= 27 N= 14 N= 9 N= 5

36 .786E-03 .746E-03
37 .658E-03 .711E-03
38 .558E-03 .576E-03
39 .536E-03 .557E-03
40 .387E-03 .387E-03
41 .275E-03 .270E-03
42 .252E-03 .222E-03
43 .223E-03 .165E-03
44 .166E-03 .156E-03
45 .155E-03 .149E-03
46 .123E-03 .113E-03
47 .118E-03 .105E-03
48 .950E-04 .858E-04
49 .861E-04 . 745E-04
50 .791E-04 .712E-04
51 . 572E-04 .673E-04
52 .557E-04 . 527E..04
53 .451E-04 .519E-04
54 .329E-04 . 286E..04
55 .174E-04
56 .122E-04
57 .105E-04
58 . 783E-05
59 .381E-05
60 .298E-05
61 .194E-05
62 .'137E-05
63 .479E-06
64 . 343E-06
65 .271 E-06
66 .142E-06
67 .444E-07
68 .435E-07
69 .408E-07
70 -.101E-07

Table 3.4 (continued)
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of modes on the foundation impedance functions as well as on the dis

placement and traction distributions.

The torsional and vertical stiffness coefficients are displayed

as a function of number of modes util ized in Figures 3.11 and 3.12.

respectively. The different curves represent the five dimensionless

frequencies ao ~ .1, .5,1,2,5. In accordance with the decrease in

amplitude of the eigenvalues, convergence is achieved as more modes are

added at all frequencies. Of particular interest is naturally the larger

number of modes necessary at high frequency to achieve the same degree

of convergence experienced at low frequency. Of major importance,

however, is the divergent trend beginning around 33 modes for the tor

sional stiffness and around 60 modes (35 sources used) for the vertical

stiffness. This is precisely the conditioning problem due to the proxi

mity of the individual sources on the internal source surface, as dis

cussed in Section 3.2. Such a conditioning problem was determined to be

insurmountable with the II standard inversion ll method of solution in the

previous section. On the other hand, the eigenanalysis offers an

immediate solution to the problem with no limitation on the proximity of

sources. The resolution is to use as many sources as desired and then

truncate the modal summation after a specified convergence is achieved,

before including any possibly spurious higher modes.

In Figure 3.13, the real parts of the vertical displacement along

the mantle of the cylinder are displayed at three representative fre

quencies ao = .1, 1,5 (from left to right). The different~curves

on each plot correspond to various numbers of modes used, as indicated.

Comparing the displacement distribution at ao ~ 5 (using 52 out of 70

28i
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modes) to the corresponding displacement distribution in Figure 3.4

(standard inversion with 27 sources) reveals that the eigen generated

displacements are consistently closer to the exact response of unity,

although the differences are on the order of only one percent. Similar

comparisons can be made between the torsional traction distribution along

the mantle in Figure 3'.14 with the analogous distribution displayed in

Figure 3.7 at dimensionless frequency ao = 1.0.

In summary, an alternative to the "standard inversion" formula

tion has been presented in which all the quantities of interest are

expressed in terms of modal summations, with each mode corresponding to a

unique combination of the discrete forces. The limitation on the number

(or proximity) of sources evidenced in the IIstandard 'inversion ll method

of solution has been eliminated by truncating the modal summation when

convergence is achieved. Although one may thereby utilize as many sources

as desired on a given internal source surface, the numerical oscillations

in the displacement and traction components near a corner of the founda

tion surface may be reduced more effectively by locating the internal

source surface closer to the foundation surface.
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CHAPTER 4

RESULTS AND COMPARISONS

4.1 IMPEDANCE FUNCTIONS FOR EMBEDDED FOUNDATIONS

As an application of the method described in the previous chap

ters, the impedance functions for rigid cylindrical foundations embedded

in a uniform viscoelastic half-space are calculated. The effects on the

impedance functions of the embedment depth, the type of contact between

the foundation and the surrounding soil, and the attenuation in the soil

are studied. In addition, the consequences of introducing layering into

the soil deposit are examined, and a number of comparisons with results

obtained by other methods are presented.

In this section, a study ;s made on the effects of embedment depth

for cylindrical foundations having embedment ratios h/a (embedment depth

h to foundation radius ~) equal to 0.25, 0.5, 1.0, and 2.0, as shown

in Figure 4.1. In each case, the cylindrical foundation is embedded in
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periphery of the foundation defined by surface of revolution S con

taining the observation points) is shown graphically in Figure 4.1 for

the various cylinders. Also~ the number of source points~ N~ on L'~

the number of observation points~ M~ on L~ the spacing bL of points

on L~ and the offset of L-L' of internal line L' relative to L can

be found as subcaptions below each foundation displayed. Accuracy tests

such as these presented in Section 3.2 confirm that the discretizations

in Figure 4.1 are extremely conservative~ especially since only the

foundation impedance functions are to be studied in this sectiQn.

In addition to analyzing the effects of varying the embedment

ratios~ the results will serve another important purpose. Recently~

Day (1977) was able to accurately obtain the same impedance functions

for the welded contact problem using the finite element method as dis

cussed in Section 1.2. Therefore~ the reliability of both methods will

be established through comparison of the impedance functions for cylin

ders embedded in a uniform half-space.

The five complex impedance functions normalized as in Eq. (2.41)

are plotted against dimensionless frequency ao = wafs in Figures 4.2

through 4.ll~ for the various embedment ratios. The real parts of the

impedance functions will be referred to as stiffness coefficients while

the corresponding imaginary parts divided by the dimensionless frequency

will be referred to as damping coefficients. In each figure~ the dimen

sionless stiffness or damping coefficients are compared to those obtained

by Day (1977) for embedment ratios of 0.5~ 1.0~ and 2.0 in the range of

dimensionless frequency between zero and six. The results obtained with

the present method are distinguished by solid lines while Day's results

29~
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are displayed with dashed lines. In interpreting these comparisons, it

must be kept in mind that Day's transient finite element results were

obtained for a perfectly elastic soil deposit (no material attenuation)

while the present integral equation results include a small amount of

material damping.

It may be observed that the embedment ratio (h/a) has a marked

effect on the torsional stiffness coefficients (Figure 4.2) -- an in-

crease in the embedment ratio leads to an increase in the stiffness

kTT at all frequencies. In particular, the torsional stiffness in

creases almost linearly with embedment ratio for a fixed dimensionless

frequency a. Also, the torsional stiffness is a decreasing functiono
of frequency until it approaches an asymptotic value for each embedment

ratio.

It may be seen in Figure 4.2 that there is close agreement be

tween the finite element and integral equation results. The only signi

ficant differences appear at high frequencies where the finite element

results are slightly lower than the corresponding results obtained by

the present method. The difference at high frequency is proportional

to a~ indicating that the discrepancy is due to the finite element

approximation of the mass distribution of the soil model adjacent to the

foundation surface. There are several indications that this discrepancy

at large ao is associated with errors in the finite element results.

Firstly, the material damping introduced in the integral equation method

tends to slightly reduce the stiffness coefficients at high frequency

(as will be discussed in more detail in Section 4.2). Since the transient

finite element results do not incorporate material damping into the

30E



analysis, then the finite element stiffnesses should be higher than those

obtained by the present method as the frequency is increased. Secondly,

a comparison of Day's finite element results for the torsional impedance

of a hemispherical foundation to the analytical solution obtained by

Luco (1976) reveals that the finite element method tends to underesti

mate the stiffness at high frequencies with the error proportional to

0.12 a~ (see Day, 1977, pp. 76-77). Finally, there are similar dis

crepancies at high frequencies in the tortional damping coefficients

(Figure 4.3), but it is the integral equation results that appear to

more closely approach the exact asymptotic values at high frequencies

for the rigid cylinders embedded in a uniform half-space.

The torsional damping coefficients (Figure 4.3) increase almost

linearly with (h/a) for a fixed ao. In particular, it may be shown

for high values of ao' that the radiation damping for different embed

ment ratios is in the ratio of the moments of inertia about the vertical

axis of the corresponding soil-foundation contact areas. In general,

the torsional damping coefficients are increasing functions of frequency

until the asymptotic values are reached. The asymptotic values are

shown in Figure 4.3 by lines adjacent to the results for different embed-

ment ratios. An exception to this behavior may be seen at low frequencies

where material damping causes an increase in the values of the damping

coefficients (see Section 4.2 for more details).

In summary for the torsional stiffness kTT and torsional

damping coefficients cTT ' excellent agreement with Day's transient

finite element results has been achieved with the slight discrepancies

completely accounted for. Both the torsional stiffness and damping
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coefficients are approximately linear functions of embedment ratio for

a given frequency. Also, both are frequency dependent and consequently,

the soil reaction may not be represented accurately by a constant spring

dashpot system even for a uniform half-space (the frequency dependence

will naturally be even more pronounced when considering layered media).

The comparisons for the other impedance functions further

establish the reliability of both methods. The most significant

differences occur for the vertical and horizontal stiffness coefficients

at high frequencies and are probably associated once again with short

comings of the finite element method for small wavelengths.

Unlike the torsional impedances, the vertical impedances (Figures

4.4, 4.5) are relatively independent of frequency for all embedment

ratios except for the broad minimum in the stiffness coefficients

occurring in the vicinity of ao = 3 for embedment ratios less than

unity. The vertical damping coefficients (Figure 4.5) increase linearly

and strongly with embedment ratio while the effect of embedment on the

vertical stiffness is not as marked. Once again, the agreement with Day

is good with the largest differences related to the frequency limitation

of the finite element approach.

The behavior of the horizontal impedances shown in Figures 4.6

and 4.7 is similar to that of the vertical impedances shown in Figures

4.4 and 4.5. The dependence on frequency is minimal and the horizontal

damping coefficients increase more strongly with embedment ratio than

the horizontal stiffness coefficients.
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For the rocking and coupling impedances shown in Figures 4.8-4.11!

it must be stated that the point of reference is at the center of the

base of the cylinder. The behavior of the rocking impedance coefficients

presented in Figures 4.8 and 4.9 as a function of frequency closely re

sembles the frequency dependence of the torsional impedance functions.

The coupling impedances illustrated in Figures 4.10 and 4.11 are vir

tually frequency independent. One distinguishing feature for the rocking

and coupling impedances is that the increase with embedment ratio is

stronger than linear.

The computed values for the five damping coefficients are com

pared to the exact asymptotic values for ao approaching infinity in

Table 4.1. Day's finite element results calculated at ao ~ 6 are

displayed in column two for each radiation damping coefficient. The

present integral equation results calculated at ao = 10 are displayed

in column three for each damping coefficient. The results shown in

Table 4.1 indicate that both the transient finite element method and

the integral equation method provide sufficiently accurate results

(less than 10% error at high frequency) for most practical applications.

These results also confirm that the integral equation method of solution

leads to slightly better accuracy.

Values for the impedance functions calculated by the present

integral equation method are tabulated in Appendix I. Results are

presented at ten representative dimensionless frequencies for each of

the four cylindrical foundations studied with the integral equation

method in Figures 4.2 through 4.11 (embedment ratios of 0.25! a.5! 1.0!

2.0).
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The next section analyzes the effects of varying the amount of

material damping in the soil, while Section 4.3 considers the effects of

lateral separation on the impedance functions for cylindrical foundations.

4.2 EFFECTS OF MATERIAL ATTENUATION ON THE Ir1PEDANCE FUNCTIONS

It is the purpose of this section to describe in detail the

effects of including physically realizable material attenuation into the

soil model. The effects of material damping on the impedance functions

are investigated by considering the cylindrical foundation with an embed

ment ratio of 0.25 as modelled in Figure 4.1 and by calculating the

impedance functions for various degrees of material damping in the soil.

The material damping in the viscoelastic half-space is assumed to be

of the hysteretic type.

The impedance functions are evaluated for shear wave material

damping ratios of 1,5 and 10 percent, corresponding to specific

attenuation factors for shear waves, QS' of 50, 10 and 5, respectively

(specific attenuation factors for compressional waves, Q , are 100, 20,
a

and 10 for the three cases considered). The five complex impedances

normalized as in Eq. (2.41) are presented in Figures 4.12 through 4.21

as a function of dimensionless frequency, ao' for the three different

values of material damping.

In general, the results obtained indicate that material damping

tends to reduce the stiffness coefficients at high frequencies. This

trend begins at moderate frequencies and broadens as the frequency is

increased. At low frequencies, the degree of material damping has

negligible influence on the stiffness coefficients (Figures 4.12, 4.14,

4. 16, 4. 18, 4.20).
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Conversely, the effects of material damping on the damping

coefficients are quite marked at low frequencies and decrease as the

frequency increases (Figures 4.13, 4.15, 4.17, 4.19,4.21). The trend

in the radiation damping coefficients is an increase in amplitude as the

material damping is increased.

For hysteretic type material damping, the damping ratio,

~s = 2~ ' is independent of frequency and is analogous to the precen
S

tage of critical damping under resonant conditions, or during free vibra-

tions. For this type of material damping, it can be shown that the

damping coefficients tend to 2~s/ao as ao approaches zero (see Luco,

1976b). To give a rough idea of the practical ranges of ~S and hence

Qs' one should realize that the hysteretic damping constant ~s is

strain dependent: values for low strain may be less than 0.02, while

for high strains ~s may reach values of 0.15 or 0.20.

It is important to mention that the integral formulation employed

can also be used to investigate other attenuation mechanisms in addition

to the hysteretic type just described.

4.3 EFFECTS OF CONTACT CONDITIONS ON THE IMPEDANCE FUNCTIONS

In many situations, it is not realistic to assume that the founda-

tion is in welded contact with the surrounding soil. The presence of

backfill or the possible inelastic deformation of the top soil layers

suggest that a more realistic model for the contact conditions must allow

for the lateral separation between the foundation and the soil. The

effects of lateral separation are investigated by considering various

degrees of contact between a cylindrical foundation of embedment ratio
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2.0 and the surrounding soil represented by a uniform viscoelastic

half-space (~e = 0.01, ale = 13). Four cases are considered: in the

first case, the foundation is perfectly welded to the surrounding soil

(0% separation); in the second case, the top 25% of the lateral boundary

of the foundation acts independently from the soil while the rest of

the foundation remains in welded contact (25% separation); the third

and fourth cases correspond to 50% and 75% separation, respectively.

The torsional stiffness and torsional damping coefficients

plotted versus dimensionless frequency are shown in Figures 4.22 and

4.23, respectively, for the four different degrees of contact. The

torsional stiffness, krT (Figure 4.22), undergoes a dramatic reduction

in amplitude at all frequencies as the percentage of lateral separation

is increased. Another interesting feature is the fluctuations intro

duced by the separation conditions. Both the reduction in amplitude

and the fluctuations are easily interpretted by considering the physics

of the separation problem. The separation zone acts as if the soil

surrounding the foundation in this region were extremely soft so that

the stiffness of the soil to the rigid body movements is effectively

zero in this region. Therefore, the separation condition could be

approximated by considering a soft layer instead of the separation zone

and carrying out the analysis as if welded contact were prescribed.

Similar reductions in amplitude and appearances of fluctuations

as a function of frequency are exhibited in Figure 4.23 for the tor

sional damping coefficient, cTT . At high frequencies, it appears as

though the reduction is linearly proportional to the percentage of

separation. It is interesting to notice that the damping coefficients
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for a cylindrical foundation with an embedment ratio of h/a = 2.0 and

with lateral separation on the top 50% of the mantle are very close to

the corresponding damping coefficients for a cylindrical foundation

welded to the soil and with an "effective Jl embedment ratio of h/a = 1.0

(refer to Figures 4.23 and 4.3).

To summarize, with the torsional impedances serving as typical

results, the reduction in amplitude is directly attributable to the

reduced contact area on wHich the soil resists the movements of the

foundation. The fluctuations as a function of frequency appear analo

gously to problems in which the soil deposit is layered. If not for

the fluctuations, the lateral separation conditions would lead to re-

sults similar to those for foundations less deeply embedded (Jleffective"

embedment would be approximately the total embedment depth h minus

the depth of the separation zone).

4.4 COMPARISON WITH FINITE ELEMENT FOR LAYERED CASE

Until this section, all the results presented were for foundations

embedded in uniform semi-infinite media. Now, the case of a rigid cylin

drical foundation of radius a = 40 feet embedded to a depth h = 16

feet in a layered soil deposit is to be considered. The soil deposit

consists of two parallel viscoelastic layers overlying a uniform visco

elastic half-space and the soil properties are listed in Table 4.2.

Both the time domain finite element method and the present inte

gral equation method were used to solve the radiation problem. Since

the present method is based on solving integral equations involving the

Green's functions, there is virtually no additional effort required to
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f3 a.
1blft3 Thickness

Layer ft/sec ft/sec Qs Q
a

ft

1 980 2400 133 100 200 16

2 1270 2540 133 100 200 16

3 1380 2760 133 150 300 00

Table 4.2

Material properties for the earth structure used
in comparison with finite element solution for
simple layered problem.
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include the layers in the model because the Green's functions for the

viscoelastic layered half-space are readily obtainable as in Part I of

this dissertation.

The rigid cylindrical foundation considered has an embedment

ratio of 16/40 as shown in Figure 4.24 and is assumed to be in welded

contact with the sourrounding soil. Relatively large specific attenuation

factors (Qs = 100 corresponding to a material damping ratio of 0.5) were

chosen for the comparisons since the finite element results correspond to

the case of no material damping.

The horizontal, rocking and coupling impedance functions,

referred to the center of the base of the foundation, are tabulated in

Table 4.3 at seven representative frequencies. The stiffness and

damping coefficients have been normalized as in Eq. (2.41) by the shear

modulus and shear wave velocity of the top layer. Comparing the results

obtained in Table 4.3, good agreement is found particularly at low fre

quencies. Realizing how vastly different are the two solution tech

niques, considerable confidence should be given to the results of both

methods for such a complex problem.

In the next section, a more complex layering profile extending

to a depth of 20 times the foundation embedment is considered.

4.5 OTHER RESULTS

In this section, the present method (numerical solution to

integral equations involving the dynamic Green's functions for layered

viscoelastic media) is applied to a typical foundation embedded in a

typical soil medium. In particular, the soil-foundation system to be
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analyzed is shown in Figure 4.25 where the foundation is a rigid (in

comparison with the surrounding soil) circular cylinder of radius 40 feet

and embedment depth 18 feet. The soil deposit consists of six parallel

viscoelastic layers overlying a uniform viscoelastic half-space with the

layer properties given in Table 4.4.

The foundation is discretized as in Figure 4.26 according to the

suggestions presented at the end of Section 3.2. First, the number of

ring sources, N, to be used on the internal source surface is chosen con

servatively to be 26. The location of the source surface S~ is chosen

to be offset from the observation surface S by 2.5 feet and the spacing

~L on a line on surface S is taken to be 1.0 feet (so that M~ 59).

Thereby, accurate final results (impedance functions) as well as accurate

intermediate results (displacement and traction distribution on S) are

insured.

The horizontal, rocking and coupling impedances, normalized as in

Eg. (2.41) by the shear modulus and shear wave velocity of the top layer,

are displayed in Figure 4.27. The impedances are referred to the center

of the base of the foundation and welded contact is assumed at the boun

dary between the foundation and the surrounding soil. As a general ob

servation, one should notice the strong dependence on frequency in all

the stiffness and damping coefficients, so that the soil reaction can in

no way be represented by a constant spring-dashpot system.

Of particular distinction is the considerable reduction of the

damping coefficients cHH ' cMM ' cMH ' especially at low frequencies, com

pared to the respective stiffness coefficients kHH , kMM , kMW This

reduction is explained by the fact that the layers underyling the
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S a p Thickness
Layer ft/sec ft/sec lb/ft3 Qs Qa ft

1 630 1260 133 50 100 6

2 1110 2220 133 50 100 12

3 1380 2760 133 50 100 14

4 1600 3200 133 50 100 34

5 2000 4000 133 50 100 270

6 2500 5000 133 50 100 53

7 3100 6200 133 50 100 co

Table 4.4

Material properties for a 7-layer model of the
Millikan Library geologic site at California
Institute of Technology.

33~



a---~

................. .1
r

3

N=26
M =59

b.L =a /40
L - L' =2.5b.L z

Figure 4.26. Boundary geometry, coordinate system and
discretization used for analysis of model
described in Figure 4.25.



335

40

(J)
Q)
o
c:
o
-0
Q)

c.
E

35

30

25

20

15

654321
o -

o

CHH ----------... -----..,-
10 ------

I __ --..,.,..,, ..,
\ /'
,-"

5 I, ~KMH

\:---=-=~~:::::::;:'=::::--::=:-;"::"':":"'__~o..=..:::...=..::,-==

(J)
(J)
Q)

c:
o--
(J)
c:
Q)

E
o

Dimensionless Frequency, 0 0

Figure 4.27. Dimensionless impedance coefficients for
cylindrical foundation embedded in layered
viscoelastic half-space as depicted in
Table 4.4 and Figures 4.25 and 4.26.



foundation are stiffer than the surface layers, retarding the radiation

of energy away from the foundation at low frequencies.

The behavior of the damping coefficients at low frequency and

the behavior of the stiffness coefficients at high frequency offers no

surprises in light of the discussion concerning material damping in

Section 4.2. The frequency dependence of the horizontal and rocking

stiffnesses are quite similar and the coupling stiffness is rather

insignificant.

These results indicate that the present integral equation formu

lation used in conjunction with the Green's functions for layered visco

elastic media provides an excellent technique to obtain the response of

foundations embedded in layered viscoelastic media.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The integral equation formulation used in conjunction with the

Green's functions for layered viscoelastic media provides an accurate

and effective method for studying the response of foundations embedded

in layered viscoelastic media. Such an analysis resolves two prevailing

shortcomings in the present state-of-the-art: 1) the practice of re

stricting the soil model to a homogeneous, non-dissipative, purely

elastic half-space; and 2) the practice of constraining the analysis to

the case of flat foundations. The flexibility of the integral equation

method permits its application to a wide variety of problems such as the

generation of nonreflecting boundary conditions for use in properly

modeling the extended earth with finite elements; the response of valleys

and canyons to incoming waves; and the equivalent source representation

for propagation purposes.

Extensive internal checks and comparisons with available results

were presented in Chapters 3 and 4, respectively, to document the accuracy

of the method. Guidelines for efficient implementation of the discretiza

tion and sUbsequent numerical solution of the integral equations were also

enumerated.

Basically, to accurately represent the displacements and tractions

on the surface of the foundation, the number of sources chosen on the

internal source surface must be sufficient for the problem considered

(more sources necessary when corners exist on the foundation surface or
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when mixed boundary conditions are imposed). For axisymmetric foundations,

it is demonstrated that 10 or 15 ring sources are adequate. The loca

tion of the internal source surface is selected as close to the surface

of the foundation as is economically feasible considering that the closer

the internal surface, the more pronounced the Green's functions become,

thus requiring more observation points to accurately evaluate the numeri

cal integral s. For axi symmetric foundations, it is suggested to demar

cate the internal source surface by uniformly shrinking the foundation

surface an amount 2 1/2 times the spacing of the observation points on the

foundation surface.

The effects of embedment on the impedance functions for cylindri

cal foundations reveal that embedment has a marked influence on the res

ponse. Both the stiffness and damping coefficients (real and imaginary

part of the impedance, respectively) increase with increasing embedment

at all frequencies and for all components. In general, the damping

coefficients are more strongly influenced by the embedment than the

corresponding stiffness coefficients. However, as a function of frequency,

the various impedance functions tend to preserve their shape as the

embedment is changed. Yet, the impedance functions are frequency depen

dent and consequently, the soil reaction may not be accurately modeled

with a constant spring-dashpot system.

The effects of material damping on the impedance functions are

to reduce the stiffness coefficients at high frequencies and to increase

the damping coefficients at low frequencies. Hysteretic type material

damping was assumed in all the results, but the integral equation

analysis can also be used to investigate other attenuation mechanisms.
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The effects of considering various degrees of lateral separation

at the contact between cylindrical foundations and the surrounding soil

lead to the conclusion that the reduction in amplitude of the impedance

functions is directly ascribable to the reduced contact area on which the

soil resists the movements of the foundation. Also, the fluctuations

introduced into the impedances as a function of frequency are attributable

to the lateral zone of separation where the stiffness of the soil to the

foundation movements is effectively zero (similar to imposing an extremely

soft layer in place of the separation zone).

With the ever increasing speed and capacity of the modern computer,

the present integral equation method should be capable of performing three

dimensional analysis of nonaxisymmetric problems. Also, once the input

motion for the foundation-soil system is determined by this same integral

equation approach, then the complete soil-structure interaction problem

may be solved with the foundations embedded in layered viscoelastic media.
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