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ABSTRACT

The results of forced and ambient vibrations studies of an eight

story apartment building, constructed with prefabricated wall panel and

slab elements are presented. Dynamic characteristics, such as resonant

frequencies, damping, and vertical and horizontal mode shapes of the

structure were determined and correlated with analytical results using

the computer program TABS-77.

Rigid floor diaphragm action and serious structure-foundation inter­

action were observed. Including the foundation flexibility in the

analytical model resulted in resonant frequencies and mode shapes

showing excellent agreement with the test data.

The results of full scale dynamics studies of an other, structurally

identical, l2-story apartment building with a basically identical floor

plan, are also presented,and indicate a direct'lproportionality betweef)

structural height and fundamental periods.
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1. INTRODUCTION

1.1 General

The design of multistory structures subjected to dynamic forces

resulting from foundation motions requires a consideration of both the

characteristics of the ground motion and the dynamic properties of the

structure. Ground motions as caused by an earthquake are random and~

although not prescriptible for as-eismic design~ have been fairly well

studied for certain well-known past earthquakes. The engineer is there­

fore mainly interested in the dynamic properties of the structure when

designing for earthquake forces and is only indirectly concerned with the

ground motion characteristics.

High speed digital computers and more sophisticated idealizations

and computer model formulations of structures can predict the

elastic and~ provided that proper· non-linear algorithms can be defined~

also the inelastic response of such structures when subjected to earthquakes.

However~ the accuracy of the results in large measure depend upon the

computer model formulation of the structure and its foundation. In order

to determine the accuracy of the calculated results and to accumulate a

body of information on the dynamic properties of structures, especially

when these structures have novel design features~ dynamic tests

have been conducted on full-scale structures (1).

In order to assess particularly the dynamic characteristics of

prefabricated type of structures~ dynamic tests using both forced and

ambient vibration methods were performed on the Los Portales Building in

Oakland~ California~ a "Forest City Dillon" prefab panel structure. Because

of the potential advantages of the ambient vibration method in dynamic

testing of full-scale structures, it was desirable to compare the ambient

and forced vibration results and to assess the accuracy of each method in

evaluating the dynamic properties of structural systems.
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The building is described in Chapter 2, and the results of the dynamic

tests, from the forced, and ambient vibration studies, are given in

Chapters 3 and 4, respectively. A comparison of the experimental results

obtained from both studies is presented in Chapter 5. For purposes of

correlation a mathematical model of the structural system was formulated,

and the calculated and experimental dynamic properties were compared. The

formulation of the mathematical model and the analytical dynamic properties

obtained are described in Chapter 6. Conclusions, incorporating the results

of a second, 12-story high "Forest City Dillon" structure with similar

floor plan, are presented in Chapter 7.

1.2 Acknowledgement

The authors gratefully acknowledge the financial support provided by

the National Science Foundation under Grant PFR-7908257. They also wish to

thank the owner, the Spanish Speaking Unity Council of Oakland; the general

contractors Hunt Construction Company of Sacramento, Forest City Dillon, Inc.

and Teron Pacific; and the Architects, Ogren, Juarez and Gines, especially

Mr. Robert A. Ogren, for their help and cooperation in coordinating and

carrying out the test program.
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2. THE LOS PORTALES BUILDING

2.1 General

The Los Portales Building in Oakland, tested in February 1979, is

constructed with reinforced concrete, prefabricated cellular wall panels and

solid floor slab elements. At the site reinforcement is placed in the

panel cells which are subsequently nilled with concrete. As the modular

design of the building includes pre-fabricated kitchen and bathroom units,

construction progressed at a rate of one story every two days.

2.2 Architectural Layout

The 8-story bui 1di ng (Fi g. 2.1) has a hei ght of 70 I -8 11 and overall

dimensions of approximately 164 1 x 80' in plan. It is designed as a housing

development for the elderly and therefore modular in concept~ The building

is serviced by two elevators located in the center, and two stairwells on

the east side of either end of the structure (Fig. 2.2).

2.3 Structural System

The structure is a IIForest City Dillon ll prefabricated building system.

The vertical and horizontal load resistance is provided by reinforced concrete

shear walls, oriented in both transverse and longitudinal direction. The wall

dimensions, with a typical thickness of 811
, are constant over the entire

height, except for a few openings on the first floor. The wall elements

are cellular. However, placement of vertical reinforcement and 4000 psi

concrete in these cells result in a basically monolithic shear wall panel

system. The shear walls rest on spread footings which in turn are supported

by 12" square prestressed concrete piles, varying in length from 45 to

60 feet.

The "Forest City Dillon" system uses solid reinforced concrete floor

elements. The 8 feet wide floor elements have a thickness of 4" and span

- 3 -



22 feet. At the site, a 411 concrete topping is placed on these elements,with

reinforcing at the joints between single floor elements (Fig. 2.4). Preassembled

kitchen and bathroom units have an 8" thick slab and are constructed with

protruding reinforcement to tie into the 411 topping of the adjacent

floor panels. Fig. 2.3 shows a typical wall panel system with reinforcing.

Details of exterior and interior wall~floor joints are shown in Fig. 2.4.

2.4 Soil Conditions

The following description of the soil conditions at the site and Fig. 2.5

are taken from a report prepared by Converse Davis Dixon Associates,

Geotechnical Consultants, San Francisco.

IIFrom geologic data it appears that the site is underlain by
approximately 500 feet of Pleistocene and Holocene age sediments
overlying bedrock. The uppermost geologic formation (Temescal)
consists of approximately 20 feet of lightly overconsolidated
clays and sands and clayey gravels (stream deposits) filling old
drainages in the underlying stiff overconsolidated clays.
The exploratory borings encountered two to three feet of low density
clayey silt; overlying moderately compressible silty clay and
sandy clay extending to depths of five to eight feet. A brown
to yellow sandy clay, of slight to moderate compressibility, was
encountered below five to eight feet and extended to approximately
15 feet. The clayey soils above eight feet in depth exhibited
high strength at their natural moisture content. Upon saturation
however, the strength drops significantly.
Below 15 feet a clayey sand and gravel was encountered extending to
a depth of approximately 20 feet. The lower two feet of this layer
contained coarser gravel and caved rapidly during drilling.
Below 20 feet, stiff to very stiff silty sandy clays with occasional
layers of dense sand and clayey sand were encountered extending to
the depth of exploration (100 ft.). A definite change in the soil
properties occurred at about 40 feet in depth.
Measured strengths below 40 feet are more than twice those between
20 and 40 feet, and densities were on the order of 50 to 10 percent
higher below 40 feet.
The groundwater level was observed to be at a depth of 16 feet
(elevation 82.8) during drilling. The depth was estimated based on
free moisture observed in a sample taken prior to introducing
water as drilling fluid. Seasonal fluctations in groundwater level
are to be expected. 1I
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3. FORCED VIBRATION STUDY

3.1 General

The forced vibration study was carried out and completed during February

1979. The building was structurally completed prior to the experimental

work. The experimental apparatus employed in the dynamic test is described

below. The general experimental procedures, equipment used, and procedures

for data deduction applied, for forced vibration study conducted are also

described. Finally, the experimental results are presented and discussed.

3.2 Experimental Apparatus

The experimental apparatus employed in the tests were two vibration

generators, twelve accelerometers and equipment for the measurement and

recording of the frequency responses. The apparatus is described in the

followinq·sections.

3.2.1 Vibration Generators

Forced vibnations were produced by two rotatinq-mass vibration

generators or shaking machines, one of which is shown in Fin. 3.1. These

machines were developed at the California Institute of Techno1ooy under

the supervision of the Earthquake Engineering Research Institute for the

Office of Architecture and Construction, State of California. Each machine

consists of an electric motor drivin~ two pie-shaped baskets or roters,

each of which produces a centrifugal force as a result of the rotation.

The two rotors are mounted on a common vertical shaft and rotate in

opposite directions so that the resultant of their centrifunal forces is

a sinusoidal rectilinear force. !~hen the baskets are lined up, a peak

value of the sinusoidal force will be exerted. The structural desiqn of

the machines limits the peak value of force to 5,000 lbs. This maximum

force may be attained at a number of combinations of eccentric mass and

rotational speed, since the output force is proportional to the square of

- 10 -



the rotational speed as well as the mass of the baskets and the lead

plates inserted in the baskets. The maximum force of 5,000 lbs. can be

reached for a minimum rotational speed of 2.5 cps when all the lead

plates are placed in the baskets. At higher speeds the eccentric mass

must be reduced in order not to surpass the maximum force of 5,000 lbs.

The maximum operating speed is 10 cps, and the minimum practical speed is

approximately 0.5 cps. At 0.5 cps with all lead plates in the baskets, a

force of 200 lbs. can be generated. The relationship between outDut

force and frequency of rotation of the baskets for different basket loads

is shown in Fig. 3.2.

The speed of rotation of each motor driving the baskets is controlled

by an electronic amplidyne housed in a control unit. The control unit

allows th~ machines to be ~ynchronzed or operated 180 0 out-of-phase.

This makes it convenient to excite, in structures with a line of symmetry,

either torsional or pure translational vibrations without channina the

position of either machine. A complete description of the vibration gen­

erators is given in (2).

3.2.2 Accelerometers

The transducers used to detect horizontal floor accelerations of the

building were Statham Model A4 linear accelerometers, with a maximum

rating of ± 0.25 g.

3.2.3 Equipment for Measurement of Frequen~y

For the vibration qenerators, the vibration excitation frequencies

were determined by measurement of the speed of rotation of the electric

motor driving the baskets. A tachometer, attached to a rotatin0 shaft

driven by a transmission belt from the motor, generated a sinusoidal siq­

nal of frequency 300 times the freauency measurements was ±l count in

- 11 -



the total number of counts in a period of 1 second (the qating period),

i.e., 1/3 of 1% at 1 cps and 1/9 of 1% at 3 cps.

3.2.4 Recording Equipment

The electrical signals for all accelerometers were fed to amplifiers

and then to a Honeywell ~'1odel 1858 Graphic Data Acquisition System with

8-in. wide chart. In frequency-response tests, the digital counter read­

ing was observed and recorded manually on the chart alongside the associated

traces.

3.3 Experimental Procedure and Data Reduction

The quantities normally determined by a dynamic test of a structure

are: resonant frequencies, mode shapes, and damping capacities. The

experimental procedures are reduction of data involved in determining

these quantities are described in the next section.

3.3.1 Resonant Frequencies

With the equipment described on the previous oaqe, resonant fre­

quencies are determined ~y sweeoing the frequency ranqe of the vibration

generators from 0.2 to 10 cps.

In the case of the vibration generators, the exciting frequency is

increased slowly until acceleration traces on the recording chart are

large enough for measurement. Above this level, the frequency is increased

in steps until the upper speed limit of the machine is reached. Near

resonance, where the slope of the frequency-response curve is chan9ina

rapdily, the frequency-interval steps are as small as the speed control

permits. These steps are relatively large in regions a\'Jay -from resonance.

Each time the frequency is set to a particular value, the vibration res­

ponse is given sufficient time to become steady-state, before the accelera­

tion traces are recorded. At the same time, the frequency of vibration,

- 12 -



either side of the longitudinal centerline, near the center of the building.

With the appropriate adjustments to the vibration generator equipment it was

possible to apply translational or torsional forces to the building. The first

mode in the El~ and in the NS directions as well as the first torsional mode

were exc ited.

Frequency response curves for ~W, NS and torsional excitation near resonance

are shown in Figs. 3.4, 3.5 and 3.6, respectively. The curves are plotted in

the form of normalized displacement amplitude versus exciting frequency. The

ordinates were obtained by dividing the measured acceleration by the square of

the exciting frequency (cps) to obtain acceleration amplitudes for a constant

equivalent force amplitude, i.e., the force amplitude that would be generated

by the eccentric masses rotating at 1 cps. The values thus obtained are divided

by the square of the circular frequency (rad/sec) to obtain normalized displace­

ment amplitudes. The actual exciting force (Fr ) and displacement amplitude

(u r ) for each of the excited resonancies are given in Figs. 3.4 through 3.6,

together with calculated damping values.

The resonance frequencies and damping ratios evaluated from the response

curves are summarized in Table 3.1. Also shown in the same table are the

TABl03.l RESONANT FREQUENCIES (f) AND DAMPING RATIOS
---" --r

EXCITATIGN I f (cps)
I

---_ _---j-_.._ _,.

EH

NS

TORSIONAL

3.23

2.68

2.95

~ RESONANCE CURVE

4.7

5.0

3.7

~ DECAY CURVE

4.0

6.4

damping ratios as derived from the free vibration decay curves. These curves

were obtained by recording the building free vibration, following sudden

stoppage of the vibration generators. The resulting data for the fundamental

NS and torsional frequencies are plotted in the form of logarithmic decay

- 13 -



as recorded on a digital counter, is observed and written on the chart with

its corresponding traces. Plotting the vibration response at each frequency

step results in a frequency-response curve.

Frequency-response curves in the form of acceleration amplitude versus

exciting frequency may be plotted directly from the data on the recordinq

chart. However, the curves are for a force which increases with the square

of the exciting frequency, and each acceleration amplitude should be divided

by the corresponding square of its exciting frequency to obtain so-called

normalized curves equivalent to those for a constant force (assuming linear

stiffenss and damping for the structural system). If the original accel eration

amplitudes are divided by the frequency to the fourth power, displacement

frequency-response curves for constant exciting forces are obtained. Incases

of fairly low damping (under 5%), there is little difference between results

obtained for resonant frequencies and damping capacities measured from the dif­

ferent curves.

3.3.2 Mode Shapes

Once the resonant frequencies of a structure have been found, the mode

shapes at each of these frequencies may be determined. In this case, with

twelve accelerometers available, it was decided to evaluate the mode shapes

by measuring accelerations at each of the eight floors. An extra accelerometer

was kept on the 8th floor and three accelerometers were used on the ground

floor to record vertical and horizontal base motions.

The structure was vibrated at each of the resonant frequencies, and the

vibration ampl itude was determined for all accelerometers at each frequency.

It is generally necessary to make corrections to the recorded amplitudes

to compensate for differences between calibration factors for each accelerometer.

Absolute calibration is not required for mode shapes, and cross-calibration is

sufficient. The accelerometers when the structure is vibrated at each of the

- 14 -



resonant frequencies. Cross-calibration is generally carried out at the

beginning and end of each day. The average calibration factors as derived

from the pre- and post-test cross-calibration runs are used to adjust the

recorded amplitude.

In general, the number of points required to define a mode shape accurately

depends on the mode and the number of degrees of freedom in the system. For

example, in dynamic test on a 15-story building (3) four points were sufficient

to define the first mode, whereas it required measurements of the vibration

of all 14 floors and the roof to define the fifth mode shape accurately.

3.3.3 Damping Capacities

Damping capacities may be found from resonance curves in the normalized

frequency~response curves by the formula:

S = 8,f
2f

where

s = dmaping factor,

f = resonant frequency

8,f = difference in frequency of the two points on the resonance curve
with amplitudes of l/;Z- times the resonant amplitude.

Strictly, the expression for s is only applicable to the displacement resonance

curve of a linear, single degree-of-freedom system with a small amount of

viscous damping. However, it has been used widely for systems differinq

appreciably from that for which the formula was derived, and it has become

accepted as a reasonable measure of damping. In this respect, it should be

remembered that in the case of full-size civil engineering structures, it is

not necessary to measure damping accurately in a percentage sense. It is

sufficient if the range in shich an equivalent viscous damoing coefficient

lies is known. Meaningful ranges might be defined as: under 1%, 1-2%, 5-10%,

over 10% (1, 4).
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The bandwidth method described above is extremely useful when the damping

factor lies in the range of 1-10% of critical. However, if the damping lies

below 1%, difficulties may be encountered in observing sufficient points on

the resonance curve. Also, the small frequency difference between two rela­

tively large frequencies becomes difficult to measure accurately. Above

10% of critical damping, resonance. curves often become poorly defined due to

interference between modes, and the results from the bandwidth method have

1ittle meaning.

3.4 Experimental Results

The vibration equipment was bolted to the 8th floor throughout the test

program as shown in Figure 3.3. Also shown are the centers of stiffness (C.S.)

and mass (C.M.) as derived analytically. The decision to position the two

vibration generators on either side of the longitudinal axis near the transverse

center wall was based on the experience of earlier force vibration studies

carried out on the twelve story Wesley Manor Building (5). This structure was

also of the Forest City Dollon type and had a floor plan similar to the Los

Portales building. However, in these earlier studies the two vibration gener­

ators were placed on the 12th floor on either end of the building at the same

side of the longitudinal center line. Although the machines were positioned

closely to the center line the torsional imput, even under a longitudinal,

supposedly translational, forcing condition, prevented the development of a clear

translational excitation. In fact, because of the particular layout of the

floor plan, the Wesley Manor BUilding was found to be particularly susceptable

to a serious coupling of the longitudinal translational and rotational motions.

As a result it was impossible to develop a clear translational r~sona~ce

conditions under the longitudinal excitation. Based on this experience it was

decided to place the two vibration generators in the Los Portales studies on

- 16 -



curves in Figures 3.7 and 3.8, respectively. The resulting damping ratios

are presented in Table 3.1.

The exciting force generated by both shaking machines and· the corresponding

resonant amplitudes at the 8th floor level, for each response frequency, are

given in Table 3.2.

TABLE 3.2 SUMMARY OF THE BUILDING RESPONSE AT RESONANCE

EW

TORSION

NS

NS________ .1

EXCI::TI~ f 3:::sq~~~::~;~~__ ___~E~~_:~~:3~:~~~:;~t_n)_,
3.23 \ 39101bs ! 2.31X10-

3
... t... _.. _._'-

t ' -3 -2.68 I 6744 1bs I 8.69X10 I
2.70 \ 938 1bs, 0.97X10-3

l
I'-j- ~-- - -----t--,,---------··--------....-i

2.95L.... _! ..J __ .-'~.~_~_~~~.~ __ ~ ~. I
The vertical mode shapes that were excited are shown in Figures 3.9 to 3.11.

The EW and NS components of these mode shapes have been plotted along three

axes, located along the vertical center lines of the south, mid and north

sections of the building. Typically, motions in the NS direction have been

plotted to the right of the vertical axes, and motions in the EW direction

to the left. In these studies particular attention was paid to assessing

the in-plane floor diaphragm action. Hence, the 8th and 4th floors were

studied specifically. The honizontal floor modes at resonance are presented

in Figures 3.12 through 3.14.

3.5 Discussion of Experimental Results

Because of operational limitations, frequencies higher than 6.75 cps

could not be excited. Hence, only the fundamental EW, NS and torsional

resonance frequencies and mode shapes could be excited.

- 17 -



Whereas the transverse, EW, mode is quite clean, with only small contri­

butions of NS and rotational components, the longitudinal, MS, and torsional

modes are highly coupled. This phenomenon is reflected in the NS frequency

response curve as presented in Fig. 3.5. With a NS forcing direction, the

response curve shows closely spaced peaks at about 2.68 and 2.98 cps. Similarly,

the torsional frequency response curve, created under a torsional, 1800

out-of-phase, forcing condition and presented in Figure 3.6, shows a distinct

peak at 2.95 cps and a response plateau at about 2.7 cps. The latter seems

to reflect the NS resonant frequency of 2.68 cps. The peak response in each

of the two curves clearly identifies the NS resonance frequency as 2.68 cps,

and the torsional resonance frequency as 2.95 cps. This observation is sup­

ported also by the floor modes, as the degree of torsional couplinq between

NS translation and rotation, permits identification of the translational

(NS) and torsional resonance frequencies; namely, the larger rotation identifies

the torsional resonance condition, while the smaller one reflects the transla­

tional frequency. As the in-plane floor mode shape at 2.68 cps (see Fig. 3.13)

has a smaller rotational component than the one at 2.95 cps (Fig. 3.14), the

lower resonance frequency is identified as the fundamental translational

NS frequency. On the same basis, the floor mode shape at the 2.95 cps

resonance frequency, with the larger rotational co~ponent, is termed the

fundamental torsional frequency.

The floor modes at resonance were observed for the 8th and 4th floors.

The results clearly indicate that the floor slabs behaved basically as rigid

diaphragms; an observation essential in the development of the analytical

model formulation.

During the forced vibration tests under EW excitation, pilot tests indicated

a noticable movement of the ground surface around the building. In order

to gain information about these soil displacements under EW resonance conditions,

- 18 -



horizontal and vertical ground accelerations were measured at points located

along parallel lines 20 and 40 ft west of the building. Modal ground surface

displacement as well as horizontal and vertical modal displacements at the

ground floor level of the structure are shown in Figure 3.15. Results indicated

that horizontal and vertical ground surface motions, 40 feet away from the

building, were as much as 4 and 8% respectively, of the normalized transla­

tional motion at the 8th floor.

The effect of the foundation flexibili~y on the mode shapes was found to

be significant. The horizontal modal displacement under EW resonance at the

center of the ground floor was 19% of the normalized 8th floor displacement.

For NS resonance the corresponding percentage was 13%. Similarly, under tor­

sional resonance conditions, the modal displacements at the midpoints of the

north and south walls amounted to respectively 23 and 29% of this NS normalized

modal displacement (at the 8th floor). Considering the base displacement

and base rotation, approximately 40 to 50% of the total modal displacement

at the 8th floor level is due to the foundation flexibility and associated

rigid body motion.

Damping ratios were calculated from both the frequency response curves

(Figs. 3.4 through 3.6) and the logarithmic decay curves (Figs, 3.10 and

3.11). The results, as presented in Table 3.1, do not show a consistant

relationahip between the values derived by the two different methods.

However, a general, relatively large, damping ratio of approximately 5% can

be noted.

Finally, a comparison of the experimentally derived periods as resonance

and those obtained ~y using the UBC formula T = 0.05 H/ID, is significant.

The two differnet resonance data are presented in Table 3.3.
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TABLE 3.3 FUNDAMENTAL PERIODS (EXPERIMENTAL AND UBC)

EXCITATION EXP. PERIOD UBC PERIOD DIFFERENCE

EW 0.31 0.40 -24%
NS 0.37 0.28 +32%

TORSION 0.34 -- --

The result clearly indicates that for this type of structure the UBC

method provides erroneous values for the fundamental period. Actually~ the

overall building dimensions (H and D) used in the recommended formula, do

not appropriately capture the stiffness effect of the wall layout. In this

case, the stiffness in the shorter EW direction is actually larger than the

stiffness in the longer NS direction (TEW = 0.31 sec. and TNS = 0.37 sec.).

Comparing these values with the Code values of 0.40 sec. and 0.28 sec.,

respectively~ illustrates a serious inadequacy of the Code to capture the

true dynamic characteristics.

As the above comparison considers experimental data of a flexible based

structure versus code values of a rigid based structure, a certain adjustment

seems necessary. Considering that the rigid body base rotation causes about

70% of the total lateral deformation~ the actual structural deformation is only

about 30%. This would imply that for a rigidly founded structure the experimental

periods TEW* and TNS* would reduce to 0.17 sec. and 0.20 sec. respectively.

These adjusted values show an even larger discrepancy in comparison to the

Code determined values. In general these smaller periods, as derived from

the experimental data~ would result in significantly larger earthquake design

forces than the UBC would imply.
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4. AMBIENT VIBRATION STUDY

4.1 General

Ambient vibration studies use field measurements of wind and

microtremor induced vibrations. The method has been in use for 45 years

by the United States Coast and Geodetic Survey (6) to measure fundamental

periods of buildings. At present it is commonly used to identify higher

resonance frequencies and mode shapes (7,8, 9, 10,11, 12).

The ambient vibration study of the dynamic properties of the structures

is a fast and relatively simple method of field measreuments. It does not

interfere with normal building functions, and the measuring instruments and

equipment can be installed and operated by a small crew.

The objective of performing the ambient vibration study was to obtain

dynamic properties of the building and then compare these results with

those obtained from the forced vibration study to assess efficiency of both

techniques.

The ambient vibration, experimental and analytical procedures were first

suggested by Crawford and Ward (7, 12). An assumption in the analysis

technique is that the exciting forces are a stationary random process pos­

sessing reasonably flat frequency spectrum. For multistory buildings and

other large above ground structures, the largest ambient vibrations are pro­

duced by wind. If the frequency spectrum of the vibrational exciting forces

is reasonably flat, a structure subjected to this input will respond in all

its normal modes.

The vibration measuring equipment employed in the ambient vibration­

dynamic test is described below. The general experimental procedures and

procedures for data analyses applied are also described. Finally, the exper­

imental results are presented and discussed.
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4.2 Field Measurements

4.2.1 Measurjng Eguipment

The wind induced vibrations were measured using Kinemetrics Ranger

Seismometers, Model SS-l. The seismometer has a strong, permanent magnet

as the seismic inertial mass moving within a stationary coil attached to the

seismometer case. Small rod magnets at the periphery of the coil produce

a reversed field which provides a destabilizing forces to extend the natural

period of the mass and its suspension.

The resulting seismometer frequency was 1 Hz. Damping was set to 0.7

critical. The output for a given velocity is a constant voltage at all

frequencies greater than 1 Hz and falls off at 12 dB/octave for frequencies

less than 1 Hz.

The Kinemetrics Signal Conditioner, Model SC-l (Fig. 4.1) was used to

amplify and control simultaneously four seismometer signals. The four input

channels have isolated circuitry to integrate and differentiate the amplified

input signal . All outputs are simultaneously or independently available

for recording. A modification to the signal conditioner allows for outputing

each channel separately or for taking the sum or difference on two channels

and outputing the av~rage of those channels. Each channel provides a nominal

maximum gain of 100,000. An 18 dB/octave low pass filter is available with

a cut-off frequency continuously selectable between 1 Hz and 100 Hz for each

channel.

The amplified analog signals were recorded and directly converted to

digital format using the Kinemetrics Digital Data System, Model DDS-ll03.

A direct recording oscillograph was provided to display and monitor the four

signal levels during tape recordings. The data was digitized at 40 samples per

second. The DDS-l103 1 s rate of scan across multiple input channels is 40,000 Hz.

This rapid scan rate is sufficient to retain the phase relationship between

channels.
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A Rockland FFT 512/S Real-Time Spectrum Analyzer was used in order to

facilitate the rapid determination of the modal frequencies (Fig. 4.1).

This unit is a single channel analyzer with 512 spectral lines calculated

but only 400 lines displayed to reduce aliasing errors. Twelve analysis

ranges are provided from 0-2 Hz to 0-10 KHz.

4.2.2 Measurement Procedures

When measuring ambient and forced vibrations of the buildings, it is

usually assumed that the structure can be approximated by a one-dimensional,

damped discrete or continuous system. In most of the cases (10,11, 13),

measurements indicate that for the level of excitation applied, floor

structures are sufficiently stiff so that the above assumption is acceptable.

In the experimental study of building vibration which is based on

the linear model, it is assumed that the resulting motions can be expressed

as the superposition of modes associated with the discrete frequencies

(14, 15). This approach then requires a simultaneous measurement of motion

in a given direction at at least two different floors to obtain their

relative amplitude and phase, the two quantities needed to determine mode

shapes. During the measurements of wind induced vibrations, it is not

necessary to find the actual amplitudes that are recorded because all that

is ever used in determining mode shapes is the relative amplitude of the

same two instruments.

The modal frequencies were obtained by placing seismometers near the

outer walls on the north and south and east and west sides of the 8th

floor of the building (see Fig. 4.2). They were oriented so that the

signals from the meters on the north and south sides could be used to deter­

mine the east-west frequencies. Similarly, the signals from those on the

east and west sides were used in determining the north-south frequencies.
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The signal conditioner was set so that seismometers 1 and 2 would be output

as channell, giving the average of the sum of these two readings, and

channel 2, the average of the difference of seismometers 1 and 2. The out­

put of seismometers 3 and 4 were similarly averaged. In this way, the

translational frequencies could be obtained from the average of the sum

of the seismometer readings and the torsional frequencies from the average

of the difference of the seismometer readings. Typically, the data was

recorded for a total of 300 seconds.

For determining the translational and torsional modes, one pair of

seismometers always remained at the 8th floor, placed near the outer walls

along either one of the building center1ines (see Fig. 4.3). The second pair

of seismometers was oriented in the same way and located successfully on

each floor to allow the evaluation of the modal response over the height

of the building (Fig. 4.4). As before, the sum of the two seismometer

signals at each floor was averaged to give translational modal data..The ratio of

~h~ two pairs of averaged readings provided a modal data point normalized

to the 8th floor. Torsional modal information was obtained in a similar

manner, except that the difference of the seismometer signa1e at each floor

level was used. On each channel the low pass filter was set at 10 Hz to

attenuate all higher frequencies, thus completely removing electrical noise

and other possible high frequency vibrations. The voltage output to the

recorder was adjusted to not exceed about ± 1.5 volts. The unattenuated

calibration constant for the seismometers used was approximately 4.32 vo1ts/

in/sec. Corresponding first mode acceleration and displacement were about

± 1.0 x 10- 5 9 and ± 1.1 x 10- 5 inches, respectively.
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4.3 Data Analysis

4.3.1 Fourier Analysis

It is convenient to use Fourier transforms to analyze low level

structural vibrations (16) and exhibit the frequency content of the re­

corded vibration, thus identifying modal frequencies when the input force

frequency spectrum is reasonably flat. Comparing measured amplitude and

phase between various points on the structure provides an estimate of the

mode shape.

4.3.2 Data Processing

Four simultaneous outputs were recorded on magnetic tape during each

run. All runs were digitized at a sample role of 40 discrete points per

second. Because of the high frequency filtering present in the field

instrumentation, no significant frequencies above 10 Hz were found in the

recordings. For the reasonant frequency runs, 4096 data points were

selected for the transitional and torsional modes. A total of 10 trans­

forms separated by 890 points were calculated and averaged over the 12107

data points gathered.

For each mode shape run, 1024 data points were selected and a total

of 10 transforms were taken. The Fourier amplitude spectrum was an

average of the 10 transforms computed.

The spectral estimates were smoothed by 1/4, 1/2, 1/4 weights. The

1024 spectral estimates are uniforma1y distributed between 0 Hz and 40 Hz,

giving a frequency resolution of 40/1024, or about 0.0391 Hz.

4.3.3 Frequencies and Modes of Vibrations

The natural frequencies of the excited modes are given in Table 4.1.

Mode shapes were calculated for both the translational EW abd NS modes
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as well as the torsional mode. These results, together with modal data

resulting from the forced vibration studies, are presented in Fig. 4.4.

TABLE 4.1 RESONANT FREQUENCIES

Excitation Frequency
(cps)

EW 3.28

NS 2.73

Torsional 3.00

4.3.4 Damping

Under forced vibrations, damping in the structure can be determined by

the bandwidth method or by measuring the free vibration decay response.

During the ambient vibrations the first method can only be used when wind

excitations are random and stationary in time (12). Despite gusty wind con­

ditions at the time of the tests, ambient vibration data were used to

estimate the viscuous damping coefficients using the bandwidth method.

TABLE 4.2 DAMPING RATIOS

Excitation Damping Ratios

EW 1.5 %
NS 2.0 %

Torsional < 1 %
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Fig. 4.1 Ambient Vibration Equipment

I + 2 (EW)

3+4(NS)

@)

® CD

@

(a) TRANSLATIONAL MODES

1-2 (TORSION)

3-4 (TORSION)

'@)

® CD

@

(b) TORSIONAL MODE

Fig. 4.2 Location of Ranger Seismometers on the 8th Floor
for Resonant Frequency Response

-42-



-+:
>

w

N --
TeD

I-
. ~

.L®
8

th
F

L
O

O
R

N
S

--.
®

8
th

F
L

O
O

R
E

W

.
(jJ

.®
O

T
H

E
R

F
L

O
O

R
S

N
S

... ["@
)

O
T

H
E

R
F

L
O

O
R

S
E

W

.
@

Fi
g.

4.
3

L
oc

at
io

n
of

R
an

ge
r

Se
is

m
om

et
er

s
fo

r
th

e
M

od
e

Sh
ap

es



T
O

R
S

IO
N

A
L

M
O

D
E

R
O

O
F

8
th

FL
O

O
R

/10
flo

7
th

F
LO

O
R

6
th

F
LO

O
R

5
th

F
LO

O
R

~
4

th
F

LO
O

R
~ I

3
rd

F
LO

O
R

2
n

d
F

LO
O

R

Is
f

F
LO

O
R

E
W

M
O

D
E

N
S

M
O

D
E

0
-

F
O

R
C

E
D

V
IB

R
A

T
IO

N
.-

A
M

B
IE

N
T

V
IB

R
A

T
IO

N

Fi
g.

4.
4

V
er

ti
ca

l
M

od
e

Sh
ap

es



5. COMPARISON OF FORCED AND AMBIENT VIBRATION STUDIES

The dynamic properties (resonant frequencies, modes of vibration and

damping values) were determined by full-scale dynamic tests using both

forced and ambient vibration methods. Resonant frequencies and damping

factors from both studies are summarized and compared in Table 5.1.

The resonant frequencies from the forced vibration tests are 1% to 2%

smaller than those from the ambient vibration tests. This nonlinear aspect

may be due to a stiffness deterioration resulting from larger excitations

under forced vibrations.

Equivalent viscuous damping factors show some difference. It appears

that it is rather difficult to obtain appropriate damping values under

ambient vibrations. However, considering the different displacement amplitudes

for the two vibration methods, the smaller damping values under ambient

conditions are not unrealistic. However, in general, the results can be

more appropriately viewed as an indication of the range of damping, rather

than as specific damping ratios associated with each mode of vibration.

Vertical mode shapes associated with both the translational and torsional

resonance frequencies are compared in Fig. 4.4 and show very good agreement.

Because of a total lack of vibration generation requirements and the ease

of equipment handling, the total field effort for ambient vibration studies is

significantly smaller than for forced vibration studies. Also, because

accurate frequency response data can not be generated under ambient conditions,

fewer measurements are required. Furthermore, each measurement requires less

time. On the other hand, data analysis is slightly more complicated because

of computer use for Fourier analyses.
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TABLE 5.1 COMPARISON OF RESONANT FREQUENCIES AND DAMPING FACTORS

MODE FORCED VIBRATION I AMBIENT VIBRATION!
FREQUENCY I DAMPING FACTORS FROM I FREQUENCY ; DAMPING FACTOR

(cps) DECAY FREQ. RESP. I
(cps)

I i
! CURVE CURVE ;

I EW 3.23 4.7 % 3.28 1.5%I -
I
i NS 2.68 4.0 %I 5.0 % 2.73 2.0 %I, Ii Torsional 2.95 6.4 % 3.7 % I 3.00 < 1 %I I
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6. FORMULATION OF MATHEMATICAL MODEL

6. 1 General

A mathematical computer model of the Los Portales Building was formulated

to assess its dynamic characteristics. The model was formulated using both a

rigid base and a flexible base. The computer program employed in the dynamic

analysis of the model and the models themselves are described below.

6.2 Computer Program

TABS-77, a general computer program developed by the Division of Structural

Engineering and Structural Mechanics of the Department of Civil Engineering at

the University of California, Berkeley, was used to calculate the frequencies

and mode shapes of the building. A complete description of this program is

given in reference (17).

The dynamic analyses in this investigation were performed on a CDC 6400

digital computer using the standard TABS-77 program. The program considers

the floors rigid in their own plane and to have zero transverse stiffness.

All elements are assembled initially into planar frames and then transformed,

using the previous assumption, to three degrees of freedom at the center of

mass for each story level (2 translational, 1 rotational).

6.3 Modelling of the Structure

The basic model of the building was formulated as a system of frames and

shear wall elements interconnected by floor diaphragms which were rigid in

their own plane and fixed at the 1st floor level.

All walls were treated as "vdde columns". This required a reduction of

properties (I, A, A ) to the elastic centroid of each wall. Where a wall isv

met by a perpendicularly oriented wall, a portion of the latter wall is

assumed acting as a flange and thus included in the resonant of inertia
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calculation. For a IIhalf-flange ll condition, where bw panels form a single

corner, the effective flange width is considered as 1/6 of .the overall

building height, or 11' - gil. In case of a IIfull-flange ll condition, as shown

in Figure 6.1, the effective width is 1/3 of the height, or 23 1
- 6 11

• The

above assumption is based on the fact that the walls are effectively inter-

connected at each floor level. The resulting dowel action over the height of

the building seems to justify the assumed wall coupling, at least under small

amplitude vibrations.

Although not entirely correct for flanged shear walls, the shear area (Av)

for all walls were set to 5/6 A, where A is the area of the wall parallel to

the direction of motion.

Wherever shear walls were positioned in one line parallel to the direction

of motion, it was assumed that those walls would be coupled by a portion of

the floor slab, having a width of 18 times the thickness of the floor, or12 1
•

The effective span of these coupling girders was reduced to the clear distance

between the walls; a possible option of the TABS program. In as far as the

story deformation occur only over the clear distance between two stories, this

effect needs to be captured. This can be achieved by increasing the moment

of inertia of each wall by the ratio (Lo/Ll )3, wh~re Lo is the story height

and Ll is the clear distance between stories. In this case amplification

factor was typically (8.67/8)3 = 1.27. Fig. 6.1 illustrates the manner in

which the shear walls were idealized for the analysis.

In the analysis the modulus of elasticity for the reinforced concrete

was assumed as 4000 ksi. The effective floor mass, considering the floor slab

and structural walls only, was estimated at 53 kips. sec2/ft. The rotational

mass, with a radius of gyration of 48.8 ft, was taken as 126,220 kips. sec2 ft.

The center of stiffness for a typical story was calculated with the assump­

tion that the shear walls are damped on both ends. The center of stiffness

and the center of mass were shown in Fig, 3.3.
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From initial analyses, considering a rigidly supported structural model,

and experimental frequency data,a significant difference in the natural fre-

quencies was noted. In fact the analytical values were 50 to 80% larger than

the experimental frequency data. Hence, it was found to be essential to

include the foundation stiffness in the overall analytical model.

6.4 Modelling of the Foundation

TABS-77, the computer program used to determine the dynamic properties

of the structure, does not permit the input of the rotational, lateral and

vertical springs at the foundation level. This makes it "necessary to model

a so called IIdummy storyll below the foundation level to account for the soil

stiffness. This can be achieved by determining for both the NS and EW

directions dummy stories which properly reflect the translational and ro­

tational foundation stiffnesses for each direction. The solution of each of

the two 2-degree of freedom systems (see Fig. 6.2) follows from the force­

displacement relationship:

[::] , where

Mo = overturning moment at the base,

V = base shear,o

r = base rotations,m
r = base displacement,v

EI = flexural rigidity of dummy story, and

L = height of dummy story.

With estimated constant masses of 53 kpis. sec2jft for every story and the

measured floor accelerations for the two fundamental transitional modes,

it is possible to calculate the base shear and the overturning moment
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using the dynamic forces at the resonance frequency (Fig. 6.3). Calculating

the actual base displacement from the measured acceleration at the b~se

and approximating the base rotation by the secant of the mode shape between

the first and second floor, the force-displacement relation can be solved

for EI and L. The results for the uncoupled EW and coupled NS/tors;onal

modes are presented in Table 6.1.

TABLE 6. 1 DUMMY STORY PROPERTIES

EXCITATION FREQUENCY LENGTH El
(cps) (ft) (kips. ft 2 )

EW 3.23 35.6 3~292 x 10 10

NS 2.68 21.6 0.962 x 10 10
~

As the dummy story height for both NS and EW directions has to be the

same it is essential to develop an optimum dummy story element. Hence, the

structure was analyzed with several different dummy stories with lengths

varying from 20 to 35 feet. The dynamic properties of the structural system

using a 20 feet high dummy story were found to be in very close agreement

with the experimentally observed results. The lateral and rotational stiff­

ness of the dummy story as computed from experimental data and actually used

in the analytical model are compared in Table 6.2. There is reasonable agree­

ment between experimental and analytical stiffnesses, with the exception

of the transverse rotational stiffness, which according to the experimental

data should have been much higher. However, using the higher experimental

stiffness in the analytical model resulted in a significantly larger EW

frequency than observed experimentally.
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TABLE 6.2 LATERAL AND ROTATIONAL SOIL STIFFNESS

EW NS

h KLAT = KEI KROT = .!::.lD. KLAT = l~P KROT =!:.LUL3 L fl-

(ft) (kips/ft) (kips ft/rod) (kips/ft) (kips ft/rod)

EXPERI~1ENT -- 8.7 x 106 3.7 X 109 11.5 X 106 1.8 X 109

ANALYTICAL 20 6.1 x 106 0.8 X 109 11.2 X 106 1.5 X 109

MODEL

6.5 Analytical Results

The modal results from the TABS program list two translational and one

rotational component. The notation as to the direction of the modal frequencies

is governed by the predominate component, i.e., an EW mode is a general

3-dimensional mode in which the mode shape is governed by the EW compQnent.

The frequencies for the rigid base model, as well as for the flexible

base model, are compared with the experimental results in Table 6.3. The

vertical modes and floor modes, as obtained from the forced vibrations tests

and computer analyses with a flexible base, are shown in Figs. 6.4 through

6.6. In these figures the experimental floor modes have been reduced to

3 degrees of freedom per floor. Very good agreement between the experimental

resonant frequencies and mode shapes and those for the model with flexible

base can be noted.

TABLE 6.3 RESONANT FREQUENCIES (cps)

EXPERIMENT

I
ANALYSIS

1-'-----..... -..- ....- CODE
FORCED ! AMBIENT

t

EXCITATION RIGID BASE I FLEXIBLE BASE
VIBRATION VIBRATION ,

.-

EW 3.23 3.28 5.99 3.30 2.53

NS 2.68 2.73 4.03 2.67 3.63
! 3.09Torsional 2.98 3.00 ! 5.29 --

_!--_..._----------_....
_____..._1 ....__..._ '···T._···· '__ " __"_',_. , .... ,....._., ... ",,--_.,- .•. ._-- ----
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12' WIDE PORTION OF
FLOOR SLAB COUPLES
WALL ELEMENTS

ELASTIC PROPORTIES (l ,A)
OF WALL ELEMENT
REDUCED TO CENTER LINE

DUMMY
STORY

.
o
(\JSECTION

EFFECTIVE WIDTH =23'·6"

10
11-.\1+/

~28' I
33~3"

---:----_1
7~IO"-i ~

PLAN
(SEE FIG 2.2)

28'

I I
BAY WIDTH

COLUMN WIDTH COLUMN WIDTH

Fig. 6.1 Typical Wall Element Formulations
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Fig. 6.2 2 Degree of Freedom Model for the Dummy Story
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Fig. 6.3 Available Experimental Data
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7. CONCLUSIONS

The results presented herewith clearly show that forced and ambient

vibration studies can be carried out effectively. In comparing experimental

and analytical solutions, good agreement can be noted for frequencies and mode

shapes. Considering a frequency range up to 10 Hz, only the three fundamental

modes of vibration could be identified, thus indicating that the building

would basically respond to seismic excitation in a first mode motion. The

dynamic tests indicate a high coupling between NS and torsional modes. This

highly coupled response could possibly be reduced by changing the floor plan

layout. It may be noted that a similar highly coupled behavior was also

observed for the 12 story Wesley Manor Building in Campbell, California of the

same system and with almost the same floor plan. The periods of the two

structures are plotted versus building height and reveal, as shown in Fig. 7.1,

an almost linear increase with height.

The frequencies using UBC code provisions (T = 0.05 .h/IID), and based on

the actual building dimensions, are 22% too low in the EW (transverse)

direction and 35% too high in the NS (longitudinal) direction when compared

with the experimental data (18). These inconsistent results clearly indicate

the need for a detailed dynamic analysis, considering the actual wall layout,

stiffness distribution, and foundation conditions. Neglecting the foundation

flexibility (rigid base model), shows an overestimation of the experimental

frequencies by 50% to 80%. Thus, in the analysis of rigid structures on

flexible foundations, the soil-structure interaction must be considered.
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