PBB1-218351

REPORT NO.
UCB/EERC-81/02 EARTHQUAKE ENGINEERING RESEARCH CENTER
JANUARY 1981

OPTNSR

AN INTERACTIVE SOFTWARE
SYSTEM FOR OPTIMAL DESIGN

OF STATICALLY AND DYNAMICALLY
LOADED STRUCTURES WITH
NONLINEAR RESPONSE

by

M.A. BHATTI
V. CIAMPI
K.S. PISTER
E. POLAK

Report to the National Science Foundation

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA - Berkeley, California

REPRODUGED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161




For sale by the National Technical Informa-
tion Service, U.S. Department of Commerce,
Springfield, Virginia 22161.

See back of report for up to date listing of
EERC reports.

DISCLAIMER

Any opinions, findings, and conclusions or
recommendations expressed in this publica-
tion are those of the authors and do not
necessarily reflect the views of the National
Science Foundation or the Earthquake En-
gineering Research Center, University of
California, Berkeley



OPTNSR - AN INTERACTIVE SOFTWARE SYSTEM FOR OPTIMAL
DESIGN OF STATICALLY AND DYNAMICALLY LOADED STRUCTURES
WITH NONLINEAR RESPONSE '

by

M. A. Bhatti
V. Ciampi
K. S. Pister
and

E. Polak

Prepared under the sponsorship of
the National Science Foundation
Grant PFR-7908261

Report No. UCB/EERC-81/02
Earthquake Engineering Research Center
College of Engineering
University of California
Berkeley, California

January 1981






ABSTRACT

This report describes a software system for optimization-based,
interactive computer-aided design of statically and dynamically loaded
structures with nonlinear response. The system combines two programs,
INTEROPTDYN and MINI-ANSR. The program INTEROPTDYN is based on a
feasible directions algorithm for solving a constrained optimization
problem, where both non-parametric and parametric (time-dependent)
constraints are allowed. Program MINI-ANSR is a modification of an
existing general purpose structural analysis program, ANSR-1. Details
of these programs are described, together with an interfacing package
connecting the analysis and optimization phases of the design process.

The following features are available to the user: Stop and
restart capability as well as user~supplied changes in both design

'variables as well as parameters in the optimization algorithm.
Graphical display of key information is available at all stages of the
design process.

Two example problems - one an elastic, statically loaded truss
and the second an impulsively loaded nonlinear braced frame - are .

included to illustrate use of the system.
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1. INTRODUCTION

1.1 PRELIMINARY REMARKS

The common practice in design of structures is to use a trial
and error design procedure. First, an initial design is chosen, which
may then be analyzed using a computer program which simulates the
behavior of the physical system. By looking at the results of computer
simulation, the designer adjusts the initial design in an attempt to
satisfy a set of given specifications which are usually not met by the
initial design or to obtain a better design in terms of performance
criteria. After the adjustment, a new simulation is performed and the
process is repeated until a satisfactory design is_obtained. The
success of this procedure depends critically on the experience of the
designer and may involve a considerable amount of professional-level
effort.

Since the early 1950's, research in computer simulation of
structural systems has made considerable progress, resulting in a
number of excellent general purpose structural analysis programs
[1-2]. At the same time, several attempts have been made to automate
the above design process using optimization techniques. A summary of
this work is contained in the survey papers [3-6]. Despite this con-
siderable research activity, optimization techniques are not as widely
used as might be expected. In the authors opinion, the main reasons
for this lack of interest are:

(i) Lack of a proper definition of design problems in terms of an

optimizaticn problem.

(ii) Lack of robust optimization algorithms applicable to general

design problems involving dynamic constraints.



(iii) Lack of familiarity with optimization techniques.

The definition of a design problem in terms of an optimization
problem involves identifying an objective function and suitable con~
straint functions. Historically, since optimization techniques were
first used in the aerospace industry, weight of the structure has been
considered as the objective function. For design of structures sub-
jected to dynamic loads, such as earthquake excitation, other objective
functions such as life-time cost better reflect appropriate performance
objectives, [7]. For some special types of structures, such as braced
frames, maximizing energy absorption by the bracing system could be an
objective. Thus, depending upon a particular application, any function
of design parameters and/oxr structural response functions is a
candidate for cansideration as an objective. Obviously, along with
different objective functions, one must define appropriate constraint
functions in order that the problem is well-posed. The computer pro-
grams developed for optimal structural design, so far, have been
specialized either for a particular objective function, such as
minimum weight, [8], or for particular structures, e.g., trusses or
shear frames. Hence, their application has been very limited. Thus,
in order to look at different problem formulations, a more flexible
programming structure is needed, in which users can define their own
objective and constraint functions in order to widen the range of
applicability to practical problems.

The optimization algorithms used up to now to solve the design
problem have been too primitive for the task at hand. For example,
they have not been capable of solving non-convex problems and problems

with dynamic constraints. Even in simple cases, the cost-benefit ratio



has frequently been unfavorable because the algorithms failed to

converge to a solution in a reasonable amount of computer time. This
situation may arise because of several factors, such as: ill-conditioning
of the mathematical programming problem into which the design problem

is translated; weak convergence properties of the algorithms used (e.qg.,
penalty function method with conjugate gradient method for line searxch);
poor choice of internal parameters of algorithm; or poor initial design.
Since optimization algorithms may require se&eral structural analyses

per iteration, it is clear that very slow convergence or worse, no
convergence at all, may be considered as a very expensive accident!

Recently, new algorithms have been developed, for general non-
convex problems involving dynamic constraints [9-10], which have better
convergence properties. At the same time, methqu for early detectioﬁ
of ill-conditioning in mathematical programming problems are emerging.
Since, in general, the transcription of a design problem into a
mathematical programming problem is not unique, heuristics are currently
being developed which suggest ways of changing the transcription to
eliminate the ill-conditioning. However, these algorithms are still
sensitive to the choice of internal parameters as well as initial
values of design parameters.

In oxder to deal with these difficulties, an interactive software
system for optimal design is indispensable. Interactive computing
.permits one to stop, restart or modify any of the parameters as the
computation progresses. This results inksubstantial savings, not only
in computing time, but also in overall time needed to carry out a design.

An additional advantage of an interactive system using computer
graphics is that it can be used as a tool to familiarize designers with

optimization techniques. They can change parameters of the algorithm



and execute a few iterations kkhile’ monitoring the computation closely
through graphical information displays. This will give them a "feel"
for these parameters and the algorithms itself, removing some of the
"black box" character of the process.

In the following sections there is described an interactive
software system, OPTNSR, for optimal design of structures, in which

the above attributes are incorporated.

1.2 THE OPTNSR SYSTEM

The program OPTNSR is an interactive software package for
OPTimal design of statically and dynamically loaded structures with
Nonlinear Structural Response. The system is currently operating on a

DEC VAX 11/780 computer obtained through a grant from the National

Science Foundation. The operating system is a virtual memory version of

UNIX (a Bell System trade mark) developed, at the University of

California, Berkeley. The system consists of the following:

(i) The INTEROPTDYN program, which is a general purpose interactive
optimization program capable of solving problems with or without

dynamic constraints.

(ii) The MINI-ANSR program, which is a modified version of the ANSR-1
program [2]. It is capable of analyzing linear and nonlinear

structural systems subjected to static and dynamic loads.

(iii) Interfacing routines between INTEROPTDYN and MINI-ANSR. These
routines define a design problem in terms of an optimization

problem and call for analysis of the structure as needed.

Section 2 describes some of the main featgres of the INTEROPTDYN

system. A short description of MINI-ANSR and instructions for adding



new elements to it is contained in Section 3. Section 4 describes the
Ainterfacing routines. Since some of these routines are problem -
dependent, two typical examples are discussed in detail in Section 5 to
clarify the structure of these routines. Instructions for preparing

input data for INTEROPTDYN and MINI-ANSR are included in the appendices.



2. THE INTEROPTDYN SYSTEM

2.1 INTRODUCTION
The program INTEROPTDYN is a general purpose, interactive
optimization program capable of solving design problems which can be

expressed as:

min f(g)

Subject to  max ¢7(z, w) < O j=1,...,m (2.1.1)
w we w, w]l
o! “c
3 —
g7 (2) <0 3=1,..., %
where
z e B® = vector of design variables
£ = objective or cost function
¢j ' = functional or dynamic constraints
gJ = conventional inequality constraints which depend

on design variables only.

The system is based on a batch program, called OPTDYN [11] which
utilizes a feasible directions type algorithm to solve (2.1.1). It has
been made interactive by combining it with an interpreter of an
interactive language INTRAC-~C, evolved from INTRAC, originally developed
at the Department of Automatic Control, Lund Institute of Technology,
Sweden [12].

There is some "on-line" documentation about the system. Bare
essentials will be covered in the following sections to familiarize a

user with the system.



2.2 A FEASIBLE DIRECTIONS ALGORITHM

A short description of the optimization algorithm is given below
in order to facilitate later discussion. Details of convergence proofs
are given in [10], while implementation details are given in [11].

The feasible domain F, is defined by:

F={ze R | max ¢(z, w) <O, j=1,..., m; (2.2.1)
z a z hS

g’ (2) <0 j=1,.0., 8

Define a function Y as follows:

Y(z) = max {0; max ¢j(z, w, j=1,..., m; gj(z), j=1,...,8}
Z & 2
(2.2.2)

Note that if z € F, then Y(2) = 0

Define the "e-active constraint index" set for functional and con-

ventional constraints as follows:

Ip=iG. 0] ¥z w -v@ 2-€,  j=1,..,m (2.2.3)
and w is a left local maximizer
. i .
Io=UGlo@-v@>-e §=1,..., 8} (2.2.4)
ALGORITHM:
DATA: z € R : initial design
Eo >0 : initial value of £ for e-active constraints

o, 8, § € (0,1): Armijo parameters for step length computation

Smax >0 : Parameter controlling max. step length
Y>1 : Parameter influencing search direction when
infeasible
S . . . . .
% Ipax = 9 ¢ No. of points into which the interval

[wo, wC] is discretized.



STEP O:

STEP 1:

STEP 2:

STEP 3:

STEP 4.

STEP 5:

Ul, uz >0 : Convergence parameters.
Set i =0, g= qo
Set € = ¢

o

Compute functions f(gi), gj(gi) and ¢J(§i, w) for all j.

Direction Finding

a. Find e-active constraints

b. Evaluate gradients of cost function and e€-~active constraints.

c. Compute the optimality function 6(z), where

. . . . 2
8(z)= maxi- 3l uVez)+ § 1w zp+ T w v el iz |
20 jes_ ¢ (3,w)ed z 2
g o ¢ .«
L0
“yugtzlug+ I owg+ § gt =1
jng (j,w)€J¢

(2.2.5)

d. Using the values of U's obtained by solving (2.2.5) compute

the search direction h(z) where

e j
h(z;) =W VE(z)+ ] Vg (z)+ ] M

jed j ,w) €T
J g (3 6

3
VE¢ (2, w)
(2.2.6)
€-Reduction
If 6(zi)_§ - 2€0 go to step 6.

Else set € = £/2 and proceed.

Mesh Refinement and Termination Criteria
Ul u2
> — or ) > — 2.
If ¢ Eo p. w(gl) g’ go to step

Otherwise, set ¢ = 2q and if q > 9 ax STOP,

else go to step 1.



STEP 6: Step Length Computation by Armijo Rule

Compute the largest step size s = Bk € (0, M)
s

max . .
where M = max <1, hiz.) and k is an integer,
P ey 3 oo

such that

(i) if zi £ F, then
b lz; +sh(z)] -¥(z,) <-asde

(ii) if Ei € F, then

f [z, +sh (z,)] - f(z,) < -asdc¢

2i = =i =i’ =
gj[éi+s]_.'_l(§i)] < 0 j=1,...,%
Pz, +sh (z) , ol <0 j=1,..um

w € [wo,wc] discretized

into g points.

STEP 7: Set Zia <% +sh (zi)

-Set i = i+l and go to step 2

REMARKS

The algorithm as presented above does not require a feasible
initial design. If z, £ F, then W(EO) # 0 and the algorithm constructs
a sequence of designs with monotonically decreasing Y(z) until it
becomes zero. This aspect of the algorithm is very advantageous in
case of a complicated problem where choice of an initial feasible
design is not obvious.

According to step 3, the search direction calculation problem
turns out to be the negative of the nearest vector to the origin in
the convex hull of.the gradients of the cost and of the €-active

constraints. Figure 1 shows the geometfy of the problem when only one
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g constraint is active. From the figure it is clear that if the
norms of the €~active constraint gradients are much larger than that
of the cost gradient, then the direction obtained is not very good
because it will be almost perpendicular to the constraint gradient.
The best way to safequard against such a problem is to formulate the
mathematical problem in such a way that the constraints’and their
gradients have similar magnitudes. 1In most cases a simple scaling of
the problem is sufficient. In oxder to deal Qith cases where this is
not possible, "pushfactors" are introduced in the direction-finding
problem, which effectively scale the gradients. Expressions for these

pushfactors, used in the present version, are given below.

. _ 1 _
For cost function: pf = gf ( Ve |1 1)

3 3 gj(g) - Y(z)
tt s . = U 3 i
For 'g' constraints: pg ig +n |1 + = vV 3
jw j d)J(Elw) = lP(_Z_)
For '¢' constraints: p¢’ = £¢ +n |1 + = v j

where Ef, E;, Si and n are input parameters. For more details see

[11].

2.3 INTERACTIVE IMPLEMENTATION OF THE ALGORITHM

Computational experience with batch use of the program OPTDYN

revealed the following difficulties:

(1) The choice of parameters best suited for the problem at hand was
not obvious and required several adjustments before reaching

a set of parameters which gave good computational behavior.
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(ii) Sometimes the problem was badly scaled with respect to the
algorithm, requiring several adjustments before a solvable

problem was obtained.

In order to cope with these difficulties the program was made
interactive through a general purpose interactive language interpreter

INTRAC. The interaction allows the designer:

(i) To interrupt the computing process, change parameter values and

restart the process;

(ii) to control the flow of the algorithm by single-stepping through
its loops (This feature is most useful in diagnosing reasons for

poor computational behavior.);

iii) to display quantities computed by the optimization and

simalation algorithms;

(iv) to use the computer as a "scratch pad" for side computations on
variables, vectors and matrices used in the algorithm. This
feature is useful to perform tests not originally foreseen in
the program and to check, for example, condition of key matrices,

their eigenvalues, etc.

The first step in implementing interaction is to decide where
the interaction should take place and what gquantities need to be
changed and/or otherwise manipulated. According to the above con-
siderations, interaction should be implemented at each step of the
main loop of the algorithm as well as at each step of every internal
loop. Thus breakpoints have been inserted after the corresponding
statement of OPTDYN. At each breakpoint a subroutine INTCAL is called,

which checks the condition associated with the breakpoint. The
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_condition may be NEVER, ALWAYS or an IF clause. If it is NEVER, no
action is taken and the control is returned to OPTDYN. If it is ALWAYS,
INTRAC-C is called and an interaction phase takes place. The guanti-
ties which need to be changed or displayed are declared in a symbol
table (data base). During the interaction phase (marked by a prompt
'>'), the user has access to all these quantities and can modify them
using the SET command of INTRAC-C. A list of quantities included in
the symbol table, along with their FORTRAN names is given in Table 1.

In the following subsections, some of the more commonly used

commands will be described. A command has the generic form:
< command identifier > < argument list >

The arguments must not contain spaces but they may be separated by an
arbitrary number of spaces. If no doubts can arise, the arguments
need not be separated by any space (for example, when one of the.
arguments is a delimitexr). The following notation is used when
describing the structure of the commands:

' or (separates terms in a list from which one and only one

must be chosen) ;
{ } groups terms together;

I 1 groups terms together and denotes that the group is
optional;

< > denotes that the enclosed term is not used literally but
is replaced by its appropriate value.

The commands are divided into the following categories:

(i) commands for flow control

(ii) commands to handle the symbol table
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(iii) commands for graphics
(iv) commands for scratch pad
(v) miscellaneous commands

(vi) original INTRAC commands, summarized in Appendix A.

In addition to these commands, there are a number of "macros" written
to make the interaction easier. A macro is a text file stored on mass
storage containing a sequence of commands. The macro can be used as

a new command and the sequence of the commands will be executed. Some

of the more useful macros are also described in later subsections.

2.4 COMMANDS FOR FLOW CONTROL

2.4.1 BREAKS ~ Displays a list of break points in the algorithm.

Syntax: BREAKS

The break point names are made up of the first few letters of
the subroutine followed by the statement number after which the break
point occurs. ;t also displays the hal£ condition of a break point.
The halt condition is either ALWAYS, NEVER or an if-clause. If the
halt condition is ALWAYS the program will always stop when that brgak—
point is reached and a prompt (>) will be given to signify its readi-
ness for further action. If the halt condition is NEVER, the execution
will go on normally and no break will occur at that break point. In
the case of if-clause the condition is NEVER if the if-clause is not
satisfied and ALWAYS otherwise.

A list of breakpoints hames along with their initial condition

and location within the algorithm is given in Table 2.

2.4.2 WHERE - Displays the name of the current breakpoint.

Syntax: WHERE
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Name of the current breakpoint is displayed at which the program has

stopped.

2.4.3 HALT ~ Sets up halt condition at a specified break point
Syntax: HALT [< breakpoint >] [< condition >]

< breakpoint >: = name of the break point at which the halt condition
is to be set. Use the command BREAKS to get a list of legal names for

the breakpoints. The default is the current breakpoint.

< condition >: = {ALWAYS | NEVER | < if-clause >}

< if-clause >: = IF < variable > < operator > {< variable >
< value >}
< operator >: = {< | > l =}

AILWAYS is used if a break is desired at this breakpoint, NEVER if no
break is desired and the < if~clause > is used for a conditional break.
Examples :

HALT QP90 IF ITER > 5 break is set at QP90 after ITER > 5.

HALT NEVER sets current breakpoint condition to NEVER

HALT COPFE90 sets COPFE90 to AIWAYS.

2.4.4 GO - Transfers control from one breakpoint to another

Syntax: GO [< breakpoint >]

The program starts execution at the first statement following

the named breakpoint. Current breakpoint is default.

Example:
GO QP20
start execution from the first statement after breakpoint

QP90.
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2.4.5 STOP - This command stops the execution of the progran.

2.5 COMMANDS TO HANDLE SYMBOL TABLE

The variables which need to be changed during execution are
stored in a symbol table (data base). The following commands can be

used to manipulate these variables:

2,5.1 SYMBOL - Displays the symbol table

Syntax: SYMBOL [< variable >]
Displays the name, type and value of the specified variable in the
symbol table. The default is to display all the variables in the
table. If a variable is an array its dimension and the value of the

first element are displayed.

Examples:
SYMBOL displays the whole symbol table.

SYMBOL ALPHA displays type and current value of wvariable
ALPHA.

2.5.2 PRINT - Displays a variable from the symbol table

Syntax: PRINT < arg >
< arg >: = {< variable > | < number >}
If a variable is a l-dimensional array, it will be displayed as
a column and if it is a 2-dimensional array it will be displayed with

xx columns on each line, where xx depends on the type of the variable:

integer xx = 8
real xx = 5
complex Xx = 2

For long arrays only the first 100 columns are printed.

Example:
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PRINT 2z prints the array Z as a column vector

2.5.3 SET - Changes the value of a variable in the symbol table
Syntax: SET < variable > = < arg >

< variable >: = any variable or an array element in the symbol table.

< arg >: = {< variable > | < number >}

Examples:
SET OLDSTP = 2 sets variable OLDSTP = 2.0
SET N = 3 sets variable N = 3

SET ALPHA = BETA sets variable ALPHA = BETA.

2.5.4 CHECK - Checks if a variable has been changed by SET

Syntax: CHECK {< variable > | - anv}

Checks if a variable in the symbol table has been changed by
using SET command. The result of CHECK is returned in the global
‘vafiable FLAG.SET (= O means variable not changed, = 1 means variable
has changed). Changes are measured from the last CLEAR command or the
start of the program. If the argument ~ANY is used the program checks
for changes in all the variables and FLAG.SET is set equal to 1 if any
of the variables has been changed.

Examples:
CHECK -ANY checks for all the variables for any changes.

CHECK ALPHA checks if ALPHA has been changed.
2.5.5 CLEAR - Clears flags used for CHECK
Syntax: CLEAR {< variable > | -aALL}

Clears flag used in command CHECK for the specified variable.

The argument —~ALL clears flags for all the variablies.
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Example:

CLEAR ALPHA sets FLAG.SET = 0 corresponding to variable ALPHA.

2.5.6 SETDIM - Changes actual dimension of a variable in the symbol

table

Syntax: SETDIM {NCOL | NROW} (< variable >) = < arg >

NCOL changes the column dimension of the variable and NROW
changes the row dimension of the variable. Note that it is only the
dimension information in the symbol table that is changed and of
course not the real dimensions of the FORTRAN declared array. The
change will only affect commands using the dimension information, such
as PRINT or LINE.

Examples:

2 sets the column dimension of array 2 to 2

it

SETDIM NCOL(Z)

N sets the row dimension of arxrray AQP to

1]

SETDIM NROW(AQP)

the value of variable N

2.5.7 TRANS - Transfers value of symbol table variable to INTRAC

Syntax: TRANS < variable >
Transfers the value of a variable from the symbol table to the
INTRAC. TRANS will create a global variable with the same name as the
specified variable but prefixed with a '.' (dot). Note that several
array elements from the same array will only create one global variable.
Example:

TRANS ALPHA transfers symbol table variable ALPHA to an INTRAC
global variable .ALPHA

2.6 COMMANDS FOR GRAPHICS

To display information graphically, a number of low-level

graphics commands are included in the package. These commands are used



18

to build commonly used macros, described later. The graphics commands

work on:

1. Tektronix 4027 Color Graphics Terminal
2. Ramtek 6000 Series Color Graphics Terminal

3. HP 2648 Black & White Graphics Terminal.

2.6.1 GRINIT - Graphics initialization
Syntax: GRINIT
This command must be given before doing any graphics. The

first time this command is given, the terminal type is requested.

2.6.2 DEFINE ~ Defines rectangular windows on the screen by a user-
specified name.

Syntax: DEFINE [<xorig> <yorig> <xsize> <ysize> <name>]
The origins and sizes are given as real numbers in a coordinaté system
in which (0,0) is in the lower left corner and (1,1) is in the upper
right corner of the largest square which can be placed, lower-left
justified, on the terminal screen.
Examples :

DEFINE 0.0 0.9 0.1 0.1 WU
defines a tiny square window, called 'WU', in the upper left

corner of the screen.

'DEFINE' alone prints a list of all the defined windows with

their origins and sizes.

2.6.,3 WINDOW - Enters a specified window
Syntax: WINDOW {< name >]
Enters a specified window so that 0.0 to 1.0 coordinates appear

only in the previously defined window. 'WINDOW' alone prints out the
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name -of the present window. The name of the whole screen is *SCREEN'

and is the default starting window.

2;6.4 ERASE - Erases a specified window
Syntax: ERASE [< name >]
Erases a window specified by its name. 'ERASE' alone, erases
the whole screen. Note that this command will erase only the contents

of the graphics memory.

2.6.5 COLOR - Sets color for subsequent graphics output.
Syntax: COLOR [< color >]
< color >: = redlorangelyellowlgreen|blueIviolet]brownlblack
On the HP2648, these colors are translated into distinct dotted

and dashed lines. 'COLOR' alone prints the present colox.

2.6.6 VECTOR - Draws a vector between specified starting and ending
coordinates.
Syntax: VECTOR <xlcoor> <ylcoor> <x2coor> <y2coor>
Draws a vector from (xlcoor, ylcoor) to (x2coor, y2coor) in the

current window.

2.6.7 MOVE - Moves cursor to specified coordinate
Syntax: MOVE <xcoor> <ycoor>
Moves cursor to (xcoor, ycoor) coordinate in preparation for a

‘DRAW.

2.6.8 DRAW - Draws a vector
Syntax: DRAW < xcoor > <ycoor >
Draws vector from previous cursor position ('MOVE' command) to

(xcoor; ycoor) coordinate.
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2.6.9 CURSOR - Moves cursor in preparation for text output.
Syntax: CURSOR < xcoor > < ycoor >
Moves cursor to (xcoor, ycoor) coordinate in the current window

in preparation for text output using *TEXT' command.

2.6.10 CURSOREL - Positions cursor a specified number of character
size units away from (x,y) coordinate
Syntax: CURSOREL < xcoor > < ycoor > < ncx > < ncy >

< ncx >: number of character positions relative to < xcoor >
< ncy >: number of character positions relative to < ycoor >
Example:

CURSOREL 0.5 0.5 -3 0

Moves cursor to 3 characters to the left of the center of the

window.

2.6.11 TEXT - Outputs text at the position of the graphics cursér.
Syntax: TEXT‘{[<quoted string>] [<constant>] [<scalar variable>]}
Outputs strings or numeric values at the position of the graphics
cursor. A 'CURSOR' or 'CURSOREL' command must precede a text command.
Example:

TEXT ‘'The value of £(1:2)

't f(1:2)

2.7 COMMANDS FOR SCRATCHPAD

One of the most useful features of the packagé is that it allows
the user to employ the computer as a "scratch pad" to do side calcula-
tions. In addition to the main symbol table, a separate symbol table
is created for the scratch pad. The scratch pad commands can access
both symbol tables but can only alter values in the scratch pad symbol

table. The commands in the scratch pad are given below.
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2.7.1 GETDIM - Returns actual array dimension from the symbol table.
Syntax: GETDIM <variable> = {NCOL|NROW}(<variable>)

This command is used to get actual array dimensions from the
symbol table. The left hand side variable will be created in the
scratch pad as an integer variable containing the requested dimension
value. The variable on the right hand side can be an array in the

symbol table orxr in the scratch pad.

Examples:

GETDIM ICOL = NCOL{AQP): Variable ICOL is created with value
equal to actual number of columns

in AQP.

GETDIM NN = NROW(Z) : Variable NN is created with value

egqual to number of rows in array Z.

2.7.2 PDIM - Creates a variable in scratch pad (external symbol table)

Syntax: PD[IM] <name> [(<nrow>[: <ncol>])] <type>

< name >: = name of variable or array to be created.
< nrow >: = No. of rows

< ncol >: = No. of columns

< type >: = {I|R|D|c}; type of variable

I - integer, R - real, D - double, C - complex.
PD or PDIM is the only command that creates an array in the

scratch pad. All entries in the array are initialized to zero.

Examples:
PDIM X(3) R Creates a real vector 'X' with dimension 3.

PD AR(ITER: 5) I: Creates an integer matrix 'AR' with 'ITER'
rows and 5 columns. 'ITER' must be a

variable in the scratch pad or symbol table.
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2.7.3 PREM - Removes a variable from the scratch pad
Syntax: PR[EM] < variable >

The specified variable is removed from the scratch pad.

Example:

PR X : removes X from the scratch pad.

2.7.4 PTAB - Displays external symbol table.
Syntax: PT[AB] [< variable >}
Displays the name, type and value of the specified variable in
the scratch pad. The default is to display all the variables in the
table. If a variable is an array, its dimension and the value of the

first element are displayed also.

Examples :
PT : displays the whole scratch pad table

PT X : displays type and current value of variable X.

2.7.5 PSCAL - Scalar operations in the scratch pad

Syntax: PS[CAL} < variable > = < expression >

< expression >: {1 1<argi>] <op>] <argz>|<func>(<argl> [<arg2>])}

< op > := {  + | - | = [ / }
addition sub. mult. division
< func > = {max|Min|sin|cos|TAN|ARCSIN|ARCCOS | ATAN]

ATAN2| PWR| AINT| CMPLX| REAL | AIMAG]|
ANGLE| CONJ| aBS | SQRT | EXP| ALOG| ALOG10}
If < variable > is a name without indices, a new variable will
be created in the scratch pad, but if it is an array element, the array
must exist in the scratch pad (created by PDIM command) . All computations

are performed in double precision or complex arithmetic.
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Examples = -
PS X = 2(1) + 3.5
PSCAL FF = ALOGLO(B)
PS PP(I) = 2Z(J) * Z(K)
PS CC = CMPLX (1.5 -2.0)
PS ASQR = PWR (A 2)

2.7.6 PMAT - Matrix operations in the scratch pad.

Syntax: PM[AT]<variable> = {<variable>|<number>}<0P><variable>

or
PM[AT]<variable> [<variable2>] = <func>(<variable>)
<op> := { * | ~ | + | -}
mult. scalar addition sub.
mult.
< func >: = { INV | TRANS | EIGEN | TRACE | DET }
Examples:
PM AT = TRANS(A): Defines 'AT' as transpose of 'A'
PM C = B - A : Substracts matrix 'A' from 'B' and stores

results in 'C'
All the arrays must be created by using a PDIM command, before

using PMAT command.

2.8 MISCELLANEOUS COMMANDS

The fcllowing general utility commands are included in the

package.

2.8.1 ALGO - Displays the solution algorithm
Syntax: ALGO [<step number>]
This command without the argument displays, in a condensed form,
the solution algorithm. If more information is desired for a particular

step, then that step number should be given as the argument.
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Example:

ALGO STEP 6 Prints details of step 6 of the algorithm.

2.8.2 HELP - Explains usage of the commands
Syntax: HELP [<command>]
This command without any argument lists all the available
commands with a short description of their functions. If more
information on a specific command is desired, that command can be used

as an argument for the HELP command.

Example:

HELP HALT - Gives syntax of HALT command.

2.8.3 ED - Calls a text editor
Syntax: ED < macro name >
In order to write and modify macros during execution, a text
editor can be called using the command 'ED'. This editor is a subset

of UNIX editor 'EX'. A summary of commands is included in Appendix B.

2.8.4 LIST - Lists a macro file
Syntax: LIST [LP] < macro name >
Lists a macro file on a terminal. If LP is specified, then the
file is written on a file 'FORT.8' which can be sent to the line printer

using the CSH command, described later.

Example:

LIST FILEl - ILists 'FILEl' on the terminal

2.8.5 COPY - Copies a macro file
Syntax: COPY < file 1 > < file 2 >

This command creates 'file 2' with the same contents as ‘'file 1°'.
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2.8.6 DELETE - Deletes a macro file
Syntax: DELETE < macro file >

This command deletes a macro file from the mass storage.

2.8.7 CSH - Calls shell to execute a UNIX command
Syntax: CSH 'any UNIX command within quotes'
or
CSH

Command 1

This command makes it possible to call the shell and execute

any unix command from the package.

2.9 MACROS FOR ROUTINE USAGE

The commands given in Sections 2.3 - 2.8, in combination with
INTRAC commands, are used as basic building blocks to write macros
that perform specified tasks. This section presents some of the macros
which are very useful for the routine usage of the optimization algorithm.

These macros provide the following features:

1. Simple problems, or problems with which considerable experience has
been acquired, require very little interaction since most of the
parameters can be preset. In this case a macro, called RUN, can be
used to perform a specified number of iterations Jjust as in batch

mode.

2. Complicated problems sometimes require that the computational

behavior be monitored in more detail. A series of macros is
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written so that a user can essentially single step through the

algorithm and change any of the parameters as desired.
3. Macros which make the use of graphics and scratch pad easier.

In addition to these ready-made macros, users can write their
own macros to perform specified tasks. Some of the more commonly used

macros will be described here.

2.9.1 RUN - Performs a specified number of iterations of the overall
algorithm.

Syntax: RUN < nitn > [< option >]

< nitn >

= number of iterations of the algorithm to be performed.
The program will stop for further action, if the number
of iterations exceeds 'nitn' and the optimum has not yet
been achieved. The program can be restarted by using

RUN macro again, if desired.
< option >: = {STORE | PRTALL}

If PRTALL option is specified, then the program prints iteration
number, cost function, 6, € and ¢ on the terminal as the computation is
progressing. With the 'STORE' option, cost function, £, ¥ and design
variables are stored in scratch pad in arrays 'FG', 'PSIG' and 'ZG’'.
These arrays can be later used to plot, for example, the decrease in
the cost versus iteration number, history of a particular variable over
several iteration, etc. If no option is specified, only the iteration

number is printed.

2.9.2 STEP2Z - Computes objective and constraint functions

Syntax: STEP2



27

This macro performs Step 2 of the algorithms, i.e., it computes
the objective function f, simple inequality constraints g and functional

constraints ¢.

2.9.3 STEP3 - Computes a usable feasible direction
Syntax: STEP3

This macro performs calculations in the step 3 of the algorithm
to find a usable feasible direction. Angles between the direction
vector and function gradients can be displayed by using macro PRTANG.
If these angles are not satisfactory, the push factors can be changed
and a new direction computed. This macro also performs tests in step 4,
and step 5 of the algorithm to see where the program is going to branch

next.

2.9.4 ARMIJO - Performs step length calculations using Armijo's rule.

Syntax: ARMIJO < nitn > [< display >]

< nitn > : maximum number of iterations to be performed

< display >: display option.

This macro performs iterations within step 6, until either, the
Armijo rule is satisfied or the number of iterations exceeds the
maximum specified. For the display option, macros 'GRAPHO' or
'GRAPHOS' can be used. Both of these macros plot Armijo step and
simple constraints as bar charts and functional constraints at each
iteration within the loop. The only difference between the two is
that GRAPHOS stores values of £, ¥ and z in arrays FG, PSIG and ZG
created by using RUN macroc with STORE option. A typical plot generated
by GRAPHO is shown in Figure 2. The graphics screen is divided into

three windows. In the top window, a line corresponding to the current

step length being tried, is drawn. The line is below the diagonal line
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if the cost reduction is satisfactory (i.e. Af < -a.sS€),

but is above the diagonal otherwise. In the middle window bars are
drawn corresponding to g constraints and the maximum value of ¢
constraints. Bars at successive interations are drawn a little to the
right of the previous bars. The € line is also shown. The bottom
window is divided equally into several portions to accomodate all the
functional constraints. The functional constraints are plotted at
each iteration in their respective portions of the window.

These graphs gives a clear picture of what is going on within
the Armijo loop. It is easy to identify a particular constraint that
is causing difficulties in satisfying the Armijo rule. To correct this
situation, a new direction can be computed with that particular

constraint in the e-active set or the problem may be rescaled.

2.9.5 RARMIJO - Performs iterations of the overall algorithm with
Armijo display
| Syntax: RARMIJO < nitn >
This macro combines RUN macro with the Armijo display GRAPHO.
One iteration of the overall algorithm will be performed with the
GRAPHO display in the step length loop. RESUME command is given to
start the next iteration, as long as the number of iterations is less

than < nitn >.

Note: 1In parallel with this macro, there is another macro called
"RARMIJOS' which combines RUN with GRAPHOS for storing values

in global arrays, as explained in 'ARMIJO'.

2.9.6 GRAPHF - Plots cost function versus iteration number
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Syntax: GRAPHF < yesno >
<yesno >: = { Y| N}
Plots cost function versus iteration number from the values of
F stored in array FG. If < yesno > is 'Y', the curve will be marked
to signify a new iteration.

A plot created by GRAPHF is shown in Figure 3(a).

2.9.7 GRAPHPSI - Plots 1 function versus iteration number.
Syntax: GRAPHPSI < yesno >
<yesno >: = {Y l N }
Plots Y function versus iteration number from the values stored
in PSIG. < yesno > has the same meaning as in GRAPHF. A plot created

by this macro is shown in Figure 3(b).

2.9.8 GRAPHZ - Plots history of design variables
Syntax: GRAPHZ < number > [< yesno >]
Plots a particular design variable, specified by < number >
versus the iteration number from the array ZG. < yesno > has the usual

meaning.

2.9.9 HELP MACROS

There are many other macros which are written to make the use of
the commands easier. They are grouped into macros for graphics and
macros for scratch pad. A list of these macros and ﬁheir syntax can be

obtained by using the following help macros

HLPGR - Gives a list and syntax of macros for graphics
HLPPAD - Gives a list and syntax of macros which facilitate use of

scratch pad.
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TABLE 1

SYMBOL TABLE FOR INTEROPTDYN

FORTRAN

Name Variable Type Description

£ F double precision | Cost or objective function.

g G double precision | Array containing conventional
inequality constraints.

¢ PHI double precision Vector containing functional
constraints. The ith row
contains the ith functional
constraint at specified
intervals.

Z Z double precision | Vector of design variables.

P PSI double precision | Function P.

N Integer Number of design variables.

JP Integer Number of simple inequality
constraints.

JQ Integer Number of functional in-
equality constraints.

wo WO double precision Initial value of the interval
[wg,wc] for which ¢ con-
straints are defined.

W, WC double precision | Final value of the interval
[wo Iwc] *

Q Integer Number of steps into which
the interval [wo,wc] has been
divided .

Tax QMAX Integer Maximum number of steps into
which the interval [wo,wc] is
to be divided -

MAXITN Integer Maximum number of iterations
of the overall algorithm
allowed.

ITER Integer Current iteration number.
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Name Variable Type Description

NCUT Integer Maximum number of simplex
iterations allowed in
solving the quadratic pro-
gramming problem for
direction finding.

ITRSTP Integer Maximum number of iterations
allowed in step length
calculations.

ul MUl double precision Convergence parameter.

uz MU2 double precision Corivergence parameter.

Y GAMMA double precision Parameter influencing search
direction when infeasible.

€ E double precision Smear parameter €.

§ DELTA double precision|{ Parameter § used in con-
vergence check and step
length calculations.

a ALPHA double precision Parameter O in step length
calculation rule.

B BETA double precision Parameter B in step length
calculation rule.

s SMAX double precision| Parameter controlling
maximum step length.

n SCALE double precision| parameter for computing push
factors.

Ef PUSHF double precision| push factor parameter for
cost function.

£ PUSHG double precision Vector of push factor

g parameter for 'g' constraints.
£¢ PUSHPH double precision| Vector of push factor
parameters for '¢' constraints.

h H double precision Search direction vector.

AGRAD double precision Matrix containing gradients

of cost function and e-active
constraints. First row always
contains cost gradient.
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Generic FORTRAN ..
Name Variable Type Description

AQP double precision| Matrix of scaled gradients
used for direction finding.

ENORM double precision Vector containing row norm
of AGRAD matrix.

ATHETA double precision Vector containing angles
between the direction vector
and cost gradient and
g-active contraint gradients.

M MUBAR double precision Optimal values of U's in
direction finding process.
0 THETA double precision| Optimality function, 6.

NEPTG Integer Vector containing 1 or 0 at
the ith location depending
upon whether ith ‘g’
constraint is active or not.

NEPTF integer Matrix containing mesh point
numbers of e€-active local
maxima for functional
constraints. :

] double precision Current step length being
tried in Armijo.

OLDSTP double precision Step length at the last
iteration.

ZNEW double precision Vector of new design variables
corresponding to the current
step length being tried.

FNEW double precision| New cost function, correspond-
ing to ZNEW.

TOL double precision Tolerance on minimum step

length.
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TABLE. 2

EXPLANATION OF BREAKPOINTS IN INTEROPTDYN

Initial
Condition

Description

COPFE90

COPFEL110

COPFE150

QP70

QP90

EACTI250

QP205

never

never

never

never

always

always

never

This breakpoint is at the beginning of step 1
of the algorithm. The program has read all
the data from the input file and initializa-
tion has been completed.

This breakpoint is at the beginning of step 2.

This breakpoint is located just after calls
to FUNCF, FUNG and FUNCPH, for evaluating f,
g, ® and Yy functions, i.e., at the end of
step 2.

This breakpoint is located just before step
3a of the algorithm.

This breakpoint occurs at the end of step 3a,
after determining €-active constraints. The
program always stops at this breakpoint when
it is first started.

The dimensions of €-active arrays are con-
trolled by a variable NACTIV. In the present
version, this variable, as well as dimensions
of arrays, is set to 10. If there are more
constraints active, control is transferred to
this breakpoint. Two possible ways of proceed-
ing then occur. The first is to stop execution
and increase the dimensions in the FORTRAN
program, as explained in the listing of the
program in [11}. A second possibility is to
reduce £, so that some of the constraints are
dropped, thereby reducing the dimensionality.
After changing €- the control should be trans—
ferred to QP70. ~

This breakpoint occurs after the program has
computed a new search direction and correspond-
ing optimality function. It has also computed
the angles between the direction vector and
cost and £-active constraint gradients by this
time. At this point these angles can be
examined and a decision made as to whether to
compute a new direction by changing some
parameters or to go ahead and compute a step
length in the computed search direction.
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Description

QP220

COPFE155

COPFEL65

ARMJJ100

ARMIJ1 55

ARMIJ180

ARMIJ190

COPFEL80

COPFE190

always

never

always
never

never

always

always

never

always

If the quadratic programming problem for
direction finding is not solved properly, the
control is transferred to this breakpoint.
The user can then examine different variables
and may use the scratch pad facility to
determine the cause of this phenomenon.

This breakpoint is at the end of step 3 after

returning from the direction finding routine

QP.

This occurs at the end of step 5. The optimal
solution has been achieved.

This breakpoint is at the beginning of step
length calculations (step 6).

At the beginning of main loop of Armijo.

If the number of iterations within Armijo
exceeds ITRSTP, the control is transferred to
this breakpoint. ITRSTP should be increased
and control transferred to ARMIJ100.

If the step length is smaller than a certain
tolerance TOL, the program stops at this
breakpoint. This is to warn the user that the
computation might be jamming up. A closer
inspection of the computation should be made
if the process is to be continued.

At the end of the iteration of the overall
algorithm (step 7).

If the number of iterations exceeds MAXITN,
the control is transferred to this breakpoint.
MAXITN should be increased to continue the
process.



35

3. THE MINI-ANSR SYSTEM

3.1 INTRODUCTION

Since the optimization algorithm requires many simulations of
response of the structure, an efficient structural analysis program
is indispensable. Moreover, it should be based on general structural
analysis concepts employing the finite element method in order that
it may be applied to a wide class of problemg. A general purpose
structural analysis program ~ ANSR-1 developed by Mondkar and Powell
[2] was selected as the best available program, combining broad scope
and large capacity with computational efficiency. The program structure

has been designed to satisfy the following requirements:

(a) Modularity The program should be modular so that new program
capabilities, such as new elements, new constitutive laws, etc. can

be added by developing a few subroutines, without changes to the
existing program. This has been achieved by structuring the program as
a base program to which a number of auxiliary programs, defining
particular finite elements, can be added. Storage allocation and
computations common to all finite elements are performed within the
base program, while computations associated with specific elements are

carried out within the auxiliary programs.

(b) Computational Efficiency The program should incorporate efficient

computational algorithms, including efficient equation solvers, stress

computation algorithms etc.

(c) Solution Strategy The program should include a flexible solution

strategy so that a wide range of nonlinear structural systems can be

analyzed. Flexibility has been achieved by implementing a strategy -
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defined in terms of a number of solution parameters. By assigning
different values to these parameters, a wide variety of solution
schemes can be implemented.

The program MINI-ANSR is a version of ANSR-1, modified for mini
computers with virtual memory operating systems. The major modifications
are in storage allocation and in use of core. Two separate common
blocks for real and integer data are created, to which the storage is
allocated dynamically. Advantage is taken of the virtual memory
operating system to perform disc operations more efficiently. In the
program it is assumed that there is enough storage évailable for the
analysis and the operating system calls for writing and reading of
blocks of information to and from the disc.

In the following sections some of the main features of the
program are described and instructions for writing new elements are

given,

3.2 PROGRAM FEATURES AND LIMITATIONS

3.2.1 Structural Idealization

(a) The structure is idealized as an assemblage of discrete finite
elements connected at nodes. Each node may possess up to six displace-
ment degrees of freedom. Provision is made for degrees of freedom to
be deleted or combined. This feature provides the user with ample
flexibility in the idealization of the structure, and may permit the

size of the problem to be substantially reduced.

(b) The mass of the structure is assumed to be lumped at the nodes,

so that the mass matrix is diagonal.
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(¢) Viscous damping effects may be included, if desired. Damping
effects proportional to mass, initial elastic stiffness and/or tangent

stiffness can be specified.

3.2.2 static and Dynamic loadings

(a) Loads are assumed to be applied only at the nodes. Static and/
or dynamic loads may be specified; however, static loads, if any, must

be applied prior to the dynamic loads.

(b) For static analysis, a number of static force patterns must be
specified. Static loads are then applied in a series of load
increments, each load increment being specified as a linear combination
of the static force patterns. This feature permits nonproportional
loads to be applied. Each load increment can be specified to be

applied in a number of egual steps.

(c) The dynamic loading may consist of earthquake ground accelerations,
time dependent nodal loads, and prescribed initial values of the nodal
velocities and accelerations. These dynamic loadings can be specified

to act singly or in combination.

3.2.3 Solution Procedure

(a) The program incorporates a solution strategy defined in terms
of a number of control parameters. By assigning appropriate values to
these parameters, a wide variety of solution schemes including step-by-

step, iterative and mixed schemes, may be implemented.

(b) For static analysis, a different solution scheme may be employed
for each load increment. The use of this feature can reduce the
solution time for structures in which the response must be computed

more precisely for certain ranges of loading than for others. In such
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cases, a sophisticated solution scheme with equilibrium iteration might
be used for the critical ranges of loading, whereas a simpler step-by-

step scheme without iteration might suffice for other loading ranges.

(c) The dynamic response is computed by step-by-step integration of
incremental equations of motion using Newmark's method. A variety of
integration operators may be obtained by assigning appropriate values

to the parameters B and Y.

3.2.4 Other Features

(a) The stiffness matrix of the structure is stored column ~ wise

in a compacted form omitting most zero elements to save storage.

(b) The stiffness matrix is modified, rather than completely
reformed, as the tangent stiffness changes. During solution, the
decomposition is carried out only on that part of the updated stiffness
matrix which follows the first modified coefficient. Significant
savings in solution time can sometimes be obtained by numbering the
nodes connecting nonlinear elements’to be last, so that the decom—

position operations are limited to the end of the matrix.

(c) Data checking runs may be made prior to execution runs. During
data checking, the program reads and prints all input data, but performs

no substantial analysis.

(a) Nonlinearities are introduced at the element level only, and
may be due to large displacements, large strains and/or nonlinear
materials. The programmer adding a new element may include any type

or degree of nonlinearity in the behavior of the element.



39

3.3 FINITE ELEMENT LIBRARY

At present, the following finite elements are included in the
program. New finite elements may be added to the library with relative

ease by following the instructions given in the next section.

3.3.1 Three~Dimensional Elastic Truss Element

This element can be located arbitrarily in an X, Y, Z cartesian

coordinate system. It can transmit axial forces only.

3.3.2 Three-Dimensional Nonlinear Truss Element

This element may yield in tension and yield or buckle elastically
in compression. Large displacement effects may be included. See [2]

for theoretical details of this element.

3.3.3 Two-Dimensional Elastic Beam Element

Two-dimensional elastic beam elements can be located arbitrarily
in an X, Y cartesian coordinate system. Shear deformations are

ignored.

3.3.4 Two-Dimensional Nonlinear Beam Element

This element may be arbitrarily oriented in the global X Y Z
reference frame. Each element must be assigned an axial stiffness plus
a major axis flexural stiffness. Torsional and minor axis flexural
stiffnesses may also be specified if necessary. Flexural shear
deformations and the effects of eccentric end connections can be taken
into account. Yielding may take place only at concentrated plastic
hinges at the element ends. Hinge formation is affected by the axial
force and major axis bending moment only. Strain hardening and large
displacement effects can be approximated. See [13] for theoretical

details of this element.
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3.3.5 Three-Dimensional Nonlinear Beam Element

This element may be arbitrarily oriented in the global X Y Z
reference frame. Each element must be assigned flexural stiffness
and axial stiffness. Plastic hinges can form at the element ends.
Interaction among the bending moments, torsional moment and axial
force is taken into consideration. Displacements are assumed to be
small, although the P-delta effect may be considered. Theoretical

details are given in [13].

3.4 ADDITION OF ELEMENTS TO PROGRAM

The computer program is organized so as to facilitate addition
of new elements to the existing element library of the program. For
this purpose, the program is divided into two parts, namely, (1) the
baée program consisting of a series of subroutines peiforming specific
tasks required for static and dynamic analysis, and (2) a number.of

auxiliary programs, each program consisting of a package of subroutines

required for a specific type of finite element in the element library.
The user wishing to add a new element to the library is mainly con-
cerned with the structure and organization of the auxiliary program,
which will be described in the subsequent sections. The organization
of the base program will not be described in this report; however,
sufficient details will be given to provide an understanding of the
linkage and information transmittal between the base‘program and the

auxiliary program.

3.4.1 Transmittal of Information

During input, the elements are arranged into groups, such that
all elements in any group are of the same type. Depending on the type

of element, the base program refers to the package of subroutines of

i
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the auxiliary program, at various phases of the computation. Informa-
tion is transmitted to or returned from the subroutines of the
auxiliary program through the argument lists and through labelled
COMMON blocks.

For each element, two blocks of information are created, one
for real variables and the other for integer variables. These are
continuously updated during execution. All information to be retained
for any element must be contained within these blocks.

The base program transfers the element information to a sub-
routine in the auxiliary program through the arrays COMS and ICOMS.
The addresses assigned to these arrays in the base program correspond
to the first words of information, in real and integer blocks, for the
corresponding element. To transfer the data from the arrays COMS and
ICOMS to the element information blocks, the following FORTRAN state-

ments must appear at the beginning of each auxiliary subroutine.

COMMON/INFELI/IMEM, ...

COMMON/INFELR/RDATA (1)

DIMENSION COMS (1), ICOMS(l), COM(1l), ICOM(1)
EQUIVALENCE (IMEM,ICOMS(1l)), (RDATA(1l) ,COMS(1)).

DO 100 J =1, NINFCI

100 ICOM(J) = ICOMS(J)
DO 110 J = 1, NINFCR
110 coM(J) = CoMS(J)
in which NINFCI = Number of words in the common block INFELI for
that element
= Number of words in the common block INFELR for

NINFCR
' that element.
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The contents of common blocks INFELI and INFELR will be described
subsequently.

The data within the blocks INFELI and INFELR will usually be
updated during computations in the subroutine, so that it is necessary
to transmit the updated data back to the arrays COMS and ICOMS at the
end of the subroutine. This is achieved through the following FORTRAN

statements.

DO 200 J =1, NINFCI
200 ICOMS(J) = ICOM(J)
DO 210 J = 1, NINFCR

210 CoMs(J) CoM(J)

il

It may be noted that in most cases only a part of the data is updated.
Hence, it may be more efficient to transfer the modified data
selectively. However, it can be expected that the computer time
required to transfer data from arrays COMS and ICOMS to the blocks
INFELR, and INFELI and vice versa, will be a small proportion of the

total execution time.

3.4.2 Labelled Common Blocks

(a) COMMON Blocks

The labelled COMMON blocks used in subroutines of the auxiliary
program are as follows.

(a) COMMON/TAPES/NIU, NOU, NTl, NT2, NT3, NT4, NTS, NTEMP

(b) COMMON/INFELI/IMEM, KST, LM(...), ...

(c) COMMON/INFELR/RDAT(1)

(d) COMMON/WORK/WORK {2000)
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(b} Input/Output Unit Block (/TAPES/)

This block contains disc file units assigned by the base
program. These should not be changed in any of the subroutines of the
auxiliary program. NIU is the input unit to read data and NOU is the
output unit to print data. Other units are not used in the present

version.

(c) Element Information Block (/INFELI/)

This block contains all integer data to be retained for any
element. The data can be arranged by the programmer in any desired

order except for the following restrictions:

(1) The first word of the block must be the element number.
The variable name IMEM is suggested.

(2) The second word must be the stiffness update code, as -
explained subsequently. Variable name KST is suggested.

(3) The third word must be the first word of the element
location matrix. The suggested variable name is LM. The

length of the vector LM equals the number of degrees of
freedom of the element.

The remaining data of the block can be arranged in any order.
These data will typically consist of the output history code, code for

including geometric effects, etc.

(d) Element Information Block (/INFELR/)

This block contains all real or double precision data to be
retained for any element. These data can be arranged by the programmer
in any desired order. Such data will typically consist of element
material properties, nodal coordinates, strain-displacement trans-
formation matrices, current stiffness matrix, strains and stresses at
integration points, envelope values of stresses and strains, plastic

strains, etc.
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(e) Work Block (/WORK/)

This block provides a core area for use by the programmer. The
work area provided by this block can be used for storage and manipula-
tion of data during execution of any subroutine in the auxiliary program.
Because this area is also used for temporary data storage by sub-
routines in the base program, it must not be used to transfer data

between auxiliary subroutines.

3.4.3 Auxiliary Program

(a) General
Each auxiliary program consists of a package of subroutines
required for a specific type of finite element. Each program consists

of four main subroutines, as follows:

(a) INEL: Input and initialization of element information.

(b) STIF: Formation of element tangent stiffness in static
analysis, or of element effective stiffness in
dynamic analysis.

(c) RESP: Computation of element deformations (strains) and
actions (stresses); determination of yield status;
updating of element information; computation of
equivalent nodal loads in equilibrium with the
current state of stress; computation of equivaléent
damping loads; and printing of strain and stress
results. As will be explained subsequently, con-
trol is exercised by the base program to perform
selectively any one or a combination of the above
operations.

(d) ourT: Output of envelope values of element deformations
(strains) and actions (stresses) at specified load
increments in static analysis or at specified time
intexvals in dynamic analysis.

Each of these four routines must be identified by a number

designating the element type, suffixed to the subroutine name. For

example, the names of subroutines for the element type 1 must be INELL,

STIFl, RESPL and OUTLl. The programmer can also write, if needed,
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additional secondary subroutines which are referenced by any one of
the four main subroutines. At the end of such a subroutine control
will be returned to a main subroutine, whereas at the end of a main
subroutine control will be returned to the base program. Information
may be transferred to and from secondary subroutines through argument
lists, through the WORK common block, or through other labelled COMMON
blocks created specifically for such information transfer.
Explanations of the tasks performed by each of the main sub-
routines, and the meanings of the variables of the argument lists, are

given in the following sections.

(b) Subroutine INEL

This subroutine is referenced by the base program once for each
gfoup of elements of the corresponding element type. For example,
subroutine INELl will be called once for each group of elements con-
taining elements of type 1.

The purpose of the subroutine is to read the input data for all
elements in the group, and to initialize the variables in the element
information blocks INFELI and INFELR.

The subroutine requires labelled COMMON blocks TAPES, INFELI
and INFELR. The labelled COMMON block WORK may be used if desired.
The argument list is as follows.

LPAR: A vector of dimension 10, which upon entry contains up
to 10 control parameters for each element group.

FLPAR: A vector of dimension 6 which upon entry contains up to
6 control parameters for each element group.

NDOF': Number of element degrees of freedom.

NINFCR: Number of real words of information stored for each
element in the element group. This number equals the
length of the labelled COMMON block INFELR for elements
of the type being considered.



NINFCI:

NJT:

NDKOD:

X,Y,Z:
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Number of integer words of information stored for each
element in the element group. This number equals the
length of the labelled COMMON block INFELI for elements
of the type being considered.

Total number of nodes in the structure. This value is
assigned by the base program.

An array of dimension (NJT x 6), which upon entry con-
tains the numbers of the structure degrees of freedom.
That is, NDKOD (I,1) thru NKDOD (I,6) contain the
numbers of the structure degrees of freedom correspond-
ing to the X displacement, Y displacement, Z displace-
ment, X rotation, Y rotation and Z rotation, respec-
tively, at node I. These values are generated by the
base program, and must not be changed in the auxiliary
program.

Vectors of dimension NJT each, which upon entry contain
nodal coordinates. That is X(I), Y(I) and Z(I) contain
the X, Y and Z coordinates, respectively of node I.
These values are generated by the base program, and
must not be changed in the auxiliary program.

The title of the subroutine, for example for element type

1, must be as follows:

SUBROUTINE INELl (LPAR,FLPAR,NDOF,NINFCR,NINFCI,NDKOD,X,Y,Z,NJT)

The values of the control parameters in vectors LPAR and FLPAR

are established within the base program by reading the first data card

of each element group using a (1015, 6F5.0) format. The first three

control parameters in LPAR and the first two control parameters in

FLPAR are stored by the base program as control parameters for the

element group, and are used subsequently. These parameters must be as

follows:

LPAR(1) :

LPAR(2) :

LPAR(3) :

A number identifying the type of element in the group.
For example, if 4 is entered, the subroutines called
for this group will be INEI4, STIF4, RESP4, and OUT4.
Presently, this parametexr can be assigned values 1
through 10.

Number of elements in the group.

Element number of the first element in the group.
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FLPAR(1l) : 1Initial stiffness damping factor BO.

FLPAR(2) : Current tangent stiffness damping factor BT.

All other words in LPAR and FLPAR can be assigned values, as

needed, by the programmer.

All subsequent data for the elements are read within the sub-

routine INEL, with the sequence and input formats to be decided by the

programmer.

(a)

(b)

(c)

(d)

The following steps must be performed within the subroutine:

Set the values of the variables NDOF, NINFCR and NINFCI.

If desired, establish reference tables of material properties,
fixed end forces, initial stresses etc. for later use in
specifying properties for each element. The WORK block may be
used to store these tables temporarily.

Specify properties of each element in the group. This data will
typically consist of node numbers, material properties, the
initial state of stress, an indicator for inclusion of large
displacement effects, etc. Any reference tables established in
(b) may be used. Generation options may be incorporated, pro-
vided the elements are generated in element number sequence and
information for only one element at a time is stored in the
COMMON blocks INFELR and INFELI, as appropriate.

For each element, the following initialization operations must
be performed.

(1) Set up the element location matrix, LM, within the COMMON
block INFELI. This can be done with reference to the numbers

of the structure degrees of freedom contained in the array NDKOD,
and the element node numbers.

(2) Set IMEM to the element number within the group. Set the
stiffness update code KST to one (KST = 1).

(3) Set any status indicators established within the COMMON
block INFELI to appropriate values. Such indicators will
typically be used to indicate whether or not large displacement
effects are to be considered; to monitor yield status; to
control printing of stress-strain history results; etc.

(4) Compute and save, within the block INFELR, strain-
displacement transformation matrices for formation of element
stiffness terms and for state determination calculations to be
carried out in the auxiliary routines STIF and RESP, respectively.
It should be noted that the nodal coordinates X, Y, Z are not
transferred by the base program to the auxiliary routines STIF
and RESP. However, the programmer may retain the nodal
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coordinates for the nodes to which the elements connects, as
part of the INFELR block, if desired.
(5) Call subroutine BAND with the statement

CALL BAND (LM, NDOF)
This permits the base program to establish information on the
profile of the structure stiffness matrix. This call must be
made subsequent to the setting up of the element location
matrix IM.
(6) Call subroutine COMPCT with the statement

CALL COMPCT
This transfers NINFCI words from INFELI block to the main array
containing integer information, and NINFCR words from INFELR
block to the blank COMMON containing real data. This call must
be made after the element information in the blocks INFELI and
INFELR has been fully initialized.

(¢) Subroutine STIF

This subroutine is referenced by the base program each time a
change in element stiffness is to be calculated, unless the sclution
control parameters are such that the structure stiffness from'a
previous step is to be retained. The subroutine is referenced in the

following situations:

(a) For the first step in either a static analysis or a dynamic
analysis, the subroutine is referenced by the base program once
for each element. For static analysis, the load steps are
numbered sequentially in decreasing order by the base program
(ISTEP = 0, -1, -2,..., etc.) whereas for dvnamic analysis the
time steps are numbered sequentially in increasing order
(IsTEP = 1, 2, 3,..., etc.). Thus, when ISTEP = 0, the sub-
routine is called once for each element to form the initial
elastic stiffness; whereas when ISTEP = 1, it is called once
for each element to form the effective stiffness matrix, which
includes contributions due to the inertial and/or damping matrix
terms.

(b) The static solution control parameters or the. dynamic solution
control parameters determine the frequency with which the sub-
routine will be referenced. . Situations will arise when the
solution control parameters specify no reference to the sub-
routine even when a stiffness change is indicated for one or more
elements. However, these situations are dealt with in the base
program.

As with the subroutine INELl, the subroutine STIFl will be called
for elements of type 1. The purpose of the routine is to compute a

change in element stiffness, and transfer this change to the base



49

program for subsequent assembly into the: structure stiffness matrix.

Because the structure stiffness matrix is not necessarily updated at

every load step, time step, or iteration, the change in the element

stiffness must reflect the change since the last update.

The subroutine requires the labelled COMMON blocks INFELI and

INFELR. The labelled COMMON block WORK may be used if desired. The

argument list is as follows:

ISTEP:

NDOF :

NINFCI:

NINFCR:

CDKO:

CDKT:

ICOMS:

COMS :

FK:

INDFK:

Ioad step number, or time step number. This value is
assigned by the base program.

See INEL routine. This value is now assigned by the
base program.

See INEL routine. This value is now assigned by the
base program.

See INEL routine. This value is now assigned by the
base program.

Value of constant a,8 to be used in computing the
contribution of the damping terms to the effective
stiffness matrix in dynamic analysis.

This value is assigned by the base program.

Value of constant a48T to be used in computing the
contribution of the damping terms to the effective
stiffness matrix in dynamic analysis.

This value is assigned by the base program.

A vector of dimension NINFCI, which upon entry contains
the integer element information. The address assigned
to ICOMS in the base program corresponds to the first

word of integer information for the element.

A vector of dimension NINFCR, which upon entry contains
the real element information. The address assigned to
COMS in the base program correspond to the first word
of real information for the element.

An array of dimension of at most (NDOF x NDOF), into
which is to be placed the change in the element stiff-
ness matrix since the last update. See explanation
below.

Indicator to specify the storage arrangement of the
element stiffness matrix in the array FK. The pro-
grammey is required to assign a value of zero or one to
INDFK in this subroutine as explained in the following:



50

The element stiffness matrix can be stored in the array FK either (1)
as a square symmetric matrix of dimension (NDOF x NDOF) or (2) as a
vector in which the columns of the lower part of the symmetric stiff-
ness matrix are stacked together compactly. The number of words in
the vector of form (2) will be NDOF x (NDOF + 1)/2. The programmer is
required to assign, to INDFK, a value of zero if the element stiffness
is stored as in (1), or a value of one if the element stiffness is
stored as in (2).v The base program uses INDFK in the assembly of the
element stiffness matrix into the structure stiffness matrix.

The title of the subroutine, for example for element type 1,

must be as follows.

SUBROUTINE STIF1 (ISTEP, NDOF, NINFCI, NINFCR, CDKO,
CDKT, ICOMS, COMS, FK, INDFK)

The following steps must be performed within the subroutine:

(a) Transfer the data from the arrays ICOMS and COMS to the element
information block INFELI and INFELR. The procedure explained
in Section 3.4.1 must be used.

(b) Set INDFK to zero or one, as appropriate.

{c) For static analysis (ISTEP < 0), compute the change in the
element tangent stiffness matrix. When ISTEP = 0O, this change
equals the initial elastic stiffness matrix. For dynamic
analysis (ISTEP > 1), compute the change in the element effective
stiffness matrix. Store the change in array FK, the storage
scheme depending on the value assigned to INDFK.

(d) Set the stiffness update code (KST} to zero. Update any other
data in the COMMON blocks INFELI znd INFELR.

(e} Transfer the information in the blocks INFELI and INFELR to the

arrays ICOMS and COMS. The procedure explained in Section 3.4.1
must be used.

(d) Subroutine RESP

This subroutine is referenced by the base program for each element
at each iteration within a load step in static analysis, and at each

iteration within a time step in dynamic analysis.
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As with the subroutine INELl, the subroutine RESP1l will be
called for elements of type 1.

The tasks to be performed in this subroutine are: (Tl) compute
the element deformations (strains) and actions (stresses); (T2)
determine the change of status if any; (T3) compute equivalent nodal
loads in equilibrium with the current state of stress; (T4) compute
equivalent damping loads; (T5) accumulate envelope values of element
deformations (strains) and actions (stresses); (T6) update the element
information; and (T7) print the strain and stress results. As
explained subsequently, the base program specifies, through the
indicator KUPD, which of the above tasks should be performed at any
iteration in a load step or time step.

The subroutine requires the labelled COMMON blocks TAPES, INFELT .
and INFELR. The labelled COMMON block WORK may be used if desired.

The argument list for this routine is as follows.

NDOF: See INEL routine. This value is assigned by the base
program.

NINFCI: See INEL routine. This value is assigned by the base
program.

NINFCR: See INEL routine. This value is now assigned by the
base program. :

MFST: Element number of the first element in the group. This
value is assigned by the base program, and equals the
control parameter LPAR(3). See INEL routine.

KPR: Print indicator for element stress and strain results.
This value is assigned by the base program. KPR is
set equal to zero if the results are not to be printed,
otherwise it is set equal to the element group number.

ICOMS: A vector of dimension NINFCI, which upon entry contains
the integer element information. The address assigned
to ICOMS in the base program corresponds to the first
word of information (integer) for the element.



COMS :

ACC:

FE:

TIME:

DKO:

DKT:

Cc7:

Cc8:

KUPD:

KITRN:
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A vector of dimension NINFCR, which upon entry contains
the real element information. The address assigned to
COMS in the base program corresponds to the first word
of information (real) for the element.

A vector of dimension NDOF, which upon entry contains
the increments in the element nodal displacements.

A vector of dimension NDOF, which upon entry contains
the element nodal velocities.

A vector of dimension NDOF, which upon entry contains
the element nodal accelerations.

A vector of dimension NDOF, in which the nodal loads
in equilibrium with the current state of stress must
be returned.

A vector of dimension NDOF, in which the damping loads
at the element nodes must be returned.

Time, in seconds, at the current time step. This value
is assigned by the base program. In static analysis,
TIME = 0.0.

Initial stiffness damping factor, Bo. This value is
assigned by the base program.

Tangent stiffness damping factor, BT. This value is
assigned by the base program.

Value of a constant to be used in computing the con-

tribution of damping to the effective load vector in

dynamic analysis. This value is assigned by the base
program.

Value of constant a. to be used in computing the con-
tribution of damping to the effective load vector in
dynamic analysis. This value is assigned by the base
program.

An indicator controlling which task or combination of
tasks is to be performed in this routine, as explained
subsequently. The base program sets KUPD to a value of
1 through 4.

An indicator specifying the form of the effective load
vector in dynamic analysis. This value is assigned by
the base program. See [2] for more details.



53

The values of MFST and KPR should be used by the programmer to print

the element group number and an appropriate heading when the element

stress

and strain results are printed. Additionally, the programmer

can print selectively the results for certain elements within the

group, with the aid of appropriate indicator stored as part of the

element information.

The indicator KUPD is required to be used as follows, in per-

forming the tasks (T1l) through (T7) specified earlier.

(1)
(2)
(3)

(4)

due to

TIME >

KUPD = 1: Perform tasks (Tl) through (T7)

KUPD = 2: Perform tasks (Tl) through (T4) and (T7)
KUPD = 3: Perform task (T7) only

KUPD = 4: Perform tasks (T3), (T4) and (T7)

The computation of damping stresses and equivalent nodal loads
damping is to be performed in dynamic analysis only (i.e. when
0.0).

The title of the subroutine, for example for element type 1,

must be as follows.

SUBROUTINE RESP1 ' (NDOF, NINFCI, NINFCR, MFST, KPR, ICOMS,

(a)

(b)

COoMs, Q, VEL, ACC, FE, FD, TIME, DKO,
DKT, C7, C8, KUPD, KITRN)

The following steps must be performed within the subroutine

Transfer the data from the arrays COMS and ICOMS to the element
information blocks INFELR and INFELI. The procedure explained
in Section 3.4.1 must be used.

Perform the task (Tl) through (T7), depending on the value of

the indicator KUPD. If the element changes its status because

of material yielding or unloading, set the stiffness update code
(KST) to one. 1If large displacement effects are included for

the element, KST must always be set to 1, because there will be

a continuous change in the element geometry and hence in its
stiffness. XST must be set prior to updating the element informa-
tion in the block INFELI (i.e. prior to performing task (T6)).
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(c) Transfer the information in the blocks INFELI and INFELR to the
arrays ICOMS and COMS. The procedure explained in Section
3.4.1 must be used. The transfer of this information must be
carried out only if KUPD = 1.

(e) Subroutine OUT

This subroutine is referenced by the base program for each
element at selected static load increments and at specified time step
intervals.

As with the subroutine INELl, the subrautine OUTl will be called
for elements of type 1.

The purpose of this routine is to print the envelope values of
stresses, strains and the corresponding times at which these maxima
have occurred. The sequence and formats for printing these results are
to be decided by the programmer. If the programmer decides to omit
storing envelope values and corresponding times in the block INFELR, a
dummy OUT subroutine must be supplied.

The subroutine requires the labelled COMMON blocks TAPES, INFELI
and INFELR. The labelled COMMON block WORK may be used if desired.

The argument list is as follows:

ICOMS : A vector of dimension NINFCI, which upon entry contains
the integer element information. The address assigned
to ICOMS in the base program corresponds to the first
word of integer information for the element.

COMS : A vector of dimension NINFCR, which upon entry contains
real element information. The address assigned to COMS
in the base program corresponds to the first word of
real information for the element.

NINFCI: See INEL routine. This value is assigned by the base
program.

NINFCR: See INEL routine. This value is assigned by the base
program

MFST: See INEL routine. This value is assigned by the base
program.
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The title of the subroutine, for example for element type

1, must be as follows.
SUBROUTINE OUTL (ICOMS, COMS, NINFCI, NINFCR, MFST)
The following steps must be performed within the subroutine.

(a) Transfer the data from the arrays COMS and ICOMS to the element
information blocks INFELR and INFELI. The procedure explained
in Section 3.4.1 must be used.

(b) Print an appropriate heading for the résults if IMEM equals
MFST.

(c) Print the envelope results.
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4. INTERFACE BETWEEN ANALY¥SIS AND OBTIMIZATION
PACKAGES )

4.1 INTRODUCTION

The INTEROPTDYN program, described in Section 2, is a general
purpose optimization program which can be used to solve a variety of
design problems. To define a particular problem, the user needs to

supply the following routines:

(i) PARSYM: Called once at the beginning of the program to
specify fixed system parameters.

(ii) FUNCF: To evaluate cost function.

(iii) GRADF: To evaluate cost gradient.

(iv) FUNCG: To evaluate simple inequality constraints.

{v) GRADG: To evaluate gradients of simple inequality constraints.

(vi) FUNCPH : To evaluate functional inequality constraints.

(vii) GRADPH: To evaluate gradients of functional inequality
constraints.

The structural analysis program, MINI-ANSR, is called from these sub-
routines. This structure allows the user maximum flexibility in terms
of computing constraint functions and their gradients. Moreover, it
preserves the modular structure of the package. For example, a new
structural analysis program could be added to replace MINI-ANSR without
any difficulty.

In the following sections the calling sequence and functions of
the above subroutines are described. Two examples of optimal design are
discussed in Section 5, in detail, to clarify the intexface between

these subroutines and the MINI-ANSR routines.
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4.2 CALLING SEQUENCE AND TASKS TO BE PERFORMED BY FUNCTION EVALUATION

ROUTINES

The calling sequence and tasks to be performed by function

evaluation routines are given below. Note that all the variables

identified as input (I) are set in the base program, INTEROPTDYN, and

should not be changed in the function evaluation routines.

1. PARSY

M:

This subroutine is called once only at the beginning of the

program and is used to specify the fixed system parameters. It is

called fr

where the

om the base program as follows:

CALL PARSYM (N, 2)

arguments have the following meaning:

Number of optimization variables (input).

Vector containing current values of optimization (design)
variables (I).

This subroutine is used to perform the following tasks:

(1)

(ii)

(iii)

(iv)

(V)

Initialize COMMON blocks needed in function evaluation and
analysis program.

Read problem related input data.

Declare variables into the INTEROPTDYN symbol table which need
to be changed interactively, as explained below.

Define variables which remain constant during optimization.

Print a short description of the problem on the screen, if
desired.

The variables which need to be accessed during execution must be

declared

into the INTEROPTDYN symbol table. This can be achieved by

calling a subroutine 'DECLAR' as follows:

CALL DECLAR ('VNAME','TYPE',IDIM,VAR.NROW,NCOL)
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where the variables in the argument have the following meaning:

VNAME: Variable name to be used during interaction. Usually
same as FORTRAN variable name,but could be different.

TPYE: Type of variable, first character determines type:
I - integer
L - logical
R - real
D - double precision
C - complex
S - character string
IDIM: Dimension parameter of the variable.
0 - scalar variable
1 - one dimensional array
>1 -~ declared row dimension for a two-~dimensional array
VAR: Variable to be declared.
NROW : Number of rows, (0 for scalar).

NCOL: Number of columns (0 for scalar).

Any number of variables can be declared in this fashion. If a
variable with the same name already exists in the symbol table, the

program will give an error message.

2. FUNCF:
This subroutine evaluates the cost function f. It is called

from the base program as follows:
CALL FUNCF (N,Z,F,NFUNCF)

where the arguments have the following meaning:
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N: Number of optimization variables, (input).

Z: Vector containing current values of optimization
variables, (input).

F: value of the objective function £, (output).

NFUNCF: A counter, which counts the number of times this sub-
routine is called, (input).

3. GRADF:

This subroutine evaluates the gradients of the ocbjective func-

tion. The calling sequence for this subroutine is:
CALL GRADF (N,Z,GRAD)
where the arguments have the following meaning:

N: Number of optimization variables, (input).

Z: Vector containing current values of optimization
variables, (input).

GRAD: Vector containing gradients of objective function,
(output). The ith entry in this vector should contain
the partial derivative of the objective function with
respect to the ith optimization variable.

4. FUNCG:

This subroutine evaluates conventional inequality constraint
functions (functions "g"). It is called from the base program as
follows:

CALL FUNCG (N,JP,Z,G,PSI,NFUNCG)
where the arguments have the following meaning:

N: Number of optimization variables, (input).
JP: Number of constraints of this type, (input).

Z: Vector containing current values of optimization variables,
(input).
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G: Vector of functions "g", having dimension "JP", (out-
put) . These functions could be arranged in any order,
but the corresponding gradients must follow the same
order in subroutine GRADG.

PSI: Function Y. At input it is initialized to its proper
value by the main program. The maximum of functions
g is computed and PSI is set egual to the greater of
its input value or the maximum g function value at

output. This should be achieved by adding the following
FORTRAN statements, just before RETURN.

DO 100 T =1, JP

100 IF (G(I).GT.PSI)PSI = G(I)

NFUNCG: A counter which is set equal to the number of the
current call to this subroutine, (input).
5. GRADG:
This subroutine evaluates the gradients of conventional in-
equality constraints (functions g). The calling sequence for this

subroutine is:

CALL GRADG (N,J,Z,GRAD)
where the arguments have the following meaning:
N: Number of optimization variables, (input).

J: Serial number of the constraint function for which the
gradient is to be evaluated. A separate call is made for
evaluation of gradient of each function, (input).

Z: Vector containing current values of optimization
variables, (input).

GRAD: Vector containing gradient of jEE. g constraint with
respect to the optimization variables. The dimension of
this vector is "N". The ith entry in this vector should
contain the partial derivative of the jth conventional
constraint function with respect to the ith optimization
variable, (output).
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6. FUNCPH:
This subroutine evaluates dynamic inequality constraint functions

(functions ¢). It is called from the base program as follows:
CALL FUNCPH (N,NJQ,JQ,Z,W0,WC,DELTAW,NQ,PHI,PSI,NFUNCP)

where the arguments have the following meaning:

N: Number of optimization variables, (input).

NJQ: Row dimension of matrix PHI in the main program,
(input) .

JQ: Number of constraints of this type, (input).

Z: Vector containing current values of optimization

variables, (input).

WO: Initial value of the interval over which the functional
constraint is to be evaluated, (input).

WC: Final value of the interval over which the functional
constraint is to be evaluated, (input).

NQ: Number of discretization points, (input).

DELTAW: Discretization interval, defined as.
DELTAW = (WC - WO)/NQ

PHI: Matrix containing values of functions ¢. The ith row
of this matrix contains values of ith functional con-
straint at specified intervals, (output).

PSI: Function Y. At input it is initialized to its proper
value by the main program. The maximum of functions Y
is computed and PSI is set equal to the greater of its
input value or the maximum ¢ function value at output.
This should be achieved by adding the following FORTRAN
statements, just before RETURN.

DO 100 L 1, J0

DO 100 K = 1, NQ
IF(PHI(L,K) .GT.PSI)PSI = PHI(L,K)

100 CONTINUE
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A counter which is set equal to the number of the
current call to this subroutine, (input).

This subroutine evaluates gradients of dynamic inequality con-

straint functions (functions ¢). It is called from the base program

as follows:

CALL GRADPH (N,NJQ,NACTIV,JQ,WO,WC,DELTAW,NQ,NEPTF,L,Z,K,GRAD,IGRAD)

where the arguments have the following meaning:

NACTIV:
JQ:

WO:

WC:

NQ:

DELTAW :

NEPTF:

Number of optimization variables, (input).
Row dimension of matrix NEPTF, (input).

Column dimension of matrix NEPTF, (input).
Number of functional constraints, (input).

Initial value of the interval over which the functional
constraint is to be evaluated, (input).

Final value of the interval over which the functional
constraint is to be evaluated, (input)

Number of discretization points, (input).

Discretization interval, defined as
DELTAW = (WC - WO) /NQ

Matrix of points at which the €-active intervals have
local maxima. The ith row of this matrix corresponds
to the ith functional constraint. It contains the mesh
point number at which the constraint is active. The
entries start from the first column and are in
ascending order. The remainder of the entries is filled
with zeros. This matrix could be used to store
gradients of functional constraints only at the points
included in this matrix. See example of the optimal
design of a braced frame, where it is used for this
purpose, (input).

Serial number of the current functional constraint. A
separate call is made for evaluation of gradient of
each e€-active point, (input).
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Z: Vector containing current values of optimization
variables, (input).

K: Current discretization point at which the gradient is
desired, (input).

GRAD: Vector containing gradient of ¢ (L,K). The ith entry
in this vector should contain the partial derivative of
the 1th functional constraint at the kth discretization
point with respect to the ith optimization variable,
(output) .

IGRAD: A counter, which is equal to the number of calls to this

subroutine in the current iteration. At the beginning
of every iteration, this is set equal to one, (input).

4.3 MODIFICATION AND EXTRACTION OF ELEMENT INFORMATION

During the optimization phase, design variables are stored in
a vector z. In structures, these variables are generally geometric
or material properties of the elements. Before performing a new
structural analysis, these quantities, therefore, need to be modified
in the MINI-ANSR COMMON blocks. The constraints generally require
element stresses and deformations, etc. which must be extracted and
passed on to the function evaluation subroutines at the end of the
analysis.

In order to perform this modification and/or extraction of
element information from MINI-ANSR COMMON blocks, a user needs to
supply the following routines for each element, in addition to the

four subroutines described in Section 3.

(1) MDFL: Modify data in element COMMON blocks corresponding to
optimization variables.

(ii) STOR: Store element information, relevant to the optimization

package, in separate arrays accessible to the function
evaluation routines.

Each of these subroutines must be identified by a number designating

the element type, suffixed to the subroutine name. For example, the
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names of subroutines for the element type 1, must be, MDFLl and STORL.

Explanations of the tasks performed by each of the main subroutines,

and the meanings of the variables of the argument lists, are given

below.

4.3.1 Subroutine MDFL

The purpose of this subroutine is to modify data in COMMON blocks

INFELR and INFELI , corresponding to the optimization variables.

The argument list is as follows (in order):

ICOMS::

COMS :

NINFCI:

NINFCR:

A vector of dimension NINFCI, which upon entry contains
the 'integer' element information. The address
assigned to ICOMS corresponds to the first word of
integer information for the element.

A vector of dimension NINFCR, which upon entry contains
the 'real' element information. The address assigned
to COMS corresponds to the first word of information
for the element.

Number of words of integer information for each element
in the group. This number eguals the length of the
COMMON INFELI for elements of the type being
considered.

Number of words of real information for each element in
the group. This number equals the length of the COMMON
INFELR for elements of the type being considered.

Vector containing current values of optimization
variables. :

The title of the subroutine, for example for element type 1,

must be as follows.

(a)

()

SUBROUTINE MDFL1 (ICOMS,COMS,NINFCI,NINFCR,Z)

The following steps must be performed within the subroutine:

Transfer the data from arrays ICOMS and COMS to the element
information blocks INFELI and INFELR , as explained in
Section 3.4.1.

Set KST = 1.



(c)

(&)

(e)

4.3.2
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Set response values corresponding to previous variables equal
to zero. This is easier to do through arrays ICOMS and COMS,
if the quantities in these blocks are arranged such that the

fixed quantities are placed before the response values.

Modify the proper guantities.
Transfer information in the blocks INFELI and INFELR to the

arrays ICOMS and COMS. The procedure is explained in
Section 3.4.1.

Subroutine STOR

This subroutine is used to store element information into

arrays needed for function evaluation. It performs two tasks depending

upon the value of the parameter IFLAG in the argument list.

If

IFLAG = 1: Stores results of analysis in two-dimensional
arrays.
IFLAG = 2: Stores element information which remains fixed

during analysis e.g. lengths of elements and their
connectivity for the structure geometry plot.

The argument list is as follows:

ICOMS: A vector of dimension NINFCI containing integer element
information.

COMS : A vector of dimension NINFCR containing real element
information.

NINFCI: Number of words of integer information for each element
in the group.

NINFCR: Number of words of real information for each element in
the group.

IFLAG: Flag which assigns different tasks, set by the base
program.

The title of the subroutine, for example for element type 1,

must be as follows.

SUBROUTINE STORL (ICOMS,COMS,NINFCI,NINFCR,IFLAG)
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The following steps must be performed within the subroutine:

(a) Transfer the data from arrays ICOMS and COMS to the element
information blocks INFELI and INFELR , as explained in
Section 3.4.1.

(b} Perform two tasks depending upon the value of IFLAG.

4.4 GENERAL INTERFACING SUBROUTINES BETWEEN FUNCTION EVALUATION
SUBROUTINES AND MINI-ANSR

In order to minimize coding for a new problem, a number of
interfacing subroutines between function evaluation subroutines and
MINI-ANSR has been devised. These subroutines are general and can

be used for any problem.

1. Subroutine INANSR

This subroutine initializes MINI-ANSR COMMON blocks and calls
the input module of MINI-ANSR to read input data for analysis. It

can be called as follows.
CALL INANSR
Typically, this subroutine will be called from PARSYM.

2. 1Logical Function BIGDIF

This function finds the maximum difference between the current
design variables and the one's for which the analysis was performed
last. If this difference is greater than a certain tolerance value,

the function returns .TRUE. otherwise .FALSE. . Its title card is:
LOGICAL FUNCTION BIGDIF (N,Z,ZSTR,DIFF,TOL)

where the arguments have the following meaning.
N: Number of optimization variables, (input).

Z: Vector of current design variables, (input).
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ZSTR: Vector containing design variables values for which the
structural analysis was done last, (input).

DIFF: Vector containing the difference between Z and ZSTR,
(output) .

TOL: Tolerance on the maximum difference, (input).

When the maximum absolute difference is greater than TOL, the function
is réturned as .TRUE. and ZSTR is set equal to Z. This function can
be used to implement some approximation concepts. For example, if the
difference is small, the cost and constraint functions can be

approximated by using first order Taylor series expansion.

3. Subroutine ANAL

This subroutine calls appropriate subroutines of MINI-ANSR for
static and/or dynamic analysis. The call to this subroutine is made
as:

CALL ANAL (ZSTR)
where ZSTR contains the values of design variables for which the
analysis is to be performed. This subroutine automatically calls for
subroutine MODIFY, to modify the element data before it calls the

static or dynamic analysis routines.

4, Subroutine SET

This subroutines extracts data from element information arrays
which remain fixed during optimization. It calls problem dependent

routines STORl, STOR2, ... etc. with IFLAG = 2. It is called as:

CALL SET

Typically, it is called from PARSYM (after the call to INANSR) to

store element geometry in arrays used for plotting.
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5. Subroutine MODIFY

This subroutine is the driving routine for problem—-dependent
element information modification routines MDFL1l, MDFL2,.... etc. It
is called as:

CALL MODIFY (ZSTR)

where ZSTR is a vector containing design variables which is passed on
to element routines. It is automatically called from subroutine ANAL

before performing structural analysis.

6. Subroutine STORSP

This subroutine is not entirely problem-dependent but needs
very little modification, if any, for a new problem. For an analysis,
it is called at the end of every step. In this case, it calls STORI1,
STOR2, ... etc. with IFLAG = 1. It is possible to skip several steps
between storing results by passing on appropriate values of TSTART,
TEND and NSKIP through COMMON block DYNPAR . Nodal responses, for
both static and dynamic analysis, are saved only at the nodes which
ére specified for output (Section F, MINI-ANSR data preparation manual) .
Similarly, results for only those elements are stored for which response
history is requested (see time history output code in Section G,

element specification, of Appendix D).
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5. EXAMPLE PROBLEMS

In order to further clarify the structure of the function
evaluation subroutines and their interface with the MINI-ANSR sub-

routines, the following design problems are discussed here:

1. Minimum weight design of a ten-bar elastic truss subjectéd to
static loading.

2. Minimum weight design of a two-story braced frame subjected to an
impulsive base motion.

The design problems are formulated and listings of the function
evaluation subroutines are subsequently given in Appendix E. Numerical
results are presented and interaction is illustrated by giving typical

dialogues between the user and the computer.

5.1 OPTIMAL DESIGN OF AN ELASTIC TRUSS SUBJECTED TO STATIC LOADING

A ten-member cantilever truss, shown in Figure 4, is designed
for minimum weight. This truss has been used extensively in the
literature for evaluating algorithms. For example, see [14] where
different results are compared. Constraints are placed on the nodal
displacements, member stresses and minimum member sizes. The objeétive

and constraint functions can be expressed as follows:

OBJECTIVE FUNCTION:

f(z) = Weight of the structure =

10
= p ) L, Z (5.1.1)
. i7i
i=1
where o) = Material density.
Li = Length of ith element.
Zi = 1ith design variable, which is the area of the ith

element.
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CONSTRAINT FUNCTIONS :

(a) displacement constraints

2 2
< i o= cee
(uix) < (uax) i=1, 4
2 2
< i = ces
(uiy) < (uay) i 1, 4
where
w, = displacement at ith node in X-direction
uiy = displacement at ith node in Y-direction
w. = allowable displacement in X-direction
uay = allowable displacement in Y-direction

(b) stress constraints

2 2 .
(Oi) < (Ga) i=1...,10
where
Oi = stress in the ith member
Oa = allowable stress

(c) minimum member size

Z. > Z. i=1,...,10
where

L _ ’
Zi = lower limit on the member area.

These constraints can be expressed as:

(5.1.2)

(5.1.3)

(5.1.4)
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g (z) = -z z? i=1,...,10
i Ui\
gz == -1.0 i=11,...,14
ax (5.1.5)
g(z) = (L) -1.0 i=15,...,18
ay
. 0. \2
g (z) = (0—1 - 1.0 i=19,...,28
a

GRADIENTS :
The gradients of the objective and the constraint functions can

be expressed as:

_ T
VE(2) = p LTy seees Lyl (5.1.6)
Vo'(z) = [-1,0,0 ,..., 01T
2 T
Vg (E) = {0, -1, 0 ,..., O]
10 T
Vg (z) = [0,0 ,...,0, -1]
[ T
Vgll(z) _ 2ulx aulx aulx
& - 100y
w2 9z, aleJ
ax L
T
1 - 2% | %x i
< - reey
u2 le 3210
ax L J
[ I
15 2uly Buly Buly
Vg (E) = 2 -37_'.'.'-5;_
u 1 10
ay )
It
18 2, au4y 3“4y
Vg (z) = 2 dz, '°°7' 3z
1 10
ay J
T
Vglg(z) _ 201 aol 301
= = N reensyg
02 Lazl 3z10
a -
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T
20 30 bl
28
P - e |l w0 (5.1.7
ag 1 10
a
NUMERICAL DATA
Material density, p=0.1 lb/in3
Young's Modulus, E = 10000. ksi
Displacement limits, u =y = 4+ 2 in.
ax ay —
Stress limit, Oa = *25 ksi
.. L , 2
ILower limit on member area, 2z~ = 0.1 in

Ioad data: Vertical loads of 100 k at nodes 2 and 4.

A typical dialogue between the user and the computer is presented
in the following pages to illustrate a simple level of interaction in
the solution of this problem. The dialogue has been obtained using an
HP graphics terminal connected with an hard-copy printer, which can
copy on paper both the alphanumeric and the graphic parts of the
screen.

The name of the executable file for this particular problem is
"trussint'. After typing in this name, some headings appear on the
screen, followed by the request to specify the name of the input data
file. 'Truss. data' is the name of the input file in this case; it
contains values of the optimization algorithm parameters as suggested
at the end of Appendix C.

The 'go' command moves the program to break point QP90, at the
end of step 3a. At this point, before starting the direction finding
process for the first iteration, command 'grinit', which initializes

graphics, is given and, after specification of the terminal type, a
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plot of the structure is requested using the macro 'gstruct'. The
initial design vector, z, is also printed, using command 'print'. |

We are ready now to start the design iterations and we use
macro 'run' and option ‘store' to perform 10 iterations and print
results. The initial design is feasible, in this case, as can be
verified by checking the value of function ¥ at the first iteration,
(PSI = 0). After 10 iterations the value of the cost function is
more than halved and the design vector has been considerably modified.
Four components in particular, z(2), z(5), z(6), z(1l0) have been
reduced substantially. This suggests thatvone set these four values
to their lowest limit zL = 0.1, before continuing with 15 more
iterations. As a consequence of the modification, iteration 10 is
repeated, but the new z vector, which corresponds to a lower cost, is
still feasible.

At the end of iteration 25 the values of the cost functioh and
of the vector z are not very far away from the ones reported in [14],
but the convergence rate has considerably slowed down for the last ten
iterations. This fact is particularly manifest in the graph of cost
function £ versus number of iterations, obtained using macro 'graphf'.

Execution is stopped after using macro 'graphz' to plot the
values of three components of the design vector, z(l), z(5), z(8)

versus number of iterations.
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rprint 2

30.0000

30.0000

30.0000

30.0000

30.0000

30.0000

30.4000

30.0000

30.0000

30.0000
drun 10 store
The results of the entire computation will be stored
in the arrays FG PSIG and ZGE(N:K) . '
Please state the total number of iterations yvou intend to

carry out: type in K = 7
#50
I =1 F = 12.5894 PSI = 0.

THETA = 0. E = 0.2
I =2 F =10.3494 PS3I =0

THETA = -0.009072 E = 0.2
I =3 F = 9.6774 PSI = 0.

THETA = -0. 009072 & = 0.2
I =4 F = 92.0054 PSI = 0.

THETA = -0.009072 £ = 0.2

I =5 F = 8.43893 PSI = 0.

THETA = -0.00350%22 kE = 0.2
I = 6 F = 7.55043 PSI = 0.

THETA = -0 00238465 E = 0.2
I =7 F = 7.1146 PSI = ¢,

THETA = ~0.00476387 E = 0.2
I =8 F = 6.79702 PSI = 0.

THETA = -0.00144824 E = 0.2
I =9 F = 6.414148 PSI = 0.

THETA = -0.00£40065 E = 0.2

I

[}

10 F = 6.07%4 PSI = 0.
) THETA = ~-0.06004908343 E = 0.2
Execution suspended at the end of STEP2
You may want to madify

1.  the current design vector Z

2. the smear parameter E

Yprint z

32.5313
0.642208

32.4006

14 .7785
0.624857
0.642208

i5.8748

20 .8112

21.5749

3.35659

yset z(2:1)=0.10
Ysaet 2(5:4)=0.410
Yset 2(6:1)=0.10
Yset z(410:4)=0.40
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print
32.93413
6.400000
32.4006
14.778%
0.100000
0.100000
15 8748
20.81172
21 9719
0.500000
>run 16 store
RESTART STEP2
I = 10 F = 5.8%147 PSI = 0.

THETA = -0.000408343 K = 0.2
I = 11 F = $5.60315 PSI = 0.

THETA = ~0.0040056%9 E = 0.2
I =142 F = SA514“3 PSI = 0.

THETA = - 00/3‘"0 E=0.2
I = 43 F = G, 3u?4i PEI = 0.

THETA = -0.000937207 £ = 0.2
I = 44 F = §5.54795 PSI = 0.

THETA = -0.00772742 FE = 0.4
I = iS5 F = S.47403 PSI = 0.

THETA = -0.006%8822 E = 0.1

I = 416 F = 5.46926 PSI = ¢,

THETA = ~0.000745536 £ = 0.1
I = 17 F = 5.43%48 PSI = 0,

THETA = -0.0004556053 E = 0.
I = 18 F = 9.42404 PSI = 0.

THE TA = ~0.00874833 £ = 0.1

I = 49 F = 5.3977% P8I = 0.
THETA = -0.0003%4949 E = {.1
I = 20 F = %5.39%83 P8I = 0.
- THETA = -0.00095%084 &
I =21 F = 5.3847 PSI = 0.
THETA = ~0.004%6347 E = 0.4
I =22 F = 5.33929 PSI = ¢,

i
-

THETA = -0.000640052 E = 0.4
I =23 F = 5.33397 PSIL = 0.
THETA = -0. 000799126 E = 0.4

I =24 F = 5.3224 PSI = 0.

THETA = ‘0.000517934 E 0.1
I =25 F = 5.31746 PSI = §.

THETA = -0.000748942 £ = 0.1
Execution suspended at the end of STEPZ2
You may want to modify

i, the current design vector Z
2. the smear parameter E
Yprint =
316432
0.178487
28.742¢9
14,8891
0.199684
0. 465926
g.2408%
24.0492
24.2%42
0.12992¢9

]
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5.2 OPTIMAL DESIGN OF AN INELASTIC BRACED FRAME SUBJECTED TO AN
IMPULSIVE BASE MOTION

A two story shear-type braced frame (Fig. 5), subjected to an
impulsive base motion,is designed for minimum weight, under both
conventional -and functional constraints. Both dynamic loads and non-

linearities are present in the example. Material nonlinearity is

allowed in the diagonal bracing, which is modeled using the nonlinear
truss element described in 3.3.3.

The ability of MINI-ANSR to accept specifications of both zero
displacements and equal displacement componeﬁts for different nodes,
has been used to model the shear-type structure. Four design
parameters appear naturally, the two areas of the diagonal bracing and
the two moments of inertia of the columns, at the first and second
floors, respectively. Area of cross section, A, and elastic section
modulus, S, of columns are assumed to be related to moment of inertia

I by the empirical relationships:

1/2

A=0.8 I (in inch units) (5.2.1)
S =0.78 13/4 (5.2.2)
For convenience of formulation of the problem, variables Il and 12,

having the dimensions of moments of inertia, are used as design
variables instead of areas. For the bracing the same relationship

I

5.2.1 is assumed to hold. The four design variables are then Il' 5

for the bracings, I3 and 14 for the columns. Constraints considered
refer to story drifts, stresses in columns, minimum member sizes and
ratio between weight of the bracing and total weight of the structure.

The objective and constraint functions and their gradients are

expressed as follows:
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OBJECTIVE FUNCTION:

f(z) = Wt = Wb + Wc = total weight of the structure
= pll,b(Al + A2) + 2phc(A3 + A4) =
B 1/2 1/2 1/2 1/2
= 0.8 pSZ,b(Il + 12 ) + 1.6 phc(I3 + 14 )
GRADIENT OF f
-1/2
( b Ty
Q'b I;l/2
VE = 0.4p < 1/2
2h I
c 3
-1/2
\th 4

CONVENTIONAL CONSTRAINTS:

1) - I+ . <o A
1 min —
2) -I, + Ib < 0 . .
2 min — & Positiveness of the design variables
c
- <
3 - I3t Ly 20 ., 15 >0
c min min
- + . <
4) I4 Im1n =0 ol

5) The weight of the bracing is desired to be less than a fixed

fraction o of the total weight of the frame:

W

b
—_— 1<0
o (wb + wc) —
GRADIENTS OF CONVENTIONAL CONSTRAINTS :
Vgl = [-lr OI Or O]T ’ ng = [01 "lr OI O]T ’
v = [0, 0, -1, 017 , vg* = 10,0, 0, -117 ,
(" B
-1/2
(1 - B) o.4zbzl/
-1/2 W
5 1 ) (1L-8) 0.4 I _ b
Vs oW+ W) » T2 L,wheres-wb+wc
-8 0.8h I;l/z
L -8 0.8h 1;1/2

S
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Maximum allowable story drift, a

< a or

1

< a oxr

[

u. \2
_1> L
a

Maximum allowable stress in columns,Oa

3)

4)

where

M

S

1c
1c

M

1c

M

2c

<

A

(0] oxr
a

o or
a

4, (z, v
G, (z, t)
M, (z, t)
M2c (z, ©)

2
M1c

2
0.78 I3

2¢c

3/2 O2

2 .3
/2 02
a

0.78" I

GRADIENTS OF FUNCTIONAL CONSTRAINTS:
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BMlc
311
aMlc
JI
3 _ 2Mlc 2 4
Vo~ = >, Vo
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oI 4 13
amlc
814
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Material density, p = 0.1 lb/in3

Young's Modulus, E = 30000. ksi

Maximum story drift, a = * 0.45 in.

Maximum stress in columns, Oa = t

Minimum value of the design variables,

I

min

I

min

Yield stress in the bracing, oy =

Masses at each floor, m, = m, =

10.

0.1

for the columns,

for the bracing

1 2

i 2M,
0.78% % 1/2
a 4
24 ksi
+ 18 ksi

4

208 1b x secz/inch

. . 2
Base acceleration, a rectangular pulse of 140 in/sec ,

acting for 0.5 sec.

Duration of analysis, 1 sec in 100 steps.

Numerical results for this ekample are presented in the form of

an interactive dialogue with the computer, as in the previous problem.

The name of the data file is

'brace.

data' and the initial values of

the optimization algorithm parameters are again the starting values

suggested at the end of Appendix C.

The structure geometry is
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displayed* using the macro 'gstruct', and the results of the analysis
corresponding to the initial design are plotted, using two new macros,
specifically prepared for the problem, 'gdisp' and 'gmom'. These
macros display horizontal displacements of the two floors and end
moments in the columns at the first and second level, as functions of
the number of time steps.

Ten iterations of the optimization procedure are then performed
using the macro 'run' and the option ‘'store'. 1In this case the initial
design is infeasible and seven iterations are needed to reach the
feasible region.

At the end of the ten iterations cost function f and function ¥
are plotted versus number of iterations, using macros 'graphf' and
'graphpsi', described in 2.6, and results of analysis corresponding to
the new values of the design variables,now feasible, are displayed,
again using commands ‘'gdisp' and 'gmom'.

Four more iterations are then requested, after which the
decision is made to start monitoring very carefully what happens in
the various stages of the procedure in order to make a possible
rational adjustment of the parameters of the algorithm. Starting from
iteration 15 macro 'step3' is used, which stops the execution at the
end of step 3, that is after the calculation of a direction has been
completed. Command 'prtang' gives at this point the angle between the
direction vector and the cost function gradient and the angles between
the direction vector and the €-active constraint gradients. The first

information that we have from 'prtang' is that there is no active

*

The horizontal rigid girders are not drawn in view of the fact that we
have chosen to model the shear frame by imposing constraints at joints,
not by describing the horizontal girders as members.
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constraint at the start of this iteration. We can now use the macro
'Armijo' in connection with the macro 'graphos', as explained in 2.9.4,
to monitor what happens during the step length calculations up to the
completion of iteration 15.

The information, which comes through the graphic representation,
obtained using 'graphos', is very rich and can be fully appreciated
only if the forming of the lines on the screen rather than only the
final picture is observed. For iteration 15 the information can be
expressed in this way: the step length is reduced in Armijo and the
constraint which causes this reduction is the constraint ¢(2), which
was not even active at the start of the iteration. As a consequence
the iteration is a bad one, as can be verified looking at the very
small reduction in the cost function f from the previous step ('prtali'
command has been used at the end of the iteration to print iteration
number, cost function etc.).

In the subsequent iteration, as can be seen using 'prtang' after
'step3', constraint ¢$(2) is active and influences the choice of a
direction. In 'Armijo' the step length is increased until constraint
g(5) is violated; at the same time constraint ¢(2) ceases to be active.

Iteration l6lhas been a good one, but the next is not. In fact
in the direction finding stage constraint ¢(2) is not active, while,
during the Armijo phase, it is still ¢(2) which gives trouble and
forces reduction of the step length.

Finally, in iteration 18 both g(5) and ¢(2) are active and
influence the choice of a direction, as a consequence the iteration
proves td be a good one.

Monitoring closely the algorithm's behavior in iterations 15

through 18 has given sufficient indication for an adjustment of the
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parameters. The slowing down of the solution process, connected with
the alternation of a good step and a bad one, can be corrected by
increasing the value of ¢ and forcing, consequently, both the con-
straints which are important at this stage, namely g(5) and ¢(2), to
be active at each iteration. However, increasing € may not be
sufficient, because € may be automatically reset to the previously
used smaller value in step 4 and execution sent back to step 3. It is
also important to reduce parameter § at the same time. This is
actually done in this example and in particular € is set = 0.4 and
§=10".

The solution process is then advanced for 5 more iterations,
during which the effectiveness of the adjustment of parameters is
observed.

Ten more iterations are performed, after which the cost function
is plotted. Again the beneficial effect of the adjustment of para-
meters is clearly visible in the graph.

After 18 more iterations the termination criterion is satisfied
and a message of congratulations appears on the screen.

The constraints active at the optimum are g(4) and g(5), ¢(1)
and ¢(2), as can be easily found by printing vector neptg and matrix
neptf.

Results of the analysis corresponding to the optimal values of

the design variables are also plotted before stopping.
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Optimization BRased Computer-Aided Design Group
Univergity of California
" Berkeley, California
u. s. A.

INTRAC-QOPTDYN .
An Interactive Optimization Program for
Design Problems Which can be Expressed as

Minimize £ (z)
z
subject to
max phifz,t) (= 0
T
g(z2) (= (@

Name of input data file:
( Default is "/usr/optcad/ciampi/optnsr . d/data" )
>brace data
>print z

20.0000

20.0000

20.0000

20.6000
>ga
Ywhere
Breakpoint: QP90
>grinit
enter terminal type (2=4027 3=RAMTEK 4=HF 5=402%).
4

>gatruct
>
3
. /
'-’-f""
2
-~
/
o~
L~

[+ 43
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-1.88=30"00
BN
L displ
N S
dizp Ry
dizp2
el
U ~
-2.6 . . e : - I
5] 28 43 55 S 188 time
zNevdgr g - LRI
- - - — —_ —_ - - - - - - - - -" ----- ol e, - - - 1
......... moml
N,
N
mom -
mame
-\-\
S - T O SO
- 4 -
-~ -
. - ~ .
-2.%e+8 - - : ;
T T o .
5] 2a 4@ & &g 1ae time
yrun 10 store

The results of the entire computation will

in the arrays FG PSIG and ZG(N:K).
Please state the total number of iterations you intend to

carry out: type in K = ?

#100

I =41 F = 0.54%595 PSI = 29.780¢
THETA = 0. E = 0.2

I =2 F = 0.792752 PSI = 0.282556
THETA = —~0.504697 E = 0.2

I =3 F = 0.815954 PSI = 0.419247
THETA = -4.04588 E = 0.2

I =4 F = 0.816696 PSI = 0.471042
THETA = -1 .30984 E = 0.2

I =8 F = 0.81582 PSI = 0.4%52i74
THETA = -1 .16204 E = (.2

I =6 F = 0.84%523% PSI = 0.147049
THETA = —~0.99548%5 E = 0.2

I =7 F = 0.9945%51 PSI = 0.0600003
THETA = -0 .1245%528 E = 0.2

I =8 F = 0.979406 PSI = 0.
THETA = -0.7%2006 E = 0.2

I =9 F = 0.939237 PSI = 0.
THETA = -3 .6928%E-4 £ = 0.1

I = 40 F = 0.927049 PSI = 0.
THETA = -3 32648BE-4 £ = 0.1

Execution suspended at the end of STEP2

You may want to madify
i. the current design vector Z
2. the sMear parameter E

be stored
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93.3724  .3e-l T
17.8780 , -
70.7374
6£8.0096 ]
Ygraphf n ; L e T mTmmmm e o
Ygraphpsi n
y
S.5e~1 .
1 & i iter
3.8&4»1a
psi
9.9 ‘ .
yadisp 1 £ 11 iter
Yymom
>
1.5e-1 ras
L-B;______ _ T | disel
R i - — . e m o .
N\ Ve
disp :"-'. T~ .- ’ - . K
. disp2
-5.8e-1 .
2 20 49 64 a0 198 time
2.3e+4 T
L ~
¢ 3 5
Lg@ . . — - - - 2 i f mamt
: ; e
mom v g7
N o i
[ e 2 H
ER - mom2
-1.32+E
B 20 4@ \ a0 180 time
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Yrun 4 store
L = 411 F = .214%454 PSI = §.
THETA = -3 20792E~-4 E = (0 4
I = 12 F = 0.901812 PS5 = 0.
THETA = -3 .08574E~4 £ = (.1
I = 43 F = 0.92005658 PST = 0.
THETA = -2 . 959%97E-4 £ = (. 0293
I = 14 F = 0.8%9285 PSI = 0.

THETA = -B.28777E-S E = 0.029
Execuvtion suspended at the end of STEP2
You may want to modify

i. the current design vector Z
2. the smear parameter E
Yprint .z
83.801L5
14,3257
60 2608
S7 .8bb6b
>stepd
Execution suspended at the end of STEFP3
You may want to modify
i. THETA parameters: PUSHF, PUSHG,

2. smMear parameter: E

3. test parameters: DELTA, MUYL, MU2
Precomputation of the tests in STEP4
indicates that the program will
>prtang

angles between search direction and
and e-active constraints gradients

cost

function angle push~factoers
F ie0. PUSHF =4 .
*armijo 20 graphos

rmijo test satisfied after &, iterations

Execution suspended at the end of STER2
You tMay want to modify

i. the current design vecter Z

2. the smear parameter E

2>

PUSHPH,

and STEPRS
branch to

SCALE,

GAMMA

- .
e
T e
-—
P Tt -
T~
—
-~ .
— .
-—_ .
bar-qg-phi
: YIrnT ) ey IR
- i = M - - - e e e M= = rup o~ —
: Y] nan e
e wne urie
H fuin i wne
i trar s e
H 10 e utise
i wa e
em wun wae
Hewt win e
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phi_a,
wy [ 43 . v
-_..__.___‘-1..__.\"_,_|'c_:_‘___._.__-_.. - -
:::l: ;:\" PR TR :
O § N
-‘.f, lE-:' rl Do
NI IR
LR
W ‘E'\ ":: g
; v hother g
Function angle pusGn-tactors
Spr}all i i
I = 45 F = 0.8580689 PSI = 0.
THETA = ~3.14836FE~-4 E = 0.02%5
dstep3
‘Execution suspended at the end of STEPJ
You may want to modify
i. THETA parameters: PUSHF, PUSHG, PUSHPH, SCALE, GAMMA
2. smear parameter: E
3. test parameters: DELTA, MUL, MUu2
Precomputation of the tests in STEP4 and STEPS
indicates that the program will branch to STEPS6
Yprtang
angles between search direction and cost
and e-active constraints gradients
function angle push-factors
F 123.722 PUSHF =1 .
PHI(Z2,i7) 91.3297 PUSHPH(2) = 1.
PHI(2,42) ?0.79219 PUSHPH(2) = 1.
Yarmijo 20 graphos
annot plot Armijo: out of range
Zannot plet Armijo: out of range
Armijo test satisfied after 7. iterations
Execution suspended at the end of STEP2
You may want to modify
i. the current design vector Z
2. the smear parameter E
Z>
armijo - f
§ Tl
By -
H — . ~ .
- - -~
Ty .
bar-q-phi’ @.
- - B
tnare nuu HiHa
LooAume - A S e -
s wma T
ihais aun wnn
e i )
ey Hiu wun
[ wan wun
i it i o

(]

[}
[

-2 eps-line
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phi_ @,
-_._.._-__._é_..__{-_____.4_....___
T
1
4 ;
¢ ;| F
4 §
.'s i Li.’
drrrred Gl A
Lr%l[ H}
Yprtall O
I = 416 F = §.810688 PSI = 0.
THETA = -9 . S749iE-5% E = 0.02%
Ystepd

Fxecution suspended at the end of STEP3

You may want to modify
1. THETA parameters: PUSHF, PUSHG, PUSHPH, SCALE, GAMMA
2. smear parameter: E

3. test parameters: DELTA, MUL, #®U2

Precomputation of the tests in STEP4 and STERS

indicates that the program will branch to STEFS

>prtang

angles between search direction and cost

and e-active constraints gradients

function angle push=factors
F 180. PUSHF =1.
G(S) 115,447 PUSHG(S) = 1.

Yarmijo 20 graphos
rMijo test satisfied after &, iterations
Exacution suspended at the end of STEP2
You may want to modify

i. the current design vector 2

2. the smear parameter kE

>
dprtall 0
I =47 F = 0.809427 PSI = 0.
THETA = -3.35%44%9E-4 E = 0.02%
Ystepd

Execution suvspended at the end of STEP3
You may want to modify
i. THETA parameters: PUGSHF, PUSHG, PUSHPH, SCALE, GAMMA
2. smear parameter: E
3. test parameters: DELTA, MUL, MU2
Precomputation of the tests in STEP4 and STEPS
indicates that the program will branch to STEPA
dprtang
angles between search direction and cost
and e-active constraints gradients

function angle push-factors

F 120.734 PUSHF =4 .
(%) ?0.%5886 : PUSHG(S) = §.
PHI(Z,42) 90,7564 PUSHPH(2) = {.

>armijo 20 graphos

annot plot Armijo: osut of range

Zannot plot Armijo: out of range

Armijo test satisfied after 7. iterations

__Execution suspended at the end of STEP2



" You may want to modify
1. the current design vecton Z
2. the smear parameter E

Z>

Yprtall 0

I =48 F = 0.76709%9 PSI = 0.
THETA = -8 .7231tE-5 E = 0.

ks

>

Yset e=0.4

'set delta=i. e-7

Yrun S store

RESTART STEP2

I =48 F = 0.767099 PSI
THETA = —~4 168E-4

I = 19 F = 0.714417 PSI
THETA = -1 .09864E-4

I = 20 F = 0.6861%52 PSI
THETA = -2.08688E~4

I = 28 F = 0.669059 PSI =
THETA = -4.168BE-4 K

I. = 22 F = 0.6%9096 PSI
THETA = -2 .30062E-4

Execution suspended at the end of

You may want to modify

i. the current design vector Z
2. the smear parameter E
Yrun L0 store

i

i
mMolomome il o

0.2

it

I =23 F = (.648823 PS5I = 0.
THETA = -2.35104E~4 E = 0
I = 24 F = 0§.4645509 PSI = 0.
THETA = -2 .54892E-4 £ = 0
0

I = BS F = 0.6424181% PSI =
THETA = -2 .52i9E~-4 E 0.
I = 26 F = 0.640S77 PSYT =
THETA = -4 03809£-4
I =27 F = 0.638974 PSI =
THETA = -4 .01688BE~4
I =28 F = 0.63%625 PSI =
THETA = -2 .494178E-4
I = 82 F = 0.634614 PSI
THETA = -2 .50443E-4
I = 30 F = 0.633604% PSI =
THETA = -2 . 50826E~-4
I = 314 F = 0.625075 PSI =
THETA = -9 . 67802E-9
I = 32 F = 0.624293 PSI =
THETA = ~6.2%454E~8
Execution suspended at the end of
You may want: to modify
i. the current design vector Z
2. the smear parameter E
dprint 2
35.9094
13.1914
48,7632
15.4738

i

MoMoMofofllolo T
it
[~

= 0

u

= {).

= 0.

= 0.

6.

91

STEP2

025

025
STEP2
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dgraphf. n %.9e~1 RN
> “

£E.G5e-1

drun 30 prtall
o= 33 F = (0.623093 PSIT =
TOTHETA = -7 97R65E-8  E o= 0.02%

Tom 340 F = 0.6204%% P8I = 0
THETA = ~4 BORYAE-4 E = 0. 02%
Tow 3% OF = 0. 6R1077 PHEI =
THETA = ~3Z. 4037

< (). 6208  PE
o= L 05345E-7 B
w1 620499 PET =
TR = -5 f3%84E-7 B o= 0.02%
T o= 38 F = 0.620474 PGS = 0.
THETA = ~{ 2R2RV3E-7 E = 0.02%
F o 3L 620168 PST o= 0.
o= RRYRE-7 E = 0.02%
o= ). 649788 PSYT = 0
THETA = -2 82834iE~-4 E = 0. 0i2%
I = 41 F = 0.619%69 PSI = 0.
THETA = —~4.55934E~4 E = 0.042%
I o= 42 F = 0.649%26 PSI = 0.
THETA = -3 4879E-4 E = §.0062%
I = 43 F = 0.61i9483 P8I = 0.
THETA = ~3.48728E-4  E = 0.0062%
I = 44 F = 0. 641927 PSI = 0.
THETA = -4 $5601E-4 E
T = 4% F = 0.61803% PSY =
THETA = -2.43822E-%
I = 46 F = 0.648029 PSI =
THETA = —f 24928E-7
I = 47 F = 0.647943 PSI = 0,
THETA = ~2.8448E-4 E = (.003£2%
I = 48 F = 0.647699 PSI = 0.
THETA = -1 .56%0%E~-4 E
I = 49 F = 0.616444 PSY = 0.
THETA = ~2.47142E-% E
I =850 F = 0.646442 PSI = 0.
THETA = ~{ . 2364E~7 E = §.00312%

i
(=3
B

0.0062%

H

= (0. 0062%

i

0.0062%

o oo

i

0.0034:2%

i

0.00312%

32 K OK KKK 3K AR OK KKK KSR KRR RO K 3Kk KK OK 3K 3K K KRR 3K K KKK K KRR KR OK K AOK K K HOK K KORKOR KKK K Kk Kk K

KKK KKK K K K XK KKK KKK KKK
congratulations, here is the optimal solution

obhjective function value= 0.616442d+00
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dprint z
3%.1873
13.1253
57.141%
i0.00612

print neptg

DOoOCOOC R OOD

dprint neptf
49

<
[~ I oo B — Y i = I} == B = o |

dprint g(4:1)
-41.21752d-03
yprint g(S:4)
-1 .82749d-03
Yprint phi(i:49)
-2.94798d-03
dprint phi(2:48)
~4.8708%9d-03

Ygdisp
>gmom
>
- - - dispt
kY ® s ’ .'. .'. * /I- A.:
disp B ™~ - LT T~ L N e
' ~. .7 S e v
......... ! ! dispe
-8.7e-1 e : - '
@ za 40 60 s@ 199 time
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mam
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>gloop 1
Yatap
k4
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laop for brace rumber 1

-1 .1e+5

i

-5.82-1

dizplacement
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~h¢lx)
Vf(x)

FIGURE 1 AN EXAMPLE OF THE INFLUENCE OF BAD SCALING ON THE SEARCH
DIRECTION CALCULATION
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6 |360
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FIGURE 4 ELASTIC TRUSS FOR EXAMPLE 5.1

AACC. ,IN/SEC?2

140.

> t SEC

0.5 1.0

ACCELERATION PULSE
AT THE BASE

FIGURE 5 INELASTIC BRACED FRAME FOR EXAMPLE 5.2
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APPENDIX A - SUMMARY OF ORIGINAL INTRAC COMMANDS

Original INTRAC commands are summarized here. For more details,

see [12].

1. MACRO <macro identifier>[<formal argument>|<delimiter>
<termination markexr>]

Begins a macro definition and creates a macro.

2. TFORMAL {<formal argument>|<delimiter>|
<termination marker>}
Declares formal arguments in a macro definition and when
creating a macro. It can be used to extend the list of

formal arguments anywhere in a macro.

Ends a macro and ends macro creation mode. Deactivates

suspended macros.

4. LET {<variable>=} {<number>([{+|-|*|/} <number>)
{+]-} <number>

|<identifier>[+<integer>]

|<delimiter>
|<unassigned variable>

Assigns (allocates) variables.

Examples: LET A B =0 results A

B = 0 (integer)

IET P 3x5.5 results P 16.5

5. DEFAULT {<variable>=} <argument>
Assigns a variable if it is unassigned or does not exist

previously.
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6. ILABEL <label identifier>
Defines a label.
Examples: LABEL SKIP

LABEL 3

7. GOTO <label identifier>

Makes unconditional jump.

Example: GOTO SKIP

8. IF <argument> {EQ|NE|GE|LE|GT!LT} <argument>

GOTO <label identifier>

Makes conditional jump.

Example: IF A GT 2.5 GOTO SKIP

9. FOR <variable> = <number> TO <number> [STEP <number>]

Starts a loop.

Example: FOR I =1 TO FINISH STEP INCR

10. NEXT <variable>
Ends a loop.

Example: NEXT I

11. WRITE [([DIS|TP|LP] (FF|LF1)] [<variable>|<string>]
Writes variables and text strings or displays currently
available variables. Default output is DIS (display)

TP

Terminal Printer, LP = Line Printer, FF = Form Feed,

LF Line Feed

12. READ {{<variable> {INT|REAL|NUM|NAME|DELIM|YESNO}}
<termination marker>}

Reads values for variables. from the terminal.
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13. SUSPEND
Suspends the execution of a macro.

14. RESUME

Resumes the execution of a macro.

15. switcH {EXEC|ECHO|1OG|TRACE} {ON|OFF}

Modifies switches in Intrac.
The switches have the following meaning.

EXEC: Determines whether the commands entered in genera-
tion mode should be executed or not.

ECHO: If ECHO is ON, the commands in a macro are echoed
on the terminal as they are executed.

LOG: Determines whether the executed commands should be
logged on the line printer or not.

TRACE: If TRACE is OFF only application commands are
echoed and logged. Also macro calls and Intrac
statements are output if TRACE is ON.

All switches have the default value OFF.

16. FREE {{<global variable>} .*}

Deallocates global variables.

17. STOP

Stops the execution of the program.
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APPENDIX C - INPUT DATA FOR INTEROPTDYN

1. PROBLEM HEADING (20A4) - one card®

COLUMNS

NOTE

VARIABLE

DESCRIPTION OF DATA ENTRY

1 - 80

HED

Problem heading to be printed with
output.

2. CONTROL INFORMATION (415}

- one card

COLUMNS NOTE VARIABLE DESCRIPTiON OF DATA ENTRY

1-5 (1) MAXITN Maximum number of iterations
allowed.

6 - 10 (2) ITER Iteration number at start of this
run. Leave blank if this is the
first run.

11 - 15 NCUT Maximum number of simplex iterations
in solving the quadratic programming
problem for direction finding.

16 - 20 ITRSTP Maximum number of iterations allowed
in step length calculations.

3. CONVERGENCE TOLERANCE PARAMETERS (8F 10.0) - one card

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY
1 -10 MUl Parameter ul used in tolerance test
on €.

11 - 20 MU2 Parameter U, used in step 4 of the
algorithm.

21 - 30 DELTA Parameter § used in step 2 (conver-
gence check) and step 6 (step length
calculations).

31 - 40 EO 80, initial value of €.

41 - 50 GAMMA Parameter Yy, used in QP.

*

Here and in the sequel "card" is understood to mean a line of an

input file.
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PROBLEM SIZE (3I5) - one card
COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY
1 -5 Jp Number of conventional inequality
constraints (functions 'g'}.
6 - 10 JQ Number of dynamic constraints (func-
tions ¢).
11 - 15 N Number of optimization variables.

ARMIJO PARAMETERS (8F10.0) -

one card

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY
1 -10 STPMAX Parameter controlling maximum value
of step length at any iteration.
11 - 20 ALPHA Parameter d.
21 - 30 BETA Parameter f.
31 - 40 (3) OLDSTP Initial value for the step length

FUNCTIONAL CONSTRAINT PARAMETERS (215,

2F 10.0) - one card

(Skip this section if JQ is zero).

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY

1 -5 NQ Initial number of discretization
points.

6 - 10 NOMAX Maximum number of discretization
points.

11 - 20 WO ty defining the interval of
interest, [to'tf]'

21 - 30 WC tr defining the interval of

interest, [to,tf].

SCALING FACTORS (2F 10.0) - one card

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY
1 -10 (4) SCALE Scale factor, n, used in scaling
QP.
11 - 20 PUSHF Scale factor for cost function.
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PUSH-OFF FACTORS FOR CONVENTIONAL CONSTRAINTS (8F 10.0)
(Skip this section if JP is zero)

As many cards as needed to specify push-off factors for all

conventional inequality constraint functions.

9.

PUSH-OFF FACTORS FOR DYNAMIC CONSTRAINTS (8F 10.0)
(Skip this section if JQ is zero)

As many cards as needed to specify push-off factors for all

dynamic constraints.

10.

INITIAL VALUES OF VARIABLES (8F 10.0)

As many cards as needed to specify initial values for N

optimization variables.

NOTES

(1)

(2)

(3)

(4)

The program will stop normally if either the number of iterations

reaches MAXITN or the optimal solution is achieved.

ITER is used only to label the output. In a number of practical
situations it is not possible to let the program run for too
many iterations. The process can be restarted with the latest
values of the optimization variables, € and q with ITER equal to
the number of the next iteration. The output will then be
labeled starting from ITER and incrementing it by one, after

each subsequent iteration.

The step length calculations start by assuming an initial trial
value equal to OLDSTP. If a good estimate is available, it will

accelerate the step length computation process.

The "push-off" factors are used to force the direction vector

away from or toward a constraint. Some experience is needed
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before arriving at suitable values. The angles between the
direction vector and objective function gradient and active

constraint gradients should be used as guidelines.

STARTING PARAMETER VALUES

The following parameter values have been found to give fairly
efficient behavior. Users with no prior experience can start the

program with these values.

NCUT = 20 ITRSTP = 10
Moo= 1.0 W, = 0.01 § = 0.001
€, = 0.2 Yy = 2.0 STPMAX = 100.0
a = 0.2 B = 0.3 OLDSTP = 1.0
n = 0.0
PUSHF = 1.0
PUSHG = 1.0, 1.0 . . . (JP values)
PUSHPH = 1.0, 1.0 . . . (JQ values)
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APPENDIX D -~ INPUT DATA FOR MINI-ANSR

A. PROBLEM INITIATION AND TITLE (A5, 18a4)

Columns 1 - 5: Punch the word START

6 - 77: Problem title, to be printed with output.

B. NODE INFORMATION

Bl. CONTROL INFORMATION (8I5) - One card
Columns 1l - 5: Total number of nodes.
6 - 10: Number of "control" nodes, for which
coordinates are specified directly (NCNOD).

See Section B2.

11 - 15: Number of coordinate generation commands
(NODGC). See Section B3.

16 - 20: Number of commands specifying nodes with zero
displacements (NDCON). See Section B4.

21 - 25: Number of commands specifying nodes with equal
displacements (NIDDOF). See Section B5.

26 - 30: Number of commands specifying nodal masses
(NMSGC) . See Section B6.

31 - 35: Number of element groups (NELGR, max. 20).
See Section G.

40: Execution code (KEXEC) as follows.
(a) zero or blank: ful execution.
(b) 1: data checking only.
B2. CONTROL NODE COORDINATES (I5, 3F10.0) -~ NCNOD cards
Columns 1 - 5: Node number, in any seguence.
6 - 15: X coordinate.
16 -~ 25: Y coordinate.
26 - 35: Z coordinate.
B3. COORDINATE GENERATION (415, F10.0, 10I5) - NODGC cards
Columns 1 - 5: DNode number at beginning of generation line.

This must either be a control node, or must have
been generated by a previous generation command.



Note:

B4.
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Columns 6 - 10: Node number at end of generation line. This

node must also have been specified previously.

11 - 15: Number of nodes to be generated along line.
If the nodes to be generated are listed in
Columns 31 - 80, this number may not exceed 10.

16 - 20: ©Node number difference between successive
generated nodes, and between first generated
node and node at beginning of generation line.
May be negative. Leave blank if generated
nodes are listed in Columns 31 - 80.

21 ~ 30: Spacing between nodes, as follows.

(a) Zero or blank: generated nodes are spaced
uniformly along the generation line.

(b) Less than 1.0: spacing between nodes is
this proportion of the length of the
generation line.

(c) 1.0 or larger: spacing between nodes is
equal to this distance.

31 - 80: Up to 10 fields, each I5. List nodes to be
generated, in sequence along generation line.
Required only if Columns 16 - 20 are blank.

It is not necessary to provide coordinate generation commands
for nodes which are sequentially numbered between the beginning
and end nodes of any straight line, and which are equally

spaced along that line. After all generation commands have been
executed, the coordinates for each group of unspecified nodes
are automatically generated assuming sequential numbering and
equal spacing along a line joining the specified nodes
immediately preceding and following the group. That is, any
generation command with a node number difference of one and
equal spacing is superfluous.

NODES WITH ZERO DISPLACEMENTS (16I5) - NDCON cards

Columns 1 - 5: Node number, or number of first node in a

series of nodes covered by this command. See
Note following for repetition of nodes.

10: Constraint code for X displacement, as follows.
(a) Zero or blank: displacement, not con-
trained to be zero.
(b) 1: displacement constrained to be zero.
15: Code for Y displacement
20: Code for Z displacement

25 Code for XX rotation.

.



30:
35:
36 - 40
41 ~ 45:
46 - 50:
51 - 80:
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Code for YY rotation.
Code for ZZ rotation.

Number of last node in series of nodes covered
by this command. Leave blank or punch zero
for a single code, or if the nodes in the
series are listed in Columns 51 -~ 80.

Node number difference between successive
nodes in series. Leave blank for a single
node, or if the nodes in the series are
listed in Columns 51 - 80.

Number of nodes listed in Columns 51 - 80,
following. This list is considered only if
Columns 36 -~ 40 are blank or zero. Leave
blank for a single node.

Up to 6 fields, each I5. List second, etc.
nodes of series.

Note: If constraint codes are specified more than once for any node,
the last specified value is assumed. For plane or axisymmetric
problems, the first command should cover all nodes and should
constrain all except the relevant displacements. Additional
cards to modify the constraint codes at particular nodes should

then be added.

B5. NODES WITH EQUAL DISPLACEMENTS (16I5) ~ NIDDOF cards

Columns 5:

10:

15:

20:

25:

30:

31 - 35:

36 - 80:

Equal displacement code for X displacement,

as follows.

(a) Zero or blank: displacement not contrained
to be identical.

(b) 1: displacement constrained to be identical
for all nodes in group.

Code for Y displacement.

Code for Z displacement.

Code for XX rotation.

Code for YY rotation.

Code for 2ZZ rotation.

Number of nodes in group.

Up to 9 fields, each I5. List nodes in group.

The first node must be the smallest numbered
node in the group. See Note following.



Note:

B6.

Note:
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If the group has more than thirteen nodes, specify the remain-
ing nodes on additional equal displacement commands. The
smallest numbered node in the group must be the first node in
the list for all commands defining the group. Greater com~-
putational efficiency may be obtained by constraining nodes to
have equal displacements. However, the effect of specifying
equal displacements may be to increase the band width of the
structure stiffness matrix. This may result in an increase in
the required stiffness matrix storage and/or the computational
effort required to solve the equations of motion. Equal dis-
placements specifications should therefore be used with caution.
It should be noted that the equation solver used in the program
is less sensitive to local increases in the stiffness matrix
band width than a conventional equation solver based on a
banded storage scheme.

NODAL MASSES (I5, 6F10.0, 2I5) -~ NMSGC cards

Columns 1 - 5: ©Node number, or number of first node in a
series of nodes covered by this command.

6 - 15: Mass associated with X-displacement degree of
freedom. '

16 - 25: Mass associated with Y-displacement degree of
freedom. '

26 - 35: Mass associated with Z-displacement degree of
freedom.

36 - 45: Mass associated with X-rotation degree of

freedom.

46 - 55: Mass associated with Y-rotation degree of
freedom.

56 - 65: Mass associated with Z-rotation degree of

freedom.

66 - 70: Number of last node in series of nodes covered
by this command. ILeave blank for a single
node.

71 - 75: Node number difference between successive nodes
in series. ILeave blank for a single node.

The specification commands for lumped masses will generally per-
mit the user to input the nodal masses with only a few data cards.
Any node may, if desired, appear in more than one specification
command. In such cases the mass associated with any degree of
freedom will be the sum of the masses specified in separate
commands. If certain nodes are constrained to have an equal
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displacement, the mass associated with this displacement will
be the sum of the masses specified for the individual nodes.
If a mass is specified for any degree of freedom that is con-
strained to be zero, it is ignored.

C. 1LOAD SPECIFICATION

Cl. CONTROL CARD (8IS,

Columns 1- 5
6 - 10:
11 15:
20:

21 25:
26 30:
31 35:
36 40:
41 50:
51 60:
6l 70:

3F10.0) - One card

Code for static and/or dynamic analysis,

(KSTAT) .

(a) Zero or blank: dynamic analysis only.

(b) 1: static analysis followed by dynamic
analysis.

(c) -1: static analysis only.

Number of static force patterns to be specified
(NSPAT). See Section C2. If blank or zero,
no static loads will be applied.

Number of static force application commands
(NSLGC). See Section D.

Code for ground motion records (IGM), as

follows.

(a) Zero or blank: no ground motion records.

(b) l: ground motion records will be specified.
See Section C3.

Number of dynamic force records to be specified
(NDLR). See Section C4.

Largest number of points on any dynamic force
record. This number is used for storage
allocation.

Number of commands defining points of applica-
tion of dynamic force records (NDLGC). See
Section C5.

Number of integration time steps to be con-
sidered in dynamic analysis.

Integration time step, At.

Integration method parameter, §, in Newmark's
B - Y - § method.

Integration method parameter, B, in Newmark's
B -y - § method. If zero or blank, B is
assumed to be equal to 0.25 (1 + §)2.
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C2. STATIC LOAD PATTERNS - NSPAT sets of cards as follows.

.

Each set consists of a control card followed by as many cards

as needed to define the nodal loads. Load patterns are assumed to be

input in numerical sequence.

C2(a) CONTROL CARD (I5, 1824)

Columns 1

6

C2(b) NODAL LOADS

Columns 1l

16

26

36

46

56

66

71

- 5:

- 77:

Number of nodal load commands for this
pattern (NSLC).

Load pattern title, to be printed with output.

(15, 6rF10.0, 21I5) - NSLC cards

- 5:

Node number, oxr number of first node in a
series of nodes covered by this command.

Load in X-direction, positive in positive
direction of X-axis.

Load in Y-direction, positive in positive
direction of Y-axis.

Load in Z-direction, positive in positive
direction of Z-axis.

Moment about X-axis, positive by right hand
screw rule.

Moment about Y-axis, positive by right hand
screw rule.

Moment about Z-axis, positive by right hand
screw rule.

Number of last node in series. Leave blank
for a single node.

Node number difference between successive
nodes in series. Leave blank for a single
node, or if node number difference equals one.

C3. GROUND MOTION (ACCELERATION) RECORDS.

Omit if IGM, Section Cl, is zero or blank. Accelerations are

assumed to be in acceleration units, not as multiples of the accelera-

tion due to gravity.
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C3(a) CONTROL CARD (415, 6F10.0) - One card

Columns 1 - 5: Number of time points defining ground motion
record in X-direction (NIPX). Leave blank
or punch zero for no ground motion in this
direction.

6 - 10: Number of time points defining ground motion
record in Y-direction (NIPY). Leave blank
or punch zero for no ground motion in this
direction.

11 - 15: Number of time points defining ground motion
record in Z-direction (NIPZ). Leave blank
or punch zero for no ground motion in this
direction.

16 - 20: Print code, as follows
(a) Zero or blank: records are not printed.
(b) 1: records are printed as input and
scaled.
(c) =1: records are printed as input, scaled
and interpolated at time step intervals.

21 - 30: Input time interval for X-ground motion. 1If
blank or zero, both time and acceleration
values must be input; otherwise only accelera-
tion values must be input, the time being
automatically determined. See Section C3(b).

31 - 40: Input time interval for Y-ground motion. If
blank or zero, both time and acceleration
.values must be input; otherwise only accelera-
tion values must be input. See Section C3(c).

41 - 50: Input time interval for Z-ground motion. If
blank or zero, both time and acceleration
values must be input; otherwise only accelera-
tion values must be input. See Section C3(d).

51 - 60: Scale factor by which X-ground accelerations
are to be multiplied.

61 - 70: Scale factor by which Y-ground accelerations
are to be multiplied.

71 - 80: Scale factor by which Z-ground accelerations
are to be multiplied.
C3(b) X RECORD - One card followed by as many cards as needed.

Omit if NIPX is blank or zero.



C3(c)

C3(4)
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(i) FIRST CARD (15a4, 5a4)
Columns 1l - 60: Record title, to be printed with output.
61 - 80: Input format to read NIPX points defining
the record. For example, if the format is

12F6.0, punch (12F6.0).

(ii) FOLLOWING CARDS

As many cards as needed to specify NIPX input points,
with the format defined in Columns 61 - 80 of the first
card. If both time and acceleration values are input,
the time must immediately precede the corresponding
acceleration.

Y RECORD - One card followed by as many cards as needed.
Omit if NIPY is blank or zero.
(i) PIRST CARD (15a4, 5a4)

Columns 1 - 60: Record title, to be printed with output.

61 - 80: Input format to read NIPY points defining
the record.

(ii) FOLLOWING CARDS
As many cards as needed to specify NIPY input points,
with the format defined in Columns 61 ~ 80 of the first
card.
Z RECORD - One card followed by as many cards as needed.
Omit if NIPZ is blank or zero.
(i) PFIRST CARD (15a4, 5a4)

Columns 1 - 60: Record title, to be printed with output.

61 - 80: Input format to read NIPZ points defining
the record.

(ii) FOLLOWING CARDS

As many cards as needed to specify NIPZ input points,
with the format defined in Columns 61 -~ 80 of the first
card.
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Note: The acceleration scale factor may be used to increase or
decrease the accelerations, or to convert from multiples of the
acceleration due to gravity to acceleration units.

C4. DYNAMIC FORCE RECORDS - NDLR sets of cards, as follows.

Each set consists of one card followed by as many cards as

needed to define the record. Records are assumed to be numbered in

sequence as input.

C4(a) FIRST CARD (215, 2F10.0, 8A4, 4A4)
Columns 1 - 5: Number of time points defining record (NIPT).
6 - 10: Print code, as follows.
(a) Zero or blank: record is not printed.
(b) 1: record is printed as input and scaled.
(c) =-1: record is printed as input and scaled
and as interpolated at time step intervals.
11 - 20: Input time interval. If blank or zero, both

time and force values must be input; other-

wise only force values.

2l - 30: Scale factor by which force values are to be
multiplied.

31 - 62: Record title, to be printed with output.
63 - 80: Input format to read points defining the
record.
C4(b) FOLLOWING CARDS
As many cards as needed to specify NIPT input points, with the
format defined in Columns 63 - 80 of the first card. If both time and
force values are input, the time must immediately precede the

corresponding force.

C5. DYNAMIC FORCE APPLICATION (16I5) - NDLGC Cards (See Section Cl)
Acceleration records, if specified, are applied automatically,
assuming all support points to move in phase. Force records are applied

as defined by the cards of this section.
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Columns 1 -5

Dynamic forece record number.

10: Direction code, as follows.

(a) 1: X translation.
(b) 2: Y translation.
(¢) 3: Z translation.
(d) 4: X rotation.
(e) 5: Y rotation.
(f) 6: Z rotation.

11 - 80: Up to 14 fields, each I5. List the nodes at
which the record is to be applied. Each
nede in the list is subjected to the scaled
force record.

Note: The dynamic forces as specified by the dynamic force record
number are applied in the positive direction defined by the
direction code. To apply forces in the negative direction, the
scale factor by which the force values are multiplied (Section
C4) should be negative.

C6. DAMPING SPECIFICATION (3F10.0) - One card
Omit if code for static and/or dynamic analysis, KSTAT (Section
Cl) equals -1.

Columns 1 - 10: Mass proportional damping factor, BM,
11 - 20: Tangent stiffness proportional damping
factor, BT. See Note following.
21 - 30: Initial stiffness proportional damping

factor, BO. See Note following.

Note: 1If desired, it is possible to specify different values of the

factors Bgp and B for each element group. See Section G for
explanation of this option.

D. STATIC ANALYSIS SPECIFICATION - NSLGC sets of cards (See Section Cl).

Each set consists of a solution procedure card followed by one
or more cards defining a linear combination of static force patterns.

Each set defines an increment of static load.
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SOLUTION PROCEDURE CARD (8I5, 4F10.0) - One card

Coluinns

1l - 5;
6 -~ 10:
15:

16 - 20:
25:

26 ~ 30:
31 - 35:
36 - 40:
41 - 50:

Number of equal steps in which load increment
is to be applied, positive if results
envelopes are not to be printed at the end of
the increment, otherwise negative.

Iteration type, as follows.

(a) Zero or blank: Newton-Raphson iteration

(b) n: Constant stiffness iteration with
alpha-constant over~relaxation, the alpha
matrix being reinitialized every n
iterations.

Type of state determination calculation to be
used for constant stiffness iteration as
follows:

(a) Zero or blank: path independent.

(b} 1: path dependent

Path dependent state determination is always
used for Newton-Raphson iteration.

Stiffness reformation code, as follows.

(a) Zero or blank: stiffness used in pre-
ceding step is retained.

(b) n: stiffness is reformed every n load
steps.

Termination code, as follows.

{(a) Zero or blank: If the solution does not
converge within the maximum number of
iterations for any load step, the next
load step will be applied.

(b) 1: If the solution does not converge,
the execution will terminate.

Print code, as follows.

(a) -1: results are not printed for this
increment.

(b) Zero or blank: results are printed at the
end of the increment only.

(c) 1: results are printed after each load
step.

(d) 2: results are printed every iteration.
This option should be used for debugging
purposes only.

Maximum number of cycles of iteration within
any load step.

Maximum number of iterations within any cycle.

Nodal force convergence to tolerance to be
used in last step of load increment.
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61 - 70:
71 - 80:
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Nodal force convergence tolerance to be used
in all except last step of load increment.

Nodal force tolerance for change of stiffness
in Newton-Raphson iteration. If the un-
balanced force reduces below this tolerance,
the stiffness will not be reformed for the
next iteration.

Maximum nodal displacement (translation or
rotation) increment permitted in any iteration
step. Leave blank for unlimited displacement.
Displacement limits should be specified only
with Newton-Raphson iteration.

D2. FOLLOWING CARDS (8F10.0) -~ As many cards as heeded

Columns

1 - 80:

Up to eight fields, each F10.0. For each
static force pattern in turn, specify a scale
factor by which the pattern is to be multi-
plied. The scaled patterns are added to-
gether to produce the load increment.

Scale factors may be positive or negative.
Leave the corresponding field blank or punch
zero to ignore any force pattern.

E. DYNAMIC ANALYSIS SPECIFICATION

El. DYNAMIC SOLUTION PROCEDURE CARD (7I5, 4F10.0, I5) -~ One card

Omit if KSTAT (Section Cl) equals -1.

Columns

1

5:

10:

15:

Iteration type, as follows.

(a) Zero or blank: Newton-Raphson iteration.

(b) n > 0: Constant stiffness iteration with
alpha-constant over-relaxation, the alpha
matrix being reinitialized every n itera-
tions.

Type of state determination calculation to be
used for constant stiffness iteration, as
follows.

(a) Zero or blank: path independent.

(b) 1: path dependent.

Path dependent state determination is always
used for Newton-Raphson iteration.

Stiffness reformation code, as follows.

(a) Zero or blank: stiffness used in preceding
time step is retained.

(b) n: stiffness is reformed every n time steps.
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21

26

31

36

46

56

66

76

20:

25:

30:

35:

45:

55:

65

75:

80:
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Termination code, as follows.

(a) Zero or blank: if the solution does not
converge within the maximum number of
iterations for any time step, the next
time step will be applied.

(b) 1: if the solution does not converge, the
execution will terminate.

Maximum number of cycles of iteration within
any time step.

Maximum number of iterations within any cycle.

Number of time steps between application of
"fine" convergence tolerence. The "coarse"
tolerance is used at intermediate steps.

"Fine" nodal force convergence tolerance.
"Coarse" nodal force convergence tolerance.

Nodal force tolerance for change of stiffness
in Newton-Raphson iteration. If the unbalanced
force reduces below this tolerance; the stiff-
ness will not be reformed for the next
iteration.

Maximum nodal displacement (translation or
rotation) increment permitted in any iteration
step. Leave blank for unlimited displacement.
Displacement limits should be specified only
with Newton-Raphson iteration.

Number of initial condition generation commands
(NICGC). See Section E2.

E2. INITIAL CONDITION SPECIFICATION (I5, 2F10.0, 11I5) - NICGC cards
(See Section El1).

Columns

1

16

26

5:

15:

25:

80:

Direction code, as follows.

(a) 1: X translation
(b) 2: Y translation
(c) 3: Z translation
(d}) 4: X rotation
(e) 5: Y rotation
(f) 6: 2 rotation

Initial velocity.
Initial acceleration.

Up to 11 fields, each I5. List up to 11 nodes
having the same initial conditions.
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OUTPUT SPECIFICATION

This set of cards consists of a control card followed by as

many cards as needed to specify node numbers for output. See Note

following.

Fl.

F2.

CONTROL CARD (1015, 7ad4) - One card

Columns l1 - 5:

6 - 10:

11 - 15:

16 - 20:

21 - 25:

26 - 30:

Time interval for printout of nodal displace-
ment, velocity and acceleration time
histories, expressed as a multiple of the
integration time step. Leave blank or punch
zero for no time history output or if there
is not dynamic analysis.

Time interval for printout of element action
time histories (stresses, forces, etc.)
expressed as a multiple of the integration
time step. Leave blank or punch zero for no
time history output or if there is no dynamic
analysis.

Time interval for printout of intermediate
envelopes of nodal displacements and element
actions, expressed as a multiple of the
integration time step. Leave blank or punch
zero for no intermediate envelope output or if
there is no dynamic analysis. Envelopes are
automatically output at the end of the dynamic
analysis.

Number of nodes for X-displacement, velocity
and acceleration output (NODSX). For output
at all nodes, punch -1.

Number of nodes for Y-displacement, velocity
and acceleration output (NODSY). For output
at all nodes, punch -1.

Number of nodes for Z-displacement, velocity
and acceleration output (NODSZ). For output
at all nodes, punch -1.

FOLLOWING CARDS - THREE SETS OF CARDS, AS FOLLOWS.

(1)

List of nodes for X response printout (16I5) - As many cards
as needed to specify NODSX number of nodes, sixteen to a
card. Omit if NODSX equals zero or -1.
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(2) List of nodes for Y response printout (16I5) - As many cards
as needed to specify NODSY number of nodes, sixteen to a
card. Omit if NODSY eguals zero, or -1. '

(3) List of nodes for Z response printout (16I5) - As many cards
as needed to specify NODSZ number of nodes, sixteen to a
card. Omit if NODSZ equals zero, or -l.

Note: Results for the same nodes and elements are printed for both
static and dynamic analyses, except that velocities and
accelerations are not printed for static analyses.

Envelope values are printed for the dynamic analysis, and may
be printed at the end of each static load increment if so
specified on Card D1.

G. ELEMENT SPECIFICATION

Element must be divided into "groups". All elements in any
group must be of the same type. However, elements of the same type
may be divided into separate groups if desired.

Element groups may be input in any sequence. The total number
of element groups may not exceed 20. The elements in any group must
be numbered sequentially, the number of the first element in the group

being any convenient number.

Gl. THREE DIMENSIONAL ELASTIC TRUSS ELEMENT
Gl(a) CONTROIL: INFORMATION (10I5, 6F5.0) - One card
Columns 5: Element group indicator. Punch 1 (to in-
dicate that the group consists of three
dimensional truss elements)
6 - 10: DNumber of elements in this group.
11 - 15: Element number of the first element in this
group. If blank or zero, assumed to be

equal to 1.

16 - 20: Number of material types. If blank or zero,
assumed to be equal to 1.

21 - 50: Blank {not used for this element type).
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51 - 55: 1Initial stiffness damping factor Bgp. If
blank or zero, BO is assumed to be equal to
the system By value input in Card C6.

56 -~ 60: Current tangent stiffness damping factor, Br.

If blank or zero, Bg is assumed to be equal
to the system Bp value input in Card C6.

MATERIAL PROPERTY INFORMATION (I5, F10.0) - One card for each

different material type.

Columns 1 - 5: Material number, in sequence starting with 1.
6 - 15: Young's modulus of elasticity, E.

ELEMENT GENERATION COMMANDS (415, F10.0, 2I5) - As many cards

as needed to generate all elements in this group.

Cards must be entered in order of increasing element number.

Cards for the first and last element must be included. See Note G123

for explanation of generation procedure.

G2.

G2 (a)

Columns 1 - 5: Element number, or number of first element
in a sequentially numbered series of elements
to be generated by this card.
6 - 10: Node number at element end i.

11 - 15

Node number at element end j.

16 - 20: Material number. If blank or zero, assumed
to be equal to 1.

21 - 30: Cross sectional area.

31 - 35: Node number increment for element generation.
If blank or zero assumed to be equal to 1.

36 - 40: Time history output code. Leave blank or
punch zero for no time history output. Punch
1 if time history output is required.

THREE DIMENSIONAL NONLINEAR TRUSS ELEMENT.

See [2] for description of element.
CONTROL INFORMATION (10I5, 6F5.0) - One card

Columns 5: Element group indicator. Punch 2 (to in-
dicate that the group consists of three
dimensional truss elements).
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Columns 6 - 10: Number of elements in this group.

11 - 15 Element number of the first element in this
group. If blank or zero, assumed to be
equal to 1.

.

16 - 20: Number of material types. If blank or zero,
assumed to be equal to 1.

21 - 50: Blank (not used for this element type).

51 - 55: 1Initial stiffness damping factor Bg. If
blank or zero, Bovis assumed to be equal to
the system By value input in Card C6.

56 - 60: Current tangent stiffness damping factor, Brp.

If blank or zero, By is assumed to be egqual
to the system By value input in Card C6.

G2(b) MATERIAL PROPERTY INFORMATION (IS5, 4F10.0) - One card for each
different material type.
Columns 1 - 5: Material number, in sequence starting with 1.
6 - 15: Young's modulus of elasticity, E.

16 - 25: Strain hardening modulus as a proportion of
Young's modulus (i.e. the ratio Ep/E).

26 - 35: Yield stress in tension.
36 - 45: VYield stress in compression, or elastic

buckling stress in compression (input as a
positive value)

G2(c) ELEMENT GENERATION COMMANDS (4I5, 2F10.0, 4I5) - As many cards
as needed to generate all elements in this group.
Cards must be entered in order of increasing element number.
Cards for the first and last element must be included. See Note G123
for explanation of generation procedure.
Columns 1 - 5: Element number, or number of first element
in a sequentially numbered series of elements
to be generated by this card.

6 - 10: Node number at element end i.

11 - 15: ©Node number at element end j.
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Columns 16 20: Material number. If blank or zero, assumed

to be equal to 1.
21 - 30: Cross sectional area.
31 - 40: 1Initial axial force on the element.

41 - 45: Node number increment for element generation.
If blank or zero assumed to be equal to 1.

50: Code for large displacement effects. Leave
blank or punch zero, for small displacement
effects. Punch 1 for large displacement
effects.

55: Time history output code. ILeave blank or
punch zero for no time history output. Punch
1 if time history output is required.

60: Buckling code. Leave blank or punch zero if
element yields in compression without buck-
ling. Punch 1 if element buckles elastically
in compression.

G3. TWO DIMENSIONAL ELASTIC BEAM ELEMENT
G3(a) CONTROL INFORMATION (10I5, 6F5.0) - One card
Columns 5: Element group indicator. Punch 3 (to in-
dicate that the group consists of two-
dimensional elastic elements).

6 - 10: Number of elements in this group.

Element number of the first element in this
group. If blank or zero, assumed to be 1.

11 - 15

..

16 - 20: Number of different element stiffness types
(max 35).

21 - 25

Number of different end eccentricity types
(max 15)%.

26 - 50: Blank
55 - 55: Initial stiffness damping factor, Bg. If

blank or zero, assumed to be equal to the
system By value input in Card C6.

* .
The use of the end eccentricity option is the same as in the next
element, G4. See ref. [13].
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Column 56 - 60: Current tangent stiffness damping factor, Brp-
If blank or zero, assumed to be equal to the
system By value input in Card C6.

G3(b) STIFFNESS TYPES (I5, 3Fl0.0) - One card for each different
~ stiffness type.

Columns 5: Stiffness type number, in sequence beginning
with 1.

6 - 15: Young's modulus of elasticity.
16 - 25: Average cross sectional area.
26 - 35: Reference moment of inertia.
G3(c) END ECCENTRICITIES (I5, 4F10.0) - One card for each end
eccentricity type.
Omit if there are no end eccentricities. See Fig. 2.6 in ref.
[13] for explanation. All eccentricities are measured from the node
to the element end, in global coordinates.

Columns 1 - 5: End eccentricity type number, in sequence
beginning with 1.

6 - 15: Xi = X eccentricity at end i.
16 - 25: Xj = X eccentricity at end j.
26 - 35: Yi = Y eccentricity at end i.
36 - 45: Yj = Y.eccentricity at end j.

G3(d) ELEMENT GENERATION COMMANDS (7I4) - As many cards as needed to
generate all elements in this group.

Cards must be in order of increasing element number. Cards for
the first and last elements must be included. See Note G123 for
explanation of generation procedure.

Columns 1 - 4: Element number, or number of first element in

: a sequentially numbered series of elements to

be generated by this command.

5 - 8: Node number at element end i, NODI.
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Columns 9 - 12: Node number at element end j, NODJ.

13 - 16: Node number increment for element generation.
I1f zero or blank, assumed to be 1.

17 - 24. Stiffness type number.

25 - 28: End eccentricity type number. Leave blank
or punch zero if there is no end eccentricity.

29 - 32: Time history output code. If a time history
of element results is not required for the
element covered by this command, punch zero
or leave blank. If a time history printout
is required, punch 1.

NOTE Gl123: ELEMENT GENERATION FOR ELEMENTS 1, 2, 3

In the element generation commands, the elements must
be specified in increasing numerical order. Cards may be
provided for sequentially numbered elements, in which case
each card specifies one element and the generation option
is not used. Alternatively, the cards for a group of
elements may be omitted, in which case the data for the
missing group is generated as follows:

(1) All elements are assigned the same node k, strength
type, etc. as for the element preceding the missing group
of elements.

(2) The node numbers for each missing element are
obtained by adding the specified node number increment to
the node numbers of each preceding element. The node num-
ber increment is that specified for the element preceding
the missing set of elements.

In the printout of the element data, generated data
are prefixed by an asterisk.

G4. TWO DIMENSIONAL NONLINEAR BEAM ELEMENT

G5. THREE DIMENSIONAL NONLINEAR BEAM ELEMENT
These elements are described in detail in [13]. The input for
MINI-ANSR is the same as that given in {13] for ANSR-1l, with the only

exception that the element group indicators are respectively 4 and 5.
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H. NEW PROBLEM
Data for a new problem may follow immediately starting with
Section A. Any number of structures may be analyzed in-a single

computer run.

I. TERMINATION CARD (A4) - One card to terminate the complete data
deck.

Columns 1l - 4: Punch the word STOP.
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APPENDIX E - LISTING OF FUNCTION EVALUATION SUBROUTINES
FOR EXAMPLE PROBLEMS 1 AND 2
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PROBLEM-INDEPENDENT
SUBROUTINES
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subroutine inansr

common blocks for mini—-ansr program

implicit double precision (a-h,o~-2)

common /contrl/ nodes,ncnod,nodge, ndcon, niddof, nmaxd, nmsge,
nelgr,ntels, kexec, kstat, kprint

common /infelr / rdat(1000)

common /infeli / idat(300)

common Jwork / work(2000;)

common /indat / 1a(3000)}

common a(10000)}

set storage

nrstor = 10000
nistor = 5000
nrdat = 1000
nidat = 500
nwark = 2000

initialize

do 100 i=1,nrstor

a(i} = 0.
do 110 i=1l.,nistor
ia(i) = 0 :

do 12C i=1,nrdat
rdat (i) = 0.
do 130 i=1l,nidat
idat(i}) = 0
do 140 i=1,nwork
wor k(i) = O.

call input (a,nrstor, ia,nistor}

kprint = 1

call declar (“KPRINT', “int’, 0, kprint, 0, 0}
call declar (‘NTELS’, ‘int‘, 0, ntels, 0, 0)
call declar (/NMODES’, ‘int‘, 0, nodes. 0, 0)
return

end
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n

logical function bigdif (n,z,zstr,diff, tol)

c
c
[ returned true if the maximum difference between z(i)
[ zstr(i) is greater than tol. It also sets zstr(i) equal to z(i)
< when this is ftrue.
c
implicit double precision (a-h,o0-2)
dimension z(1), zstvr (1), diff (L)
[
bigdif = . false
difmax = Q.
dog 100 i = i, n

diff(i) = z(i) - zstr(i)

absdif = dabs(diff(i))

if(z{(i). ne.  0.0d0) absdif = absdif/z(i)

if (absdif .gt. difmax) difmax = absdif
100 continue

c
if (difmax .1lt. tol) return
-
do 110 i=i,n
zetr (i} =.2(i)
110 continue
c
bigdif = . true.
c !
raturn

end
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subroutine anal (zresp)’

structural analysis interface routine

implicit double precision (a-h,o0-2)}
dimension zresp(l}

mini-ansr common blocks

common /contvrl/ nodes,nenod, nodge, ndcon, niddef, nmaxd, nmsgc,
nelgr.ntels, kexec, kstat, kprint

common /storag/ mrstor.mistor. neq.mband, nsto, yecol

common /lodcon/ nspat.nslgc.nipx.nipy,nipz, kprec,dtx,dty.dtz,
facgx, facgy, facgz, ndlr, mndip, ndlge

common /pass / igr.naddr.naddi,kna, kedatr, kedati, kevar,
istep, ipath, kupd, kitrn, ielasp:, ielas, nstref

common /addres/ kndk. kxo, kyo. kzo, kfms, kimug, ksld, ktug, kug., kgx,
kgy, kgz, kpt, kipt, kxdh, kydh, kzdh, knaa, krvec, kdri,
kri, kddds, kddis, kdis, kvel, kacc, kdenp., ktimp.,
kdenn, ktimn, kdup, kalf, kstf, kstfd, kdelk

common /inadrs/ kvelin, kaccin

common /tapes/ nin.nou

common /one / jp. jq.numvar

common /indat / ia(l}

common a(i)}

if (kexec.ge. 1) go to 300

call modify (zresp)

if (kprint.eq. 0} writelnou,2000) (zresp(i}, i=1, numvar)}
format (/Sx, ‘zresp in anal ‘//(S5x,5(el2. 9, 2x))}

initialize

do 100 i=krvec,mrstor
a(i) = 0.0
ielasp = 1
ielas =0
nstref = 0

response analysis for static loads

if (kstat. eq.0) go to 110

nspatl = nspat + 1

call static (a(ksld),a(krvec},a(kri),a(kddds), a(kddis), al(kdis),
alkdenp).al(ktimp), alkdenn),a(ktimn), ia(kxdh},
ia(kydh), ia(kzdh), iatkndk),a(kstf}, a(kstfd), ia(knaa).,
alkdelk),a(kdup),a(kalf), nodes: nspati)

if (kstat.eq.-1) go to 200

response analysis for dynamic loads

call dynmic (a(kfms), ia(kimug), alkgx)., alkgy),alkgz), ialkipt),

a(kpt), alkrvec),alkri),a(kddds), a(kddis), alkdis),
alkvel),alkacc),a(kdenp), alktimp), alkdenn}, al{ktimn),
ialkxdh},ialkydh}, ialkzdh), iatkndk), a(kstf},a(kstfd),
ia(knaal),al(kdelk}), alkdup),alkal#f),
nodes,a(kvelin}, a(kaccin))}

return

stop

end
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subroutine set

this subroutine sets data in common blocks to be used in the
interactive optimization program.

As an example data are set

here to be used for displaying the structure geometry

implicit double
common /contrl/

common /storag/
common /elpar /
common /pass /

common /indat

precisiaon (a-h,o0-z)

nodes, ncnod, nodge, ndcon, niddof, nmaxd, nmsgc,
nelgr:.ntels, kexec, kstat, kprint
mrstor,mistor, neq, mband, nsto, jcal

infgrr(20), infgri(20), ndfgr(20), dkagr (20},
dktgr (20)

igr, naddr, naddi, kna, kedatr, kedati, kevar,
istep. ipath, kupd, kitrn, ielasp., ielas, nstref
/ ieldat(1l)

common eldat(1l}

naddi = kedati
naddr = kedatr

do 260 igr=1l.,nelgr
ngr = indgrligr)}
nels = nmsgr(igr)

do 260 iel=1,nels

ninfi =
ninfr =

go to (130,140,150, 160,170, 180, 190, 200, 210, 220),

call stort
go to 250
call stor2
go to 250
call stor3
go to 250
call stord
go to 2%0
call stor$S
go to 250
call storé
go te 250
call stor7
go to 250
call stor8
go to 250
call stor?
go to 250

ieldat(naddi}
eldat(naddr)

ngr

(ieldat(naddi+1), eldat(naddr+i), ninfi, ninfr, 2}
(ieldat(naddi+l), eldat (naddr+l}, ninfi,ninfr, 2}
(ieldat(naddi+l), eldat(naddr+l), ninfi,ninfr., 2)
(ieldat(naddi+l), eldat(naddr+1}, ninfi,ninfvr, 2}
(ieldat(naddi+1), eldat(naddr+1), ninfi, ninfr, 2)
(ieldat(naddi+i), eldat(naddr+1}, ninfi, ninfr, 2}
(ieldat(naddi+1}), eldat(naddr+1), ninfi, ninfr, 2}
(ieldat(naddi+i), eldat(naddr+1), ninfi, ninfr, 2)

(ieldat(naddi+1}, eldat(naddr+1), ninfi, ninfr, 2)

call storl10 (ieldat(naddi+1),eldat(naddr+1), ninfi,ninfr, 2}

go to 250

naddi = naddi + ninfi + 1
naddr = naddr + ninfr + 1

continue

return
end

lpar (10}, flpar(él, indgr(20), nmsgr (20}, mfgr(20),
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subroutine modify (zz)

I
c
c this subroutine modifies data in common blocks corresponding to the
4 optimization variables
[
implicit double precision (a-h,o0-12)
dimension zz (1)}
common /contrl/ nodes,ncnod, nedgec, ndcon, niddof, nmaxd, nmsge,
* nelgr, ntels, kexec, kstat, kprint
common /storag/ mrstor.mistor, neq, mband,nsto, ycol
common /elpar / lpar(10), flpar(é), indgr (20}, nmsgr (20}, mfgr (20),
#* infgrr(20), infgri(20), ndfgr (20, dkagr (20},
#* dktgr (20}
common /pass / igr.naddr,naddi, kna, kedatr: kedati, kevar,
#* istep, ipath, kupd, kitrn, ielasp: ielas,nstref
common /indat / ieldat(1}
common eldat (i}
c
kevar = ntels
naddi = kedati
naddr = kedatr
c
do 260 igr=1,nelgr
c
c
ngr = indgr(igr}
nels = nmsgr(igr)
=
. do 2460 iel=1,nels
€
ninfi = ieldat(naddi}
ninfr = eldat{(naddr}
€

120 go to (130,140, 150, 160,170, 180 190, 200, 210, 220}, ngr

130 call mdfll (ieldat(naddi+1),eldat(naddr+i), ninfi,ninfr,z2)

go to 250

140 call mdfl2 (ieldat(naddi+1), eldat{naddr+i), ninfi,ninfr,z2)
go to 250

150 call mdfl3 (ieldat(naddi+1},eldat{naddr+1i}, ninfi,ninfr,z2}
go to 250

160 call mdfl4 (ieldat(naddi+i},eldat(naddr+1},ninfi,ninfr, z2)
go to 250

170 call mdfl5 (ieldat(naddi+i}), eldat(naddr+i}, ninfi, ninfr,zz)
go te 250

180 call mdflé (ieldat(naddi+i), eldat(naddr+i), ninfi,ninfr, zz}
go to 250

190 call mdfl7 (ieldat(naddi+i}, eldat(naddr+i),ninfi,ninfr, 22z}
go to 250

200 call mdfl8 (ieldat(naddi+1),eldat(naddr+i}), ninfi;ninfr,z2z)
go to 250

210 call mdfl? (ieldat(naddi+i),eldat(naddr+1),ninfi,ninfr,z2)
go te 250

220 call mdfl10 (ieldat(naddi+l}, eldat(naddr+l), ninfi,ninfr,z2)
go to 250

250 naddi = naddi + ninfi + 1

naddr naddr + ninfr + 1
c
260 continue
c

return

end
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subroutine sendif (ntime,nepact, yn:,y,nrow,delz,dydz, yvar, numvar?}

dimension : dydz (idim, ydim, kkdim), y (idim, kdim),

dydz (i, o kk} = (yn (i, k} -y (i, k)} / delzy
or
dydz (i gkk?

(yn (ik) — y (ik)) / delzy

whevre
ijgkk = 1 + (j=1r¥idim + (kk—1)#idims# jdim
ik = i + (k—1)#idim
here
idim = nrow
Jdim = numvar

implicit double precision (a-h,o0-2)
dimension nepact(1y,yn(1},y(1), dydz (1)

nm = nTow#numMvar

jvarow = (Jvar-1j)#nrow

do 100 i=1,nrow

ijkk = i+jvarow

ik = i

do 100 k=1, ntime

if (nepact(k). eq. 0} go to %0
dydz(igkk? = (ynl{ik)—-y(ik))/del:z
ijkk = 1jkk+nm

ik = ik+nrow

continue

return
end

yn (idim, kdim)
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c Function evaluation subroutines for 10 bar truss problem
€ B30 36 344 3 35 234 3 30 36 35 230 30 6 26 35 436 363 35 36 243 36 2630 3 45 30 38 30 303 3F 34 343 I 36 H 63696 3336 336 36 333 3696 H 33
[
[
[
subroutine parsym (n, z)
c
c
[
implicit double precision (a—~h.o—-z2}
dimension z(1}
€
c common blocks for 10 bar truss problem
c
common/strpar/rleng(10), ro,adisp2,astrs2, armin, tolz,deltaz
common /resp/ xdisp(4,1},ydisp(4,1),stress(10, 1), nepact(l}
commaon /dresp/ dxdz(4,10,1),dydz(4,10,1),dsérdz(10,10,1)
common /strgom/ elndx1(10),elndx2(10), elndyl(i0),elndy2(10},
i nodl1 (10}, nod2(10}
common /zansr / zresp(10}, zsens(10), diff (10}
common /nstran/ nanal,nsens
c
nanal = €
nsensg = O
c
call inansr
[
call set
€
[
do 100 i = 1 , n
rresp(i) = 0. 0
zsens(i) = 0.0
100 continue
c
rao = 0.C001
adisp2 = 4.
astrs2 = 625.
armin = 0.1
tolz = 1.0d~-5
deltaz = 1.0d-5
c
c
[ declare problem variables into intrac data base
c

call declar ('TOLZ‘, ‘double’, 0, tolz2, 0,0}

call declar ('DELTAZ’, ‘double’, O, deltaz. 0,0}
call declar (’XDISP’, ‘double .4, xdisp, 4, 1)
call declar (‘YDISP’, ‘double’, 4, ydisp, 4, 1)
call declar ('STRESS’, ‘double’, 10, stress, 10, 1)
call declar (‘RO’, ‘double’,0,70,0,0)

call declar (‘ADISP2’, ‘double‘.0,adisp2,0,0)
call declar (’ASTRS2’, '‘double’, 0,astrs2.0,0)
call declar (‘ARMIN‘, ‘double’, 0, armin, 0,0}
call declar (‘NANAL‘, ‘int’, O, nanal, 0,0)

call declar (/NSENS‘, ‘int’, O, nsens. 0, 0)

call declar ('ELNDX1‘, ‘double’,1,elndxi,10,1)
call declar (’ELNDX2’, ‘double’,1,elndx2.10,1)
call declar (‘ELNDY1‘, ‘double’, 1.elndyl,10,1)
call declar (‘ELNDY2‘, ‘double’, 1,elndy2,10:1)}
call declar (/NOD1‘, ‘int’, 1, nodl, 10, 1}

call declar ('NGD2’, ‘int’, i, nod2, 10, 1}
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return
end

subroutine funcf (n, z, #, nfuncf)

implicit double precision (a-h,o0-2)
dimension z (1)}
common/strpar/rleng(10), ro,adisp2, astrs2, armin, tolz, deltaz

f = 0.0d0

do 100 i=i,n

f =+ + vrleng(i)*z(i)
continue

f=+F % ro

return
end

subroutine gradf (n, z,grad)

implicit double precision (a-h,o0-z)
dimension z(1), grad(i)
common/strpar/rleng (10}, ro,adisp2: astrs2, armin, toliz,.deltaz

do 100 i=i,n
grad(i} = ro#rleng(i?}
continue

return
end

subroutine funcg (n, jp.z,g:,psi.nfuncg)

implicit double precision (a—-h,o-z}

dimension z(1),g(1)

logical bigdif

common /zansv/ zresp(i0)}, zsens(10),diff(10)

common /resp/ xdisp(4,1),ydisp(4,1),stress(10, 1), nepact(i}
common /dresp/ dxdz(4,10,1),dydz(4,10,1),dstrdz(10,10, 1)
common /nstran/ nanal,nsens
common/strpar/rleng(10), roradisp2, astrs2, armin, tolz, deltaz

do 100 i=1, 10

g¢{i} = —z2(i) + armin

it (g(i) .le. psi) go to 100
psi = g(i)

return

continue

it (bigdif(n, z,zresp,diff, tolz)}) go to 120
if (nsens .le. 0} go to 120
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do 110 j=l.n
delz = diff ()
da 105 1=1,4
xdisp(l, 1}
ydisp(l, 1}
continue
do 108 1=1,10 ; . )
stress(l, 1) = stress(l, 1}+dstrdz(l, §y, 1)%delz
continue

xdisp(l, 1)+dxdz(l, j,1)*delz
ydisp(l,13+dydz (1, j, 1)#delz

go to 200

continue
call anal(zresp)
nanal = nanal+l

continue

Jy =0

do 210 i=11,14

J=1+1

gli) = xdisp(y, 1)#*xdisp(y,1)/adispd ~1.
continue

g =0

do 220 1=15,18

J = 4+l

g(i) = ydisp(y, 1)#ydisp(y,1)/adispd ~1.
continue

J =0

do 230 i=19, 28

Jo= g+t :

g(i) = stress(y: 1)*stress(j,1)/astrs2 -1.
cantinue

40 240 i=1%,28
if(g(i). gt. psi) psi=g(i}
cantinue

return
end

subroutine gradg (n, J, z,grad)

implicit double precision (a-h,o0-z)

dimensiaon z(1), grad(1l)

logical bigdi#f

common /zanst/ zresp(li0), zsensi{id), diff(10)

common /vesp/ xdisp(4,13), ydisp(4,1},8¢tress(10, 1), nepact(l)
common /dresp/ dxdz(4,1G,1),dydz(4,10,1),dstrdz(10,10, 1)
common /nstran/ nanal, nsens
common/strpar/rlang(10), ro,adisp2. astrs2, armin, tolz,deltaz

if (y. gt.10) go to 110

do 100 i=1l,n
grad(i) = Q. O
grad(y) = ~-1. ¢
return
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continue
if(.not. bigdif(n, z,z25ens,diff, tolz)) go to 120

nepact (i) = 1

call sens(zsens,n, 1)
nsens = nsens+l

continue
if (3.9t 18) go to 140

if (j5.9t. 14) go to 140

JJ = 310

factor = 2 %*xdisp(jy,1)/adispa
do 130 i=1i,n

grad(i}) = factor#dxdz(jy,i.,1)
return

44 = y-14

factor = 2 #ydisp(jy.1)/7adisp2
do 150 i=1,n

grad(i}) = factor#dydz(jy,1i,1)
return

JJ = y-1i8

factor = 2 #stress(jy,1)/astrs2
do 170 i=1,n

grad(i} = factor#¥dstrdz(jy,1i,1)
return

end

subroutine funcph (n,nyq. yq. z, wh, we, deltaw. nq, phi, psi, nfuncp?}

return
end

subroutine gradph

return
end

subroutine sens (zz,numvar,ntime)

implicit double precision (a-h,o0-z}

dimension z1(10), zz(1), xdispl1(4,1),ydispl(4,1),stresl1(10,1)
common /zansrv/ zresp(10), zsens(10), diff (10} -

common /resp/ xdisp(4,1),ydisp(4,1),stress(10,1), nepact(1)
common /dresp/ dxdz(4,10,1),dydz(4,10,1),dstrdz(10,10,1)
common /nstran/ nanal,nsens

common/strpar/rleng(10), ro,adisp2,astrs2, armin, tolz,deltaz
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do 110 k=1,ntime
do 100 j=1.4
xdispi(y, k)
ydispl (4, k)
do 108 ;j=1,1
stresi(y, k)
continue

do 115 i=1,numvar
z1(iy = zz (i}

xdisp(j: k3
ydisp(y, k)

L= A ]

stress(y, k)

do 120 i=1, numvar
delz = zz(ij#deltaz
z2(i) = zz(it+delz

call anal(zz}

call sendif (ntime,nepact, xdisp. xdispl,4,delz,dxdz,i,numvar)
call sendif (ntime,nepact,ydisp.ydispl, 4, delz,dydz, i, numvar)
call sendif (ntime,nepact,stress, stresi, 10, delz, dstrdz, i,

1 nuymvar}

zz(i} = z1(i}
continue

do 140 k=1, ntime

do 130 ;=1.4

xdisp(y, k} = xdispl(y, k)

ydisp(y. k) = ydispi(j, k)

do 135 =1, 10

stress(j, k) = stresi(y, k}
continue

return
end

subroutine storsp (nodes.ndkod,dt, time,dis, vel, acc, Inxdh,
i Inydh, Inzdh, nodsx, nodsy, nodsz, kstat,. ndchk?}

subroutine to store dynamic response results into two dimensional
arrays. The response is stored starting from initial time
‘t¢start’ to the final time ‘tend’ with ‘nskip’ time steps being
skipped. Values for ‘tstart’, ‘tend’ and ‘nskip’ are set in the
driving routine (main program in case of just analysis or one of
the user’s subroutines in case of optimization)}
Response quantities at nodes which are specified for output
(section D in ANSR data preparation manual} are saved only.

implicit double precision (a-h,o-z}
common /tapes / nin, nou
common /contrl/ njts.ncnod, nodge, ndcon, niddof, nmaxd, nmsgc,

1 nelgr.ntels, kexec, kdummy, kprint
common /elpar / lpar(10), flpar(é}, indgr(20), nmsgr(20), mfgr (20},
* infgrr (20}, infgri (20}, ndfgr(20). dkogr (20},
#* dktgr (20)
common /pass [/ igv.,naddr,naddi. kna, kedatr, kadati, kevar,
# istep,ipath, kupd. kitrn, ielasp, ielas,nstref

common /indat / ieldat(1l)

common eldat(1l)

common /dynpar/ tstart, tend,nskip, jj: kaddel

common /resp/ xdisp(4,1),ydisp(4,1),stress(10,1}, nepact(l)
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c
dimension ndkod{(nodes, 1),dis(1),vel(1},acc(i), Inxdh(1), Inydh{(1),
b Inzdh (1)
€
data zero /0.0d0/
C
c initialize and check dimensions
c
if (ndchk .gt. 0) go to 100
c
ndchk = 1
nsk = nskip
JJ =0
[
nmxrow = 4
nmxcol = 1
maxvow = max0 (nodsx,nodsy.nodsz}
if (maxrow .1t. O) maxrow = nodes
maxcol = 1 :
if (maxrow. le nmxrow .and. maxcol. le. nmxcol) go to 100
c

write (noy, 2000} maxrow,maxcol
2000 format (/Sx, ‘dimension of arrays for storing dynamic response’/

i Sx, ‘is too short-—— dimensions needed: '/
2 Sx, ’ row dimension = ‘ iS5/
3 Sx, ‘ column dimension = ‘/ i3}

stap

100 if (kstat.eq.-1) go to 110
if (time. 1t. tstart .or. time. gt. tend) go te 500

c
if (nsk .eq. nskip) go to 110
c
nsk = nsk + 1
go to 500
C
110 gy=yy+i
nsk = 1
it (nodsx) 120,160, 140
c

120 do 130 i = 1,nodes
k = ndkod(i, 1)
xdisp(i, jy) = dis(k?
if (time. eq. zero) go to 130

€ xvel(i, jyr = vel(k)
c xacc(i, yy) = acec(k)
€
c for rotational displacements about x—axis add
c k = ndkod(i, 4)
[ xdrot(i, g4) = dis(k)
[ xvrot(i, y§) = vel(k)
c xarot(i, yy? = acclk)
c
130 continue
go to 160
c
140 do 150 i=1, nodsx
1 = Inxdh(i)
k = ndkod(1, 1}
xdisp(i, yy) = dis(k}
it (time. eq. zero) go to 150
[ xvel(i, 3Jy) = vel(k}
4 xaccl{i, jJj}) = accl(k}

150 continue
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do 180 i
k = ndko
ydisp (i,

y) 170,210, 190

= 1,nodes
d(i, 2}
J4¥ = dis(k}

if (time. eq. zero) go to 180
yveld(i, jy} = vel(k)}
yace(i, 33) = acc(k)
continue

go to 210

do 200 i=1, nodsy

1 = Inydh(i}

k = ndkod (1,2}

ydisp(i, jg} = dis(k)

if (time. eq. zero) go to 200
gvel(i, g3} = vel(k)
yacc(i, yy} = acc(k)
continue

it (nodsz) 220, 260, 240

do 230 i = 1, nodes

k = ndkod (i, 3}

zdisp(i, yy) = dis(k)

if (time. eq. zero} go to 23C
zvel(is gy) = vel(k)
zacc(i, g3} = acec(k)
continue

go to 260

do 250 i=1,nodsz

1 = Inzdh(i)

k = ndkod(1l, 3}

rdisp(i, yyr = dis(k)}

if (time. eq. zero}) go to 250
tvel(i, 33} = vel(k)
zacc (i, gy} = acclk?
continue

continue

storing element response
naddi = kedati

naddr = kedatr

do 460 igr=l,nelgr

kaddel = O
ngr = indgr(igr)
nels = nmsgr(igr)}

do 460 iel=1l,nels

ieldat(naddi)
eldat (naddr)

ninfi
ninfye

150
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€
320 go to (330,340, 350, 360, 370, 380, 390, 400, 410, 420), ngvr

c
330 call stori (ieldat(naddi+l), eldat{naddr+i), ninfi,ninfr, 1}

go to 450

340 call stor2 (ieldat(naddi+1},eldat(naddr+i), ninfi,ninfr, 1)
go to 450

350 call stord (ieldat(naddi+i), eldat(naddr+1),ninfi, ninfr, 1)
go to 450

360 call stor4 (ieldat(naddi+l),eldat(naddr+i),ninfi,ninfr, 1)}
go to 450

370 call stor9 (ieldat(naddi+i}, eldat(naddr+1),ninfi,ninfr, 1)
go to 450

380 call storé (ieldat(naddi+i), eldat(naddr+i). ninfi,ninfr, 1)
go to 450

390 call stor7 (ieldat(naddi+1).eldat(naddr+1),ninfi, ninfr, 1)
go to 430

400 call stor8 (ieldat(naddi+i),eldat(naddr+1), ninfi,ninfr, 1)
go to 450

410 call stor? (ieldat(naddi+l), eldat(naddr+1),ninfi,ninfr,1)
go to 4350 .

420 call stori0 (ieldat(naddi+l),eldat(naddr+1l}, ninfi, ninfr, 1)
go to 450

450 naddi = naddi + ninfi + 1
naddr = naddr + ninfr + 1

460 continue
300 return

end
c
c e o e i e e ———
[

subroutine mdfll (icoms,coms,ninfci,ninfcr, z)
c e e e e e e e e e e e
c
c modification routine for element 1
c

implicit double precision (a-h,o0—-z}

dimension z(1), icoms(l), coms{(i}, icom(1), com(l)}

common /infeli/ imem: kst. 1m(&}, node(2), ktho

common /infelr/ emod, xyz(3, 2), area,sl,b(&):qli(b), vtot, stot, senp.,

1 senn. tsenp. tsenn, sdamp

equivalence (imem, icom(13}}

equivalence (emod.com(1))
c

do 100 i=1,ninfci
100 icom(i) = icoms (i}

do 110 i=i,ninfcr
110 com(i} = coms(i}

area = z(imem?

kst = 1
do 120 i=1é.,ninfcr
120 com(i) = 0.0

do 130 i=1,ninfci
130 icoms(i) = icom(i}

do 140 i=1,ninfcr
140 coms{(i}) = com(i)

return
end
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subroutine stori (icoms,coms,ninfci,ninfcr,iflag)

this subroutine has two ftasks:

—-iflag=t stores element response valuves
in dynamic or static analysis
~iflag=2 stores element quantitities which are

fixed in an optimization problems in
particular data useful for displaying
the structure

implicit double precision (a-h.o0-2)

dimension icoms(1},icom(1)}

dimension coms(1),com{1l)

common /tapes / niuv,nou,ntli, nt2, ntd: ntd, ntS, ntemp

common /infeli/ imem: kst, Im(&), node(2), ktho

common /infelr/ emod, xyz (3, &), area,sl,b(&}, ql(b&):,vtot,stot, senp,
1 senn, tsenp, tsenn, sdamp

equivalence (imem, icom(1}}

equivalence (emod,com(1)}

common/dynpar/ tstart, tend, nskip, yyt, kaddel

common /rtesp/ xdisp(4,1),ydisp(4,1),stress(10, 1}, nepact(l)
common/strgom/ elndxi (10}, elndx2(10), elndyl1(10), elndy2(10},
1 nodl1 (10}, nod2(1G}
common/strpar/rleng(10), ro,adisp2, astrs2, armin, tolz,deltaz

do i0 y=l,ninfci

icom( ) = icoms(y}
do 15 j=1i,ninfcr
com( g} = coms( 4}

go to (100,200) iflag

continue
if(ktho le. 0} return
kaddel = kaddel-+1i

set control on kaddel

stress(kaddel, yyt) = stot / area
return

continue

rleng(imem) = sl
elndxi(imem) = xyz(1l,1)
elndx2(imem) = xyz (1,2}
elndyl(imem) = xyz(2, 1)
elndy2(imem) = xyz(2:2)
nodi(imem) = node(l}
nod2(imem) = node(2)}

return
end
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Function evaluation subroutines for 2 story braced plane frame.
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subroutine parsym (n, 2}

implicit double precision (a—-h,o0-2z}
dimension 2013

common blocks far 2 story braced frame problem

common/strpar/rlang(i0), ro, adisp2, astrsd, rbmin, remin, tolz, deltaz

cammon /fcomm/ glbd, glhB,glec8, glacléd, wh, wt, frac

common Sresp/ xdisp(2, 100), rnl(2, 100). del (2, 100), rmom(2, 100},
nepact(100)

common /dvresp/ dxdz(2:4,10), dmomdz (2, 4, 10)

comman /strgom/ alndx1(10),elndx2(10),elndyl (10}, elndy2(10),

nodl (10), nod2(10)
commen /zanst / zresp(l10), zs3ens(13), diff(10)
cammon /nstran/ nanal,nsans

nanal = 0O
naens = 0

call imansr

call set

do 100 1 =1 , n

zrespl(i) = 0.0

zsans(i) = 0. C

continue

ra = Q. 0001

adisp2 = 0. 2025

astrs2 = 57&. d+6

rbmin = Q. 1

remin = 10,

tolz = 1.0d-5

deltaz = 1. 0d-5

glb4 = ro # rvleng(l) # 0.4
glb8 = glbd # 2.0

glc8 = ro #* rleng(3) % 0. 2.
glclé= glcB # 2.0

frac = 0. 3

daclare problam variables into intrac data base

‘TDLZ ', "double’, O tolz,. G, Q)
‘DELTAZ’, ‘double’, O, deltaz, 0, 0)
'XDISP‘, ‘double’, 2, xdisp, 2, 100
‘RN, ‘double’,. 2, rn, 2, 1000

‘DEL ‘", ‘doubla’, 2,del, 2, 1C0O)
‘RMOM Y, ‘dauple’., 2, rmom., 2, 100
‘RO, “double’, 0, ro, 0, 0)

'FRAC', ‘double’, O, frac, 0, 0}
‘ADISP2°, ‘double’, G, adisp2, G, 0)

call declar
call declar
call declar
call declar
call declar
call declar
call declar
call declar
call daclar

PN s T TN

—~
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‘ASTRES2, ‘double’, G, astrs2, 0. Q)
‘RBMIN’, “double’, O, vbmin, O, O}
‘RCMINY, ‘double’, O, recmin, O, 3)
‘NaNAL “, “int’, O, nanal, 0, G)
'NSENS/, "int’, 0, nsens, 0, O)
‘ELNDX1 ', “double’ 1, elndxl, 10, 1)
'ELNDX2’, ‘double’, 1, elndx2, 10, 1)
‘ELNDY1 ‘. ‘double’, 1, elndyi, 10, 1)
‘ELNDY2, ‘double’, 1, 2lndy2, 10, 1)
NODL Y, ‘int’, 1. nodt, 1G, 1)
‘NOD2, ‘int ‘. 1, nod2, 10, 1}

call declar
call declar
call deciar
call declar
call declar
zall declar
call declar
call declar
call declar
call declar
call declar

P N e e e N e NP

C
rafurn
end
c
c
[
subroutineg funct (n, z, f, nfunct)
c
[
implicit double precision (a-—h,o0-2)
dimension z(1}
cammon/strpar/rleng(l0), ra. adisp2, astrs2, rbmin, rcmin, tolz, deltaz
common /fcamm/ glb4,qlb8,glc8, glclb,wb,wt, frac
c
f = 0.0
do 100 i=1,2
f = £ + glbBs#dsqrt(z(i))
£ = £ + glecléndsqri(z(i+2))
100 continuye :
c
return
end
c
c
c
subroutine gradf (n, z,grad)
c
[
implicit double precision (a—h,o~z)
dimension z(1}),grad(i)
common/strpar/rleng(10), ro,adisp2, astrsa, rbmin, rcmin, tolz, deltaz
cammon /fcomm/ glb4,glb8,glcB,glcib, wb,wt, frac
[
grad(i) = glbé4 / dsqrt(z(1})
grad{(2) = glb4 / dsqrt(z(2))
grad{(3) = glc8 / dsqrt(z(3})
grad(4; = gleB / dsqrt(z(4))
[
return
and
I
[

subroutine funcg (n, jp,z,g,psi,nfuncg)

(2]

implicit double precision (a-h,o-z}

dimension z(1),g3(1)
common/strpar/Tlang(10), ro; adispd, astrs2, rbmin, remin, tolz, deltaz
common SFfcaomm/ glo4,gib8, glc8,glcié, wh, wk, frac
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do 1CO i=1,2
. g{i) = =z (i)+rbmin
130 g{i+2) = —z2(i+2) + rcmin
uib = glpBr(dsqrt(z(iM)+dsqri(z(2)) ) -

we = glclht(dsqre(z(3))+daqri(z(4)))
wt = wbiwe
g(59 = wb/(fracrwti-1.

do 130 i=1, jp
130 if{g(i) .gt. psi) psi=g(i}

retutn
and
c
sudroutine gradg (n, y, 2z, grad)
c
implicit double precision (a-h,o0-z}
dimension z(1),grad(l)
common/strpar/rleng(i0), ro,adisp2, astrs2,; rbmin, rcmin, tolz, deltaz
common /fcomm/ glb4,glb3,9lc8, glcliéb,s wh, wt, frac
c
[
if {y .gt. 4) go to 110
C

do 100 i=1l,n

100 grad(i) = 0.0
grad(y) = —-1. 0
return

c

110 continue
bet = wb/wt
fac = (1. -bet)#glbd4/(frac#wt)
grad (1} fac/dsqrt(z (1))
grad(2) fac/dsqrt(z(2))
fac = —~bet*glcB/ (fracH#uwt)

grad(3) = fac/dsqrt(z(3))
grad(4) = fac/dsqrt(z{(4)})
[~
return
end
I
c
c
subroutine funcph (n.nyq, yq, 2z, wG,wc,deltaw, nq, phi, psi, nfuncp)
[

implicit double precision {(a-h,o0-2)

dimension z{(1:,philnyq, 1)

lagical bigdif

common/intagr/nsteps. dt, dto, dampm, dampkt, dampko
common/phigrasa2, b2, 823, 824, iwOdt
common/strpar/rleng(10}, ro, adispd, astrsd, rbmin, rcmin, tolz, deltaz
commen /resp/ xdisp(2, 1CO), ™n(2, 100}, del (2, 100}, rmom(2, 100),

* nepact(10Q0)
common /strgom/ elndx1(10),elndx2(10), elndyl (10}, elndy2(i0),
i nod1(10), nod2(10)

common /zansr / zresp(10), zsens(1G)., diff(l10)
cemmeon /nstran/ nanal, nsens '
common/dynpar/ tstart, tend. nskip, jy, kaddel
comman /dresp/ dxdz(2,4,10), dmomdz(2, 4, 10)
commaon /tapes/nin, nou
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write (nouy,2010)

2010 format (Sx, ‘entering funcph )
if(bigdif(n, z, zresp,diff, tolz})) go to 120
if {(nsens .le. 0) go to 300

C
ii = 1
do 110 i=1,ngq
if({nepact(il). 2q.0) go to 110
do 100 j=1,n
delz = diff ()}
xdisp(1l, i} = xdisp(l,i)+dxdz (1, j,ii)#delz
xdisp(2, i) = xdisp(2,i)+dxdz2(2, j,ii)H*delz
rmom(l, i) = rmom(1l, id+dmomdz (1, j,ii)#delz
rmom(2; i) = rmom(2, i)+dmomdz (2, j, iir*delz
1006 continue
ii = ii+1
110 continue
c
go to 200
C
C set variables in common/dynpar/
<
120 nskip = (wc-wO)/(dt¥ng) + 1. e~é
iwOdt=wC/dt+1
ns=iwOdt+(ng-1)r#¥nskip
ishift=(wc/dt+0. 5-ns)/2
iwOdt=iwOdt+ishift
nstpv = nsteps
nsteps = minG(nsteps, (ns+ishift))
tstart=iwOdt#dt
tend=nsteps#dt
[
C

call anal(zresp)
nanal = nanal+l
write (nou,2000) nanal
2000 format (/Sx, ‘nanal in funcph’, 15}
call mprint (z,1,n,40hz vector in funcph

1 )
c
nsteps = nstpv
=
C
c
200 continue
a2 = adispe
b2 = 0. 4804#astrs2
b23 = b2#z(3)##1. 5
b24 = h2#z(4)#%1. 5
do 210 i=i,ngq
phi(l,i) = xdisp(1l,i)#xdisp(l.,i)r/a2-1.
phi(2,1) =(xdisp(2, i)-xdisp(1, i))}%*(xdisp(2,i)—-xdigp(1l,1i))/a2-1.
phi(3,1i) = rmom(i, i)#*vrmom(l, i)/b23-1. :
phi(4,1i}) = rmom(2, i)#rmom(2, i) /b24-1.
210 continue
c
c set uvp function psi

c

300 do 310 1=1, yq
do 310 k=1,ngq
if(phi(l,. k). gt. psi) psi=phi(l, k)
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continue
return
end

subToutine gradph (rn,njq,nactiv, yq, wO, we, deltaw, nq, neptf, 1, 2z, k,

3#* grad, igrad)

implicit double precision (a-h,o0-z}

dimension z{(1),grad(l}

dimension neptfinjq, 1)

logical bigdif . ]
cammon/intagr/nstaps,dt, dto, dampm, dampkt, dampko

commen/phigra/ a2, b2, b23, b24, iwldt )
common/strpar/rleng(10), ro, adisp2, astrsd, vbmin, remin, tolz, deltaz
common /resp/ xdisp(2, 1003, rn(2, 100}, del (2, 100}, rmom(2, 100},

#* napact(100)

comman /strgom/ 2lndx1(10),21ndx2(1iQ), 2lndyl1(1G)., elndy2(10}.,
1 nadl1(10), nod2(10}

comman /ransr / zresp(10), zsens(1Q), diff{1Q)

common /nstran/ nanal.nsens ’

commen/dynpar/ tstart, tend, nskip, yj, kaddel

comman /dresp/ dxdz(2,4,10), dmomdz (2, 4, 1G)

if{igrad.g%t. 1) go to 350G
do 10 i=i,ngq
nepact(i) = Q

maxsen = 1

do 30 i=1, )q

do 20 j=1l,nactiv

nj = neptf(i, §}

if(ny.2q.0}) go to 30
nepactinyi=1
if(ny. gt . maxsen) maxsen = nj
continue

continue

if(.not.bigdif(n, z, zsens, dif#f, tolz)) go to SO
call sens (zsens,n,maxsen)

ngens = nsens+i

continue

nc=0

do &0 i=1,k

if(nepact(i}). eq. 0) go to &0

nc = ne+dl

continue

go %o (100,200, 300,400) 1

continue

fact = 2. #xdisp(l, k}/a2

do 110 i=t,n

grad(i) = dxdz(1,1i,nc)#fact
return

cantinue '

fact = 2. #(xdisp(2, k)~xdisp (i, k))/a2

do 210 i=1.,n

,grad(i) = (dxdz(2,i,ne)~dxdz(1,i,ncl)lxfact
return :
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continue

fact = 2 #rmom(1, k)/b232

da 310 i=1,n

grad(i) = dmomdz(1, i, nc)i*fact

grad(d) grad(3)-0. 75#factsrmom(l, k) /2(3)
return

i

continue

fact = 2. #vmom(2, k)/b24

do 410 i=1l,n

grad(i) = dmomdz (2, i,nc)*fact

grad(4) = grad(4)-0. 7S#fact#rmom(2, k) /z(4)
raturn

_end

subroutine sens (zz,numvar,maxsen)}

implicit double precision (a-h,o0-2)

dimension 21(10), z2z(1), xdisp1(2, 100}, rmoml (2, 100)

common/integr/nsteps., dt, dto. dampm, dampkt, dampko

common/phigra/aa, b2, b23, b24, iwldt

comman/strpar/rleng(10), ro, adisp2, astrsa, rbmin, rcmin, tolz,deltaz

common /resp/ xdisp(2,100), rn(2, 100),da21(2, 100}, rmom(2, 100),
nepact(100)

common /nstran/ nanal,nsens

commoen/dynpar/ tstart, tend, nskip, jj, kaddel

common /dresp/ dxdz(2,4,10), dmomdz (2, 4, 10}

do 110 ;=1.,2

do 110 i=1,maxs2n

xdispl(j, i) = xdisp(y, i}
rmomi{y, i) = rmom( j, i)

cantinue

do 113 i=1, numvar

z1(i)y = zz (i)

nstpv = nsteps

nsteps = iwOdt+(maxsen—1)#nskip

da 120 i=1,numvar
delz = zz(i)#deltaz
z2(1) = z1(i)+delz

call anallzz)

call sendif (maxsen.nepact,xdisp, xdispl,2,delz,dxdz, i, numvar)
call sendif (maxsen,nepact,rmem, rmomi, 2, delz, dmomdz, i, numvar)

zz{(1) = zi(i)
continue

do- 140 ;=1,2
do 140 i=1,maxsen
xdisp(), 1) = xdispi(y, &)

rmam{j, i) = rmomi(y, i)
continue

nsteps = nstpv

return

end
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subroutine storsp (nodes,ndkod. dt, time,dis, vel, acc, Inxdh,

inydh, Inzdh.nodsx, nodsy, nedsz: kstat, ndchk)
subroutine %o store dynamic response results into two dimensional
arrays. The respense is stored starting from initial time
‘fstart’ to the final time ‘tend’ with ‘nskip’ time steps being
skipped. Values for ‘tstart’, "tend’ and ‘nskip’ are set in the

driving roufting (main program in case of just analysis or one of
the user’s subroutines in case of optimization)

Respons2 quantifties at nodess which are specified for output

(saction D in ANSR data preparation manual) are saved only.

implici%t double grecision (a-n,o-zj

common /tapas / nin, now

common /contrl/ njts, nenod, nedge, ndcon, niddo#, nmaxd, nmsgc,

: nalgr,ntals, kexac, kdummy, kprint

common /elpar / lpar(10), flpar( (&), indgr(20), nmsgr (20}, mfgr(20),
infgrr (207, infgri(20), ndfgr (20}, dkogr(20),
dktgr (20}

common /pass / igr.naddr, naddi, kna, kadatr, kedati, kevar,
istep, ipath, kupd, kitrn, ielasp, ielas, nstref

common /indat / ieldat(l)}

common eldat(i)

cammon /dynpar/ tstart, tend,nskip, jJ, kaddel

camman /vesp/ xdisp(2, 100}, rn(2, 100}, del (2, 100), rmom(2, 1003},

nepact (100

dimension ndkcod(nodes,® ), dis(l),val(i),acc(i), Inxdh{1), lnydh(i),
Inzdh (1)
data za2vo/GC 240/

initialize and check dimensions

if (ndchk . g% 9) go %to 100G

ndchk = 1

nsk = nskip

Jd = 0

nmxrow = 2

nmxcal = 1OC

maxrow = maxl (nodsx,nodsy, nodsz)
if (maxrow 1t G maxrow = nodes

maxcol = ifixi((tend — tstart) / (floatinskipl#dt)) + 1
i+ (maxrow. le. nmxrow . and. maxcol. le. nmxcol) go to 100

write (cou, 2000 maxvow, maxcol
/

TN
format (/Zx, "dimansion of arrays for storing dynamic response’/
Sx, is too short——— dimensions neaeded: ‘/
Sx, row dimension = 7 i3/
Sx, column dimension = * 15)
staop

it {(kstaft.enq. -1} go to 110
if (time. 1% fstart .or. time. gt. tend!) go to S00

if (nsk .e2q. nskip’) go to 1105
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nsk = nsk + 1
g0 %o 5GG

JJ4=Ji+l
nsk = 1
1f (nodax) 120, 160, 140

do 130 i = 1, nodes

k = ndkod (i, 1}

xdisp(i, gy = dis(k)

if (time. 2q. z2T70) g0 to 130
xvel(i, yy) = wvel{k)
xacc (i, gy = acclk)
for rotational displacements about
k = ndkod(i. 4)

xdrot (i, gy = dis(k)
xvrot{i, jy3 = vel(k)
xarot (i, yJ) = acclk)

continue
go to 1460

o 150 i=1,nodsx

= lnxdh(i)

= ndkod(l, 1)

xdisp(i, gy = dis(k)

if (time. eq. zero) go to 150

d
1
k

xvel(i, gy} = vel(k)
xacc(i, yJ)» = acclk)
continue

if (nadsy) 170,210,190

de 180 i = 1,nodes

k = ndkod(i,2)

ydisp(i, yj» = disg(k)

if (time. eq. 2ero) go to 180

yvel(i, yy) = vel(k)
yacc(i, jJ) = acc(k)
continue )
go to 210

do 200 i=1l,nodsy

1 = lInydh(i)

k = ndkod(1l,2)

gdisp(i., jy) = dis(k)

if (time. eq. zero) go to 200
yvel(i, y3? vel (k)

yacc (i, Jgy? acc (k)
continua

L]

if (nodsz) 220,260, 240

do 230 i = i, nodes

k = ndkod(i,3)

zdisp(i, yy) = dis(k)

if (time. eq. zero) go teo 230
tvel (i, yy) = vel(k)

zaccl{i, Jj7 acc(k?
cantinue

go to 2&C

x—axis add
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240 o 250 i=1,nodsz

Inzdh(i}

ndkod(1l, 3)

c zdisp(i, gy) = dis(k)

it (time. eq. zero} go te 250
zvel (i, gy} vel(k}

zacc (i, yy) acc(k}
continue

d
1
k

<]
Q

continue

storing element response

fAANNN NN
o
o]

naddi = kedati
naddr = kedatr

do 44C igr=1,nelgr
kaddel = 0

ngr = indgr(igr}
nels = nmsgr(igr?

do 460 iel=l, nels

ninfi = ieldat(naddi}
ninfr = eldat(naddr}

320 go to (330,340,350, 360, 370, 380G, 370, 400, 410, 420}, ngr

330 call storl (ieldat(naddi+i)}, eldat(naddr+1), ninfi,ninfr, 1)

go to 45C

340 call stor2 (ieldat(naddi+l), eldat(naddr+1}, ninfi,ninfr, 1}
go to 450

350 call stor3 (ieldat(naddi+l),eldat(naddr+l), ninfi,ninfr, 1}
go to 450

360 call stor4 (ieldat(naddi+i), eldat(naddr+1}, ninfi,ninfr, 1}
go to 450

370 call stor9 (ieldat(naddi+l),eldat(naddr+i), ninfi,ninfr, 1)
go to 450

380 call storé (ieldat(naddi+l), eldat(naddr+i}, ninfi,ninfr, 1)
go to 45C

390 call stor?7 (ieldat(naddi+l),eldat(naddr+l), ninfi,niner, 1)
go to 450

400 call stor8 (ieldat(naddi+l),eldat(naddr+1}, ninfi,ninfr, i)
go to 450

410 call stor? (ieldat(naddi+il}), eldat(naddr+i), ninfi,ninfr, 1)
go to 450

420 call storiQ (ieldat{naddi+i),eldat(naddr+1}, ninfi,ninfr, 1}
go to 4%5C

450 naddi = naddi + ninfi + 1
naddr = naddr + ninfr + 1

4560 continue
500 return
end
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subToutineg mdfl2 (icams, coms, ninfci,ninfcr, z2)

modification routine for element 2

implicit double precision (a-h,o0~2)

dimension icoms{(l), icom(l)}

dimensioan coms(l),com(l)}

dimension z(1;

comman /%tapes / niu,nou,ntl, ntd, nt3 ntd, ntS, ntemp

common /infa2li / imem, Ys%, Im(&}), node(2), kgeom, ktho, kbuck,

. kod: kadp, itest (1)

common /infelr / epraop(4),area,dumpro(4d),
xyz(3,2), 81, £(3,3),dulx,duly, dulz, ql(é&l,
skp(b, &), vtot, sep,sel, venp, venn, vpacp.
vpacn, vbuck, senp, senn, tvenp, tvenn, tsenp, tsenn,
sdamp, rest (1)

gquivalenca (imem, icom(1l})

aquivalence (eprop(i),com(i))

doe 10 y=1,ninfci
icam{y) = icoms( )
do 15 y=1i,ninfcr
cam(y) = coms( )

area = 0.8 # dsqrt(z(imem))
do 20 j=1.4
eprop( ) = dumpro(j)*area

kst = 1

do 100 i=2&,ninfcr
com(i) = Q.

do 105 i=14,ninfci
icam(i) = O

do 110 i=1.ninfci

icoms (i) = icom(i)
de 120 i=1,ninfcr
coms{i) = com(i)
return

and

subroutine mdfl3 (icoms, coms, ninfci,.ninfcr, 2)

modification routine for element 3

implicit 3ouble precision (a—-h,o0-z)

camman/tapes/niu:s noy, ntl, nt2, nt3, nt4, ntS, nté

commen/infeli/ imem, kst, Im(&):,nodi, nod ), koutdt

common/infelr/ #1.,Ff1ij,ymod, area,rin, xy(2,2},af(2, 6}, ax(b&},
accums(3), senp (&), sann(&), tenp (&), tenn(s)

dimension icom{(l’,com(l), icoms(1l}),coms(l)

dimension z(1)

equivalence {(imem,icom{(1}), (f1,com(1))

do 1Q j=1,ninfci

icom{ji=icoms{ )

do 153 j=1,ninfcr

com( yi=coms( )
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€
if(imam. gt. &) return
if(imem. eq. 3. or. imem. eq. 4} rin=z2(3}
if(imem. eq. 3. or. imem. eq. &) rin=z(4)
area = (. B#dsqriirin}

c

kst=1
do 100 i=28,ninfcr
100 com(i} = 0.0

[
do 110 i=1,ninfci

110 icoms(i} = icom(i}
do 120 i=i,ninfcr

120 coms(i} = cam(i)

[

return

end
[
c
¢
subroutine stor2 (icoms,coms, ninfci,ninfcr, iflag)
[
[
c this subroutine has two tasks:
c ~iflag=1 i stores element response values
c in dynamic or static analysis
€ -iflag=2 stores element quantitities which are
¢ fixed in an optimization problem in
[ particular data useful for displaying
c the structure
o
implicit dauble precision (a-h,o0-2}
dimension icoms(1}),icom(1}
dimension coms(i), com(1i)
common /tapes / niu,nou,ntl,nt2, nt3, ntd4, ntS, ntemp
common /infeli / imem, kst, lm(é&), node(2), kgeom, ktho, kbuck,

* kod, kodp, irest (1}
common /infelr / eprop(4),area,dumpro(4d),

3 xgz(3,2);sl; t(S:S):dulx:dng,dulzlql(b);

# skp(&4, &), vtot, sep, sel, venp, venn, vpacp.,

#* vpacn, vbuck, senp, senn, tvenp, tvenn, tsenp, tsenn,

* sdamp. rest (1)
common/dynpar/ tstart, tend,nskip, jyt, kaddel
common/resp/ xdisp (2,100}, vn(2,100),del (2,100}, rmom{(2, 100},

# nepact(100)
common/strgom/ elndx1(10},elndx2(10).,elndyi (10}, elndy2(10}.,

1 nodi(10}, nod2(10) -
comman/strpar/rleng(i0), ro,adisp2, astrs2, rbmin, rcmin, tolz, deltaz
equivalence (imem,icom(1)}
equivalence (eprop(il),com(i}}

c
do 10 =1, ninfci
10 icom(j} = icoms(y}
do 15 y=1,ninfcr
15 com(j3 = coms(§}
go to (100,200) iflag
€

100 continue
if(ktho. le 0} return
kaddel = kaddel+1
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set control on kaddel

rn(kaddel, jyt) = sel+sep
del(kaddel, jyt) = vtot
return :

continue

rleng(imem) = sl
elndxi{imem) = xyz(1,1)
elndx2(imem) = xyz(1,2)
elndyi(imem) = xyz(2, 1)}

elndy2(imem) xyz (2,2}
nodi(imem) = node(1l)
nod2(imem)} = node(2)

do 220 y=1.4

dumpro(j) = eprop(jl)/area
do 24C j=1,ninfcr
coms{(j) = com(y)

return
and

subroutine stor3 (icoms,coms, ninfci,ninfcr, iflag)

implicit double precision (a-hio-z)
common/tapes/niu, nou, nti, nt2, nt3, nt4, ntd, nté
common/infeli/ imem, kst, Im(&),nodi,nodjy: koutdt
common/infelr/ €1, f11i}, ymod:area,rin, xy(2,2),af(2,46),ax(b},
1 accums(3): senp (&), senn(b}), tenp (&), tenn(h)
common/dynpar/ tstart, tend,nskip., gjt, kaddel

common/resp/ xdisp(2, 100}, rn(2,100),del(2, 100}, rmom(2, 100},
* nepact (100}

common/strgom/ elndx1(10}),elndx2(10), elndy1(10), elndy2(10),
1 nadl1(10), nod2(10)
common/strpar/rleng(10), ro,adisp2; astrs2, rbmin, rcmin, tolz, deltaz
dimension icom(1),com(1l}, icoms(1),coms(l}

equivalence (imem,icom(1}), (f1,com(1})

do 10 y=1l,ninfci

icom( j)=icoms( y)

do 15 j=1,ninfcr

com(j¥=coms( )

go to (100,200} iflag

continue
if(koutdt. le. Q) return
kaddel = kaddel+1

set contrel on kaddel

rmom(kaddel, jyt) = accums(i)
return
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200 continue
rleng{imem) = £1

elndxi(imem) = xy(1l, 1}
elndx2(imem) = xy(1l,2)
elndyl(imem) = xy(2, 1
elndy2(imem) = xy(2,2)
nodl(imem) = nodi
nod2(imem} = nody

return
end
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DATA FILES

FOR EXAMPLE PROBLEMS 1 AND 2
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followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285
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and remittance must accompany each order. Reports without this information were not available at time of printing.
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EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by
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"A Computer Program for Earthquake Analysis of Dams," by A.K. Chopra and P. Chakrabarti - 1970 (AD 723 994)A05
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"Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and
C.K. Chan - 1975 (Summarized in EERC 75-28)

"The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P.P. Martin
and J. Lysmer - 1975 (PB 252 648)A03

"Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero
1975 (PB 248 136)A05

"Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.K. Chan - 1975
(NUREG 0026)Aal3

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction
Analyses," by H.B. Seed, I.M. Idriss, P. Makdisi and N. Banerjee - 1975 (PB 252 635)A03

"FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by
J. Lysmer, T. Udaka, C.~F. Tsai and H.B. Seed - 1975 (PB 259 332)A07

"ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by
E. Berger, J. Lysmer and H.B. Seed - 1975

"TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling
Waves," by T. Udaka, J. Tvsmer and H.B. Seed - 1975

"Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien -1975 (PR 248 1230)AGH

"Efficient Finite Element Analysis of Seismic Structure -Soil - Direction," by J. Lysmer, H.B. Seed, T. Udaka,
R.N. Hwang and C.-F. Tsai - 1975 (PB 253 570)A03

"The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading,"
by R.W. Clough and L.-Y. Li~ 1975 (PB 248 841)A05

"Earthquake Simulator Study of a Steel Frame Structure, Volume II -Analytical Results,” by D.T. Tang - 1975
(PB 252 926)Al0

"ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D.P. Mondkar
and G.H. Powell - 1975 (PB 252 386)A08

"Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete
Structures," by M, Murakami and J. Penzien - 1975 (PB 259 530)A0S

"Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Zarur -
quake Loading,” by N.D. Walker and K.S. Pister - 1975 (PB 257 781)A06

"An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasgupta and J.L. Sackman - 1978
(PB 252 173)A03

"Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin -197%
(PB 258 781)a03
"Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," Ly

T. Okada and B. Bresler -1976 (PB 257 906)All

"Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and
T-Beams,"” by S.-Y.M. Ma, E.P. Popov and V.V. Bertero - 1976 (PB 260 843)Al12

"Dynamic Behavior of a Multistory Triangular-Shaped Building,” by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp - 1976 (PB 273 279)A07

“Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B, Seed, F.I. Makdisi & C.-Y. Chang - 1976
(PB 292 065)A08
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"Analysis and Design of Tube-~Type Tall Building Structures," by H. de Clercq and G.H. Powell -~ 1976 (PB 252 220)
Alo

"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo
and J. Penzien (PB 260 556)All

"Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, S.W. Chen
and R.W. Clough - 1976 (PB 270 098)A05

"Cyclic Shear Tests of Masonry Piers, Volume 1 - Test Results," by R.L. Mayes, Y. Omote, R.W.
Clough - 1976 (PB 264 424)A06

"A Substructure Method for Earthquake Analysis of Structure - Soil Interaction,” by J.A. Gutierrez and
A.K. Chopra - 1976 (PB 257 783)A08

"Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and
J.R. Booker - 1976 (PB 258 82C)A04

"Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by
G.H. Powell and D.G. Row- 1976 (PB 271 409)A06

"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and
E. Polak - 1976 (PB 262 859)A04

"Coupled Lateral Torsional Response of Buildings to Ground Shaking,” by C.L. Kan and A.K. Chopra -
1976 (PB 257 907)A09

"Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings ~ 1976

"Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation,” by R.W. Clough and
J. Gidwani - 1976 (PB 261 323)A08

"Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Results,” by R.L. Mayes, Y. Omote
and R.W. Clough ~ 1976

"Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and
C.W. Roeder - 1976 (PB 260 715)A05

"Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and
W.G. Godden — 1976 (PB 269 548)A08

"Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by
F. Baron and R.E. Hamati -~ 1976 (PB 282 98l1)Al6

"Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System
Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258 453}A07

"Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick =~ 1976
(PB 260 378)A04

"Response of the Olive View Hospital Main Building during the San Fernando Earthquake,"” by S. A. Mahin,
V.V. Bertero, A.K. Chopra and R. Collins - 1976 (PB 271 425)al14

"A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel,
R.L. Mayes, R. W. Clough and $.W. Chen - 1976 (Not published)

"GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during
Cyclic or Earthguake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed ~ 1976 (PB 263 947;A04

"Seismic Safety Evaluation of a R/C School Building," by B. Bresler and J. Axley - 1976

"Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge
Structure,” by K. Kawashima and J. Penzien - 1976 (PB 263 388)All

"Earthguake Response of Coupled Shear Wall Buildings,™ by T. Srichatrapimuk -~ 1976 (PB 265 157)A07
"Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen - 1976 (PB 262 899)A03

"Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber - 1976
(PB 264 410)A06

"Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by
L.E. Malik and V.V. Bertero =~ 1976 (PB 272 247)al3

"The Effects of Seismic Disturbances on the Golden Gate Brid " i i
y ge by F. Baron, M. Arikan and R.E. H -
1976 (PB 272 279)A09 ' ! amati

"Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and V.V. Bertero - 1976
(PB 265 892)Al13
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"PLUSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Inter-
action," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977

“Soil-Structure Interacticn Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June
7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer - 1977 (PB 265 795)A04

"Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.K.
Chan ~ 1977 (PB 267 352)A04

"Seismological Studies of Strong Motion Records,” by J. Shoja-Taheri - 1977 (PB 269 655)Al0

"Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov - 1977
"Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings,” by No. 1 -

B. Bresler; No. 2 - B. Bresler, T. Okada and D. Zisl}ng; No. 3 - T. Okada and B. Bresler; No. 4 - V.V.

Bertero and B. Bresler - 1977 (PB 267 354)A08

"A Literature Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and
R.W. Clough - 1977 (PB 277 933)A07 )

“DRAIN~TABS:
R. Guendelman-Israel and G.H. Powell - 1977

A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by
(PB 270 693)A07

“"SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov =~ 1977
(PB 270 567)A05 )

"Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough
(PB 272 280}Al13

"Earthquake Engineering Research at Berkeley - 1976," - 1977 (PB 273 507)A09

"Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. - 1977
(PB 276 526)A09

"Concrete Confined by Rectangular Hoops Subjected to Axial Leoads," by J. Vallenas, V.V. Bertero and
E.P. Popov - 1977 (PB 275 165)A06

"Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura - 1977 (PB 284 201)A04

"Bond Deterioration under Generalized Loading," by V.V. Bertero, E.P, Popov and S. Viwathanatepa - 1977

"Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W.
Zagajeski and V.V. Bertero - 1977 (PB 280 137)}A07

"Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and
D.F. Tsztoo - 1977 (PB 273 506)A04

"Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and
E.P. Popov - 1977 (PB 275 526)AlS

"A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.I1.
Makdisi and H.B. Seed - 1977 (PB 276 820)A04

"The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de Alba - 1977

(PB 276 821)A04

“Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulatien," by P. Lukkunapvasit and
J.M. Kelly - 1977 (PB 275 453)a04

"Preliminary Experimental Study of Seismic Uplift of a Steel Frame,”" by R.W. Clough and A.A. Huckelbridge
1977 (PB 278 769)A08

"Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A.
Huckelbridge - 1977 (PB 277 944)A09

“Nonlinear Scil-Structure Interaction of Skew Highway Bridges,"” by M.-C. Chen and J. Penzien - 1977
(PB 276 176)A07

"Seismic Analysis of an Offshore Structure Supported on Pile Foundations,” by D.D.-N. Licu and J. Penzien
1977 (PB 283 180)}A06

"Dynamic
1977 (PB

Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K. Chopra -
279 654)R06

"A Practical Soft Story Earthquake Isolation System,” by J.M. Kelly, J.M. Eidinger and C.J. Derham -
1977 (PB 276 814)A07

"Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An

Exploratory Study,"” by A.J. Meltsner - 1977 (PB 281 970)A05

"Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi
1977 (PB 282 £69)A04

"An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints," by
B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06
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"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and
D.F. Tsztoo - 1978 (PB 284 978)AQ04

"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A. Mukhopadhyay - 1978

"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M.
Eidinger and J.M. Kelly - 1978 (PB 281 686)A04
"Seismic Behavior of Tall Liguid Storage Tanks," by A. Niwa ~ 1978 (PB 284 017)Al4

"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces,"
by S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978 (PB 283 858)Al3

"Inelastic Beam-Column Elements for the ANSR-I Program," by A. Riahi, D.G. Row and G.H. Powell - 1978
"Studies of Structural Response to Earthquake Ground Motion," by O.A. Lopez and A.K. Chopra - 1978
(PB 282 790)A05

"A Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Earthquakes,"
by R.C. Byrd - 1978 (PB 284 957)A08

"Model for Evaluating Damageability of Structures," by I. Sakamoto and B. Bresler - 1978

"Seismic Performance of Nonstructural and Secondary Structural Elements,” by I. Sakamoto - 1978
"Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by S. Nakata, T. Sproul
and J. Penzien - 1978

"Damageability in Existing Buildings," by T. Blejwas and B. Bresler -~ 1978

"Dynamic Behavior of a Pedestal Base Multistory Building," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp
and M. Button ~ 1978 (PB 286 650)A08

"Seismic Response of Bridges -~ Case Studies," by R.A.
(PB 286 503)Al0

Imbsen, V. Nutt and J. Penzien - 1978

"A Substructure Technique for Nonlinear Static and Dynamic Analysis,”™ by D.G. Row and G.H. Powell -
1978 (PB 288 077)Al0

"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira -
1978

“Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Glilkan, R.L. Mayes and R.W.
Clough - 1978

“Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and
E.P. Popov - 1978

"Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by
J.L. Sackman and J.M. Kelly - 1978 (PB 292 357)A04

"Testing of a Wind Restraint for Aseismic Base Isolation," by J.M. Kelly and D.E. Chitty - 1978
(PB 292 833)A03

"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal
Sand Layers During Cyclic or Earthquake Loading," by P.P. Martin and H.B. Seed - 1978 (PB 292 835)A04

"Optimal Design of an Earthguake Isolation System,"” by M.A. Bhatti, K.S. Pister and E. Polak - 1978
(PB 294 735)A06

"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in
Horizontally Layered Deposits," by P.P. Martin and H.B. Seed - 1978 (PB 293 101)A05

"Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification,’
by I. Kaya and H.D. McNiven - 1978

"Investigation of the Nonlinear Characteristics of a Three-Story Steel Frame Using System
Identification," by I. Kaya and H.D. McNiven - 1978

"Studies of Strong Ground Motion in Taiwan,” by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A. Hidalgo,
R.L. Mayes, H.D. McNiven and R.W. Clough - 1978

"Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of 1," by S.-W.J. Chen,
P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978

"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978
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"Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages," by B. Forzani,
E.P. Popov and V.V. Bertero - April 1979(PB 298 267)A06

"The Development of a Mathematical Model to Yredict the Flexural Response of Reinforced Concrete Beams
to Cyclic loads, Using System Identification,” by J. Stanton & H. McNiven - Jan. 1979(PB 295 875)Al0

"Linear and Nenlinear Earthquake Response of Simple Torsicnally Coupled Systems," by C.L. Kan and
A.K. Chopra -~ Feb. 1979(PB 298 262} A06 !

"A Mathematical Model of Masonry for Predicting its Linear Seismic Response Characteristics," by
Y., Mengi and H.D. McNiven - Feb. 1979(PB 298 266) A06

"Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement,"
by M.A. Manrique, V.V. Bertero and E.P. Popov - May 1979(PB 301 114) 206

"Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank," by R.W. Clough and A. Niwa - Feb. 1979
(PB 301 167)A06

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 1 - Summary Report,” by P.N. Spencer, V.F. Zackay, and E.R. Parker -
Feb. 1979 (UCB/EERC~79/07) A09

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 2- The Development of Analyses for Reactor System Piping,""Simple Systems”
by M.C. Lee, J. Penzien, A.K. Chopra and K, Suzuki “"Complex Systems" by G.H. Powell, E.L. Wilson,

R.W. Clough and D.G. Row - Feb. 1979 (UCB/EERC-~73/08)Al0

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
foxr Enhanced Safety: Volume 3 - Evaluation of Commercial Steels,™ by W.S. Owen, R.M.N. Pelloux,

R.O. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, S.J. Hartman, V.F. Zackay and E.R. Parker -

Feb. 1979 (UCB/EERC-79/09) A04

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 4 - A Review of Energy-Absorbing Devices," by J.M. Kelly and

M.S. Skinner - Feb. 1979 (UCB/EERC-79/10)A04

“"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman ~ May
1979(PB 301 328)A03

"Cyclic Loading Tests of Masonxy Single Piers; Volume 3 - Height to Width Ratic of 0.5," by
P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - May 1979(FB 301 321)A08

"Cyclic Behavior of Dense Course~Grained Materials in Relation to the Seismic Stability of Dams," hy
N.G. Banerjee, H.B. Seed and C.K. Chan - June 1379(PB 301 373)Al3

"Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages,' by S. Viwathanatepa,
E.P. Popov and V.V, Bertero - June 1279(FB 301 326)Al0

"Optimal Design of ILocalized Nonlinear Systems with Dual Performance Criteria Under Earthquake
Excitations," by M.,A. Bhatti - July 1979(PB 80 167 109)A06

"OPTDYN -~ A General Purpose Optimization Program for Problems with or without Dynamic Constraints,"
by M.A. Bhatti, E. Polak and K.S. Pister - July 1972(PB 80 167 091)A05

"ANSR-II, Analysis of Nonlinear Structural Response, Users Manual," by D.P. Mondkar and G.H. Powell -
July 1973(FB 80 113 301)A05

"Soil Structure Interaction in Different Seismic Environments," A. Gomez-Masso, J. Lysmer, J.-C. Chen
and H.B. Seed - August 1979(PB 80 1Cl 520)A04

"ARMA Models for Earthquake Ground Motions," by M.K. Chang, J.W. Kwiatkowski, R.F. Nau,
and K.S. Pister - July 1979(PB 301 166)A05

R.M. Oliver

"Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V, Bertero and
E.P. Popov - August 1973(PB 80 165 305)Al2

"Studies on High-Fregquency Vibrations of Buildings - 1: The Column Effect," by J. Lubliner -~ Augustl1979
(PB 80 158 553)Aa03

“Effects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks," by
$. Viwathanatepa, E.P. Popov and V.V. Bertero - August 1979
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"Shaking Table Study of Single-Story Masonry Houses, Volume 3: Summary, Conclusions and Recommendaticns,"
by R.W. Clough, R.L. Mayes and P. Gulkan - Sept. 1979

Study of Single-Story Masonry Houses, Volume 1l: Test Structures 1 and 2," by P. Gulkan,
R.W. Clough - Sept. 1979

Study of Single-Story Masonry Houses, Volume 2: Test Structures 3 and 4," by P. Gulkan,
R.W. Clough - Sept. 1979

"Recommendations for a U.S.-Japan Cooperative Research Program Utiliziné Large-Scale Testing Facilities,"
by U.S.~Japan Planning Group - Sept. 1379(PB 301 407)a06

"Earthquake-Induced Liquefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. C.K. Chan,

A. Gomez-Masso and R. Grant de Ascoli - Sept. 1979 (NUREG-CR1341)A03

Arango,

"Infill Panels: Their Influsnce on Seismic Response of Buildings," by J.W. &Zxley and V.V. Bertero -
Sept. 1979(PB 80 163 371)Al0
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for the ANSR-II Program," by D.P. Mondkar and C.H. Fowell - MNov, 1979

“2D Beam-Column Element (Type 5 - Parallel Element Theory) for the ANSR-IT Program,” by D.G. Row,

G.H. Powell and D.P. Mondkar - Dec. 1979(PB 80 167 224)AR03

"3D Beam~Column Element (Type 2 - Parallel Element Theory) for the ANSR~II Program,” by A. Riehi,
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