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Chapter 1 General Overview and Research Summary

This report contains research findings of a research project entitled

lIDistant and Local Tsunamis in Coastal Regions ll during the period

November 15, 1977 to April 30, 1980. The research was supported by the

Earthquake Hazards Mitigation Program, National Science Foundation.

Several aspects of the generation and propagation of tsunamis have

been investigated. Results have been obtained; they will be presented

herein. lITsunamisll are water waves generated through tectonic displace

ments associated with submarine earthquakes, volcanic eruptions and/or

indirectly by submarine slumps and shoreline landslides. These waves

have also been called "tidal waves ll although the waves are not generated

by tides. The Japanese word Iltsunamis li literally means lIharbor waves. II

This is a very descriptive term because the major damages caused by this

type of wave usually occurs in bays and harbors near the coastal zone.

The wave 1ength of a tsunami genera ted in the deep ocean is usua lly

very long, however, the amplitude of the wave is relatively small compared

with wave length. In this deep ocean region the water surface is so small

that they cannot be easily detected. The propagation speeds of these waves

in the deep ocean region are quite large and approximately equal to /Qh

(where g is the gravitational acceleration and h is the water depth). As

these waves approach a coasta1 regi on, due to the decrease in v.Jater depth,

the propagation speeds of these waves are reduced. Therefore, the wave

amplitude will be increased in the region of shallow water depth. In

addition, the local topography of a particular region could induce

resonant oscillations of these waves thereby significantly amplifying

the wave amplitude. Such large oscillating waves could present major



hazards to life and property in the coastal zone especially if the region

is heavily populated.

Research results on three areas of investigation related to generation

and propagation of tsunamis are presented in Chapters 2, 3, and 4. A

brief summary of the major results wilT be provided below.

Chapter 2 presents the results of a theoretical and numerical study

on the generation of water waves due to three-dimensional bed motion.

Prior to the study, waves generated due to a two-dimensional bed motion

have been obtained both theoretically and experimentally. However,

experience has shown that the natural bed motion has always been finite

in size, the two-dimensional assumption cannot be considered as a realistic

situation. Therefore, it is thought that consideration of three-dimensional

bed motion would produce a more realistic picture of the nature of tsunami

wave generation. This has been accomplished. An analytical model has

been developed and the theoretical results have been obtained. They help

define the limitation of the two-dimensional results and demonstrates

the complicated wave pattern which is generated. The work in Chapter 2

is performed by J. J. Lee and J. J. Chang. A summary of the work is

provided as follows:

A theoretical and digital simulation on waves generated by an

impulsive bed upthrust of a rectangular block with various

ratios of length/width is presented. The two-dimensional

Fast Fourier Transform (FFT) algorithm is used to obtain

the water surface profile near the generation region. The

three-dimensional pictures were constructed from an array of

256 X 256 pixel by using Image Processing. Comparison of the

present three-dimensional results, with previously published



two-dimensional results, indicates that for large length/

width ratios, the water surface profile is quite similar

at certain locations for a small time after the impulsive

bed motion is completed. Generally, the water surface

profiles deviate significantly from the two-dimensional

results.

•
Chapter 3 presents the results of a viscous model for the propagation

of non-linear and dispersive waves. The primary motivation for this

research effort was to include the effect of viscous dissipation on the

propagation of nonlinear, dispersive waves. The result of the present

study showed that, in the laboratory scales, the effect of nonlinearity,

dispersion and dissipation are equally important in defining the behavior

of wave propagation. Although it can be argued that for the prototype

scale, the effort of viscous dissipation would be smaller in the propaga

tionphase of the tsunami problem. This portion of the study is performed

by J. J. Lee and S. T. Kim. A summary of the work is provided below:

A modified Korteweg-de Vries (KdV) equation has been

derived to represent approximately the propagation of

non-linear, dispersive long waves including dissipation

effects. The equation is found by including the effect

of the laminar boundary layer at the bottom. Numerical

solutions of the derived equation under various initial

conditions have also been obtained. Good agreement has

been found when comparing the numerical results with the

experimental profiles of Hammack (1973) and Hammack &Segur

(1974). For a solitary wave propagating in a shallow water

of constant depth, the present results also show good

agreement with the prior published theories.



Chapter 4 presents the results of a theoretical and numerical study

on the propagation of linear periodic waves over submarine trenches.

For this aspect of the research, effort is directed to developing an

analytical method for analyzing the wave propagation over submarine

trenches where a sharp discontinuity in the water depth occurs. The

result could be applied to two practical situations:

(1) For waves in the deep ocean region, the effect of

the deep submarine trenches on long tsunami waves

can be analyzed by the method developed herein.

(2) For waves in the coastal region, especially for harbor

regions, the effect of navigation channel on the

normally incident waves can be assessed.

This portion of the work is performed by J. J. Lee and R. M. Ayer. A

summary of the work is provided below:

An analysis is presented for the propagation of water

waves past a rectangular submarine trench. Two

dimensional, linearized potential flow is assumed.

The fluid domain is divided into two regions along

the mouth of the trench. Solutions in each region

are expressed in terms of the unknown normal derivative

of the potential function along this common boundary

with the final solution obtained by matching. Reflec

tion and transmission coefficients are found for various

submarine geometries. The result shows that for a

particular flow configuration, there exists an infinite

number of discrete wave frequencies at which waves are

completely transmitted. The validity of the solution in

the infinite constant water depth region is shown by



comparing with the results using boundary integral method

for given velocity distributions along the mouth of the

trench. The accuracy of the matching procedure is also

demonstrated through the results of the boundary integral

technique. In addition, laboratory experiments were performed

and are compared with the theory for two of the cases

considered.

In the Appendix of this report, the reprints or preprints of the

published work are provided. They contain the following publications:

1. "An Inclined-Plate Wave Generator" by F. Raichlen and J. J. Lee,

Chapter 21 of the Proceedings of 16th International Coastal

Engineering Conference, Hamburg, Germany, 1978, pp. 388-399.

2. "Wave Generated by an Impulsive Bed ~1otion of Finite Size"

by J. J. Lee and J. J. Chang, Proceedings of the International

Conference on Water Resources Development, May 12-14, 1980,

Taipei, Taiwan, pp. 759-768.

3. "Water Waves Generated by An Impul sive Bed Upthrust of a

Rectangular Block" by J. J. Lee and J. J. Chang, Applied Ocean

Research, Vol. 2, No.4, Oct. 1980, pp. 165-170.

4. "Interactions of Waves With Submarine Trenches" by J. J. Lee,

R. M. Ayer and W. L. Chiang, Proceedings of the 17th Inter

national Coastal Engineering Conference, Sydney, Australia,

March 1980.

5. "Wave Propagation Over Rectangular Trench" by J. J. Lee and

R. M. Ayer, to appear in the Journal of Fluid Mechanics, 1981

(accepted Dec. 1980).



6. "Water Waves Generated by Three Dimensional Bed f1otion" by

J. J. Chang and J. J. Lee, paper to be presented at the

International Tsunami Symposium, May 25-29, 1981, Japan.



Chapter 2 Generation of IUtet ~Iaves by
Three Dimensional Bed Motion

1. Introduction

Waves generated by submarine earthquakes, commonly known as

tsunami s, have been of ; nterest to ocean and coas ta1 eng; neers . In

many -instances, such waves have caused significant damage to the

coastal region. Estimation of the tsunami wave form is essential for

the prediction of the wave profile in the propagation phase and the

final wav~ form when the wave arrives in the coastal region.

Most of the theoretical models of tsunami generation have been

based on linearized theory in either a two- or three-dimensional

fluid domain of uniform depth. Based on the linear theory, the fun

damental solution of the wave forms can be obtained by multiple Fourier

Transforms such as that used by Oriessche and Braddock (1972) and

Hammack (1972, 1973) or by the Green's function method used by

Kajiura (1963, 1970).

The complexity of the integral solution has discouraged many

authors from obtaining detailed wave behavior near the generation re

gion even in the case of a simple bed deformation model. Instead, many

authors have been using asymptotic methods to evaluate the integrals.

Consequently, only the far-field wave behavior can be examined.

For three-dimensional wave generation models, the computational

effort needed to evaluate the integrals by means of conventional

numerical integration schemes have been quite laborious. To overcome

this difficulty, the modern digital simulation technique can be used

to significantly improve the computational efficiency.

This paper presents results of a theoretical and digital simu-

7



lation study on waves generated by an impulsive bed motion. For mathe

matical simplicity, the extent of the bottom disturbance is assumed to

be of rectangular shape although an elliptic shape might be a better

tsunami generation model (See Horikawa, 1978). The fundamental solu

tion for the wave amplitude is expressed in terms of multiple integrals

which are evaluated by utilizing the two-dimensional Fast Fourier Trans

form (FFT) algorithm. The three-dimensional pictures (based on 256 X

256 samples) showing aspects of wave decay everywhere in the fluid do

main at a specified time are obtained by the Image Processing technique.

8



2. Problem Formulation

Let (x,y,z) constitute a Cartesian coordinate system with z = 0

as the undisturbed water surface as shown in the definition sketch

in Figure 1. Initially, the fluid is at rest with the free surface

and solid boundary defined by z =0 and z =-h, respectively (h is a

constant). For t > 0, the solid boundary is permitted to move as pre

scribed by ~(x,y;t). The resulting deformation of the free surface is

to be determined as z =n(x,y;t): Assuming irrotational flow and an

inviscid fluid, the fluid kinematics can be expressed in terms of a

velocity potential ¢(x,y,z;t). The differential equation and the

linearized boundary conditions that ¢ must satisfy can be listed as

follows:

9

o < t < ~, ~ < x,y < ~, -h < z < 0

z = 0

z = -h

(1 )

(2)

(3)

In these equations, the subscripts denote partial derivatives and 9

denotes the gravitational acceleration.

The linearized relation between the water surface displacement 1'1 and

the velocity potential ¢ is:

n(x,y;t) (4)
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The solution for <p (and hence, n) is obtained by using the Fourier

transform for the spatial variables x, y and the Laplace transform for

the time variable t defined by

By applying the transformation of Equation (5) to the governing equation

and boundary conditions with the subsequent inversion, one obtains the

water surface elevation as:

n(x ,y, t)

(6 )

where r =~:: r~;ir is the Bromwich contour, W ;s the circular frequency
~r . J~+lr

and ~ is a positive constant.

In order to obtain the specific wave profile as defined in Equation (6),

one must specify the bed deformation history ~(x,y;t). The bed deforma

tion is assumed to be a rectangular block upthrust with exponential vari-

ation in time:

; (x,y, t) (7)

where ;0 ;s the maximum amplitude of the vertical displacement, a ;s the

time constant defined as 1.ll/tc ' and t c is the characteristic time de

fined by ;/~o = 2/3 at t = t c. The Heavyside step function is defined

as:



and H(A2_y2) = {::

lL

The transformation of Equation (7) yields:

(8)

Substituting Equation (8) into Equation (6) and solving for the surface

elevqtion yields:

ll(X,y,t)

(9)

where

Equation (9) contains poles at K1 =0 and/or K2 =O. These singularities

can be treated easily by L'Hospital's rule. The reader is reminded that

Equation (9) can be reduced to the two-dimensional solution given by

Hammack (1973) by integration with respect to K2 as A -+ 00. (This is

easily accomplished by changing the variable of integration to (Kz • A)/A

and evaluate the integral as A-+oo). Introducing K1 = 2nk1 and K2 = 2nb,

Equation (9) can be rewritten as



where f( k1 , k2 ) is a symmetr; c functi on defi ned by

- cos wt - ~ sin wt)1
and·

It should be recognized that Equation 10 is a two-dimensional FO'urier

Transform of f(k 1 ,k2 ) and can be computed by using the Fast Fourier

Transform (FFT).



3. Numerical Implementation

Suppose that f(k1,kz) is defined in the interval of -T/2 < k1,kz < T/2

and is zero for jk11, Ikzl > T/2. Equation (10) can then be written as:

14

n(x,y, t) = -4o, iT
-T

It should be noted that the conventional procedure of computing

n(x,y,t) in Equation (11) by fixing a set of (x,y;t) ;s quite inefficient.

For our purpose, a more advantageous procedure ;s to fix a time t.= t.,
and evaluate Equation (11) for all possible x and y by recognizing Equation

(11) as a double Fourier Transform of f(k
1

,k 2 ;ti ).

The integral in Equation (11) can be approximated by a Reimann sum to

be presented as follows:

Choosing E > 0, then there exists 0 > 0 such that

N1/2

In(x,y,t) - ~
n 1=-Nr/2+1

N2/2

~
n2 =-Nz/2+1

, ,
(kn +1 - kn )(kn +1 - kn )f(k n ,k n )

1 1 2 2 1 2

provided that

- k < 0n.
1

for all (n; = -N;/2 + 1, -N;J2 + 2, ... N;J2) for i = 1,2. Where Nt and

Nz are the number of discrete points which correspond to the x and y axis,

respectively.



It is' convenient to choose the intervals (kn., kn.+l ) to be of constant
1 1

length, Dok i , for i = 1,2. Thus Equation (11) can be approximated as:

15

n(x,y,t) = -4~o

•

N2/2

L
n =-N /2+1

2 2

(12)

where Dok i = 2T/N; for i = 1,2. This aefinition of Dok i implies that

Dox· = Doy =1/(2T). By introducing x = kI • DoX, Y = k
2

• Doy,

WI = e2~;/Nl and w
2

= e2~i/N2 we can rewrite Equation (12) as follows:

N/2 N2/2
( ) k n k nn(k I ,k2 it) = -4~ Dok Dok I: I: f n ,n W I IW2 2 2o I 2 . I 2 I

n =-N /2+1 n =-N /2+1 (13)1 I 2 2

for -N 1/2 + 1 $ kI 5 N1/2, -N2 /2 + 1 5 k2 5 N2 /2

where

= sin 2~nJDoklB
27Tn 1Dok 1

sin 2'iTn2Dok2A
27Tn 2Dok 2

1

[
a2 (-st w.)]. aZ+wz e - cos wt - a S1n wt

and
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It snould be noted that WI and Wz introduced in Equation (13) is a NI-th

and N2-th root of unity in the complex number field, respectively.

Equation (13) is a two-dimensional Discrete Fourier Transform and

can be evaluated by the following two stages of computation:

N2/2
Stage 1; , ( k t) C " f ( ) kZn211 nl' l' = 1 ~. n1 ,n 2 W2 ;

n
2
=-N

2
/2+1

for - N22 +1 < k2 : ~2 , where C1= -4~otlkItlk2'

NI /2
Stage 2: n(k I ,kz ,t) = I: n'(nI,k2,t)WIkInl;

nI =-N/2+1

for - N22 + 1 ~ k
1

:s N22

(14-A)

(14-8 )

We observe that Stage 1 and Stage 2 are two one-dimensional Discrete

Fourier Transforms of f(n I ,n Z)' If we let NI = N2 = 2mwhere m is an in

teger, then the FFT algorithm can be used to compute l1'(n I ,k2,t) and

n(k I ,k2,t) (See Oppenheim and Schafer (1975)). The number of real multi

plications and additions needed to compute Equations (14-A) and (14-8) is

4N21ogzN and 6N21092N, respectively.

An array of 256 X 256 points was used to compute Equations (14-A) and

(14-B) (N l = Nz = 256). To avoid the spurious short-period oscillations,

k should be kept small. However, a small ~k implies that the region of

computation is also correspondingly limited. All numerical results presented

in this paper are obtained for ~k = 0.03. This value was arrived at through

a series of numerical experiments.
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4. Presentation and Discussion of Results

Numerical results obtained from Equations (13) and (14) for an

impulsive bed upthrust of a rectangular block with various aspect

ratios (A/B) have been obtained. The two-dimensional case of the same

bed motion characteristics, i.e., for A+~, has been studied by

Harrmack (1973) both theoretically and experimentally in which "it was

found that the theoretical results agreed well with the experimental

resul ts.

As the three-dimensional experimental results are "not available, it

is advantageous for us to study such a case with various aspect ratios.

It is reasonable to expect that for large values of A/B, our results

should approach that reported by Hammack (1973). The water surface

profiles as a function of the dimensionless time parameter (t~ ) at

three different locations are shown in Figure 2. The dimensionless

parameters for this case are: tc#/B = 0.069, B/h = 12.2 (B = 2.0 ft.),

~o/h =0.2. The time history of bed motion is an exponential form as

seen in Equation (7) with a characteristic time parameter, a. =18.46.

In Figure 2, the time history of the water surface profiles for A/B = 10,

5, and 2 are shown for three locations (x =y = 0), (x = B, y = 0), and

(x = 0, y =A). It is seen that the curves for A/B = 10, 5 and 2 are

very close to that of Hammack's at the first two locations. For A/B = 2,

the three-dimensional effect becomes quite significant for t~ > 20 as

evidenced in Figure 2. Based on the physical dimensions given, the time

associated with t~ = 20 is t = 1.426 sec. This is smaller than the

time required for disturbance to propagate from the edge of the rectangular
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block- (y = A) to the center (y = 0) if one assumes the propagati on speed

to be V9h =2.3 fps. (This latter time is computed to be 1.734 sec.).

It should be noted that the early arrival of end effects (with relation to

the propagation speed of -{9h)as A is reduced suggests that some of the

Fourier components composing the corner region of the initial disturbance

have phase shifts so that they have distances less than A to travel be

fore-reaching the location (B,O). The phase shifts wi'll be relatively

smaller as A is increased. The third graph shows the water surface pro

file as a function of time at the edge of the major axis (x = 0, y =A).

This provides another view of the three-dimensional effect. We note that

for the two-dimensional case, the water surface profile at x =0, y =A,

would be the same as that shown for x = 0, y = O. However, for a finite

ratio of AlB, the edge effect of the generation region is being felt

instantly after the impulsive bed motion is produced.

The water surface profiles as a function of time at other locations

away from the region of rectangular block are shown in Figure 3 for

AlB = 5 and AlB = 2. The three locations chosen are all along the minor

axis (y =0) and at x = 1.5B, 2.0B, and 2.5B. The three-dimensional effect

is also quite obvious; for AlB = 2, a negative wave occurs at a smaller

value of tV9/h.

It is interesting to see some three-dimensional pictures of the water

surface profile. A series of three-dimensional pictures for the case

AlB = 2 is presented in Figure 4 and Figure 5. These three-dimensional

pictures were constructed from 256 X 256 samples using Image Processing

(Readers interested in Image Processing are referred to Andrews (1970)) .



x = 1.58 , y =0

tJ g I h

x=2.0 B , y =0

0.5

-0.5

AlB =5

x=2.58, y=O

tJ 9 I h

FI G. 3 WATER SURFACE PROFl LES FOR 'AI B =5 AND

AlB =2 AT x=1.58,2.0 BAND 2.5 8; y =0



t {9ih = 4.20

t {9ih :: 12.61

FIG. 4 THREE DIMENSIONAL PICTURES SHOWING THE WAVE AMPLITUDE
~/~o NEAR THE GENERATION REGION FOR SPECIFIED TIME PARAMETER
(VIEWING ANGLE e = 60°, 6 =60°) ASPECT RATIO AlB = 2



t {9ih = 21 .02

t V9ih = 29.43

FIG. 5 THREE DIMENSIONAL PICTURES SHOWING THE WAVE AMPLITUDE
Tl/~o NEAR THE GENERATION REGION FOR SPECIFIED TIME PARAMETER
(VIEWING ANGLE e = 60°, 0 = 600) ASPECT RATIO AlB = 2



They represent an overall pictorial view of the wave profile at t . -V g/h =

4.20, 12.61, 21.02, and 29.43. The vertical viewing angle for these pic

tures is 60° and the horizontal angle is 60°. These pictures allow us to

visualize the manner by which the waves are transformed from the original

form of a parallelepiped into the complicated wave form at some later time.

In order to demonstrate further the transformation of wave profile

as a function of t1me, the water surface profile along a certain axis

is also obtained. Figure 6 shows the water surface profile along x axis

(y =0, for x > 0) for two length/width ratio: AlB =5, 2. They are ob

tained by cutting the three-dimensional pictures such as that shown in

Figures 4 and s. This series of water surface profiles shows how waves

are propagated-from the origin of disturbance toward the surrounding

region. Using these wave profiles, we can compute the propagation speed

as 2.2 ft/sec. This propagation speed is very close to the long wave

celerity C = -{9h = 2.3 fps_ From

Figure 6 we can see that the water surface profile is the same for AlB =

5 and 2 for t V9ih < 16.81. At a 1ater time, the water surface profil e

di ffers si gnifi cantly, especi ally at the tai 1 region. However, the

leading wave portion is quite similar in both cases for the time vari

ables presented.

Water surface profiles along the y axis are presented in Figure 7

for two different values of AlB for various dimensionless time para

meters, t V9ih. The region where y == A is marked for reference. By

examining this series of wave profiles, a number of observations can be

made:
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a: The leading wave is similar for the case of A/B = 5 and 2 at

almost all the time parameters presented.

b. A reverse symmetric wave profile with respect to y =A is

found at almost all the time parameters shown.

to the edge of the rectangular block).

(y =A corresponds

•

c. As waves propagate away from the generation region, interesting

wave profile histories in the region y < A can be found. The leading

negative wave which exists within the region y < A appears to be

converging toward the center first and then propagating outward

(this can be clearly seen from the curves AlB = 2). This further

demonstrates that the waves are indeed propagating in every direction

resulting in complicated wave profiles, especially when AlB is small.

d. The wave profile along the major axis (Figure 7) and that along the

minor axis differs considerably for t v-;ih greater than a certain

value. (In the example of Figure 6 and 7, t.ygjh > 12.61).

e. Due to radiation of waves in every direction, significant modula

tion of wave profile has already taken place (as evidenced from the

curves presented) even though the time parameter t V9ih is still small.

This is one of the aspects that represents a significant departure

from the two-dimensional results.

The numerical method used for computing the waves generated through

the impulsive bed upthrust of a rectangular block is much more efficient

than the direct integration method. For a particular time parameter, to

obtain the wave profiles for an array of 256 X 256 data points (in the x-y

plane) would require only 37 seconds of CPU time on a OEC-10 computer. Using

this data, one can then construct the three-dimensional picture of the

water surface elevation such as those presented in Figures 4 or 5.



5. Concluding Remarks

An effective numerical method has been presented in this paper.

The method is used to compute the water waves generated through the

impulsive bed upthrust of a rectangular block of varying ratio of

major axis/minor axis (A/B). Three-dimensional pictures showing water

surface elevation in the x-y plane for a certain specified time para

meter have been shown. For the cases computed, along with the time

parameter presented, the leading wave shape was similar for the differ

ent ratios of AlB. However, the water surface profile of the tail

region differs considerably as A/B is reduced. The wave profile along

,the major axis and that along the minor axis differs considerably for

t {9ih greater than a certain value in all cases.

As can be inferred from the results presented in this paper, the-

three-dimensional effect is quite significant, even with the assumed

simple bed deformation. Therefore, in order to more fully understand

the nature of tsunamis due to a submarine earthquake, one must take

into account the three-dimensional effect.



References

1. H.C. Andrews, Computer Techniques in Image Processing, Academic
Press, New York, 1970.

2. E.O. Brigham, The Fast Fourier Transform, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1974.

3. P.V.D. Driessche and R.O. Braddock, liOn the Elliptic Generating
Region of a Tsunami ," Jour.nal of Marine Research, Australia, 1972,
pp. 217-226.

4. J.L. Hammack, "A Note on Tsunamis: Their Generation and Propagation
in an Ocean· of Uniform Depth," Journal of Fluid Mechanics, Vol. 60,
Part IV, 1973, pp. 769-799. (For more detail , see Report No. KH-R-28,
W. M. Keck Laboratory of Hydraulics and Water Resources, California
Institute of Technology, Pasadena, California, 1972).

5. K. Horikawa, Coastal Engineering - An Introduction to Ocean Engi
neering; John Wiley &Sons, New York, 1978, Chapter 3.

6. K. Kajiura, liThe Leading Wave of a Tsunami ,II Bu.1letin of the Earth
quake Research Institute, Tokyo University, Vol. 41, 1963, pp.535
571.

7. K. Kajiura, "Tsunami Source, Energy and the Directivity of Wave
Radiation,1I Bulletin of the Earthguake Research Institute, Tokyo
University, Vol. 48, 1970, pp. 835-869.

8. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice
Hall Inc., Englewood Cliffs, New Jersey, 1975.

9. 1.S. Reed, T.K. Truong, Y.S. Kwoh and E.L. Hall, IIImage Processing
by Transforms over a Finited Field,1I IEEE Transaction on Computers,
Vo1. C-20, No.9, 1977.

10. W.G. Van Dorn, IITsunamis,1I Advances in Hydroscience, Vol. 2, 1965,
pp. 1-48.

28



Chapter 3

3. 1. INTRODUCTION

A Viscous Model For Non-linear Dispersive Waves

29

In recent years finite-amplitude,shallow-water waves have been

under intensive investigation.• Korteweg - de Vries equation (1895)

have long been found to describe the propagation of moderate amplitude

waves in relatively shallow water of uniform depth. Exact solution,

asymptotic solution, as well as numerical solution of the KdV equa

tion can be found in various publications e.g. Gardner etal (1967),

'-Segur (1973), Johnson (1972, 1973), Vliegenthart (1971) and Whitham

(1974). Experiments have also been conducted to test the validity

of the KdV equation as a propagation model in shallow water such-as

reported by Zabusky & Galvin (1971), Hammack (1973), Hammack &

Segur (1974).

In these theoretical and numerical studies the fluid is consi

dered invisci~ thus the effects of non-linearity and dispersiveness

are included while the dissipation effect is neglected. The.present

.study attempts ·to find an-approximate,·.governing. eq:uation if the visco

sity of the fluid is included in the analysis. This is motivated

by the apparant deviation of the results from the laboratory expe

riments compared with the inviscid theories as illustrated by

Hammack (1973).

Most recently two separate studies on the modified KdV equation,

independent of the present work, have just appeared in the litera

tures: these are the work of Shuto (1976) and Miles (1976). Shuto

included a turbulent boundary stress based on experimentally

determined friction coefficient. Miles considered the laminar

boundary layer and derived a modified KdV equation that involves

an integral operator. The resul'ts of Miles show that the damping
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coefficient is inversely proportional to the square root of an appropriate

Reynold's number which is also demonstrated in the present work.

The viscous dissipation effect on the wave system can be found in

three areas: internal viscous dissipation, viscous boundary layer at the

free surface and viscous boundary layer at the bottom. In the present

study, the viscous boundary layer at the free surface is neglected. The

internal viscous dissipation is shown to be small compared with the bottom

friction. Numerical solutions of the derived viscous KdV equation for

various initial conditions have been obtained and compared with the

experimental results of Hammack (1973) and Hammack & Segur (1974).



31
3.2. THEORETICAL ANALYSIS

For the theoretical analysis, the flow is considered ~o-dimensional

and the fluid imcompressible.

The governing equation are the Navier-Stokes equations and the

continuity equation:

dU* "dU* + ~
d t" + U ax* v dY* = . .. (I-a)

dV* + "ov* + ... Ov* l1E..: o2v* 02v*
o"t* u ox* v ay* = - P ay*· - g + v (ox*2 + dY*:Z) ••. (I-b)

+ av* =
dY*

o • •. (I-c)

where u* and v* are the horizontal (x*) and vertical (y*) components

0.£ fluid velocity respectively, p* the pressure, p the fluid density,

v the kinematic viscosity, g the gravitational acceleration, d the

water depth, t* the time and L the characteristic horizontal length.

If the physical parameters in the Navier."Stokes equations are

non-dimensionalized as:

1 P*-Po*
p = s-[y - I + - p gd ] s

I u*u=---,v
e:1gd

= ~
d

I8d t*=
L

(I-d)

where Po* is the atmospheric pressure, and ~ is the amplitude parameter

defined as the maximum wave amplitude n * divided by the water depth d.
o

Then the governing equations can be reduced to the following

dimensionless form:



= Su +
yy

SKEUxx
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(2a)

u + v = ax y

(2b)

(2c)

In which the parameter 8 2 = KE with K = a (1) is introduced;

this implies that the effect of dispersion and non-linearity is

equally important.

The bound~ry conditions are as follows:

(i) at the sea bottom there must be no slip,

Le. u =- v = a at y = a

(ii) at the free surface y = 1 + En, the free surface condition

must be satisfied.

v = n +f t

L1 - y + Ep

Eun x

= a

In order to facilitate further development and the eventual

numerical calculation, the following characteristic coordinates are

used:

t; =x-t; '! = Ex

The dependent variables u, v, p are expanded in a power series of

E such as:

+

Substitute these power series into Eq. 2, we can collect the following

equations with different order of approximation.



The solution of these 8
0 order equations is that of the linear

shallow water wave theor.y; thus, the horizontal velocity uO will be

uniform in y which will violate the non-slip condition at the sea

bottom. This must be corrected at the next order's approximation

in order to satisfy the non-slip condition in u at the bottom.

First order (8
1

) approximation:

1 + o 0 o 0 0 1 SuO 0
- u .; u u.; + v u + PT + Pc; = + K:SUc;c;

Y yy

0
p l 0 (5)- KV + = KSVc; Y yy

0 + 1 ' + v 1 au u.; =
T Y
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with the boundary condition

pI == n1

\o 0 + V 1 -n l + o 0 at y := 1 (6)n v :=
U n;y ;

Ju 1
== 0

Y

vI := 0 '\

J
at y := 0

0

u 1 u
:=

e:

Solving these equations, with integration performed from the bottom to

the free surface with respect to y and assum~ng 'du/ d y at the free

surface as zero (this assumption implies that the dissipation due to

boundary layer at the free surface is neglected) we obtain the following

equation for no

o
n 1" +

3 0 0
"2 n n.; + = K °ZSn.;.; ..§ u 11

2 y y==O
(7)

with S := 0, Eq. (7) is the well known KdV equation. The term u 1 in
y

Eq. 7 represents the velocity gradient at the bottom and it must

be evaluated. It should be noted here that the first term in the right

hand side of Eq. 7 represents the internal viscous dissipation while

the second term represents the dissipation at the bottom. As we recall

for approximation to the E: 1 order

o 1u==u +Su, u1 == 1 (u _ uo)
e:



Thus U
1 I
y y=0

= 1 I-u
E: Y y=O

obecause we allow u to

be independent of y in the zeroth order approximation.

o
Rearranging the first equation of Eq. (5) and noting that u

o .
and n are interchangeable, we have

= + + ) ( 8)

By retaining only the most important terms (which are the terms on

the left hand side and the last term on the right hand side) we

obtain a linear equation for the boundary layer region close to the

bed:

o
(u - u )~ = (9)

with the boundary condition:

o 0
u - u = -u at y = 0

o
u - u = o at y ~ ~ (beyond the edge of the

boundary layer)

(10)

Eq. (9) is a heat equation, the solution of such an equation is quite

well known and can be expressed in a Fourier integral or most conve-

niently in the Duhamel's form (e.g. see Webster (1955) p. 173):

o
u - u

2 ~ '12 _y2
= - ,..... f F ( :: +~) e dy

v~ 0 ~ 46y (ll)

in which the boundary value U
O at y = a is assigned to be uO = F(~).

In order to further carry out the integration of Eq. 11 we have to

assume a functional form for F. We choose



u
o = F(~) = A sech2~ as a representative form.

Then u - U
o = 2A 2 _y 2

fo
CO

sech2 (~+ J.:-) e dy
- / 7l" 4f3y 2

(12)

differentiation with respect to y and evaluate this value at y = 0

we obtain:

au I
3Y y=O

=

(13)

The function C(~), which represents the integral in the above

equation, can be evaluated numerically for different value of ~ and

is presented in Fig. 1. As can be seen from ~ig. 1, the function

C(O approaches an asymptotic value of 0.62 very quick.ly. Herein we

will use 0.62 for C( 0, therefore, Eq. (13) and the last term of Eq. 7

can be further simplified:

...6 au1

= 8 au
2 3y 2E oy

y=O y=O

0.7 /13 nO Cf.n o (14)= =
€

For an experimental wave tank of width W in water depth d, the value

of ci should be multiplied by 1 + 2d!W to account for the additional

frictional effect at the side walls.
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Therefore, Eq. (7) can be rewritten as:

= o
ant;t;

o
an (15)

where a KB=-
2 For most cases, a«a and "a" can be neglected, it

is kept to this point to demonstrate the mechanism of internal viscous

dissipation.

oIt is interesting to discuss Eq. 15 further. by neglecting the term ant;t;

and make the transformation n = neaT

equation with modified coefficients:

Then we can get a KdV

+ (16)

Eq. (16) demonstrates that the net effect of the boundary dissipation

is to gradually decrease the influence of the non-linear term. Because.

a solitary wave is a solution of the KdV equation, we can now expect

for a very small value of aT, the amplitude of a solitary wave will

-endecay as e As aT increases, n should decay faster. In fact, it

can be shown, e.g. Ott and Sudan (1970), Ostrovskiy and Pelinovskiy

(1974), that the amplitude decay of a solitary wave follows the form:

n (1')
11 (0) =

4
e - 3':Ct.T (17)

Thus, for the present case, if a is evaluated from Eq. 14, then the
,

amplitude decay of a solitary wave can be conveniently estimated from

Eq. 17. Results from this simple process agree extremely well with

the numerical results and the prior published theories on damping of

solitary wave (i.e. Keulegan 1948, Ippen and Kulin 1955). This will

be discussed in detail in the results section.
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For a more complicated initial wave form, numerical solution of

Eq. 15 can be obtained. (For all practical purpose, the coefficient

a in Eq. 15 can be set equal to zero). Examples for this application

will be shown in the results section. The finite difference form of

Eg. 15 as well as some information concerning the computational aspect

is presented in the Appendix.



3. 3. PREVIOUS THEORIES ON DAMPING OF SOLITARY WAVES:

Keulegan (1948) analyzed the rate of 10SS0£ energy due to viscous

shear within the laminar boundary layer beneath the solitary wave on a

smooth surface. For a single solitary wave with an initial maximum.

amplitude en ). at x = 0 in water of depth d and a tank of width W, heo 1.

found that the maximum amplitude T) of the solitary wave at any downstream
o

position x could be approximated by

= (18)

where
2:

e = ..l. ( 1 + 2d) (~) 1/4 (.! ) and \) is the kinematic vis-
12 W gd d

cosity of fluid.

As W~~, the above equation can be simplified to ~ecome:

-1/4no
(n .) -1/ 4

OJ.
= 0.083 ( ~ )1/2I g .

(2L )
2

d
(19 )

It should be noted that x used here and after represents the horizontal

distance from the initial station; therefore, it is equivalent to x*

used in previous section.

Based on the laboratory data conducted by various investigators,

as summarized by French (1969), Eq. 19 seems to overpredict the viscous

damping but generally yields reasonably good agreement.

The data of Ippen, Kulin & Raza (1955) also indicate that Keulegan's

formula predicts more damping than observed. A separate dissipation

study has also been made through direct measurement of bottom shear

stress by Ippen and Mitchell (1957). ·For smooth bed, the mean resistance

coefficient Cio was found to be related to a wave Reynold number R~o as

follows (see Ippen (1966»:



C' 1.328 1. 328 1. 328
::::

(R' ) 1/2
= = 1/2fo 1/2so co u2 (1. 54no/gno)(£ V dt) v .

15 no _a dno:::: ) ( 20)
4 d dx

Integrating the above equation we can obtain the following equation which

is very similar to Keulegan's:

( )-1/4
no .

-1/4
( no ) i ::::

x·
"""7
d

(21)

It is clear that the only diff1:rence between £qs.19 & 21 is the first

coefficient at the right hand side of the equations. Thus, Eq. 21

should therefore predict a smaller amplitude decay.

Comparison of the results from present study with Rq. 19 and 21

will first be made in the next section.



3.4 PRESENTATION AND DISCUSSION OF RESULTS

As a first example for 'the application of the theoretical development

presented in previous section. the propagation of a single solitary wave

in a laboratory flume is first studied. Fig. 2 presents the gradual

damping of a solitary wave with amplitude/depth = 0.12 in two different

water depths Cd = 3 in.and 6 in.). Numerical solution of Eq. 15 is

compared with the theories by Keulegan CEq. 19) and Ippen and Kulin

CEq. 21). The result obtained by Eqs. 14 and 17 is also included. As

expected. at the very early stage of wave prcopagation. the decay of the

-a:rmaximum amplitude of the solitary wave is quite close to e . However,

as distance from the initial location is increased the numerical result

approach the asymptotic result of Eq. 17 very nicely. The decay of

amplitude predicted by Keulegan's formula is consistently larger than

that of the Ippen's as well as the present result. However, all results

are quite close to e~ch other ,and .demonstrate the same trend. For the

6 in. water depth the amplitude decay at the same x/d is smaller than

that for the case of 3 in. depth because the effect of boundary friction

is more significant for shallower depth. By looking at the formula for

e and ~ (Eqs. 1 and 14), it can .be seen that as d increases the values

of 8 and a are reduced; therefore, the decay of solitary wave amplitude

is reduced for the same x/d.

Fig. 3 presents amplitude decay of a solitary wave with amplitude/

depth = 0.08 as a function of xl d in water depth of 3 in. and 6 in.

The general agreement among various curves can also be seen. Again the

Keulegan's formula seems to overpredict the amplitude decay but the

difference is indeed quite small.
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no(x)

no (0)
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Fig. 2. Amplitude decay, n (x)/n (0), as a function of horizontal position,
x/d, for a solita~ waveOwith no(O)/d = 0.12 in two different depths
of water.

_ ... .--... ... -

present numerical results.
present results using Eqs. 14 & 17.
result based on Ippen (1955) (Eq. 21)
result based on Keu1egan (1948) (Eq. 19)
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Amplitude decay, n (x)/n (0), as a function of horizontal position,
x!d, for a solita~ waveOwith no(O)/d = 0.08 in two different depths
of water.
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present numerical results
present results using Eqs. 14 & 17
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result based on Keulegan (1948) CEq. 19)



From Figs. 2 and 3, it can be said that the values of B and a developed

in the present study can be used quite conveniently to estimate the amplitude

decay of a single ~olitary wave propagating in shallow water.

Hammack and Segur (1974) conducted very careful and outstanding expe

riments to test the validity of the KdV equation as a model for moderate

amplitude waves propagating in one direction in relatively $hallo~ water

of uniform depth. The KdV equation was found to predict accurately the

number of evolving solitons and their shapes for initial data whose asymp

totic characteristics developed in the test section of the wave tank .

. However, the accuracy of the leading-soliton amplitudes computed by the

KdV equation could not be conclusively tested owing to the viscous decay

of the measured wave amplitude. With the viscous KdV equation developed

in the present study, it is interesting to check their experiments with'

the numerical solution of Eq. 15. This can be considered a more strigent

test of the theory as the wave profiles are much more complex than the

individual solit~ry waves considered in Figs. 2 and 3.

The first example of this comparison is shown in Fig. 4. On the left

hand side of the figure, the experimental wave profiles from Hammack and

Segur (1974) are shown. The initial wave profile is of the type of sech 2

As this wave propagates further downstream the initial wave evolves away

from the sech 2 profile. Atter 180 depths of propagation two local crests

can be seen from the experimental data. At·4QO depths the observed waves

show four local maxima representing 4 solitons although the fourth peak

is not as distinguishable as the other three. Their theoretical predictions

also show that the number of solitons ,that the initial profile eventually

evolve into ,should be four.

The same initial ~ave profile is used for the present numerical
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EXPERIN£NTAL PROFlU COMPUTEt) PROFI\.S

OJZr----------....;..+--------------l
(x-ol/d ·0

0.12

(x-ol/d - 400

(x-Ill/d- 180

(x-ol/d -400

n
d

0

OJZ

.08

.04

-20 -10 o 10 20 ~ 40 SO -20 -10 0 10 20 iSO 40 SO SO

Fig. 4. Comparison of present numerical wave profiles with the experi
mental wave profiles of Hammack & Segur (1974) at different
stations (water depth d = 5 em.)

--------- inviscid fluid (V -5 0)2
water ( v.= 1 x 10 ft /sec.)
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solution; these are shown in the right hand side of the figure. The dotted

line represents the numerical results of inviscid KdV equation (setting

a = a = 0 in Eq. 15) The solid' line represents the results from the

viscous KdV equation. (a = 0.40 including the side wall correction).

As the initial wave propagates to the 180 depths, the deviation of the

viscous solution from the inviscid solution is already quite obvious.

The effect of the bottom friction is found to reduce the wave amplitude

and the propagation speed although the difference in propagation speed

is quite small at this point. As wave propagates to 400 depth, the

deviation between the inviscid and viscous theory is eveh more pronounced.

Specifically, the inviscid theory predicts the amplitude of the first

soliton to be 0.142d, while the viscous theory predicts this amplitude

to be O.104d. The experimental value from Hammack and Segur (1974)

showed this amplitude to be 0.092d. It should be noted that from the

data of ~mmack and Segur the arrival time of the first soliton at 400

depth is 27 sec. The arrival time of the present viscous solution is

26.3 sec which shows a 2.6% difference compared with the experiment',.

The invis cid. theory shows the arrival time of the first cres t to be at

26 seconds. The number of soliton is 4 as can be seen from the figure.

The time interval between the peaks of soliton agrees very well when

comparing the viscous theory and the experiments.

It is interesting to see whether other wave characteristics are

modified by the dissipation effect beside the two main features of

reducing wave amplitude, s'lowing propagation speed. To this end,

a more detailed plot of the numerical wave profile is shown in Fig. 5

in which fluids with three different viscosities are shown: inviscid

fluid ( v = 0), water ( V = 1 x 10 -5 ft 2/sec) and crude oil ( v =
-5 26 x 10 ft Isec). The profiles for the inviscid fluid and water are



48

O.14r----------------------------.

Is-olld • 180

ls-bl/cl • 400

t\, .
f \, .
J \

j-', ~
! \
I \

i \
i ". \ ....-....

__;I' .,.....

., ' ..
' ....--------.... .._---...........

................ __.-.__.- ....
~~f.0~...,.;~-::;O~.5:------:0::----:O'':S----;I.i::O--~L5:---2.0~---~~---3.~O--_..l.3,':S::':::::.::;;::;I •.O

.12

.04

0.14

n.
d

t (sec)

Fig. 5. Comparison of the numerical wave profiles at two stations for
these different viscosities:

-------- inviscid fluid (v -5 0i
water ( V = I x 10 ft /sec.)-) 2___ • _. _ crude oil ( \) = 6 x 10 ft / sec. )

(The initial profile is that shown in Fig. 4).





50

EXPERIMENTAL PROFIl.E COMPUT~O PROFIl.E

.06r--------------+---------------4
(x-b)/d" 0 (x-b)/d .. 0

.02

.04

0

(x-b)/d -180
~, .

(x-b)/d - 180
.06

• I
I'
I '

!
I.

D..
I
I.

d .04
I
I
I
I
I
I
I
I

.02
I
I
I
j

I
J

I

I
I

0 I

'.
~~

I,

"I,
(x-b)/d - 400 : I (x-b)/d" 400

I I

.06 I I
I I
I ,
I

1I
I I

I
I

.04
I
I
J
;
I
I.
I
I

.02
I
I

•I
I

J
J

I

0
/

-20 -10 0 10 20 :0 40 -20 -10 0 10 20 30 40 50

t (.&) liz (x,..b)
- d d

Fig. 6. Comparison of present numerical wave profiles with the expe
rimental wave profiles of Hammack & Segur (1974) at different
stations (water depth d = 5 em.)

invis id fluid (\) = 0)
water (\) = 1 x 10-5 ft 2;sec.)



The calculated amplitude for the three solitons agree quite well

with the experiments of Hammack a~d Segur (1974). From their exp'erimental

results, the amplitude of the three solitons are: O.052d, O.035d, and

0.013d. As in the case of Fig. 4, the arrival time of the viscous

soliton is still slightly faster than the experiment. The arrival time

of the first peak of the soliton at 400 depth is 27.93 second ( by

considering the location of centroid of the wave at 0 depth as the base)

compared with 27.46 second for the viscous theory with a difference of

1. 7%.

A more detailed wave profile for three different fluids based on

the same initial wave profile is shown in Fig. 7. The curves for the

inviscid fluid and water ( \) = I x 10-5 ft 2/sec) are the same as that

shown in Fig. 6 at the corresponding location. The first peaks are

adjusted to occur at t = 0 for all cases. The curve for crude oil is

superimposed to show the effect of viscosity more clearly. As can be

seen from the figure the phase has only. been changed slightly b1 diffe-

rent viscosities but the amplitudes of these waves are damped out

considerably by viscous dissipation.

Fig. 8 shows the waves resulting from a monotonic downthrow of the

channel bed at one end of the wave tank as presented in Hammack and

Segur (1974). The initial wave at ( x - b)/h = 0 is approximately

a negative square wave. As the wave propagates downstream a leading

negative wave with decreasing frontal slope followed by an oscillatory

•wave train can be observed. The computed profiles for both the invtscid

and viscous cases based on the initial experimental wave profile are

shown on the right hand side of Fig. 8. By comparing the present viscous

result with the experimental data surpris~ng good agreement can be seen
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for the leading negative wave amplitude and its length as well as the time

interval between the oscillatory waves on the tail end. The dissipation

effect for the oscillatory wave tail in the present computation (although

significant compared with the inviscid theory) does not adequately account

for:' the total dissipation. In the region consisting oscillatory wave

the wave frequency is increased; therefore, mechanism similar to that

considered by Van Dorn (1966) should probably be included in order to

obtain an even better agreement between the theory and experiments.

A very unusually large, highly nonlinear, negative wave propagating

in water depth of 10 em. is shown in Fig. 9. The experimental wave

profiles are taken from Hammack and Segur (1975) and are shown in the

left hand side of the figure. The evolution process of this wave is

quite complicated and cannot be described by KdV equation alone (see

Hammack and Segur (1975». Therefore, direct comparison of the present

computation and the experimental data might be misleading except for the

first leading negative wave at which the behavior can probably be modeled

by the present viscous KdV equation. Considering these factors, it is

somewhat surprising to see that the present numerical result from Eq. 15

actually compared quite well with the experiments except the region where

oscillatory waves persist. As mentioned earlier, in 'future studies addi

tional dissipation mechanism should probably be included for the modulated

oscillatory waves behind the leading negative waves.
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APPENDIX:. COMPUTATIONAL ASPECTS

56

In the theoretical analysis there involves a characteristic horizontal

length L. For solitary waves we adopt the distance between the two Doints

of a solitary wave where n*/n * = 0.001 to be the length IfL"; thus, for
o

solitary waves L is defined as:

L
d = 10

is

For the initial wave profiles presented in Figs. 4, 6, 8 and 9, the

distance between the first two zero points in n* is used as L: for

example, L = 161 em. for the case of Fig. 6, and L = 170 em. for the

case in Fig. 9.

For the numerical calculation, Eq. 15 is written in a finite-diffe-

rence approximation as follows:

U:r

+

followed for all the

The stability condition

where H~ is n(IIL61, jL:.';). As mentioned in the main text, the difference
J

in the computed profiles is extremely small whether we set a = 0 or "a"

equals to the computed value based on Eq. 15.

6.T 3 I r 4K .by V1iegenthart (1971), 6.';[ ~ n + 6L:.,;2 ], ~s

calculations. In calculating the profiles used in Figs. 2 to 7, 240

points in ,; coordinate is used with 6~ = 0.1. When calculating the

profiles for Fig. 8, 340 points in ~ is used (with 6.~ = 0.1) to account

for the longer wave train developed in the tail region. However, for



the profile in Fig. 9.an aven larger number of grid points is used.

F~r Fig. 9, 640 points in ~ (with ~~ = 0.1) are used for calculating

the wave profile at x = lOad from the initial station. Then the

profile so obtained is used as an initial condition to find the wave

profile at x =200d. In this stage of computation. 940 points in ~

(with ~~ = 0.1) have been used. All computations are done with

~ T = 0.00025.

The numerical computations are done by using IBM 370/178

computer. As an indication of the computation.time involved, to obtain

the profiles presented in Fig. 6, it requires 170 seconds of compu-

tation time.
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Chapter 4 Wave Propagation Over Submarine Trench

4. 1. Introduction.

A class of problems involving the propagation of water waves in a

fluid of variable depth is one 1n which the depth is constant except

for variations over a finite interval. Interest in these problems is

largely due to the phenomena associated with the passage of waves over

submarine trenches in the ocean and wave propagation across navigational

channels, where changes in water depth are commonly the case. A general

analysis of wave propagation over variable depth geometries is given by

Kreisel (1949). Kreisel's approach involves mapping the domain of the

fluid into a rectangular strip, wh.ereby the problem is reduced to a

linear integral equation which can be solved by iteration for suitable

geometries. An important aspect of problems involving changes in water

depth is that of matching the solution along a geometrical boundary that

separates the regions of different depths. Such an approach is found

in the work of Bartholomeusz (1958) and Miles (1967). It has also been

found (Newman, 1965) that for wave propagation over submarine obstacles

there exists an infinite set of wavelengths such that the incident wave

is totally transmitted.

This present study is restricted to the two-dimensional motion of

linear periodic water waves over a rectangular submarine trench where

the water depth before and after the trench is constant. The constant

depth region and the trench region are separated geometrically and the

velocity potential in each region is then found due to an unknown velo

city distribution along the trench-constant depth boundary. This unknown



velocity distribution and consequently, the final solution can be obtained

once an incident wave is specified and that the solutions in each region

are matched along the common boundary. A major advantage inherent in

this approach is that the solution for a trench of arbitrary shape can

also be easily obtained.
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4.2. The boundary-value problem.

Let (x,y) constitute a Cartesian coordinate system with y =0

coinciding with the impermeable boundary of the constant depth region.

as shown in the definition sketch in Figure 1. Assuming a steady-state

solution for the velocity potential in the form of

~(x,y;t) = ~(x,y)e-icrt (2.1)

the potential function ~(x,y) must satisfy Laplace's equation

throughout the fluid domain and the following boundary conditions:

a¢ = 0
ay

.2! = 0ay

.2! = 0
'Oy

~= 0ax

a¢ = 0ax

on y = h, -~ < x < ~

on y = 0, x < a

on y =0, x > A

on y = -d, 0 < x < A

on x = 0, -d ~ Y ~ 0

on x = A, -d.::. y .::. 0

(2.2)

In equation (2.1), cr represents the circular frequency, 2rr/wave period;

i is the complex number ~.

In order to solve for ¢(x,y) in an efficient manner, the fluid domain

is divided into two regions, Region I and Region II, (as shown also in

Figure 1) by the common boundary r which is defined by
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+00
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~-------~f
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-00

o COMMON BOUNDARY r

. REGION II d

1
\- .. I

Figure 1 Definition sketch of the trench with regions of
consideration.



y = a O<x</I..- -

64

Thus Region I is defined by

and Region II ;s defined by

-d ~y ~ 0 , 0 < x < A

The strategy used herein is to solve for <p(x,y) in each respective

region in terms of the unknown 3<P/3y along the common boundary r.

Thus, by matching the solutions in each region at r ,one is able to

obta in the fi na1 solution.
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4.3. Region I solution.

Assuming a solution for the velocity potential in Region I to have

the form

-icrt
e t

the potential ~r can be seen to satisfy Laplace1s equation subject

to the following boundary conditions:

3<P I cr2
ay =9 <PI on y = h , -oo<x<+co (3. 1)

3<P I _
g(x) on y = 0 , a < x < ,\ (3.2)3y -

3<P I Y = 0 , x < ° (3.3)-= 0 on3y

3<Pr y=O,X)A (3.4 )-= 0 on3y

where g{x) represents the unknown velocity distribution along the trench

constant depth boundary.

The so1uti on for <PI is determi ned usi ng th e Fouri er Trans form defi ned by

-
f(k)

00

= ~ f(x)e- ikx dx
-00

with the inverse transformation defined by

00

JT- 1(f(k)) = f(x) 1 r f(k) eikx dk .=5 J
-00
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The transformation of the governing equation subject to the trans-

formed equations (3.1) -(3.4) and the subsequent inversion yields

The still unknown function g(x) can be represented approximately by

N

g(x) - ~ OJ [H(X-X j _l ) H(X-X j )] (3.6)

where the interval °< x < A has been partitioned into N segments of

equal length, . Qj is the average value of g(x) in the jth subinterval,

(j = 1,2, •.. N), and H(x - ~) is a Heavyside function defined by

__ f 0,
H(x-t;) 1 x < ~

x > ~

A Fourier transform of (3.6) and substitution into (3.5) yields

N

= -2
1

.. ~ O· r. I. 1 - I.J'lT~ 1-4 J l J - J
j=l

where
_ jCOeik(X-Xj ) [(k + (i/g) ek(y-h) + (k- o2 jq ) ek(h-y)]

I. - 2 2 -kh 2 kh dk
J -0> k (k+o /g) e - (k-o /g) e

To compute the integral defined by Ij , the calculus of residues has been

used; the integral Ij has simple poles at 0, ±k r and ±ikn (n = 1,2, ... )

where kr and kn are defined by the following relationships:
2

£- = k tanh(k· h)
9 r r
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and
2cr
9

In order to obtain an outgoing wave solution from the trench, we specify

our inversion path to lie above the pole at -k r and below the pole at

+kr . For such a path, the solution for <PI can be described as follows:

(1)

(2) If x < x· for all j ,
J

(3.7)

00

+2:
n=l

(3.8)

(3 ) Ifx>x' lJ- and x < x.
J

for some j ,
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(3.9)

In equations (3.7) - (3.9) the functions Sr and Sn are defined by

and

kr COSh[kr(Y-h)] + (//g sinh [kr(y-h)]

Krh sech krh + sinh krh

kn COS[kn(y-h)] + (//9 sin [kn(y-h)]

knh sec knh + sin knh

It ;s easily verified that the solution for ill! given by (3.7) - (3.9)

satisfies Laplace's equation in Region I and the associated boundary con-

ditions (3.1) - (3.4).
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4. 4. Region II solution.

Again, the solution for the velocity potential in Region II has the

steady-state form

( ) () -iat
~II x,y; t = <P I I x ,y e.

and the potential <P II must satisfy Laplace's equation subject to the

following boundary conditions:

d¢ I I _
0 on. x =0 -d ~ y ~ a (4.1 )ax-- ,

d<!>II a on x = .\ -d ~ y ~ a (4.2)ax= "

d<!>rr a on y =-d, a < x < .\ (4.3)3y -

'd¢II =g(x) on y =a , a < x < A (4.4)
3y

There exists a constraint on g(x); namely that due to the conserva

tion of mass in Region II

f
A

g(x) = a
o

(4.5)

Using the approximate representation for g(x), Equation (4.5) and (3.6)

can be combined to give

N

~ Q. = 0 , a condition which necessarily must be (4.6)
j=l J

also applied to Region I.



Via the technique of separation of variables, the solution for the

potential ~II subject to the boundary conditions (4.1) - (4-4) is

00

CPr r (x,y) ::: aa + I: an cos ~. cosh mr(y+d)
n:::l A A

(4.7)

where aa ;s an arbitrary constant, and a (n > 1) is given by
n -

2

n7T • s; nh (n~d)
g(x) • cos n~x dx (4.8)



4.5. Superposition and matching of solutions.

For a periodic incident wave travelling in the positive x direc-

tion in Region I, the velocity potential can be specified as

cosh krY i(krx - crt)
..... '·n(x'y;t) =""'n • e-

icrt =~ e
I.Jr' '+' ,cr cosh k h

r
( 5.l)

Defining ~j (j = 1,2, ... N) as the midpoint of the jth subin'terval

of r , we may in turn define the vector {<p} . byin Nxl

"<p. (x. ,0) = ~ sech k h
,n J 'cr r

"
i k x·

e r J (5.2)

where <p;n(j) denotes the jth member of the vecto~ {<Pin}' Similarly,

a vector {<PI} can be defined by

Us i ng equati on {3.9) ,

(5.3)

it can be shown that {cP I } = [H] {Q},

where H is symmetric with the additional property that

and

Hi +1,j+1 = H.. , ( i,j = 1,2, ... N-1)
'J

Q(j) = Q.
J

Defining the column vector {cP rr } by ¢rr(j) =

(3.6) and (4.8) gives

"¢rr(xj,O), equations
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(5.4)

where {so} Nxl is.a. vector in which each member is (the same) arbitrary

constant, [B]NXP is a matrix defined by

'"
p~xn p~d

Bnp = cos ---A-' coth A (
n = 1,

P = " ~)

where P denotes an upper limit to the Fourier series representation of

¢II(x,y), and the matrix [M] PxN is given by

'"• 471. ..Q!. p7Tx
Mpn = 2 S1n 2N . cos~

(p~) A

Due to the continuity of velocity potential along tne conroon boun

dary r we have

(5.5)

Substituting equations (5.2) - (5.4) into (5.5) we obtain N equations

with N + 1 unknowns (Q" Q2' ... QN and SO). However, equation (4.6)

must again be implemented for Region I, providing us with an additional

equation. This system of linear equations is then solved numerically

for the vector {Q}. Thus, the originally unknown function g(x)

introduced in equation (3.2) is now solved as a discrete function {Q}
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4. 6. Wave amp1;tude ana1ys is ...

Since the values of Qj have been found, the velocity potential in the

entire domain is completely solved. In particular, the values of ~I and ~in at

the surface can now be computed using equations (3.7) - (3.9) and (5.1).

The wave ampl i tude at the water surface is given by 1inear theory to be

Consequently, the steady state amplitude of a surface wave at any

value of x is determined.



74

4. 7. Experimental equipment and procedure.

A series of laboratory experiments is conducted in a wave tank of

12 inches wide, 48 feet long and 18 inches deep. A paddle-type wave

generator is placed at one end of the tank to generate the desired wave

at a specified wave period. The wave period is controlled by a variable

speed motor control. A wave filter is placed in front of the wave paddle

while a wave absorber is located at the end of the wave tank. At the

central section of the wave tank a special trench section is installed.

The trench section extends 26~1I below the bottom of the wave tank to rest

on the laboratory floor. The maximum trench length is 85 inches. Four

different trench lengths can be obtained through the partitions installed,

namely 211/8 11 ,42 3/8 11 ,63 5/811
, 85 11

• The depth in the trench section

can also be varied by placing a false bottom at various heights.

The wave amplitude is measured by means of resistant-type wave.

gauges. The wave records are recorded using a Hewlett Packard four

channel oscillograph recorder.

Wave amplitudes were measured in the region· 2 feet to 6 feet behind

the trench section. Wave amplitude envelopes are obtained first without

the effect of the trench (by covering the trench sectton.completely) in

order to determine the incident wave amplitude. The wave envelopes are

then obtained .with the trench at the desired length and depth at the

same region behind the trench section in order to ascertain the wave

amplitude after passing over the trench section.



4.8. Presentation and Discussion of Results.

The effect of the trench on the propagation of waves can be

demonstrated most easily by the transmission and reflection charac-

teristics. Figure 2 shows the transmission coefficient, Kt , as a

function of the relative wave length. The ordinate is the ratio of

the transmitted wave amplitude divided by the incident wave amplitude,

while the abscissa is the ratio of the water depth, h, in Region I

divided by the incident wave length, L.The wave length Lis com

puted from the dispersion relationship,·L = (gT2/2rr) tanh (2rrh/L),

where T is the incident wave period. It is seen from Figure 2 that

for hlL > 0.18, the incident waves are almost fully tran~m;tted.

Ath/L = 0.09, the transmission coefficient is approximately 0.89.

T6 understand the trench effect further, one can compute the value

of X/L at these critical points. At h/L = 0.18, it corresponds to

X/L =0.95 while at' h/L =0.09, it corresponds to AIL =0.475. It

appears that for a relatively short trench length, the maximum reduc

tion of transmitted wave occurs as AIL approaches 0.5. As the wave

period is decreased to where X/L approaches 1, the effect on wave

transmission due to the trench is negligible.

Figure 3 shows the reflection coefficient as a function of

the relative wave 'length for the same range of h/L shown in Figure 2.

The reflection coefficient, Kr , is defined as the reflected wave am-
•

plitude divided by incident wave amplitude. As expected, the maximum

reflected wave occurs at h/L = 0.09 where the transmitted wave is a

minimum. As this is an inviscid theory, one can check the result
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to see whether K; + K~ = 1 can be satisfied (where Kr is the reflec

tion coefficient, Kt the transmission coefficient). For the range of

h/L~ it is checked that such a relation holds true; thereby further

increasing the validity of the theoretical result.

As the trench length increases, the effect of the trench on

transmission and reflection characteristics becomes more interesting.

This is shown in Figures 4 and 5. The trench length for this case

is twice the length of that in Figures 2 and 3. It is seen for the

range, of h/l presented, there are four wave periods at which waves are

fully transmitted (Kt = 1, Kr = 0). The reduction in transmission

coefficient or increase in reflection coefficient is more pronounced

at hlL = 0.056. Again, it was checked that the relationship K~ + K~ = 1

held true. It is seen that the effect of the trench on transmission

or reflection coefficients for higher values of. hlL is decreasingly

smaller. This is reasonable, because for higher values of h/L, the

water depth is relatively deeper; therefore, an increase in water

depth due to the trench will have a lesser impact on the transmitted

wave.

In Figure 4 experimental data on the transmission coefficient

has been included for comparison. It is seen that the experimental

data in general confinns the trend predicted by the theoretical

analysis. Since the effect of energy dissipation is not inc1uded in

the theory, the data tends to have a lower value of Kt . Also ap

parent from the experimental data ;s that there exists an oscillation

of data points about the theoretical curve. This could be due to
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the effect of the finite length of the'wavetank and that the wave

absorbers placed at both ends of the wave tank cannot eliminate the

wave reflection completely from the tank ends. Due to the limitation

of the available experimental facilities, a substantially superior

experimental verification is not achieved .
•

Results on wave transmission over a longer trench length is

shown in Figure 6. The trench length for this case is three times

that shown in Figure 2 with other dimensions held constant .
.

In the range of 0 < h/L < 0.25, there are six different wave
.

periods at which waves are fully transmitted. The results indicate

that the trench does exert a greater influence on wave transmission

characteristics in that the transmission coefficient at h/L = 0.042

is only about 0.70. Experimental data are also included in Figure 6.

It ;s seen that the experimental data in general tend to confirm the

theoretical prediction.. However, due to the unavoidable energy dis

sipation as well as reflection from both ends of the wave tank, the

experimental data show considerable scattering 'as evident in the

figure.

Figure 7 shows the wave transmission coefficient· for a trench

with a further increase in trench length. The number of wave periods

at which waves are fully transmitted is now increased to nine for the

same range of h/L. For each of the troughs in the. response curve, the

effect of the trench is further dramatized. For example, at the first

trough (h/L =0.034), the transmission coefficient is reduced to 0.68,

while at the second trough (h/L =0.081), the transmission coeffi-
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cient is about 0.84. These are clearly smaller values than those

shown in Figure 6.

To show the effect of the water depth in the trench, the case

for Figure 6 is changed to d = l3~ inches (one-half of that presented

in Figure 6). A curve showing the transmission coefficient is pre

sented in Figure 8. As can be expected, the values of h/l COrres

ponding to peaks and troughs in the response curve are slightly

different. There is an increase in the wave transmission for the

first trough while for the second trough the wave transmission is

somewhat decreased. This is reasonable, because for a decrease in

the value of d, the trench would not be so deep as to fall in the

deep water wave range completely.

Figure 9 shows the results when the water depth in Region I is

increased from 4 inches to 6 inches with other dimensions the same as

that used in Figure 8. Again, it can be expected that the effect of

the trench is somewhat lessened.

All the theoretical results presented so far are computed when

the trench length is divided into 30 equal segments. Identical

results have been obtained when the trench is divided into 50 seg

ments. Of course, if the trench is very long, one should increase

the number of segments in the trench mouth.
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4.9. Concluding Remarks.

The method used_ for analyzing the effect of a rectangular trench

on the propagation of periodic incident waves has been shown to be

quite effective. From the results on wave transmission and reflection,

it is seen that there exists an infinite number of wave periods at

which waves are fully transmitted. The effect of the trench on wave

transmission (or reflection) is progressively smaller for higher wave

frequencies (the larger value~ of h/L).

One advantage of the method presented here is that for a trench

of arbitrary shape the solution in Regi on I need not be changed.

Thus, any convenient method which can be used for Region II can be

matched to obtain the final solution. This is being done in a sub

sequent study by the authors.
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