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Chapter 1 General Overview and Research Summary

This report contains research findings of a research project entitled
“Distant and Local Tsunamis in Coastal Regions" during the period
November 15, 1977 to April 30, 1980;' The research was supporied by the
Earthquake Hazards Mitigation Program, National Science Foundation.

Several aspects of the generation and propagation of tsunamis have
been ipvestigated. Results have been obtained; they will be presented
herein. "Tsunamis" are water waves generated through tectonic displace-
ments associated with submarine earthquakes, volcanic eruptions and/or
indirectly by subﬁarine siumps and shoreline landslides. These waves
‘have also been called "tidal waves" although the waves are not generatad
by tides. The Japanese word "tsunamis" literaily means "harbar waves."
This is a very descriptive term because the major damages caused by this
type of wave usually occurs in bays and harbors near the coastal zone.

The wave length of a tsunami generated in the deep ocean is usually
very long, however, the amplitude of the wave is relatively small compared
with wave length. 1In this deep ocean region the water surface is so small
that they cannot be easily detected. The propagation speeds of these waves
in the deep ocean region are quite large and approximately equal to vgh
(where g is‘the gravitational acceleration and h is the water depth). As
these waves approach a coastal region, due to the decrease in water depth,
the propagation speeds of these waves are reduced. Therefore, the wave
ampltitude will be increased in the region of shallow water depth. In
addition, the local topography of a particular region could induce
resonant oscillations of these waves thereby significantly amplifying

the wave amplitude. Such Targe oscillating waves could present major



hazards to 1ife and property in the coastal zone especially if the region
is heavily populated.

Research results on three areas of investigation relatad to generation
and propagation of tsunamis are presented in Chapters 2, 3, and 4. A
brief summary of the major results will be provided below.

Chapter 2 oresents the results of a theoretical and numerical study
on the generation of water waves due to three-dimensional bed motion.
Prior to the study, waves generated due to a two-dimensional bed motion
have been obtained both theoretically and experimentally. However,
experience has shown that the natural bed motion has always been finite
in size, the two-dimensional assumption cannot be considered as a realistic
situation. Therefore, it is thought that consideration of three-dimensional
bed motion would produce a more realistic picture of the nature of tsunami
wave generation. This has been accomplished. An analytical model has
been developed and the theoretical results have been obtained. They help
define the limitation of the two-dimensional results and demonstrates |
the complicated wave pattern which is generated. The work in Chapter 2
is performed by J. J. Lee and J. J. Chang. A summary of the work is

provided as follows:

A theoretical and digital simulation on waves generated by an
impulsive bed upthrust of a rectangular block with various
ratios of Tength/width is presented. The two-dimensional
Fast Fourier Transform (FFT) algorithm is used to obtain

the water surface profiie near the generation region. The
three-dimensional pictures were constructed from an array of
256 X 256 pixel by using Image Processing. Comparison of the

present three-dimensional results, with previously published



two-dimensional results, indicates that for large length/
width ratios, the water surface profile is quite similar
at certain locations for a small time after the impulsive
bed motion is completed. Generally, the water surface
profiles deviate significantly from the two-dimensional

results.

Chapter 3 presents the results of a viscous model for the propagation
of non-linear and dispersive waves. The primary motivation for this
research effort was to include the effect of viscous dissipation on the
propagation of nonlinear, dispersive waves. The re;ult of the present
study showed thét, in the laboratory scales, the effect of nonlinearity,
dispersion and dissipation are equally important in defining the behavior
of wave propagation. Aitﬁough it can be argued that for the prototype
scale, the effort of viscous dissipation would be smaller in the propaga-
tion phase of the tsunami problem. This portion of the study is performed

by J. J. Lee and S. T. Kim. A summary of the work is provided below:

A modified Korteweg-de Vries (KdV) equation has been
derived to represent approximately the propagation of
non-Tinear, dispersive long waves including dissipation
effects. The equation is found by including the effect

of the Taminar boundary layer at the bottom. Numerical
solutions of the derived equation under various initial
conditions have also been obtained. Good agreement has
been found when comparing the numerical results with the
experimental profiles of Hammack (1973) and Hammack & Segur
(1974). For a solitary wave propagating in a shallow water
of constant depth, the present results also show good

agreement with the prior published theories.



Chapter 4 presents the results of a theoretical and numerical study
on the propagation of Tinear periodic waves over submarine trenches.
For this aspect of the research, effort is directed to developing an
analytical method for analyzing the wave propagation over submarine
trenches where a sharp discontinuity in the water depth occurs. The
fesu]t could be applied to two practical situations:

(1) For waves in the deep ocean region, the effect of

the deep submarine trenches on long tsunami waves
can be analyzed by the method developed herein.

(2) For waves in the coastal region, especially for harbor

regions, the effect of navigation channel on the
normally incident waves can be assessed.
This portion of the work is performed by J. J. Lee and R. M. Ayer. A

summary of the work is provided below:

An analysis is presented for the propagation of water
waves past a rectangular submarine trench. Two-
dimensional, linearized potential flow is assumed.

The fluid domain is divided into two regions along

the mouth of the trench. Solutions in each region

are expressed in terms of the unknown normal derivative
of the potential function along this common boundary
with the final solution obtained by matching. Reflec-
tion and transmission coefficients are found for various
submarine geometries. The result shows that for a
particular flow configuration, there exists an infinite
number of discrete wave frequencies at which waves are
completely transmitted. The validity of the solution in

the infinite constant water depth region is shown by



comparing with the results using boundary integral method

for given velocity distributions along the mouth of the
trench. The accuracy of the matching procedure is also
demonstrated through the results of the boundary integral
technique. In addition, laboratory experiments were performed
and are compared with the theory for two of the cases

consideread,

In the Appendix of this report, the reprints or preprints of the
published work are provided. They contain the following publications:
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Chapter 21 of the Proceedings of 16th International Coastal
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2. “Wave Generated by an Impulsive Bed Motion of Finite Size"

by J. J. Lee and J. J. Chang, Proceedings of the International

Conference on Water Resources Development, May 12-14, 1980,

Taipei, Taiwan, pp. 759-768.

3. "Water Waves Generated by An Impulsive Bed Upthrust of a
| Rectangular Block" by J. J. Lee and J. J. Chang, Applied Ocean

Research, Yol. 2, No. 4, Oct. 1980, pp. 165-170.

4. "Interactions of Waves With Submarine Trenches™ by.d. J. Lee,

R. M, Ayer and W. L. Chiang, Proceedings of the 17th Inter-

national Coastal Engineering Conference, Sydney, Australia,

March 1980.

5. "Wave Propagation Over Rectangular Trench" by J. J. Lee and

R. M.‘Ayer, to appear in the Journal of Fluid Mechanics, 1981

(accepted Dec. 1980).



6. "Water Waves Generated by Three Dimensional Bed Motion" by
J. J. Chang and J. J. Lee, paper to be presented at the

International Tsunami Symposium, May 25-29, 1981, Japan.



Chapter 2 Generation of Wateb Waves by
Three Dimensional Bed Motion

1. Introduction

Waves generated by submarine earthquakes, commonly known as
tsunamis, have been of interest to ocean and coastal engineers. In
many -instances, such waves have caused significant damage to the
coastal region. Estimation of the tsunami wave form is essential for
the prediction of the wave profile in the propagation phase and the
final wave form when the wave arrives in the coastal region. ’

Most of the theoretical models of tsunami generation have been
based on linearized theory in either a two- or three-dimensional
fluid domain of uniform depth. Based on the linear theory, the fun-
damental solution of the wave forms can be obtained by multiple Fourier
Transforms such as that used by Driessche and Braddock (1972) and
Hammack (1972, 1973) or by the Green's function method used by
Kajiura (1963, 1970},

The complexity of the integral solution has discouraged many
authors from obtaining detailed wave behavior near the generation re-
gion even in the case of a simple bed deformation model. Instead, many
authers have been using asymptotic methods to evaluate the integrals.
Consequently, only the far-field wave behavior can be examined.

For three-dimensional wave generation models, the computational
effort needed to evaluate the integrals by means of conventional
numerical integration schemes have been quite laborious. To overcome
this difficulty, the modern digital simulation technique can be used
to significantly improve the computationai efficiency.

This paper presents results of a theoretical and digital simu-



lation study on waves generated by an impulsive bed motion. For mathe-
matical simplicity, the extent of the bottom disturbance is assumed to
be of rectangular shape although an elliptic shape might be a better
tsunami generation model (See Horikawa, 1978). The fundamental solu-
tion for the wave amplitude is expressed in terms of muitiple integrals
which are evaluated by utilizing the two-dimensional Fast Fourier Trans-
form (FFT) algorithm. The three-dimensional pictures (based on 256 X
256 samples) showing aspects of wave decay everywhere in the fluid do-

main at a specified time are obtained by the Image Processing technigue.



2. Problem Formulatiaon

Let (x,y,2) constitute a Cartesian coordinate system with z = 0
as the undisturbed water surface as shown in the definition sketch
in Figure 1. Initially, the fluid is at rest with the free surface
and solid boundary defined by z = 0 and z = -h, respectively (h is a
constant). For t > 0, the solid boundary is permitted to move as pre-
scribed by £(x,y;t). The resulting deformation of the free surface is
to be determined as z = n(x,y;t): Assuming irrotational flow and an
inviscid fluid, the fluid kinematics can be expressed in terms of a
velocity potential ¢(x,y,z;t). The differential equation and the
linearized boundary conditions that ¢ must satisfy can be listed as

follows:

v = 0 0<t<w =< X,y<w, -h<z<0 (1)
4y * 90, =0 z=0 (2)
¢, = £4(x,yst) 'z = -h (3)

In these equations, the subscripts denote partial derivatives and g
denotes the gravitational acceleration.
The linearized relation between the water surface displacement n and

the velocity potential ¢ is:

nlx,y;t) = - Jg—(bt(x,y,O;t) | (4)
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- FIG. [ DEFINITION SKETCH OF FLUID DOMAIN
AND CO-ORDINATE SYSTEM
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The solution for ¢ (and hence, n) is obtained by using the Fourier
transform for the spatial variables x, y and the Laplace transform for

the time variable t defined by

;(Kl,Kz,s)-—-f e‘St[ LV Le"le £(x,yst)dxdydt  (5)
o el

By applying the transformation of Equation (5) to the governing equation
and boundary conditions with the subseguent inversicn, one obtains the

water surface elevation as:

< -iKyx _-iK;y st 2
1 {1 s2g”101Xg"Thady £(Ky,K2,5)
n(xs.Y:vt) = ( )2 f f <—" / =2t ds JdKdK;,
' am o S \ 2T Br (s2+w?) cosh \[Ex—z"-'K_zz_h
: (6)
1im S . ‘
where = - is the Bromwich contour, w is the circular frequency
' Br [ u+il
and u is a positive constant.
In order to obtain the specific wave profile as defined in Equation (6),
one must specify the bed deformation history £(x,y;t). The bed deforma-

tion is assumed to be a rectangular block upthrust with exponential vari-

ation in time:
E(x,y,t) = £ (1-eFH(B2-x2)H(A2-y2) for t 2 0 (7)

where £  is the maximum amplitude of the vertical displacement, a is the

time constant defined as 1.11/t,, and t_ is the characteristic time de-

C’
fined by £/£, = 2/3 at t = tc' The Heavyside step function is defined

as:



1, 32.x%>0 1,  A-y?>0
H(B%*-x?) = and H(A?-y?) =
0, B2-x2<0 0, AZ-y%<0

The transformation of Equation (7) yields:

~

E(Ks Keps) = agy 0SSR A f_a T (&)

Substituting Equation (8) into Equation (6) and solving for the surface

elevgtion yields:

[+ o]
- iKix 1Koy sin KiB sin KsA 1
n{x,y,t) = - §%—f f o!f1X o !
T J e Ky K2 cosh Ki2+K22 h
a? ( -at W L.
s (e - cos wt - = sin wt) |dK,dK; (9)
where

(.Uz = QVKIZ + K22 tanh KIZ + Kzz h

Equation (8) contains poles at K, = 0 and/or X, = 0. These singuiarities
can be treated easily by L'Hospital's rule. The reader is reminded that
Equation (9) can be reduced to the two-dimensional solution given by
Hammack (1973) by integration with respect to K, as A = =, (This is
easily accomplished by changing the variable of integration to (K, « A)/A
and evaluate the integral as A » =). Introducing K, = 27k, and K, = 27k.,

Equation (9} can be rewritten as



n(x,y,t) = - 4&, f f glamkax J12mkay e v Vdkidks (10)

where. f{k;,kz) is a symmetric function defined by

flky,ka) =

sin 2rk.B sin 2mka A ] [ a? - (et
2rky 2rke ok \{2mk,)2+{2mkg )2 h LY Y

- cos wt - g-sin mt)]

and -

w? =gy (2mk;)? + (2mky)? tanh v (2rki)? + (2mks)® h.

It should be recognized that Equation-10 is a two-dimensional Fourier
Transform of f(k;,k,) and can be computed by using the Fast Fourier

Transform (FFT).



3. Numerical Implementation

Suppose that f(k,.k,) is defined in the interval of -T/2 < k, ,k, < 7/2

and is zero for |k [, |k, | > T/2. Equation (10} can then be written as:
T T i2mk x 12wk, y
n(x.y,t) = -4, J[' flk, k) e = 1% e S0 dk dk, (1)
S

It should be noted that the conventional procedure of computing
n(x,y,t) in Equation (11) by fixing a set of (x,y;t) is quite inefficient.
For our purpose, a more advantageous procedure is to fix a time t.= t
and evaluate Eguation (11) for all possible x and y by recognizing Equation
(11) as a double Fourier Transform of f(kx’kz5t1)°

The integral in Equation (11) can be approximated by a Reimann sum to

be presented as follows:

Choosing € > 0, then there exists & > O such that

N,/2 N,/2
In(x,y,t) - 2 2l o = RNk Ly - kR k)
n,==N,/2+1 ny=-N,/2+1 ™ 1M 2 1 M

e12nk nl.x e12wk nzy[ <
provided that
for all (ni = -Ni/Z + 1, ‘Ni/Z + 2, ... Ni/Z) for i = 1,2. Where N, and

N, are the number of discrete points which correspond to the x and y axis,

respectively.

14
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It is convenient to choose the intervals (kn-’ kn.+1) to be of constant
i

length, Aki, for i = 1,2. Thus Equation (11) can be approximated as:

N,/2 N,/2 |
H(X,.Y,t) = -460 Z Z f(nlAkl;nZAkz) e12’ﬂ'xnlﬂk1
. n,==N /2+1 n =-N_ /2+]
1Mtk (12)

where Akf = ZT/Ni for i = 1,2. This definition of Aki implies that

Ax-= Ay = 1/(2T). By introducing x =k, - &x, y =k, - Ay,

L eZﬂj/Nl and w, = EZﬂi/NZ we can rewrite Eguation (12) as follows:

N,/2 N,/2
k.,n. k
nlky,k,5t) = -4£ Ak, Ak, :E: ‘ :E: f(n, .0, )w, 1M1y, 2"
"1='N1/2+] n2=-N2/2+1 (13)

for -N,/2 + 1 = kl‘S N./2, -N,/2 + 1 =k, S N,/2
where

fln,.n,) = sin 2mn,Ak; B sin 2mnoAk,A 1

122 2mn; Ak, 2mn, Ak,

cosh \[(anlaklf +(2mn,ak, F h

2
. [-§L—r (e St | cos wt - g-sin wt)}

and

w? = g Y (2mn,4k )2 + (2mn,ak,)? tanh Y (27 ak,)? + (27n,ak, )% h



1t should be noted that w5 and w, introduced in Egquation (13) is a N, -th
and N,-th root of unity in the complex number field, respectively.
Equation (13) is a two-dimensional Discrete Fourier Transform and

can be evaluated by the following two stages of computation:

N, /2
Stage 1; n'(nl’kl’t) N C1 Z f (n1 9n2)w2k2n2;
n, =N, /24
for - %f‘ +125k, < %f-, where C = -4£ Ak Ak, . (14-A)
N,/2
Stage 2:  nlk;.k,,t) = Z n'(nl,kz,t)wlklnl;
n =-N /2+]
for - %%' 12k s %f’ (14-8)

We observe that Stage 1 and Stage 2 are two one-dimensional Discrete
Fourier Transforms of f(n ,n,). If we let N, =N, = 2™ where m is an in-
teger, then the FFT algorithm can be used to compute n'(nl,kz,t) and
n(k,,k,,t) (See Oppenheim and Schafer (1975)). The number of real multi-
plications and additions needed to compute Equations (14-A) and (14-B) is
4N210g2N and 6N21092N, respectively.

An array of 256 X 256 points was used to compute Equations.(14—A) and
(14-B) (N, = N, = 256). To avoid the spurious short-period oscillations,

k should be kept small. However, a small Ak implies that the region of

16

computation is also correspondingly limited. A1l numerical results presented

in this paper are obtained for ok = 0.03. This value was arrived at through

a series of numerical experiments.



4. Presentation and Discussion of Results

Numerical results obtained from Equations (13) and {14) for an
impulsive bed upthrust of a rectangular block with various aspect
ratios (A/B) have been obtained. The two-dimensional case of the same
bed motion characteristics, i.e., for A = «, has been studied by
Hammack (1973) both theoretically and experimentally in which it was
found that the theoretical results agreed well with the experimental
results.

As the three-dimensional experimental results are 'not available, it
is advantageous for us to study such a case with various aspect ratios.
It is reasonable toc expect that for large values of A/B, our results
should approach that reported by Hammack (1973). The water surface
| profiles as a function of the dimensionless time parameter (tﬂJEEG;) at
three different locations are shown in Figure 2. The dimensionless
parameters for this case are: tC\[EF/ B =0.069, B/h = 12.2 (B = 2.0 ft.),
£,/h = 0.2. The time history of bed motion is an exponential form as
seen in Equation (7) with a characteristic time parameter, a = 18.46.

In Figure 2, the time history of the water surface profiles for A/B = 10,
5, and 2 are shown for three locations (x =y=20), (x =58,y =20}, and

(x =0,y =A). It is seen that the curves for A/B = 10, 5 and 2 are
very close to that of Hammack's at the first two locations. For A/B = 2,
the three-dimensional effect becomes quite significant for t\fjiﬂ; > 20 as
evidenced in Figure 2. Based on the physical dimensions given, the time
associated with t [ g/h = 20 is t = 1.426 sec. This is smaller than the

time required for disturbance to propagate from the edge of the rectangular

17
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block™(y = A) to the center {y = Q) if one assumes the propagation speed
to be Nf53'= 2.3 fps. (This Tatter time is computed to be 1.734 sec.).
It should be noted that the early arrival of end effects (with relation to
the propagation speed of ‘VFEE)'as A is reduced suggests that some of the
Fourier components composing the corner‘region of the initial disturbance
have phase shifts‘so that they have distances less than A to travel be-
fore- reaching the location (B,0). The phase shifts will be relatively
smaller as A is increaéed.- The third graph shows the water surface pro-
file as a function of time at the edge of the major axis (x = 0, y =A).
This provides another view of the three-dimensional effect. We note that
for the two-dimensional case, the water surface profile at x = 0, v = A,
would be the same as that shown for x = 0, y = 0. However,.for a finite
ratio of A/B, the edge effectlof the generation region is being felt

instantly after the impulsive bed motion is produced.

The water surface profiles as a function of time at other Tocations
away from the region of rectanguiar block are shown in Figure'3 for
A/B = 5 and A/B = 2. The three Jocations chosen are all along the minor
axis (y = 0) and at x = 1.5B, 2.0B, and 2.5B. The three-dimensional effect
is also quite obvious; for A/B =2, a negative wave occurs at a smailer
value of t Yy g/h.

It is interesting to see some three-dimensicnal pictures of the water
surface profile. A series of three-dimensional pictures for the case
A/B = 2 is presented in Figure 4 and Figure 5. These three-dimensional
pictures were constructed from 256 X 256 samples using Image Processing

(Readers interested in Image Processing are referred to Andrews (1970)).
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FIG.3 WATER SURFACE PROFILES FOR ‘A/B=5 AND
A/B=2 AT x=1.58B,20B AND 25B; y=0



tyg/h =4.20

FIG. 4 THREE DIMENSIONAL PICTURES SHOWING THE WAVE AMPLITUDE
n/io NEAR THE GENERATICN REGION FOR SPECIFIED TIME PARAMETER
(VIEWING ANGLE 8 = 60°, § = 60°) ASPECT RATIQ A/B = 2



= 21.02

= 29,43

FIG. 5 THREE DIMENSIONAL PICTURES SHOWING THE WAVE AMPLITUDE
ﬂ/éo NEAR THE GENERATION REGION FOR SPECIFIED TIME PARAMETER
(VIEWING ANGLE & = 60°, § = 609) ASPECT RATIO A/B = 2



They represent an overall pictorial view of the wave profile at t -\f@?g =
4.20, 12.61, 21.02, and 29.43. The vertical viewing angle for these pic-
tures is 60° and the horizontal angle is 60°. These pictures allow us to
visualize the manner by which the waves are transformed from the original
form of a parallelepiped into the complicated wave form at some later time.
In order to demonstrate further the transformation of wave profile
as a function of time, the water surface profile along a certain axis
is also obtained. Figure 6 shows the water surface profile along x axis
(y = 0, for x > 0) for two length/width ratio: A/B = 5, 2. They are ob-
tained by cutting the three-dimensional pictufes such as that shown in
Figures 4 and 5. This series of water surface profiles shows how waves
are propagated-from the origin of disturbance toward the surrounding
region. Using these wave profiles, we can compute the propagation speed
| as 2.2 ft/sec. This propagation speed is very close to the long wave
celerity C = \gh = 2.3 fps. From
Figure & we can see that the water surface profile is the same for A/B =
5 and 2 for tVg/h < 16.81. At a later time, the water surface profile
differs significantly, especiaily at the tail region. However, the
Teading wave portion is quite similar in both cases for the time vari-
ables presented.

Water surface profiles along the y axis are presented in Figure 7
for two different values of A/B for various dimensionless time para-
meters, t\ﬂ§7ﬁ. The region where y = A is marked for reference. By
examining this series of wave profiles, a number of observations can be

made:
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a. The leading wave is similar for the case of A/B = 5 and 2 at
almost all the time parameters presented.
b. A reverse symmetric wave profile with respect to y = A is
found at almost all the time parameters shown. (y = A corresponds
to the edge of the rectangular block). .
¢. As waves propagate away from the generation region, interesting
wave profile histories in the region y < A can be found. The leading
negative wave which exists within the region y < A appears to be
converging toward the center first and then propagating outward
(this can be clearly seen from the curves A/B = 2). This further
demonstrates that the waves are indeed propagating in every direction
resulting in complicated wave profiles, especially when A/B is small.
d. - The wave profile along the major axis (Figure 7) and that along the
minor axis differs considerably for t\J‘§7ﬁ greater than a certain
value. ({In the example of Figure 6 and 7, t Y g/h > 12.61).
e. QOue to radiation of waves in every direction, significant modula-
tion of wave profile has already taken place (as evidenced from the
curves presented) even though the time parameter t\f?iaris still small.
" This is one of the aspects that represents a significant departﬁre
from the two-dimensional results.
The numerical method used for computing the waves generated through
the impulsive bed upthrust of a rectangular block is much more efficient
than the direct integration method. For a particular time parameter, to
obtain the wave profiles for an array of 256 X 256 data points (in the x-y
plane} would require only 37 seconds of CPU time on a DEC-10 computer. Using
this data, one can then construct the three-dimensional picture of the

water surface elevation such as those preéented in Figures 4 or §.



5. Concluding Remarks

© An effective numerical method has been presented in this paper.
The method is used to compute the water waves generated through the
impuisive bed upthrust of a rectanqular block of varying ratic of
major. axis/minor axis (A/B). Three-dimensional pictures showing water
surface elevation in the x-y plane for a certain specified time para-
meter have been shown. For the cases computed, along with the time
parameter presented, the Jeading wave shapewas similar for the differ-
ent ratios of A/B. However, the water surface profile of the tail
region differs considerably as A/B is reduced. The wave profile along
the major axis and that along the minor axis differs considerably for
tY g/h greater than a certain value in all cases.

As can be inferred from the results pgesented in this paper, the’
three-dimensional effect is quite significant, even with the assumed
simple bed deformation. Therefore, in order to more fully understand
the nature of tsunamis due to a submarine earthquake, one must take

intq account the three-dimensional effect.
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Chapter 3 A Viscous Model For Non-linear Dispersive Waves

3. 1. INTRODUCTION

In recent years finite-amplitude,shallow-water waves have been
under intemsive investigation .Korteweg - de Vries equation (1895)
have long been found to describe the propagation of moderates ampliﬁude
waves in relatively shallow water of uniform depth. Exact solution,
asymptotic solution, as well as numerical solution of the KdV aqua-
tion can be found in various publications e.g. Gardner etal (1967),
‘Segur (1973), Johnson (1972, 1973), Vliegenthart (1971) and Whitham
(1974). Experiments have also been cdnducted to test the validity
of the KdV equation as a ﬁropagatioﬁ model in shallow water such-as
reported by Zabusky & Galvin (1971), Hammack (1973), Hammack &

Segur (1974).

In these theoretical and numerical studies the flui§ is consi-
dered inviscid; thus the effects of non-linearity and dispersiveness
are included while the dissipation effect is neglected. The present
_study attempts to find an -approximate-governing. equaticn if the visco-
sity of the fluid is included in the analysis. This is motivated
by the apparant deviation of the results from the laboratory expe-
riments compared with the inviscid theories as illustrated by
Hammack (1973).

Most recently two separate studies on the modified KdV equation,
independent of the present work, have just appeared in tge litera-
tures: these are the work of Shuto (1976) and Miles (1976). Shuto
included a turbulent boundary stress based on experimentally
determined friction coefficient. Miles considered the laminar
boundary layver and derived a modified RdV esquation that involves

an integral operator. The results of Miles show that the damping
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coefficient is inversely proportional to the square root of an appropriate
Reynold's number which is also demonstrated in the present work.

The viscous dissipation‘effect on the wave system can be found in.
three areas: internal viscous dissipation, viscous boundary layer at the
free surface and viscous boundary iayer at cﬂe bottom. In the present
study, the viscous boundary layer at the free surface is neglected., The
internal viscous dissipation is shown to be small compared with the bottom
friction. Numerical solutioms of the derived viscous KdV equation for
various initial conditions have been obtained and compared-with the

experimental results of Hammack (1973) and Hammack & Segur (1974).
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3.2, THEORETICAL ANALYSTS

For the theoretical analysis, the flow is cousidered two-dimensional
and the fluid imcompressible.
The governing equation are the Navier-Stokes equations and the

continuity equation:

Ju* Ju* u* 1 # 32u* 32u*
SRRt iR vGET iR e O
vk Jv* vk 1 op* ) Blyk Yy

T edE R T pe oty R . G
3gx  Jy*

E T e (7

.whgre u* and v* are the horizontal (x*) and vertical (y*) components
of fluid velocity raspectively, p* the pressure, P the fluid density,
V  the kinematic viscosity, g the gravita#ional'acceleration, d the
water depth, t* the time and L the characteristi; horizontal length,

If the physical parameters in the Navier-Stokes equations are

non-dimensionalized as:

x=2 2 g4 g Lw L Lvk_ /ed t*
L d L > ¢
€ vVgd £ dvgd L ’
1 Ry K 1, ' %
P=giy-l+‘Lp‘§g‘*] , 8 ==Y ¢ = Dﬁ— , (1-d)
s d*/gd

where po* is the atmospheric pressure, and & is the amplitude parameter
defined as the maximum wave amplitude'no* divided by the water depth d.
Then the governing equations can be reduced to the following

dimensionless form:



+ + + =
u * guu evuy P Buyy 4 Bk:euxx (2a)
& + + + = + B?e?
S(vt Euv_ evvy) py BKSVYY Bk*e Vox (2b)
u +v = 0 (2e)

In which the parameter 8% = k& with « = O (1) is introduced;
this implies that the effect of dispersion and non-linearity is
equally important.

The boundary counditions are as follows:

(i) at the sea bottom there must be no slip,

i.e. ua=v =10 at y =0
(ii) at the free surface y = 1 + gn, the free surface condition

must be satisfied.
=n_+
( v T]t Eunx

l l1-y+egp=20

In order to facilitate further development and the eventual
numerical calculation, the following characteristic coordinates are

used:

E = x -t ; T #® £€X
The dependent variables u, v, p are expanded in a power series of
€ such as:

e}
u=u +cu + e?y? L AN

Substitute these power series into Eq. 2, we can collect the following

equations with different order of approximation.
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Zeroth order (g°) approximation:

Q Q [n]
= + u

Uz Pg B vy

o]

= O 3

py (3)

Q Q

+ v = Q

Yz ¥

with the boundary condition

0 Q
P = n
VO"'”Z— aty=l
(4)
@ = 0
Yy

v = 0, aty=20

The solution of.these g% order equations is that ef the linear
shallow water wave theory; thus, the horizontal velocity w® will be
uniform in y which will violate the nom-slip condition at the sea
bottom. This must be corrected at the next order's approximation
in order to satisfy the non-slip condition in u at the bottom.

First order (¢!) approximatiom:

1 a o o 0 < 1 . )} Q
-u,.*uu + v + + . + «
gr Uy Yy Py Py T Buyy F By
1 o)
- Kv, + = KBv
g Py yy
uo + L'y v! = {

(5)
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with the boundary conditien

= —T‘|‘E + 1 ng \ at y = 1 : (6)

ul = 0
. 7
vi =9
at vy =0
o)
u1= _E._
£

Solving these equations, with integration performed from the bottom to

the free surface with respect to vy and assuming du/d y at the free
surface as zero (this assumption implies that the dissipation due to
bo;ndary layer at the free surface is neglected) we obtain the following
equation for s :

o 0

<, 0 - K,o _ B 1
Mg Y ¥Mggr T 2fMgg T 20 )

3
+
[NCYTIRY

with 8 = 0, Eq. (7) is the well known KdV equation. The term u; in
Eq. 7 represents the veloecity gradient at the hottem and it must

be evaluated. It should be noted here that the first term in the right
hand side of Eq. 7 representé the internal viscous dissipation while
the second term represents the dissipation at the bottom. As we recall

for approximation to the €' order

1 o]
a=u + eul, u= =(a-1u)
£
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Q
Thus u bacause we allow u” to

1
M ji-
[l

=0

be independent of y in the zeroth order approximation.
Rearranging the first equation of Eq. (5) and noting that u®

0 ;
and n are interchangeable, we have

1 _ .0 - o_0 o 1 _ o _ B _ 0N
z (u u)g (n ng ot o KB”&;&: ) = (u u)yy

By retaining only the most important terms (which are the terms on
the left hand side and the last term on the right hand side) we
obtain a linear equation for the boundary layer region close to the

bed:

(u - “o)a = - 8(u- u°>yy (9

with the boundary condition:

u-ua = ~u” aty =20

a-u = 0 at y -+ =« (beyond the edge of the (10)

boundary layer)

Eq. (9) is a heat equation, the soluticn of such an equation is quite
well known and can be expressed in a Fourier integral or most conve-

niently in the Duhamel's form (e.g. see Webster (1955) p. 173):

- 2
a0 - = - V%F { F( £ + zg%;) e ' 4y (11)

1

in which the boundary value W at y = 0 is assigned to be u° = F(&).
In order to further carry out the integration of Eq. 11 we hawve to

assume a functional form for F. We choose

(8



(%1%

@ = F(E) = A sech®f as a representative form.
2
- . -ZA < 3 2 =Y .
Then u - u’ = - = [T sech’ (£ + z;";? e & (12)

differentiation with respect to y and evaluate this value at y = 0

we cbhtain:

du _ LA sech’g ~ __tanh ( £+ §2)dE
3| g=0 /T8 2 (cosh 3%+ tanh £ sinh @%)°2
° o
- Au g = 9 o) (13)

/8 /a8

The function C(f), which represents the integral in the above
-equation, can be evaluated numerically for different value of £ and
is presented in Fig. 1. As can be seen from Fig. 1, the function
C(Z) approaches an asymptotic value of 0.62 very quickly. Herein we
will use 0,62 for C(&), therefore, Eg. (13) and the last term of £q. 7

can be furthey simplified:

a9 - B2
2 8y 2 9y
=0 y=0
= 0.7/8 n® = an® (14)
€

For an experimental wave tank of width W in water depth d, the value

of o should be multiplied by 1 + 24/W to accomt for the additional

frictional effect at the side walls.



37

*bg ut paurgyep se (3)) uvorjzouny pajeidajuy A1TeoTaouny 1 "8T1d4

€1
. 3
0l 8 9 12 Z 0
T 1 T mi | | T T T O
N 120
" H{+0
" N
- 490
R L
1 ! 1 1 \ | 1 i 1 80

(3)0



Therefore, Eq. (7) can be rewritten as:

o J oo ) ol o
+ n. + = a - o 15
Nt T2 T §Mee fzg " (12
where a =-§§ . For most cases, a<<y and "a" can be neglected, it

is kept to this point to demonstrate the mechanism of intermal viscous

dissipation.

Q
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It is interesting to discuss Eq. 15 further by neglecting the term an

and make the transformation n = n T

" Then we can get a Kdv

equation with modified coefficients:

- 3, T, g
. + 3 (e ™) Mg + Nege = 0 (16)

Eq. (16) demonstrates that the net effect of the boundary dissipation

is to gradually decrease the influence of the non-linear term. Because .
a solitary wave is a solutionléf ﬁhe KdV equation, we can now expect

for a very smali value of at, the amplitude of é solitary wave will
decay as e’aT. As T increases, n should decay faster. In fact, it

can be shown, e.g. Ott and Sudan (1970), Ostrovskiy and Pelinovskiy

(1974), that the amplitude decay of a solitary wave follows the form:

= e - 30T (17)

Thus, for the present case, if ¢ is evaluated from Eg. 14, then the
amplitude decay of a solitary wave can be conveniently estimataed from
Eq. 17. Results from this simple process agree extremely well with
the numerical results and the prior published theories on damping of
solitary wave (i.e. Keulegan 1948, Ippen and Kulin 1955). This will

be discussed in detail in the results section.
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For a more complicated initial wave form, numerical soclution of
Eqg. 15 can be obtained. (For all practical purpose, the coefficient
a in Eq. 15 can be set equal to zero). Examples for this applicatiom
will be shown in the results section. The finite difference form of
Eg. 15 as well as some informatiﬁn councerning the computational aspect

is presented in the Appen&ix.



3. 3. PREVIOUS THEORIES ON DAMPING OF SOLITARY WAVES:

Keulegan (1948) analyzed the rate of loss of'energy due to viscous
shear within the lamipar boundary layer beneath the solitary wave on a
smooth surface. For a single solitary wave with an initisl maximunm
amplitude (no)i at x = 0 in water of depth 4 and a tank of width W, he
found that the maximum amplitude ﬁo of the solitary wave at any downstrean

position x could be approximated by

n ' n.- 4 = .
2 . [p+a (2L (18)
n.. d
QL
L 24 ‘14
where 6§ = - {1+ ﬁ—ﬂ ( gﬁy) { % ) and v 1is the kinematic vis—

cosity of f£luid.

As W » =, the above equation can be simplified to become:

~1/4 -1/4 v /2 . x
n - (" = 0.083 (277 (E) (19)

z d
It should be noted that x used here and affer represents the horizomtal
distance frog the initial station; therefore, it is equivalent to x*
used in previous section..

Based on the léboratory data conducted by various investigators,
as summarized by French (1969%), Eq. 19 seems to overpredict the viscous

- damping but generally yvields reasonably good agreement.

The data of Ippen, Kulin & Raza (19533) also indicate that Keulegan's
formula predicts more damping than observed. A separate dissipation
study has also been made through direct measurement of bottom shear
stress by Ippen and Mitchell (1957). :For smooth bed, the mean resistance

coefficient C%o was found to be related to a wave Reynoeld number R;O as

follows (see Lppen (1966)):



1.328 . 1.328 ) 1.328

fo 1/2 1/2
R'") - 12 1/2 A
sQ ({ ‘% a0 (l.Sézgvg é)
. 15 ) -2 dn,
= (%) = (20)

Integrating the above equation we can obtain the following equation which

is very similar to Keulegan's:

- - W 2 :
e P RS SR 21)
It is eclear that the only difference between Eqs. 19 & 21 is the first
coefficient at the right hand side of the equations. Thus, Eg. 21
should therefore predict a3 smaller amplitude decay.

Comparison of the results from present study with Eq. 19 and 21

will first be made in the next section.



3.4

PRESENTATION AND DISCUSSION OF RESULTIS

As a first example for the application of the theoretical development
presanted in previous section, the propagation of a single solitary wave
in a laboratory flume is first studied. Fig. 2 presents the gradual
damping of a solitary wave with amplitude/depth = 0.12 in two different
water depths (d = 3 in.and 6 in.j. Numerical solution of Eg. 15 is
compared with the theorieé by Keulegan (Eq. 19) and Ippen and Kulin
(Eq. 21). The result obtained by Egs. 14 and 17 is also included. A4s
expected, at the very early stage of.wave.propagation, the decay of the
ﬁaximum amplitude of the solitary wave is quite~close to e—aT. However,
as distance from the initizl location is increased the numerical result
approach the asymptotic result of Eq. 17 very nicely. The decay of
amplitude predictad by Keulegan's formula is consistently larger than
that of the Ippen’s as well as the present result. However, all results
are quite close to each other and -demonstrate the same trend. For the
6 in. water depth the amplitude decay at the same x/d is smaller than
that for the case of 3 in. depth because the effect of boundary friction
is more significant for shallower depth. By looking at the formula for
B8 and o (Eqs. 1 and 14), it can be seen that as d increases the values
of B and « are reduced; therefore, the decay of solitary wave amplitude

is reduced for the same x/d.

Fig. 3 presents amplitude decay of a solitary wave with amplitude/
depth = 0.08 as a function of x/d in water depth of 3 in. and 6 in.
The general agreement among various curves can also be seen. ‘Again the
Keulegan's formula seems to overpredict the amplitude decay but the

difference is indeed quite small,
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Amplitude/Depth = 0.12
Degth = 3"

Ng (x)
No (0)

No {x)
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- x/d

Fig. 2. Amplitude decay, n_(x)/n_(0), as a function of horizontal position,

x/d, for a solitary wave with nO(O)/d = 0.12 in two different depths
of water.

present numerical results.

present results using Egs. 14 & 17.
result based on Ippen (1955) (Eq. 21)
result based on Keulegan (1948) (Egq. 19)
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From Figs. 2 and 3, it can be said that the values of 8 and o develcoped
in the present studﬁ can be used quite conveniently teo estimate the amplitude
decay of a single solitary wave propagating iﬁ shallow water.

Hammack and Segur (1974) conducted very careful and outstanding expe-~
riments to test the validity of ﬁhe RKdV equation as a model for moderate
amplitude waves propagating in one &irection in relatively shallow watar
of uniform depth. The KdV equation was found to predict accurately the
number of evolving solitoms and their shapes for initial data whose asymp-
totic characteristies developed in the'test section of the wave tank.

- However, the accuracy of the leading-scliton ampfitudes computed by the
KdV equation could not be conclusively tested owing to the viscous decay
of the measured wave amplitude. With the viscous KdV equation developed
in the present study, it is interesting to check their experiments with *
the numerical solution of Eq. 15, This can be considered a more strigent
test of the theory as the wave profiles are much more complex than the
individual solitary waves considered im Figs. 2 and 3.

The first axample of this comparison is shown in Fig. 4. On the left
hand side of the figure, the experimental wave profiles from Hammack and
Segur-(1974) are shown. The initial wave profile is of the type of sech?
As this wave propagates further downstream the initial wave evolves away
from the sech? profile. After 180 depths of propagation two local crests
can be seen from the experimental data. At 400 depths the observed %aveé
show four local maxima representing 4 solizoms although the fourth peak
is not as distinguishable as the other three. Their theoretical praedictibus
also show that the number of solitons,that the inicial profile eventually
evolve into,should be four. |

The same initial wave profile is used for the present numerical
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EXPERIMENTAL PROFILE COMPUTED PROFILE
012 :
la=dl/d=0 . (a~blsd 20
.08k
Ka' 1 0
c L
0.2k _ f(s-bisgeiso L . {x=bl/d= 280 A
o8p <
n D4t +
d
c |
Q2 x-blra=400 T
!
(% 2 - Lxb)
d d
Fig. 4. Comparison of present numerical wave profiles with the experi-

mental wave profiles of Hammack & Segur (1974) at different
stations (water depth d = 5 cm. )

————— — e — — invigeid fluid (Vv _'-5' 0)2
water ( w= 1 x 10 £t /sec.)




47

solution; these are shown in the right hand side of the figure. The dotted
line represents the numerical results of inviscid KdV equation (setting
a=0a =20 1in Eq. 15) The solid line represents the resﬁlts from the
viscous KdV equaticn. ( o = 0.40 inecluding the side wall correction).
As the initial wave propagates to the 180 depths, the deviation of the
viscous solution from the inviscid solution is already quite obvicus.
The effect of the bottom friction is found to reduce the wave amplitude
and the propagation speed although the difference in propagation speed
is quite small at.this point. As wave propagates to 400 depth, the
deviation between the inviscid and viscous theory is even more pronounced.
Specifically, the inviscid theory predicts the amplitude of the first
gsoliten to be 0.142d, while the viscous theory predicts this amplitude
to be 0.104d. The experimental.value from Hammack and Segur (1974)
showed this amplitude to be 0.092d. It should be noted that from the
data of Hammack and Segur the arrival time of the first solitom at 400
depth is 27 sec. The arrival time of the present viscous solution is
26.3 sec which shows a 2.6% difference compared with the experiment.
The invisecid theory shows the arrival time of the first crest to be at
26 seconds. The number of soliton is 4 as can be seen from the figure.
The time interval between the peaks of soliton agrees very well when
comparing the viscous theory and the experiments.

It is interesting to see whether other wave characteristics are
modified by the dissipation effect beside the two main features of
reducing wave amplitude, slowing propagation speed. To this end,

a more detailed plot of the numerical wave profile is shown in Fig. 3
in which fluids with three different viscosities are shown: dinviscid

5

fluid ( v = 0), water ( v =1 x 10 ftz/sec) and crude oil (v =

6 K'lO.5 ftz/sec). The profiles for the inviscid fluid and water are
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(z=dl/d « 180

lz=bl/d = 400
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Fig. 5. Comparison of the numerical wave profiles at two statioms for
these different viscosities:

—_— o — - inviscid fluid (v 3 0
water ( v= 1 x 10 "f¢t Z_Eec.
- . ' crude oil { v= 6 x 10 ft°/sec.)

(The initial profile is that shown in Fig. 4).



the same as that shown in Fig. 4 at the correspounding statiom. The peaks
of the first soliton for three different fluids are arranged to be at t = 0,-
while the real time scale corresponding to tge experiment of Hammack and
Segur is used in order to facilitate the comparison. From Fig. 5 it cam
be seen that the numbers of soliton have not been affectad by the viscous
effect. The influence on the time interval between soliton peaks is quite
small. The amplitude is further reduced as the viscosity of the fluid is
increasad.

Another example of the wave evoluﬁion is shown in Fig. 6. The expe~
rimental wave profile is that shown in Hammack and Segur (1974) resulting
from a monotonic uplift of the channel bed at 0 < X < b in a-water depth
of 5 ecm. The initial wave profile is approximately a square wave with
positive amplitude. As can be seen from the left hand side of Fig. 6,
three solitons can be clearly seen from the experimental curve as the wave
propagates toc 400 depth which is what they have predicted in their theory.
The initial experimental wave profile is used as the initial condition
for the present analysis except a small portion near the tail .-end where
very small negative oscillations are cut off. As this initial wave
propagatas to 180 depth, the reduction of wave amplitude due to the
dissipation effect is already quite clear although the phase does not
change very much. At 400 depth of propagation, the effect of viscosity
is quite pronounced. The amplitude of the first soliton is changed
from inviscid case of 0.077d to 0.054d for the viscous solution; the
arrival time for them differs by about 0.3 second. The amplitude of |
the second soliton is changed from.0.0Sld for the inviscid case to
0.0374 for viscous case. TFor the third soliton, the inviscid theory

shows an amplitude of 0.021d compared with the viscous thecory of 0.0l4d.
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The calculated amplitude for the three solitons agree quite well
with the experiments of Hammack and Segur (1974). From their experimental
reSults,‘ﬁhe amplitude of the three solitons are: (.052d, 0.035d, and
0.013d. As in the case of Fig. 4, the arrival time of the viscous
soliton is still slightly faster than the experiment. The arrival time
of the first peak of the soliton‘at 400 depth is 27.93 second ( by
considering the location of centroid of the wave at 0 depth as the base)
compared with 27.46 second for the viscous theory with a difference of
1.7%. |

A more detailed wave profile for three different flﬁidé based on
the same initial wave profile is shown im Fig. 7. The curves for the

3 ftZ/sec) are the same as that

inviscid fluid and water (v =1 x 10
shown in Fig. 6 at the corresponding location. The first peaks are
adjusted to occur at t = 0 for all cases. The curve for crude cil is
superimposed to show the effect of viscosity more clearly. As can be
seen from the figure the phase has only. been éhanged slightly by diffe-
rent viscosities but the amplitudes of these waves are damped out
considerably by viscous dissipatiomn.

Fig. 8 shows the waves resulting from a monotonic downthrow of the
channel bed at one end of the wave tank as presented in Hammack and
Segur  (1974). The initial wave at ( ¥ - b)/h = 0 is approximately
a negative square wave. As the wave propagates downstream a leading
negative wave with decreasing frontal slope followed by an oscillatory
wave train can be observed. The computed pfhfiles for both the inviscid
and viscous cases based on the initial experimental wave profile are

shown on the right hand side of Fig. 8. By comparing the present viscous

result with the experimental data surprising good agreement can be ssen
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for the leading negative wave amplitude and its length as well as the time
igterval between the oscillatory waves on the tail end. Tﬁe dissipation
effect for the oscillatory wave tail in the present computation (although
significant compared with the inviscid theory) does not adequately account
for the total dissipation. In the rggion consisting oscillatory wave

the wave frequency is increased; therefors, mechanism similar to that
considered by Van Dorn (1966) should probably be included in order to
obtain an even better agreement between the theory and experiments.

A very unusually lérge, highly nonlinear, negative wave propagating
in water depth of 10 em. is shown in Fig. 9. The experimental wave
profiles are taken from Hammack and Segur (19753) and are shown in the
left hand side of the figure. The evolution process of this wave is
quite complicated and cannot be described by KdV equaticn alome (see
Hammack and Segur (1975)). Therefore, direct comparison of the present
comput:ation.and the experimental data might be misleading except for the
first leading negative wave at which the behavior can probably be modeled
by the preéent viscous KdV equation. Considering these factors, it is
somewhat surprising to see that the present numerical result from Eq. 15
actually compared quite well with the experiments except the region where
oscillatory waves persist. As mentioned earlier, in future studies addi-
tional dissipation mechanism should probably be included for the modulated

oscillatory waves behind the leading negative waves,
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APPENDIX: COMPUTATIONAL ASPECTS

In the theoretical anaiysis there involves a characteristic horizontal
length L. For solitary waves we adopt the distance between the two noints

of a solitary wave where n*/no* = 0.001 to be the length "L"; thus, for

solitary waves L is defined as:
L . 7 . . L
d -~ 10 /ﬂo -z

For the initial wave profiles presented in Figs. 4, 6, 8 and 9, the
distanée between the first two zero points in nN#* is used as L: for
example, L = 161 cm. for the case of Fig. 6, and L = 170 cm. for the
case in Fig. 9.

For the numerical calculation, Eq. 15 is written in a finite-diffe-
tence approximation as follows:

Efm*l m-1
] - N A T o I
AT T 3 '

)il e SR
K 1 m m m m
* g CapeT ) By = 2y *+ 2, - Hy )
. -a , o1 m S .. S ¢ P, m m
= EET( Hj + Hmj-l + Hj+1 Hj ) 3( Hj+l + Hj + Hj_l)

m
wherea Hj is n(mAT, jAE). 4As mentioned in the main text, the difference
in the computed profiles is extremely small whether we set a = ( or "a"

equals to the computed value based on Eq. 15. The stability condition

by Viiegenthart (1971), %% %_ nf + g%%y 1, is followed for all the

calculations. In calculating the profiles used in Figs. 2 to 7, 240
points in & coordinate is used with Af = 0.1. When calculating the
profiles for Fig. 8, 340 points in & is used (with A% = 0.1) to account

for the longer wave train developed in the tail region. However, for



the profile in Fig. 9an even larger number of grid points is used.
For Fig. 9, 640 points in § (with'AE = 0.1) are used for calculating
the wave profile at x = lbOd from the initial station. Then the
profile so obtaiﬁed ig used as an initial condition to find the wave
profile at x = 200d. In this stage of computatiom, 940 points in §
(with AZ = 0.1) have been used. ALl computations are dome with

AT = 0,00025.

The numerical computations are dome by using IBM 370/178

computer. As an indication of the computation time involved, to obtain

the profiles presented in Fig. 6, it requires 170 sgconds of comﬁur

tation time.
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Chapter 4  Wave Propagation Over Submarine Trench

1. Introduction,

A class of problems involving the propagation of water waves in a
fluid of variable depth is one in which the depth is constant except
for variations over a finite interval. Interest in these problems is
largety due to the phenomena associated with the passage of waves over
submarine tranches in the ocean and wave propagation across navigational
channels, where changes in water depth are commonly the case. A general
analysis of wave propagation over variable depth geometries is given by
Kreisel (1949). Kreisel's approach involves mapping the domain of the
fluid into a rectangular strip, whereby the problem is reduced to a
linear integral equation which can be solved by iteration for suitable
geometries. An important aspect of problems involving changes in water
depth is that of matching the soiution along a géometricai boundary that
separates the regions of different depths. Such an approach is found
in the work of Bartholomeusz (1958) and Miles {1967). It has also been
found (Newman, 1965) that for wave propagation over submarine obstacles
there exists an infinite set of wavelengths such that the incident wave
is totally transmitted.

This present study is restricted to the two-dimensional motion of
Tinear periodic water waves over a rectangular submarine trench where
the water depth before and after the trench is constant. The constant
depth region and the trench region are separated geometrically and the
velocity potential in each region is then found due to an unknown velo-

city distribution along the trench-constant depth boundary. This unknown
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velocity distribution and consequently, the final solution can be obtained
once an incident wave is specified and that the solutions in each region
are matched along the common boundary. A major advantage inherent in
this approach is that the solution for a trench of arbitrary shape can

also be easily obtained.



4, 2. The boundary-value problem,

Let (x,y) constitute a Cartesian coordinate system with y =0
coinciding with the impermeable boundary of the constant depth region
as shown in the definitionsketch inFigure 1. Assuming a steady-state
solution for the velocity potential in the form of |

-iot

Ox,yit) = olx,y)e (2.1)

the potential function ¢(x,y) must satisfy Laplace's equation

throughout the fluid domain and the following boundary conditions:

2
%? = %r 0] ony= hy == <x <o

%% = 0 on y=0, x<¢@
%%-: 0 on y=10, x>2A
(2.2)
§§-= 0 on y=-d,0<x <X
é% =0 on x=0, -d<y<?0
%% =0 on x=1x, -d<yc<0

In equation (2.1), o represents the circular frequency, 2n/wave period;
i is the complex number \ij-.

In order to solve for ¢{x,y) in an efficient manner, the fluid domain
is divided into two regions, Region I and Region II, (as shown also in

Figure 1) by the common boundary I which is defined by
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Figure 1 Definition sketch of the trench with regions of

consideration.



Thus Region I is defined by
0<<y<h , =< x<w"
and Region II is defined by

-d<y<0 , 0O<x<A.

The strategy used herein is to solve for ¢(x,y) in each respective
region in terms of the unknown 3¢/3y along the common boundary T .
Thus, by matching the solutions in each region at T , one is able to

obtain the final solution.

64
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3. Region I soiution.

Assuming a solution for the velocity potential in Region I to have

the form

Brl%ys £) = oy(xy) &9,

the potential ¢I can be seen to satisfy Laplace's equation subject

to the following boundary conditions:

3¢I ) 02

55 9y N y=h, =<x< e (3.1)

B¢I

5 = g(x) on y=0,0<x <A (3.2)
y

3

—851——0 an y~O,X<O (3'3)

il G - 4
T on y=0,x >34 (3.4)

where g{x) represents the unknown velocity distribution along the trench-

constant depth boundary.

Thesolution for ¢ is determined using the Fourier Transform defined by

S0

jf(f&xD = ;(k) = j[ f(x)e'ikx dx

-0

with the inverse transformation defined by

FEW) = ) = 5 f’?(k) e KX gk



The transformation of the governing equation subject to the trans-

formed equations (3.1) - (3.4) and the subsequent inversion yields

2 m~(k) (k-+02/g) ek(y-h) + (k<-02/g) ek(h‘Y) 1kx
or{x,y) = z‘f Y e 4k (3.5)
P [(sz/g) e (keo%/g) & '

The still unknown function g{x} can be representad approximately by

=

i

glx) : JZ; Qs [#xx; ) = Hlxex )] (3.5)

where the interval 0 < x < A has been partitioned into N segments of

th

equal length, -Qj is the average value of g(x) in the j~' subinterval,

(3 =1,250.. N), and H(x - £) is a Heavyside function defined by

0 X< &
H(x-g) = '
1 x> £

A Fourier transform of (3.6) and substitution into (3.5) yields

. fe"k("‘xj) (er 2ra) 01 L (o2 ek(h-y):ldk
(k+-02/g) e'kh - (k-UZ/g) ekh

To compute the integral defined by I., the calculus of residues has been

j}
used; the integral I; has simple poles at 0, =k and =ik (n = 1,2,...)

where kr and k are defined by the following relationships:

2
G = L]
e kr tanh(kr n)



o/

and

1]

-kn tan(kn . h)

In order to obtain an outgoingwave solution fromthe trengh, we specify
our inversion path to lie above the pole at -kr and below the pole at
+kr. For such a path, the solution for éI can be described as follows:

(1) If x> X for all j ,

ik (x=x.) Tk (x=x. 1)
r J r J-1
[; ] Sr(kr,y)

+Z [E n = - g n J]. Sn(kn’y) (3‘7)

h=d
(=)
——
>
-
<
[

(3) If x> X517 and x < x; for some j,

3-1 [;ikr(x-xj) ] eikr(x—xj_])] o
% K 2 " Splkpy)
r .
-k (x=x5_1) -kn(x-xj)]

. Sn(kn:y)}

. ik fxey T
[ 1kr(x-xj_]) Tk, (x xJ]

=] ~ + e ~'S(ky)
¢ ror?

r

02/9 k



= ¢ Sk sy) } (3.9)

In equations (3.7) - (3.9) the functions S. and S are defined by

K. cosh[kr(y-h)] + 02/9 sinh {:kr.(.‘/-h)]
Splkpoy) = KR sech K h + sTih KR

and ‘
| ky <05 [ky(y=n)] + o%/g sin [k, (y-h)]
Splkpsy) = K sec Kh +sin KN

It is easily verified that the sclution for by given by (3.7) - (3.9)

satisfies Laplace's equation in Region I and the associated boundary con-

ditions (3.1) - {3.4).
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4, Region II solution.

Again, the solution for the velocity potential in Region II has the

steady-state form

Srp(%.y38) = opqlxsy) &7

and the potential P11 must satisfy Laplace's equation subject to the

following boundary conditions:

= 0 on X (4.2)

]
o
-

1
[N

A

e
AN
O

(4.3)

u
]
[a %

-
faw)
N
>
A
>

—_= 0 on y

¥1=g(x) on y=0, 0<x<A (4.4)

There exists a constraint on g(x); namely that due to the conserva-

tion of mass in Region II

;\ .
jg(X)=0 - (4.5)

Using the approximate representation for g(x), Equation (4.5) and (3.6)

can be combined to give

N

ZE; Qj = 0 , a condition which necessarily must be (4.6)
J:

also applied to Region I.



Via the technique of separation of variables, the solution for the
potential d’II subject to the boundary conditions (4.1) - (4-4) is

¢>II(X,y) N ] a, COS zl--;-P-(--n:osh Dﬂ%ﬂ (4.7)
. on=

where 2y is an arbitrary constant, and an(n > 1) is given by

A
2 f nmwx
o, = . g{x) « cos —= dx (4.8)
n nT » sinh (D—;&i—) 0 oA .



4.5. Superposition and matching of solutions.

For a pericdic incident wave travelling in the positive x direc-

tion in Region I, the velocity potential can be specified as

cosh k.y i(er - gt)

. = . -iot = 22

Qin(x,y,t) ¢1n e = m e {(5.1)

Defining ;j (i =1,2,... N) as the midpoint of the jth subinferval
of ' , we may in turn define the vector {¢in} Nx] BY

o5 (3) ° a KXy

in = ¢fn(xj’o) = Tg-sech krh e (5.2)
(3 .th o .

where ¢, denotes the j~ member of the vector {¢in} . Similarly,

a vector {¢I} can be defined by
(3) = 4 (=
¢I = ¢I(xjso) (5-3)

Using equation {3.9) , it can be shown that {¢I} = [H] {q},

where H is symmetric with the additional property that

and

Defining the column vector {¢II} by @II(J) = ¢II(xj,O), equations

(3.6) and (4.8) gives



{orr) = {80} + B - DM@ (5.4)

where {BO} Nx] 15-2. vector in which each member is (the same) arbitrary

constant, [B], o is a matrix defined by

prk

o~
0 3
[ 1]
—
. oo
Lo =
N

n Td

where P denotes an upper Timit to the Fourier serjes representation of

¢;1(x.y), and the matrix [M] oN 1S given by

¢ 4) .. DT pnﬁn
M= sin * CO§ ——
n 2
p (p'n') %N- A
Due to the continuity of velocity potential along the common boun-

dary T we have

{0} * et} = {erd) (5.5)

Substituting equations (5.2) - (5.4) into (5.5) we obtain N equations
with N + 1 unknowns (Q], Qs --- QN and 80). However, equation (4.6)
must again be implemented for Region I, providing us with an additional
equation. This system of linear equations is then solved numerically
for the vector {Q} . Thus, the originally unknown function g{x)

introduced in equation (3.2) is now sclved as a discrete function {Q}



4.

]
6. Wave amplitude analyéis._

Since the values of Qj have been found, the velocity potential in the
entire domain is completely solved. Inparticular,theva]uesof<¢1and¢inat
the surface can now be computed using equations (3.7) - (3.9) and (5.1).
The wave amplitude at the water surface is given by linear theory to be
3¢ 3d.
1, i

1 _ g
3|3t e ) §‘¢I+¢1’n
@ y=h @ y=h

a=

Consequently, the steady state amplitude of a surface wave at any

value of x 1is determined.
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7. Experimental equipment and procedure.

A series of laboratory experiments is conducted in a wave tank of
12 inches wide, 48 feet long and 18 inches deep. A paddle-type wave
generator is placed at one end of the tank to gene}ate the desired wave
at a specified wave period. The wave period is controlled by a vafiab1e
speed motor control. A wave filter is placed in front of the wave paddle
while a wave absorber is located at the end of the wave tank. At the
central séction of the wave tank a special trench section is installed. |
The trench section extends 26%" bé1ow the bottom of the wave tank to rest
on the laboratory floor. The maximum trench length is 85 inches. Four
different trench lengths can be obtained through the partitions installed,
namely 21 1/8", 42 3/8", 63 5/8"%, 85".- The depth in the trench section
can also be varied by placing a false bottom at various heights.

The wave amplitude is measured by means of resistént-type wave
gauges. The wave records are recorded using a Hewlett Packard four
channel oscillograph recorder,

Wave amp1i£udes were measured in the region 2 feet to & feet behind
the trench section. Wave amplitude envelopes are obtained first without
the effect of the trench (by covering the trench section completely) in
order to determine the incfdent wave amplitude. The wave envelopes are
then obtainedtwith the trench at the desired length and depth at the
same region behind the trench section”in order to ascertain the wave

amplitude after passing over the trench section.



4.8. Presentation and Discussion of Resuits.

The effect of the trench on the propagation of waves can be
demonstfated most easily by the transmission and ref]ectfon ¢charac-
teristics. Figure 2 shows the transmission coefficient, Kt’ as a
function of the relative wave 1ength; The ordinate is the ratio of
the transmitted wave amplitude divided by the incident wave amplitude,
while the abscissa is the ratio of the water depth, h, in Region I
divided by the incident wave length, L. The wave Tength L is com-
puted from the dispersion relationship,-L = (gTz/Zn) tanh (2¢h/L),
where T is the incident wave period. It is seen from Figure 2 that
for n/L > 0.18, the incident waves are almost fully transmitted.

At h/L = 0.09, the transmission coefficient is approximately 0.89.

To understand the trench effect further, one can compute the value
of ML at these critical points. At h/L = 0.18, it corresponds to
ML = 0.95 while at' h/L = 0.09, it corresponds to /L = 0.475. It
appears that for .a relatively short trench length, the maximum reduc-
tion of transmitted wave occurs as x/L approaches G8.5. As the wave
period is decreased to where A/L approaches 1, the effect on wave
transmission due to the trench 1s negligible,

Figure 3 shows the reflection coefficient as a function of
the relative wave length for .the same range of h/L shown in Figure 2,
The reflection coefficient, Kr’ is defined as the reflected wave am-
plitude divided by incidéﬁt wave amplitude. As expected, the maximum
reflected wave occurs at h/L = 0.09 where the transmitted wave is a

minimum. As this is an inviscid theory, one can check the result
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to see whether Ki + Ki = 1 can be satisfied (where Kr is the reflec-

tion coefficient, Kt the transmission coefficient). For the range of‘
h/L, i1t is checked that such a relation holds true; thereby further
increasing the validity of the theoratical result,

As the trench length increases, the effect of the trench on
transmission and reflection characteristics becomes more interesting.
This is shown in Figures 4 and 5. The trench length for this case
is twice the length of that in Figures 2 and 3. 1t is seen for the
range of h/L'presented, there are four wave periods at which waves are
fully transmitted (Ktv= 1, K, ='0). The reduction in transmission

coefficient or increase in reflection coefficient is more pronounced

2
r

held true. It is seen that the effect of the trench on transmission

at h/L = 0.056. Again, it was checked that the relationship K +-Ki= 1
or reflection coefficients for higher values of h/L is decreasingly
smaller. This is reasconable, because for higher values of h/L, the
water depth is relatively deeper; therefore, an increase in water
depth due to the trench will have a lesser impact on the transmitted
wave.

In Fiqure 4 experimental data on the transmission coefficient
has been included for comparison. It is seen that the experimental
data‘in general confirms the trend predicted by the theoretical
analysis. Since the effect of energy dissipation is not included in
the theory, the data tends to have a lower value of Ky - Also ap-
parent from the experimental data is that there exists an osciliation

of data points about the theoretical curve. This could be due to
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the effect of the finite length of the wave tank and that the wave
absorbers placed at both ends of the wave tank cannot eliminate the
wave reflection completely from the tank ends. Due to the limitation
of the available experimental facilities, a substantially superiér
experimental verification is not achieved.

Results'on wave transmission over a longer trench length is
shown in Figure 6. The trench length for this case is three times
that shown in Figure 2 with other dimensions held conmstant.

In the range of 0 < h/L < 0.25, there are six different wave
periods at which waves are fully transmitted. The results indicate
that the trench does exert a greater influence on wave transmission
characteristics in that the transmission coefficient at h/L = 0.042
is only about 0.70. Experimental data are also included in Figure 6.
It is seen that the experimental data in general tend t¢ confirm the
theoretical prediction. However, due to the unavoidable energy dis-
sipation as well as reflection from both ends of the wave tank, the
experimental data show considerable scattering as evident in the
figure.

Figure 7 shows the wave transmission coefficient for a trench
with a further increase in trench length. The number of wave periods
at which waves are-fully transmitted is now increased to nine for the
same range of h/L. For each of the troughs in the respense curve, the
effect of the trench is further dramatized. For example, at the first
trough (h/L = 0.034), the transmission coefficient is reduced to 0.68,

while at the second trough (h/L = 0.081), the transmission coeffi-
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cient is about 0.84. These are clearly smaller values than those
shown in Figure 6.

To show the effect of the water depth in the trench, the case
for Figure 6 is changed to d = 13% inches (one-half of that presented
in Figure 6). A curve showing the transmission coefficient is bre-
sented in Figure 8. As can be expected, the values of h/L corres-
ponding to peaks and troughs in the response curve are slightly
different., There is an increase in the wave transmission for the
first trough while for the second trough the wave transmission is
somewhat decreased. This is reasonable, because for a decrease in
the value of d, the trench would not be so. deep as to fall in the
deep water wave range completely.

Figure 9 shows the results when the water depth in Region I is
increased from 4 inches to 6 inches with other dimensions the same as
that used in Figure 8. Again, it can be expected that the effect of
the trench is somewhat lessened.

A1l the theoretical results presented so far are computed when
the trench length is divided into 30 equal segments. Identical
results have been obtained when the trench is divided into 50 seg-

- ments. OFf course, if the trench is very long, one should increase

the number of segments in the trench mouth.
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4.9. Concluding Remarks.

The method used_ for analyzing the effect of a rectangular trench
on the propagation of periodic incident waves has been shown to be
quite effective. From the results on wave fransmission and reflection,
it is seen that there exists an infinite number of wave periods at
which waves are fully fransmitted. The effect of the trench on wave
transmission (or reflection) is progressively smaller for higher wave
frequencies (the larger values of h/L}.

One advantage of the method presented here is that for a trench
of arbitrary shape the solution in Region [ need not be changed.
Thus, any convenient method which can be used for Region II can be
matched to obtain the final solution. This is being done in & sub-

sequent study by the authors.
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