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ABSTRACT 

This report describes a software system for optimization-based, 

interactive computer-aided design of statically and dynamically loaded 

structures with nonlinear response. The system combines two programs, 

INTEROPTDYN and MINI-ANSR. The program INTEROPTDYN is based on a 

feasible directions algorithm for solving a constrained optimization 

problem, where both non-parametric and parametric (time-dependent) 

constraints are allowed. Program MINI-ANSR is a modification of an 

existing general purpose structural analysis program, ANSR-l. Details 

of these programs are described, together with an interfacing package 

connecting the analysis and optimization phases of the design process. 

The following features are available to the user: stop and 

restart capability as well as user-supplied changes in both design 

variables as well as parameters in the optimization algorithm. 

Graphical display of key information is available at all stages of the 

design process. 

Two example problems - one an elastic, statically loaded truss 

and the second an impulsively loaded nonlinear braced frame - are 

included to illustrate use of the system. 
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1. INTRODUCTION 

1.1 PRELIMINARY REMARKS 
L 

The common practice in design of structures is to use a trial 

and error design procedure. First, an initial design is chosen, which 

may then be analyzed using a computer program which simulates the 

behavior of the physical system. By looking at the results of computer 

simulation, the designer adjusts the initial design in an attempt to 

satisfy a set of given specifications which are usually not met by the 

initial design or to obtain a better design in terms of performance 

criteria. After the adjustment, a new simulation is performed and the 

process is repeated until a satisfactory design is obtained. The 

success of this procedure depends critically on the experience of the 

designer and may involve a considerable amount of professional-level 

effort. 

Since the early 1950's, research in computer simulation of 

structural systems has made considerable progress, resulting in a 

number of excellent general purpose structural analysis programs 

[1-2]. At the same time, several attempts have been made to automate 

the above design process using optimization techniques. A summary of 

this work is contained in the survey papers [3-6]. Despite this con-

siderable research activity, optimization techniques are not as widely 

used as might be expected. In the authors opinion, the main reasons 

for this lack of interest are: 

(i) Lack of a proper definition of design problems in terms of an 

optimization problem. 

(ii) Lack of robust optimization algorithms applicable to general 

design problems involving dynamic constraints. 
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(iii) Lack of familiarity with optimization techniques. 

The definition of a design problem in terms of an optimization 

problem involves identifying an objective function and suitable oon­

straint functions. Historically, since optimization techniques were 

first used in the aerospace industry, weight of the structure has been 

considered as the objective function. For design of structures sub­

jected to dynamic loads, such as earthquake excitation, other objective 

functions such as life-time cost better reflect appropriate performance 

objectives, 17). For some special types of structures, such as braced 

frames, maximizing energy absorption by the bracing system could be an 

objective. Thus, depending upon a particular application, any function 

of design parameters and/or structural response functions is a 

candidate for consideration as an objective. Obviously, along with 

different objective functions, one must define appropriate constraint 

functions in order that the problem is well-posed. The computer pro­

grams developed for optimal structural design, so far, have been 

specialized either for a particular objective function, such as 

minimum weight, 18], or for particular structures, e.g., trusses or 

shear frames. Hence, their application has been very limited. Thus, 

in order to look at different problem formulations, a more flexible 

programming structure is needed, in which users can define their own 

objective and constraint functions in order to widen the range of 

applicability to practical problems. 

The optimization algorithms used up to now to solve the design 

problem have been too primitive for the task at hand. For example, 

they have not been capable of solving non-convex problems and problems 

with dynamic constraints. Even in simple cases, the cost-benefit ratio 
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has frequently been unfavorable because the algorithms failed to 

converge to a solution in a reasonable amount of computer time. This 

situation may arise because of several factors, such as: ill-conditioning 

of the mathematical programming problem into which the design problem 

is translated; weak convergence properties of the algorithms used (e.g., 

penalty function method with conjugate gradient method for line search) ; 

poor choice of internal parameters of algorithm; or poor initial design. 

Since optimization algorithms may require several structural analyses 

per iteration, it is clear that very slow convergence or worse, no 

convergence at all, may be considered as a very expensive accident! 

Recently, new algorithms have been developed, for general non­

convex problems involving dynamic constraints [9-10], which have better 

convergence properties. At the same time, methods for early detection 

of ill-conditioning in mathematical programming problems are emerging. 

Since, in general, the transcription of a design problem into a 

mathematical programming problem is not unique, heuristics are currently 

being developed which suggest ways of changing the transcription to 

eliminate the ill-conditioning. However, these algorithms are still 

sensitive to the choice of internal parameters as well as initial 

values of design parameters. 

In order to deal with these difficulties, an interactive software 

system for optimal design is indispensable. Interactive computing 

permits one to stop, restart or modify any of the parameters as the 

computation progresses. This results in substantial savings, not only 

in computing time, but also in overall time needed to carry out a design. 

An additional advantage of an interactive system using computer 

graphics is that it can be used as a tool to familiarize designers with 

optimization teChniques. They can change parameters of the algorithm 
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and execute a few iteration~while monitoring the computation closely 

through graphical information displays. This will give them a "feel" 

for these parameters and the algorithms itself, renoving- some of the 

"black box" character of the process. 

In the following sections there is described an interactive 

software system, OPTNSR, for optimal design of structures, in which 

the above attributes are incorporated. 

1. 2 THE OPTNSR SYSTEM 

The program OPTNSR is an interactive software package for 

OPTimal design of statically and dynamically loaded structures with 

!onlinear ~tructural ~sponse. The system is currently operating on a 

DEC VAX 11/780 computer obtained through a grant from the National 

Science Foundation. The operating system is a virtual memory version of 

UNIX (a Bell System trade mark) developed, at the University of 

California, Berkeley. The system consists of the following: 

(i) The INTEROPTDYN program, which is a general purpose interactive 

optimization program capable of solving problems with or without 

dynamic constraints. 

(ii) The MINI-ANSR program, which is a modified version of the ANSR-l 

program [2]. It is capable of analyzing linear and nonlinear 

structural systems subjected to static and dynamic loads. 

(iii) Interfacing routines between INTEROPTDYN and MINI-ANSR. These 

routines define a design problem in terms of an optimization 

problem and call for analysis of the structure as needed. 

Section 2 describes some of the main features of the INTEROPTDYN 

system. A short description of MINI~ANSR and instructions for adding 
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new elements to it is contained in Section 3. Section 4 describes the 

interfacing routines. Since some of these routines are problem -

dependent, two typical examples are discussed in detail in Section 5 to 

clarify the structure of these routines. Instructions for preparing 

input data for INTEROPTDYN and MINI-ANSR are included in the appendices. 
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2. THE INTEROPTDYN SYSTEM 

2.1 INTRODUCTION 

The program INTEROPTDYN is a general purpose, interactive 

optimization program capable of solving design problems which can be 

expressed as: 

min f (!:) 
Z; 

Subject to max cpj(z, w) < 0 j = 1, •.. , m (2.1.1) 
w w e:: [w , w ] 

0 c 

gj (!:) < 0 j = 1, ••• , Q, 

where 

z e:: :rn:P vector of design variables 

f = objective or cost function 

cpj = functional or dynamic constraints 

gj = conventional inequality constraints which depend 

on design variables only. 

The system is based on a batch program, called OPTDYN [11] which 

utilizes a feasible directions type algorithm to solve (2.1.1). It has 

been made interactive by combining it with an interpreter of an 

interactive language INTRAC-C, evolved from INTRAC, originally developed 

at the Department of Automatic Control, Lund Institute of Technology, 

Sweden [12]. 

There is some "on-line" documentation about the system. Bare 

essentials will be covered in the following sections to familiarize a 

user with the system. 
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2.2 A FEASIBLE DIRECTIONS ALGORITHM 

A short description of the optimization algorithm is given below 

in order to facilitate later discussion. Details of convergence proofs 

are given in [10], while implementation details are given in [11]. 

The feasible domain F, is defined by: 

F ~{~£"",I max <l>j(~, w) .::. 0, j 1, ... , m; } W 

gj (~) < 0 j 1, ... , ~ 

(2.2.1) 

Define a function 1jJ as follows: 

= max {o; max <l>j(~, w), 
w 

j = l, ... ,~} 

(2.2.2) 

Note that if ~ E F, then 1jJ(~) = 0 

Define the liE-active constraint index" set for functiona,l and con-

ventional constraints as follows: 

J 
g 

{
(j, w) I <l>j(z, w) -1jJ(z) ~ - E, j = 1, ... , m} 

and w is a left local maximizer 

j = 1, ... , ~} 

(2.2.3) 

(2.2.4) 

ALGORITHM: 

DATA: z E 
-0 

E > 
0 

a, S, 

s 
max 

y~l 

JRP 

0 

0 E (0,1) : 

> 0 

initial design 

initial value of E for E-active constraints 

Armijo parameters for step length computation 

Parameter controlling max. step length 

Parameter influencing search direction when 

infeasible 

No. of points into which the interval 

[wo ' wc ] is discretized. 



STEP 0: Set i 0, q = qc 

STEP 1: Set € = € 
.0 
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Ccnvergence parameters. 

STEP 2: Ccmpute functicns f(z.), gj(z.) and ~j(z., w) fcr all j. 
-~ -~ -1 

STEP 3: Directicn Finding 

a. Find €-active ccnstraints 

h. Evaluate gradients .of ccst functicn and €-active constraints. 

c. Ccmpute the .optimality functicn e(~) , where 

(2.2.5) 

d. Using the values .of ~'s .obtained by sclving (2.2.5) ccmpute 

the search directicn h(z) where 

STEP 4. €-Reducticn 

STEP 5: 

If e (z .) < - 2€o gc tc step 6. 
1 -

Else set € = €/2 and prcceed. 

Mesh Refinement 
].11 

If € > € - .or 
.0 q 

and Terminaticn Criteria 
].12 

'''(z.) > - gc tc step 2. 
'I' -1 q' 

otherwise, set q = 2q and if q > q STOP, 
"max 

else gc t.o step 1. 

(2.2.6) 
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STEP 6: Step Length Computation by Armijo Rule 

:::::teM,:e.::r{::tl~;;;:~~;:} 
such that 

(i) if z. ¢ F, then 
1-

Sk £ (0, M) 

and k is an integer, 

~ [z. + s h(z.)] - ~(z.) < - a s 0 S 
-1 - -1 -1-

(E) if z. 
-1-

£ F, then 

f [z. + s h (z. ) ] -
-1- -1 

fez. ) < - a s 0 S 
-1 

gj[z. + s h (z. ) ] < 0 j 1, ... , t 
-1 -1-

<j>j [z. + S h (z. ) , W] < 0 j 1 I • •• 1m 
-1 -1-

W S [w ,W ] discretized o c 
into q points. 

STEP 7: Set ~i+l = zi + s ~ (zi) 

Set i = i+l and go to step 2 

REMARKS 

The algorithm as presented above does not require a feasible 

initial design. If Z ¢ F, then w(z ) ~ 0 and the algorithm constructs 
-0 -0 

a sequence of designs with monotonically decreasing w(~) until it 

becomes zero. This aspect of the algorithm is very advantageous in 

case of a complicated problem where choice of an initial feasible 

design is not obvious. 

According to step 3 I the search direction calcul'ation problem 

turns out to be the negative of the nearest vector to the origin in 

the convex hull of the gradients of the cost and of the s-active 

constraints. Figure 1 shows the geometry of the problem when only one 
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g constraint is active. From the figure it is clear that if the 

norms of the E-active constraint gradients are much larger than that 

of the cost gradient, then the direction obtained is not very good 

because it will be almost perpendicular to the constraint gradient. 

The best way to safeguard against such a problem is to formulate the 

mathematical problem in such a way that the constraints and their 

gradients have similar magnitudes. In most cases a simple scaling of 

the problem is sufficient. In order to deal with cases where this is 

not possible, "pushfactors" are introduced in the direction-finding 

problem, which effectively scale the gradients. Expressions for these 

pushfactors, used in the present version, are given below. 

For cost function: Pf = ~f (1IVf(~) 1100 - 1) 
pj ~j [1 + 

gj (~) 
: .p(~) ] 

For 'g' constraints: = + n V j g g 

pj ,w . [ ~j(z,w) - 1/J(~) ] For '~' constraints: = ~¢ + n 1 + - E V j 
¢ 

where ~f' ~~, ~~ and n are input parameters. For more details see 

[11] • 

2.3 INTERACTIVE IMPLEMENTATION OF THE ALGORITHM 

computational experience with batch use of the program OPTDYN 

revealed t~e following difficulties: 

(i) The choice of parameters best suited for the problem at hand was 

not obvious and required several adjustments before reaching 

a set of parameters which gave good computational behavior. 
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(ii) Sometimes the problem was badly scaled with respect to the 

algorithm, requiring several adjustments before a solvable 

problem was obtained. 

In order to cope with these difficulties the program was made 

interactive through a general purpose interactive language interpreter 

INTRAC. The interaction allows the designer: 

(i) To interrupt the computing process, change parameter values and 

restart the process; 

(ii) to control the flow of the algorithm by single-stepping through 

its loops (This feature is most useful in diagnosing reasons for 

poor computational behavior.) ; 

aii) to display quantities computed by the optimization and 

simalation algorithms; 

(iv) to use the computer as a "scratch pad" for side computations on 

variables, vectors and matrices used in the algorithm. This 

feature is useful to perform tests not originally foreseen in 

the program and to check, for example, condition of key matrices, 

their eigenvalues, etc. 

The first step in implementing interaction is to decide where 

the interaction should take place and what quantities need to be 

changed and/or otherwise manipulated. According to the above con­

siderations, interaction should be implemented at each step of the 

main loop of the algorithm as well as at each step of every internal 

loop. Thus breakpoints have been inserted after the corresponding 

statement of OPTDYN. At each breakpoint a subroutine INTCAL is called, 

which checks the condition associated with the breakpoint. The 
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condition may be NEVER, ALWAYS or an IF clause. If it is NEVER, no 

action is taken and the control is returned to OPTDYN. If it is ALWAYS, 

INTRAC-C is called and an interaction phase takes place. The quanti­

ties which need to be changed or displayed are declared in a symbol 

table (data base). During the interaction phase (marked by a prompt 

'>'), the user has access to all these quantities and can modify them 

using the SET command of INTRAC-C. A list of quantities included in 

the symbol table, along with their FORTRAN names is given in Table 1. 

In the following subsections, some of the more commonly used 

commands will be described. A command has the generic form: 

< command identifier > < argument list > 

The arguments must not contain spaces but they may be separated by an 

arbitrary number of spaces. If no doubts can arise, the arguments 

need not be separated by any space (for example, when one of the. 

arguments is a delimiter). The following notation is used when 

describing the structure of the commands: 

or (separates terms in a list from which one and only one 

must be chosen) ; 

{ } groups terms togetherj 

] groups terms together and denotes that the group is 

optional; 

< > denotes that the enclosed term is not used literally but 

is replaced by its appropriate value. 

The commands are divided into the following categories: 

(i) commands for flow control 

(ii) commands to handle the symbol table 



(iii) commands for graphics 

(iv) commands for scratch pad 

(v) miscellaneous commands 

13 

(vi) original INTRAC commands, summarized in Appendix A. 

In addition to these conunands, there are a number of "macros" written 

to make the interaction easier. A macro is a text file stored on mass 

storage containing a sequence of conunands. The macro can be used as 

a new conunand and the sequence of the commands will be executed. Some 

of the more useful macros are also described in later subsections. 

2.4 COMMANDS FOR FLOW CONTROL 

2.4.1 BREAKS - Displays a list of break points in the algori thro. 

Syntax: BREAKS 

The break point names are made up of the first few letters of 

the subroutine followed by the statement number after which the break 

point occurs. It also displays the halt condition of a break point. 

The halt condition is either ALWAYS, NEVER or an if-clause. If the 

halt condition is ALWAYS the program will always stop when that break­

point is reached and a prompt (» will be given to signify its readi­

ness for further action. If the halt condition is NEVER, the execution 

will go on normally and no break will occur at that break point. In 

the case of if-clause the condition is NEVER if the if-clause is not 

satisfied and ALWAYS otherwise. 

A list of breakpoints names along with their initial condition 

and location within the algorithm is given in Table 2. 

2.4.2 WHERE - Displays the name of the current breakpoint. 

Syntax: WHERE 
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Name of the current breakpoint is displayed at which the program has 

stopped. 

2.4.3 HALT - Sets up halt condition at a specified break point 

Syntax: HALT [< breakpoint >] [< condition >] 

< breakpoint >: = name of the break point at which the halt condition 

is to be set. Use the command BREAKS to get a list of legal names for 

the breakpoints. The de£aul t is the current breakpoint. 

< condition >: = {ALWAYS I NEVER I < if-clause >} 

< if-clause >: = IF < variable> < operator> {< variable> I 
< value >} 

< operator >: = {< I > I =} 

ALWAYS is used if a break is desired at this breakppint, NEVER if no 

break is desired and the < if-clause> is used for a conditional break. 

Examples: 

HALT QP90 IF ITER> 5 break is set at QP90 after ITER> 5. 

HALT NEVER sets current breakpoint condition to NEVER 

HALT COPFE90 sets COPFE90 to ALWAYS. 

2.4.4 GO - Transfers control from one breakpoint to another 

Syntax: GO [< breakpoint >] 

The program starts execution at the first statement following 

the named breakpoint. Current breakpoint is default. 

Example: 

GO QP90 

start execution from the first statement after breakpoint 

QP90. 
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2.4.5 STOP - This command stops the execution of the program. 

2.5 COMMANDS TO HANDLE SYMBOL TABLE 

The variables which need to be changed during execution are 

stored in a symbol table (data base). The following commands can be 

used to manipulate these variables: 

2.5.1 SYMBOL - Displays the symbol table 

Syntax: SYMBOL I< variable >] 

Displays the name, type and value of the specified variable in the 

symbol table. The default is to display all the variables in the 

table. If a variable is an array its dimension and the value of the 

first element are displayed. 

Examples: 

SYMBOL 

SYMBOL ALPHA 

displays the whole symbol table. 

displays type and current value of variable 

ALPHA. 

2.5.2 PRINT - Displays a variable from the symbol table 

Syntax: PRINT < arg > 

< arg >: = {< variable> I < number >} 

If a variable is a I-dimensional array, it will be displayed as 

a column and if it is a 2-dimensional array it will be displayed with 

xx columns on each line, where xx depends on the type of the variable: 

integer 

real 

complex 

xx = 8 

xx ;:: 5 

xx ;:: 2 

For long arrays only the first 100 columns are printed. 

Example: 
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PRINT Z prints the array Z as a column vector 

2.5.3 SET - Changes the value of a variable in the symbol table 

Syntax: SET < variable > = < arg > 

< variable >: = any variable or an array element in the symbol table. 

< arg >: = {< variable> I < number >} 

Examples: 

SET OLDSTP = 2 sets variable OLDSTP = 2.0 

SET N = 3 sets variable N = 3 

SET ALPHA BETA sets variable ALPHA BETA. 

2.5.4 CHECK - Checks if a variable has been changed by SET 

Syntax: CHECK {< variable> I - ANY} 

Checks if a variable in the symbol table has been changed by 

using SET command. The result of CHECK is returned in the global 

variable FLAG.SET (= 0 means variable not changed, = I means variable 

has changed). Changes are measured from the last CLEAR command or the 

start of the program. If the argument -ANY is used the program checks 

for changes in all the variables and FLAG. SET is set equal to 1 if any 

of the variables has been changed. 

Examples: 

CHECK -ANY checks for all the variables for any changes. 

CHECK ALPHA checks if ALPHA has been changed. 

2.5.5 CLEAR - Clears flags used for CHECK 

Syntax: CLEAR {< variable> -ALL} 

Clears flag used in command CHECK for the specified variable. 

The argument -ALL clears flags for all the. va.riables. 
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Example: 

CLEAR ALPHA sets FLAG. SET = 0 corresponding to variable ALPHA. 

Syntax: SETDIM {NCOL I NROW} « variable » = < arg > 

NCOL changes the column dimension of the variable and NROW 

changes the row dimension of the variable. Note that it is only the 

dimension information in the symbol table that is changed and of 

course not the real dimensions of the FORTRAN declared array. The 

change will only affect commands using the dimension information, such 

as PRINT or LINE. 

Examples: 

SETDIM NCOL(Z) = 2 sets the column dimension of array Z to 2 

SETDIM NROW(AQP) = N sets the row dimension of array AQP to 

the value of variable N 

2.5.7 TRANS - Transfers value of symbol table variable to INTRAC 

Syntax: TRANS < variable> 

Transfers the value of a variable from the symbol table to the 

INTRAC. TRANS will create a global variable with the same name as the 

specified variable but prefixed with a '.' (dot). Note that several 

array elements from the same array will only create one global variable. 

Example: 

TRANS ALPHA transfers symbol table variable ALPHA to an INTRAC 

global variable .ALPHA 

2.6 COMMANDS FOR·GRAPHICS 

To display information graphically, a number of low-level 

graphics commands are included in the package. These commands are used 
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to build commonly used macros, described later. The graphics commands 

work on: 

1. Tektronix 4027 Color Graphics Terminal 

2. Ramtek 6000 Series Color Graphics Terminal 

3. HP 2648 Black & White Graphics Terminal. 

2.6.1 GRIN IT - Graphics initialization 

Syntax: GRINIT 

This command must be given before doing any graphics. The 

first time this command is given, the terminal type is requested. 

2.6.2 DEFINE - Defines rectangular windows on the screen by a user­

specified name. 

Syntax: DEFINE I<xorig> <yorig> <xsize> <ysize> <name>] 

The origins and sizes are given as real numbers in a coordinate system 

in which (0,0) is in the lower left corner and (1,1) is in the upper 

right corner of the largest square which can be placed, lower-left 

justified, on the terminal screen. 

Examples: 

DEFINE 0.0 0.9 0.1 0.1 WU 

defines a tiny square window, called 'WU', in the upper left 

corner of the screen. 

'DEFINE' alone prints a list of all the defined windows with 

thHir origins and sizes. 

2.6.3 WINDOW - Enters a specified window 

Syntax: WINDOW [< name >] 

Enters a specified window so that 0.0 to 1.0 coordinates appear 

only in the previously defined window. 'WINDOW' alone prints out the 
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name of the present window. The name of the whole screen is 'SCREEN' 

and is the default starting window. 

2.6.4 ERASE - Erases a specified window 

Syntax: ERASE [< name >] 

Erases a window specified by its name. 'ERASE' alone, erases 

the whole screen. Note that this command will erase only the contents 

of the graphics memory. 

2.6.5 COLOR - Sets color for subsequent graphics output. 

Syntax: COLOR I< color >] 

< color >: = redlorangelye11owlgreenlb1uelvioletlbrownlblack 

On the HP2648, these colors are translated into distinct dotted 

and dashed lines. 'COLOR' alone prints the present color. 

2.6.6 VECTOR - Draws a vector between specified starting and ending 

coordinates. 

Syntax: VECTOR <xlcoor> <y1coor> <x2coor> <y2coor> 

Draws a vector from (xlcoor, y1coor) to (x2coor, y2coor) in the 

current window. 

2.6.7 MOVE - Moves cursor to specified coordinate 

Syntax: MOVE <xcoor> <ycoor> 

Moves cursor to (xcoor, ycoor) coordinate in preparation for a 

DRAW. 

2.6.8 DRAW - Draws a vector 

Syntax: DRAW < xcoor > <ycoor > 

Draws vector from previous cursor position ('MOVE' command) to 

(xcoori ycoor) coordinate. 
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2.6.9 CURSOR - Mbves cursor in preparation for teKt output. 

Syntax: CURSOR < xcoor > < ycoor > 

Moves cursor to (xcoor, ycoor) coordinate in the current window 

in preparation for text output using 'TEXT' command. 

2.6.10 CURSOREL - Positions cursor a specified number of character 

size units away from (x,y) coordinate 

Syntax: CURSOREL < xcoor > < ycoor > < ncx > < ncy > 

< ncx >: number of character positions relative to < xcoor > 

< ncy >. number of character positions relative to < ycoor > 

Example: 

CURSOREL 0.5 0.5 -3 0 

Moves cursor to 3 characters to the left of the center of the 

window. 

2.6.11 TEXT - Outputs text at the position of the graphics cursor. 

Syntax: TEXT {[<quoted string>] [<constant>] [<scalar variable>]} 

Outputs strings or numeric values at the position of the graphics 

cursor. A' CURSOR' or 'CURSOREL' command mus t precede a text command. 

Example: 

TEXT 'The value of f(1:2) =' f(1:2) 

2. 7 COMMANDS FOR SCRATCHPAD 

One of the most useful features of the package is that it allows 

the user to employ the computer as a "scratch pad" to do side calcula­

tions. In addition to the main symbol table, a separate symbol table 

is created for the scratch pad. The scratch pad commands can access 

both symbol tables but can only alter values in the scratch pad symbol 

table. The commands in the scratch pad are gi v:en below. 
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2.7.1 GETDIM - Returns actual array dimension from the symbol table. 

Syntax: GETDIM <variable> = {NCOLINROW}«variable» 

This command is used to get actual array dimensions from the 

symbol table. The left hand side variable will be created in the 

scratch pad as an integer variable containing the requested dimension 

value. The variable on the right hand side can be an array in the 

symbol table or in the scratch pad. 

Examples: 

GETDIM ICOL 

GETDIM NN 

NCOL{AQP) 

NROW(Z) 

Variable ICOL is created with value 

equal to actual number of columns 

in AQP. 

Variable NN is created with value 

equal to number of rows in array Z. 

2.7.2 PDIM - Creates a variable in scratch pad (external symbol table) 

Syntax: PD[IM] <name> [«nrow>[: <neal>])] <type> 

< name>: name of variable or array to be created. 

< nrow >: No. 0 f rows 

< ncol >: = No. of columns 

< type >: {IIRIDlc}; type of variable 

I - integer, R - real, D - double, C - complex. 

PD or PDIM is the only command that creates an array in the 

scratch pad. All entries in the array are initialized to zero. 

Examples: 

PDIM X( 3) R Creates a real vector 'x, with dimension 3. 

PD AR(ITER: 5) I: Creates an integer matrix 'AR' with 'ITER' 

rows and 5 columns. 'ITER' must be a 

variable in the scratch pad or symbol table. 
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2.7.3 PREM - Removes a variable from the scratch pad 

Syntax: PR[EM] < variable> 

The specified variable is removed from the scratch pad. 

Example: 

PR X removes X from the scratch pad. 

2.7.4 PTAB - Displays external symbol table. 

syntax: PT [AS ] [< variable >] 

Displays the name, type and value of the specified variable in 

the scratch pad. The default is to display all the variables in the 

table. If a variable is an array, its dimension and the value of the 

first element are displayed also. 

Examples: 

PT displays the whole scratch pad table 

PT X displays type and current value of variable X. 

2.7.5 PSCAL - Scalar operations in the scratch pad 

Syntax: PS[CAL] < variable> = < expression> 

< expression >: = {[[<argl>] <op>] <arg2>I<func>«argl> [<arg2>])} 

< OP > 

< func > 

= { + * I } 
addition sub. multo division 

{MAxIMINlsINI COS I TAN I ARCSIN I ARCCOS IATANI 

ATAN21pwRIAINTICMPLXlREALIAIMAGI 

ANGLE I CONJIABS ISQRTIEXpIALOGIALOGIO} 

If < variable> is a name without indices, a new variable will 

be created in the scratch pad, but if it is an array element, the array 

must exist in the scratch pad (created by PDIM command). All computations 

are performed in double precision or complex arithmetic. 
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Examples = -

PS X Z(l) + 3.5 

PSCAL FF = ALOGIO(B) 

PS PP(I) = Z(J) * Z(K) 

PS CC = CMPLX (1.5 -2.0) 

PS ASQR = PWR (A 2) 

2.7.6 PMAT - Matrix operations in the scratch pad. 

Syntax: PM [AT] <variable> = {<variable>l<number>}<OP><variable> 

< OP > 

< func >: 

Examples: 

or 

PM [AT] <variable> [<variable2>] 

= { * 
multo scalar 

multo 

+ 
addition 

} 
sub. 

{ INV I TRANS I EIGEN I TRACE I DET } 

<func> «variable» 

PM AT = TRANS (A) : Defines 'AT' as transpose of 'A' 

PM C = B A Substracts matrix 'A' from 'B' and stores 

results in 'c' 

All the arrays must be created by using a PDIM command, before 

using PMAT command. 

2.8 MISCELLANEOUS COMMANDS 

The following general utility commands are included in the 

package. 

2.8.1 ALGO - Displays the solution algorithm 

Syntax: ALGO [<step number>] 

This command without the argument displays, in a condensed form, 

the solution algorithm. If more information is desired for a particular 

step, then that step number should be given as the argument. 
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Example: 

ALGO STEP 6 Prints details of step 6 of the algorithm. 

2.8.2 HELP - Explains usage of the commands 

Syntax: HELP [<command>] 

This command without any argument lists all the available 

commands with a short description of their functions. If more 

information on a specific command is desired, that command can be used 

as an argument for the HELP command. 

Example: 

HELP HALT - Gives syntax of HALT command. 

2.8.3 ED - Calls a text editor 

Syntax: ED < macro name> 

In order to write and modify macros during execution, a text 

editor can be called using the command 'ED'. This editor is a subset 

of UNIX editor 'EX'. A summary of commands is included in Appendix B. 

2.8.4 LIST - Lists a macro file 

Syntax: LIST [LP] < macro name> 

Lists a macro file on a terminal. If LP is specified, then the 

file is written on a file 'FORT.8' which can be sent to the line printer 

using the CSH command, described later. 

Example: 

LIST PILEI Lists 'PILEI' on the terminal 

2.8.5 COpy - Copies a macro file 

Syntax: COpy < file 1 > < file 2 > 

This command creates 'file 2' with the same contents as 'file 1'. 



25 

2.8.6 DELETE - Deletes a macro file 0 

Syntax: DELETE < macro file > 

This command deletes a macro file from tne mass storage. 

2.8.7 CSH - Calls shell to execute a UNIX command 

Syntax: CSH 'any UNIX command within quotes' 

or 

CSH 

Command 1 

Command 2 

xx 

This command makes it possible to call the shell and execute 

any unix command from the package. 

2.9 MACROS FOR ROUTINE USAGE 

The commands given in Sections 2.3 - 2.8, in combination with 

INTRAC commands, are used as basic building blocks to write macros 

that perform specified tasks. This section presents some of the macros 

which are very useful for the routine usage of the optimization algorithm. 

These macros provide the following features: 

1. Simple problems, or problems with which considerable experience has 

been acquired, require very little interaction since most of the 

parameters can be preset. In this case a macro, called RUN, can be 

used to perform a specified number of iterations just as in batch 

mode. 

2. Complicated problems sometimes require that the computational 

behavior be monitored in more detail. A series of macros is 
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written so that a user can essentially single step through the 

algorithm and change any of the parameters as desired. 

3. Macros which make the use of graphics and scratch pad easier. 

In addition to these ready-made macros, users can write their 

own macros to perform specified tasks. Some of the more commonly used 

macros will be described here. 

2.9.1 RUN - Performs a specified number of iterations of the overall 

algorithm. 

< nitn > 

Syntax: RUN < nitn > [< option >] 

number of iterations of the algorithm to be performed. 

The program will stop for further action, if the number 

of iterations exceeds 'nitn' and the optimum has not yet 

been achieved. The program can be restarted by using 

RUN macro again, if desired. 

< option >: = {STORE I PRTALL} 

If PRTALL option is specified, then the program prints iteration 

number, cost function, 8, E and W on the terminal as the computation is 

progressing. With the 'STORE' option, cost function, f, Wand design 

variables are stored in scratch pad in arrays 'FG', 'PSIG' and 'ZG'. 

These arrays can be later used to plot, for example, the decrease in 

the cost versus iteration number, history of a particular variable over 

several iteration, etc. If no option is specified, only the iteration 

number is printed. 

2.9.2 STEP2 - Computes objective and constraint functions 

Syntax: STEP2 
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This macro performs Step 2 of the algorithms, i.e., it computes 

the objective function f, simple inequality constraints g and functional 

constraints ~. 

2.9.3 STEP3 - Computes a usable feasible direction 

Syntax: STEP3 

This macro performs calculations in the step 3 of the algorithm 

to find a usable feasible direction. Angles between the direction 

vector and function gradients can be displayed by using macro PRTANG. 

If these angles are not satisfactory, the push factors can be changed 

and a new direction computed. This macro also performs tests in step 4, 

and step 5 of the algorithm to see where the program is going to branch 

next. 

2.9.4 ARMIJO - Performs step length calculations using Armijo's rule. 

< nitn > 

< display>: 

Syntax: ARMIJO < nitn > [< display>] 

maximum number of iterations to be performed 

display option. 

This macro performs iterations within step 6, until either, the 

Armijo rule is satisfied or the number of iterations exceeds the 

maximum specified. For the display option, macros 'GRAPHO' or 

'GRAPHOS' can be used. Both of these macros plot Armijo step and 

simple constraints as bar charts and functional constraints at each 

iteration within the loop. The only difference between the two is 

that GRAPHOS stores values of f, ~ and z in arrays FG, PSIG and ZG 

created by using RUN macro with STORE option. A typical plot generated 

by GRAPHO is shown in Figure 2. The graphics screen is divided into 

three windows. In the top window, a line corresponding to the current 

step length being tried, is drawn. The line is below the diagonal line 
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if the cost reduction is satisfactory (i .e. D.f < -as 6'£) , 

but is above the diagonal otherwise. In the middle window bars are 

drawn corresponding to g constraints and the maximum value of ~ 

constraints. Bars at successive interations are drawn a little to the 

right of the previous bars. The £ line is also shown. The bottom 

window is divided equally into several portions to accomodate all the 

functional constraints. The functional constraints are plotted at 

each iteration in their respective portions of the window. 

These graphs gives a clear picture of what is going on within 

the Armijo loop. It is easy to identify a particular constraint that 

is causing difficulties in satisfying the Armijo rule. To correct this 

situation, a new direction can be computed with that particular 

constraint in the E-active set or the problem may be rescaled. 

2.9.5 RARMIJO - Performs iterations of the overall algorithm with 

Armijo display 

Syntax: RARMIJO < nitn > 

This macro combines RUN macro with the Armijo display GRAPHO. 

One iteration of the overall algorithm will be performed with the ' 

GRAPHO display in the step length loop. RESUME command is given to 

start the next iteration, as long as the number of iterations is less 

than < nitn >. 

Note: In parallel with this macro, there is another macro called 

'RARMIJOS' which combines RUN with GRAPHOS for storing values 

in global arrays, as explained in 'ARMIJO'. 

2.9.6 GRAPHF - plots cost function versus iteration number 
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Syntax: GRAPHF < yesno > 

< yesno >: { Y N } 

Plots cost function versus iteration number from the values of 

F stored in array FG. If < yesno > is 'Y', the curve will be marked 

to signify a new iteration. 

A plot created by GRAPHF is shown in Figure 3(a). 

2.9.7 GRAPHPSI - Plots ~ function versus iteration number. 

Syntax: GRAPHPSI < yesno > 

< yesno >: { yiN } 

Plots ~ function versus iteration number from the values stored 

in PSIG. < yesno > has the same meaning as in GRAPHF. A plot created 

by this macro is shown in Figure 3(b). 

2.9.8 GRAPHZ - Plots history of design variables 

Syntax: GRAPHZ < number> [< yesno >] 

Plots a particular design variable, specified by < number> 

versus the iteration number from the array ZG. < yesno > has the usual 

meaning. 

2.9.9 HELP MACROS 

There are many other macros which are written to make the use of 

the commands easier. They are grouped into macros for graphics and 

macros for scratch pad. A list of these macros and their syntax can be 

obtained by using the following help macros 

HLPGR 

HLPPAD 

Gives a list and syntax of macros for graphics 

Gives a list and syntax of macros which facilitate use of 

scratch pad. 



Generic 
Name 

f 

g 

z 

w 
o 

w 
c 

~ax 
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TABLE 1 

SYMBOL TABLE FOR INTEROPTDYN 

FORTRAN 
Variable 

F 

G 

PHI 

z 

PSI 

N 

JP 

JQ 

WO 

WC 

Q 

QMAX 

MAXITN 

ITER 

Type 

double precision 

double precision 

double precision 

double precision 

double precision 

Integer 

Integer 

Integer 

double precision 

double precision 

Integer 

Integer 

Integer 

Integer 

Description 

cost or objective function. 

Array containing conventional 
inequality constraints. 

vector containing functional 
constraints. The ith row 
contains the ith functional 
constraint at specified 
intervals· 

vector of design variables. 

Function 1jJ. 

Number of design variables. 

Number of simple inequality 
constraints. 

Number of functional in­
equality constraints. 

Initial value of the interval 
[wo,wc ] for which $ con­
straints are defined. 

Final value of the interval 
[wo ,wc ]· 

Number of steps into which 
the interval [wo,wc] has been 
divided. 

Maximum number of steps into 
which the interval [wo,wc] is 
to be divided· 

Maximum number of iterations 
of the overall algorithm 
allowed. 

Current iteration number. 



Generic 
Name 

III 

y 

E 

8 

s 
max 

n 

~f 

h 

FORTRAN 
Variable 

NCUT 

ITRSTP 

MUl 

MU2 

GAMMA 

E 

DELTA 

ALPHA 

BETA 

SMAX 

SCALE 

PUSHF 

PUSHG 

PUSHPH 

H 

AGRAD 
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Type 

Integer 

Integer 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

double precision 

Description 

Maximum number of simplex 
iterations allowed in 
solving the quadratic pro­
gramming problem for 
direction finding. 

Maximum number of iterations 
allowed in step length 
calculations. 

Convergence parameter. 

Convergence parameter. 

Parameter influencing search 
direction when infeasible. 

Smear parameter E. 

Parameter 0 used in con­
vergence check and step 
length calculations. 

Parameter a in step length 
calculation rule. 

Parameter 8 in step length 
calculation rule. 

Parameter controlling 
maximum step length. 

Parameter for computing push 
factors. 

Push factor parameter for 
cost function. 

Vector of push factor 
parameter for Igl constraints. 

Vector of push factor 
parameters for I~I constraints. 

Search direction vector. 

Matrix containing gradients 
of cost function and E-active 
constraints. First row always 
contains cost gradient. 



Generic 
Name 

e 

FORTRAN 
variable 

AQP 

ENORM 

ATHETA 

MUBAR 

THETA 

NEPTG 

NEPTF 

s 

OLDSTP 

ZNEW 

FNEW 

TOL 

32 

Type 

double precision 

double precision 

double precision 

double precision 

double precision 

Integer 

integer 

double precision 

double precision 

double precision 

double precision 

double precision 

~scription 

Matrix of scaled gradients 
used for direction finding. 

vector containing row norm 
of AGRAD matrix. 

vector containing angles 
between the direction vector 
and cost gradient and 
£-active contraint gradients. 

optimal values of ~'s in 
direction finding process. 

optimality function, e. 

vector containing 1 or 0 at 
the ith location depending 
upon whether ith 'g' 
constraint is active or not. 

Matrix containing mesh point 
numbers of £-active local 
maxima for functional 
constraints. 

CUrrent step length being 
tried in Armijo. 

step length at the last 
iteration. 

vector of new design variables 
corresponding to the current 
step length being tried. 

New cost function, correspond­
ing to ZNEW. 

Tolerance on minimum step 
length. 



Name 

COPFE90 

COPFEllO 

COPFElSO 

QP70 

QP90 

EACTI250 

QP205 
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EXPLANATION OF BREAKPOINTS IN INTEROPTDYN 

Initial 
Condition 

never 

never 

never 

never 

always 

always 

never 

Description 

This breakpoint is at the beginning of step 1 
of the algorithm. The program has read all 
the data from the input file and initializa­
tion has been completed. 

This breakpoint is at the beginning of step 2. 

This breakpoint is located just after calls 
to FUNCF, FUNG and FUNCPH, for evaluating f, 
g, ¢ and W functions, i.e., at the end of 
step 2. 

This breakpoint is located just before step 
3a of the algorithm. 

This breakpoint occurs at the end of step 3a, 
after determining s-active constraints. The 
program always stops at this breakpoint when 
it is first started. 

The dimensions of s-active arrays are con­
trolled by a variable NACTIV. In the present 
version, this variable, as well as dimensions 
of arrays, is set to 10. If there are more 
constraints active, control is transferred to 
this breakpoint. Two possible ways of proceed­
ing then occur. The first is to stop execution 
and increase the dimensions in the FORTRAN 
program, as explained in the listing of the 
program in [11]. A second possibility is to 
reduce s, so that some of the constraints are 
dropped, thereby reducing the dimensionality. 
After changing s- the control should be trans­
ferred to QP70. 

This breakpoint occurs after the program has 
computed a new search direction and correspond­
ing optimality function. It has also computed 
the angles between the direction vector and 
cost and E-active constraint gradients by this 
time. At this point these angles can be 
examined and a decision made as to whether to 
compute a new direction by changing some 
parameters or to go ahead and compute a step 
length in the computed search direction. 



Name 

QP220 

COPFEl55 

COPFE165 

ARMJJlOO 

ARMIJl55 

ARMIJl80 

ARMIJl90 

COPFEl80 

COPFEl90 

Initial 
Condition 

always 

never 

always 

never 

never 

always 

always 

never 

always 
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Description 

If the quadratic programming problem for 
direction finding is not solved properly, the 
control is transferred to this breakpoint. 
The user can then examine different variables 
and may use the scratch pad facility to 
determine the cause of this phenomenon. 

This breakpoint is at the end of step 3 after 
returning from the direction finding routine 
QP. 

This occurs at the end of step 5. The optimal 
solution has been achieved. 

This breakpoint is at the beginning of step 
length calculations (step 6) . 

At the beginning of main loop of Armijo. 

If the number of iterations within Armijo 
exceeds ITRSTP, the control is transferred to 
this breakpoint. ITRSTP should be increased 
and control transferred to ARMIJlOO. 

If the step length is smaller than a certain 
tolerance TOL, the program stops at this 
breakpoint. This is to warn the user that the 
computation might be jamming up. A closer 
inspection of the computation should be made 
if the process is to be continued. 

At the end of the iteration of the overall 
algorithm (step 7) • 

If the number of iterations exceeds MAXI TN , 
the control is transferred to this breakpoint. 
MAXITN should be increased to continue the 
process. 
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3. THE MINI-ANSR SYSTEM 

3.1 INTRODUCTION 

Since the optimization algorithm requires many simulations of 

response of the structure, an efficient structural analysis program 

is indispensable. Moreover, it should be based on general structural 

analysis concepts employing the finite element method in order that 

it may be applied to a wide class of problems. A general purpose 

structural analysis program - ANSR-l developed by Mondkar and Powell 

[2] was selected as the best available program, combining broad scope 

and large capacity with computational efficiency. The program structure 

has been designed to satisfy the following requirements: 

(a) Modularity The program should be modular so that new program 

capabilities, such as new elements, new constitutive laws, etc. can 

be added by developing a few subroutines, without changes to the 

existing program. This has been achieved by structuring the program as 

a base program to which a number of auxiliary programs, defining 

particular finite elements, can be added. Storage allocation and 

computations common to all finite elements are performed within the 

base program, while computations associated with specific elements are 

carried out within the auxiliary programs. 

(b) Computational Efficiency The program should incorporate efficient 

computational algorithms, including efficient equation solvers, stress 

computation algorithms etc. 

(c) Solution Strategy The program should include a flexible solution 

strategy so that a wide range of nonlinear structural systems can be 

analyzed. Flexibility has been achieved by implementing a strategy 
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defined in terms of a number of solution parameters. By assigning 

different values to these parameters, a wide variety of solution 

schemes can be implemented. 

The program MINI-ANSR is a version of ANSR-l, modified for mini 

computers with virtual memory operating systems. The major modifications 

are in storage allocation and in use of core. Two separate cornmon 

blocks for real and integer data are created, to which the storage is 

allocated dynamically. Advantage is taken of the virtual memory 

operating system to perform disc operations more efficiently. In the 

program it is assumed that there is enough storage available for the 

analysis and the operating system calls for writing and reading of 

blocks of information to and from the disc. 

In the following sections some of the main features of the 

program are described and instructions for writing new elements are 

given. 

3.2 PROGRAM FEATURES AND LIMITATIONS 

3.2.1 Structural Idealization 

(a) The structure is idealized as an assemblage of discrete finite 

elements connected at nodes. Each node may possess up to six displace­

ment degrees of freedom. Provision is made for degrees of freedom to 

be deleted or combined. This feature provides the user with ample 

flexibility in the idealization of the structure, and may permit the 

size of the problem to be substantially reduced. 

(b) The mass of the structure is assumed to be lumped at the nodes, 

so that the mass matrix is diagonal. 
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(c) Viscous damping effects may be included, if desired. Damping 

effects proportional to mass, initial elastic stiffness and/or tangent 

stiffness can be specified. 

3.2.2 Static and Dynamic Loadings 

(a) Loads are assumed to be applied only at the nodes. Static andl 

or dynamic loads may be specified; however, static loads, if any, must 

be applied prior to the dynamic loads. 

(b) For static analysis, a number of static force patterns must be 

specified. Static loads are then applied in a series of load 

increments, each load increment being specified as a linear combination 

of the static force patterns. This feature permits nonproportional 

loads to be applied. Each load increment can be specified to be 

applied in a number of equal steps. 

(c) The dynamic loading may consist of earthquake ground accelerations, 

time dependent nodal loads, and prescribed initial values of the nodal 

velocities and accelerations. These dynamic loadings can be specified 

to act singly or in combination. 

3.2.3 Solution Procedure 

(a) The program incorporates a solution strategy defined in terms 

of a number of control parameters. By assigning appropriate values to 

these parameters, a wide variety of solution schemes including step-by­

step, iterative and mixed schemes, may be implemented. 

(b) For static analysis, a different solution scheme may be employed 

for each load increment. The use of this feature can reduce the 

solution time for structures in which the response must be computed 

more precisely for certain ranges of loadipg than for others. In such 
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cases, a sophisticated solution scheme with equilibrium iteration might 

be used for the critical ranges of loading, whereas a simpler step-by­

step scheme without iteration might suffice for other loading ranges. 

(c) The dynamic response is computed by step-by-step integration of 

incremental equations of motion using Newmark's method. A variety of 

integration operators may be obtained by assigning appropriate values 

to the parameters S and y. 

3.2.4 Other Features 

(a) The stiffness matrix of the structure is stored column - wise 

in a compacted form omitting most zero elements to save storage. 

(b) The stiffness matrix is modified, rather than completely 

reformed, as the tangent stiffness changes. During solution, the 

decomposition is carried out only on that part of the updated stiffness 

matrix which follows the first modified coefficient. Significant 

savings in solution time can sometimes be obtained by numbering the 

nodes connecting nonlinear elements to be last, so that the decom­

position operations are limited to the end of the matrix. 

(c) Data checking runs may be made prior to execution runs. During 

data checking, the program reads and prints all input data, but performs 

no substantial analysis. 

(d) Nonlinearities are introduced at the element level only, and 

may be due to large displacements, large strains and/or nonlinear 

materials. The programmer adding a new element may include any type 

or degree of nonlinearity in the behavior of the element. 



39 

3.3 FINITE ELEMENT LIBRARY 

At present, the following finite elements are included in the 

program. New finite elements may be added to the library with relative 

ease by following the instructions given in the next section. 

3.3.1 Three-Dimensional Elastic Truss Element 

This element can be located arbitrarily in an X, Y, Z cartesian 

coordinate system. It can transmit axial forces only. 

3.3.2 Three-Dimensional Nonlinear Truss Element 

This element may yield in tension and yield or buckle elastically 

in compression. Large displacement effects may be included. See [2] 

for theoretical details of this element. 

3.3.3 TWo-Dimensional Elastic Beam Element 

TWo-dimensional elastic beam elements can be located arbitrarily 

in an X, Y cartesian coordinate system. Shear deformations are 

ignored. 

3.3.4 TWo-Dimensional Nonlinear Beam Element 

This element may be arbitrarily oriented in the global X Y Z 

reference frame. Each element must be assigned an axial stiffness plus 

a major axis flexural stiffness. Tbrsionaland minor axis flexural 

stiffnesses may also be specified if necessary. Flexural shear 

deformations and the effects of eccentric end connections can be taken 

into account. Yielding may take place only at concentrated plastic 

hinges at the element ends. Hinge formation is affected by the axial 

force and major axis bending moment only. Strain hardening and large 

displacement effects can be approximated. See [13] for theoretical 

details of this element. 
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3.3.5 Three-Dimensional Nonlinear Beam Element 

This element may be arbitrarily oriented in the global X Y Z 

reference frame. Each element must be assigned flexural stiffness 

and axial stiffness. plastic hinges can form at the element ends. 

Interaction among the bending moments, torsional moment and axial 

force is taken into consideration. Displacements are assumed to be 

small, although the P-delta effect may be considered. Theoretical 

details are given in [13]. 

3.4 ADDITION OF ELEMENTS TO PROGRAM 

The computer program is organized so as to facilitate addition 

of new elements to the existing element library of the program. For 

this purpose, the program is divided into two parts, namely, (1) the 

base program consisting of a series of subroutines performing specific 

tasks required for static and dynamic analysis, and (2) a number of 

auxiliary programs, each program consisting of a package of subroutines 

required for a specific type of finite element in the element library. 

The user wishing to add a new element to the library is mainly con­

cerned with the structure and organization of the auxiliary program, 

which will be described in the subsequent sections. The organization 

of the base program will not be described in this report; however, 

sufficient details will be given to provide an understanding of the 

linkage and information transmittal between the base program and the 

auxiliary program. 

3.4.1 Transmittal of Information 

During input, the elements are arranged into groups, such that 

all elements in any group are of the same type. Depending on the type 

of element, the base program refers to the package of subroutines of 



41 

the auxiliary program, at various phases o~ the computation. Informa-

tion is transmitted to or returned from the subroutines of the 

auxiliary program through the argument lists and through labelled 

COMMON blocks. 

For each element, two blocks of information are created, one 

for real variables and the other for integer variables. These are 

continuously updated during execution. All information to be retained 

for any element must be contained within these blocks. 

The base program transfers the element information to a sub-

routine in the auxiliary program through the arrays COMS and ICOMS. 

The addresses assigned to these arrays in the base program correspond 

to the first words of information, in real and integer blocks, for the 

corresponding element. To transfer the data from the arrays COMS and 

ICOMS to the element information blocks, the following FORTRAN state-

ments must appear at the beginning of each auxiliary subroutine. 

in which 

COMMON/INFELI/IMEM, ••. 

COMMON/INFELR/RDATA(l) 

DIMENSION COMS(l), ICOMS(l), COM(l), ICOM(l) 

EQUIVALENCE (IMEM,ICOMS(l», (RDATA(l) ,COMS(l». 

DO 100 J = 1, NINFCI 

100 ICOM(J) = ICOMS (J) 

DO 110 J = 1, NINFCR 

110 COM(J) = COMS (J) 

NINFCI 

NINFCR 

Nunber of words in the common block INFELI for 
that element 

Number of words in the common block INFELR for 
that element. 
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The contents of common blocks INFELI and INFELR will be described 

subsequently. 

The data within the blocks INFELI and INFELR will usually be 

updated during computations in the subroutine, so that it is necessary 

to transmit the updated data back to the arrays COMS and ICOMS at the 

end of the subroutine. This is achieved through the following FORTRAN 

statements. 

DO 200 J = 1, NINFCI 

200 ICOMS(J) = ICOM(J) 

DO 210 J = 1, NINFCR 

210 COMS(J) = COM(J) 

It may be noted that in most cases only a part of the data is updated. 

Hence, it may be more efficient to transfer the modified data 

selectively. However, it can be expected that the computer time 

required to transfer data from arrays COMS and ICOMS to the blocks 

INFELR, and INFELI and vice versa, will be a small proportion of the 

total execution time. 

3.4.2 Labelled Common Blocks 

(a) COMMON Blocks 

The labelled COMMON blocks used in subroutines of the auxiliary 

program are as follows. 

(a) COMMON/TAPES/NIU, NOU, NT1, NT2, NT3, NT4, NT5, NTEMP 

(b) COMMON/INFELI/lMEM, KST, LM( ••• ) , •.• 

(c) COMMON/INFELR/RDAT(l) 

(d) COMMON/WORK/WORK (2000) 
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(b) Input/OUtput unit Block (/TAPES/) 

This block contains disc file units assigned by the base 

program. These should not be changed in any of the subroutines of the 

auxiliary program. NIU is the input unit to read data and NOU is the 

output unit to print data. Other units are not used in the present 

version. 

(c) Element Information Block (/INFELI/) 

This block contains all integer data to be retained for any 

element. The data can be arranged by the programmer in any desired 

order except for the following restrictions: 

(I) The first word of the block must be the element number. 
The variable name IMEM is suggested. 

(2) The second word must be the stiffness update code, as 
explained subsequently. Variable name KST is suggested. 

(3) The third word must be the first word of the element 
location matrix. The suggested variable name is LM. The 
length of the vector LM equals the number of degrees of 
freedom of the element. 

The remaining data of the block can be arranged in any order. 

These data will typically consist of the output history code, code for 

including geometric effects, etc. 

(d) Element Information Block (/INFELR/) 

This block contains all real or double precision data to be 

retained for any element. These data can be arranged by the programmer 

in any desired order. Such data will typically consist of element 

material properties, nodal coordinates, strain-displacement trans-

formation matrices, current stiffness matrix, strains and stresses at 

integration points, envelope values of stresses and strains, plastic 

strains, etc. 
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(e) Work Block (/WORK/) 

This block provides a core area for use by the programmer. The 

work area provided by this block can be used for storage and manipula-

tion of data during execution of any subroutine in the auxiliary program. 

Because this area is also used for temporary data storage by sub-

routines in the base program, it must not be used to transfer data 

between auxiliary subroutines. 

3.4.3 Auxiliary Program 

(a) General 

Each auxiliary program consists of a package of subroutines 

required for a specific type of finite element. Each program consists 

of four main subroutines, as follows: 

(a) INEL: Input and initialization of element information. 

(b) STIF: Formation of element tangent stiffness in static 
analysis, or of element effective stiffness in 
dynamic analysis. 

(c) RESP: Computation of element deformations (strains) and 
actions (stresses); determination of yield status; 
updating of element information; computation of 
equivalent nodal loads in equilibrium with the 
current state of stress; computation of equivalent 
damping loads; and printing of strain and stress 
results. As will be explained subsequently, con­
trol is exercised by the base program to perform 
selectively anyone or a combination of the above 
operations. 

(d) OUT: Output of envelope values of element deformations 
(strains) and actions (stresses) at specified load 
increments in static analysis or at specified time 
intervals in dynamic analysis. 

Each of these four routines must be identified by a number 

designating the element type, suffixed to the subroutine name. For 

example, the names of subroutines for the element type 1 must be INELl, 

STIFl, RESPI and OUTI. The programmer can also write, if needed, 
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additional secondary subroutines which are ref€renced by anyone of 

the four main subroutines. At the end of such a subroutine control 

will be returned to a main subroutine, whereas at the end of a main 

subroutine control will be returned to the base program. Information 

may be transferred to and from secondary subroutines through argument 

lists, through the WORK common block, or through other labelled COMMON 

blocks created specifically for such information transfer. 

Explanations of the tasks performed by each of the main sub-

routines, and the meanings of the variables of the argument lists, are 

given in the following sections. 

(b) Subroutine INEL 

This subroutine is referenced by the base program once for each 

group of elements of the corresponding element type. For example, 

subroutine INELI will be called once for each group of elements con-

taining elements of type 1. 

The purpose of the subroutine is to read the input data for all 

elements in the group, and to initialize the variables in the element 

information blocks INFELI and INFELR. 

The subroutine requires labelled COMMON blocks TAPES, INFELI 

and INFELR. The labelled COMMON block WORK may be used if desired. 

The argument list is as follows. 

LPAR: 

FLPAR: 

NDOF: 

A vector of dimension 10, which upon entry contains up 
to 10 control parameters for each element group. 

A vector of dimension 6 which upon entry contains up to 
6 control parameters for each element group. 

Number of element degrees of freedom. 

NINFCR: NuIDber of real words of information stored for each 
element in the element group. This number equals the 
length of the labelled COMMON block INFELR for elements 
of the type being considered. 



46 

NINFCI: Number of integer words of information stored for each 
element in the element group. This number equals the 
length of the labelled COMMON block INFELI for elements 
of the type being considered. 

NJT: Total number of nodes in the structure. This value is 
assigned by the base program. 

NDKOD: 

X,Y,Z: 

An array of dimension (NJT x 6), which upon entry con­
tains the numbers of the structure degrees of freedom. 
That is, NDKOD (I,l) thru NKDOD (I,6) contain the 
numbers of the structure degrees of freedom correspond­
ing to the X displacement, Y displacement, Z displace­
ment, X rotation, Y rotation and Z rotation, respec­
tively, at node I. These values are generated by the 
base program, and must not be changed in the auxiliary 
program. 

Vectors of dimension NJT each, which upon entry contain 
nodal coordinates. That is X(I), Y(I) and Z(I) contain 
the X, Y and Z coordinates, respectively of node I. 
These values are generated by the base program, and 
must not be changed in the auxiliary program. 

The title of the subroutine, for example for element type 

1, must be as follows: 

SUBROUTINE INELI (LPAR,FLPAR,NDOF,NINFCR,NINFCI,NDKOD,X,Y,Z,NJT) 

The values of the control parameters in vectors LPAR and FLPAR 

are established within the base program by reading the first data card 

of each element group using a (10I5, 6F5.0) format. The first three 

control parameters in LPAR and the first two control parameters in 

FLPAR are stored by the base program as control parameters for the 

element group, and are used subsequently. These parameters must be as 

follows: 

LPAR(l) : 

LPAR(2) : 

LPAR(3) : 

A number identifying the type of element in the group. 
For example, if 4 is entered, the subroutines called 
for this group will be INEL4, STIF4, RESP4, and OUT4. 
Presently, this parameter can be assigned values 1 
through 10. 

Number of elements in the group. 

Element number of the first element in the group. 
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FLPAR(l): Initial stiffness damping factor S . 
o 

FLPAR(2): Current tangent stiffness damping factor ST. 

All other words in LPAR and FLPAR can be assigned values, as 

needed, by the programmer. 

All subsequent data for the elements are read within the sub-

routine INEL, with the sequence and input formats to be decided by the 

programmer. 

The following steps must be performed within the subroutine: 

(a) Set the values of the variables NDOF, NINFCR and NINFCI. 

(b) If desired, establish reference tables of material properties, 
fixed end forces, initial stresses etc. for later use in 
specifying properties for each element. The WORK block may be 
used to store these tables temporarily. 

(c) Specify properties of each element in the group. This data will 
typically consist of node numbers, material properties, the 
initial state of stress, an indicator for inclusion of large 
displacement effects, etc. Any reference tables established in 
(b) may be used. Generation options may be incorporated, pro­
vided the elements are generated in element number sequence and 
information for only one element at a time is stored in the 
COMMON blocks INFELR and INFELI, as appropriate. 

(d) For each element, the following initialization operations must 
be performed. 
(1) Set up the element location matrix, LM, within the COMMON 
block INFELI. This can be done with reference to the numbers 
of the structure degrees of freedom contained in the array NDKOD, 
and the element node numbers. 
(2) Set IMEM to the element number within the group. Set the 
stiffness update code KST to one (KST = 1) . 
(3) Set any status indicators established within the COMMON 
block INFELI to appropriate values. Such indicators will 
typically be used to indicate whether or not large displacement 
effects are to be considered; to monitor yield status; to 
control printing of stress-strain history results; etc. 
(4) Compute and save, within the block INFELR, strain­
displacement transformation matrices for formation of element 
stiffness terms and for state determination calculations to be 
carried out in the auxiliary routines STIF and RESP, respectively. 
It should be noted that the nodal coordinates X, Y, Z are not 
transferred by the base program to the auxiliary routines STIF 
and RESP. However, the programmer may retain the nodal 
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coordinates for the nodes to which the elements connects, as 
part of the INFELR block, if desired. 
(5) Call subroutine BAND with the statement 

CALL BAND (LM I NOOF) 
This permits the base program to establish information on the 
profile of the structure stiffness matrix. This call must be 
made subsequent to the setting up of the element location 
matrix LM. 
(6) Call subroutine COMPCT with the statement 

CALL COMPCT 
This transfers NINFCI words from INFELI block to the main array 
containing integer information, and NINFCR words from INFELR 
block to the blank COMMON containing real data. This call must 
be made after the element information in the blocks INFELI and 
INFELR has been fully initialized. 

(c) Subroutine STIF 

This subroutine is referenced by the base program each time a 

change in element stiffness is to be calculated, unless the solution 

control parameters are such that the structure stiffness from a 

previous step is to be retained. The subroutine is referenced in the 

following situations: 

(a) For the first step in either a static analysis or a dynamic 
analysis, the subroutine is referenced by the base program once 
for each element. For static analysis, the load steps are 
numbered sequentially in decreasing order by the base program 
(ISTEP = 0, -1, -2, •.. , etc.) whereas for dynamic analysis the 
time steps are numbered sequentially in increasing order 
(ISTEP = 1,2, 3, ..• , etc.). Thus, when ISTEP = 0, the sub­
routine is called once for each element to form the initial 
elastic stiffness; whereas when ISTEP = 1, it is called once 
for each element to form the effective stiffness matrix, which 
includes contributions due to the inertial and/or damping matrix 
terms. 

(b) The static solution control parameters or the dynamic solution 
control parameters determine the frequency with which the sub­
routine will be referenced. Situations will arise when the 
solution control parameters specify no reference to the sub­
routine even when a stiffness change is indicated for one or more 
elements. However, these situations are dealt with in the base 
program. 

As with the subroutine INEL1, the subroutine STIFl will be called 

for elements of type 1. The purpose of the routine is to compute a 

change in element stiffness, and transfer this change to the base 
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program for subsequent assembly into the- structure stiffness matrix. 

Because the structure stiffness matrix is not necessarily updated at 

every load step, time step, or iteration, the change in the element 

stiffness must reflect the change since the last update. 

The subroutine requires the labelled COMMON blocks INFELI and 

INFELR. The labelled COMMON block WORK may be used if desired. The 

argument list is as follows: 

ISTEP: Load step number, or time step number. This value is 
assigned by the base program. 

NDOF: See INEL routine. This value is now assigned by the 
base program. 

NINFCI: See INEL routine. This value is now assigned by the 
base program. 

NINFCR: See INEL routine. This value is now assigned by the 
base program. 

CDKO: 

CDKT: 

ICOMS : 

COMS : 

FK: 

INDFK: 

Value of constant a4S to be used in computing the 
contribution of the dgmping terms to the effective 
stiffness matrix in dynamic analysis. 
This value is assigned by the base program. 

Value of constant a4ST to be used in computing the 
contribution of the damping terms to the effective 
stiffness matrix in dynamic analysis. 
This value is assigned by the base program. 

A vector of dimension NINFCI, which upon entry contains 
the integer element information. The address assigned 
to ICOMS in the base program corresponds to the first 
word of integer information for the element. 

A vector of dimension NINFCR, which upon entry contains 
the real element information. The address assigned to 
COMS in the base program correspond to the first word 
of real information for the element. 

An array of dimension of at most (NDOF x NDOF), into 
which is to be placed the change in the element stiff­
ness matrix since the last update. See explanation 
below. 

Indicator to specify the storage arrangement of the 
element stiffness matrix in the array FK. The pro­
grammer is required to assign a value of zero or one to 
INDFK in this subroutine as explained in the following: 
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The element stiffness matrix can be stored in the array FK either (1) 

as a square symmetric matrix of dimension (NDOF x NDOF) or (2) as a 

vector in which the columns of the lower part of the symmetric stiff-

ness matrix are stacked together compactly. The number of words in 

the vector of form (2) will be NDOF x (NDOF + 1)/2. The programmer is 

required to assign, to INDFK, a value of zero if the element stiffness 

is stored as in (1), or a value of one if the element stiffness is 

stored as in (2). The base program uses INDFK in the assembly of the 

element stiffness matrix into the structure stiffness matrix. 

The title of the subroutine, for example for element type 1, 

must be as follows. 

SUBROUTINE STIFl (ISTEP, NDOF, NINFCI, NINFCR, CDKO, 
CDKT, ICOMS, COMS, FK, INDFK) 

The following steps must be performed within the subroutine: 

(a) Transfer the data from the arrays ICOMS and COMS to the element 
information block INFELI and INFELR. The procedure explained 
in section 3.4.1 must be used. 

(b) Set INDFK to zero or one, as appropriate. 

(c) For static analysis (ISTEP < 0), compute the change in the 
element tangent stiffness matrix. When ISTEP = 0, this change 
equals the initial elastic stiffness matrix. For dynamic 
analysis (ISTEP > 1), compute the change in the element effective 
stiffness matrix~ Store the change in array FK, the storage 
scheme depending on the value assigned to INDFK. 

(d) Set the stiffness update code (KST) to zero. Update any other 
data in the COMMON blocks INFELI ~1d INFELR. 

(e) Transfer the information in the blocks INFELI and INFELR to the 
arrays rcoMS and COMS. The procedure explained in Section 3.4.1 
must be used. 

(d) Subroutine RESP 

This subroutine is referenced by the base program for each element 

at each iteration within a load step in static analysis, and at each 

iteration within a time step in dynamic analysis. 
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As with the subroutine INEL1, the subroutine RESPl will be 

called for elements of type 1. 

The tasks to be performed in this subroutine are: (Tl) compute 

the element deformations (strains) and actions (stresses); (T2) 

determine the change of status if any; (T3) compute equivalent nodal 

loads in equilibrium with the current state of stress; (T4) compute 

equivalent damping loads; (T5) accumulate envelope values of element 

deformations (strains) and actions (stresses); (T6) update the element 

information; and (T7) print the strain and stress results. As 

explained subsequently, the base program specifies, through the 

indicator KUPD, which of the above tasks should be performed at any 

iteration in a load step or time step. 

The subroutine requires the labelled COMMON blocks TAPES, INFELI 

and INFELR. The labelled COMMON block WORK may be used if desired. 

The argument list for this routine is as follows. 

NDOF: 

NINFCI: 

NINFCR: 

MFST: 

KPR: 

ICOMS : 

See INEL routine. This value is assigned by the base 
program. 

See INEL routine. This value is assigned by the base 
program. 

See INEL routine. This value is now assigned by the 
base program. 

Element number of the first element in the group. This 
value is assigned by the base program, and equals the 
control parameter LPAR(3). See INEL routine. 

Print indicator for element stress and strain results. 
This value is assigned by the base program. KPR is 
set equal to zero if the results are not to be printed, 
otherwise it is set equal to the element group number. 

A vector of dimension NINFCI, which upon entry contains 
the integer element information. The address assigned 
to ICOMS in the base program corresponds to the first 
word of information (integer) for the element. 
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Q: 

VEL: 

ACC: 

FE: 

FD: 

TIME: 

DKO: 
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A vector of dimension NINFCR, which upon entry contains 
the real element information. The address assigned to 
CaMS in the base program corresponds to the first word 
of information (real) for the element. 

A vector of dimension NDOF, which upon entry contains 
the increments in the element nodal displacements. 

A vector of dimension NDOF, which upon entry contains 
the element nodal velocities. 

A vector of dimension NDOF, which upon entry contains 
the element nodal accelerations. 

A vector of dimension NDOF, in which the nodal loads 
in equilibrium with the current state of stress must 
be returned. 

A vector of dimension NDOF, in which the damping loads 
at the element nodes must be returned. 

Time, in seconds, at the current time step. This value 
is assigned by the base program. In static analysis, 
TIME = 0.0. 

Initial stiffness damping factor, 
assigned by the base program. 

s . o 
This value is 

DKT: Tangent stiffness damping factor, ST' This value is 
assigned by the base program. 

C7: Value of a constant to be used in computing the con­
tribution of damping to the effective load vector in 
dynamic analysis. This value is assigned by the base 
program. 

C8: Value of constant a6 to be used in computing the con­
tribution of damping to the effective load vector in 
dynamic analysis. This value is assigned by the base 
program. 

KUPD: 

KITRN: 

An indicator controlling which task or combination of 
tasks is to be performed in this routine, as explained 
subsequently. The base program sets KUPD to a value of 
1 through 4, 

An indicator specifying the form of the effective load 
vector in dynamic analysis. This value is assigned by 
the base program. See [2J for more details. 
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The values of MFST and KPR should be used by the programmer to print 

the element group number and an appropriate heading when the element 

stress and strain results are printed. Additionally, the progranuner 

can print selectively the results for certain elements within the 

group, with the aid of appropriate indicator stored as part of the 

element information. 

The indicator KUPD is required to be used as follows, in per-

forming the tasks (Tl) through (T7) specified earlier. 

(1) KUPD = 1: Perform tasks (Tl) through (T7) 

(2) KUPD = 2: Perform tasks (Tll through (T4) and (T7) 

(3) KUPD 3: Perform task (T7) only 

(4) KUPD 4: Perform tasks (T3), (T4) and (T7) 

The computation of damping stresses and equivalent nodal loads 

due to damping is to be performed in dynamic analysis only (i.e. when 

TIME> 0.0). 

The title of the subroutine, for example for element type 1, 

must be as follows. 

SUBROUTINE RESPl . (NOOF, NINFCI, NINFCR, MFST, KPR, ICOMS, 
COMS, Q, VEL, ACC, FE, FD, TIME, DKO, 
DKT, C7, CS, KUPD, KITRN) 

The following steps must be performed within the subroutine 

(a) Transfer the data from the arrays COMS and ICOMS to the element 
information blocks INFELR and INFELI. The procedure explained 
in Section 3.4.1 must be used. 

(b) Perform the task (Tl) through (T7), depending on the value of 
the indicator KUPD. If the element changes its status because 
of material yielding or unloading, set the stiffness update code 
(KST) to one. If large displacement effects are included for 
the element, KST must always be set to 1, because there will be 
a continuous change in the element geometry and hence in its 
stiffness. KST must be set prior to updating the element informa­
tion in the block INFELI (i.e. prior to performing task (T6». 
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(c) Transfer the information in the blocks INFELI and INFELR to the 
arrays ICOMS and CaMS. The procedure explained in Section 
3.4.1 must be used. The transfer of this information must be 
carried out only if KUPD = 1. 

(e) Subroutine OUT 

This subroutine is referenced by the base program for each 

element at selected static load increments and at specified time step 

intervals. 

As with the subroutine lNELl, the subroutine OUTI will be called 

for elements of type 1. 

The purpose of this routine is to print the envelope values of 

stresses, strains and the corresponding times at which these maxima 

have occurred. The sequence and formats for printing these results are 

to be decided by the programmer. If the programmer decides to omit 

storing envelope values and corresponding times in the block INFELR, a 

dummy OUT subroutine must be supplied. 

The subroutine requires the labelled COMMON blocks TAPES, INFELI 

and INFELR. The labelled COMMON block WORK may be used if desired. 

The argument list is as follows: 

ICOMS : 

COMS: 

NINFCI: 

NINFCR: 

MFST: 

A vector of dimension NINFCI, which upon entry contains 
the integer element information. The address assigned 
to ICOMS in the base program corresponds to the first 
word of integer information for the element. 

A vector of dimension NINFCR, which upon entry contains 
real element information. The address assigned to CaMS 
in the base program corresponds to the first word of 
real information for the element. 

See INEL routine. This value is assigned by the base 
program. 

See INEL routine. This value is assigned by the base 
program 

See INEL routine. This value is assigned by the base 
program. 
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The" title of the subroutine, for example for element type 

1, must be as follows. 

SUBROUTINE OUTl (ICOMS, COMS, NINFCI, NINFCR, MFST) 

The following steps must be performed within the subroutine. 

(a) Transfer the data from the arrays COMS and ICOMS to the element 
information blocks INFELR and INFELI. The procedure explained 
in Section 3.4.1 must be used. 

(b) Print an appropriate heading for the results if IMEM equals 
MFST. 

(c) Print the envelope results. 
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4. INTERFACE BE'IWEEN ANALYStS AND OFTIMIZATION 
PACKAGES 

4.1 INTRODUCTION 

The INTEROPTDYN program, described in Section 2, is a general 

purpose optimization program which can be used to solve a variety of 

design problems. TO define a particular problem, the user needs to 

supply the following routines: 

(i) PARSYM: 

(ii) FUNCF: 

(iii) GRADF: 

(iv) FUNCG: 

(v) GRADG: 

(vi) FUNCPH: 

(vii) GRADPH : 

Called once at the beginning of the program to 
specify fixed system parameters. 

To evaluate cost function. 

To evaluate cost gradient. 

TO evaluate simple inequality constraints. 

TO evaluate gradients of simple inequality constraints. 

To evaluate functional inequality constraints. 

To evaluate gradients of functional inequality 
constraints. 

The structural analysis program, MINI-ANSR, is called from these sub-

routines. This structure allows the user maximum flexibility in terms 

of computing constraint functions and their gradients. Moreover, it 

preserves the modular structure of the package. For example, a new 

structural analysis program could be added to replace MINI-ANSR without 

any difficulty. 

In the following sections the calling sequence and functions of 

the above subroutines are described. '!Wo examples of optimal design are 

discussed in Section 5, in detail, to clarify the interface between 

these subroutines and the MINI-ANSR routines. 
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4.2 CALLING SEQUENCE AND TASKS TO. BE PERFORMED BY FUNCTION EVALUATION 
ROUTINES 

The calling sequence and tasks to be performed by function 

evaluation routines are given below. Note that all the variables 

identified as input (I) are set in the base program, INTEROPTDYN, and 

should not be changed in the function evaluation routines. 

1. PARSYM: 

This subroutine is called once only at the beginning of the 

program and is used to specify the fixed system parameters. It is 

called from the base program as follows: 

CALL PARSYM (N, Z) 

where the arguments have the following meaning: 

N: Number of optimization variables (input). 

Z: Vector containing current values of optimization (design) 
variables (I). 

This subroutine is used to perform the following tasks: 

(i) Initialize COMMON blocks needed in function evaluation and 
analysis program. 

(ii) Read problem related input data. 

(iii) Declare variables into the INTEROPTDYN symbol table which need 
to be changed interactively, as explained below. 

(iv) Define variables which remain constant during optimization. 

(v) Print a short description of the problem on the screen, if 
desired. 

The variables which need to be accessed during execution must be 

declared into the INTEROPTDYN symbol table. This can be achieved by 

calling a subroutine 'DECLAR' as follows: 

CALL DECLAR ('VNAME', 'TYPE' ,IDIM,VAR.NROW,NCOL) 
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where the variables in the argument have the following meaning: 

VNAME: Variable name to be used during interaction. Usually 
same as FORTRAN variable name,but could be different. 

TPYE: Type of variable, first character determines type: 

I - integer 

L - logical 

R-real 

D - double precision 

C - complex 

S - character string 

101M: Dimension parameter of the variable. 

o - scalar variable 

1 - one dimensional array 

>1 - declared row dimension for a two-dimensional array 

VAR: Variable to be declared. 

NROW: Number of rows, (0 for scalar) • 

NCOL: Number of columns (0 for scalar) • 

Any number of variables can be declared in this fashion. If a 

variable with the same name already exists in the symbol table, the 

program will give an error message. 

2. FUNCF: 

This subroutine evaluates the cost function f. It is called 

from the base program as follows: 

CALL FUNCF (N,Z,F,NFUNCF) 

where the arguments have the following meaning: 
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N: Number of optimization variables, (input). 

Z: Vector containing current values of optimization 
variables, (input). 

F: Value of the objective function f, (output). 

NFUNCF: A counter, which counts the number of times this sub­
routine is called, (input). 

3. GRADF: 

This subroutine evaluates the gradients of the objective func-

tion. The calling sequence for this subroutine is: 

CALL GRADF (N,Z,GRAD) 

where the arguments have the following meaning: 

N: Number of optimization variables, (input). 

Z: Vector containing current values of optimization 
variables, (input). 

GRAD: Vector containing gradients of objective function, 
(output). The ith entry in this vector should contain 
the partial derivative of the objective function with 
respect to the ith optimization variable. 

4. FUNCG: 

This subroutine evaluates conventional inequality constraint 

functions (functions "g"). It is called from the base program as 

follows: 

CALL FUNCG (N,JP,Z,G,PSI,NFUNCG) 

where the arguments have the following meaning: 

N: Number of optimization variables, (input). 

JP: Number of constraints of this type, (input). 

Z: Vector containing current values of optimization variables, 
(input). 



G: 

PSI: 
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Vector of functions "g", having dimension "JP", (out­
put). These functions could be arranged in any order, 
but the corresponding gradients must follow the same 
order in subroutine GRADG. 

Function~. At input it is initialized to its proper 
value by the main program. The maximum of functions 
g is computed and PSI is set equal to the greater of 
its input value or the maximum g function value at 
output. This should be achieved by adding the following 
FORTRAN statements, just before RETURN. 

DO 100 I = 1, JP 

100 IF (G(I).GT.PSI)PSI G(I) 

NFUNCG: A counter which is set equal to the number of the 
current call to this subroutine, (input). 

5. GRADG: 

This subroutine evaluates the gradients of conventional in-

equality constraints (functions g). The calling sequence for this 

subroutine is: 

CALL GRADG (N, J, z, GRAD) 

where the arguments have the following meaning: 

N: Number 0 f optimization variables, (input). 

J: Serial number of the constraint function for which the 
gradient is to be evaluated. A separate call is made for 
evaluation of gradient of each function, (input). 

Z: Vector containing current values of optimization 
variables, (input). 

GRAD: Vector containing gradient of jth g constraint with 
respect to the optimization variables. The dimension of 
this vector is "N". The ith entry in this vector should 
contain the partial derivative of the jth conventional 
constraint function with respect to the ith optimization 
variable, (output). 
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6. FUNCPH: 

This subroutine evaluates dynamic inequality constraint functions 

(functions ~). It is called from the base program as follows: 

CALL FUNCPH (N,NJQ,JQ,Z,WO,WC,DELTAW,NQ,PHI,PSI,NFUNCP) 

where the arguments have the following meaning: 

N: 

NJQ: 

JQ: 

Z: 

WO: 

WC: 

Number of optimization variables, (input). 

Row dimension of matrix PHI in the main program, 
(input) . 

Number of constraints of this type, (input). 

vector containing current values of optimization 
variables, (input). 

Initial value of the interval over which the functional 
constraint is to be evaluated, (input). 

Final value of the interval over which the functional 
constraint is to be evaluated, (input). 

NQ: Number of discretization points, (input). 

DELTAW: Discretization interval, defined as. 

DELTAW (WC - WO)/NQ 

PHI: Matrix containing values of functions~. The ith row 
of this matrix contains values of ith functional con­
straint at specified intervals, (output). 

PSI: Function~. At input it is initialized to its proper 
value by the main program. The maximum of functions ~ 
is computed and PSI is set equal to the greater of its 
input value or the maximum ~ function value at output. 
This should be achieved by adding the following FORTRAN 
statements, just before RETURN. 

DO 100 L 1, JQ 

DO 100 K 1, NQ 

IF(PHI(L,K) .GT.PSI)PSI PHI(L,K) 

100 CONTINUE 
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NFUNCP: A counter which is set equal to the number of the 
current call to this subroutine, (input). 

7. GRADPH: 

This subroutine evaluates gradients of dynamic inequality con-

straint functions (functions ¢). It is called from the base program 

as follows: 

CALL GRADPH (N,NJQ,NACTIV,JQ,WO,WC,DELTAW,NQ,NEPTF,L,Z,K,GRAD,IGRAD) 

where the arguments have the following meaning: 

N: Number 0 f optimization variables, (input). 

NJQ: Row dimension 0 f matrix NEPTF, (input). 

NACTIV: Column dimension of matrix NEPTF, (input). 

JQ: Number of functional constraints, (input). 

WO: Ini tial value 0 f the interval over which the functional 
constraint is to be evaluated, (input). 

WC: Final value of the interval over which the functional 
constraint is to be evaluated, (input) 

NQ: Number of discretization points, (input). 

DELTAW: Discretization interval, defined as 

NEPTF: 

L: 

DELTAW = (WC - WO)/NQ 

Matrix of points at which the E-active intervals have 
local maxima. The ith row of this matrix corresponds 
to the ith functional constraint. It contains the mesh 
point number at which the constraint is active. The 
entries start from the first column and are in 
ascending order. The remainder of the entries is filled 
wi th zeros. This matrix could be used to store 
gradients of functional constraints only at the points 
included in this matrix. See example of the optimal 
design of a braced frame, where it is used for this 
purpose, (input). 

Serial number of the current functional constraint. A 
separate call is made for evaluation of gradient of 
each €-active point, (input). 
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Z: Vector containing current values of optimization 
variables, (input). 

K: Current discretization point at which the gradient is 
desired, (input). 

GRAD: Vector containing gradient of ~ (L,K). The ith entry 
in this vector should contain the partial derivative of 
the ~th functional constraint at the kth discretization 
point with respect to the ith optimization variable, 
(output) . 

IGRAD: A counter, which is equal to the number of calls to this 
subroutine in the current iteration. At the beginning 
of every iteration, this is set equal to one, (input). 

4.3 MODIFICATION AND EXTRACTION OF ELEMENT INFORMATION 

During the optimization phase, design variables are stored in 

a vector z. In structures, these variables are generally geometric 

or material properties of the elements. Before performing a new 

structural analysis, these quantities, therefore, need to be modified 

in the MINI-ANSR COMMON blocks. The constraints generally require 

element stresses and deformations, etc. which must be extracted and 

passed on to the function evaluation subroutines at the end of the 

analysis. 

In order to perform this modification and/or extraction of 

element information from MINI-ANSR COMMON blocks, a user needs to 

supply the following routines for each element, in addition to the 

four subroutines described in section 3. 

(i) MDFL: Modify data in element COMMON blocks corresponding to 

optimization variables. 

(ii) STOR: store element information, relevant to the optimization 
package, in separate arrays accessible to the function 
evaluation routines. 

Each of these subroutines must be identified by a number designating 

the element type, suffixed to the subroutine name. For example, the 
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nqrnes ot subroutines for the element type 1, must. be, MD:FLl and STOIU. 

Explanations of the tasks performed by each of the main subroutines, 

and the meanings of the variables of the argument lists, are given 

below. 

4.3.1 Subroutine MDFL 

The purpose of this subroutine is to modify data in COMMON blocks 

INFELR and INFELI, corresponding to the optimization variables. 

The argument list is as follows (in order) : 

ICOMS : 

COMS: 

A vector of dimension NINFCI, which upon entry contains 
the 'integer' element information. The address 
assigned to ICOMS corresponds to the first word of 
integer information for the element. 

A vector of dimension NINFCR, which upon entry contains 
the 'real' element information. The address assigned 
to COMS corresponds to the first word of information 
for the element. 

NINFCI: Number of words of integer information for each element 
in the group. This number equals the length of the 
COMMON INFELI for elements of the type being 
considered. 

NINFCR: Number of words of real information for each element in 
the group. This number equals the length of the COMMON 
INFELR for elements of the type being considered. 

Z: Vector containing current values of optimization 
variables. 

The title of the subroutine, for example for element type 1, 

must be as follows. 

SUBROUTINE MDFLI (ICOMS,COMS,NINFCI,NINFCR,Z) 

The following steps must be performed within the subroutine: 

(a) Transfer the data from arrays ICOMS and COMS to the element 
information blocks INFELI and INFELR, as explained in 
Section 3.4.1. 

(b) Set KST = 1. 
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(c) Set response values corresponding to previous variables equal 
to zero. This is easier to do through arrays ICOMS and COMS, 
if the quantities in these blocks are arranged such that the 
fixed quantities are placed before the response values. 

(d) Modify the proper quantities. 

(e) Transfer information in the blocks INFELI and INFELR to the 
arrays ICOMS and COMS. The procedure is explained in 
Section 3.4. 1. 

4.3.2 Subroutine STOR 

This subroutine is used to store element information into 

arrays needed for function evaluation. It performs two tasks depending 

upon the value of the parameter IFLAG in the argument list. 

If I FLAG 

IFLAG 

1: Stores results of analysis in two-dimensional 
arrays. 

2: Stores element information which remains fixed 
during analysis e.g. lengths of elements and their 
connectivity for the structure geometry plot. 

The argument list is as follows: 

ICOMS : 

COMS: 

A vector of dimension NINFCI containing integer element 
information. 

A vector of dimension NINFCR containing real element 
in fo rma ti on. 

NINFCI: Number of words of integer information for each element 
in the group. 

NINFCR: Number of words of real information for each element in 
the group. 

IFLAG: Flag which assigns different tasks, set by the base 
program. 

The title of the subroutine, for example for element type 1, 

must be as follows. 

SUBROUTINE STORl (ICOMS, COMS ,NINFCI ,NINFCR, IFLAG) 
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The following steps must be performed within the subroutine: 

(a) Transfer the data from arrays lCOMS and COMS to the element 
information blocks INFELI and INFELR, as explained in 
Section 3.4.1. 

(b) Perform two tasks depending upon the value of IFLAG. 

4.4 GENERAL INTERFACING SUBROUTINES BE'lWEEN FUNCTION EVALUATION 
SUBROUTINES AND MINI-ANSR 

In order to minimize coding for a new ~roblem, a number of 

interfacing subroutines between £unction evaluation subroutines and 

MINI-ANSR has been devised. These subroutines are general and can 

be used for any problem. 

1. Subroutine INANSR 

This subroutine initializes MINI-ANSR COMMON blocks and calls 

the input module of MINI-ANSR to read input data for analysis. It 

can be called as follows. 

CALL INANSR 

Typically, this subroutine will be called from PARSYM. 

2. Logical Function BIGDIF 

This function finds the maximum difference between the current 

design variables and the one's for which the analysis was performed 

last. If this difference is greater than a certain tolerance value, 

the function returns .TRUE. otherwise • FALSE. • Its title card is: 

LOGICAL FUNCTION BIGDIF (N,Z,ZSTR,DIFF,TOL) 

where the arguments have the following meaning. 

N: Number of optimization variables, (input). 

Z: vector of current design variables, (input). 
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ZSTR: Vector containing design variables values for which the 
structural analysis was done last, (input). 

DIFF: Vector containing the difference between Z and ZSTR, 
(output) . 

TOL: Tolerance on the maximum difference, (input). 

When the maximum absolute difference is greater than TOL, the function 

is returned as • TRUE. and ZSTR is set equal to Z. This function can 

be used to implement some approximation concepts. For example, if the 

difference is small, the cost and constraint functions can be 

approximated by using first order Taylor series expansion. 

3. Subroutine ANAL 

This subroutine calls appropriate subroutines of MINI-ANSR for 

static and/or dynamic analysis. The call to this subroutine is made 

as: 

CALL ANAL (ZSTR) 

where ZSTR contains the values of design variables for which the 

analysis is to be performed. This subroutine automatically calls for 

subroutine MODIFY, to modify the element data before it calls the 

static or dynamic analysis routines. 

4. Subroutine SET 

This subroutines extracts data from element information arrays 

which remain fixed during optimization. It calls problem dependent 

routines STORl, STOR2, ... etc. with IFLAG = 2. It is called as: 

CALL SET 

Typically, it is called from PARSYM (after the call to INANSR) to 

store element geometry in arrays used for plotting. 
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5. Subroutine MODIFY 

This subroutine is the driving routine for problem-dependent 

element information modification routines MDFL1, MDFL2, ••. etc. It 

is called as: 

CALL MODIFY (ZSTR) 

where ZSTR is a vector containing design variables which is passed on 

to element routines. It is automatically called from subroutine ANAL 

before performing structural analysis. 

6. Subroutine STORSP 

This subroutine is not entirely problem-dependent but needs 

very little modification, if any, for a new problem. For an analysis, 

it is called at the end of every step. In this case, it calls STORl, 

STOR2, ••• etc. with IFLAG = 1. It is possible to skip several steps 

between storing results by passing on appropriate values of TSTART, 

TEND and NSKIP through COMMON block DYNPAR. Nodal responses, for 

both static and dynamic analysis, are saved only at the nodes which 

are specified for output (Section F, MINI-ANSR data preparation manual). 

Similarly, results for only those elements are stored for which response 

history is requested (see time history output code in Section G, 

element specification, of Appendix D) . 
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5 • EXM-1PLE PROBLEMS 

In order to further clarify the structure of the function 

evaluation subroutines and their interface with the MINI-ANSR sub-

routines, the following design problems are discussed here: 

1. Minimum weight design of a ten-bar elastic truss subjected to 
static loading. 

2. Minimum weight design of a two-story braced frame subjected to an 
impulsive base motion. 

The design problems are formulated and listings of the function 

evaluation subroutines are subsequently given in Appendix E. Numerical 

results are presented and interaction is illustrated by giving typical 

dialogues between the user and the computer. 

5.1 OPTIMAL DESIGN OF AN ELASTIC TRUSS SUBgECTED TO STATIC LOADING 

A ten-member cantilever truss, shown in Figure 4, is designed 

for minimum weight. This truss has been used extensively in the 

literature for evaluating algorithms. For example, see [14] where 

different results are compared. Constraints are placed on the nodal 

displacements, member stresses and minimum member sizes. The objective 

and constraint functions can be expressed as follows: 

OBJECTIVE FUNCTION: 

where 

f{z) Weight of the structure = 

= 

P 

10 

P L 
i=l 

L. Z. 
~ ~ 

Material density. 

(5.1.1) 

L. Length of ith element. 
~ 

Z. 
~ 

= ith design variable, which is the area of the ith 
element. 
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CONSTRAINT FUNCTIONS: 

(a) displacement constraints 

where 

2 
(u.) < 

l.X 
i = 1, ... ,4 

2 
(u.) < 

l.y 
i 1, ... ,4 

u. displacement at ith node in X-direction 
l.X 

u. = displacement at ith node in Y-direction 
l.y 

u allowable displacement in X-direction 
ax 

u allowable displacement in Y-direction ay 

(b) stress constraints 

2 
(0.) < 

l. 
i 1, ..• ,10 

where 

O. stress in the ith member 
l. 

o allowable stress 
a 

(c) minimum member size 

z. > z~ 
l. l. 

i = 1, ... ,10 

where 

z~ = lower limit on the member area. 
l. 

These constraints can be expressed as: 

(5.1.2) 

(5.1.3) 

(5.1.4) 



GRADIENTS: 

L 
- z. + Z. 

1. 1. 
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i 1, •.• ,10 

i 11, ••• ,14 

(5.1.5) 

i 15, ... ,18 

i 19, •.• ,28 

The gradients of the objective and the constraint functions can 

be expressed as: 

Vf(z) 

2 
Vg (~) 

= 

= [-1,0,0 , ..• , O]T 

[0, -1, 0 , ••• , 0] T 

= [0,0 , ••• ,0, _I]T 

= 

= 

2u
1x 

2 
u ax 

2U
4x 

2 
u ax 

= 2u1y 
2 

u ay 

2u
4 = --y 

2 
u ay 

= 

, ... , ~UIX] T 
aZ

10 

, ... , 

, ••• I 

, ... , 

[:~ , ... , 

(5.1.6) 
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(5.1. 7) 

NUMERICAL DATA 

Material density, 

Young's Modul us , E 

Displacement limits, 

Stress limit, 0-
a 

p = 0.1 Ib/in
3 

10000. ksi 

u 
ax 

±25 ksi 

u ay 

Lower limit on member area, L z 

+ 2 in. 

Load data: Vertical loads of 100 k at nodes 2 and 4. 

A typical dialogue between the user and the computer is presented 

in the following pages to illustrate a simple level of interaction in 

the solution of this problem. Tne dialogue has been obtained using an 

HP graphics terminal connected with an hard-copy printer, which can 

copy on paper both the alphanumeric and the graphic parts of the 

screen. 

The name of the executable file for this particular problem is 

'trussint'. After typing in this name, some headings appear on the 

screen, followed by the request to specify the name of the input data 

file. 'Truss. data' is the name of the input file in this case; it 

contains values of the optimization algorithm parameters as suggested 

at the end of Appendix C. 

The 'go' command moves the program to break point QP90, at the 

end of step 3a. At this point, before starting the direc·tion finding 

process for the first iteration, command 'grinit', which initializes 

graphics, is given and, after specification of the terminal type, a 
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plot of the structure is requested using the macro 'gstruct'. The 

initial design vector, z, is also printed, using command 'print'. 

We are ready now to start the design iterations and we use 

macro 'run' and option 'store' to perform 10 iterations and print 

results. The initial design is feasible, in this case, as can be 

verified by checking the value of function ¢ at the first iteration, 

(PSI = 0). After 10 iterations the value of the cost function is 

more than halved and the design vector has been considerably modified. 

Four components in particular, z(2), z(5), z(6), z(lO) have been 

reduced substantially. This suggests that one set these four values 

to their lowest limit zL = 0.1, before continuing with 15 more 

iterations. As a consequence of the modification, iteration 10 is 

repeated, but the new z vector, which corresponds to a lower cost, is 

still feasible. 

At the end of iteration 25 the values of the cost function and 

of the vector z are not very far away from the ones reported in f14], 

but the convergence rate has considerably slowed down for the last ten 

iterations. This fact is particularly manifest in the graph of cost 

function f versus number of iterations, obtained using macro 'graphf'. 

Execution is stopped after using macro 'graphz' to plot the 

values of three components of the design vector, z(l), z(5), Z(8) 

versus number of iterations. 
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OptiMization Based COMputer-Aided Design Group 
University of California 

Berkeley, California 
U. s. A. 

INTRAC-OPTDYN 
An Interactive OptiMization PrograM For 
Design ProbleMS Which can be Expressed as 

subject to 

MiniMi:ze f (z) 

z 

Max phi(Z,t) (= 0 
t 

9 (z) < "" 0 
NaMe of input data file, 

( Default is "/usr/optcad/ciaMpi/optnsr.d/data" 
>trus·3.data 
>9 0 

)whceore 
Breakpoint, QP90 

>grinit 
enter terMinal type (2=4027 3=RAMTEK 4=HP), 
4 
>g,;truct 
> 

2 



>print z 
30.0ll00 
30.0()0() 
30.0000 
30.()OOO 
30.0000 
30.0000 
30.0000 
30.HOOO 
30.0000 
30. () () 0 0 

>run 10 store 

75 

The results of the entire cOMputation will be stored 
in the arrays FG PSIG and ZG(N,K). . 
Please state the total nUMber of iterations you intend to 
carry out, type in 1< '" '! 

*50 
I 1 F = 12.5894 PSI = O. 

THETA = O. E '" 0.2 
I = 2 F = 10.3494 PSI = O. 

THETA = -0.009072 E = 
I 3 F = 9.6774 PSI = O. 

THETA = -0009072 E 
I 4 F = 9.0054 PSI = 0 

THETA = -0.009072 E 
I 5 F = 8.13893 PSI = O. 

THETA = -0.00350922 E 
I 6 F = 7.55013 PSI = O. 

THETA = -0.00238465 E 
I 7 F = 7.1146 PSI = O. 

THETA = -0.00176387 E 
I 8 F '" 6.75702 PSI = O. 

THETA = -0.00144821 E 
I = 9 F = 6.41118 PSI = O. 

THETA = -0.00140065 E 
I 10 F = 6.0751 PSI - O. 

THETA = -0.000408343 E 
Execution suspended at the end 
You May want to Modify 

1. the current design vector 
2. the SMear paraMeter E 

>print z 

> 

32.5313 
0.642208 

32.4006 
14.7785 

0.621857 
0.642208 

15.8748 
20.8112 
21.5719 
3.35659 

>5et z(2:1)=0.10 
)set z(S:il=0.10 
>set z(6:1)=0.10 
>set z(10:1'=O.10 

0.2 

0.2 

0 " . ,-

0 .2 

0 .2 

0 .2 

= 0.2 

0.2 

= 0.2 
of STEP2 

Z 



>print z 
32.5313 

0.100000 
32.4006 
14.7785 

0.100000 
0.100000 

15 8748 
20.8112 
21.5719 

0.100000 
>run 16 store 
RESTART STEP2 
I 10 F = 5.85147 PSI = 0 
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THETA = -0.000408343 E = 0.2 
I 11 F = 5.60315 PSI = O. 

THETA = -000100569 E = 0.2 
12 F = 5.55423 PSI = O. 

THETA = -0.0073379 E 0 2 
I 13 F = 5.53341 PST = O. 

THETA = -0.000937207 E 0.2 
I 14 F = 5.51795 PSI = O. 

THETA = -0.00772742 E O.t 
I is F = 5.47403 PSI = O. 

THETA = -0.00658822 E 0.1 
I 16 F = 5.46926 PSI = O. 

THETA = -0.000715536 r 0.1 
I 17 F = 5.43548 PSI = O. 

THETA = -0.000456053 E 0.1 
I 18 F = 5.42404 PSI = O. 

THETA = -0.00571833 E = O.t 
I 19 F = 5.39775 PSI = O. 

THETA = -0.000354949 E 0.1 
20 F = 5.39583 PSI = O. 

THETA = -0.000959081 E 0.1 
I 21 F = 5.3867 PSI = O. 

THETA = -0.00456347 E = 0.1 
I 22 ~ = 5.33929 PSI = O. 

THETA = -0.000640052 E 0.1 
I 23 F = 5.33397 PSI = O. 

THETA = -0.000799126 E 0.1 
I 24 F = 5.32246 PSI = O. 

THETA = -0.000517934 E 0.1 
I 2S F = 5.31746 PSI = O. 

THETA = -0.000748912 E 0.1 
Execution suspended at the end of STEP2 
You May want to Modify 

1 the current design vector Z 
2. the SMear paraMeter E 

>print 7. 
31.6438 

0.178467 
28.7129 
14.8891 

0.199684 
0.465926 

8.24085 
21.0192 
21.2512 

O.i29929 



>graphf n 

f 

""" 

.,. ~ 

·oJ.';' 

6 

3.3 .. +1 

>graphz i 

ZGl 

, , 
, , 

2.3e+l 
6 

}graphz 5 3.8e-+1 

ZG5 

1.0e-l 
6 

3.8e-+1 
>graphz 8 
> 

2GB 

1.8e+l 
6 

>stop 
/. 

". 

, , 
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. , . 
11 

11 

11 

11 

16 

--. . _. 

16 

16 

-.. . .' 

16 

21 26 i te; 

--- ... ..... 

21 26 ITER 

21 26 ITER 

21 26 ITEF 
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5.2 OPTIMAL DESIGN OF AN INELASTIC BRACED FRAME SUBJECTED TO AN 
IMPULSIVE BASE MOTION 

A two story shear-type braced frame (Fig. 5), subjected to an 

impulsive base motion, is designed for minimum weight, under both 

conventional and functional constraints. Both dynamic loads and non-

linearities are present in the example. Material nonlinearity is 

allowed in the diagonal bracing, which is modeled using the nonlinear 

truss element described in 3.3.3. 

The ability of MINI-ANSR to accept specifications of both zero 

displacements and equal displacement components for different nodes, 

has been used to model the shear-type structure. Four design 

parameters appear naturally, the two areas of the diagonal bracing and 

the two moments of inertia of the columns, at the first and second 

floors, respectively. Area of cross section, A, and elastic section 

modulus, S, of columns are assumed to be related to moment of inertia 

I by the empirical relationships: 

A = 0.8 11/2 (in inch units) (5.2.1) 

S 0.78 1 3/ 4 (5.2.2) 

For convenience of formulation of the problem, variables 11 and I 2 , 

having the dimensions of moments of inertia, are used as design 

variables instead of areas. For the bracing the same relationship 

5.2.1 is assumed to hold. The four design variables are then I l , I2 

for the bracings, I3 and I4 for the columns. Constraints considered 

refer to story drifts, stresses in columns, minimum member sizes and 

ratio between weight of the bracing and total weight of the structure. 

The objective and constraint functions and their gradients are 

expressed ~s follows: 



OBJECTIVE FUNCTION: 

f(z) 

GRADIENT OF f 

Vf 

Wt = Wb + Wc 

PR-b (A1 + A2) 

1/2 0.8 PR-
b

(I
1 

R-b 

0.4 P 
R-b 

2h 
c 

2h 
c 

CONVENTIONAL CONSTRAINTS: 

1) - I + lb. < 0 
1 ml.n 

< 
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total weight of the structure 

+ 2Phc (A3 + A4) = 

+ 11/2) 1 6 ph (11/ 2 
2 +. c 3 

-1/2 
11 

-1/2 
12 

-1/2 
13 

-1/2 
14 

1/2) 
+ 14 

2) - I 2 
+ lb. 

ml.n 0 positiveness of the design variables 

3) 
c < 0 b - I + I . I

C
. 3 ml.n I . , > 0 

ml.n ml.n 
4) - I + 4 

c < 0 I min 

5) The weight of the bracing is desired to be less than a fixed 

fraction a of the total weight of the frame: 

1 < 0 

GRADIENTS OF CONVENTIONAL CONSTRAINTS: 

Vg1 [-1, 0, 0, O]T vl [0, T = = -1, 0, 0] 

Vg3 [0,0, -1, O]T Vg4 [0, T = = 0, 0, -1] 

(1 - (3) 0.4 ~ 
-1/2 

11 

vl 1 (1 - (3) 0.4 ~ 
-1/2 Wb 

a (W
b + W ) 

12 , where [3 
Wb + c 

-1/2 - [3 0.8 h 13 c 

- 8 0.8 h -1/2 
c I4 

W c 
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FUNCTIONAL CONSTRAINTS: 

Maximum allowable story drift, a 

1) lUll < a or (:)' - 1 < 0 

2) IU2 - ull < a or r, : til)' - 1 < 0 

Maximum allowable stress in columns, a a 

M
lc 

M2 

3) < lc 
- 1 < 0 -- a or 

SIc a 0.782 I~/2 2 a 
a 

2 

4) 
M2c 

M2c 
- 1 < 0 < a or 

0.782 I!/2 S2c a 2 a a 

where 

A 

(!:: ' t) u
l 

Ul 

A 

(~ , t) U2 
u

2 

M
lc 

Mlc (~ , t) 

A 

M
2c 

M2c (~ I t) 

GRADIENTS OF FUNCTIONAL CONSTRAINTS: 

dU
l dU2 

dU
l -

dIl dIl dIl 

dU
l dU2 

dUl -
2u

l 
dI 2 2 (u - u

l
) 

'V<jll 'V<jl2 2 
2 2 

a dUl 
a 

dI
2 

dI2 

dU
2 

dU
l -

dI3 dI3 dI3 

dU
l 

aU
2 

aU
l -dI

4 
aI

4 
dI

4 
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dM...
C 

M 
1 3 lc 

dI3 - 4 I3 

NUMERICAL DATA 

Material density, p = 0.1 lb/in3 

Young's Modulus, E = 30000. ksi 

Maximum story drift, a = ± 0.45 in. 

Maximum stress in columns, a 
a 

± 24 ksi 

Minimum value of the design variables, 

I . ml.n 

I . ml.n 

10. for the columns, 

0.1 for the bracing 

Yield stress in the bracing, a = ± 18 ksi 
y 

Masses at each floor, m
l 

= m
2 

= 208 lb x sec2/inch 

Base acceleration, a rectangular pulse of 140 in/sec
2

, 

acting for 0.5 sec. 

Duration of analysis, 1 sec in 100 steps. 

Numerical results for this example are presented in the form of 

an interactive dialogue with the computer, as in the previous problem. 

The name of the data file is 'brace. data' and the initial values of 

the optimization algorithm parameters are again the starting values 

suggested at the end of Appendix C. The structure geometry is 
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d o * lsplayed using the macro 'gstruct', and the results of the analysis 

corresponding to the initial design are plotted, using two new macros, 

specifically prepared for the problem, 'gdisp' and 'groom'. These 

macros display horizontal displacements of the two floors and end 

moments in the columns at the first and second level, as functions of 

the number of time steps. 

Ten iterations of the optimization procedure are then performed 

using the macro 'run' and the option 'store'. In this case the initial 

design is infeasible and seven iterations are needed to reach the 

feasible region. 

At the end of the ten iterations cost function f and function ~ 

are plotted versus number of iterations, using macros 'graphf' and 

'graphpsi', described in 2.6, and results of analysis corresponding to 

the new values of the design variables,now feasible, are displayed, 

again using commands 'gdisp' and 'groom'. 

Four more iterations are then requested, after which the 

decision is made to start monitoring very carefully what happens in 

the various stages of the procedure in order to make a possible 

rational adjustment of the parameters of the algorithm. Starting from 

iteration 15 macro 'step3' is used, which stops the execution at the 

end of step 3, that is after the calculation of a direction has been 

completed. Command 'prtang' gives at this point the angle between the 

direction vector and the cost function gradient and the angles between 

the direction vector and the E-active constraint gradients. The first 

information that we have from 'prtang' is that there is no active 

* The horizontal rigid girders are not drawn in view of the fact that we 
have chosen to model the shear frame by imposing constraints at joints, 
not by describing the horizontal girders as members. 
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constraint at the start of this iteration. We can now use the macro 

'Armijo' in connection with the macro 'graphos', as explained in 2.9.4, 

to monitor what happens during the step length calculations up to the 

completion of iteration 15. 

The information, which comes through the graphic representation, 

obtained using 'graphos', is very rich and can be fully appreciated 

only if the forming of the lines on the screen rather than only the 

final picture is observed. For iteration 15 the information can be 

expressed in this way: the step length is reduced in Armijo and the 

constraint which causes this reduction is the constraint ~(2), which 

was not even active at the start of the iteration. As a consequence 

the iteration is a bad one, as can be verified looking at the very 

small reduction in the cost function f from the previous step ('prtall' 

command has been used at the end of the iteration to print iteration 

number, cost function etc.). 

In the subsequent iteration, as can be seen using 'prtang' after 

'step3', constraint ~(2) is active and influences the choice of a 

direction. In 'Armijo' the step length is increased until constraint 

g(5) is violated; at the same time constraint ~(2) ceases to be active. 

Iteration 16 has been a good one, but the next is not. In fact 

in the direction finding stage constraint ~(2) is not active, while, 

during the Armijo phase, it is still ~(2) which gives trouble and 

forces reduction of the step length. 

Finally, in iteration 18 both g(5) and ~(2) are active and 

influence the choice of a direction, as a consequence the iteration 

proves to be a good one. 

Monitoring closely the algorithm's behavior in iterations 15 

through 18 has given sufficient indication for an adjustment of the 
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parameters. The slowing down of the solution process, connected with 

the alternation of a good step and a bad one, can be corrected by 

increasing the value of S and forcing, consequently, both the con-

straints which are important at this stage, namely g(5) and ~(2), to 

be active at each iteration. However, increasing E may not be 

sufficient, because E may be automatically reset to the previously 

used smaller value in step 4 and execution sent back to step 3. It is 

also important to reduce parameter 0 at the same time. This is 

actually done in this example and in particular E is set = 0.4 and 

-7 o = 10 • 

The solution process is then advanced for 5 more iterations, 

during which the effectiveness of the adjustment of parameters is 

observed. 

Ten more iterations are performed, after which the cost function 

is plotted. Again the beneficial effect of the adjustment of para-

meters is clearly visible in the graph. 

After 18 more iterations the termination criterion is satisfied 

and a message of congratulations appears on the screen. 

The constraints active at the optimum are g(4) and g(5), ¢(l) 

and ~(2), as can be easily found by printing vector neptg and matrix 

neptf. 

Results of the analysis corresponding to the optimal values of 

the design variables are also plotted before stopping. 
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OptiMization Based COMputer-Aided Design Group 
University of California 

Berkeley, California 
U. S. A. 

INTRAC-OPTDYN 
An Inter~ctive OptiMization PrograM for 
Design ProbleMs Which can be Expressed as 

subject to 

MiniMize f (z) 
z 

Max phi(z,t) (= 0 
t 

g ( z ) (= 0 
NaMe of input data file: 

( Default is "/usr/optcad/ciaMpi/optnsr.d/data" 
>brace.data 
>print z 

20.0000 
20.0000 
20.0000 
20.0000 

>g 0 

>where 
Breakpoint: QP90 

>grinit 
enter terMinal type (2=4027 3=RAMTEK 4=HP 5=4025): 
4 
}g!;truct 
> 

3 

5 

4 



>gdisp 
>gMOM 
> 
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-1 .4e-3~A~._~~~----------------------------------------------------------------, 
':O:~ 

" ....... 

", .~~., 

disp 

-2.6 

.-.... ::--. 
" 
". 

' . ..... 
..... ::~ ... 

,,' 
'"~ ,,' '--., ...... ' ..... ::;-

,' . .,.- ... ;.:.:,: .... 
: .' 

. .:.- "'-.... ~ .. -...... .: .. ~-: .. , 
' .. -' .• ~' 

di=pl 

disp2 

20 413 810 leo time 

,:,""" - - - - -. - - .:~ ..... -:-: .. "'" -2 .le+4i,1.., .. ~ ..... ::-
........ " 

- - ~ ... - - - .... 7 ... - - - ... -::: ... :-:- -
........ 

...... ~ 

-, 

". 
213 413 613 

>run 10 store 
The results of the entire cOMputation will be stored' 
in the arrays FG PSIG and ZG(N:K). 
Please state the tot~l nUMber of iterations you intend to 
carry out: type in K = ? 

uoo 
I = 1 F = O. S4SS95 PSI 29. 78'Oj 

THETA = O. E::: 0.2 
I ::: 2 F = 0.792752 PSI 0.282556 

THETA = -0.504697 E '" 0.2 
I 3 F = 0.815954 PSI 0.19247 

THETA ::: -1.04588 E = n.2 
I 4 F ::: 0.81£,696 PSI 0.171042 

THETA .::: -1.30981 E ::: o .2 
I S F ::: 0.81582 PSI :: o . 152j,71 

THETA ::: -1.16204 E = n.2 
I b F :: n.81.S235 PSI ::: 0.147019 

THETA = -0.995485 E ::: o . ;2 
I 7 F ::: 0.994551 PSI = 0.0600003 

THETA :: -0.121528 E ::: o .2 
I !3 F ::: 0.979406 PSI ::: O. 

THETA ::: -0.752006 F. ::: 0.2 
I 9 F = 0.939237 PSI = O. 

THETA = -3.69285E-4 F.: 0.1 
I 10 F = 0.927019 PSI = O. 

THETA = -3.32648E-4 F = 0.1 
Execution suspended at the end of STEP2 
You May want to Modify 

1. the current design vector Z 
2. the SMear paraMeter E 



>print z 
93.3724 
17.8780 
70.7374 
68.0096 

>graphf n 
>graphpsi n 
> 

9.'3.,.-1 

f 

, , 
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-'. 

( 

_ --- --- --- -_ • • J 

5.5"'-1~' ________________________ ~r-______________________ ~ 

1 6 11 i te r 

)gdisp 
>gMOM 
) 

3 .0eo+l' , 

psi 

13.13 

1.5e-l~---------------------------------.'~.~------------~.··~---------' 

-..... I . .!~ '- ~i"" ... '_ !- ~ -"'~ .. .. 
',. / '.. ~ .. ~' .... :.I

l 
- - ..... ~~.-... : .. -..... - .. 

\\:.:, .•.. ' .. :.-... - ~ ,/"'\ " , , , / ... ' . ' ~".,'\_, 
-s.5e-1r-____ ~~ __ !·~· .. -------\-\-\-\,~\.~.~ .. ----------_r----------~------------r 

disp 

~.Q. " .. 

11. iter 

displ 

disp2 

" 20 40 60 80 100 time 

3.3e+4·~-----------------------------------_-,I-'~_~-!~~~··~\-\ ... ~-.-_---------/--.-!~ .. ~~'-\~\--------~ 

~.: .. ~ - - - - I .... r /~ \'~ ... ' .. \ 
~\ ,...J... ,...\ /( _ ... 

• ', i ..... • ... 

'I" .. ,. ' ....... '\ " .. / ..... ' '. --
~ /."'" ....... ', './' \'" 

'\'....... / (,if \ ... \:.\ .... , ......... '-. "/ ..... : ..... / .............. .... .... \ ...... .. 
\'.:.. ' .... /i 

-1 .3e+S~ ______ ~~ __ ~ __________ ~~ .. ____________ ~r-____________ ~ ____________ ~ 

mom 

moml 

mom2 

20 40 613 80 lee time 
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> {~U n 4 store 
I 11 F '" () .914'364 PSI c.: 0 

THETA '" ,-3 ~:0792E-4 E () t 
I :1.2 F = 0 .?OtBt2 PSI '" 0 

THET,; - -3. ()8S74E-4 E 0 i 
I :\.3 F -. 0 .?OObSB PSI O. 

THETA = -2.?5997E-4 E Ii () :·:.::S 

I 14 F .. 0 .8592BS PST '" O. 
THETA '" -8.287771'-:-5 E o 0 ;:.:~5 

Execution suspended at the end of STEP? 
You May want to Modify 
t. the current design vector Z 
2. the SMear paraMeter E 

>print z 
83. ElO t S 
14.3257 
60 260B 
57.8666 

>'5tep3 
Execution suspended at the end of STEP3 
You May want to Modify 

1. THETA paraMeters, PUSHF, PUSHG. PUSHPH, SCALE, GAMMA 
2. SMear paraMeter, E 
:5. tes1: paraMeters, DELTA, MUi, Ml.J2 

PrecoMputation of the tests in STEP4 and STEPS 
indicates that the prograM will branch to STEPt:> 
>pr'tang 
angles between search direction and cost 
and e-active constraints gradients 

function angle push'-fac:tors 

F iSO. PUSHF =1.. 
)arMijo 20 graphos 
rMijo test satisfied after 6. iterations 
Execution suspended at the end of STEP? 
You May want to Modify 

1 the current design vector Z 
2. the SMear paraMeter E 

z> 

:::-

::: 
• H 

;:::: 

::::: 

111111 
Inll1 

-- - -. -

armijo - f 

II III ! 

""111-

II Ill! 
IIIUI 

111111 

IIml IIf II I 
::::: J 

~.~ .. ______ ~~ ____ ~ .. ~ .. ~ ____ ~~ ____________ ~~~ ____________ ~w-____ ~~ 

2.5e-2 eps-line 
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, 
-JI ,_: _ I_I - - - - - - - ..... - - - - -'",", 1\ I It I 

1,,111 fh ' '" , 
I~III I' , '" , 
, f ~I, ~ , 

t.; 
, • ~I , 
, 

thl , , 
~ ;:: II , 
~ i, 11.: , • , 
., I, J ~ , I :l:. \ 

"III d: , \'1 

, ' , f: , , 
runctlon an I !e 9 p usn 'tactors 

>prtall 0 
O. I : 15 F 0.858089 PSI 

THETA = -3. 11836E-4 E = O.O;~S 

>step3 
Execution suspended at the end of STEP3 
You May want to Modify 

phi 0. 

- - - - - - - -

1. THETA paraMeters: PUSHF, PUSHG, PUSHPH, SCAL.E, GAMMA 
2. SMear paraMeter: E 
3. tegt paraMeters: DELTA, MUI, MU2 

PrecoMputation of the tests in STEP4 and STEPS 
indicates that the prograM will branch to STEP6 
>prtang 
angles between search direction and cost 
and e-active constraints gradients 

flJnction angle 

F 123.722 
PHI(2,i7) 91.3297 
PHI(2,42) 90.7919 
>arMijo 20 graph os 

push-factors 

PUSHF =1. 
PUSHPH(2) 1. 
PUSHPH(2) = I, 

annot plot ArMijo: out of ranqe 
Zannot plot ArMijo: out of range 
ArMijo test s~'isfied after 7. iterations 
Execution suspended at the end of STEP2 
You May want to Modify 
i. the current design vector Z 
2. the SMear paraMeter E 

Z> 

r r-
I 

I 
- . -. - . -. 

Iffim;.. ~:::L.o ... 
- n-

armijo - f 

-. -. . 
... -~ ... -. 

bar-r,a-phi' e. 
,"UII- - ""uu-
UIUII 1111111 

III lilt 
1111111 
lUll •• 

.- nllllf .- "I II It 

liiiiii 
miii; 
nmH 

III"" 
lumt 

1111111 
IIItIU 

U III II 1111111 

1111111 UIIiU 
1111111 
luun 

III11U UlUIt 
1111111 IUIIII 

2.Se-2 eps-line 
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r----- -1-r Y l -p --1- ---
! \ Ii \ .~ 

I ·I· .... ·;··'· .... · .. H··· .. ···· .. ··~·· ....... 1\ ........................................... \... .................. . 

>prt,,11 0 
I = 16 F = 0.810688 PSI = O. 

THETA = -9.5719IE-5 E = 0.025 
>step3 
Execution suspended at the end of STEP3 
You May want to Modify 
i. THETA paraMeters: PUSHF, PUSHG, PUSHPH, SCALE, GAMMA 
2. SMear paraMeter: E 
3. test paraMeters: DELTA, MUi, MU2 

PrecoMputation of the tests in STEP4 and STEPS 
indicates that the prograM will branch to STEPb 
)prtang 
angles between search direction and cost 
and e-active constraints gradients 

function angle plJsh-factor'; 

F 180. PUSHF =1. 
G(5) 115.447 PUSHG(S) i. 
>arMijo 20 graph os 
rMijo test satisfied after 6. iterations 
Execution suspended at the end of STEP2 
You May want to Modify 
1. the current design vector Z 
2. the SMear paraMeter E 

z> 
>prtall 0 
I = 17 F = 0.809427 PSI = O. 

THETA = -3.35419[-4 E = 0.025 
>step3 
Execution suspended at the end of STEP3 
You May want to Modify 
i. THETA paraMeters: PUSHF, PUSHG, PUSHPH, SCALE, GAMMA 
2. SMear paraMeter: E 
3. test paraMeters: DELTA, MUi, MU2 

PrecoMputation of the tests in STEP4 and STEPS 
indicates that the prograM will branch to STEP6 
)pr tang 
angles between search direction and cost 
and e-active constraints gradients 

function angle push-factors 

F i20~734 PlJSHF =l.. 
G(S) 90.5866 PUSHG(S) = 1.. 
PHI(2,42) 90.7S6i PLJSHPH(2) = 1.. 
)arMijo 20 graphos 
ann 0 t p lot ArM.i j (): 0 tJ t 11 f' I' a n q e 
Zannot plot ArMijo: out of range 
ArMijo test satisfied after 7. iterations 

_Execution suspended at the end of STEP2 

phi 
2.Se-2 o:-p:;:-linl? 



-You May want to Modify 
1. the current design vecto~ Z 
2. the SMear paraMeter E 

z> 
>prtall 0 
I • 18 F· 0.767099 PSI = O. 

91 

THETA = -8 72311E-S E = 0.02S 
) 

> 

>set e=0.4 
>set delta=i.e-7 
>run S store 
RESTART STEP2 
I 18 F = 0.767099 PSI 

THETA = -4.168E-4 E 
I 19 F = 0.714417 PSI 

THETA = -1.09864~-4 
I 20 F = 0.686152 PSI = 

THETA = -2.08688£-4 
I 21 F = 0.669059 PSI 

THETA = -4.168E-4 F 
1 22 F = 0.659096 PSI 

THETA = -2.30062E-4 

o. 
= 
O. 
E 
O. 
E 
O. 

O. 
£ 

0 .4 

0.4 

0 4 

0.2 

= 0 .2 
Execution suspended at the end of STEP2 
You May want to Modify 

1. the current design vector Z 
2. the SMear paraMeter E 

>run 10 store 
I 23 F = 0.648823 PSI = 

THETA = -2.35104£-4 
I 24 F = 0.645509 PSI = 

THETA = -2.51892E-4 

O. 
E = 
O. 
E = 

I 25 F = 0.642181 PSI O. 

0.2 

o . 1 

THETA = -2.5219E-4 E = 0:1 
I 26 F = 0.640577 PSI O. 

THETA = -4.03809~-4 F = 0.05 
I 27 F = 0.638971 PSI = O. 

THETA = -4.01688E-4 E = 0.05 
I = 28 F = 0.635625 PSI = O. 

THETA = -2.49178E-4 E = 0.05 
I 29 F = 0.634614 PSI = O. 

THETA = -2.50443E-4 E 0.05 
I 30 F = 0.6336Q1 PSI = 0 

THETA = -2.50826E-4 E 0.025 
I = 31 F = 0.625075 PSI = O. 

THETA = -9.67802E-9 E 0.0~5 
I 32 F = 0.624293 PSI = O. 

THETA = -6.25456E-8 E = 0.025 
Executjon suspended at the end of STEP2 
You May want to Modify 

1. the current design vector Z 
2. the SMear p~raMeter E 

>print z 
35.9056 
13.1914 
48.7632 
15.4738 



)graph1.', n 
) 

, , 
-' 

92 

, ' , 

- ... I. 

5.5e-1~ ______ r-____ -' ______ ~ ______ ~ ______ -r ______ -r--J 

1 6 

)run ~30 prtall 
I 33 F· 0.623093 PSI· O. 

I 34 

I ~51::') 

I ~36 

I 3'7 

I 3B 

I 39 

I 40 

I 41 

I 4~~ 

I 4:3 

I 44 

I - 45 

I 46 

I 47 

I -- 48 

I 49 

I 50 

THETA. -7.97265[-8 r 0.025 

F = 0,622455 PSI = O. 
THETA = -4.80294[-4 E 0.025 

F = 0.621077 PSI = 0, 
THETA = -3.10373E-4 E 0,025 

F = 0.6208 PSI = O. 
THETA = -1.05315E-7 E - 0.025 

F = 0.620499 PSI = O. 
THETA = -1.13584E-7 E 0,025 

F = 0.620174 PSI = O. 
THETA = -1,22273£-7 E 0.025 

F • 0,620168 PSI = 0, 
THETA = -1.2572E-7 E = 0,025 

F = 0,619781 PSI = O. 
THETA = -2.82831E-4 [= 0.0125 

F = 0,619569 PSI = 0, 
THETA = -1,55934[-4 [= 0,0125 

F = 0,619526 PSI = 0, 
THETA = -3,4879E-4 E = 0.00625 

F = 0,619483 PSI = 0, 
THETA • -3,48728E-4 E = 0.00625 

F = 0,61927 psi = O. 
THETA = -1.5601E-4 E = 0.00625 

F = 0,618031 PSI = 0, 
THETA = -2,43822E-5 E = 0,00625 

F = 0,618029 PSI = 0, 
THETA = -1.24928E-7 E = 0,00625 

F = 0,617913 PSI = 0, 
THETA = -2,8418E-4 E = 0,003125 

F = 0,617699 PSI = 0, 
THETA = -t.56505E-4 E = 0,003125 

F = 0,616444 PSI = O. 
THETA = -2,47142[-5 E = 0,003125 

F = 0,616442 PSI = 0, 
THETA = -1.2364E-7 E = 0,003125 

11 16 21 26 31 iter 

******************************************************************************** 
******************** 

congratulations, here is the optiMal solution 

objective function value= 0,616442d+OO 
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)print z 
35.1873 
13. L.:?S3 
57.1415 
10.0012 

)print neptg 
0 
0 
0 
i 
1 
0 
0 
0 
0 
0 

>print neptf' 
49 0 0 0 0 0 0 

0 0 
i8 0 0 0 0 0 0 

0 0 
0 0 0 0 0 0 0 
0 0 
0 0 0 0 0 0 0 
0 0 

>print g(4 d) 
-1.21.752d·-03 

>print g(5d) 
-i.B2749d-03 

>print pili<1,49) 
-2.94798d-03 

>print phi(2d8) 
-i.87089d-03 

)gdisp 
>gMOM 
> 

1.7e-lr---------------------------------------~-----------------------, ......... 

disp 

~.:,~... - - - - - - - - - - - - - - -,./ ". .. :. \- -
•..• ' 

~ ~ ~ 
... ... J / \ ~ 

\ . ...,"", /'----., / \\.,~,.-

.... 
" .. 

.. 

(" 
" / 

/1·/.' 

.-.... - ,~. 

\. 

S 1 
',',. .... i .....•. 

- .7e- r---------~ .. ~.~ .. ~ ... ----------_r----.. ~ ... -... ----~------------,_----------__r 

0 

0 

0 

0 

dtspl 

d1SPZ 

(. 20 40 60 80 100 tillle 
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1 .ge+4~----------------------------------------_~~~--,----------------I--,--~ 

~:.,.Q. ..... ::: 

\ 
....• 

- - - - - - - ~ -'~.-
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FIGURE 1 AN EXAMPLE OF THE INFLUENCE OF BAD SCALING ON THE SEARCH 
DIRECTION CALCULATION 
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APPENDIX A - SUMMARY OF ORIGINAL INTRAC COMMANDS 

Original INTRAC commands are summarized here. For more details, 

see [12]. 

1. MACRO <macro identifier>[<formal argument> 1 <de1imiter> 1 

<termination marker>] 

Begins a macro definition and creates a macro. 

2. FORMAL {<formal argument> 1 <delimiter> 1 

3. END 

<termination marker>} 

Declares formal arguments in a macro definition and when 

creating a macro. It can be used to extend the list of 

formal arguments anywhere in a macro. 

Ends a macro and ends macro creation mode. Deactivates 

suspended macros. 

4. LET {<variable>=} {<number>[{+I-I*I/} <number>] 

1 { + I-} <number> 

I <identifier> [+<integer>] 

1 <delimiter> 

I<unassigned variable> 

Assigns (allocates) variables. 

Examples: LET A 

LET P 

B = 0 results A 

3*5.5 results P 

5. DEFAULT {<variable>=} <argument> 

B = 0 (integer) 

16.5 

Assigns a variable if it is unassigned or does not exist 

previously. 
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6. LABEL <label identifier> 

Defines a label. 

E~amples: LABEL SKIP 

LABEL 3 

7. GOTO <label identifier> 

Makes unconditional jump. 

Example: GOTO SKIP 

8. IF <argument> {EQINEIGEILEIGTILT} <argument> 

GOTO <label identifier> 

Makes conditional jump. 

Example: IF A GT 2.5 GOTO SKIP 

9. FOR <variable> = <number> TO <number> [STEP <number>] 

Starts a loop. 

Example: FOR I = 1 TO F'INISH STEP INCR 

10. NEXT <variable> 

Ends a loop. 

Example: NEXT I 

11. WRITE [( [DIS I TP I LPJ [FF I LFJ ) 1 [<variable> I <string> J 

Writes variables and text strings or displays currently 

available variables. Default output is DIS (display) 

TP Terminal Printer, LP = Line Printer, FF = Form Feed, 

LF Line Feed 

12. READ {{<variable> {INTIREALINUMINAMEIDELIMIYESNO}} 

<termination marker>} 

Reads values for variables from the terminal. 



13. SUSPEND 

14. RESUME 

103 

Suspends the execution of a macro. 

Resumes the execution of a macro. 

Modifies switches in Intrac. 

The switches have the following meaning. 

EXEC: Determines whether the commands entered in genera­
tion mode should be executed or not. 

ECHO: If ECHO is ON, the commands in a macro are echoed 
on the terminal as they are executed. 

LOG: Determines whether the executed commands should be 
logged on the line printer or not. 

TRACE: If TRACE is OFF only application commands are 
echoed and logged. Also macro calls and Intrac 
statements are output if TRACE is ON. 

All switches have the default value OFF. 

16. FREE {{<global variable>} .*} 

Deallocates global variables. 

17. STOP 

Stops the execution of the program. 
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APPENDIX C - INPUT DATA FOR INTEROPTDYN 

1. PROBLEM HEADING (20 A4) - one card* 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 80 HED Problem heading to be printed with 
output. 

2. CONTROL INFORMATION (415) - one card 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 5 (1) MAXITN Maximum number of iterations 
allowed. 

6 - 10 (2) ITER Iteration number at start of this 
nln. Leave blank if this is the 
first run. 

11 - 15 NCUT Maximum number of simplex iterations 
in solving the quadratic programming 
problem for direction finding. 

16 - 20 ITRSTP Maximum number of iterations allowed 
in step length calculations. 

3. CONVERGENCE TOLERANCE PARAMETERS (8F 10.0) - one card 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 10 MUl Parameter ]11 used in tolerance test 
on E. 

11 - 20 MU2 Parameter ]12 used in step 4 of the 
algorithm. 

21 - 30 DELTA Parameter 0 used in step 2 (conver-
gence check) and step 6 (step length 
calculations) • 

31 - 40 EO EO' initial value of E. 

41 - 50 GA.MMA Parameter y, used in QP. 

* Here and in the sequel "card" is understood to mean a line of an 
input file. 
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4. PROBLEM SIZE (3I5) - one card 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 5 JP Number of conventional inequality 
constraints (functions I g ') . 

6 - 10 JQ Number of dynamic constraints (func-
tions ¢). 

11 - 15 N Number of optimization variables. 

5. ARMIJO PARAMETERS (8F 10. 0) - one card 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 10 STPMAX Parameter controlling maximum value 
of step length at any iteration. 

11- 20 ALPHA Parameter cx. 

21 - 30 BETA Parameter s. 
31 - 40 (3) OLDSTP Initial value for the step length 

6. FUNCTIONAL CONSTRAINT PARAMETERS (2I5, 2F 10.0) - one card 
(Skip this section if JQ is zero). 

COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 5 NQ Initial number of discretization 
points. 

6 - 10 NQMAX Maximum number of discretization 
points. 

11 - 20 WO to defining the interval of 
interest, [to,t

f
] . 

21 - 30 WC t f defining the interval of 
interest, [to,t

f
] . 

7. SCALING FACTORS (2F 10.0) - one card 

I COLUMNS NOTE VARIABLE DESCRIPTION OF DATA ENTRY 

1 - 10 (4) SCALE Scale factor, n, used in scaling 
QP. 

11 - 20 PUSHF Scale factor for cost function. 
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8. PUSH-OFF FACTORS FOR CONVENTIONAL CONSTRAINTS (8FIO.0) 
(Skip this section if JP is zero) 

As many cards as needed to specify push-off factors for all 

conventional inequality constraint functions. 

9. PUSH-OFF FACTORS FOR DYNAMIC CONSTRAINTS (8FIO.0) 
(Skip this section if JQ is zero) 

As many cards as needed to specify push-off factors for all 

dynamic constraints. 

10. INITIAL VALUES OF VARIABLES (8F 10.0) 

As many cards as needed to specify initial values for N 

optimization variables. 

NOTES 

(1) The program will stop normally if either the number of iterations 

reaches MAXITN or the optimal solution is achieved. 

(2) ITER is used only to label the output. In a number of practical 

situations it is not possible to let the program run for too 

many iterations. The process can be restarted with the latest 

values of the optimization variables, € and q with ITER equal to 

the number of the next iteration. The output will then be 

labeled starting from ITER and incrementing it by one, after 

each subsequent iteration. 

(3) The step length calculations start by assuming an initial trial 

value equal to OLDSTP. If a good estimate is available, it will 

accelerate the step length computation process. 

(4) The "push-off" factors are used to force the direction vector 

away from or toward a constraint. Some experience is needed 
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before arriving at suitable values. The angles between the 

direction vector and objective function gradient and active 

constraint gradients should be used as guidelines. 

STARTING PARAMETER VALUES 

The following parameter values have been found to give fairly 

efficient behavior. Users with no prior experience can start the 

program with these values. 

NCUT = 20 ITRSTP 10 

111 = 1.0 112 0.01 6 0.001 

EO = 0.2 Y 2.0 STPMAX 100.0 

a 0.2 S 0.3 OLDSTP 1.0 

n 0.0 

PUSHF 1.0 

PUSHG 1.0, 1.0 (JP values) 

PUSHPH 1. 0, 1.0 (JQ values) 
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APPENDIX D - INPUT DATA FOR MINI-ANSR 

A. PROBLEM INITIATION AND TITLE (AS, l8A4) 

Columns 1 - 5: Punch the word START 

6 - 77: Problem title, to be printed with output. 

B. NODE INFORMATION 

Bl. CONTROL INFORMATION (815) - One card 

Columns 1 - 5: Total number of nodes. 

6 - 10: Number of "control" nodes, for which 
coordinates are specified directly (NCNOD). 
See Section B2. 

11 - 15: Number of coordinate generation commands 
(NODGC). See Section B3. 

16 - 20: Number of commands specifying nodes with zero 
displacements (NDCON). See Section B4. 

21 - 25: Number of commands specifying nodes with equal 
displacements (NIDDOF). See Section B5. 

26 - 30: Number of commands specifying nodal masses 
(NMSGC). See Section B6. 

31 - 35: Number of element groups (NELGR, max. 20). 
See Section G. 

40: Execution code (KEXEC) as follows. 
(a) zero or blank: ful execution. 
(b) 1: data checking only. 

B2. CONTROL NODE COORDINATES (IS, 3FlO.0) - NCNOD cards 

Columns 1 - 5: Node number, in any sequence. 

6 - 15: X coordinate. 

16 - 25: Y coordinate. 

26 - 35: Z coordinate. 

B3. COORDINATE GENERATION (415, FlO.O, 1015) - NODGC cards 

Columns 1 - 5: Node number at beginning of generation line. 
This must either be a control node, or must have 
been generated by a previous generation command. 
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6 - 10: Node number at end ,)f gen.eration line. This 
node must also have been specified previously. 

11 - 15: Number of nodes to be generated along line. 
If the nodes to be generated are listed in 
Columns 31 - 80, this nUIl)ber may not exceed 10. 

16 - 20: Node number difference between successive 
generated nodes, 
node and node at 
May be negative. 
nodes are listed 

and between first generated 
beginning of generation line. 

Leave blank i.f generated 
in Columns 31 - 80. 

21 - 30: Spacing between nodes, as follows. 
(a) Zero or blank: generated nodes are spaced 

uniformly along the generation line. 
(b) Less than 1.0: spacing between nodes is 

this proportion of the length of the 
generation line. 

(c) 1.0 or larger: spacing between nodes is 
equal to this distance. 

31 - 80: Up to 10 fields, each IS. List nodes to be 
generated, in sequence along generation line. 
Required only if Columns 16 - 20 are blank. 

Note: It is not necessary to provide coordinate generation commands 
for nodes which are sequentially numbered between the beginning 
and end nodes of any straight line, and which are equally 
spaced along that line. After all generation commands have been 
executed, the coordinates for each group of unspecified nodes 
are automatically generated assuming sequential numbering and 
equal spacing along a line joining the specified nodes 
immediately preceding and following the group. That is, any 
generation command with a node number difference of one and 
equal spacing is superfluous. 

B4. NODES WITH ZERO DISPLACEMENTS (1615) - NDCON cards 

Columns 1 - 5: Node number, or number of first node in a 
series of nodes covered by this command. See 
Note following for repetition of nodes. 

10: Constraint code for X displacement, as follows. 
(a) Zero or blank: displacement, not con­

trained to be zero. 
(b) 1: displacement constrained to be zero. 

15: Code for Y displacement 

20: Code for Z displacement 

25: Code for XX rotation. 
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30: Code for YY rotation. 

35: Code for ZZ rotation. 

36 - 40: Number of last node in series of nodes covered 
by this command. Leave blank or punch zero 
for a single code, or if the nodes in the 
series are listed in Columns 51 - 80. 

41 - 45: Node number difference between successive 
nodes in series. Leave blank for a single 
node, or if the nodes in the series are 
listed in Columns 51 - 80. 

46 - 50: Number of nodes listed in columns 51 - 80, 
following. This list is considered only if 
Columns 36 - 40 are blank or zero. Leave 
blank for a single node. 

51 - 80: Up to 6 fields, each 15. List second, etc. 
nodes of series. 

Note: If constraint codes are specified more than once for any node, 
the last specified value is assumed. For plane or axisymmetric 
problems, the first command should cover all nodes and should 
constrain all except the relevant displacements. Additional 
cards to modify the constraint codes at particular nodes should 
then be added. 

B5. NODES WITH EQUAL DISPLACEMENTS (1615) - NIDDOF cards 

Columns 5: Equal displacement code for X displacement, 
as follows. 
(a) Zero or blank: displacement not contrained 

to be identical. 
(b) 1: displacement constrained to be identical 

for all nodes in group. 

10: Code for Y displacement. 

15: Code for Z displacement. 

20: Code for XX rotation. 

25: Code for YY rotation. 

30: Code for ZZ rotation. 

31 35: Number of nodes in group. 

36 - 80: Up to 9 fields, each IS. List nodes in group. 
The first node must be the smallest numbered 
node in the group. See Note following. 
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Note: If the group has more than thirteen nodes, specify the remain­
ing nodes on additional equal displacement commands. The 
smallest numbered node in the group must be the first node in 
the list for all commands defining the group. Greater com­
putational efficiency may be obtained by constraining nodes to 
have equal displacements. However, the effect of specifying 
equal displacements may be to increase the band width of the 
structure stiffness matrix. This may result in an increase in 
the required stiffness matrix storage and/or the computational 
effort required to solve the equations of motion. Equal dis­
placements specifications should therefore be used with caution. 
It should be noted that the equation solver used in the program 
is less sensitive to local increases in the stiffness matrix 
band width than a conventional equation solver based on a 
banded storage scheme. 

B6. NODAL MASSES (15, 6FlO.O, 215) - NMSGC cards 

Columns 1 - 5: Node number, or number of first node in a 
series of nodes covered by this command. 

6 - 15: Mass associated with X-displacement degree of 
freedom. 

16 - 25: Mass associated with Y-displacement degree of 
freedom. 

26 - 35: Mass associated with Z-displacement degree of 
freedom. 

36 - 45: Mass associated with X-rotation degree of 
freedom. 

46 - 55: Mass associated with Y-rotation degree of 
freedom. 

56 - 65: Mass associated with Z-rotation degree of 
freedom. 

66 - 70: Number of last node in series of nodes covered 
by this command. Leave blank for a single 
node. 

71 - 75: Node number difference between successive nodes 
in series. Leave blank for a single node. 

Note: The specification commands for lumped masses will generally per­
mit the user to input the nodal masses with only a few data cards. 
Any node may, if desired, appear in more than one specification 
command. In such cases the mass associated with any degree of 
freedom will be the sum of the masses specified in separate 
commands. If certain nodes are constrained to have an equal 
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displacement, the mass associated with this displacement will 
be the sum of the masses specified for the individual nodes. 
If a mass is specified for any degree of freedom that is con­
strained to be zero, it is ignored. 

C. LOAD SPECIFICATION 

Cl. CONTROL CARD (8I5, 3FIO.0) - One card 

Columns 1 - 5: Code for static and/or dynamic analysis, 
(KSTAT) • 
(a) Zero or blank: dynamic analysis only. 
(b) 1: static analysis followed by dynamic 

analysis. 
(c) -1: static analysis only. 

6 - 10: Number of static force patterns to be specified 
(NSPAT). See Section C2. If blank or zero, 
no static loads will be applied. 

11 - 15: Number of static force application commands 
(NSLGC). See Section D. 

20: Code for ground motion records (IGM), as 
follows. 
(a) Zero or blank: no ground motion records. 
(b) 1: ground motion records will be specified. 

See Section C3. 

21 - 25: Number of dynamic force records to be specified 
(NDLR). See Section C4. 

26 - 30: Largest number of points on any dynamic force 
record. This number is used for storage 
allocation. 

31 - 35: Number of commands defining points of applica­
tion of dynamic force records (NDLGC). See 
Section C5. 

36 - 40: Number of integration time steps to be con­
sidered in dynamic analysis. 

41 - 50: Integration time step, 6t. 

51 - 60: Integration method parameter, 0, in Newmark's 
S - y - 0 method. 

61 - 70: Integration method parameter, S, in Newmark's 
S - y - 0 method. If zero or blank, S is 
assumed to be equal to 0.25 (1 + 0)2. 
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C2. STATIC LOAD PATTERNS - NSPAT sets of cards as follows. 

Each set consists of a control card followed by as many cards 

as needed to define the nodal loads. Load patterns are assumed to be 

input in numerical sequence. 

C2(a) CONTROL CARD (I5, l8A4) 

Columns 1 - 5: Number of nodal load commands for this 
pattern (NSLC). 

6 - 77: Load pattern title, to be printed with output. 

C2(b) NODAL LOADS (I5, 6FlO.0, 2I5) - NSLC cards 

Columns 1 - 5: Node number, or number of first node in a 
series of nodes covered by this command. 

6 - 15: Load in X-direction, positive in positive 
direction of X-axis. 

16 - 25: Load in Y-direction, positive in positive 
direction of Y-axis. 

26 - 35: Load in Z-direction, positive in positive 
direction of Z-axis. 

36 - 45: Moment about X-axis, positive by right hand 
screw rule. 

46 - 55: Moment about Y-axis, positive by right hand 
screw rule. 

56 - 65: Moment about Z-axis, positive by right hand 
screw rule. 

66 - 70: Number of last node in series. Leave blank 
for a single node. 

71 - 75: Node number difference between successive 
nodes in series. Leave blank for a single 
node, or if node number difference equals one. 

C3. GROUND MOTION (ACCELERATION) RECORDS. 

Omit if IGM, Section Cl, is zero or blank. Accelerations are 

assumed to be in acceleration units, not as mult~ple,s of the accelera-

tion due to gravity. 
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C3(a) CONTROL CARD (415, 6FIO.0) - One card 

Columns 1 - 5: Number of time points defining ground motion 
record in X-direction (NIPX). Leave blank 
or punch zero for no ground motion in this 
direction. 

6 - 10: Number of time points defining ground motion 
record in Y-direction (NIPY). Leave blank 
or punch zero for no ground motion in this 
direction. 

11 - 15: Number of time points defining ground motion 
record in Z-direction (NIPZ). Leave blank 
or punch zero for no ground motion in this 
direction. 

16 - 20: Print code, as follows 
(a) Zero or blank: records are not printed. 
(b) 1: records are printed as input and 

scaled. 
(c) -1: records are printed as input, scaled 

and interpolated at time step intervals. 

21 - 30: Input time interval for X-ground motion. If 
blank or zero, both time and acceleration 
values must be input; otherwise only accelera­
tion values must be input, the time being 
automatically determined. See Section C3(b). 

31 - 40: Input time interval for Y-ground motion. If 
blank or zero, both time and acceleration 

.values must be input; otherwise only accelera­
tion values must be input. See Section C3(c). 

41 - 50: Input time interval for Z-ground motion. If 
blank or zero, both time and acceleration 
values must be input; otherwise only accelera­
tion values must be input. See section C3(d). 

51 - 60: Scale factor by which X-ground accelerations 
are to be multiplied. 

61 - 70: Scale factor by which Y-ground accelerations 
are to be multiplied. 

71 - 80: Scale factor by which Z-ground accelerations 
are to be multiplied. 

C3(b) X RECORD - One card followed by as many cards as needed. 

Omit if NIPX is blank or zero. 
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(i) FIRST CARD (15A4, 5A4) 

Columns 1 - 60: Record title, to be printed with output. 

61 - 80: Input format to read NIPX points defining 
the record. For example, if the format is 
12F6.0, punch (12F6.0). 

(ii) FOLLOWING CARDS 

As many cards as needed to specify NIPX input points, 
with the format defined in Columns 61 - 80 of the first 
card. If both time and acceleration values are input, 
the time must immediately precede the corresponding 
acceleration. 

C3(c) Y RECORD - One card followed by as many cards as needed. 

Omit if NIPY is blank or zero. 

(i) FIRST CARD (15A4, 5A4) 

Columns 1 - 60: Record title, to be printed with output. 

61 - 80: Input format to read NIPY points defining 
the record. 

(ii) FOLLOWING CARDS 

As many cards as needed to specify NIPY input points, 
with the format defined in Columns 61 - 80 of the first 
card. 

C3(d) Z RECORD - One card followed by as many cards as needed. 

Omit if NIPZ is blank or zero. 

(i) FIRST CARD (15A4, 5A4) 

Columns 1 - 60: Record title, to be printed with output. 

61 - 80: Input format to read NIPZ points defining 
the record. 

(ii) FOLLOWING CARDS 

As many cards as needed to specify NIPZ input points, 
with the format defined in Columns 61 - 80 of the first 
card. 
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Note: The acceleration scale factor may be used to increase or 
decrease the accelerations, or to convert from mUltiples of the 
acceleration due to gravity to acceleration units. 

C4. DYNAMIC FORCE RECORDS - NDLR sets of cards, as follows. 

Each set consists of one card followed by as many cards as 

needed to define the record. Records are assumed to be numbered in 

sequence as input. 

C4(a) FIRST CARD (2IS, 2F10.O, 8A4, 4A4) 

Columns 1 - S: Number of time points defining record (NIPT). 

6 - 10: Print code, as follows. 
(a) Zero or blank: record is not printed. 
(b) 1: record is printed as input and scaled. 
(c) -1: record is printed as input and scaled 

and as interpolated at time step intervals. 

11 - 20: Input time interval. If blank or zero, both 
time and force values must be input; other­
wise only force values. 

21 - 30: Scale factor by which force values are to be 
multiplied. 

31 - 62: Record title, to be printed with output. 

63 - 80: Input format to read points defining the 
record. 

C4(b) FOLLOWING CARDS 

As many cards as needed to specify NIPT input points, with the 

format defined in Columns 63 - 80 of the first card. If both time and 

force values are input, the time must immediately precede the 

corresponding force. 

CS. DYNAMIC FORCE APPLICATION (16IS) - NDLGC Cards (See Section Cl) 

Acceleration records, if specified, are applied automatically, 

assuming all support points to move in phase. Force records are applied 

as defined by the cards of this section. 
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1 - 5: Dynamic force record number. 

10: Direction code, as follows. 
(a) 1: X translation. 
(b) 2 : Y translation. 
(c) 3: Z translation. 
(d) 4 : X rotation. 
(e) 5: Y rotation. 
(f) 6: Z rotation. 

11 - 80: Up to 14 fields, each 15. List the nodes at 
which the record is to be applied. Each 
node in the list is subjected to the scaled 
force record. 

Note: The dynamic forces as specified by the dynamic force record 
number are applied in the positive direction defined by the 
direction code. To apply forces in the negative direction, the 
scale factor by which the force values are multiplied (Section 
C4) should be negative. 

C6. DAMPING SPECIFICATION (3FlO.0) - One card 

Omit if code for static and/or dynamic analysis, KSTAT (Section 

Cl) equals -1. 

Columns 1 - 10: Mass proportional damping factor, SM" 

11 - 20: Tangent stiffness proportional damping 
factor, ST. See Note following. 

21 - 30: Initial stiffness proportional damping 
factor, So. See Note following. 

Note: If desired, it is possible to specify different values of the 
factors BT and Bo for each element group. See Section G for 
explanation of this option. 

D. STATIC ANALYSIS SPECIFICATION - NSLGC sets of cards (See Section Cl). 

Each set consists of a solution procedure card followed by one 

or more cards defining a linear combination of static force patterns. 

Each set defines an increment of static load. 
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Dl. SOLUTION PROCEDURE CARD (815, 4FIO.0) - One card 

Col utnn s 1 - 5: Number of equal steps in which load increment 
is to be applied, positive if results 
envelopes are not to be printed at the end of 
the increment, otherwise negative. 

6 - 10: Iteration type, as follows. 
(a) Zero or blank: Newton-Raphson iteration 
(b) n: Constant stiffness iteration with 

alpha-constant over-relaxation, the alpha 
matrix being reinitialized every n 
iterations. 

15: Type of state determination calculation to be 
used for constant stiffness iteration as 
follows: 
(a) Zero or blank: path independent. 
(b) 1: path dependent 
Path dependent state determination is always 
used for Newton-Raphson iteration. 

16 - 20: Stiffness reformation code, as follows. 
(a) Zero or blank: stiffness used in pre­

ceding step is retained. 
(b) n: stiffness is reformed every n load 

steps. 

25: Termination code, as follows. 
(a) Zero or blank: If the solution does not 

converge within the maximum number of 
iterations for any load step, the next 
load step will be applied. 

(b) 1: If the solution does not converge, 
the execution will terminate. 

26 - 30: Print code, as follows. 
(a) -1: results are not printed for this 

increment. 
(b) Zero or blank: results are printed at the 

end of the increment only. 
(c) 1: results are printed after each load 

step. 
(d) 2: results are printed every iteration. 

This option should be used for debugging 
purposes only. 

31 - 35: Maximum number of cycles of iteration within 
any load step. 

36 - 40: Maximum number of iterations within any cycle. 

41 - 50: Nodal force convergence to tolerance to be 
used in last step of load increment. 
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Columns 51 - 60: Nodal force convergence tolerance to be used 
in all except last step of load increment. 

61 - 70: Nodal force tolerance for change of stiffness 
in Newton-Raphson iteration. If the un­
balanced force reduces below this tolerance, 
the stiffness will not be reformed for the 
next iteration. 

71 - 80: Maximum nodal displacement (translation or 
rotation) increment permitted in any iteration 
step. Leave blank for unlimited displacement. 
Displacement limits should be specified only 
with Newton-Raphson iteration. 

D2. FOLLOWING CARDS (8F10.0) - As many cards as needed 

Columns 1 - 80: Up to eight fields, each F10.0. For each 
static force pattern in turn, specify a scale 
factor by which the pattern is to be multi­
plied. The scaled patterns are added to­
gether to produce the load increment. 

Scale factors may be positive or negative. 
Leave the corresponding field blank or punch 
zero to ignore any force pattern. 

E. DYNAMIC ANALYSIS SPECIFICATION 

El. DYNAMIC SOLUTION PROCEDURE CARD (715, 4F10.0, IS) - One card 

Omit if KSTAT (Section Cl) equals -1. 

Columns 1 - 5: Iteration type, as follows. 
(a) Zero or blank: Newton-Raphson iteration. 
(b) n > 0: Constant stiffness iteration with 

alpha-constant over-relaxation, the alpha 
matrix being reinitialized every n itera­
tions. 

10: Type of state determination calculation to be 
used for constant stiffness iteration, as 
follows. 
(a) Zero or blank: path independent. 
(b) 1: path dependent. 
Path dependent state determination is always 
used for Newton-Raphson iteration. 

15: Stiffness reformation code, as follows. 
(a) Zero or blank: stiffness used in preceding 

time step is retained. 
(b) n: stiffness is reformed every n time steps. 
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20: Termination code, as follows. 
(a) Zero or blank: if the solution does not 

converge within the maximum number of 
iterations for any time step, the next 
time step will be applied. 

(b) 1: if the solution does not converge, the 
execution will terminate. 

21 - 25: Maximum number of cycles of iteration within 
any time step. 

26 - 30: Maximum number of iterations within any cycle. 

31 - 35: Number of time steps between application of 
"fine" convergence tolerence. The "coarse" 
tolerance is used at intermediate steps. 

36 - 45: "Fine" nodal force convergence tolerance. 

46 - 55: "Coarse" nodal force convergence tolerance. 

56 - 65: Nodal force tolerance for change of stiffness 
in Newton-Raphson iteration. If the unbalanced 
force reduces below this tolerance, the stiff­
ness will not be reformed for the next 
iteration. 

66 - 75: Maximum nodal displacement (translation or 
rotation) increment permitted in any iteration 
step. Leave blank for unlimited displacement. 
Displacement limits should be specified only 
with Newton-Raphson iteration. 

76 - 80: Number of initial condition generation commands 
(NICGC). See Section E2. 

E2. INITIAL CONDITION SPECIFICATION (IS, 2FIO.0, 1115) - NICGC cards 
(See Section El). 

Columns 1 - 5: Direction code, as follows. 
(a) 1: X translation 
(b) 2: Y translation 
(c) 3: Z translation 
(d) 4: X rotation 
(e) 5: Y rotation 
(f) 6: Z rotation 

6 - 15: Initial velocity. 

16 - 25: Initial acceleration. 

26 - 80: Up to 11 fields, each 15. List up to 11 nodes 
having the same :i,ni tial conditions. 



125 

F. OUTPUT SPECIFICATION 

This set of cards consists of a control card followed by as 

many cards as needed to specify node numbers for output. See Note 

following. 

Fl. CONTROL CARD (10I5, 7A4) - One card 

Columns 1 - 5: Time interval for printout of nodal displace­
ment, velocity and acceleration time 
histories, expressed as a multiple of the 
integration time step. Leave blank or punch 
zero for no time history output or if there 
is not dynamic analysis. 

6 - 10: Time interval for printout of element action 
time histories (stresses, forces, etc.) 
expressed as a multiple of the integration 
time step. Leave blank or punch zero for no 
time history output or if there is no dynamic 
analysis. 

11 - 15: Time interval for printout of intermediate 
envelopes of nodal displacements and element 
actions, expressed as a multiple of the 
integration time step. Leave blank or punch 
zero for no intermediate envelope output or if 
there is no dynamic analysis. Envelopes are 
automatically output at the end of the dynamic 
analysis. 

16 - 20: Number of nodes for X-displacement, velocity 
and acceleration output (NODSX). For output 
at all nodes, punch -1. 

21 - 25: Number of nodes for Y-displacement, velocity 
and acceleration output (NODSY). For output 
at all nodes, punch -1. 

26 - 30: Number of nodes for Z-displacement, velocity 
and acceleration output (NODSZ). For output 
at all nodes, punch -1. 

F2. FOLLOWING CARDS - THREE SETS OF CARDS, AS FOLLOWS. 

(1) List of nodes for X response printout (16I5) - As many cards 
as needed to specify NODSX number of nodes, sixteen to a 
card. omit if NODSX equals zero or -1. 
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(2) List of nodes for Y response printout (1615) - As many cards 
as needed to specify NODSY number of nodes, sixteen to a 
card. Omit if NODSY equals zero, or -1. 

(3) List of nodes for Z response printout (1615) - As many cards 
as needed to specify NODSZ number of nodes, sixteen to a 
card. Omit if NODSZ equals zero, or -1. 

Note: Results for the same nodes and elements are printed for both 
static and dynamic analyses, except that velocities and 
accelerations are not printed for static analyses. 

Envelope values are printed for the dynamic analysis, and may 
be printed at the end of each static load increment if so 
specified on Card Dl. 

G. ELEMENT SPECIFICATION 

Element must be divided into "groups". All elements in any 

group must be of the same type. However, elements of the same type 

may be divided into separate groups if desired. 

Element groups may be input in any sequence. The total number 

of element groups may not exceed 20. The elements in any group must 

be numbered sequentially, the number of the first element in the group 

being any convenient number. 

Gl. THREE DIMENSIONAL ELASTIC TRUSS ELEMENT 

Gl(a) CONTROL INFORMATION (1015, 6F5.0) - One card 

Columns 5: Element group indicator. Punch 1 (to in­
dicate that the group consists of three 
dimensional truss elements) 

6 - 10: Number of elements in this group. 

11 - 15: Element number of the first element in this 
group. If blank or zero, assumed to be 
equal to 1. 

16 - 20: Number of material types. If blank or zero, 
assumed to be equal to 1. 

21 - 50; Blank (not used for this element type). 
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51 - 55: Initial stiffness damping factor SO- If 
blank or zero, So is assumed to be equal to 
the system So value input in Card C6. 

56 - 60: Current tangent stiffness damping factor, ST. 
If blank or zero, ST is assumed to be equal 
to the system ST value input in Card C6. 

Gl(b) MATERIAL PROPERTY INFORMATION (15, FlO.O) - One card for each 
different material type. 

Columns 1 - 5: Material number, in sequence starting with 1. 

6 - 15: Young's modulus of elasticity, E. 

Gl(c) ELEMENT GENERATION COMMANDS (415, FIO.O, 215) - As many cards 
as needed to generate all elements in this group. 

Cards must be entered in order of increasing element number. 

Cards for the first and last element must be included. See Note G123 

for explanation of generation procedure. 

Columns 1 - 5: Element number, or number of first element 
in a sequentially numbered series of elements 
to be generated by this card. 

6 - 10: Node number at element end i. 

11 - 15: Node number at element end j. 

16 - 20: Material number. If blank or zero, assumed 
to be equal to 1. 

21 - 30: Cross sectional area. 

31 - 35: Node number increment for element generation. 
If blank or zero assumed to be equal to 1. 

36 - 40: Time history output code. Leave blank or 
punch zero for no time history output. Punch 
1 if time history output is required. 

G2. THREE DIMENSIONAL NONLINEAR TRUSS ELEMENT. 

See [2] for description of element. 

G2(a) CONTROL INFORMATION (1015, 6F5.0) - One card 

Columns 5: Element group indicator. Punch 2 (to in­
dicate that the group consists of three 
dimensional truss elements). 
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6 - 10: Numbe~ of elements in this group. 

11 15: Element number of the first element in this 
group. If blank or zero, assumed to be 
equal to 1. 

16 - 20: Number of material types. If blank or zero, 
assumed to be equal to 1. 

21 - 50: Blank (not used for this element type). 

51 - 55: Initial stiffness damping factor SO, If 
blank or zero, So is assumed to be equal to 
the system So value input in Card C6. 

56 - 60: Current tangent stiffness damping factor, ST­
If blank or zero, ST is assumed to be equal 
to the system ST value input in Card C6. 

G2(b) MATERIAL PROPERTY INFORMATION (IS, 4FIO.0) - One card for each 
different material type. 

Columns 1 - 5: Material number, in sequence starting with 1. 

6 - 15: Young's modulus of elasticity, E. 

16 - 25: Strain hardening modulus as a proportion of 
Young's modulus (i.e. the ratio Eh/E). 

26 - 35: Yield stress in tension. 

36 - 45: Yield stress in compression, or elastic 
buckling stress in compression (input as a 
positive value) 

G2(c) ELEMENT GENERATION COMMANDS (415, 2FIO.0, 415) - As many cards 
as needed to generate all elements in this group. 

Cards must be entered in order of increasing element number. 

Cards for the first and last element must be included. See Note G123 

for explanation of generation procedure. 

Columns 1 - 5: Element number, or number of first element 
in a sequentially numbered series of elements 
to be generated by this card. 

6 - 10: Node number at element end i. 

11 - 15: Node number at ele~ent end j. 
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Columns 16 - 20: Material number. If blank or zero, assumed 
to be equal to 1. 

21 - 30: Cross sectional area. 

31 - 40: Initial axial force on the element. 

41 - 45: Node number increment for element generation. 
If blank or zero assumed to be equal to 1. 

50: Code for large displacement effects. Leave 
blank or punch zero, for small displacement 
effects. Punch 1 for large displacement 
effects. 

55: Time history output code. Leave blank or 
punch zero for no time history output. Punch 
1 if time history output is required. 

60: Buckling code. Leave blank or punch zero if 
element yields in compression without buck­
ling. Punch 1 if element buckles elastically 
in compression. 

G3. TWO DIMENSIONAL ELASTIC BEAM ELEMENT 

G3(a) CONTROL INFORMATION (lOIS, 6F5.0) - One card 

* 

Columns 5: Element group indicator. Punch 3 (to in­
dicate that the group consists of two­
dimensional elastic elements). 

6 - 10: Number of elements in this group. 

11 - 15: Element number of the first element in this 
group. If blank or zero, assumed to be 1. 

16 - 20: Number of different element stiffness types 
(max 35). 

21 - 25: Number of different end eccentricity types 
(max 15)*. 

26 - 50: Blank 

55 - 55: Initial stiffness damping factor, SO. If 
blank or zero, assumed to be equal to the 
system So value input in Card C6. 

The use of the end eccentricity option is the same as in the next 
element, G4. See ref. [13]. 
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Column 56 - 60: Current tangent stiffness damping factor, ST' 
If blank or zero, assumed to be equal to the 
system ST value input in Card C6. 

G3(b) STIFFNESS TYPES (IS, 3FIO.0) - One card for each different 
stiffness type. 

Columns 5: Stiffness type number, in sequence beginning 
with 1. 

6 - 15: Young's modulus of elasticity. 

16 - 25: Average cross sectional area. 

26 - 35: Reference moment of inertia. 

G3(c) END ECCENTRICITIES (IS, 4F10.0) - One card for each end 
eccentricity type. 

Omit if there are no end eccentricities. See Fig. 2.6 in ref. 

[13] for explanation. All eccentricities are measured from the node 

to the element end, in global coordinates. 

Columns 1 - 5: End eccentricity type number, in sequence 
beginning with 1. 

6 - 15: X. = X eccentricity at end i. 
1 

16 - 25: X. X eccentricity at end j. 
] 

26 - 35: Y. Y eccentricity at end i. 
1 

36 - 45: Y. Y eccentricity at end j. 
] 

G3(d) ELEMENT GENERATION COMMANDS (714) - As many cards as needed to 
generate all elements in this group. 

Cards must be in order of increasing element number. Cards for 

the first and last elements must be included. See Note G123 for 

explanation of generation procedure. 

columns 1 - 4: Element number, or number of first element in 
a sequentially numbered series of elements to 
be generated by this command. 

5 - 8: Node number at element end i, NODI. 
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9 - 12: Node number at element end j, NODJ. 

13 - 16: Node number increment for element generation. 
If zero or blank, assumed to be 1. 

17 - 24: Stiffness type number. 

25 - 28: End eccentricity type number. Leave blank 
or punch zero if there is no end eccentricity. 

29 - 32: Time history output code. If a time history 
of element results is not required for the 
element covered by this command, punch zero 
or leave blank. If a time history printout 
is required, punch 1. 

NOTE G123: ELEMENT GENERATION FOR ELEMENTS 1, 2, 3 

In the element generation commands, the elements must 
be specified in increasing numerical order. Cards may be 
provided for sequentially numbered elements, in which case 
each card specifies one element and the generation option 
is not used. Alternatively, the cards for a group of 
elements may be omitted, in which case the data for the 
missing group is generated as follows: 

(1) All elements are assigned the same node k, strength 
type, etc. as for the element preceding the missing group 
of elements. 

(2) The node numbers for each missing element are 
obtained by adding the specified node number increment to 
the node numbers of each preceding element. The node num­
ber increment is that specified for the element preceding 
the missing set of elements. 

In the printout of the element data, generated data 
are prefixed by an asterisk. 

G4. TWO DIMENSIONAL NONLINEAR BEAM ELEMENT 

G5. THREE DIMENSIONAL NONLINEAR BEAM ELEMENT 

These elements are described in detail in [13]. The input for 

MINI-ANSR is the same as that given in [13] for ANSR-l, with the only 

exception that the element group indicators are respectively 4 and 5. 
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H. NEW PROBLEM 

Data for a new problem may follow immediately starting with 

section A. Any number of structures may be analyzed ina single 

computer run. 

I. TERMINATION CARD (A4) - One card to terminate the complete data 
deck. 

Columns 1 - 4: Punch the word STOP. 
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APPENDIX E - LISTING OF FUNCTION EVALUATION SUBROUTINES 
FOR EXAMPLE PROBLEMS 1 AND 2 
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PROBLEM-INDEPENDENT 
SUBROUTINES 



c 
c 

c 
c 
c 
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subroutine inansr 

c common blocks for mini-ansr program 
c 

implicit double precision (a-h,o-z) 
common Icontrll nodes,ncnod,nodgc,ndcon,niddof,nmaxd,nmsgc, 

* nelgr, ntels, kexec, kstat, kprint 
common linfelr I rdat(1000) 
common linfeli I idat(500) 
common Iwork I work(2000) 
common lindat I ia(5000) 
common a(10000) 

c 
c set storage 
c 

c 
c 

TIl'stOl' = 10000 
5000 

= 1000 
500 
2000 

nistor 
nrdat 
nidat 
nwork 

c ini tial i ze 
c 

do 100 i=l,nrstor 
100 a(i) = O. 

do 110 i=l,nistor 
110 ia(i) = 0 

do 120 i=1. nrdat 
120 rdat(i) = O. 

do 130 i=1. nidat 
130 idat(i) = 0 

do 140 i=1. nwork 
140 work(i) = O. 
c 

c 
call input (a, nrstor, ia, nistor) 

kprint = 1 
call declar ('KPRINT', 'int',O,kprint,O,O) 
call declar ('NTELS', 'int',O,ntels,O,O) 
call declar ('NODES', 'int',O,nodes,O,O) 
return 
end 
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c 
c 
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logical function bigdH (n, z, zstr, dHf, tol) 

c returned true if the maximum difference between z(i) 
C Istr(i) is greater than tol. It also set~ zstr(i) equal to z(i) 
c when this is true. 
c 

c 

implicit ojouble precision (a-h,o-z) 
dimension z(1), zstr(l),dif-P(l) 

bigdif false. 
difmax = O. 
do 100 i == 1,n 
diff(i) = z(i) - Istr(i) 
absdif = dabs(dif-P(i» 
H(z(i).ne.O.OdO) absdif = absdH/z(i) 
if (absdi-P . gt. di-Pmax) difmax = absdif 

1 00 c o-n tin u e 
c 

c 
if (difmax . It. toll return 

do 110 i=1, n 
Istr(i) =. z(i) 

110 continue 
c 

c 
bigdH 

return 
end 

tr'.Je. 



c 
c 

c 
c 

subroutine anal (zresp) 
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c structural analysis interface routine 
c 

c 

implicit double precision (a-h,o-z) 
dimension zresp(l) 

c mini-ansr common blocks 
c 

c 

c 

* 

* 

common Icontrll nodes,ncnod,nodgc,ndcon,niddof,nmaxd,nmsgc, 

common Istoragl 
common Ilodconl 

nelgr, ntels, kexec, kstat, kprint 
mrstor,mistor,neq,mband,nsto, Jcol 
nspat, nslgc, nipx, nipy, nipz, kprec, dtx, dty, dtz, 
facgx,facgy,facgz,ndlr,mndip,ndlgc 

common Ipass I igr,naddr,naddi,kna, kedatr, kedati, kevar, 
* istep, ipath, kupd, kitrn, ielasp, ielas, nstref 

common lad~resl kndk.kxo.kyo,kz~. kfms.kimug.ksld.ktug,kug.kgx. 
* kgy. kgz, kpt, kipt, kxdh, kydh, kzdh, knaa, krvec, kdri, 

kri, kddds. kddis. kdis, kveL kacc, kdenp, ktimp, 
kdenn, ktimn, kdup, kalf, ksti', k.stfd, kdelk * 

* common linadrsl kvelin, kaccin 
common Itapesl nin,nou 
common lone I JP' Jq,numvar 
common lindat I ia(l) 
common a(l) 

if (k exec. 9 e. 1) got 0 300 

call modify (zresp) 
if (kprint.eq.O) Ulrite(nou,2000) (zresp(i),i=1.numvar) 

2000 format (/5x,'zresp in anal'II(5x.5(e12.5,2x») 
c 
c initialize 
c 

100 

c 

do 100 
a (i) = 
ielasp 
ielas 
nstref 

i=krvec,mrstor 
0.0 
= 1 
= 0 
= 0 

c response analysis for static loads 
c 

c 

if (kstat. eq.O) go to 110 
nspatl = nspat + 1 
call static (a(ksldl,a(krvec),a(kri),a(kddds).a(kddis),a(kdis). 

* a( kdenp). a( ktimp). a( kdenn), a( ktimn). ia( k xdh), 
* ia(kydh), ia(kzdh), ia(kndk),a(kstfl,aCkstfd), ia(knaa), 
* a(kdelk),a(kdup),a(kalf),nodes,nspatl) 

if (kstat. eq.-l) go to 200 

c response analysis for dynamic loads 
c 
110 call dynmic (a(kfms). ia(kimug),a(kgxl,a(kgyl.a(kgz). ia(kipt), 

* a(kpt).a(krvec),a(kri),a(kddds),a(kddis),a(kdis), 
* a(kve!).a(kacc),a(kdenp).a(ktimp).a(kdenn).a(ktimn). 
* ia(kxdh). ia(kydhl, ia(kzdh), ia(kndk),a(ksH),a(kstfd), 
* ia(knaa),a(kdelk),a(kdup).a(kalf). 
* nodes.a(kvelin).a(kaccin» 

c 
200 return 
c 
300 stop 

end 



c 
c 

c 
c 
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subroutine set 

c this subroutine sets data in common blocks to be used in the 
c interactive optimization program. As an example data are set 
c here to be used for displaying the structure geometry 
c 
c 

c 

c 

c 
c 

c 

c 

c 

* 

* 
* 
* 

implicit double precision (a-h.o-z) 
common Icontrll nodes,ncnod.nodgc.ndcon.niddof.nmaxd.nmsgc. 

common 
common 

common 

common 
common 

nelgr. ntels. kexec. kstat. kprint 
Istoragl mrstor. mistor. neq. mband. nsto. Jcol 
lelpar I Ipar(lO). flpar(6). indgr(20),nmsgr(20).mfgr(20). 

i n f 9 r r ( 20 ). i n f g r i ( 20 ) • n d f 9 r ( 20 ) • d k 0 9 r ( 20 ) • 
dktgr(20) 

Ipass I igr. naddr. naddi. kna. kedatr. kedati. kevar, 
istep. ipath. kupd. kitrn. ielasp. ielas. nstref 

lindat I ieldat(l) 
eldat(l) 

naddi = kedati 
naddr kedatr 

do 260 igr=l,nelgr 

ngr indgr(igr) 
nels = nmsgr(igr) 

do 260 iel=l,nels 

ninfi 
ninfr 

ieldat(naddi) 
= eldat(naddr) 

120 go to (130.140.150.160,170.180.190.200.210.220). ngr 
c 
130 call storl (ieldat(naddi+l).eldat(naddr+l).ninfi,ninfr,2) 

go to 250 
140 call stor2 (ieldat(naddi+l),eldat(naddr+l',ninfi,ninfr,2) 

go to 250 
150 call stor3 (ieldat(naddi+1',eldat(naddr+1',ninfi,ninfr,2' 

go to 250 
160 call stor4 (ieldat(naddi+l),eldat(naddr+l'.ninfi,ninfr,2) 

go to 250 
170 call stor5 (ieldat(naddi+l',eldat(naddr+l),ninfi,ninfr,2) 

go to 250 
180 call stor6 (ieldat(naddi+l',eldat(naddr+l),ninfi,ninfr,2) 

go to 250 
190 call stor7 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr,2) 

go to 250 
200 call stor8 (ieldat(naddi+l',eldat(naddr+l),ninfi,ninfr,2) 

go to 250 
210 call stor9 (ieldat(naddi+l',eldat(naddr+l',ninfi,ninfr,2) 

go to 250 
220 call storl0 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr,2) 

go to 250 
c 
250 naddi = naddi + ninfi + 1 

naddr = naddr + ninfr + 1 
c 
260 continue 
c 

return 
end 



c 
c 

c 
c 

140 

subroutine modify (zz) 

c this subroutine modifies data in common blocks corresponding to the 
c optimization variables. 
c 

c 

c 

c 
c 

c 

c 

c 

implicit double precision (a-h,o-z) 
dimension zz(1) 
common Icontrll nod~s,ncnod,nodgc,ndcon,niddof,nmaxd,nmsgc, 

* nelgr, ntels, kexec, kstat, kprint 
common Istoragl mrstor,mistor,neq,mband,nsto, Jcol 
common lelpar I lpar(10),flpar(6), indgr(20),nmsgr(20),mfgr(20), 

* i n f g r r ( 20 ), i n f g r i (20 ) , n d f 9 r (20) , d k 0 g r ( 20 ) , 
* dktgr(20) 

common Ipass I igr, naddr, naddi. kna, kedatr, kedati, kevar, 
* istep, ipath, kupd, kitrn, ielasp, ielas, nstref 

common lindat I ieldat(l) 
common eldat (1) 

kevar = ntels 
naddi = kedati 
naddr = kedatr 

do 260 igr=l,nelgr 

ngr 
nels 

indgr(igr) 
nmsgr(igr) 

do 260 iel=l,nels 

ninfi = ieldat(naddi) 
ninfr = eldat(naddr) 

120 go to (130,140,150,160,170,180,190,200,210,220), ngr 
c 
130 call mdfll (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, IZ) 

go to 250 
140 call mdf12 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
150 call mdfl3 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
160 call mdfl4 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
170 call mdfl5 (ieldat(naddi+1),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
180 call mdfl6 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
190 call mdfl7 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
200 call mdfl8 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr,zz) 

go to 250 
210 call mdfl9 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
220 call mdfl10 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, zz) 

go to 250 
c 
250 naddi = naddi + ninfi + 1 

naddr naddr + ninfr + 1 
c 
260 continue 
c 

return 
end 



c 
c 

c 
c 
c 
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subroutine sendif (ntime, nepact, \/n, \/' nrOIll, delz, dydz, Jvar, numvar) 

c dimension: dydz (idim, Jdim, kkdim), \/ (idim, kdim), yn (idim, kdim) 
c 
c dydz (i, J' kk) = (yn (L k) - Y (L k» I delzJ 
c 
c 
c 
c 
c 
c 

or 
dydz (iJkk) 
IIIhere 

iJkk 
ik = 

(yn (ik) - Y (ik» I delzJ 

+ (J-1)*idim + (kk-1)*idim*Jdim 
i + (k-l)*idim 

c here 
c 
c 
c 

c 

idim 
Jdim 

nrolll 
numvar 

implicit double precision (a-h,o-z) 
dimension nepact(l}, yn(l}, y(1), dydz(l} 

nm = nrolll*numvar 
Jvarolll = (Jvar-1)*nrolll 
do 100 i=1. nrolll 
iJkk = i+Jvarolll 
ik = i 
do 100 k=1. ntime 
if (nepact(k). eq. 0) go to 90 
dydz(iJkk) = (yn(ik)-y(ik»/delz 
iJkk = iJkk+nm 

90 ik = ik+nrolll 
100 continue 
c 

return 
end 
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c **************************************************************** 
c Function evaluation subroutines ror 10 b~ truss problem 
c ***************************************************************** 
c 
c 
c 

c 
c 
c 

c 

subroutine pars~m (n, z) 

implicit double precision (a-h,o-z) 
dimension z(1) 

c common blocks for 10 bar truss problem 
c 

c 

c 

c 

c 
c 

common/strpar/rleng(10),ro,adisp2,astrs2,armin,tolz,deItaz 
common Irespl xdisp(4,1),~disp(4,1),stress(10,1),nepact(1) 
common Idrespl dxdz(4,10,1),d~dz(4,10,1),dstrdz(10,10,1) 
common Istrgoml elndxl(10),elndx2(10),elnd~1(10),elnd~2(10), 

1 nodl(10),nod2(10) 
common Izansr I zresp (10), zsens (10), d iff (10) 
common Instranl nanal,nsens 

nanal = ° 
nsens ° 
call inansr 

call set 

do 100 i = 1 , n 
zresp(i) = 0.0 
zsens(i) = 0.0 

100 continue 
c 

c 
c 

1'0 = 0.0001 
adisp2 = 4. 
astrs2 = 625. 
armin = 0. 1 
toll = 1. Od-5 
deltaz = 1. Od-5 

c declare problem variables into intrac data base 
c 

call declar ('TOLZ', 'double',O, tolz,O,O) 
call declar ('DELTAZ', 'double',O,deltaz,Q,O) 
call dec lar ('XDISP', 'doub Ie', 4, xd isp, 4,1) 
call declar ('YDISP', 'double',4,~disp,4,l) 
call declar ('STRESS', 'double', 10, stress, 10, 1) 
call declar ('RO', 'double',Q,ro,O,Q) 
call declar ('ADISP2', 'double',0,adisp2,Q,0) 
call declar ('ASTRS2', 'double',0,astrs2,0,O) 
call declar ('ARMIN', 'double',Q,armin,O,Q) 
call declar ('NANAL', 'int',Q,nanal.O,O) 
call declar (fNSENS', 'int',O,nsens,O,O) 
call declar ('ELNDX1', 'double',1.elndxl,10,1) 
call declar ('ELNDX2', 'double', 1. elndx2, 10, 1) 

call declar ('ELNDY1', 'double', L elndyl, 10, 1) 
call dec lar ('ELNDY2', 'doub Ie', 1, elndy2, 10, 1) 

call declar ('NOD1', 'int',1,nod1.10,1) 
call declar ('NOD2','int',1,nod2,10,1) 



c 

c 
c 
c 

c 
c 

c 

return 
end 
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subroutine funcf (n, z,f,nfuncf) 

implicit double precision (a-h,o-z) 
dimension z(1) 
common/strparlrleng(10),ro,adisp2,astrs2,armin,tolz,deItaz 

f = O.OdO 
do 100 i=1. n 
f = f + rleng(i)*z(i) 

100 continue 

c 

c 
c 
c 

c 
c 

c 

f = f * 1"0 

return 
end 

subroutine gradf (n, z, grad) 

implicit double precision (a-h,o-z) 
dimension z(1), grad(1) 
common/strparlrleng(10),ro,adisp2,astrs2,armin,tolz,deItaz 

do 100 i=1. n 
grad(i) = ro*rleng(i) 

100 continue 
c 

c 
c 
c 

c 
c 

c 

return 
end 

subroutine funcg (n, JP' z, g, psi. nfuncg) 

implicit double precision (a-h,o-z) 
dimension z(1),g(1) 
logical bigdif 
common Izansrl zresp(10), zsens(10),diff(10) 
common Irespl xdisp(4, 1), ~disp(4, 1), stress(10, 1), nepact(1) 
common Idrespl dxdz(4,10,l),d~dz(4,10,l),dst,..dz(10,10,l) 
common Instranl nanal,nsens 
common/strparlrleng(10),ro,adisp2,astrs2,armin,tolz,deltaz 

do 100 i=1,10 
g(i) = -z(i) + armin 
if (g(i) .1e. psi) go to 100 
psi = g(t) 
return 

100 continue 
c 

if (bigdif(n,z,zresp,diff,to1z» go to 120 
if (nsens . leo 0) go to 120 



c 

108 
110 
c 

do 110 J=1. n 
delz = dii'i'(j) 
do 105 1=1, 4 
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xctisp(l. 1) 

'Jdisp(l,1) = 
1~.Jntinue 

xdisp(l, 1)+dxdz(l. j' 1)*delz 
I.j dis P ( 1, 1 ) +d Y d z ( 1, J' 1 ) *d e 1 z 

do 108 1 = 1. 10 
stress(l, 1) = 
continue 

go to 200 

stress(l.1)+dstrdz(l. j' l)*delz 

120 continue 

c 

call anal(zresp) 
nanal = nanal+l 

200 continue 
J = 0 
do 210 i=11. 14 
J=J+1 
gU) = xdisp(j' 1)*xdisp(J' ll/adisp2 -l. 

210 C0.ntinue 
c 

j = 0 
do 220 i=15,18 
J = J+l 
g(i) = ydisp(J' 1)*'~disp(j, ll/adisp2 -1-

220 continue 
c 

j = ° 
do 230 i=19,28 
J = J+1. 
g(i) = stress(j' U*stress(j, 1)/astrs2 -1-

;;:::0 continue 
c 

do 240 i=11,28 
if(g(il. 9t. psi) psi=g(i) 

240 continue 
c 

c 
c 
c 

c 
c 

c 
c 

c 

return 
end 

sub r 0 uti ne g l' a d 9 ( n, J' z, 9 l' ad) 

implicit double precision (a-h,o-I) 
dimension z(1), gradO) 
logical bigdif 
common IIansrl zresp(10), Isens(10), diff(10) 
common Irespl xdisp(4,1)"Jdisp(4,l),stress(10,ll,nepact(1) 
common I d l' e s pi d x d z (4, 10, 1), d y d z (4, 10, 1), d s tr d I ( 10, 10, 1) 

common Instranl nanal.nsens 
common/strpar/rl eng (10).1'0, ad isp2. astT's2, armin, tol I, del taz 

if (j gt.l0) go to 110 

do 100 1=1, n 
1 00 9 l' a d ( i 1 O. 0 

grad(j) = -1.0 
retlJrn 
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c 
110 continue 

c 

c 

c 

ifLnot. bigdif(n,z,zsens,diff,tolz» go to 120 

nepact(1) = 1 

call sens(zsens,n, 1) 
nsens = nsens+1 

120 continue 

c 
if' (J. 9 t. 18) got 0 160 

if' (J. 9 t. 14) go to 140 
JJ = J-10 
factor = 2. *xdisp(JJ' 1l/adisp2 
do 130 i=1, n 

130 grad(i) = factor*dxdz(JJ' i.1> 
return 

c 
140 JJ = J-14 

factor = 2.*ydisp(JJ,1>/adisp2 
do 150 i=1. n 

150 grad(i) = factor*dydz(JJ' i.1> 
return 

c 
160 JJ = J-18 

factor = 2.*stress(JJ' 1)/astrs2 
do 170 i=1, n 

170 grad(i) = factor*dstrdz(JJ' i, 1> 
c 

c 

c 
c 
c 

c 
c 

c 
c 
c 

c 
c 

c 
c 
c 

c 
c 

return 

end 

return 
end 

subroutine gradph 

return 
end 

subroutine sens (zz,numvar,ntime) 

implicit double precision (a-h,o-z) 
dimension zl(10)' zz(1), xdi5pl(4, 1), ydispl(4, 1), 5tre51(10, 1) 
common /zansr/ zresp(10), z5ens(10), diff(10) 
common /resp/ xdisp(4,1),ydisp(4,1),stress(10, l),nepact(l) 
common /drespl dxdz(4, 10, 1), dydz(4, 10, 1), dstrdz(10, 10, 1) 

common Instranl nanal,nsens 
common/strpar/rleng(10),ro,adisp2,astrs2,armin,tolz,deltaz 



c 
c 

do 110 k=l,ntime 
do 100 J=L 4 

148 

xdisp1<Jtk) = xdisp(J,k) 
100 Y dis P 1 ( J' k) = Y dis P ( J' k ) 

do 105 J=L 10 
105 stresl(J,k) = stress{J,k) 
110 continue 

do 115 i=l,numvar 
115 zlU) = zz(i) 
c 

c 

c 

1 
c 

do 120 i=l,numvar 
delz = zz{i)*deltaz 
zz(i) = zz(i)+delz 

call anal(zz) 

call send if 
call sendif 
call send ii' 

(ntime, nepact, xdisp, xdispl,4, delz, dxdz, i, numvar) 
(ntime, nepact, ydisp, ydispl, 4, delz, dydz, it numvar) 
(ntime, nepact, stress, stres1, 10, delz, dstrdz, it 
numvar) 

z z ( i ) z 1 ( i) 
120 continue 
c 

do 140 k=l,ntime 
do 130 J=l,4 
xdisp(Jd) = xdispl(J,k) 

130 ydisp(J' k) = ydisp1<J' k) 
do 135 J=L 10 

135 stress(j,k) = stresl(j,k) 
140 continue 
c 

c 
c 

c 
c 

return 
end 

subroutine storsp (nodes, ndkod, dt, time, dis, vel, acc, Inxdh. 
1 Inydh, lnzdh. nodsx. nodsy, nodsz, kstat, ndchk) 

c subroutine to store dynamic response results into two dimensional 
c arrays. The response is stored starting from initial time 
c 'tstart' to the final time 'tend' with 'nskip' time steps being 
c skipped. Values for 'tstart', 'tend' and 'nskip' are set in the 
c driving routine (main program in case of just analysis or one of 
c the user's subroutines in case of optimization) 
c Response quantities at nodes which are specified for output 
c (section 0 in ANSR data preparation manual) are saved only. 
c 
c 

implicit double precision (a-h,o-z) 
common Itapes I nin, nou 
common Icontrll nJts,ncnod,nodgc,ndcon,niddof,nmaxd,nmsgc, 

1 nelgr, ntels, kexec, kdummy, kprint 
common 

* 
* 

common 

* common 
common 
common 
common 

lelpar I lpar (10), flpar (6), indgr (20). nmsgr (20), mfgr (20), 
infgrr (20), i nfgri (20), ndfgr (20), d kogr (20), 
dktgr(20) 

Ipass I igr,naddr,naddi, kna, kedatr,kedati, kevar, 
istep, ipath, kupd, kitrn, ielasp, ielas,nstref 

lindat I ieldat(l) 
eldat(l) 
Idynparl tstart,tend,nskip, JJ' kaddel 
Iresp/ lCdisp(4,l),ydisp(4,l),stress(10,l),nepact(1) 
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c 
dimension ndkod(nodes, 1), dis(l), vel<l),acc(l), Inx1fh(1),lnydh(1), 

1 Inzdh(l) 
c 

data zero 10.OdOI 
c 
c initialize and check dimensions 
c 

c 

c 

c 

i. (ndchk . gt. 0) go to 100 

ndchk 
nsk 
JJ 

1 
nskip 
o 

nmxrow = 4 
nmxcol 1 
maxrow maxO (nodsx,nodsy,nodsz) 
i. (maxrow . It. 0) maxrow = nodes 
maxcoI = 1 
i. (maxrow. Ie. nmxrow . and. maxcol. Ie. nmxcol) go to 100 

write (nou,20pO) maxrow,maxcol 
2000 'ormat 

1 
(/5x, 'dimension o' arrays 'or storing dynamic response'l 

5x, 'is too short--- dimensions needed: 'I 
2 5x, ' row dimension 'i51 
3 5x, ' column dimension = ' i5) 

stop 
c 
100 i. (kstat. eq.-l) go to 110 

c 

c 

c 

if (time. It. tstart . or. time. gt. tend) go to 500 

if (nsk .eq. nskip) go to 110 

nsk = nsk + 
go to 500 

110 J J=JJ+1 
nsk = 1 
if (nodsx) 120,160,140 

c 
120 do 130 i = 1,nodes 

k = ndkod(i.1) 
xdisp(i, JJ) = dis(k) 
if (time. eq. zero) go to 130 

c x ve 1 ( i, J J ) ve I ( k ) 
c xacc(i'JJ) = acc(k) 
c 
c 'or rotational displacements about x-axis add 
c k = ndkod(i,4) 
c xdrot(i'JJ) = dis(k) 
c xvrot(i'JJ) = vel<k) 
c xarot(i'JJ) = acc(k) 
c 
130 continue 

go to 160 
c 
140 do 150 i=1,nodsx 

I = lnxdh(i) 
k = ndkod(L 1) 

xdisp(i'JJ) = dis(k) 
if (time. eq. zero) go to 150 

c xvel<LJJ) vel<k) 
c xacc(i'JJ) = acc(k) 
150 continue 



c 
160 if (nodsy) 170,210,190 
c 
170 do 180 i = 1,nodes 

k = ndkod(i,2) 
ydisp(LJJ) = dis(k) 
if (time. eq. zero) go to 180 

c yvel<i.JJ) velO) 
c yacc(irJJ) = acc(k) 
180 continue 

go to 210 
c 
190 do 200 i=l,nodsy 

1= lnydh(i) 
k = ndkod(I,2) 
ydisp(i'JJ) = dis(k) 
if (time. eq. zero) go to 200 

c yvel<i.JJ) vel<k) 
c yacc(i'JJ) =acc(k) 
200 continue 
c 
210 if (nodsz) 220,260,240 
c 
220 do 230 i = 1,nodes 

k = ndkod(i,3) 
c zdisp(i'JJ) = dis(k) 

if (time. eq. zero) go to 230 
c zve l( i, J J ) = ve l( k ) 
c zacc(i'JJ) = acc(k) 
230 continue 

go to 260 
c 
240 do 250 i=l,nodsz 

I = lnzdh(i) 
k = ndkod(1.3) 

c zdisp(i'JJ) = dis(k) 
iT (time. eq. zero) go to 250 

c zvel(i'JJ) = vel<k) 
c zacc(i'JJ) =accCk) 
250 continue 
c 
260 continue 
c 
c 
c storing element response 
c 

c 

c 
c 

c 

c 

naddi = kedati 
naddr = kedatr 

do 460 igr=l,nelgr 

kaddel = 0 
ngr = indgr(igr) 
nels = nmsgr(igr) 

do 460 iel=l,nels 

ninfi = ieldat(naddi) 
ninfr = eldat(naddr) 

150 
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c 
320 go to (330,340,350,360,370,380,390,400,410,420), ngr 
c 
330 call stor1 <ieldat(naddi+1), eldat(naddr+1), ninfi. ninfr, 1) 

go to 450 
340 call stor2 (ieldat(naddi+1),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
350 call stor3 (ieldat(naddi+l),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
360 call stor4 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, 1) 

go to 450 
370 call stor5 (ieldat(naddi+ll, eldat(naddr+1), ninfi, ninfr,1) 

go to 450 
380 call stor6 (ieldat(naddi+l),eldat(naddr+1),ninfi,ninfr,1) 

go to 450 
390 call stor7 (ieldat(naddi+l),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
400 call stor8 (ieldat(naddi+1),eldat(naddr+1),ninfi,ninfr,l) 

go to 450 
410 call stor9 (ieldat(naddi+l),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
420 call stor10 (ieldat(naddi+1),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
c 
450 naddi = naddi + ninfi + 1 

naddr = naddr + ninfr + 1 
c 
460 
500 

c 
c 
c 

c 
c 
c 
c 

c 

continue 
return 
end 

subroutine mdfll (icoms, coms, ninfci, ninfcr, z) 

modification routine for element 1 

imp I ic it doub Ie prec ision (a-h, o-z) 
dimension z(1), icoms(l), coms(1), icom(l), com(l) 
common linfelil imem, kst, Im(6), node(2), ktho 
common linfelrl emod, xyz (3,2), area, sI, b (6), q,1 (6), vtot, stot, senp, 

1 senn,tsenp,tsenn,sdamp 
eq,uivalence (imem, icom( 1» 
eq,uivalence (emod,com{l» 

do 100 i=l,ninfci 
100 icom(i) = icoms(i) 

do 110 i=1,ninfcr 
110 com(i) = coms(i) 
c 

area = z(imem) 
c 

kst = 1 
do 120 i=16,ninfcr 

120 com(i) = 0.0 
c 

do 130 i=1,ninfci 
130 icoms(i) = icom(i) 

do 140 i=1,ninfcr 
140 coms(i) = com(i) 
c 

return 
end 



c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

152 

subroutine stor1 (icoms, coms, ninfcL ninfcr, iflag) 

this subroutine has two tasks: 
-iflag=1 

-if lag=2 

stores element response values 
in dynamic or static analysis 
stores element quantitities which are 
fixed in an optimization problem, in 
particular data useful for displaying 
the structure 

implicit double precision (a-h,o-z) 
dimension icoms(1), icom(1) 
dimension coms(1),com(1) 
common Itapes I niu,nou,nt1,nt2,nt3,nt4,nt5,ntemp 
common linfelil imem, kst, Im(6),node(2), ktho 
common linfelrl emod, xyz(3, 2), area, s1, b(6), ql(6), vtot, stot, senp, 

1 senn, tsenp, tsenn, sdamp 
equivalence (imem, icom( 1» 
equivalence (emod,com(l» 
common/dynparl tstart, tend, nskip, JJt, kaddel 
c 0 mm 0 n Ire s p I x dis P ( 4, 1 ) , Y dis P ( 4, 1 ) , s t res s ( 1 0, 1 ) , n epa c t ( 1 ) 
common/strgoml elnd x 1 (10), elnd x2( 10) 1 elndy 1 (10) 1 elndy2( 10) 1 

1 nod 1 (10) 1 nod2( 10) 
common/strpar/r1eng(10).ro,adisp2/astrs2/armin. tolz/deltaz 

do 10 J=1/ninfci 
10 icom(J) = icoms(J) 

do 15 J=l/ninfcr 
15 com(J) = coms(J) 
c 

go to (100.200) if1ag 
c 
100 continue 

c 

if(ktho. Ie. 0) return 
kadde1 = kadde1+1 

c set control on kaddel 
c 

c 
c 
200 

c 

stress(kaddel. JJt) = stot I area 
return 

continue 
rleng(imem) 
e1ndxl(imem) 
elndx2(imem) 
elndyl(imem) 
elndy2(imem) 
nodl(imem) 
nod2( imem) 

return 
end 

= s1 
= xyz(l/1> 
= xyz(t.2) 

xyz(2/1> 
xyz(2/2) 

node(l) 
node(2) 
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PROBLEM-DEPENDENT 
SUBROUTINES 

BRACED FRAME PROBLEM 
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c ***********~**************************************************** 
c Function evaluation subroutines for 2 story braced plane frame. 
c ***************************************************************** 
c 
c 
c 

c 
c 
c 

c 

slJbroutine parsym (n, z) 

implicit double preeislon (a-h,o-z) 
dimension z(1) 

c common blocks for 2 story braced frame problem 
c 

c 

c 

c 

c 
c 

eommon/strpar/rleng (10),1'0, ad isp2, astrs2, rbmin, rcmin, tol Z, deltaz 
common Ifcomml glb4/glbB/gleB,gl.:16,wblwt/frac 
common irespl xdisp(2,100),rn(2,100),del(2,100),rmom(2/100), 

* nepact(100) 
common /drespl dxdz(2,4,10),dmomdz(2,4,10) 
coml1lon /strgom/ elndx1(10), elndx2(10), elndyl(10), elndy2(10), 

nodl(10), nod2(10) 
cemmon Iz~nsr I zrespIIO), zsens(10), diff(10) 
common Instran/ nanal,nsens 

nanal 0 
nsens 0 

call inansr 

call set 

do 100 i 
zresp(i) 
.sens(i) 

1 , n 
= O. 0 

o 0 
100 continuE! 
c 

c 
c 

1'0 = O. 0001 
adisp2 = 0.2025 
astrs2 = 576. d+6 
rbmin = O. 1 
remin = 10. 
tolz = 1. Od-5 
deltaz = 1. Od-5 
glb4 1'0 * 1'len9(1) 
9 lb8 = glb4 * 2. 0 
gle8 = 1'0 * rleng(3) 
glc16= glc8 * 2. 0 
frac = U. 5 

* O. 4 

* 0. B 

c declare problem variables into intrac data base 
c 

ca 11 
ca 11 
COl 1-1 
call 
call 
call 
call 
c311 
call 

declar 
declar 
declar 
declar 
declar 
declar 
declar 
declar 
dec13r 

( 'TOLZ ", 'd a U b 1 e ' , 0, to 1 Z I 0, 0) 
('DELTAZ', 'double', 0, deltaz, 0, 0) 
('XDISP', 'double'/2, xdisp/2, 100) 
('RN', 'double', 2, rn, 2,100) 
( 'DEL', 'd 0 U b 1 e ' , 2, del, 2, 100) 
('Rt10M', 'double',2,rmom,2/100) 
('RQ', 'double',O,ro,O,O) 
( I FR AC " 'd cub 1 e i, 0, f l' ·01 C, 0, 0) 
('ADISP2'I'double',O,adisp2,0/O) 



c 
c: 
c 

c: 
c 

c: 

c:a 11 dec:lar 
c:all dec:lar 
call deciar 
c ,111 declar 
call dec:lar 
call declar 
call dec:lar 
call declar 
call declar 
call declOlr 
ea 11 decl ar 

return 
end 
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('ASTRS2', 'double',0,astrs2,0,O) 
( 'Rl3t1 IN', 'd 0 ubI e ' , 0, rb min, 0, 0) 
( 'RCi''Il N " 'd 0 1) b 1 e ' , 0, rem in, 0, 0) 
( 'NANAL', 'int', 0, nanaL 0,0) 
('NSENS', 'int', 0, nsens, 0, 0) 
('ELND:<l', 'double', 1, elndxl, 10, 1) 
('ELND:<2', 'double', 1, elndx2, 10, 1) 
('ELNDY1', 'double', L elndyL 10, 1) 

('ELNDY2', 'double', L elndy2, 10, 1) 

('NOD1', 'int', 1,nod1.10, 1) 

( 'NOD2', 'i nt', 1, nod 2, 10, 1 ) 

subroutine funcf Cn, z, f, nfunc:f) 

implicit douille pTecision (a-h,o-z) 
dimension z(1) 
common/strpar/rleng(10),ro,adisp2,astrs2,rbmin,rc:min, tolz,deltaz 
common Ifcomml glb4, gIbe, glc:8, glc16, IJJb, IJJt, frac 

f = 0.0 
do 100 i=1,2 
f = f + glb8*dsqrt(z(i» 
f = f + glc16*dsqrt(z(i+2» 

100 continue 
c: 

c 
c: 
c: 

c 
c 

c 

c 

c 
c 

c 
c 

c: 

return 
end 

subroutine gradf (n, I, grad) 

implicit double precision (a-h,o-I) 
dimension 1(1), grad(1) 
commonistrpar/rleng(10),ro,adisp2,astrs2,rbmin,rcmin, tolz,deltaz 
common Ifcomml glb4,glb8, glcB,glc16,wb,wt,frac 

grad(l) 
grad(2) 
gr.3d(3) 
grad(4) 

return 
end 

glb4 I dsqrtCz(t» 
glb4 I dsqrt(I(2» 
glce I dsqrt(z(3» 
gle8 I dsqrt(z(4» 

subroutine funcg (n, JP' z, g, psi. nfuncg) 

implicit double precision (a-h, o-z) 
dimension z(ll,g(l) 
common/strparirleng(10),ro,adisp2,astrs2,rbmin,rcmin, tolz,deltaz 
c:ommon Ifeommi glb4,glb8,glc:8,glc16,wb,wt,frac 
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do 100 i=l. 2 
g(i) = -z(i)+rbmin 

100 g(i+2) = -z(i+2) + rcmin 

c 

~b ~ glb8*(dsqrt(z(1)+dsqrt(z(2») 
we - glc16*(dsqrt(z(3»+dsqrt(z(4») 
wt '" wb+wc 
9(5) = wb/(frac*wtl-l. 

do 150 i = 1, J P 
150 if(g(i). gt. psi) psi-g(i) 

return 

c 

r: 

e 
e 

e 

'2 r. ct 

subroutine gradg (n, J", grad) 

imolieit double precision (a-h/o-z) 
dimension z(lI/grad(l) 
eommon/strpar/rleng(101/ro/adisp2,astrs2/rbmin/rcmin, tolz/deltaz 
common Ifcomml glb4, gIb8, gle8, glc161 fub, wt, frae 

if (J gt. 4) go to 110 

do 100 i-l, r. 
100 grad(i) 0.0 

grad(J) - -1.0 
return 

c 
110 continue 

c 
c 
c 

C 

!. 

bet = wb/wt 
fae = (1. -bet)*glb4/(frac*wtl 
grad(l) = fac/dsqrt(z(l» 
grad(2) = fac/dsqrt(z(2» 
fac = -bet*glc8/(frac*wt) 
grad(3) = fac/dsqrt(z(3» 
grad(4) = fac/dsqrt(z(4» 

return 
end 

subroutine funcph (n, nJq, Jq. Z, WO, WC, deltaw. nq, phi. psi, nfuncp) 

implicit double precision (a-h/o-z) 
dimension z(li/phi(nJq/l) 
logical bigdif 
common/int1!gr/nsteps. dt, dto, dampm, dampkt, dampko 
common/phigra/a2, b2, b23. b24. iwOdt 
common/strpar/rleng(10),ro,adisp2/astrs2,rbmin,rcmin. tolz.deltaz 
common Irespl xd isp (2.100). rn(2. 100), del (2.100) I rmom(2. 100) I 

* nepact(lOO) 
common Istrgoml elndxl(101, elndx2(101, elndy1<lO), elndy2(10), 

1 nodl(10),nod2(10) 
common Izansr I zresp(10), zsens(lO), diff(10) 
cammon Instranl nanal/nsens 
common/dfJnp~rl tstart. t1!nd, nskipi JJI kaddel 
common Idresp! :lxdz(2.4.10I,dmomdz(2,4.10) 
common Itapesiniri/nau 
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c 
c 

write (nou.2010) 
2010 format (5x. 'entering funcph') 

c 

i f ( big d i f ( n, z. z res p. d iff • to Iz » g 0 to 120 
if (nsens . Ie. 0) go to 300 

i i = 1 
do 110i=Lnq 
if(nepact(i).eq.O) go to 110 
do 100 J==l.n 
delz == diff(J) 
xdisp(L i) == xdisp(1. i)+dxdz(1. J. ii)*delz 
xdisp(2. i) = xdisp(2. i)+dxdz(2. J' ii)*delz 
rmom(l. i) rmom(t, U+dmomdz(1. J. ii)*delz 
rmom(2. i) = rmom(2. i)+dmomdz(2. J. iil*delz 

100 continue 
ii == ii+1 

110 continue 
c 

go to 200 
c 
c set variables in common/dynparl 
c 
120 nskip == (wc-wO)/(dt*nq) + 1. e-6 

iwOdt=wO/dt+1 
nS=iwOdt+(nq-l)*nskip 
ishift==(wc/dt+0.5-ns)/2 
iwOdt==iwOdt+ishift 

c 
c 

nstpv == nsteps 
nsteps = minO(nsteps. (ns+ishift» 
tstart=iwOdt*dt 
tend==nsteps*dt 

callanal(zresp) 
nanal == nanaI+l 
write (nou.2000) nanal 

2000 format (/Sx. 'nanal in funcph'. is) 

c 

c 
c 
c 

call mprint (z. i. n. 40h z vector in funcph 
1 ) 

nsteps nstpv 

200 continue 
012 = adisp2 
b2 = 0.6804*astrs2 
b23 = b2*z(3)**1. S 
b24 = b2*z(4)**1. S 
do 210 i=1.nq 
phi(t. i> = xdisp(1. i>*xdisp(l, i)la2-1. 
ph i (2, i) =( xd isp (2, i )-xd isp (1, i) )*( xd isp (2, i )-xd isp (1. i» la2-1. 
phi(3, i> rmom(L i)*T'mom(1, i>/b23-1. 
ph i (4, i> = T'mom(2, i )*T'mom(2, i> Ib24-1. 

210 continue 
c 
c set up function psi 
c 
300 do 310 1=1. Jq 

do 310 k=1,nq 
if(phi(!. k>' gt. psi> psi=phiCl, k) 
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310 continue 

c 
c 

c 

return 
end 

subroutine gradph (n, nJq, nactiv, Jq, wO, wc, deltaw, nq, neptf, 1, I, k, 
* grad, igrad) 

implicit double precisiQn (a-h,Q-z) 
dimension z(1),grad(1) 
dimension neptf(nJq., 1) 

loqical bigdif 
cammon/integr/nsteps, dt, dto, dampm, dampkt, dampko 
common/phigra/32, b2, b23, b24, iwOdt 
c 0 mm 0 n 1st l' par / l' 1 eng ( 10 ) , l' 0 ,;; dis p 2, as t l' S 2, r'b min, r c min, to 1 z, del t a z 
common /resp/ xdisp (2.100), rn(2. 100), del(2, 100), rmom(2. 100), 

* nepact(lOO) 
co mm 0 n / s t r 9 0 m / e 1 n d x 1 ( 10 ) , e 1 n d x 2 ( 10 ) , e 1 n d y 1 ( 10 ), e 1 n d y 2 ( 10 ) • 

1 nod1(10),nod2(10) 
c (:) mm 0 n / I an 5 r / z res p ( 10 ), z sen s ( 10 ), d iff (10 ) 
cammon /nstranl nanQl,nsens 
common/d'lnpar/ tstart, tend, nskip, JJ' kaddel 
common /dresp/ dxdz(2,4,10),dmomdz(2,4,10) 

if(igrad. gt. 1) go to 50 
do 10 i=l,nq 

10 nepact(i) = ° 
c 

c 

20 
30 
c 

maxsen = 1 

do 30 i=1. Jq 
do 20 J=l,nactiv 
nJ = neptf(LJ) 
if(nJ. eq.O) go to 30 
nepact(nJ)=l 
if (n J. g t. rna x sen) ma x sen 
continue 
continue 

H<.not.bigdif(n,z,zsens,diff,tolz» go to SO 
call sens (zsens,n,maxsen) 
nsens = nsens+l 

50 continue 
nc=O 
do 60 i=1. k 
if(nepact(i). eq.O) go to 60 
nc ,. nc+1 

60 continue 
c 

go to (100,200,300,400) 
c 
100 continue 

fact = 2. *xdisp(l, k)/a2 
do 110 i=1, n 

110 grad(i) = dxdz<1, LncHH'act 
return 

c· 
200 continue 

fact = 2.*(disp(2,k)-xdisp(l,k»/a2 
do 210 i=1,n 

210 ,gradU) = (dxdz(2,itnc)-dxdz(1.i.nc»*fact 
return 



159 

c 
300 continue 

ract = 2. *rmom(l, k)/b23 
do 310 i=L n 

310 grad(i) = dmomdz(l,Lnc)*fact 

c 

grad(3) = grad(3)-O. 75*fact*rmom(1, k)lz(3) 
return 

400 continue 
rac t = 2. *rmom(2, k) Ib24 
do 410 i=1. n 

410 grad(i) = dmomdz(2,Lnc)*fact 

c 
c 

c 

c 

grad(4) = grad(4)-0. 75*ract*rmom(2, kl/z(4) 
return 

... ?-nd 

subroutine sens (zz,numvar,maxsen) 

implicit double preCision (a-h,o-z) 
dimension zl(10), IZ(1), xdispl(2,100),rmoml(2,100) 
common/integr/nsteps, dt, dto, dampm, dampkt, dampko 
common/phigrala2. b2, b23, b24, iwOdt 
common/strpar/rleng(10l,ro,adisp2,astrs2,rbmin,rcmin, tolz,deltaz 
common Irespl xdisp (2,100), rn(2, 100), del (2,100), rmom(2, 100), 

* nepact(100) 
common Instranl nanal,nsens 
c 0 mm 0 n I d y n p a I' / t s tar t, ten d, n ski p, J J' k add e 1 
common Idrespl d.l(dz(2, 4,10), dmomdz(2, 4,10) 

do 110 J=L 2 
do 110 i=l,maxsen 
xdisp1<J' i) = xdisp(J' i) 
rmoml(J' U == rmom(J' i) 

110 continue 
do 115 i=l,numvar 

115 z1(U == lZ(l) 

nstpv = nsteps 

c 

c 

c 

c 

nsteps = iwOdt+(maxsen-1)*nskip 

do 120 i=l,numvar 
delz = zz(i)*deltaz 
zz(i) = zl(i)+delz 

call anal(zz) 

call sendif (max·sen. nepact, xdisp, xdisp1. 2, delz, dxdz, 1. numvar) 
call sendif (maxsen,nepact,rmom,rmom1.2,delz,dmomdz, Lnumvar) 

rz(i) .: z1(i) 
120 continuE.' 

do- 140 J=l,2 
do 140 i=l,maxsen 
xdisp(J' i) = xdisp1<J' i:) 

rmom(J, i) = rmoml(J' i) 
140 continue 

c 
nsteps = nstpv 

return 
end 



c 
c 
c 

c 
c 

160 

slJbroutine '5tQrSp (nodes, ndkod, dt. time, dis, vel. ace, 1nxdh. 
Inl~dh, lnzdh, nodsx, nodsy, nQdsz.l kst,at, ndchk) 

c subroutlne to store dynamic response results into two dimensional 
e arrays. The response is stored starting from initial time 
c: 'tstart· to the ·Final time 'tend' with 'nskip' time steps being 
c skipped. ',ialues for 'tstart'. 'tend' and 'nskip' are set in the 
c driving routine (main program in case of Just analysis or one of 
c the user's subroutines in case of optimization) 
c Response quantlties at nodes which are specified for output 
c (section D in ANSR data ~reparation manual) are saved only. 
c 
c 

c 

c 

* 

* 
* 

* 

implicit double precision (a-h,a-z) 
common It.3Pi!S I nino nOIJ 
common l.:on\:rll nJts. ncnad. nodge. ndcon, niddof, nmaxd, nmsgc. 

common 

common 

common 
common 
common 
common 

nelgr, ntel·3. ~exec, kdummy, kprint 
lelpar / Ip.3r(10),flpar(6). indgr(20),nmsgr(20),mfgr(20), 

infgrr(20). infg.,1(20), ndfgr(20), dkagr(20), 
dktgr(20) 

Ipass / i9r, naddr, naddi. kna. kedatr. kedati. kevar, 
istep, ipath, kupd, k itrn, ielasp, ie1as, nstref 

lindat I ieldat(l) 
eldat(l) 
Idynparl tstart, tend, nskip, JJ' kaddel 
Iresp/ xdisp(2.100).rnC2,lOO),del<2, 100),rmom(2, 100), 

nepact(lOO) 

dimension ndkodC'lodes,"l). dis(ll,vel(1),acc(1),lnxdh(1),lnl~dh(1), 
1 1nzdh(1) 
data .:ero/C.OdO/ 

c initialize and check dImensions 
c 

c 

c 

c 

if (ndchk 9 t. 'J) go to 100 

ndchk 
nsk nskip 

JJ 0 

nmxrow 2 
nmxcol 10e 
maxrow = maxO (nodsx,nodsy,nodsz) 
if (maxrDw It. 0) maxrow = nodes 
maxeol = iflx(Ctend - tstart) I (Ploatlnskip)*dt» + 1 
if (rnalrow. Ie. nmxrow and. maxcal. le.nmxcol) go to 100 

write (~ou.2000) rna.row,maxco1 
2000 IQrmat (/51. 'dimension of arrays for storing dynamic response'l 

Sx. 'is too short--- dimensions needed:'1 
2 Sx, ' row dimension 'i51 
3 5x, column dimension = ' i5) 

stop 
'. 

100 if (k sta t. e.:t. -1) go to 110 
if (time 1 t;. tstart OT' . tim .... 9 t. tend) go to 500 . ' 

if (nsk ... q. nskip) go to 110 



c 
nsk = nsk + 1 
go to 500 

c 
110 JJ=JJ+l 

nsk = 1 
If (nodsx) 120,160, 140 

c 
120 do 130 i = 1,nodes 

k = ndkod(i, Ii 
xdisp(L J.J) = dis(k) 
if (time eq. zero) go to 130 

c xvel(L JJ) = v",lO) 
c xacc(L JJ) = acc(k) 
c 
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c Par rotational displacements about x-axis add 
c k = ndkod(L4) 
c xdrot(L J-J! disCi<) 
C XVT'ot(iJ .j.j) vel(k) 
c xarot(i, JJ) = acc(k) 
c 
130 continue 

go to 160 
c 
140 dol 50 i = L nod s x 

1 = lnxdh(i) 
k = n,::lkod(l, 1) 
xdisp(L JJ) = dis(k) 
if (time eq. zero) go to 150 

c xvel<l,JJ) =vel<k) 
c xacc(i, JJ) = acc(k) 
150 continl;e .. 
160 if (nodsl~) 170,210,190 
c 
170 do ISO i = l,nodes 

k = ndkod(L2) 
c ydisp(i, JJ) = dis(k) 

if (time. eq. zero) go to 180 
c yvel<i, JJ) = vel(k) 
c yacc(L J.J) = acc(k) 
180 continue 

go to 210 
c 
190 do 200 i=l.nodsy 

1 = lnl~dh(i) 

k = ndkod(1.2) 
c ydispCi, JJ) = dis(k) 

if (time eq zero) go to 200 
c yvelU.JJ) vel(k) 
c yacc(ioJ.J) =acc(k) 
200 continue 
c 
210 if (nods:) 220.260.240 
c 
220 do 230 i = l.nodes 

k = ndkod(l,3) 
c zdisp(i, JJ) = dis(k) 

if (time. eq. zero) go to 230 
c zvel(i. JJ) = vel(k) 
c zacc<i. JJi = acc(k) 
230 can tin I; e 

go to 260 



c 
240 do 250 i=l,nodsz 

1 = Inzdh(i) 
k = ndkod(1.3) 

c zdisp(i'JJ) = dis(k) 
if (time.eq. zero) go to 250 

c z ve 1 ( i, J J ) ve I ( k ) 
c zacc(i.JJ) = acc(k) 
250 continue 
c 
260 continue 
c 
c 
c storing element response 
c 

c 

c 
c 

c 

c 

c 

naddi 
naddr 

kedati 
= kedatr 

do 460 igr=l,nelgr 

kaddel = 0 
ngr indgr(igr) 
nels = nmsgr(igr) 

do 460 iel=1. nels 

ninfi = ieldat(naddi) 
ninfr '" eldat(naddr) 
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320 go to (330,340,350,360,370,380,390,400,410,420), ngr 
c 
330 call storl (ieldat(naddi+ll, eldat(naddr+1), ninfi. ninfrd) 

go to 450 
340 call stor2 (ieldat (nadd i+l), eldat (naddr+l), ninfi. ninfr, 1) 

go to 450 
350 call stor3 (ieldat(naddi+1),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
360 call stor4 (ieldat (nadd i+1), eldat(naddr+1), ninfi. ninfr, 1) 

go to 450 
370 call stor5 (ieldat(naddi+1),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
380 call stor6 (ieldat(naddi+i),eldat(naddr+1),ninfi,ninfr,ll 

go to 450 
390 call stor7 (ieldat(naddi+l),eldat(naddr+l),ninfi,ninfr, 1) 

go to 450 
400 call stor8 (ieldat(naddi+l),eldat(naddr+1),ninfi,ninfr, 1) 

go to 450 
410 call stor9 (ieldat(naddi+l), eldat(naddr+1), ninfi, ninfr, 1) 

go to 450 
420 call storl0 (ieldat(naddi+1), eldat(naddr+1), ninfi. ninfr, 1) 

go to 450 
c 
450 

c 

naddi 
naddr 

460 continue 
500 return 

end 

naddi + ninfi + 1 
naddr + ninfr + 1 



c 
c 

c 
c 
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subroutine mdf12 (icoms, corns, ninfci, nin1'cr, z) 

c modlfieation routine for element 2 

c 

implicit double precision (a-h,o-z) 
dimension icams( 1), ieam( 1) 
dimension com .. (ll, eom(l) 
dimension z(1) 
common Itapes I niu,nou,ntl,nt2,nt3,nt4,nt5,ntemp 
common linfeli f imem, ~3t, lm(6), nod,,(2), kgeom, ktho, kbuck, 

* kod, kodp, irest(1) 
common linfelr I eprop(4),area,dumpT'0(4), 

* xyz (3,2), s1. t(3, 3), dlJlx, duly, dulz, ~1(6), 
* skp (6,6), .. tot, sep, se!. venp, venn, vpacp, 
* vpacn, vbuck, .. enp, "enn, tvenp, tvenn, tsenp, tsenn, 
* sdamp,rest(1) 
e~lJi'"alenr.:e (imem, icom( 1» 
equivalence (eprop(1),c'Jm(U) 

do 10 J=1. ninfci 
10 icom(J) = ieoms(j) 

do 15 .J=1. ninfer 
15 com(J) ecms(J) 
e 

area = 0.8* ds~rt(z(imem» 
do 20 j=1,4 

20 eprop(j) = dumpro(j)*area 
c 

kst = 1 
do 100 i=26,ninfcr 

100 comCi) = O. 

lOS 
r: 

do 105 i=14,ninfci 
icom( 1) = 0 

do 110 i=l,ninfci 
110 icoms(i) = icom(i) 

do 120 i=1. ninfer 
120 coms(i) = com(i) 

·c 

c 
c 

c 
c 

return 
end 

subroutine mdf13 (ieoms, corns, ninfc L ninfcr, z) 

c modification routine for element 3 
c 

implicit ,jouble precision (a-h,o-z) 
commcn/tapes/niu,nou,ntl,nt2,nt3,nt4,nt5,nt6 
C 0 mm 0 n / in f eli;' i m em, k s t, 1 m ( 6 ) , nod i, nod J' k 0 u t d t 
common/in1'elrl 1'1. 1'lij' ymod, area, rin, xy(2, 2), af(2, 6), ax(6), 

1 acc'Jms(3), senp (6), senn(6), tenp(6), tenn(6) 
dimension ieam( 1), eom( 1), ieoms (1), corns (1) 
dimension z(l) 
equivalence <imem, icom(1», (f1. com( 1» 
do 10 j=1. nin1'ci 

10 icom'j)=icoms(j) 
do 15 J=1,ninfer 

15 eom(j)=eoms(j) 



c 
c 

c 
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if! (imem. gt. 6) return 
if!(imem. eQ.. 3. or. imem. eQ.. 4) rin=z(3) 
if!(imem. eQ.. 5. or. imem. eQ..6) rin=z(4) 
area = 0.8*dsQ.rt(rin) 

kst=l 
do 100 i=28,ninfcr 

100 com(i) = 0.0 
c 

do 110 i=l,ninf!ci 
110 icoms(i) = icom(i) 

do 120 i=l,ninf!cr 
120 coms(i) = com(i) 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

return 
end 

subroutine stor2 (icoms, cams, ninfcit ninfcr, 'flag) 

this subroutine has two tasks: 
-iflag=l 

-iflag=2 

stores element response values 
in dynamic or static analysis 
stores element Q.uantitities which are 
fixed in an optimization problem, in 
particular data useful for displaying 
the structure 

implicit double precision (a-h,o-z) 
dimension icoms(l), icom(l) 
dimension coms(lI, com(l) 
common Itapes I niu,nou,ntl,nt2,nt3,nt4,nt5,ntemp 
common linfeli / imem, kst, Im(6), node(2), kgeom, ktho, kbuck, 

* kod,kodp,irest(lI 
common linfelr / eprop(4),area,dumpro(4), 

* x \I Z (3, 2) , s 1, t (3, 3), d u 1 x, d u 1 y, d u 1 z, Q.l (6), 
* skp(6,6),vtot,sep,sel,venp,venn,vpacp, 
* vpacn,vbuck,senp,senn,tvenp,tvenn,tsenp,tsenn, 
* sdamp,rest(l) 

common/dynpar/ tstart, tend, nskip, JJt, kaddel 
common/respl xd isp (2,100), rn (2,100), del (2,100), rmom(2, 100), 

* nepact(100) 
common/strgom/ elnd xl (10), elnd x2(10), elndy 1( 10), elnd\l2( 10), 

1 nodl(10),nod2(10)· 
common/strpar/rleng(10),ro,adisp2,astrs2,rbmin,rcmin,tolz,deltaz 
equivalence (imem, icom(l» 
equivalence (eprop(I),com(I» 

do 10 J=L ninfci 
10 icom(J) = icoms(J) 

do 15 J=L ninf!cr 
15 com(J) = coms(J) 
c 

go to (100,200) iflag 
c 
100 continue 

if( ktho. Ie. 0) return 
kaddel = kaddel+l 
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c 
c set control on kaddel 
c 

c 
c 

rn(kaddel, JJt) = sel+sep 
delCkaddeL JJt) = vtot 
return 

200 continue 
rleng(imem) = sl 
elndxl(imem) xyz(1.l> 
elndx2(imem) xyz(I,2) 
elndy1<imem) = xyz(2, l> 
elndy2(imem) xyz(2,2) 
nodl(imem) = node(l) 
nod2(imem) = node(2) 
do 220 J=1. 4 

220 dumpro(J) = eprop(J)/area 
do 240 J=I,ninfcr 

240 coms(J) = com(J) 
c 

c 
c 
c 

c 
c 
c 

return 
end 

subroutine stor3 (icoms, coms, ninfci. ninfcr, iflag) 

implicit double precision (a-hio-z) 
common/tapes/niu,nou,ntl,nt2,nt3,nt4,nt5,nt6 
common/infelil imem, kst, Im(6), nodi. nOdJ, koutdt 
common/infelrl fl,flij,ymod,area,rin,xy(2,2),af(2,6),ax(6), 

1 accums(3),senp(6),senn(6),tenp(6),tenn(6) 
common/dynparl tstart, tend, nskip, JJt, kaddel 
common/respl xdisp (2,100), rn(2, 100), del (2,100), rmom(2, 100), 

* nepact(lOO) 
common/strgoml elndxl(10),elndx2(10),elndyl(10),elndy2(10), 

1 nodl(10),nod2(10) 
common/strpar/rleng(10),ro,adisp2,astrs2,rbmin,rcmin,tolz,deltaz 
d imens i on i c om ( 1 ), com ( 1 ), i c oms ( 1 ), c oms ( 1 ) 
equivalence (imem,icom(I»,(fl,com(I» 
do 10 j=1,ninfci 

10 icom(j)=icoms(J) 
do 15 j=I,ninfcr 

15 com(j)=coms(J) 
c 

go to (100,200) iflag 
c 
100 continue 

if(koutdt. Ie. 0) return 
kaddel = kaddel+l 

c set control on kaddel 
c 

rmom(kaddelt JJt) = accums(1) 
return 



c 
c 
200 

c 

continue 
l' lang ({mem) 
elndxi<imem) 
elndx2(imem) 
elndl,ll(imem) 
elndl,l2( imem) 
nodlCimem) = 
nod2( imem) 

return 
end 

= ill 
xy(l,1> 
xy(1.2) 
xy (2, 1) 

= xy(2,2) 
nodi 
nodJ 
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DATA FILES 

FOR EXAMPLE PROBLEMS 1 AND 2 
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