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ABSTRACT 

This study investigates the in-plane seismic charac

teristics of reinforced concrete floor slabs which function as 

diaphragms placed between lateral load resisting systems. The 

paper focuses on the floor slab system with edge beams, referred 

to as the beam-supported floor system. The investigation consists 

of four phases: (1) experimental study, (2) analytical study, 

(3) parametric study, and (4) dynamic response analysis. 

In the experimental study, scaled models (a scale ratio 

of 1 : 4.5) representing a portion of the floor system in a 

building structure were tested under various loading and support 

conditions. The experimental findings indicate that the develop

ment of a crack extending along the boundary between the column 

and middle strips controls the ultimate in-plane strength of the 

test panels, while the opening and closing of the crack primarily 

controls the behavior of the panels in post-ultimate load regions. 

It was found that cyclic loading or the application of the ver

tical load can reduce the ultimate in-plane strength by as much 

as 20 to 25 percent. 

A non-linear finite element model was developed for the 

purpose of the analytical study. The model successfully predicts 

the ultimate strength of the test slab panels subjected to mono

tonic in-plane loading and duplicates the experimental load

deflection curves. The model also reproduces the unloading 
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stiffness of the test slab panels. 

The effects of geometry, reinforcement, loading, and 

support conditions on the in-plane characteristics of floor slabs 

were investigated in the parametric study. General and practical 

procedures were developed to evaluate the in-plane strength and 

stiffness of floor slabs. The in-plane flexural strength of floor 

slabs can be computed by treating them as deep beams considering 

both flexural and shear deformations. A reduction factor is in

corporated into the deep beam calculation in order to represent 

the stiffness degradation in the post-elastic range. 

In the dynamic response analysis, a seven story and six 

bay symmetrical building model was selected in order to examine 

the influence of in-plane characteristics of floor slabs on the 

building response. Compared with the analysis based on the usual 

rigid slab assumption, the incorporation of elastic in-plane 

deformation or the floor slabs resulted in a 300 percent increase 

in the base shear applied to flexible vertical members. The base 

shear resisted by the flexible vertical members was increased 

further by 100 percent when the non-linear behavior of floor slabs 

and vertical members were considered. 
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I. INTRODUCTION 

1.1 General 

The dynamic response of structures to strong motion 

earthquakes and earthquake resistant building designs have been the 

subjects for a great deal of recent research. According to 

D'Alembert's principle, the dynamic effect of a structure can be 

represented in terms of time-dependent inertial forces. Once 

these equivalent inertial forces have been determined, the analysis 

and design can be performed by the conventional procedure for 

static loads. However, the fact that the effective external forces 

are controlled totally by the earthquake itself complicates the 

earthquake resistant building design. Since the earthquake dis

turbance has a displacement-oriented nature, the effective forces 

are dependent upon the stiffness of the structural elements. As 

a result, a stiffer structure will be subjected to higher earth

quake loads. Structural safety is not automatically improved 

by arbitrarily increasing the member sizes. 

Recent development of high speed digital computers has 

facilitated the understanding of dynamic behavior of structures 

during an earthquake. Much progress has already been made in 

both the dynamic analysis and the earthquake resisting design. 

Nevertheless, prediction of the inelastic response of structures 

to strong earthquake motions having a wide range of frequencies 
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and amplitudes is still difficult because the post-elastic 

behavior of the structures is greatly influenced by the inter

action of individual elements such as beams, columns, and shear

walls. In order to perform a true dynamic analysis, analysts 

first must know the characteristics of each structural element under 

all possible loadings. Once all the information with respect 

to the behavior of structural elements is known, it is possible 

to carry out a dynamic analysis by assembling these elements. These 

two steps in analytic process are interrelated obviously. For 

example, it is possible to model a structure more realistically 

when more information regarding the behavior of some structural 

elements is known. A refined dynamic analysis, in turn, can give 

more accurate evaluation of the forces applied to the individual 

structural elements. 

While the above discussion is valid for any kind of 

construction material, particular care should be paid to the 

reinforced concrete structure. Concrete has certain intrinsic 

advantages. over other construction material; it is highly versa

tile, durable and fire-resistant. Its high density and low duc

tility, on the other hand, bring about undesirable effects when 

used in regions susceptible to severe earthquakes. This disadvan

tage, however, does not necessarily mean that the reinforced con

crete should not be used in seismic regions. Properly designed 

structures will perform well regardless of the material used. 
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Nevertheless, it should be emphasized that reinforced concrete 

is less tolerant of the improper design. 

Much work has been performed to determine the behavior 

of reinforced concrete structural elements subjected to earth

quake loading, particularly for the major lateral load resisting 

elements such as columns, beams,and shearwalls. Great improve

ment in the earthquake resisting design has been achieved in 

recent years from these studies. On the other hand, earthquake 

behavior of floor slab systems has not yet been given very much 

attention. Consequently, it is difficult to adequately include 

the characteristics of floor slabs in the analysis of buildings 

subjected to earthquake loading. Although the floor slab may not 

be as critical as columns or shearwalls in providing earthquake 

resistance, its contribution cannot be ignored. 

The main purpose of this study is to investigate the 

effect of the behavior of floor slabs on the earthquake resistance 

of reinforced concrete building structures. Also it is intended to 

provide suggestions and recommendations about the design of floor 

slabs or other structural elements. 

1.2 Statement of Problem 

The primary function of floor slabs in a building 

structure is to carry vertical loads by their out-of-plane bending 

action and transmit these loads to the supporting elements such 



as columns and walls. Most of the current design provisions for 

(1.1, 1.3, 1.4, 
floor slabs deal with this particular function. 

1.7, 1.16, 1.17, 1.22, 1.26, 1.30, 1.32, 1.35, 1.36, 1.41, 1.42, 

1.43) Recently, however, structural engineers have recognized 

that the floor slab also performs as an imp9rtant function when 
(1.19. 1.20) 

buildings are subjected to lateral force. 

In many buildings, columns and floor slabs form space 

frames, and lateral loads are resisted by the flexural action of 

the fr~ffies. In this type of structure, floor slabs serve as 

horizontal moment resisting members in the frames. This function 

(1.5, 1.10, 
of the floor slabs is frequently called Frame Action. 

1.11, 1.18, 1.21, 1.25, 1.28) In the current ACI Building Code, 

the Equivalent Frame Method described in Chapter 13 uses this con-

cept and treats the floor slabs as horizontal flexural members in 

the frames. The Equivalent Frame Method, however, was developed 

originally for the design under vertical loads. Consequently, 

the detailed method described in ACI Building Code, including the 

empirical distribution coefficients, most probably does not apply 

to lateral load analysis. The important characteristics of the 

Frame Action are as follows: 

(1) The stiffness of the floor slab as a out-of-plane flex-

ural member directly influences the lateral story stiff-

ness of a frame; therefore, appropriate evaluation for 

th 1 b t "ff " "" 1 (1.5, 1.11, 1.28) e s a s ~ ness ~s cr~t~ca • 
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(2) It is a common practice to design a space frame as 

an assembly of two-dimensional frames. In this 

situation, floor slabs and beams running perpen-

dicular to the plane being analyzed provide tor-

sional restraint. Proper evaluation of the tor-

sional stiffnesses of these elements is also 

important~l.ll, 1.28) 

(3) Transfer of moment and shear at slab-column junctions 

becomes a critical factor for safety. A junction must 

possess the required deformability to guarantee 

sufficient energy absorption capacity of the total 

frame. A premature punching failure or a slip 

of reinforcing bars should be avoidedS1.18, 1.21, 

1.25) 

Yet another important function of floor slabs in a 

building subjected to lateral force is the Diaphragm Action. 

(1.19, 1.20) This action is dependent on in-plane characteristics 

of the floor slabs, while the out-of-plane flexural characteris-

tics control the Frame Action. When a building is subjected to 

an earthquake, the inertial forces are transmitted transversely 

through floor slabs to vertical lateral load resisting elements. 

In this function,the floor slabs act as diaphragms between lateral 

load resisting systems. The distribution of lateral load to the lat-

eral load resisting systems depends upon the stiffness character-
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istics of both the diaphragms and the vertical elements. (1.29) 

In the current design practice, floor slabs are often 

assumed to be perfectly rigid in their own planes. Under this as-

sumption, lateral loads are distributed into lateral load resisting 

elements in proportion to their lateral story stiffnesse-s. Although 

the assumption is employed widely, experience and research have 

shown that the maximum lateral forces on some components may be un-

d ' d' 'f' 1 (1.29) erest~mate s~gn~ ~cant y. These underestimates frequently 

occur in frame-wall structures.(1.13, 1.34, 1.38) These structures 

are favored because high story stiffness can be expected for stiff 

walls even though the increase of stiffness and mass causes higher 

lateral force to be applied to the walls. Arbitrary allocating 

frames and walls in these structures, however, causes significant 

floor slab deformation, which, in turn, results in a change in 

the distirubtion of lateral forces. 

In lower stories, generally speaking, the assumption 

that floor slabs are perfectly rigid in their own planes leads to 

underestimates of the force carried by frames and overestimates of 

the force distributed to walls. Evaluation of the forces assigned to 

the frames and walls is reversed when upper stories are analyzed. 

It has been shown that the story stiffness of walls decreases in 

higher stories, while the story stiffness of frames remains 

I 
. (1.13) 

re at~vely constant. 

An entirely reversed assumption that the in-plane floor 
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slab rigidity equals zero is usually adopted for low rise build-

ings with no more than two or three stories~1.34) The degree 

of discrepancy created by these assumptions is affected by the 

ratio of the story stiffness of vertical lateral load resisting 

elements to the true in-plane stiffness of floor slabs. IVhenever 

in-plane stiffness of the slab is comparable to the stiffness of 

vertical elements, to assign extreme values such as infinite or 

zero for the in-plane stiffness of the floor slabs is undesirable. 

(1. 37) 
Buildings having slendercr-oss sections possess the same 

potential problem!l.lS, 1.23~ 1.24) In these buildings, the 

floor slabs function as slender beams, and, as a result, the 

deformation by flexure becomes appreciable. 

The above discussion is based on the assumption that the 

floor slab behaves elastically. There is no guarantee, however, 

that the floor slab maintains its elastic properties under all 

earthquake conditions. Shear force applied to a slab increases, 

as the difference between the story stiffness of two adjacent 

vertical lateral load resisting elements becomes greater. A high 

shear force may cause cracks in the slab and change its in-plane 

stiffness, which, in turn, will cause a change in the proportion 

of the lateral force distributed to each vertical element. It 

is quite possible that stiffness degradation and/or decrease of 

strength would occur during severe repeated or reversed loading 

cycles. Lateral force applied to each vertical member, then, will 

-9-



be continuously changing due to the continuous degradation of 

the in-plane slab stiffness. Such a change in force is dangerous 

for some elements, but safe for others. 

The in-plane strength of the floor slab may be as 

. t't t'ff (1.2. 1.6, 1.12) 
~portan as ~ s s ~ ness. In some types of 

structures such as staggered wall-beam systems, the shear strength 

of the floor slabs is critical. Because these floor slabs carry 

lateral forces transmitted by shearwalls, they must possess 

enough in-plane shear strength to resist the total lateral load. 

In this regard, special attention should be paid to floor slab-

wall junctions because gravity loads may have created high 

negative moments and high shears, before any lateral force is 

applied. 

1.3 ~ectives and Scope 

Among various functions of the floor slab, the diaphrar,m 

action has received relatively little attention; consequently, 

floor slab designs frequently are oversimplified. Many of these 

simplifications result from a lack of vital information. Research, 

then, should aim at defining the effectiveness of the floor systems 

as load-transmitting diaphragms between vertical and lateral load 

resisting elements. 
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It is proposed to investigate the in~plane characteris

tics of reinforced concrete floor slabs under various loading and 

supporting conditions and to provide meaningful information for the 

design of the floor slabs as well as of other structural elements. 

This study is concentrated on the floor slab system with edge beams, 

referred to as the beam-supported slab (slab-on-beam) system. 

The planed study presented here consists of five stages, 

each in a separate chapter. The five stages are: 1) the literature 

survey, 2) the experimental work, 3) the analytical study, 4) the 

parametric study, and 5) the dynamic analysis of structures 

including the floor slab in-·plane characteristics. In Chapter II, 

a comprehensive survey is given to previous research work regard

ing the diaphragm action of floor slabs. Findings about the dia

phragm action, present status of diaphragm designs, research 

procedure, specific research topics, and areas of needed research 

are discussed in detail. Chapter III describes the experimental 

work. A portion of the floor system in a medium to high rise 

building structure is modelled and tested under various loading and 

boundary conditions. The results of these experiments provide 

basic information about the in-plane characteristics of the floor 

slabs. Critical parameters controlling the in-plane behavior of 

the floor slabs are selected carefully, and the effects of these 

parameters on the in-plane characteristics are examined. The test 

results also provide a basis of comparison for the analytical 

model developed in Chapter IV. Chapter IV describes an analytical 
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model developed for investigating the in-plane characteristics 

of the floor slabs. The finite element method is used for the 

modelling. The accuracy of t~is model is checked by comparing 

the results derived from this model to the test results described 

in Chapter III and other existing theories. In Chapter V, the 

test results are again examined, with specific emphasis on three 

most crucial in-plane characteristics of the floor slabs: strength, 

stiffness, and ductility. The analytical model described in 

Chapter IV is utilized to provide additional data about the effects 

of the various parameters on these characteristics. The variables 

included in this parametric study are: the loading condition, the 

boundary condition, the relative beam size, the amount of rein

forcing steel, and the aspect ratio of the floor slab. Based on 

the findings of the parametric study, suggestions and recommenda

tions for the designs of the floor slabs as diaphragms are pro

vided at the end of this chapter. In Chapter VI, a relatively 

simple building model representing a commonly used reinforced 

concrete building is analyzed for its dynamic response under a 

typical earthquake loading. The in-plane characteristics of 

the floor slabs defined in Chapter V are incorporated into this 

dynamic analysis. The intensity of moment and shear applied to 

the floor slabs during the earthquake motion is examined. 

The effect of the floor slab in-plane stiffness on the total 

lateral force and on the lateral load distribution to vertical 

elements are studied carefully. This study also provides 
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information for examining the appropriateness of the rigid 

floor assumption. 



II. SURVEY OF PREVIOUS WORK 

2.1 The Effect of Floor Slab Stiffness on Lateral Load Distri
bution 

Floor slabs are important elements for three-dimensional 

structural analysis for horizontal loads since they interconnect 

lateral load resisting components and control the distribution of 

the total lateral load to these components. In order to determine 

the loads supported by each vertical component, the in-plane stiff-

ness of the floor slabs must be evaluated properly. 

The assumption that the floor slab is infinitely rigid 

in its own plane has frequently been adopted in structural analyses. 

This assumption reduces the number of unknown displacements signi-

ficantly and, consequently, reduces the effort for computation. 

Various kinds of three-dimensional structural analyses were carried 

out based on this assumption. Clough et al~2.12) developed a 

computer program to analyze three-dimensional buildings subjected 

to static lateral loads. Floor slabs were allowed two degrees of 

freedom: two translation components in their own planes. Therefore', 

all vertical components underwent identical displacements at a given 

story level. On the other hand, torsional deformation about a ver-

tical axis is significant for structures with irregular plans and 

those subjected to asymmetrical lateral loadings. Stamoto and 
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(2.39) (2.31) (2.26) 
Stafford-Smith , Neville , and Macleo.d et al. 

conducted static analyses of wall-frame structures having asym-

metrical plans. In the formulation of the governing equations, 

the displacements of walls and columns at each floor level were 

expressed by two translations and one rotation of the rigid 

floor slab. 
(2.21) . 

Gluck analyzed coupled wall structures accord-

ing to the same procedure. The application of this procedure 

was extended further to solve many other problems. 
. {2.30) 

Na~r 

investigated the stability of three dimensional wall-frame 

structures. He represented the whole structure as a beam-column 

and treated the overall stability as lateral torsional buckling 

of the beam-column. Heidebrecht and Swift, (2.23) Taianath and 

(2.40) (1.38) 
Stafford-Smith, and Taranath examined the effect of 

vertical forces applied to shear walls due to torsion. They 

treated the whole structure as a cantilever beam with a cross 

section composed of walls. The axial forces carried by the walls 

then were evaluated by considering the bending and warping stresses 

of this cantilever beam. 
(2.37) 

Shepherd and Donald and Gibson 

et al.(2.20) examined the frequencies and mode shapes of asym

(2.15) 
metrical wall-frame buildings. Douglas and Trabert studied 

the response of an approximately symmetrical twenty two story 

building under the ground motion caused by blast. A non-linear 

analysis of asymmetrical buildings was made by Wynhoven and 



Adams!~·472 They investigated the reduction of torsional stiffness 

of the structure caused by the yielding of columns and the accom

panying change in the total torsional force. In all these studies, 

the floor slabs were considered rigid, with three degrees of free

dom at each floor level. 

The in-plane bending of floor slabs is appreciable when 

structures having slender cross sections are subjected to lateral 

forces. The bending effect is significant particularly if the 

lateral stiffnesses of the vertical components differ greatly. 

Goldberg and Herness (1.15) investigated the frequenc ies and mode 

shapes of a twenty-story symmetrical building. The building with 

twelve bays was composed of frames at the inner bents and walls 

at the ends. The characteristics of the floor slabs in their in

plane directions were represented by beams in which both flexural 

and shear deformations were taken into account. The mode shapes 

showed significant bowing of the floor slabs. Goldberg and 

Herness also reported an appreciable difference between the forces 

applied to frames and the forces applied to walls. Majid and 

Onen (2.27) performed elasto-plastic analysis of wall-frame build

ings. In their analysis, the floor slabs were incorporated into 

the overall structures as elastic deep beams. Plastic hinges were 

inserted wherever the bending moments in the vertical frames 

-16-



reached the yield values at the location, and the ultimate resist-

ance of buildings was determined by a step-by-step method. Joh and 

Oh (1.24) t d' d h d' f 11 f no s u ~e t e ynam~c response 0 wa - rame structures 

with slender cross sections and treated the floor slabs as deep 

beams, using the same procedure as Majid and Onen. The parameters 

they studied were: the shape of slab panels, and the relative stiff-

ness between walls and frames. Joh and Ohno showed that those pa-

rameters affected the distribution of lateral forces and also re-

ported that large differences in lateral stiffness of neighboring 

vertical components caused large shear forces in the floor slabs. 

Kostem and Heckman(2.49, 2.50) studied the elastic stiffness and 

vibrational characteristics of building structures with U-shaped 

concrete shear cores, reporting the significant influence of in-

plane floor slab deformations on the lateral deflections and natural 

frequencies of the structures. 

l{hile the above studies including the flexibility of 

floor slabs showed the significant effects of the floor slab in-

plane stiffness on the response of structures, several other studies 

had resulted in opposite conclusions. Shepherd and Donald(2.36) 

investigated the frequencies and mode shapes of three bay frame 

structures, in which the stiffness of columns was four times 

larger in the outer bents. The floor slabs were treated as deep 

beams. These researchers concluded that the in-plane stiffness 

of the floor slabs did not affect significantly the forces distrib-

uted to vertical components although the mode shapes evidently 
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f b . h 1 (2.34) showed bowing of the loor sla s. R1C ter et a . and 

Rutenberg et al. (2.35) also performed static structural analysis 

by replacing the floor slabs with deep beams. They supported 

the conclusions of Shepherd and Donald that altering the floor 

slabs' in-plane stiffness did not cause significant change in 

the distribution of forces transmitted to the vertical 

components. 

All of the studies discussed above treated the floor 

slabs as either rigid or linearly elastic elements. Very few 

studies considered potential inelastic behavior of floor slabs 

in structural analysis. Ramakrishnan (1.34) tested scale models 

of wall-slab structures and examined the forces distributed 

to the walls. He pointed out the significant influence of the 

walls arranged perpendicular to the load on the stiffness of the 

lateral load resisting elements. These walls functioned as 

flanges for some vertical elements and greatly increased stiffness. 

Adh . (2.2) 1 h f am and EWlng ana yzed t e dynamic response 0 one-story 

two-bay masonry structures under earthquake ground motion. The 

wood roof diaphragms interconnecting the masonry walls were 

assumed to behave non-linearly, and a time-history analysis was 

executed. Because of the non-linear behavior of the diaphragms, 

low amplitude test results cannot be extrapolated for the 
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prediction of the response of these structures under severe 

loadings. The also found that softer wood diaphragms would 

attenuate the input earth~uake accelerations and result in lower 

shear forces. 

(2.16, 2.17) d 1 (2.29) d· d h Fintel an Mee et a . stu le t e 

staggered wall system, where floor slabs are part of the lateral 

load resisting systems. Their studies, however, focused on the 

evaluation of the lateral stiffness of the walls rather than the 

load resisted by the floor slabs. They discussed the contribution 

of the floor slabs as flanges on the wall stiffness. Their studies 

did not refer to either in-plane stiffness or strength of the 

floor slabs. 

Many computer programs for the analysis of three dimen-

sional structures under static or dynamic loadings have been 

developed during the last decade. Wilson and Dovey (2.46) have 

developed an elastic finite element program TABS in which floor 

slabs are assumed to be perfectly rigid. This program has the 

capacity of solving both static and dynamic problems. Guendelman

Israel and Powell (2.22) have developed a non-linear finite element 

program by combining two previously developed programs: TABS and 

DRAIN-2D, which was developed by Kanaan and Powell (2.25) to solve 
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static and dynamic problems of non-linear two-dimensional 

structures. This combined program, DRAIN-TABS, is capable of 

including non-linearities of structural components except floor 

slabs. The floor slab is assumed to be perfectly rigid as in 

h TABS Ch d K" " . k 1(2.11) h d t e program . eng an ~t~p~tayang u· . ave rna e 

another computer program for inelastic analysis of reinforced 

concrete steel buildings subjected to three-dimensional ground 

motions. All structural components except the floor slabs are 

allowed non-linear characteristics. The floor slabs are assumed 

to be linearly elastic. Since this program takes geometrical 

non-linearity into account, stability effects as well as effects 

of material non-linearities can be solved. 

2.2 In-plane Characteristics of Floor Slabs 

Few studies have been published concerning the in-plane 

characteristics of reinforced concrete floor slabs. As a result, 

there exists little information to aid the design of these floor 

slabs in their function as diaphragm. Cervenka and Gerstle(2.10) 

tested two-span continuous reinforced concrete slabs under in-plane 

loads and examined their strength and stiffness. The tests 

however, were utilized only to verify the accuracy of their finite 

element model. Consequently, no design suggestion was made. 
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Floor slabs as diaphragms are viewed frequently as 

horizontally oriented shearwalls. This assumption is reasonable 

because both floor slabs and shearwalls have similar dimensions, 

and both are subjected to in-plane loads. Shearwalls often have 

boundary frames. These boundary frames are analogous to the edge 

beams integral with the floor slabs since both function to confine 

the flat plate element. Nevertheless, the shearwall and the floor 

slab are quite different in many respects. Reinforcing bars in 

shearwalls usually are placed symmetrically about the middle plane 

of the shearwalls. On the other hand, the arrangement of reinforcing 

bars in floor slabs is distinctively unsymmetrical; many reinforc

ing bars in floor slabs are cut off according to the requirement 

on design flexural moments, while the bars in shearwalls extend from 

one edge of the walls to the other. Vertical loads applied to 

structures are resisted differently by shearwalls and floor slabs. 

These vertical loads cause in-plane compression in shearwalls, 

while floor slabs must resist these loads by bending. The floor 

slabs subjected to combined vertical and lateral loads, therefore, 

are truly three-dimensional, while the shearwalls can still be 

analyzed as plane stress problems. Boundary frames attached to 

shearwalls are usually arranged symmetrically about the middle 

planes of the walls, while integrated beams in floor systems are 

attached to the lower side of the floor slabs. These restraining 
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members also differ in size. They are usually much larger in 

shearwalls than in floor slabs. 

Despite these differences, the two structural elements 

still show very similar behavior, particularly in their function 

as diaphragm. Consequently, analysis and design of floor slabs as 

diaphragms fre~uently make use of experimental findings~theoretie 

cal analyses, and design procedures originally developed for shear

walls. Benjamin and Williams (2.7) conducted a comprehensive re

search of one-story shearwalls subjected to static loadings. 

They made experimental investigation of the effects of various 

parameters on the ultimate strength of the shearwalls. The vari

ables chosen in their study were: the aspect ratio, the relative 

size of boundary members, the amount of reinforcing steel in the 

shearwalls or the boundary members, and any additional reinforce

ment arranged diagonally in the shearwalls. Tomii and Osaki(2.4l) 

and Tsuboi et al. (2.44) also studied the behavior of low-rise 

shearwalls (with height-to-length ratio less than 1.0) surrounded 

by reinforced concrete or steel frames. They pointed out that the 

boundary frames improved significantly the ductility as well as the 

strength of the shearwalls. Barda(2.6) also investigated Im.;r-rise 

shearwalls. He reported on the significant effect of the vertical 

reinforcement on the shear strength of the shearwalls. 
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Cardenas and Magura(2.8) presented the results of a laboratory 

investigation on the strength of shearwalls for high-rise 

buildings. They chose as variables the amount and distribution 

of vertical reinforcement and the moment-to-shear ratio. Their 

test results indicated that the strength of high-rise shearwalls 

was generally controlled by flexure. They also showed that the 

flexural strength of these walls could be calculated by using the 

same assumption used for reinforced concrete beams. Fiorato et 

ala (2.19) investigated the behavior of high-rise shearwalls with 

the emphasis on examining the performance of confinement rein-

forcement in vertical boundary columns and anchorage of horizontal 

wall reinforcement when the walls were subjected to severe cyclic 

loadings. The behavior of shearwalls under cyclic loadings also 

d 1 (2.32) was investigate by Oesterle et a ., Alexander et al.~2.3) 

and Sh " 1 (2.38) 19a et a . The items studied by these researchers 

included: stiffness in post-elastic regions, ductility, energy 

absorption capacity, and stiffness degradation due to cyclic 

loadings. 

While the achievement of the above cited studies has been 

based mainly on experimental studies, there have also been several 

theoretical investigations. Tomii and Tokuhiro(2.42) proposed 

an analytical method to solve the problems of isolated shearwalls 

surrounded by boundary frames. They used the Airy stress function 
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to solve the governing elastic equations and offered elastic 

solutions for several types of loadings. The finite element 

method has been used in many theoretical studies. Yuzugullu and 

Schnobrich(2.48) developed a finite element model to simulate 

the behavior of shearwalls with boundary frames under static 

1 d · . (2.14) f' 1 dId oa lngs. DarWln presented a new lnite e ement mo e an 

developed load-deformation curves of shearwa1ls under cyclic 

loadings. A more detailed discussion of the use of the finite 

element method in two dimensional plane stress problems will be 

given in Chapter IV. 

2.3 Current Design Procedures 

As pointed out in preceding sections, the distribution 

of lateral forces to vertical lateral load resisting components 

must be carefully evaluated to enable a proper design. The 

Uniform Building Code(2.24) stipulates that the total lateral 

force should be distributed in proportion to the stiffness of 

vertical components. This procedure is based upon the rigid slab 

assumption, which, as already discussed, may not be adequate 

for some types of structures. In order to compensate this 

deficiency, the Code also stipulates that frames in wall-frame 

structures should be capable of resisting at least twenty five 

percent of the total lateral force. On the other hand, the 
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Applied Technology Council (ATC)(2.4) allows for the flexibility 

of the floor slabs by recommending that: 

"The design lateral forces should be based on 
an analysis which explicitly considers diaphragm 
deformations and satisfied equilibrium and com
patibility requirements." 

Alternately, the ATC suggested that design could also be based 

upon the envelope of the two solutions: first by assuming the 

diaphragms to be infinitely rigid, then very flexible. It also 

suggests that where the horizontal diaphragm is not continuous, 

the story shear can be distributed to the vertical components 

based on their tributary areas and torsional moments can be 

ignored. The ATC also discusses the design forces for 

diaphragms: 

"The seismic forces to be resisted by diaphragms 
area a minimum force equal to 0.5 Av times the 
weight of the diaphragm and other elements of 
the building attached thereto plus the portion 
of Vx required to be transferred to the compo
nents of the vertical seismic resisting system 
because of offsets or changes in stiffness of 
the vertical components above and below the 
diaphragms." 

Av: The seismic coefficient representing the 
Effective Peak Velocity-Related Acceleration 

Vx ! The seismic shear force at any level 

Codes and regulations stipulate that the distribution 

of the lateral force be determined based on the lateral stiffness 
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of vertical elements. Evaluation of the lateral stiffness of 

vertical elements like frames and walls, however, is a cumber-

some task. Muto (1. 29) has developed a simplemeth9d to 

compute the stiffness of frames and walls. The story stiffness 

of frames is calculated by assigning inflection points in beams 

and columns. The wall stiffness, on the other hand, is 

computed by treating the wall as a deep beam which includes 

flexural and shear deformations and base rotation. 

Once the forces on floor slabs are determined, 

designers can design these floor slabs according to available 

codes or spedifications. The ACI Code(l.l) does not have specific 

provisions for the design of floor slabs as diaphragms. Con-

sequently, designers frequently employ the design procedures 

developed for shearwalls. Cardenas and Magura(2.8) and 

Fintel(2.18) offered design methods to determine the flexural 

capacity of slender shearwalls. The shear capacity of shearwalls 

has been the subject of research for many years. Cardenas et 

(2 9) (2.1) 
al. • and ACI-ASCE Committee 426 have given comprehensive 

reviews of previous studies and summaries of various design 

procedures for shearwalls subjected to shear forces. Tomii(2.43) 

gave a review of Japanese practices of shear wall designs. 
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When inelastic behavior of structures under severe 

lateral loadings is considered, the ductility of the structural 

components should be evaluated appropriately. The ductility 

of reinforced concrete components, however, is very difficult to 

define on account of many complicated phenomena, such as 

the cracking of concrete, the yielding or slipping of reinforcing 

b h h · f M k(2.28) C 1 (2.13) ars, or t e crus lng 0 concrete. attoc ,or ey , 

d km (2.5) ff d "" 1 f 1 d" h d " an Bac ann 0 ere emplrlca ormu as to pre lct t e uctl-

lity for flexural beams. Uzumeri and Paulay(2.45) later extended 

Mattock's and Corley's works and proposed design procedures for 

the ductility of shearwalls. The proposed procedures deal with 

only slender shearwalls whose performance is controlled basi-

cally by flexure and consequently do not accurately evaluate the 

ductility of stocky shearwalls. Stocky shearwalls, in which 

shear behavior dominates, are known to have rather limited 

d t 'l't (2.6, 2.7) uc 1 1 y. 

2.3 Summary 

As described in Section 2.1, studies including the 

diaphragm action of floor slabs have reached different conclusions 

as to the effect of the floor slabs on the lateral load distribu-

tion to vertical elements. One of the primary reasons of the 

inconsistent results can be the lack of decisive information about 

the in-plane characteristics of the floor slabs. According to 

Sections 2.2 and 2.3, little research has contributed to the 
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understanding of the in-plane behavior of floor slabs, and, 

practically speaking, there is no design provision for the 

diaphragm design of floor slabs. The appropriateness of using 

the design provisions developed for shearwalls to design diaphragms 

has not yet been verified. Furthermore, procedures to determine 

the design forces controlling the in-plane behavior of floor slabs 

have not been established, either. 

The following chapters will provide data needed to 

discuss these unclarified problems and propose practical proce

dures of the diaphragm design. 
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III. EXPERIMENTAL STUDY 

3.1 General 

This chapter describes the experimental study. Scaled 

models representing floor slab panels in medium to high rise 

building structures were tested under various loading and support 

conditions. The results of these experiments provide general 

information about the in-plane characteristics of the floor slabs. 

Critical parameters controlling the in-plane behavior of the floor 

slabs are varied carefully, and the effects of these parameters 

on the in-plane characteristics are examined. 

3.2 Design of Test Structures 

3.2.1 Prototype Floor System and Scaled Model 

The prototype floor slab for test specimens was taken 

from a rectangular multi-story, multi-bay reinforced concrete 

building, in which earthquake resistance was provided by shearwalls 

located in selected bents. Seismic forces at various floor levels 

were transmitted to the walls by the diaphragm action of the floor 

slabs. Structural dimensions were chosen to represent a building 

of medium to high rise. The center-to-center span length of slab 

panels were 7320 rom (24 ft) in both directions, the columns were 

610 rom x 610 mm (24 in. x 24 in.) with no capital, the slab was 

180 rom (7 in.) thick, and the beams were 610 rom x 310 mm 
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(24 in. x 12 in.) in their cross sections. A portion of the 

plan view of the prototype floor system is shown in Fig. 3.1. 

The basic test specimen chosen for this experimental 

study represented an interior panel of the prototype building 

and was supported on one edge by a shearwall and on the opposite 

edge by columns. The fabricated test specimen consisted of three 

consecutive panels supported by two shearwalls and four columns. 

Overhanging slabs, equal to one quarter of the panel dimension, 

were added on all non-continuous sides to represent parts of the 

floor slabs of the adjacent bays. (Fig. 3.2) Full scale 

modelling was abandoned because of economy, space, labor, loading, 

and measurement. Small scale modelling with its many disadvantages, 

on the other hand, was also unacceptable on account of the diffi

culties in modelling the aggregate particles, the reinforcing bars, 

and the bonding effect between concrete and steel. An inter

mediate scale ratio of 1 : 4.5 was selected. Fig. 3.2 illustrates 

the test specimen and the several support conditions used in the 

experiment. The basic panel is 1630 mm x 1630 mm (64 in. x 64 in.) 

and 40.0 mm (1.56 in.) thick. 

3.2.2 Design of Test Specimen 

current 

The prototype floor slab was designed according to the 

ACI Code(l.l) for a service live gravity load of 3.8 kPa 
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(80 psf). The direct design method described in Section 13.6 

of the Code was employed. The columns were designed for combined 

axial force and bending moment caused by the vertical load at an 

intermediate floor level. The test specimen then was designed 

by scaling down these forces and moments. The shearwalls, on 

the other hand, were designed so that they would possess sufficient 

strength to carry the expected maximum load which may emerge 

during the testing. This design was performed to insure failure 

in the slabs. Based on a preliminary analysis, the design shear 

force for the shearwalls was selected to be 230 kN (50 kips). 

Adopted concrete strength was: 27.6 MFa (4000 psi) for the floor 

slabs and walls and 34.5 MFa. (5000 psi) for the columns. The 

yield strength of reinforcing bars was taken to be 410 MFa 

(60 ksi). Table 3.1 lists the critical dimensions of the 

specimen. 

Special care was given to the size of reinforcing bars. 

The smallest bars available were larger than what was needed by 

the adopted scale ratio (1 : 4.5). Fig. 3.3 shows the arrange

ment of the reinforcing bars. 

Table 3.3 lists the dimension, the design moment, and 

the area. The next to the last column of the table shows the 

ratio of the amount of steel provided in each individual strip 
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to the amount of steel required by the Code. The last column 

lists the ratio of the amount of steel provided in the strip 

to the amount of steel required to carry the design moment. The 

table shows that the temperature requirement (0.0018 times the 

gross area) controls the amount of steel required at many critical 

sections. The average over-supply ratio of reinforcement is 

28 percent for one direction and 21 percent for the other direction. 

In comparison with the flexural requirements, the amount of 

reinforcement used is 3.42 and 2.81 times larger respectively 

than that required. 

Table 3.4 lists the amount of steel provided in the 

beams. Additional reinforcing bars were placed in the bottom 

layer of negative moment regions and in the top layer of positive 

moment regions in order to meet the requirement stipulated in 

Appendix A of the Code. 

3.2.3 Fabrication of Specimen 

After cutting and bending reinforcing bars, strain 

gages were placed in specified locations. Reinforcing bars 

then were placed and tied together in a form work. In addition 

to reinforcing bars, a total of fifty five inserts also were 

installed. These inserts were placed in the specimen to serve 

as hooks through which vertical loads can be applied. Additional 

explanation of the function of the inserts and the application of 
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vertical loads will be given in Section 3.4.2. The formwork 

was elevated about 1.2 m (4 ft) from the floor level of the 

testing laboratory in order to facilitate construction of the 

specimen. 

Two specimens were constructed and casted at the same 

time by using concrete mixed at the testing laboratory. The two 

specimens are labelled B-1 specimen and B-2 specimen. Two kinds 

of concrete were prepared: 27.6 MPa (4000 psi) for the floor slabs 

and the walls and 34.5 MPa (SOOO_psi) for the columns. Table 3.5 

shows the detail of concrete mix. A slump of 130 mm ( 5 in.) 

was specified in view of the maze of reinforcement in the speci

mens. Plastisizer was added to further facilitate the placement 

of concrete around closely spaced reinforcing bars. The added 

plastisizer was WRDA-19, which is formulated to comply with ASTM 

Specification Designation C 494, a Type A water reducing admix

ture. The aggregate size was limited to 6.4 mm (0.25 in.) in 

order to preserve approximately the prototype relationship 

between the aggregate size and the slab thickness. Separate 

batches of concrete were used for each specimen. 

Sixteen 76 mm x 150 mm (3 in. x 6 in.) and ten 150 mm x 

300 mm (6 in. x 12 in.) concrete test cylinders were made from 

each batch of concrete. They were placed next to the freshly 

cast test specimens so that both the specimens and test cylinders 

-33-



would experience the same curing conditions. The specimens and 

cylinders were cured for fourteen days under moist burlap at 

room temperature. On the fifteenth day after the placing, the 

burlap was removed, and the cylinders were stripped. The specimens 

and concrete test cylinders were then air-cured until tested. 

Table 3.6 lists the slump, the 7-day strength, and the 28-day 

strength of the concrete. 

Mechanical properties of concrete and reinforcing bars 

were obtained by the concrete cylinder test at appropriate 

intervals and by the steel tension test. Section 3.3 describes 

these properties in further detail. 

3.3 Mechanical Properties of Materials 

3.3.1 Reinforcing Bars 

Deformed reinforcing bars of three sizes were used in 

the test slab specimens: D2.0, D2.5, and D3.0. The mechanical 

characteristics of these bars were determined by basic tension 

tests. The test was repeated four times for each size of rein

forcing bar. An electric extensometer with a 57 mm (2.25 in.) 

gage length was used to measure the strain. Table 3.7 lists 

the yield stress, the yield strain, the ultimate stress, the 

ultimate strain, and the modulus of elasticity of these bars. 

The values listed in the table represent the averages of the 

results of the four tests. 
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3.3.2 Concrete 

Two kinds of concrete were used in the test specimens: 

27.6 Mpa (4000 psi) concrete and 34.5 MFa (5000 psi) concrete 

for each of the two specimens, B-1 and B-2. Standard cylinder 

tests were performed at ages of seven and twenty eight days. On 

the first day of slab specimen testing, four more concrete test 

cylinders were tested to obtain modulus of elasticity, Poisson's 

ratio, and compressive strength. The ages of concrete at these 

tests were fifty two days for specimen B-1 and 109 days for 

specimen B-2. 

In order to calculate the modulus of elasticity and 

Poisson's ratio, the longitudinal strain of the concrete cylinder 

was measured by a pair of clip gages mechanically attached to the 

cylinder, while the transverse strain was measured by two electric 

strain gages mounted on the cylinder in its circumpherential 

direction. After the cylinder was preloaded three times with 

90 kN (20 kips), the load was monotonically increased until the 

cylinder failed. The split cylinder test was carried out during 

the same time. Table 3.8 lists the compressive strength, the 

tensile strength, the modulus of elasticity, and the Poisson's 

ratio of the concrete at the beginning of slab specimen testing. 

The ratios indicated in the table are those in the initial stage. 
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3.4 Testing Procedure 

3.4.1 Test Setup 

A group of special fixtures was developed to perform 

the experiment effectively. In order to facilitate the appli

cation of vertical load and provide access to the underside, 

the specimen was supported on four heavily reinforced con

crete pedestals anchored to the floor of the testing laboratory. 

The tops of these pedestals were equipped to receive either a 

wall or a pair of columns. In either case, a variety of support 

fixidity was provided. A wall can be attached to the pedestal 

by means of twelve bolts along each side of the wall. Assisted 

by two pairs of heavy steel braces, these bolts completely 

prevented the wall from moving in the floor plane. Under this 

support condition, no force can be transmitted between slab 

panels on opposite sides of the wall. The slabs were effectively 

isolated from each other, thus enabling the testing of single 

panels. (Fig. 3.4) On the other hand, by removing the braces 

and loosening all anchoring bolts, the wall can be supported on 

several sets of ball bearings and, therefore, can become free to 

move about on top of the pedestal in any horizontal direction. 

The third alternative was to secure only four of the twenty four 

bolts near the middle of the wall to eliminate all translatory 

movements, while allowing the walls essentially free to rotate 

about a vertical axis. The column base fixtures were also 

adjustable to provide either a free sliding or a fixed 
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condition. The column in the free sliding condition did not 

offer any resistance to the applied lateral load and provides 

only a vertical reaction to the gravity load. With a fixed 

base, the only possible freedom was rotation about a horizon

tal hinge in the fixture, located 405 mm (16 in.) below the 

slab center plane. The columns in this condition participated 

in resisting lateral load. An overall view of the test setup 

is shown in Fig. 3.5. 

3.4.2 Loading System 

The in-plane load was generated by a double-acting 

mechanical jack placed at the slab center-plane and acting 

against a heavy steel frame. To simulate the desired shear 

action, a steel frame was used to distribute the jack load 

to five embedded studs along the loading line at uniformly 

spaced distances of 540 mID (21.3 in.). (Fig. 3.6 and 3.7) 

The frame and studs were carefully designed so that each stud 

would transmit approximately one fifth of the total applied 

load and the action would lie in the slab center-plane. 

Fig. 3.7 shows the dimensions of both the frame and studs. The 

total jack load was measured by a concentric loadcell between 

the loading jack and distribution frame. (Fig. 3.8) 

on each stud was not individually measured. 
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The out-of-plane (vertical) load was applied as a series 

of concentrated forces, spaced at 540 mm (21.3 in.) (one-third 

panel dimension) center-to-center in each direction. Inserts 

were placed at the center of each ninth portion of each panel 

for the application of these loads. (Fig. 3.9) All point loads 

within one panel width, including those in the quarter panel ex

tension portions, were controlled by a single vertical (gravity) 

load simulator. A series of statically determinate levers was 

devised so that all point loads would be equal. (Fig. 3.10) A 

preliminary elastic analysis showed that a series 'of concen

trated forces could reasonably simulate the uniformly distributed 

vertical load on the slabs. The vertical (gravity) load simulator 

was designed so that substantial displacement of the specimen 

would be permitted in the direction of the in-plane loading with

out affecting either the direction or the magnitude of the applied 

vertical load. The out-of-plane (vertical) load was monitored 

by two loadcells installed between the loading jack and the 

distribution levers. 

3.4.3 Instrumentation and Recording of Data 

Deflections and strains were monitored throughout the 

test. In-plane deflections were measured by linear variable 

differential transformers (LVDT's) connected to selected 

reference points. Figs. 3.11 and 3.12 show the arrangement of 

LVDT's at different phases of the experiment. All LVDT's were 
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connected to a single data aquisition system, and signals from 

the LVDT's were recorded on paper tapes. Several of the LVDT's 

also were connected to X-Y plotters together with the loadcell 

measuring in-plane loading, and the load-displacement relationship 

was continuously monitored. Fig. 3.13 schematically shows the 

whole system of instrumentation established at the single panel 

strength test. 

Out-of-plane (vertical) deflections were measured at 

several points by means of a transit. A scale was fixed to the 

top of the tested slab panel at each measuring points. Fig. 3.14 

illustrates the target locations as well as the measuring 

technique. W32 paper electrical wire strain gages were used to 

measure strains in reinforcing bars. After smoothing the surfaces 

of reinforcing bars, the strain gages were carefully mounted, 

protected, and waterproofed to avoid damage before and during 

the testing. A total of 196 strain gages were installed in each 

specimen: sixty strain gages in each slab panel and four gages 

in each column. Fig. 3.15 shows the location of the strain gages. 

The strain gages were connected to the data aquisition 

system, and their signals were recorded on paper tapes. Six sets 

of rosette gages were mounted on the surface of the tested 

slab immediately before the load was applied. Fig. 3.16 

indicates the location of the rosette gages. 
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3.5 Testing Program and Sequence 

A series of testing was programmed for each of the two 

specimens. The program's sequence was carefully planned to 

maximize information that can be obtained from the testing but 

minimize the time and effort required to prepare for each testing 

program. 

The testing program consisted of four kinds of tests: the 

stiffness test, the strength test, the repaired strength test, and 

the free vibration test. In the stiffness, test, each specimen 

was tested as a whole unit, and elastic in-plane stiffness char

acteristics of the floor system were examined. In the strength 

test, each slab panel of specimens was tested separately 

according to predetermined loading and boundary conditions. 

Ultimate strength, stiffness in post-elastic regions, and ducti

lity of the panel were examined. The panel damaged after the 

strength test was repaired by using the epoxy-injection technique 

and tested again under the same testing procedures used in the 

strength test, labelled the repaired strength test. In this test, 

the performance of the repaired panel on ultimate strength, 

stiffness and ductility was investigated. In the free vibration 

test, each slab panel of specimen was examined about its vibration 

characteristics such as frequency and damping. The vibration t2st 

was repeated several times at various stages in the entire testing 
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process of each panel: the initial stage, after strength test when 

the panel was severely damaged, after repair, and after repaired 

strength test. The changes in vibrational characteristics at 

these stages were examined. 

This report deals with the first two tests only, 

namely, the stiffness test and the strength test. The description 

of the entire testing program as well as the test results are 

presented elsewhere. (3.2) 

3.5.1 Stiffness Test 

For each specimen, a stiffness test was carried out 

prior to the strength tests. Each specimen was tested as a 

whole unit, with both walls supported in the free-to-rotate 

condition and all columns in the free-to-slide condition. Small 

in-plane loads were applied simultaneously along both column 

lines (Fig. 3.11). Under these loading and boundary conditions, 

the specimen behaved like a simply supported beam with overhanging 

ends. Two loading conditions were used, both with loads of equal 

magnitudes. First, the loads were applied in the same direction, 

causing a symmetrical loading condition in the specimen, as 

shown in Fig. 3.ll(a). In the second test, the loads were 

applied in opposite directions, causing an anti-symmetrical 

loading condition as in Fig. 3.ll(b). The loads applied 

were limited to 15 kN (3.5 kip), 12 percent of the ultimate 

load, to ensure that the specimen would remain in its linear 
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elastic range. Deflection of the panels and rotation of the 

walls were measured with LVDT's, as shown in Fig. 3.11. In this 

figure, e is the rotation of the wall measured in the plane of the 

slab specimens. The LVDT pair, #9 and #10, or #11 and #12, 

measured this rotation. The displacement 0, monitored by the 

LVDT #1 or #5, was measured parallel to the loading at the end 

of the specimen. 

3.5.2 Strength Test 

In the strength test, the wall supporting the slab panel 

to be tested was securely fastened to a pedestal by means of bolts 

and braces. The other wall and all columns were supported on 

pedestals in the free-to-slide condition. The in-plane load 

was applied along the column line parallel to the fastened wall 

and through the horizontal load distribution frame described in 

Section 3.4.2. The out-of-plane (vertical) load was also applied 

when required by the testing program. LVDT's were installed at 

critical locations and monitored throughout the test as shown 

in Fig. 3.12. Signals from all strain gages both inside and on 

the surface of the tested panel were also recorded. 

Two types of in-plane loads were used in the strength 

tests: monotonic loading and cyclic loading. In monotonic 

loading tests, the in-plane load was gradually increased until 

the resistance of the test panel decreased significantly after 
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reaching the ultimate strength. The load then was released and 

applied in the opposite direction until failure again took place 

in a similar manner. The load then was released again, and the 

test was completed. In the subsequent discussion, the first 

direction of loading is referred to as positive, and the second 

as negative. In cyclic loading tests, the in-plane load 

followed the spectrum shown in Fig. 3.17. The load was applied 

in complete cycles with gradually increasing displacement ampli

tudes. Three complete cycles were used at each amplitude. The 

spectrum was controlled by the displacement along the loading 

line. The amplitudes specified in the spectrum were: 0.25 mm, 

0.76 mm, 1.3 mm, 2.8 mm, 4.3 mm, 5.8 mm, 7.6 mm, and 8.9 mm. 

This type of loading spectrum most effectively provides data 

regarding the hysteretic behavior of members or structures when 

the number of test specimens is limited. 

For the tests including vertical (out-of-plane) loading, 

the total load was chosen to simulate full service dead and live 

loads. It is noted that the relative weight of the scaled model was 

less than that of the prototype. Therefore,the vertical load applied 

to the test panels represented, in addition to full service live 

load of 3.8 kPa (80 psf), also a supplement of service deal load 

of 3.9 Pa (83 psf). The total vertical load applied to the entire 

panel was 45.8 kN (10.3 kip). 
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The test was conducted according to the following 

procedure: 

1. Initial readings were taken from all measuring 

devices: loadce11s, LVDT's, strain gages, and 

vertical scales. 

2. The out-of-p1ane (vertical) load up to the specified 

load level was applied if required. This load was 

held constant throughout the remaining steps of the 

test. 

3. Strain and displacement readings were taken again 

after the application of out-of-p1ane loading. The 

data provided the characteristics of the test panel 

subjected to the design service vertical load. 

4. The test panel was then pre10aded by several cycles of 

a small in-plane load. The load was limited to 9 kN 

(2 kip) for tests without vertical load and to 5 kN 

(1.5 kip) for tests with vertical load. The 

purpose of this operation was to ensure that all 

instruments were working properly and make the whole 

testing system to stablize by adjusting itself. 

5. After preloading, in-plane load was applied according 

to the specified load spectrum. The in-plane load 

was applied quasi-statically and stopped at frequent 
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load or displacement increments for strain and displace

ment measurements. During the in-plane loading, the 

vertical load was continuously monitored and adjusted 

to maintain its specified level. 

6. The test was terminated when a significant drop in in

plane load resistance was observed, or when it became 

impossible to maintain the desired vertical load. 

7. At the end of each test, a set of final readings ~ere 

taken from all measuring devices after complete 

unloading. 

3.5.3 Designation of Testing Programs 

For the sake of convenience, each test in the program 

is identified by a five character alphanumeric code. The first 

character of the code is al~ays B, signifying Beam-supported slab 

specimens. The second is either H or V. H indicates that no 

vertical load is applied (in-plane, ~orizontal load only), while 

V indicates that ~ertical load is applied together with in-plane 

load. The third character identifies the slab being tested. 

Numerals 1, 2, and 3 respectively refer to panels 1, 2, and 3. 

(Refer to Fig. 3.2) The stiffness test, in which specimens 

were tested as ~hole units, is identified by numeral 6 as the 

third character. A combination of the fourth and fifth characters 

defines the loading condition: MN for MoNotonic loading, CY for 
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CYclic loading, SS for ~ymmetrical loading in the stiffness 

test, and AS for !nti-~ymmetrical loading in the stiffness test. 

A chart of the alphanumeric codes used in the testing program 

is tabulated in Table 3.9(a) with an example code. This table 

also summarizes the entire testing program and gives brief 

explanations of the characteristics of each testing program. 

3.6 Test Results 

3.6.1 Results of Stiffness Tests 

A stiffness test was executed for each of the two 

specimens B-1 and B-2. The displacements (8) along the edges 

parallel to the loading and the rotation of the wall (0) were 

measured respectively by the LVDT pair #1 and #5 and the LVDT 

pairs #9 and #10, and #11 and #12. Table 3.10 lists the average 

values of the displacement and rotation per unit load as shown 

in Fig. 3.11. Specimens B-2 has slightly larger displacements 

and rotations than specimen B-1, hence lower stiffness. Shrink

age cracks were observed in specimen B-2 before the testing and 

they were believed to have contributed to the lower stiffness. 

The modulus of elasticity of concrete in the two specimens on the 

other hand, were nearly the same. (Table 3.8) 
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3.6.2 Behavior of Test Slab under Service Vertical Load 

The service vertical load was applied to panels 1 and 2 

of specimen B-2 prior to in-plane loading. Table 3.11 lists the 

vertical displacements of the panels under this condition measured 

at three points as shown in Fig. 3.14. Fig. 3.18 illustrates 

the strain distribution under the service vertical load. At this 

stage, two lines of cracks were observed on the top surface of 

the slab, one along the slab-wall junction, and the other along 

the column line parallel to the wall. (Fig. 3.19) Apparently, 

negative bending moment due to the service vertical load exceeded 

the cracking moment of the slab. 

3.6.3 Results of Strength Test 

The extreme loads and displacements from the strength 

tests are listed in Table 3.12. The displacements are measured 

at a point directly opposite the in-plane loading as shown in 

Fig. 3.12 (LVDT #3). The displacements shown in the figures 

represent the true deflections of the tested slab panels. All 

contributions of the fixed edge's movements were removed from 

the displacement measured by LVDT #3. Consequently, the true 

displacement spectrum applied to these test panels was slightly 

less severe than intended. Figures 3.20 through 3.25 show the 

load-displacement curve of the test slab panels. 
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Table 3.13 lists the stiffness of the panels under 

small in-plane loads applied at the beginning of the test step 

No.4, Section 3.5.2. The elastic stiffness is defined as the 

load per unit displacement along the loading line (LVDT #3). 

The stiffness in post-elastic regions, on the other hand, is 

not clearly defined since it varies according to load levels 

as well as previous loading histories. In order to evaluate 

the stiffness and stiffness degradation of the panels subjected 

to cyclic loading, five different values are selected and 

observed as schematically shown in Fig. 3.26. They are: 

1) the slope labelled the secarttstiffness 1, defined by the 

line linking the points corresponding to 'the extreme dis

placements of a hysteretic loop, 2) the slope labelled the secant 

stiffness 2, defined by the line linking the points corres

ponding to the maximum positive displacement and preceding 

zero displacement of a hysteretic loop, 3) the slope labelled 

the secant stiffness 3, defined by the line linking the points 

corresponding to the maximum negative displacement and preceding 

zero displacement of a hysteretic loop, 4) the slope labelled 

the tangent stiffness 1, defined by the line linking the points 

corresponding to zero and 1.3 rom (0.05 in.) displacements 

intersected on the way to the maximum positive displacement of 

a hysteretic loop, and 5) the slope labelled the tangent 

stiffness 2, defined by the line linking the points corres-
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ponding to zero and -1.3 rom (-0.05 in.) displacements intersected 

on the way to the maximum negative displacement of a hysteretic 

loop. The secant stiffness 1 measures the total load change 

as the panel is subjected to a complete reversal of cyclic 

displacements. The tangent stiffness I or 2 represents the 

stiffness when a small reversed load is applied after a severe 

load cycle. Test results have verified that the stiffness is 

almost constant in the region between zero and ±1.3 mm displace

ments. The secant stiffness 2 and 3 measure two additional 

stiffness values referring to positive or negative loading only. 

The difference between the secant stiffness 2 or 3 and the 

tangent stiffness 1 or 2 reflects the pinching effect of the 

hysteretic loop. Figures 3.27 through 3.29 shmv the stif.fness of 

the tested slab panels subjected to cyclic loading. 

Figures 3.30 to 3.35 show the crack pattern of the 

tested panels when the tests were completed. Numerals attached 

to cracks represent the loads when the cracks were observed. 

Solid lines indicate cracks developed during positive loading, and 

broken lines indicate cracks developed during negative loading. 

In addition, bold solid lines indicate "major cracks", which are 

defined later. Only the top surfaces are .shown for slab panels 

tested with in-plane load alone since the crack patterns of both top 

and bottom surfaces are nearly identical. For panels tested 
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with both vertical and in-plane loads, crack patterns of the top 

and b~ttom surfaces were significantly different. Both top and 

bottom crack patterns, therefore, are shown for these panels. 

Figs. 3.36 and 3.37, respectively, show the vertical 

deflections of BVlMN and BVICY at measured locations. (Fig. 3.14) 

For each strength test, comments and discussions are 

given below. 

BH2MN The utlimate load, 120 kN (27.0 kip), was reached 

when several cracks, started at lower load levels, suddenly 

started growing. This development was followed by a signifi

cant loss in resistance of about 31 kN (7.0 kip). Although the 

load again increased, approaching the ultimate load level 

116 kN (26.0 kip), this time its stiffness was less. Another 

significant loss of resistance took place when several rein

forcing bars broke at a total displacement of 7.62 mm. After 

the bars broke, the system regained its equilibrium at a load 

of 70 kN (16 kip) and at a displacement of 8.6 mm. During 

negative loading, defined as loading in the negative direction, 

the maximum load attained was 89 kN (19.9 kip). At this point, 

several reinforcing bars broke (-7.24 mm of displacement), and 

the resistance was reduced greatly. 
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At 36 kN (8 kip), a crack developed along the slab-wall 

junction,extending from the edge of the slab to the beam. At 

116 kN (26.0 kip), a point near the ultimate load, three cracks 

developed at the slab edge and rapidly extended inward. One of 

the cracks, which increased its width significantly, primarily 

controlled the behavior of the panel in the post-ultimate load 

region. This crack was labelled the major crack. Additional 

cracks developed diagonally between the first and second signi

ficant losses in resistance. The breaking of several reinforc

ing bars caused the second significant loss in resistance. One 

bar embedded in the quarter overhang and two in the beam broke 

at their intersections with the major crack. The major crack 

extended parallel to the wall at a distance of approximately 

360 mm (14 in.). This line nearly coincided with the boundary 

between the column and middle strips of the panel, where a 

number of negative and positive reinforcing steel were cut off. 

During negative loading, the resistance decreased several times 

by about 5 to 8 kN (1.0 to 1.5 kip). These losses in resistance 

corresponded to the development of new cracks. When the load 

reached 89 kN (19.9 kip), one reinforcing bar in the overhang 

and two bars in the beam broke, which caused the resistance to 

decrease about 27 kN (6.0 kip). 
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BH3MN The ultimate load was obtained at 56.9 kN (12.8 kip), 

followed by a decrease in resistance of 13 kN (3 kip). Afterward,the 

load was unchanged,while th~ displacemer,tt increased from 2 to 7 mm. 

Cracks were accumulated in the post-ultimate load region, and ano

ther significant loss in resistance of about 13 kN (3 kip) caused 

critical damage to the panel. During negative loading, the 

load gradually increased to 39 kN (8.9 kip), followed by a 

sudden decrease by 11 kN (2.5 kip). 

At the load of 19 kN (4.3 kip), a crack which had 

developed along the slab-wall junction extended from the tension 

edge to the beam. The development of a second crack parallel 

to the wall caused a significant loss in resistance immediately 

after the ultimate load was reached. This crack, which later in

creased in width, controlled the deformation in the post-ultimate 

load region. At 5.1 mm (0.20 in.) of displacement, one 

reinforcing bar in the overhang broke, causing a slight decrease 

in resistance of 2 kN (0.5 kip). At 7.3 mm (0.29 in.) of 

displacement, three bars in the beam and two additional bars 

in the slab broke, reducing the resistance significantly. The 

width of the major crack at the slab edge was 9.5 mm (3/8 in.) 

at this displacement. During negative loading, the first crack 

was observed at the load of 22 kN (5.0 kip). A second crack 

which developed at 24 kN (5.5 kip) later merged with the major 
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crack developed during positive loading. After resistance 

decreased slightly several times due to the development of new 

cracks, three bars in the beam and two bars in the slab broke 

at 6.2 mm (0.24 in.) of displacement. At this point, the load 

decreased from 30 kN (6.8 kip) to 20 kN (4.5 kip), which was 52 

percent of the negative ultimate load. 

BHlCY The resistance never decreased in each of the cycles 

with the three lowest amplitudes: 0.25 mm, 0.76 mm, and 1.3 mm. 

The hysteretic loops, then, were stable during these cycles. 

The resistance decreased twice during the loading in each of 

the 2.8 mm, 4.3 mm, and 5.8 mm amplitudes. The resistance 

decreased once during the negative loading of the first cycle 

and again during the positive loading of the second cycle in 

the 2.8 mm amplitude. During the positive and negative load

ings of the first cycle in the 4.3 mm and 5.8 mm amplitudes, 

the resistance decreased again. The development of cracks 

caused these losses of resistance. In the first cycle of the 

5.8 mm amplitude, the critical cycle, both positive and negative 

ultimate loads were attained [94.7 kN (21.3 kip) for the 

positive ultimate load and 96.5 kN (21.7 kip) for the negative 

ultimate load]. A crack extending parallel to the wall at a 

distance of 360 mm (14 in.) developed during this cycle (the 

major crack). During later loadings, new cracks did not develop, 

and the major crack controlled the deformation. During cycles 
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of the 7.6 rom (0.23 in.) amplitude, the resistance decreased 

gradually to 52 percent of the ultimate resistance for positive 

loading and 63 percent of the ultimate resistance for negative 

loading. The breaking of reinforcing bars at their intersections 

with the major crack caused losses in resistance in this cycle. 

A crack developed along the slab-wall junction at 

28 kN (6.3 kip) during positive loading and at 28 kN (6.3 kip) 

during negative loading. The major crack began at 38 kN (8.5 

kip) from the edge subjected to tension under negative loading 

and at 69 kN from the edge subjected to tension under positive 

loading. 
:*T"·'· ):, .'_:" c. :(:~._\.".:"~,.~ .. -.J:-~~.;" 

The' cracks, which developed at the edges of the panel, 

extended inward while shifting their directions toward the 

wall; these cracks developed substantially during the cycles 

of the 4.3 rom (0.17 in.) amplitude for positive loading and 

during the cycles of the 5.8 rom (0.23 in.) amplitude for negative 

loading. The complete formation of the major crack, which 

occured during the first cycle of the 5.8 rom (0.23 in.) ampli-

tude, prevented the development of other cracks. During 

negative loading in the first cycle of the 7.6 mm (0.23 in.) 

amplitude, one reinforcing bar in the slab broke, causing a 

loss in resistance of 6.7 kN (1.5 kip). During positive load-

ing in the second cycle of the 7.6 rom (0.23 kip) amplitude, 

one bar in the slab broke, causing a loss in resistance of 
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19 kN (4.3 kip). During the succeeding cycles of this ampli

tude, several additional bars in the beams and slab broke. 

BV1MN Unlike the previous strength tests, no substantial 

loss in resistance was observed during testing. The load reached 

95 percent of the ultimate load, 97 kN (22 kip), at 6.3 mm 

(0.25 in.) of displacement. The panel deformed farther by about 

2.5 rum (0.1 in.) without any loss in resistance. The ultimate 

load, 102 kN (23 kip), was reached at 8.4 mm (0.33 in.) of dis

placement and followed by a small portion having a slight 

negative slope. The in-plane load was then removed at 8.8 rum 

(0.35 in.) of displacement since the loading device arrived at 

its limit. During negative loading, the resistance gradually 

increased to 90 kN (20.3 kip), followed by a slight loss in 

resistance. The test was terminated after the panel reached 

-8.8 mm (-0.35 in.) of displacement. 

Vertical deflections measured by the scales gradually 

increased under positive loading as shown in Fig. 3.36. The 

deflection at the center of the panel was 5.4 rum (0.21 in.) 

immediately before unloading. Upon unloading of the in-plane 

load, the deflections did not decrease but increased slightly. 

They continued to increase under negative loading until near the 

end of the test. The maximum deflection, reached immediately 

before unloading, was 7.8 mm (0.31 in.) at the panells center. 
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As mentioned in Section 6.3.2, the vertical load 

caused two cracks on the top surface of the panel. One of these 

cracks, developed along the slab-wall junction, extended down

ward and finally reached the bottom surface at 22 kN (4.9 kip). 

As evidenced from Fig. 3.34, the crack patterns between the top 

and bottom surfaces differed significantly. Many cracks on 

the bottom surface extended from the center of the panel in 

radial direction, whereas cracks on the top surface were con

fined near the slab-wall junction and more parallel to the wall. 

The major crack, however, was observed almost simultaneously 

on both top and bottom surfaces. At 27 kN (6.0 kip), a crack 

(the major crack) developed and extended from the edge of the 

slab at a distance of 330 mID (13 in.). During negative loading, 

the major crack was observed for the first time at 35 kN (7.8 

kip). This crack rapidly extended inward and merged with the 

major crack developed during positive loading. No reinforcing 

bars broke during this test. 

BH3CY The resistance never decreased in each of the cycles 

with the three lowest amplitudes: 0.25 mm, 0.76 mm, and 1.3 mm. 

The hysteretics loops, then, were stable in these cycles. Dur

ing the first cycle of the 2.8 mm (0.11 in.) amplitude, a crack, 

which eventually became the major crack, developed parallel to 

the wall at a distance of 280 mm (11 in.), and a slight decrease 

in resistance occurred for the first time. The hysteretic 
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loops remained stable during the succeeding cycles of the 2.8 rom 

(0.11 in.) amplitude as well as the three cycles of the 4.3 rom 

(0.17 in.) amplitude. The pinching effect was appreciable during 

the cycles of the 4.3 rom (0.17 in.) amplitudes. The maximum 

resistance reached during the second and third cycles of the 

4.3 rom (0.17 in.) amplitude was slightly lower than that reached 

during the first cycle. The first cycle of the 5.S rom (0.23 in.) 

amplitude yielded the ultimate load for both positive and 

negative loadings. ~l.S kN and 40.5 kN (9.4 kip and 9.1 

kip)]. The resistance continuously decreased during the succeed

ing two cycles of this amplitude and was only about 60 percent 

of the ultimate resistance in the third cycle. Additional 

cracks did not develop during the second and third cycles of 

the 5.8 mm (0.23 in.) amplitude. At the end of the first cycle 

of the 7.6 rom (0.30 in.) amplitude, the resistance was reduced 

to 14.9 kN (3.36 kip), 36 percent of the ultimate resistance, 

and the test was terminated. 

A crack along the slab-wall junction was observed at 

IS kN (4.2 kip) during positive loading and at 14.2 kN (3.2 

kip) during negative loading. Most of the other cracks develop-

ed from the edge of the slab and extended inward during the 2.8 rom 

(0.11 in.) amplitude. They extended almost directly across 

the panel without shifting their directions. During negative 

loading in the first cycle of the 5.8 rom (0.23 in.) amplitude, 
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a reinforcing bar in the overhang broke at 38.6 kN (8.68 kip). 

During negative loading in the second cycle of the 5.8 mm 

(0.23 in.) amplitude, two bars in the beam broke at 29.5 kN 

(6.65 kip), causing a loss in resistance of 10.2 kN (2.3 kip). 

During positive loading in the first cycle of the 7.6 mm 

(0.30 in.) amplitude, one reinforcing bar in the slab and two 

bars in the beam broke at 26.2 kN (5.91 kip). All of the broken 

bars were cut off at their intersections with the major crack. 

BV2CY The hysteretic loops remained stable in cycles 

with the four lowest amplitudes: 0.25 mm, 0.76 mm, 1.3 mm, and 

2.8 mm. A crack, which eventually became the major crack, 

developed during the first cycle of the 1.3 mm (0.05 in.) ampli-

tude at a distance of 250 mm (10 in.) and extended parallel to 

the wall. During negative loading in the first cycle of the 

4.3 mm (0.17 in.) amplitude, a loss in resistance was observed 

for the first time from 82.8 kN (18.6 kip) to 77.8 kN (17.5 kip). 

During the succeeding two cycles of this amplitude, the maximum 

resistance was slightly lower than that during the first cycle. 

The ultimate loads were reached during the first cycle of the 

5.8 mm (0.23 in.) amplitude [85.0 kN (19.2 kip) and 83.1 kN 

(18.7 kip)]. The resistance then decreased significantly during 

the succeeding two cycles of this amplitude. Two cycles with 

the 7.6 mm (0.30 in.) amplitude were further applied. At the 

end of this amplitude's second cycle, the resistance measured 

about half of the ultimate resistance. 
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Vertical deflection increased during the loading. 

At the end of the third cycle of the 5.8 mm (0.23 in.) 

amplitude, the deflection at the center of the panel was 

6.4 mID (0.25 in.), which was measured by the scale #2 in 

Fig. 3.14. The deflection rapidly increased by 2.5 mID (0.10 

0.10 in.) during the loading of the 7.6 mm (0.30 in.) amplitude. 

Permanent deflection after both in-plane and vertical loads 

were completely released was 5.3 mm (0.21 in.). (Fig. 3.37) 

The deflections on the beams, which were measured by the 

scales #1 and #3, showed the behavior similar to the deflect

ion at the center of the panel. These deflections also 

rapidly increased during the cycles with the 7.6 rom (0.30 in.) 

amplitude as shown in Fig. 3.37 (a) and (c). The permanent 

deflections were 4.1 rom (0.16 in.) for the sca.le 111 and 3.5 mm 

(0.14 in.) for the scale #3. 

Two cracks developed under the vertical load. One 

of the cracks, developed along the slab-wall junction during the 

first cycle of the 0.76 min (0.03 in.) amplitude at the load of 

22 kN (14.9 kip). Cracks were completely formed by the end 

of the first cycle of the 5~8 mm (0.23 in.) ,amplitude; 

afterward, the opening and closing of the major crack 

controlled the deformation of the panel. During positive loading 

in the first cycle of the 7.6 mm (0.30 in.) amplitude, one 
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reinforcing bar in the overhang and one bar in the beam broke, 

causing a loss in resistance from 80.0 kN (18 kip) to 70 kN 

(15.7 kip). During negative loading in the first cycle of 

the 7.6 mm (0.30 in.) amplitude, one reinforcing bar in the 

overhang and two bars in the beam broke, and the resistance 

decreased from 71.6 kN (16.0 kip) to 60.9 kN (13.7 kip). 

3.7 Discussion 

3.7.1 Stiffness Test 

In-plane stiffnesses of the slab panels were calcul

ated by an elastic finite element analysis in order 

to be compared with the experimental results. The standard 

SAP IV(3.l) finite element program was used with the following 

assumptions and specifications: 

1. Inelastic action was not considered. 

2. The concrete material was taken to be isotropic 

and homogeneous. Reinforcing bars were not included. 

3. The material properties for concrete: the modulus 

of elasticity and poisson's ratio, were assigned 

values as obtained from concrete cylinder tests. 

(Table 3.8) 

4. The analysis was treated as a two dimensional.plane 

stress problem. Forces, stresses, and deflections 

in the third direction were ignored. 

-60-



5. Slabs were represented by a number of square plane 

stress elements. Beams were represented by flexural 

beam elements. The eccentricity between the neutral 

axes of slabs and beams was neglected. Then, no 

consideration was made on the effect of out-of-plane 

deformation caused by the in-plane loading on the 

in-plane stiffness. 

6. A rather coarse discretization was used as shown 

in Fig. 3.38. This is referred to as Type I. 

The third column of Table 3.10 lists the deflection 

(8) and rotation (8) obtained from the finite element analysis. 

The ratio of the values from this analysis to the experimental 

results range from 0.87 to 1.03 for the B-1 specimen and from 

0.83 to 0.95 for the B-2 specimen. The analysis produces greater 

stiffnesses than the test by an average of 8 percent for the 

B-1 specimen and 12 percent for the B-2 specimen. The fact that 

the finite element method gives an upper bound of the solution is 

responsible for a fraction of the discrepancy. The remainder of 

the discrepancy can be attributed to minute cracks caused by 

shrinkage or accidental forces which might have been applied 
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during the transportation of the specimens. In addition, 

the material properties used in the analysis, based upon the 

concrete cylinder tests, may not have represented the 

material properties in the specimens. In general, however, 

the correlation between the stiffness test and elastic 

finite element analysis is considered reasonable. 

3.7.2 Behavior Under Design Service Vertical Load 

An elastic finite element analysis using SAP IV 

was carried out on the behavior of a single slab panel 

subjected to design service vertical load. In this analysis, 

assumptions with respect to the concrete material properties 

followed those described in Section 3.7.1. This time, 

however, the panel was solved as a plate problem, and square 

p1ate elements were used. The panel was discretized as shown 

in Fig. 3.38, "referred to as Type II. 

The strain distribution obtained by the analysis 

as well as the strains measured in the tests are shown in 

Fig. 3.18. The analysis shows that the strain in the middle 

portion of the slab-wall junction exceeds the cracking strain, 

which is calculated based upon the modulus of rupture, 7.S/fc', 
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and the elastic modulus. The strain, however, is less than the 

cracking strain in the remaining portion of the panel. Once 

a part of the panel falls into the inelastic region, the stress 

is completely redistributed; therefore, elastic analysis is 

no longer valid. The strains measured in the tests, on the 

other hand, apparently exceed the cracking strain in the middle 

portions of the slab-wall junction (Section 1-1 in Fig. 3.18) 

and the column line parallel to the loading (section 3-3 in 

Fig. 3.18). Both the elastic finite element analysis and 

test.results show evidence of the crack development under the 

design service vertical load. 

As shown in Table 3.11, measured vertical deflections 

are greater than the vertical deflections obtained in the analysis. 

The difference between the analytical and measured deflections 

is appreciable particularly at points #1 and #3 which were 

directly above the beams (Fig. 3.14); the measured deflections 

are nearly twice the calculated values. The two cracks that 

developed in the panels probably caused additional deflection. 

The difference between the analysis and test results 

could be attributed primarily to any non-linear and/or inelastic 

action of the panel, which was not considered in the analysis. 
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In order to further evaluate the stress and deflection of the 

panel subjected to the design service vertical load, various non

elastic behaviors such as cracking of concrete and yielding 

of concrete or steel should be incorporated into the analysis. 

3.7.3 Strength 

Test results show that the type of loading (monotonic 

vs. cyclic loading), the moment-to-shear ratio, and the intensity 

of vertical load all affect the ultimate strength of the slab 

panels. In all cases, the ultimate strength was reached 

immediately preceding the development of the major crack 

which extended parallel to the wall at a distance of about 

350 mm (14 in.). This major crack extended along the boundary 

between the column and middle strips of the slab panel. Many 

reinforcing bars which function as either positive or negative 

reinforcement were terminated at this location. (Fig. 3.3) 

The panels' resistance decreased after the formation of the 

major crack. Very few new cracks developed afterwards, 

while the overall deformation of the panel was controlled pri

marily by the opening and closing of the major crack. (The sec

tion at the major crack acted like a plastic hinge). 
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3.7.3.1 ,Effect of Type of Loading or Strength 

The three pairs of test panels: BH2MN and BHlCY, 

BVlMN and BV2CY, and BH3MN and BH3CY, were compared to determine 

the effect of the type of loading on the ultimate strength. 

Cyclic loading resulted in a significant decrease of 

the ultimate resistance approximately by 20 to 25 percent. The 

ratio of the ultimate load under cyclic loading to that under 

monotonic loading was 0.79 (BHlCY/BH2MN), 0.83 (BV2CY/BVlMN), 

and 0.73 (BH3CY!BH3MN) respectively, for the three pairs. 

Cumulative damages such as cracks were considered the most 

probable reason for such a reduction in the ultimate load. 

Under cyclic loading, the ultimate strength would depend upon 

the compressive strength of concrete which has been cracked 

previously. Even though the cracks are closed, the bearing 

may not be complete, and the effective strength may be reduced. 

In monotonic loading tests, the ultimate load under 

negative loading was always lower than under positive loading. 

The ratios of the ultimate load under negative loading to that 

under positive loading were 0.74 (BH2MN), 0.88 (BVlMN), and 

0.68 (BH3MN), respectively. This strength reduction was 

attributed to damages caused during the last stage of positive 

loading. By the time positive loading was completed, many 
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cracks had developed, and major cracks had extended almost 

to the opposite edges of the panels. Several reinforcing bars 

also had broken. These damages would logically have weakened 

the panel under negative loading. 

In cyclic loading tests, on the other hand, the 

ultimate loads under positive and negative loadings were 

almost identical. The ratios of the ultimate load under 

positive loading to that under negative loading were 1.01 

(BHlCY) 0.98 (BV2CY), and 0.97 (BH3CY). Here, damages were 

accumulated gradually by cyclic loading, and directional pre

ference was minimal. 

3.7.3.2 Effect o·f Vertical Load on Strength 

The effect of vertical (out-of-plane) loading on the 

in-plane strength was studied by comparing the results of test 

panels BH2MN vs. BVlMN and BHlCY vs. BV2CY. As might be expected, 

the vertical load lowered the ultimate in-plane resistance. 

The ratio of the ultimate load with the vertical load to that 

without such load was 0.85 for positive loading and 0.98 for 

negative loading from the pair BVlMN!BH2MN and 0.89 for positive 

loading and 0.86 for negative loading from the pair BV2CY!BHlCY. 

The design service vertical load reduced the resistance by no 

more than 15 percent. 
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3.7.3.3 Effect of Moment~to-Shear Ratio on Strength 

Two moment-to-shear ratios were used in the strength 

tests of various panels. For panels 1 and 2, the ratio was 

1.63 m (64 in.), while for panel 3, the ratio was doubled. 

Two sets of tests can be compared to determine the effect of the 

moment-to-shear ratio on their strength: BH2MN and BH3MN, and 

BH1CY and BH3CY. Direct comparison showed strength ratios of 

0.47 for positive loading and 0.44 for negative loading for 

panels tested monotonically (BH3MN/BH2MN) and 0.44 for positive 

loading and 0.42 for negative loading for panels under cyclic 

loading (BH3CY/BH1CY). The doubling of the moment-to-shear 

ratio is seen to reduce the resistance to about 40 to 45 percent. 

Interestingly, this ratio of 0.40 to 0.45, agrees closely to 

the ratio of distances of the major cracks from the applied in

plane load. As described in Section 3.7.1, the major crack 

developed along the boundary between the column and middle 

strips. The distance from the loading line to the major crack 

is 1220 rom (48 in.) for panels 1 and 2, and 2840 rom (112 in.) 

for panel 3. The ratio of the distances is 1220/2840 or 0.43, 

which is nearly the same as the experimental ultimate strength 

ratio, 0.40 to 0.45. This correspondence implies that the 

ultimate strength of the slab panel was ccntrolled primarily 

by the flexural capacity at the major crack section. The trans

verse shear force had only a secondary effect. 
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3.7.4 Stiffness 

3.7.4.1 Changes in Stiffness under Monotonic Loading 

The tangent stiffness of BH2MN and BH3MN continuously 

decreased as load increased until the maximum resistance was 

reached. Several times in the post-ultimate load region, 

resistance decreased suddenly as each new crack opened. However, 

each time the load was recovered quickly, and, consequently, the 

level of resistance remained relatively stable until the breaking 

of reinforcing bars drastically reduced the resistance. The 

initial tangent stiffness, the tangent stiffness immediately 

before the ultimate loads, and the secant stiffness at the ulti

mate loads were 218 MN/m, 33.8 MN/m, and 42.9 MN/m for BH2MN 

and 166 MN/m, 22.2 MN/m, and 28.5 MN/m for BH3MN. The tangent 

stiffness at the ultimate load was 16 percent of the initial 

tangent stiffness for BH2MN and 13 percent for BH3MN. As 

evidenced in Fig. 3.24, the behavior of BVlMN is significantly 

different from that of BH2MN or BH3MN. The tangent stiffness 

was 222 MN/m initially and monotonically decreased to practically 

zero. The ultimate load was reached at a rather large displace

ment, and there was no sudden changes of resistance as displace

ment continued to increase with the formation of additional 

cracks. The vertical load apparently prompted the development 

of cracks. This process, in turn, resulted in a more rapid 

stiffness degradation for BVIMN than for BH2MN or BH3MN. When 
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cracking occurs, the force carried by concrete at the interface 

of the crack before cracking must be transferred to reinforcing 

bars. The early development of cracks in BVlMN apparently 

enabled a more gradual transfer of force from concrete to 

reinforcing bars. The gradual transfer of force not only pre

vented the sudden loss in resistance caused by cracking, but 

also retarded the attainment of the ultimate load. 

Stiffness was substantially recovered during unload

ing. For BH2MN, the tangent stiffness at the beginning of un

loading was 67.2 MN/m, approximately 31 percent of the initial 

tangent stiffness and nearly double the tangent stiffness 

before unloading. For BH3MN and BV1MN,the tangent stiffnesses 

at the instant of unloading were 33.7 MN/m and 83.3 MN/m, which 

were 21 and 37 percent of their respective initial tangent 

stiffnesses. As the load was applied in the negative direction, 

stiffness degraded until the load reached approximately 50 per

cent of the ultimate strength. Unlike the development during 

positive loading, the tangent stiffness remained nearly cons

tant for loads above this level. The tangent stiffness in 

this region was 4.2 MN/m for BH2MN, 2.8 MN/m for BH3MN, and 

3.2 MN/m for BVlMN, less than 2 percent of the initial tangent 

stiffness. 
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The load level in which the initial tangent stiffness 

was applicable did not exceed 36 kN (8 kip) for BH2MN, 10 hl~ 

(4.3 kip) for BH3MN, and 13 kN (3 kip) for BVlMN, which represent 

13 to 20 percent of the ultimate resistance. Table 3.14 tabul

ates the stiffness values at various load stages. 

3.7.4.2 Changes in Stiffness under Cyclic Loading 

For all cyclic loading tests, BHlCY, BV2CY, and BH3CY, 

stiffness rapidly degraded during the cycles with two lowest 

amplitudes, 0.25 mm and 0.76 mm. At the end of the sixth cycle, 

the stiffness had reduced to 90 MN/m for BHlCY and BV2CY, and 

50 MN/m for BH3CY. During the succeeding cycles, stiffness 

continued to decrease as amplitude increased. At the end of 

tests, the secant stiffness 1, as defined in Section 3.6.3, was 

6.5 MN/m for BHlCY, 8.6 MN/m for BV2CY, and 3.9 MN/m for BH3CY. 

These values represent only 2 to 4 percent of the respective 

initial stiffnesses. 

With few exceptions, stiffness remained the same for 

the three cycles at each amplitude. Occasionally, a signifi

cant crack developed, and stiffness decreased during 

the succeeding cycles. Damage like the breaking of reinforc

ing bars and the widening of cracks, on the other hand, caused 

continual degradation of stiffness in greater amplitudes (5.6 mm 

and 7.6 mm amplitudes). 
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As shown in Figs. 3.28 and 29, the two types of 

stiffness defined in Section 3.6.3, the secant stiffness 2 and 

3. were almost identical for BH3CY and BV2CY, indicating that 

the stiffness degraded symmetrically in both positive and 

negative directions during cyclic loading. In addition, secant 

stiffness 1 also did not differ much from the other secant 

stiffnesses, indicating that the widths of hysteretic loops were 

narrow and that energy absorption in a complete cycle was 

small. Specimen BHlCY behaved quite differently; the three 

secant stiffnesses were all different. Secant stiffness 3 

degraded more quickly than secant stiffness 2 and was about 

40 percent of the secant stiffness 2 in the cycles of the 

five lowest amplitudes (0.25 mm, 0.76 mm, 1.3 mm, 2.8 mm, and 

4.3 mm). The test of BHICY also showed that cracks 

developed more often under negative loading than positive 

loading during these cycles. Secant stiffness 1 of BHlCY 

corresponded to the average of secant stiffnesses 2 and 3. 

The difference between secant stiffness 1, 2, or 3 

and tangent stiffness 1 or 2 was small for BV2CY, while for 

BHICY and BH3CY, tangent stiffness 1 and 2 were relatively 

smaller than secant stiffness 1, 2, and 3 particularly during 

cycles of larger amplitudes. The difference resulted 

primarily from the pinching effect of hysteretic loops. The 
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difference was appreciable during the cycles of -the 5.8 rom 

and 7.6 mm amplitudes for BHlCY and the cycles of the 2.8 rom, 

4.3 mm, and 5.8 rom amplitudes for BH3CY. During these cycles, 

tangent stiffness 1 or 2 was about 50 percent of secant 

stiffness 1, 2, or 3. 

3.7.4.3 Effect of Vertical Load on Stiffness 

In monotonic loading tests, the trends of stiffness 

degradation on BH2MN and BVIMN are substantially different as 

described in Section 3.7.4.1. In BVlMN, stiffness gradually 

degraded smoothly without sudden decreases of resistance, measur

ing near zero at the ultimate load. In BH2MN, on the other hand. 

stiffness was approximately 15 percent of the initial stiffness 

when the ultimate load was reached. Afterward, resistance 

fluctuated without significant decrease, while displacement 

increased many fold until the resistance was drastically reduced 

by the breaking of reinforcing bars. 

In cyclic loading tests, the trends of stiffness de

gradation in BH1CY and BV2CY are similar. In fact, values of 

secant stiffness 1 in these tests are close particularly 

for amplitudes 1.3 mm or greater. In these ranges, secant 

stiffness 1 gradually degraded from 50 MN/m to 10 MN/m as 

amplitudes increased and continued to degrade during each load

ing cycle of the 7.6 rom amplitude. 
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As listed in Table 3.13, the initial stiffness was 

218 MN/m for BH2MN, 272 MN/m for BHlCY, 222 MN/m for BVlMN, and 

201 MN/m for BV2CY. During initial loading stages, all 

conditions were identical for BH2MN and BHlCY and for BVIMN 

and BV2CY. The initial stiffness of BH2MN, however, was 80 

percent of that of BHlCY, while the initial stiffnesses of 

BVIMN and BV2CY were nearly the same. The reason for BH2MN to 

have a 20 percent lower initial stiffness than BHlCY was not 

clear although imperfection or damage was strongly suspected 

for BH2MN at the beginning of the testing. Referring to the 

initial stiffness of BHlCY, 272 MN/m, as a datum, the initial 

stiffness was reduced by about 20 percent due to the design 

service vertical load. 

3.7.4.4 Effect of Moment-to-Shear Ratio on Stiffness 

As described in Section 3.7.4.3, the initial stiffness 

of BH2MN was suspiciously smaller than the initial stiffnesses 

of other tested slabs and, therefore, not appropriate for' the 

use in meaningful comparisons. In monotonic loading, however, 

the tangent stiffnesses of BH3MN and BH2MN at all other stages: 

under positive loading, at the beginning of unloading, and under 

negative loadi~g (except the initial stiffness), showed very 

consistent relati~nship. The stiffness of BH3MN ranged from 

50 to 60 percent of that of BH2MN,. 
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In cyclic loading, the relative stiffness ratio of 

BH1CY to BH3CY was 0.61 initially and ranged from 0.47 to 0.60 

during the succeeding loading cycles, based on secant stiffness 

1, 2, or 3. The ratio had a tendency to gradually decrease 

as amplitudes increased. The relative stiffness ratio, however, 

decreased about 0.25 to 0.30 in amplitudes equal to or greater 

than 4.3 rom (0.17 in.) if tangent stiffness 1 or 2 was substi

tuted. In these amplitudes, the pinching effect was more 

appreciable for BH3CY than for BHICY as shown in Fig. 3.23. 

3.7.5 Behavior in Post-Ultimate Region 

3.7.5.1 Definition of Deformabi1ity and Ductility 

Table 3.15 facilitates the discussion of deform

ability and ductility of tested slab panels. The first two 

columns list the displacements, labelled critical displacements, 

at which the resistance of panels decreased substantially. The 

first and second columns respectively list the critical 

displacements under positive and negative loadings. As described 

in Section 3.6.3, critical displacements are much greater than 

the displacements corresponding to the maximum resistance and 

immediately followed by the breaking of reinforcing bars. 

Ductility, listed in the third and fourth columns, is 

defined as the ratio of the critical displacement to the displace

ment at which 90 percent of the ultimate resistance was first 

reached. The load-deflection curves of all tested panels except 
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BV1MN had some plastic plateaus. The curve of BV1MN did not 

have a plastic plateau in either direction as shown in Fig. 3.24, 

indicating that stiffness gradually degraded as load increased. 

Ductility was not calculated for BV1MN since the test was 

terminated before any reinforcing bars broke. The table's final 

column lists the deflections, labelled total deflections, which 

equal the sums of the positive and negative critical displacements. 

3.7.5.2 Monotonic Loading vs. Cyclic Loading 

The comparison between BH2MN and BH1CY shows that 

total deflection and ductility respectively are 10 percent 

and 45 percent larger for monotonic loading. The ductility of 

the two panels differed primarily because the deflection at 

which 90 percent of the ultimate resistance reached for the 

first time was larger for BH1CY than for BH2MN. The comparison 

of BH3MN and BH3CY shows the same tendency. BV1MN, on the other 

hand, deformed more than BV2CY by about 60 percent. 

3.7.5.3 Effect of Vertical Load 

Ductility was nearly the same for BHlCY (without 

vertical load) and BV2CY (with vertical load), while BHlCY de

formed about 15 percent more than BV2CY. A cvmparison between 

BH2MN (without vertical load) and BVIMN (with vertical load), on 

the other hand, shows that BV1MN deformed 25 percent more than 

BH2MN. 
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Note, however, that BV1MN deformed more than any other tested 

panels. In general, the design service vertical load affected 

ductility slightly. 

3.7.5.4 Effect of Moment-to-Shear Ratio 

The slab panels with a moment-to-shear ratio of 

3.25 m (128 in.) (BH3MN and BH3CY) were 1.2 times more ductile 

than the slab panels with a moment-to-shear ratio of 1.63 m 

(64 in.). Apparently, ductility was improved for panels in 

which bending moment (flexural deformation) was dominant. Total 

deflection, on the other hand, is less in BH3MN and BH3CY than 

in BH2MN and BH1CY by about 15 percent. 

3.8 Summary and Remarks 

The experimental work has provided information about 

the in-plane characteristics of the slab panels under various 

supporting and loading conditions. Elastic analysis by means 

of the finite element method has provided some verifications 

and comparisons. The results of these comparisons are summarized 

below. 

1. The elastic finite element analysis predicted a 

slightly higher stiffness of the 3-panel test 

specimens under symmetrical and anti-symmetrical 

in-plane loads. (Section 3.7.1) The analysis 
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produced stiffnesses 10 to 20 percent higher than 

the experiments. Minute residual stresses due to 

shrinkage or accidental loads prior to the testing 

are believed to be responsible for these discrepan-

cies. 

2. Two cracks, one along the slab-wall junction and the 

other along the column line parallel to the wall, 

developed on the top surface of the panel when 

subjected to the design service vertical load. 

(Section 3.6.2) Plate analysis confirmed the occur

ence of these cracks. (Section 3.7.2) 

3. The development of a crack, labelled a major crack, 

which extended parallel to the wall at a distance 

of about 350 mm, controlled the ultimate in-plane 

resistance of the test slab panel. (Section 3.6.3) 

This location of the major crack coincided with the 

boundary between the column and middle strips of the 

slab panel. The ultimate load was reached when the 

major crack extended completely across the panel. 

Afterward, the opening and closing of the major crack 

controlled the deformation. The flexural capacity 

of the section through which the major crack extended 

primarily governed the ultimate resistance. The 

magnitude of shear affected the ultimate resistance 

very slightly. (Section 3.7.3.3) 
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4. Cyclic loading, specified by the spectrum shown 

in Fig. 3.17, reduced the ultimate resistance of 

the panels by 20 to 25 percent. (Section 3.7.3.1) 

Cumulative damages like cracks most likely caused 

this reduction. 

5. The application of the design service vertical load 

reduced the ultimate in-plane resistance by not more 

than 15 percent. (Section 3.7.3.2) The vertical 

load, however, did not alter the general behavior of 

the slabs; the major crack still developed along the 

boundary between the column and middle strips, and 

the complete formation of the major crack governed 

the ultimate resistance. 

6. In panels under monotonic in-plane loading, tangent 

stiffness gradually degraded until the ultimate 

resistance was reached. (Section 3.7.4.1) The tan-

gent stiffness immediately before this occurred was 

10 to 15 percent of the initial tangent stiffness. 

After reaching the ultimate resistance, resistance 

decreased several times due to the development of 

cracks. The load, however, was recovered and the 

level of resistance remained relatively constant 

until the breaking of reinforcing bars drastically 

reduced the resistance. (Figs. 3.20 and 3.22) 
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7. In panels under monotonic in-plane loading, the design 

service vertical load significantly affected the 

pattern of stiffness degradation. (Section 3.7.4.3) 

Tangent stiffness degraded gradually, measuring near 

zero at the ultimate load. The vertical load apparently 

enhanced the development of cracks, and cracking in 

low load levels made the transfer of forces from con

crete to reinforcing bars more gradual. (Fig. 3.24) 

8. For cyclic loading, stiffness continually degraded as 

amplitude increased. During each cycle having a 

small to medium amplitude, stiffness remained cons

tant. During cycles with a larger amplitude, in which 

some reinforcing bars broke, stiffness continuously 

degraded as the load was reversed. (Section 3.7.4.2) 

9. Three kinds of stiffness, secant stiffness 1, 2, and 

3, defined in Section 3.6.3 differed little, indicating 

that stiffness changed only slightly in a complete 

cycle. (Section 3.7.4.2) In the panels with no 

vertical load, the pinching effect was appreciable 

during the cycles with large amplitudes but confined 

in relatively small regions (in the vicinity of neu

tral displacement). In the panels with vertical load, 

on the other hand, the pinching effect was not 

evident. (Section 3.7.3.4) 
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10. Regardless of the loading condition, the definition 

of stiffness, or the level of deflection, the increase 

of the moment-to-shear ratio from 1.63 m (64 in.) to 

3.25 m (128 in.) reduced the in-plane stiffness by 

approximately 40 to 50 percent. 

11. Compared with monotonic loading, cyclic loading reduced 

the range of deformation (total deflection defined in 

Section 3.7.5) by about 10 percent and the range of 

ductility by about 45 percent. (Section 3.7.5.2) The 

design service vertical load reduced neither total 

deflection nor ductility. (Section 3.7.5.4) 

12. The panels with a moment-to-shear ratio of 3.25 m 

(128 in.) were 1.2 times more ductile than the slabs 

with a moment-to-shear ratio of 1.63 m (64 in.). 

Total deflection, on the other hand, was approximately 

15 percent less in the panels with the larger moment

to-shear. (Section 3.7.5.3) 
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IV ANALYTICAL STUDY 

4.1 General 

This chapter deals with the development of an analy

tical model, which can predict the behavior of concrete floor 

slabs beyond the linear elastic range. The experimental study 

described in Chapter III has provided valuable information on 

the behavior of floor slabs under various loadings. Because of 

the limited number of tests, however, experimental data were 

insufficient for the development of appropriate design procedures. 

The analytical study was needed to supplement the experimental 

findings. 

It is difficult to obtain closed-form solutions for 

the behavior of reinforced concrete members because of the 

non-linear inelastic material behavior as well as the composite 

behavior of the two components. It is necessary to simulate the 

changing of concrete modulus, the developing of cracks, and the 

yielding of reinforcing bars. The finite element method was used 

to develop the model. 

The characteristics and formulation of the proposed 

model are described in Sections 4.4 and 4.5. In Section 4.6, 

the model is applied to various example problems, and the accur

acy of this model is evaluated by comparing the analytical 

solutions with the experimental result and other available data. 
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4.2 Review of Application of· the Finite Element Method to 
Problems of Reinforced Concrete Structures 

The finite element method has been applied to the study 

of reinforced concrete structures ever since this method was 

deviced. Many studies have dealt with beams, frames, walls, 

plates, and shells. Scordelis, (4.24) D " (2.14) arwln, and 

N (4.21) " 
go have revlewed extensively the literatures describing 

the application of this method. 

4.2.1 Application to Two-Dimensional Problems, (I) Crack
Line Approach 

d " (4.20) h f" d h Ngo an Scordells were t e lrst to emonstrate t e 

application of the finite element method to reinforced concrete 

beams. They modelled concrete and steel as linear elastic 

materials connected by linear elastic 'bond links'. Cracks were 

predefined as the separation of nodal points. Nilson(4.l9) 

extended this method to include non-linear material properties 

and a non-linear bond-slip relationship. He used an incremental 

load procedure to analyze reinforced concrete members subjected 

to concentric or eccentric loads. Whenever cracking was indicated, 

the tracing of the crack development was p~rformed manually. 

The finite element mesh layout was modified accordingly, and the 

analysis was started again from zero load and incrementally loaded 

to the next stage of failure. Later, Ngo(4.2l) extended this 

method to automatically produce crack-lines to simulate progress-

ing crack growth. He developed an finite element program which 

was capable of automatically generating nodal points in one 

continuous execution. -82-



K · 1 (4.12, 4.13, 4.15) d h h d 
awa~ et a • propose anot er met 0 

to analyze reinforced concrete members. Their model represented 

a concrete plate as an assembly of triangular elements inter-

connected by normal and shear springs. Each triangular finite 

element was assumed to be rigid, and therefore displacements 

at any point in this element were expressed by the displacements 

and rotations at its centroid. The coefficients of springs at 

the interfaces were determined to reflect the material properties 

of the concrete plates. The development of cracks was then 

simulated by reducing the spring constants at cracked interfaces. 

The concept of this model is somewhat equivalent to the yield line 

theory. These researchers executed nonlinear incremental analyses 

of plane concrete members subjected to direct tension. (4.14) 

4.2.2 Application to Two-Dimensional Problems, (II) Crack
Zone Approach 

1 (1.6, 2.10, 4.7) d 1 d h Cervenka and Gerst e eve ope t e 

idea of employing a finite element with composite concrete-steel 

material properties at uncracked, cracked, and plastified stages. 

They carried out the non-linear incremental analysis of reinforced 

concrete panels under both monotonic and cyclic loadings. The 

program included the closing and re-opening of cracks within the 

finite element. They treated the concrete as an elasto-plastic 

material in compression and as an elastic brittle material in 

tension. Once a crack was opened, stiffness perpendicular to the 
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crack and shear stiffness parallel to the crack were set at zero. 

The program had a capacity of automatically altering these 

material properties in one continuous execution. The newly 

defined orthotropic material could take stress parallel to the 

crack only. The same general approach was used by later studies. 

Valliappan and Doolan, (4.26) and Suidan and Schnobrich(4.25) 

applied this method to cantilever beams. Yuzugullu and Schnobrich 

(2.48) used Cervenka's and Gerstle's procedure for shearwall 

problems. Yuzugullu and Schnobrich pointed out that better 

results were obtained if a finite value was employed for shear 

stiffness parallel to the open cracks instead of zero. Salem(4.23) 

also applied this method to solve shear panel and beam problems. 

He incorporated the hardening rule into the formulation of the 

concrete constitutive relationship. Adham et ale (4.1) included 

bond slips and the dowel action in this model. 

The studies already mentioned produced workable results 

for monotonic loading. The investigations which attempted to 

determine the behavior of reinforced concrete members under cyclic 

1 d o (2010, 4.7) h 0 h 0 dOff 1 oa lng, owever, met Wlt ln 1 erent resu ts. While 

the experimental results showed a continuous loss of stiffness 

and strength with each cycle of load, the analytical model did 

h h d d OD 0 d P k ld(2.l4, 4.9) not s ow suc egra atlon. arwln an ec no 

developed a new material model to represent the hysteretic 

behavior of concrete under biaxial loading. The constitutive law 

of concrete derived form this material model was expressed in 

terms of the stress-increment and the strain-increment depending 
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upon the current stress state as well as the previous history of 

concrete. Danvin and Pecknold combined this constitutive law 

with the procedures developed by Cervenka(2.l0) and solved several 

shear panel problems under cyclic loading. Aktan(4.2) later used 

this constitutive law to investigate shearwall behavior under 

cyclic loading. 

4.2.3 Application to Plate Problems 

While aforementioned studies deal with reinforced con-

crete beams and panels subjected to in-plane loadings, the finite 

element method has also been used to analyze the reinforced con

crete plates under out-of-plane loadings. Jofriet and McNeice(4.11) 

combined the finite element analysis with the concept of the 

effective moment of inertia, originally offered by Branson(4.6) 

d b (4.5). d 1 f d 1 b an Bee y, ln or er to ana yze rein orce concrete s a s 

subjected to out-of-plane loadings. In their analysis, the 

effective moment of inertia calculated the stiffness of cracked 

plate elements because setting the flexural stiffness for the 

cracked elements at zero usually leads to underestimates of the 

fl 1 · ·d· d t 1 (4.10) h h h dId exura rlgllty. Han ea., on t e ot er an, so ve 

reinforced concrete plate and shell problems by using layered 

finite elements. In their analysis, each plate or shell element 

was divided into several layers through the thickness, and each 

subdivided element was treated as a two dimensional plane stress 

element. Kirchhoff-Love's hypothesis was employed to satisfy 
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the compatibility of these subdivided elements. Like Suidan's 

and Schnobrich's(4.25) and Yuzugu11u's and Schnobrich's(2.48) 

studies, their analysis also adopted non-zero shear stiffness for 

cracked elements. The results of their analysis showed that the 

magnitude of the shear stiffness in cracked elements was not 

crucial for the overall behavior as long as a non-zero value was 

used. Bashur and Darwin(4.4) also used the layered finite 

elements for their study, combining these elements with the 

d 'd k 1d(4.9) material model propose by Darw1n an Pec no . 

4.3 Modelling of Material Properties 

4.3.1 Inelastic Behavior of Material 

C f h ' d' (2.10,2.14,4.1, oncrete Many 0 t e preV10US stu 1es 

4.24,4.26) modelled concrete as a linear-elastic perfect1y-

plastic material and applied the Von Mises yield criterion and 

the associated flow rule to develop the e1asto-plastic consti-

" k 1 (4.29) tut1ve equat10n formulated by Zien iewicz et a • 

S 1 (4.23) d'f' d h d l' d' h h d ' a em mo 1 1e t at mo e , 1ntro uC1ng tear en1ng 

rule first developed by Ziegler. (4.28) Kupfer and Gerst1e(4,17) 

d L ' (4 . 18) d " d 1 f ' b ' '1 an 1U, propose const1tut1ve mo e s or monoton1C 1aX1a 

loading of plane concrete based upon their experimental investi

gations. Darwin and Pecknold(4.9) formulated a constitutive 
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equation of concrete subjected to biaxial cyclic stresses. 

Aktan(4.3) and Bashur and Darwin(4.4) later used that model 

for their studies. 

Steel Many studies treated reinforcing bars as 

uniaxially loaded members, idealizing the stress-strain relation

ship of those bars to be linear-elastic perfectly-plastic(2.l0, 

2.14, 4.4, 4.23, 4.25, 4.26) b'l' (2.48, 4.1, 4.3) or l lnear. 

(4.22) Peterson and Kostem, on the other hand, used the Ramberg-

Osgood material model for representing the stress-strain relation

ship of reinforcing bars. Aktan et al. (4.3) studied the cyclic 

behavior of reinforcing bars, concluding that the Ramberg-Osgood 

or linear-elastic perfectly-plastic models satisfactorily dupli-

cates the experimental hysteretic stress-strain curves. 

Bond Slip Some studies investigating the behavior of 

bond slips(4.l9, 4.20, 4.21) introduced special link elements 

representing the bond slip between concrete and reinforcing bars. 

The bond slip, however, was neglected in most research studies 

of the general behavior of structural elements. 

Cracks Two types of models for the crack development 

were used in the previous studies. One was the crack-zone model, 

in which cracking was assumed to take place within a finite 

(1.6, 2.10, 4.1, 4.2, 4.7, 4.9, 4.10, 4.25, 
region of the structure. 

4.26, 4.44) Cracks in a finite element modified the element 
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stiffness matrix to reflect the loss of tensile concrete strength 

in the direction perpendicular to the cracks. The second model 

d k 1 · b d (4.12, 4.13, 4.14, represente crac s as ~nes etween two no es. 

4.15, 4.19, 4.20, 4.21) 
l~enever cracks developed, the interface 

tractions along the cracked lines were released. 

4.3.2 Related Experimental Findings 

The experimental study described in Chapter III has 

offered specific information about the post-elastic behavior of 

the floor slabs, which was used to select appropriate models. 

The post-elastic behavior of the slab panels was controlled 

primarily by the development of cracks and the yielding of rein-

forcing bars. The region in which concrete was compressed 

beyond its elastic limit was small. The strength of the slab 

panel was controlled by the flexural capacity of the critical 

section into which the major crack penetrated, while the shear 

force had little effect. 

The dowel action of reinforcing bars also had very 

little influence on the ultimate capacity of the slab panels 

since the diameters of reinforcing bars were small (not more 

than 4.6 mm), and the slab panels were lightly reinforced. The 

experimental investigation did not assess the effect of bond slips 

on the strength or ductility. The development length and 

surface condition of reinforcing bars primarily control the 
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performance of bond between the bars and concrete. Even though 

all reinforcing bars in the slab panel were deformed, many of 

them were cut off. In addition, the points of termination were 

selected according to the out-of-plane bending moment rather than 

the in-plane bending moment applied to the slab panel. In this 

regard, the bond performance in the slab panel under in-plane 

loadings was not clearly understood. 

The opening and closing of the major cracks controlled 

the behavior in post-elastic regions; consequently, few cracks 

were developed in those regions. The ductility of the floor slabs 

depended upon the deformability of the reinforcing bars at the 

critical sections. The breaking of bars at those sections brought 

about the ultimate failure of the slab panels. 

4.4 Proposed Model 

the model 

Based on the findings cited above, it was decided to use 

(4.16) 
developed by Kawai et ale because this model 

easily simulates the development of cracks, which has been proven 

to be of primary importance to the post-elastic gehavior. This 

decision, however, is irrelevant to the argument that the crack 

line model could be more accurate than the crack zone model or vice 

versa. In both models, the accuracy of solution depends a great 

deal on the size of finite elements and can only be checked by nu-

merical experimentation and e~~isting data such as experimental 

results. The method developed by Ngo(4.2l) also is appealing be
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· cause of its' capacity to directly trace the development of cracks. 

This method, however, was not used because the stiffness matrix 

tends to be sparsely populated as additional nodes are generated in 

the process of computation. The algorithms of automatically gen~ 

erating nodal points and solving a sparse matrix are extremely 

complicated. The proposed model does not take either the dowel 

action or bond-slip into account~ 

The analyzed floor slabs consist of three different com

ponents: the concrete slab, the reinforcing bar, and the concrete 

beam. The concrete plate is represented as an assemblage of rigid 

triangles interconnected by normal and shear springs, as proposed 

originally by Kawai et ale (4.16) Each triangle with springs is 

labelled the triangular element in this study. The proposed program 

has two options for representing the reinforcing bars in slabs. In 

the first option, each bar is treated as a bar element, labelled the 

truss element, which resists axial forces but has no flexural ri

gidity. In the second option, all reinforcing bars in the slab are 

smeared together and treated as an orthotropic plate. This ortho

tropic plate is then divided into rigid triangles with springs in 

the same manner as for the concrete panels. These triangle elements 

are referred to as "smeared triangular elements". The spring 

constants are determined so that they can reflect the orthotropic 

properties of the reinforcing bars. Concrete beams running under

neath the concrete plate are modelled as truss elements resisting 

axial forces only. The total neglection of the flexural resistance 
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of the beams was justified by the following reasons. First, 

the experimental investigations have shown that reinforcing 

bars at the four corners of each beam are strained almost 

equally at the several gaged cross sections, indicating that 

the axial deformation of the beam is dominating. Second, elastic 

finite element analyses were performed to investigate the effect 

of the bending of the beams on the overall behavior. One of the 

·1 bl f·· 1 (3.1) d f thO ava1 a e 1n1te e ement programs was use or 1S purpose. 

Truss members with no flexural rigidity represented the beams 

in one execution, whereas beam elements with appropriate flexural 

rigidity were used in the other execution. The two executions 

yielded practically the same results. Hence, the flexural 

rigidity of these beams is significantly smaller than the in-

plane rigidity of the concrete plate. 

4.4.1 Formulation of Triangular Elements 

In Fig. 4.1 are shown two rigid triangular elements with 

nodes 1-2-4 (element 1) and 3-2-4 (element 2). The elements are 

connected along their interface (24) by uniformly distributed 

normal and shear springs, with spring constants kd and ks res-

pectively. (see Fig. 4.4) Gl 
andG2 are the centroids of the 

elements. Since the elements are assumed to be rigid, the dis-

placements at any point in an element are characterized by the 
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translations (u, v) of the centroid, and the rotation (8) of 

the element (Fig. 4.2). Point W, located at the interface in the 

two elements before displacement, will be moved to separate 

locations WI' and W
2

' after displacement (Fig. 4.3). These 

displacements, < U
l

, VI' U
2

, V2> can be related with the dis

placements at both cetroids < ul ' vI' 81 , u2 ' v2 ' 82> as follows: 

Ul 
1 0 (y - Ygl) 

I u
1 I 

I 
I 0 I 

VI 0 1 (xgl 
- x) I 

vI I 
I 
I 
I 8 I 1 

= -----------------~----------------- (4-1) 
I 

U2 
I 1 0 (Y - Yg2 ) I u2 
I 

a I 

V2 
I 0 1 (xg2 

- x) v
2 I 

I 
I 
I 8 I 2 

or {U} [Q] {U
i

} 

Subscripts 1 and 2 indicate that the displacements belong to the 

triangular element 1 with nodes 1, 2, and 4 and the triangular 

element 2 with nodes 2, 3 and 4. As shown in Fig. 4.3, the 
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separation of W ' and W ' after displacement, measured in 
1 2 

the normal and tangential directions of the interface, are: 

o 1 

-1 o 
(4-2) 

or {O} [M] {U} 

Here, 0d and Os are measured with respect to the local co

ordinates (X, Y) as shown in Fig. 4.3. The displacement com-

ponents < UI , VI' U2 , V2 > also are measured with respect to 

the local coordinates. A transformation matrix [R] relates 

the displacement vector in the local coordinates {U} to the 

displacement vector in the global coordinates {U}: 

I 

f1:L 
m

l 
I U

1 I 
I 0 I 

lt2 m
2 

I VI I 
(4-3) I 

--------~-------I 
U

2 U
2 

I ltl m
1 I 

0 I 
- I 
V2 

I 
~ m

2 
V2 I 
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or {u} [R] {U} 

where: \ cos (i, x) 

J1 cos (i, y) 
Z 

m
1 

cos G, x) 

tnz = cos (y, y) 

According to equations, 4-1 to 4-3, the relative displacement 

vector {a} is: 

{cS} [M] [R][Q] {U
i

} [B] {U.} 
l 

(4-4) 

[B] = [M] [R] [Q] 

The normal strain (cd) and the shear strain (c s ) corresponding 

to the separation are defined as: 

1 h x {cS} (4-5) 

hI and h
Z 

are the legs from the centroids of elements 1 and 2 

to the interface, and h is the total distance between the centroids. 

The constitutive law between the stress and the strain is defined 

as: 

(4-6) 
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or [D] {d 

The total strain energy stored in the springs distributed 

along line (24), therefore, is: 

v 
c 

; ~A {O}T [D] {s}ds 

c 

1 [B] T [D] [B]ds 
h 

{u. } 
1. 

(4-7) 

.Here, A is the area of the interface (24), and ds indicates 
c 

an infinitesimal length. By applying Castiligano's theorem, 

the displacements at the centroids {U.} can be related to two 
~ 

forces (P , P ) and moment (M) at the centroids as follows: 
x y 

P
xl Kll I u1 I 

I 
I 

Pyl K21 K22 I SYM. v1 I 
I 
I 

81 MI K3l K32 K33 I 
I 
I 

-----------------~---------------- (4-8) I 
Px2 K4l K42 K43 I K44 u 2 

I 

Py2 KSI KS2 KS3 
I 

I KS4 
I 

KSS Vz 
MZ K61 K6Z K63 

I 

: K64 K6S K66 8Z 
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or. {p} = [K] {U.} 
1. 

Where: [K] is a 6 x 6 element stiffness matrix. Although each 

component of [K] matrix can be drived in a closed form, the three-

point Gaussian integration is employed for the computation of 

the matrix. Once {Ui}is known, the stress vector < ad' as> is 

computed in the following form: 

{a} (4-9) 

The same procedure can be used to formulate the element 

stiffness matrix of smeared reinforcing bars. Fig. 4.5 shows two 

triangular elements representing reinforcing bars which are 

arranged orthogonally and inclined by 8 from the global coor
x 

dinates. The axes of the local coordinates parallel to the 

reinforcing bars. Equations 4-1 to 4-4 are used to formulate 

this stiffness matrix. Equation 4-5, however, are modified to: 

= 

(4-5' ) 

£1 and £2 respectively are the distances between the two centroids 

- -projected on the local x and y axes. The separation, 01 and 02' 

also are measured with respect to the local coordinates. The new 

stress-strain relationship is: 
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(4-6') 
= 

In the above expressions, Esl and Es2 are the modului of 

elasticity of steel in directions, 1 and 2. The total strain 

energy stored in the springs which are distributed along the 

interface is: 

v 
s = (4-7') 

Where A. is the area of reinforcing bars placed in the i direction 
~ 

and intersecting the interface. The element stiffness matrix is 

then obtained by applying Castiligano's theorem to equations 4-4, 

4-5~, 4-6' and 4-7'. 

4.4.2 Formulation of Truss Elements 

Fig. 4.6 shows a typical truss element connecting two 

rigid triangular elements. This truss element interconnects these 

triangular elements at their centroids rather than at their nodal 

points. The flexural rigidity of the truss element is not 

considered; that is, this element behaves as a uniaxial tension 

and compression member. Buckling under compressive force is not 

considered, either. The strain (Sb) is: 
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u
1 

vI 

1 I 8
1 (4-10) Eb = I x < - l3 - m3 0 I l3 m3 o > 

u
2 

v
2 

8
2 

or 

where: l == Length of the truss element 

Xg2 - x 
n3 == cos a gl 

l 

m3 sin a 
Yg2 - Yg1 

l 

The strain (ab) is: 

(4-11) 

Eb Axial stiffness of the truss member 

The strain energy stored in the truss element, therefore: 

(4-12) 
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Here, ~ is the cross sectional area of the truss member. 

According to equation 4-12, the displacements {U.} and forces 
1 

{p} at the centroids can be related as follows: 

~Eb T 
{p} = --e.- [B

b
] [BbHu i } (4-13) 

Olr' {p} = [~]{Ui} 

~Eb T 
[~J = --e.- [Bb ] [Bb ] 

4.4.3 Material Model of Concrete Slab in Compression 

Concrete under compression is assumed to be isotropic 

and linear-elastic and perfectly-plastic. The constitutive matrix 

of the triangular elements representing concrete slab in the 

elastic range is defined as: 

(4-l4a) 

Dfl 
E = 

I-v 2 
(4-14b) 

e E 
D22 = 2 (l+v) (4-14c) 
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E and V respectively are the modulus of elasticity and 

poisson's ratio of concrete. As long as the concrete is in 

the elastic range the spring constants kd and ks are respectively: 

k 
s 

= 

= 

(4-15) 

The compressive yielding of concrete is assumed to 

follow a yield criterion with an associated flow rule. The yield 

function defined here is: 

f (: d Y + (: s Y = 1 (4-16) 
p p 

C5 = C5 
P Y 

T = C5 /13 p y 

C5 is the yield stress of concrete under uniaxial compression. 
y 

If d£ denotes the increment of plastic strain, then: 
p 

{dE } 
P 

or for each component 1 and 2: 
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dE '0 AlL dE p = A~ (4-l7b) d dad s dT s 

where: dE p {dEl} == p 
dE P 

s 

A is a proportionally constant, as yet undetermined in these 

equations. During an infinitesimal increment of stress, changes 

of strain are assumed to be divisible into elastic and plastic 

parts: 

{dE} = {dE} + {dE} 
e p 

(4-18) 

The elastic strain increments are related to stress increments 

by the elastic matrix [D ]: 
e 

{ dO"} = [ D ]{ dE } 
e e 

According to the yield criterion: 

o 

From equations 4-17 and 4-20, we can derive A as: 

(4-19) 

(4-20) 

(4-21) 

The derivation of equation 4-21 is illustrated in Appendix. 
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According to equations 4-17 through 4-21, the elasto-plastic 

constitutive equation can be expressed in an incremental form 

as: 

where: 

[D ] 
ep 

S 

{da} = [D J{dc:} 
ep 

[D~l 0] 
o De 

22 

(4-22) 

As long as the concrete stress is in the yield condition 

(equation 4-l6),equation 4-22 is used to relate the stress to 

the strain. Unloading is assumed to occur if A is negative. 

Strain hardenings such as kinematic and isoparametric hardenings 

are ignored, as evidenced from the yield function equation 4-l5. 

(4.29) 
Zienkiewitz .et ale presented the formulation of the elasto-

plastic matrix in further detail. 

4.4.4 Material Model of Concrete Slab in Tension 

Concrete is assumed to be linear elastic until cracks 

occur, and tension cracking follows the maximum normal stress 

theory. Once cracks take place, the normal spring constants (kd) 
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is set at zero. The shear spring constants· (ks ) , on the other 

hand, hold a finite value in order to maintain numerical stability 

throughout the matrix algebra. Recontact of cracked surfaces 

under unloading or reloading is considered by introducing a 

criterion, 0 d < o. Once two cracked surfaces contact, both the 

normal and shear constants of the springs located in the interface 

are assumed to regain their elastic values. The spring 

constants maintain these values as long as the interface 

remains closed. 

4.4.5 Material Model of Reinforcing Bars 

The stress-strain relationship for the reinforcing bars 

is assumed to be linear-elastic perfectly-plastic in both 

tension and compression, taking neither strain hardening nor 

the Baushinger effect into account. These bars are assumed 

to break under tension when they reach their ultimate strains. 

The buckling of bars under compressive force is ignored. 

4.4.6 Accuracy of the Proposed Model 

As described in Sections 4.4.1 and 4.4.2, the proposed 

model is considerably different in its formulation of potential 

f h f o ° 1 1 (2.14, 2.48,4.7, energy rom most ot er lnlte e ement ana yses. 

4 • 23) In th· t ° h f th d 1 ° th 1 t ° lS sec lon, t e accuracy 0 e mo e ln e e as lC 

range is demonstrated by comparing the model with one of the 
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Table 4.1 lists the ratios of the displacements at several 

selected points shown in Fig. 4.8. The deflection ratio of the 

proposed model to SAP IV, ranges from 1.01 to 1.07; the model 

always gives larger displacements than SAP IV. The discrepancy, 

however, appears to be minimal despite the difference in models' 

mesh size and shape and procedure for formulating potential 

energy. The proposed model is suitable for solving elastic plane 

stress problems. 

4.5 Procedure of Analysis 

4.5.1 Scheme of Computation 

The basic input for the analysis procedure consists of 

a description of the topology and material properties of the 

structure. The loads are expressed as forces acting on the 

centroids of triangular elements. The material properties for 

concrete as well as reinforcing bars are specified for each 

element. The first step in the analysis is to form the struc

ture stiffness matrix from the individual element stiffness 

matrices. Initially, the element stiffness matrices are deter

mined based on the virgin material properties of the concrete 

and steel. 

The structure is then analyzed under monotonically in

creasing loads. For each load level, the solution is derived 

through several iterations after specific convergence criteria 

are met. The structure is assumed to behave linearly within 
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.. 1 . f·· 1 SAP IV (3.1) F eXlstlng e astlc lnlte e ement programs, . or 

this purpose, a plane stress problem is solved by means 

of the two programs. The analyzed structure is a 64 (in.) x 

64 (in.) square panel with the thickness of 1 (in.) as shown in 

Fig. 4.8. One of the edges is clamped, while the others are 

held free. The panel is homogeneous and isotropic with a 

modulus of elasticity of 3,500 (ksi) and a poisson's ratio of 

0.15. The dimensions and material properties, similar to those 

of the tested concrete panels, however, do not matter since the 

analysis is made for comparison between two different finite 

element models. Two cases of loading are considered. In load-

ing case 1, equally distributed forces are applied along the 

free edge opposite the clamped edge. In loading case 2, these 

forces are applied along all three free edges, resulting in a 

pure shear condition in the panel. The intensity of the forces 

is chosen arbitrarily. The panel is discretized to finite 

elements as shown in Fig. 4.9. It is known that the size of 

finite elements significantly affects the accuracy of solutions. 

The finite element sizes shown in the figure are selected after 

several executions with different element sizes. Although 

a square finite element in SAP IV is four times greater in area 

than a triangular element in the proposed model, this difference 

does not necessarily leads to a conclusion that the proposed model 

is more accurate than SAP IV; the formulation of the stiffness 

matrix, after all, is different. 
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an iteration. Following each iteration, the structure stiff-

ness matrix is reconstructed using the tangent stiffness 

properties of the material, and forces within the structure 

are corrected to reflect the nonlinear behavior of the material 

model. The force correction procedure, which is explained 

. . (4.29) 
below, uses the Initial Stress Method of Z~enk~ewicz et al. 

Following the solution of the element equilibrium equations, the 

element displacements are used to obtain the strains within 

each element. The material strains then determine the apparent 

changes in stresses for the concrete and steel. These changes 

are corrected to reflect the nonlinear properties of the materials. 

The differences between the apparent stresses and corrected 

stresses are the residual stresses used to calculate residual ele-

ment loads. With each iteration, the state of each material 

is updated, stresses are corrected, and a new tangent 

stress-strain matrix is calculated. The element and structure 

stiffness matrices are reconstructed, and the residual loads 

are applied until the solution for that load step converges. 

This force correction procedure is shown schematically in 

Fig. 4.7. 

The analysis, on the other hand, is terminated when the 

structure reaches its maximum load. When the imposed load 

approaches the structure's maximum resistance level, the load 
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increment becomes too large to converge. If it takes place, 

the load increment at the present load step is reduced by one 

third, and the iteration is restarted. Once the load increment 

is lowered to within a specified fraction of the load 

reached in the previous load step, the execution then stops, 

assuming that this load be the ultimate load. 

4.5.2 Solution Technique of the Nodal Equilibrium Equations 

Wilson, et al. (4.27) have developed an efficient 

computer program for the direct solution of large numbers of 

simultaneous linear equations. Basically, the program used the 

Gauss elimination in order to solve positive-definite symmetrical 

systems. The specific features are that systems of very large 

size and bandwidth can be solved and that operations on zero 

elements are effectively eliminated to reduce the time for com-

putation. This program is used as a subroutine in the analysis. 

4.6 Numerical Examples 

4.6.1 Selection of Examples 

In order to evaluate the usefulness and applicability of 

the proposed finite element model, several numerical examples are 

presented in this section. For this purpose, the model is used 

to analyze the tested panels for both monotonic and cyclic load

ings, and the results are compared with the test results: BH2MN, 

BH3MN, and BHlCY. To achieve close match between the analysis 
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and experiment, material properties used in the analysis are 

determined based upon the results of the concrete cylinder 

test and steel tension test. In the proposed model, con-

crete subjected to compression is assumed to be linear-elastic 

perfectly-plastic, while concrete subjected to tension is 

assumed to be linear up to a specified cracking stress. The 

yield strength and tensile strength obtained by the concrete 

cylinder test are used to represent the yield stress and 

cracking stress respectively. The yield stress and ultimate 

strain of reinforcing bars are assumed to be those derived 

from the steel tension test. (Table 3.7) 

4.6.2 Monotonic Loading on Beam-Supported Slab Panels 
iBH2MN and BH3MN) 

The ability of the proposed model to simulate the be-

havior of floor slabs under monotonic in-plane loading is de-

monstrated by using two tested slab panels (BH2MN and BH3MN). 

In order to save the time required for computation, the indivi~ 

dual panel under test is analyzed. (Fig. 4.10) For simulating 

the behavior of BH2MN, a 410 rom (16 in.) overhang of the slab 

panel, outside of the load line, is ignored. The significance 

of the overhang is minimal because this neglection only dis-

regards the effect of the self-equilibrium stresses acting on 

the panel section along the load line. A preliminary elastic 

analysis of BH2MN has also shown that this ignored part has 
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little effect on the overall behavior of the panel. The 

edge connected to the vertical wall (refer to Fig. 3.2) is 

clamped, and, therefore, the wall is not included in the 

analysis. The other three edges are assumed to be stress-free. 

The concrete panel is discretized to 216 triangular elements. 

(Fig. 4.11) Three concrete beams, two running perpendicular 

and one running parallel to the loading direction, are re

presented by truss elements. Since the truss elements are 

jointed at the centroids of triangular elements, the eccen

tricity between the neutral axes of slab and beams are neglec

neglected. Reinforcing bars are represented by truss elements 

in one execution (case 1) and by smeared triangular elements 

in another execution (case 2). In the case 1 analysis, all 

reinforcing bars located along the interface of two triangular 

elements are treated as one truss element for each direction 

(X and Y directions in Fig. 4.11). The applied load is assumed 

to be distributed uniformly along the loading line parallel to 

the clamped edge. The distributed load, therefore, is represented 

by nine equal element forces along the loading line. (Fig. 4.11) 

The proportion of the forces remains unchanged during the loading. 

In order to simulate the behavior of BH3MN, the entire 

middle panel (1630 mm x 2440 mm) is analyzed (Fig. 4.10). The 

edge connected to the fixed vertical wall (refer to Fig. 3.2) is 

clamped, while the remaining edges are stress-free; therefore, 
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the walls also do not appear in the analysis. The concrete 

panel is discretized to 216 triangular elements like BH2MN. 

Three concrete beams are treated as truss elements, and rein

forcing bars are treated as smeared triangular elements. In 

order to simulate the loading employed in BH3MN, both moment 

and shear force are applied to the free edge parallel to the 

clamped edge. The applied moment equals the shear force 

multiplied by a 1630 mm moment arm. The shear force is re

presented by nine equal element forces in the y direction, 

and the moment by nine linearly distributed element forces in the 

x direction. These directions follow those specified in 

Fig. 4.11. The element forces are increased proportionally in 

the analysis. 

The results of the analyses are compared to the experimental 

load-displacement and load-rotation curves in Figs. 4.12 and 

4.13. For BH2MN, analyses of cases 1 and 2 constantly show a 

higher load than the experiment. Once the load exceeds 100 kN 

(80 percent of the experimental ultimate load), however, the 

analytical curves approach the experimental curve rapidly and 

meet it at 120 kN, which is 95 percent of the experimental ulti

mate load. The analytical curves reach the ultimate loads 

at 116 kN (case 1) and 115 kN (case 2), which are 97 and 96 

percent of the experimental ultimate load, respectively. The 
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experimental curve shows a sudden decrease of resistance at 

the displacement of 2.8 rom, and after the decrease takes place, 

the resistance does not reach its maximum again. Since the 

analytical model is loaded with a series of imposed load incre

ments, it is not possible to deal with structural unloading, 

and the curves rise continuously until the ultimate load, defined 

in Section 4.5.1, is reached. According to the case 1 analysis, 

in which the reinforcing bars are treated as truss elements, 

the displacement corresponding to the ultimate load is 3.0 rom, 

while 2.8 rom is obtained from the experimental curve. In the 

second analysis (case 2), in which the smeared triangular elements 

are used for the reinforcing bars, the transfer of stresses caused 

by the cracking of concrete is more gradual than in the case of 

the real slab panel~ which contained discrete reinforcing bars. 

The smooth transfer of forces appears to retard the onset of 

instability. The case 2 analytical curve, however, reaches 

99 percent of its ultimate load at 2.6 mm and travels on 

additional 0.9 rom with a load increase of 1 percent. The region 

between 2.6 rom and 3.5 rom can be said as a plastic plateau. 

Except for the displacement of the ultimate load, the load

displacement curves in cases 1 and 2 practically are the same. 

In later analyses, the smeared triangular elements are used to 

represent reinforcing bars, for the use of these elements reduces 

the band-widths of global stiffness matrices and improves the 

numerical stability particularly near the ultimate load. 
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For BH3MN, the experimental and analytical load

displacement curves show agreement up to about 30 kN, which is 

60 percent of the ultimate load. At this load level, the slope 

of the experimental curve decreases suddenly, while the analytical 

curve shows a smooth reduction of the slope up to the ultimate 

load. The analytical ultimate load is 51.1 kN, which is 93 per

cent of the experimental ultimate load. The analytical curve 

reaches 99 percent of the maximum load at 2.0 mm displacement, 

followed by a 1.6 mm plastic plateau. On the other hand, the 

experimental curve reaches the'u1timate load of 56.9 kN at 1.9 mm 

displacement, and a sudden decrease of resistance, which is never 

fully recovered as the panel undergoes an additional 4.9 mm of 

displacement. In both BH2MN and BH3MN, the experimental and 

analytical load-end rotation curves show agreement up to about 

90 percent of the ultimate loads (Fig. 4.13). At this load level, 

the analytical curves depart from the experimental curves,showing 

a rapid decrease of the slopes. The characteristics of the 

experimental curves, the loss and recovery of resistance in 

the post-ultimate load regions are replaced by the smooth 

transition of the slopes in the analytical curves. 

The ability of the proposed model to duplicate 

experimental crack patterns is demonstrated in Fig. 4.14. The 

experimental and analytical crack patterns are compared at three 

different load levels for both BH2MN and BH3MN. Since the pro-
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posed model assumes that cracks occur at interfaces between 

two triangular elements, cracks can develop in only one of the 

three directions: the direction parallel to the loading, the 

direction perpendicular to the loading, and the direction in

clining by 45 degrees from the loading direction. Considering 

this limitation on the crack direction, the model simulation 

of the crack development is good. 

In general, the proposed model successfully simulates 

the overall behavior of the slab panels. The model offers a 

close duplication of the ultimate resistance as well as the 

deformation corresponding to the ultimate resistance. The 

model also duplicates the deformation of most tested panels; 

it did not, however, duplicate the displacement of BH2MN. For 

BH2MN, the analytical load-displacement curve always shows 

higher load than the experimental curve. Several reasons for 

this discrepancy can be noted. Material properties used in the 

model, based upon the concrete cylinder tests and steel tension 

tests (Tables 3.7 and 3.8), may not be the same as those of 

the tested slab panels. The tested slab panels might have 

initial minute cracks because of the shrinkage of concrete or the 

accidental forces applied during the process of setting the 

specimen. Significant residual stress due to creep or shrinkage 

might exist since the slab panels were tested more than two 

months after they were cast. The analyses, on the other hand, 
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do not consider any of such possibilities. Additional experi

ments are required to discuss more specifically the reasons for 

this discrepancy. 

The analytical curves do not reach the experimental 

failure displacements: 7.6 rom for BH2MN and 6.9 rom for BH3MN. 

The reason is clear; the experimental curves show that the 

resistance is never completely recovered after the first signi

ficant loss of resistance. That is, the region after the point 

corresponding to the ultimate resistance is a post-ultimate load 

region. On the other hand, the analytical model can simulate 

the behavior only up to the ultimate load. The experimental 

results verify that the breaking of the reinforcing bars embedded 

in the concrete beam subjected to tension causes the ultimate 

failure. To evaluate the breaking of reinforcing bars in cracked 

regions, however, is difficult since the strains of these bars 

depend heavily upon various local effects such as bond slips 

and dowel action. The model, on the other hand, has been 

developed to simulate the overall behavior rather than to 

investigate the local behavior of individual components. 

Nevertheless, the failure displacements are evaluated 

by using the stiffness of the structure as well as the stress 

and strain of concrete and reinforcing bars at the ultimate load. 

Assuming that the stiffness at the ultimate load remains un

changed in the post-ultimate load region, the displacement 
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at which the strain of the reinforcing bars in the concrete 

beam located 400 rom from the tension edge reaches the ultimate 

strain can be computed. In other words, the model is assumed 

to be linear, having the same stiffness as that of the ultimate 

load. This assumption is rather reasonable because the experi-

mental results show that few cracks take place once the ultimate 

load is reached and that the behavior in the post-ultimate load 

region is controlled primarily by the opening of the major crack. 

The computed failure displacements are 6.65 mm for BH2MN and 

6.60 rom for BH3MN as shown in Fig. 4.12. They are 88 and 93 

percent the experimental failure displacements respectively. The 

correlation seems reasonable for the considerably crude assumption. 

4.6.3 Cyclic Loading on Beam-Supported Slab Panels 
(BH2MN and BHlCY) 

The ability of the proposed model to simulate the 

behavior of floor slabs under reversed or cyclic loading 

tested with two tested slab panels (BH2MN and BH1CY). For BH2MN, 

the tested panel was unloaded after it reached failure and re-

loaded in the opposite direction (defined as the negative 

direction in Chapter III) until another failure occured. The 

analytical model follows this loading pattern; first it is un-

loaded after the ultimate load is reached and then reloaded in 

the opposite direction until another ultimate load is 

reached. For BHlCY, the panel was sUbjected to a series of load 
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reversals in both directions with gradually increasing displace

ment specified by the loading spectrum in Fig. 3.17. Since 

enormous computation time is required to completely duplicate 

the loading spectrum, a simplified loading spectrum is selected 

for the analytical model. It contains one complete cycle with 

the 1.3 rom amplitude, followed by one cycle with the 2.8 mm 

amplitude. In the third cycle, the load continues to increase 

until failure occurs. The discretization of the slab panel is 

identical to that used for BH2MN subjected to monotonic loading. 

Smeared triangular elements are used for reinforcing bars in this 

analysis. 

The analytical load-displacement curve of BH2MN under 

the reversed loading is compared with the experimental curve 

in Fig. 4.15. Since the analytical curve does not reach the 

experimental failure displacement in the initial loading as 

mentioned in Section 4.6.3, these two curves are far apart on 

the unloading. In the reloading, the analytical curve con

sistently shows a higher slope than the experimental curve 

and reaches the ultimate load at -4.0 rom displacement as com~ 

pared with the -6.0 mm experimental displacement. The curve also 

shows a clear pinching effect in the neighborhood of zero dis

placement. Since the ultimate displacement which the analytical 

model can reach is substantially less than the experimental failure 

displacement~ the model fails to simulate the experimental curve 

in the reloading region. In addition, the analytical curve 
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reaches the same ultimate resistance in both directions (115 kN 

for positive loading and 110 kN for negative loading), although 

the experimental curve shows a substantial decrease in ultimate 

resistance due to the reversed loading by about 26 percent. The 

analytical ultimate load in the negative direction is 110 kN, 

which is 96 percent of the analytical positive ultimate load and 

125 percent of the experimental negative ultimate load. The 

damage that the tested slab panel (BH2MN) received during the 

first half cycle of loading is not simulated properly by the 

analytical model. This unsatisfactory simulation explains the 

discrepancy on the ultimate loads. 

In Fig. 4.16, the analytical crack pattern at the 

negative ultimate load is compared to the experimental crack 

pattern at the point of failure in the negative direction. Des

pite the discrepancy between the analytical and experimental 

curves, the two crack patterns are considerably alike. 

The analysis for cyclic loading of test panel BHlCY 

resulted in a load-displacement curve unlike the experimental 

curve. The analytical ultimate load after two complete cycles 

is 107 kN, which is 112 percent of the experimental ultimate load 

of BHlCY. As shown in Fig. 4.17, the analytical curve consis

tently shows a higher load than the experimental curve. The dif

ference is probably caused because the analytical model does not 
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accurately evaluate the damage accumulated in the slab during 

the cyclic loading. The tested slab panel experienced six 

complete cycles immediately preceding the first cycle of the 

1.3 mm amplitude. In the analysis, on the other hand, load 

up to this displacement level is applied from the virgin state. 

Furthermore, the tested panel reached the ultimate load at 

4.3 mm displacement after twelve cycles were completed, while 

in the analysis, only two complete cycles are employed before 

the ultimate load. It is suspected that the model does not pro

perly represent the causes for cumulative damage. In cyclic loading 

with increasing amplitudes, cracks develop gradually from both 

sides. The cracks open and close alternately as the load is 

reversed. The stiffness of the panel changes at each opening 

and closure of the cracks. It is also known that load reversal 

commonly enhances bond slips. The proposed model does not 

$imulate these potential sources of cumulative damage. 

4.6.4 Concluding Remarks 

In summary, the proposed model properly simulates the 

behavior of slab panels subjected to in-plane loading when they 

are loaded monotonically. The model accurately predicts both 

the ultimate resistance and the corresponding displacement. The 

analytical load-deformation curves reasonably coincide with the 

experimental curves. The analytical curves do not reach the 
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the experimental failure displacements since these displace

ments are in post-ultimate load regions. Nevertheless, an 

evaluation of the failure displacement based upon the stiff

ness at the ultimate load is still workable. 

On the other hand, the ability of the model to simul

ate the cyclic behavior of floor slabs is not satisfactory. For 

BH2MN, the model does not duplicate the damage that the tested 

slab panel possessed upon unloading and, consequently, fails to 

simulate either the weakened stiffness or the reduced strength 

which the tested panel disclosed during the reversed loading. 

The model fails to simulate the behavior of the floor slab under 

cyclic loading with gradually increasing amplitudes (BHICY). 

The deficiency of the model to simulate cumulative damages due 

to cyclic loading most likely creates the dis.crepancy. 
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V PARAMETRIC STUDY 

5.1 General 

In this chapter, the experimental findings described 

in Chapter III are further examined in order to-define the 

parameters which control the in-plane behavior of floor slabs 

and evaluate the effects of these parameters on the in-plane 

characteristics of floor slabs. This study focuses on three 

major characteristics: strength, stiffness, and ductility. 

Parameters which may affect these characteristics are chosen 

carefully, and the significance of each parameter is examined. 

The selected parameters are: 1) the aspect ratio of floor slabs, 

2) the relative beam size, 3) the amount of reinforcing steel, 

4) the arrangement of reinforcing bars,S) the boundary condition, 

6)the loading condition (monotonic, reversed, or cyclic 

loading), and 7) the intensity of gravity load. 

This Chapter also describes a simplified representation 

of the floor slab subjected to in-plane loading as a deep beam 

considering both flexural and shear deformations. The appro

priateness and accuracy of this representation are discussed 

in detail. 
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5.2 Elastic Characteristics 

The stiffness test and accompanying elastic finite 

element analysis, described in Chapter III, have shown that the 

in-plane stiffness characteristics of floor slabs in the elastic 

region can be reasonably estimated by the finite element 

analysis. When the analysis of the entire structure is needed, 

however, dividing each slab panel to smaller elements is 

impractical. A more practical representation of the floor slabs, 

in which they are treated as deep beams, is demonstrated in this 

section. The effect of several parameters such as the relative 

beam size or the aspect ratio on the stiffness characteristics 

is discussed. 

5.2.1 Comparison with Stiffness Test 

In order to simulate the stiffness test by a simpli

fied beam model, the tested specimen, composed of three panels 

separated by two walls (refer to Fig. 3.2),is treated as a 

simply supported beam with a projection at each end, labelled 

an equivalent beam. As shown in Fig. 5.1, two forces are 

applied to the equivalent beam at the distance (l) from the 

supports. The forces are applied in the same direction 

to simulate the symmetrical loading test and in opposite 

directions to simulate the anti-symmetrical loading test. 

Fig. 5.1 also illustrates the resulting moment and shear dia

grams created by these forces. Both bending and shear de-
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formations are included to calculate the deflection of the 

equivalent beam. The following equations, 5-1 to 5-4, determine 

the rotations (8 ,8 ) at the supports and the deflection 
s a 

(8 , 8 ) at the edges of the beam. 
s a 

For symmetrical loading: 

For anti-synune!=.,Eical loading: 

p 

( 
l3 3l ) ( 212 2 ) o a == ZEI + AG x P + 3EI + AG x ell - l) x P 

where: P = applied force 

(5-1) 

(5-2) 

(5-3) 

(5-4) 

E == modulus of elasticity of the equivalent beam 

G = shear modulus of the equivalent beam 

I = moment of inertia of the equivalent beam 

A = shear area of the equivalent beam 

l span length (1630 nun) 

II length of the projection (2030 mm) 
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In the application of equations 5-1 to 5~4, the 

material properties, E and G are taken as those of concrete 

obtained from the cylinder test. (Table 3.8) The effect of 

reinforcement as well as the stiffening beams are ignored. 

The moment of inertia is taken to be that of the gross section 

of the panel, including the two beams running parallel to the 

span (or perpendicular to the loading) as shown in Fig. 5.5. 

The nominal shear area is taken to be 0.833 times the area of 

the same cross section, 0.833 being the theoretical coefficient 

for the shear area of a rectangular cross section. 

The results based upon these properties are listed in 

Table 3.14. For symmetrical loading, the equivalent beam calcul

ation gives an approximately 20 percent higher stiffness than the 

experiment but closely approximates the finite element analysis. 

For anti-symmetrical loading, on the other hand, the equivalent 

beam calculation gives an 40 percent higher stiffness than the 

experiment or the finite element analysis. Note that the finite 

element analysis correlates well with the stiffness test for 

anti-symmetrical loading. Further investigation revealed that 

the combined effect of the high shear force applied in the middle 

panel and the boundary condition employed for the stiffness 

test and finite element analysis caused additional rotations 

in the walls. Since the tested panels were supported only at 

walls' mid-points, at a distance of 1220 rom (48 in.) from the 
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panel edges perpendicular to the loading, the shear force applied 

to the walls forced them to either contract or elongate in the 

direction parallel to the shear force. The equivalent beam cal

culation, however, did not account for such deformation due to 

the shear force. Further finite element analysis verified that 

this additional rotation of the walls due to the shear force 

disappeared when the walls were prevented from deforming in the 

direction parallel to the shear force. In this finite element 

analysis, artificially stiff beams were substituted for the walls 

to restrict the deformation along their lines. As indicated by 

Table 3.14, the stiffnesses of the slab specimen were increased 

significantly, and the results were nearly the same as the 

equivalent beam calculation. In most building structures in 

which two adjoined floor slabs are separated by shearwalls or 

frames,either elongation or contraction of the boundary 

between the two slabs is unlikely to occur. The equivalent beam 

calculation, therefore, seems to give reasonable evaluation in 

most cases. 

In general, the technique which treats floor slabs 

as deep beams is acceptable to simulate the in--plane 

stiffness characteristics of floor slabs. First, the equivalent 

beam calculation reasonably duplicates the finite element 

results. Second, the finite element results indicate good 
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correlation with the stiffness test results. Chapter III 

describes the comparison between the stiffness test and finite 

element analysis in detail. 

5.2.2 Effective Moment of Inertia and Effective Shear 
Area 

In the previous section, the suitability of the equi-

valent beam calculation to evaulate the in-plane stiffness 

characteristics of floor slabs is demonstrated. In order to 

properly evaluate the in-plane stiffness characteristics, 

however, the moment of inertia (I) and the shear area (A) of 

equivalent deep beams should be selected carefully. Although 

an equivalent beam calculation using the nominal moment of 

inertia and shear area reasonably simulates the results of the 

stiffness test and finite element analysis, a floor slab with 

a different combination of aspect ratio and relative beam size 

may require a different set of moment of inertia and shear area. 

A parametric study was made to determine the moment 

of inertia and shear area of equivalent beams so that the equi-

valent beam calculation would properly reflect the true in-plane 

characteristics of floor slabs. The moment of inertia and shear 

area determined by this parametric study are labelled the 

effective moment of inertia (I ) and the effective shear area 
e 

(A ) respectively. Elastic finite element analysis was made 
e 
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to provide the data necessary for computation. In the 

previous section, this analysis has been verified to be capable 

of properly simulating the true behavior of slab panels under in

plane loadings. As in the finite element analyses described 

in Chapters III and IV, eccentricities between the mid-planes 

of floor slabs and beams were neglected; therefore, the floor 

slabs with beams were analyzed as two-dimensional plane stress 

problems. Cantilever floor slabs were analyzed instead of three 

panel floor system analyzed in the previous section. This 

treatment is reasonable because the finite element analysis also 

simulated adequately the behavior of the specimens' outer panels 

in the stiffness test. The aspect ratio and the relative 

beam size were selected as parameters. The relative beam size 

was defined as the ratio of the nominal moment of inertia of 

a floor slab with beams to the nominal moment of inertia of the 

floor slab without such beams. The relative beam size of 1.0, 

then, indicated a flat slab. The width of floor slabs, or 

likewise, the depth of the equivalent beams, designated as 

d in Fig. 5.2, was defined as the distance between the center 

lines of the two beams. The beams were placed at the 

edges of the slab panels. This parametric study did not 

include floor slabs with projecting parts. The dimensions and 

material properties of the analyzed floor slabs are listed in 

Table 5.1. 
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The following procedure was adopted to compute the 

effective moment of inertia (I ) and shear area (A ): 
e e 

1. A cantilever floor slab with a particular set of 

aspect ratio and relative beam size was selected. 

(Fig. 5.2) 

2. A unit rotation (8) without allowing any translation 

at the free edge was applied and the shear force (P) 

and the end moment (M) at the edge were computed. 

3. I and A were calculated from the following equations: 
e e 

I = 
e 

A 
e 

-€. 
2E (2M - P-€.) 

3P(2M - P-€.) 
G(3M - 2P-€.) 

(5-5) 

These equations can be derived by means of the basic 

beam theory which takes both flexural and shear de-

formations into account. 

The values used in this parametric study r~nged from 0.25 to 

3.0 for the aspect ratio and from 1.0 to 2.} for the relative 

beam size. The calculated I and A are listed in Table 5.2. 
e e 

According to Table 5.2, the values of I are very close 
e 

to the nominal moment of inertia regardless of the aspect ratio 

or the relative beam size. On the other hand, both the aspect 
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ratio and relative beam size affect the effective shear area; 

a smaller aspect ratio or a larger relative beam size gives a 

larger effective shear area. This change in the effective shear 

area is consistent with the generally accepted concept of the 

shear area. For the flat slab (the relative beam size is 1.0) 

with 3.0 of the aspect ratio, the ratio of the effective shear 

area to the cross sectional area 0.872, is very close to the 

standard 0.833 value for a beam with a rectangular cross section. 

For the floor slab with 0.25 of the aspect ratio and 2.7 of the 

relative beam size, the effective shear area nearly is the same 

as the cross sectional area of the floor slab (not including 

the area of the beams). The shear area of cross sections with 

stiff edges like wide-flange cross sections, is the area of the 

part between the edges. 

For practical design purposes, nevertheless, the 

cross sectional area of floor slabs reasonably represents the 

shear area. The area of beams, if any, need not to be added 

to the area of the floor slab. This simplification creates 

less than a 12 percent error in the aspect ratio and relative 

beam size covered in this study. Since the stiffness of equivalent 

beams are computed on the basis of the sum of flexural and shear 

deformations and thereto the computation based upon the nominal 

moment of inertia properly provides flexural deformation, the total 
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error brought about by considering the cross sectional area 

of floor slabs as the shear area can be further reduced. 

Although the analysis was made only for the slabs with edge 

beams, supplemental analysis disclosed that the use of nominal 

moment of inertia and shear area is also suitable to evaluate 

the stiffness of slabs in which beams are attached inside the 

slab edges (like the tested slab panels). 

5.3 Strength of Floor Slabs 

5.3.1 Description of Problems 

The proposed finite element model described in Chapter 

IV was used to predict the strength of eight slab panels with 

a variety of loading conditions, boundary conditions, relative 

beam sizes, and reinforcing bar arrangements. These analyzed 

panels are designated as cases 1 to 8 in the following dis-

cussion. 

All eight cases dealt with a slab panel 1630 rom x 

2440 mm in plane dimensions with one of the long edges clamped 

and the other three edges free. Three beams of 96 rom x 68 mm 

cross section were attached to the slab panel. Two beams were 

placed symmetrically in the short direction, 1630 mm apart 

(405 mm from the edges). A beam was placed along the loading 

line. These dimensions followed those of the tested slab 

panels. Cases 1 and 2 respectively were the original tested 

floor slab, BH2MN and BH3MN. In BH2MN, the basic slab panel was 

-129-



analyzed with distributed shear forces along the free edge. 

In BH3MN, the slab panel was analyzed with a combined shear 

force and bending moment along the free edge. In case 3, the 

slab panel was subjected to bending moment at the free edge. 

Unlike cases 1 and 2, the slab panel was under pure bending, 

and no shear force existed. Case 4 was similar to case 1 

except that the loaded edge was prevented from rotating. This 

boundary condition simulates floor slabs supported by vertical 

members whose torsional rigidity is very large. The cases 

1 and 4, therefore, marked the upper and lower bounds of the 

strength of floor slabs supported by vertical members with 

finite torsional rigidity. In case 5. uniformly distributed 

forces were applied along the three free edges so that the 

floor slabs would be subjected to pure shear. Case 6 had the 

same boundary and loading conditions as case 1 (BH2MN), but 

the area of longitudinal reinforcing bars, which extended 

perpendicular to the loading, was doubled while the area of 

transverse reinforcing bars remained unchanged. The slab's 

flexural strength was expected to increase. Case 7 also had 

the boundary and loading conditions of case 1. Additional 

reinforcing bars, however, were placed near the floor slab's 

edges so that its flexural strength could be increased. In case 

8, the dimensions of the concrete beams were doubled, while their 

locations remained unchanged. A detailed explanation about the 
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analysis procedures of these slab panels has already been made 

in Chapter IV. In addition, Fig. 5.3 schematically shows the 

conditions employed to analyze each of the eight floor slabs. 

5.3.2 Ultimate Strength and Failure Mode 

In cases 1, 2, 3, and 8, cracks developed on the finite 

element boundary parallel to the loading and at a distance of 

270 rom (10.5 in.) from the clamped edge, and the ultimate loads 

were reached when the cracks nearly penetrated the floor slabs 

(Fig. 5.4). Most reinforcing bars intersecting the cracks yielded 

at the ultimate loads. These cracks and cross sections corres

ponded to the major cracks and the critical sections defined in 

Chapter III. These failures were then labelled flexural failures. 

In cases 4 to 7, on the other hand, the slab panel 

developed diagonal crack which completely separated a triangular 

portion from the remainder of the slab at the failure point. 

All reinforcing bars crossing the diagonal crack also yielded. 

This failure was designated as shear failure. It was felt that 

this failure would be inhibited in a slab supported by a shearwall 

or a strong beam attached along the loading edge because the shear

wall or the beam would function as a link between the two parts 

(Fig. 5.4). Even after a diagonal crack completely penetrated 

the floor slab, the two parts can remain connected at the loading 

edge. To test this speculation, three additional analyses were 
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made, designated cases 4', 6', and 7'. These were ide~tical 

to cases 4,6, and 7,respectively, except that a stiffer and 

stronger beam was added along the loading edge. (100 times 

stiffer than the normal beam) (Fig. 5.4) Table 5.3 also lists 

the strength of these floor slabs. The shear failure was 

completely prevented because the beam-was stronger and stiffer 

and the ultimate resistance of these floor slabs was controlled 

by flexural failure. The major crack locations at ultimate 

load levels coincided with those of cases 1, 2, 3, and 8 

(Fig. 5.4). 

5.3.3 Evaluation of Flexural Capacity 

Since the flexural capacity of cross sections in which 

major cracks developed (critical sections) seemed to control the 

flexural failure of floor slabs, an attempt was made to evaluate 

the ultimate resistance of floor slabs on the basis of the 

theoretically computed flexural capacity of the critical sections. 

Assumptions and procedures used to calculate the flexural capa

city of critical sections are described below. 

1. The Navier-Bernoulli hypothesis, that a plane section 

remains plane after deformation, was adopted to specify 

the strain distribution in the critical section. 
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2. The stress-strain relationship of reinforcing steel 

was assumed to be linear-elastic perfectly-plastic. 

The yield stress and modulus of elasticity of the 

steel were taken as those derived from the tension 

tests (Table 3.8). 

3. The stress-strain relationship of concrete in com-

pression was expressed by a cubic equation. Four 

constants were selected from the report published by 

R (5.1) h h h 1 ao, in w ic t e va ues were determined by the 

curve-fitting of stress-strain curves originally pro~ 

posed by Kriz'and Lee. (5.2) The original curves were not 

used because the stress therein was not expressed as an 

explicit function of strain and, therefore, not suit-

able for tria1-and-error computation. The cubic 

equation to represent the stress-strain relationship 

of 27.6 MFa (4000 psi) concrete is: 

f 31.5 e - 11.0 2 + 0.980 3 (5-5) e e 
c 

f stress of concrete (MFa) 
c 

e strain of concrete (m/m) 

Many equations defining the stress-strain relationship 

of concrete under uniaxial compression and bending are 

"I bl . b h 1"" d" 1" "f (5.3) aval a e ln ot exp lClt an lmp lClt orms. No 
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attempt was made to calibrate the propriety of 

these equations on this flexural capacity calcul

ation. Nevertheless, the discrepancy which could be 

caused by using different equations appears to be mini

mal. For example, the computation by using a linear 

stress-strain relationship instead of equation 5-5 

gave only a 15 percent discrepancy. 

4. The tensile strength of concrete was completely neg

lected. Consequently, concrete did not carry any 

stress as long as the strain was in tension. 

5. Strain was specified at the cross section's outer

most fiber in tension, and a neutral axis which satis

fied the equilibrium of axial force on the cross 

section (resulting axial force of zero) was located 

by trial-and-error. The corresponding moment then 

was computed from the stresses in concrete 

and reinforcing steel. The procedure was repeated 

by alternating the level of strain at the outer-most 

fiber in tension. Finally, the maximum moment obtained 

was taken as the flexural capacity of the cross section. 

Figure 5.5 schematically shows the procedure used to 

compute the moment with a specified strain. 
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As listed in Table 5.3, the ultimate strength computed 

from the flexural capacity of critical sections reasonably 

approximates the ultimate strength computed from finite element 

analyses. In case 4', the finite element analysis gave a 20 

percent higher strength. This difference may have occurred 

because the slab panel in case 4' was divided into elements 

too large to guarantee the accuracy of the analysis. Moment 

gradient in case 4', in which the loading edge was prevented from 

rotating, was twice as large as in case 1. The length from zero to 

maximum moment locations was divided into three sections in case 

case 4~ whereas the length in case 1 was divided into six 

sections. (Fig. 4.11) Case 1 then may have reflected the 

moment gradient more reasonably than case 4'. Except for 

the slight discrepancy in case 4'. however. the strength derived 

from the finite element analysis agrees with the strength cal

culated according to the flexural capacity of critical sections. 

The comparison between cases 1 and 8 indicates that the larger 

concrete beams increased the elastic in-plane stiffness and the 

load corresponding to the onset of the post-elastic behavior of 

the slab panel; however, they did not affect the ultimate resis

tance. Once the major crack penetrated the concrete beam 

subjected to tension, the beam no longer contributed to the 

flexural resistance of the critical section. 
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5.3.4 Evaluation of Shear Capacity 

Cases 4, 5, 6, and 7, exhibited a shear mode of 

failure. In each of the four cases, the amount as well as the 

arrangement of transverse reinforcing bars, equivalent to 

stirrups in beams, were the same. The shear capacities, how-

ever, differed. Table 5.3 shows that the shear capacity in-

creases as the moment-to-shear ratio becomes greater. This 

increase may be caused by the -flexural compressive stresses 

in concrete which tend to retard the onset of development of the 

diagonal crack. The ratio of compressive force to shear force 

increased in slab panels with large moment-to-shear ratios; 

such compressive force did not exist in case 5'. 

Since all reinforcing bars intersecting .the diagonal 

crack yielded when failure occurred, the shear force (V ) 
s 

resisted by the reinforcing bars eQuId be evaluated by the 

standard ACI Code formula (11.5.6.2): 

A x f x d 
V = v y 

s S 

A = area of shear reinforcement within a distance 
v 

s, or area of shear reinforcement perpendicular 

,to flexural tension reinforcement within a 

distance s for deep flexural members 

s spacing of shear or torsional reinforcement in 

direction parallel to longitudinal reinforcement 
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d = distance from extreme compression fiber to 

centroid of longitudinal tension reinforcement 

but need not be less than O.SOh for pre-

stressed members 

f specified yield strength of non-prestressed 
y 

reinforcement. 

According to this formula, the shear force (V ) in cases 4, 5, 
s 

6, and 7 equals 122 kN, which closely corresponds to the maximum 

shear resistance in case 4. The ACI code also presents a formula 

(11. 3.1.1) for the shear force carried by cracked concrete (Vc ): 

b = web width 
w 

f' specified compressive strength of concrete (MFa) 
c 

This formula calculates 67 kN of V. On the other hand, the 
c 

results derived from cases 4, 5, 6, and 7 show that Vc does not 

exceed 33 kN, less than 50 percent of the value suggested by 

the ACI code. The formula (11.3.1.1), therefore, is not suit-

able to evaluate the effect of cracked concrete on shear res is-

tanee in the slab panels covered by this study. 
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A comparison between cases 4, 6, and 7 and cases 

4', 6' and 7' stipulates another criterion for the shear 

capacity of floor slabs. If floor slabs are integrated with 

shearwalls or strong beams along their boundaries (Fig. 5.4), 

the shear failure, in which a triangular portion is separated 

from the remainder of the floor slab did not occur. As a 

result, the flexural capacity controls the ultimate resistance 

of the floor slabs. In floor slabs whose aspect ratio is more 

than 1.0, however, the shear failure could still take place 

even when the slabs are supported by shearwalls. As shown in 

Fig. 5.4, full penetration of diagonal cracks can occur in the 

floor slabs without being affected by the supporting shearwalls. 

In these slabs, therefore, the shear capacity controls the 

ultimate resistance. 

5.4 Evaluation of Stiffness 

5.4.1 Elastic Limit 

As described in Chapter III, the in-plane stiffness of 

slab panels significantly degraded as loads increased. The 

elastic in-plane stiffness of floor slabs defined in the 

Section 5.2, therefore, is not applicable if loads exceed a 

certain limit. 

First, the range within which the elastic stiffness 

can be applied was evaluated. The experimental results reported 

in Section 3.6.3 show that the development of cracks along 
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slab-wall junctions significantly reduces the stiffness of the 

tested panels for the first time. The load levels at which the 

cracks developed were 36 kN (8.0 kip) for BH2MN and 19 kN 

(4.3 kip) for BH3MN, 30 and 34 percent of the ultimate load, 

respectively. The load which would cause cracking along the 

slab-wall junction was calculated based upon the following 

assumptions: 

1. Strain was distributed linearly along the junction. 

(Navier-Bernoulli'shypothesis) 

2. Stress-strain relationship was linear. 

3. Cracking occurred when the strain exceeded a cracking 

strain. 

4. Reinforcing bars were not included in the calculation 

of moment at the junction. 

The modulus of elasticity (E) and the split cylinder tensile 

strength (at) were used to compute cracking strain (St)' Thus 

calculated, the cracking strain was 0.00010. The calculated 

cracking load was 64 kN (15 kip) for BH2MN and 32 kN (7.3 kip) 

for BH3MN, which are substantially higher than the experimental 

cracking loads. 

An elastic finite element analysis was carried out 

to further investigate the strain distribution along the wall

slab junction. Assumptions and procedures for the analysis 
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followed those described in Section 3.7.1. The analyzed slab 

referred to as Type II was discretized as shown in Fig. 3.38. 

Fig. 5.6 illustrates the analytical strain distribution along 

the slab-wall junction together with the strain distribution 

derived from Navier-Bernulli's hypothesis. This diagram indi

cates that the analytical strain is 1.5 times larger at the slab 

edges than the strain derived from this hypothesis. Iftheanalyti

cal strain is adopted, the cracking load is 43 kN (9.7 kip) for 

BH2MN and 21 kN (4.8 kip) for BH3MN, 120 and 110 percent of the 

experimental cracking load, respectively. Minute cracks 

and residual stress which may have existed in the test panels 

before testing are likely to have reduced the cracking load 

by about 15 percent. 

In summary, the cracking along the slab-wall junction 

most probably gives the upper limit of the elastic behavior. 

The strain distribution, however, is highly non-linear; 

consequently, linear strain distribution significantly under

estimates the strain at the slab edges (by about 40 percent 

for the tested slab panels). 
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5.4.2 Stiffness in Post-Elastic Regions 

The evaluation of the in-plane stiffness of floor 

slabs with various loading conditions as well as previous 

histories is complicated particularly in post-elastic regions. 

Here, the technique of treating floor slabs as deep beams 

for the stiffness estimation is extended to post-elastic 

regions. Seven slab panels, each of which had a particular 

set of geometrical, loading and boundary conditions, were 

selected to investigate their in-plane stiffnesses. The 

seven slab panels were: 1) the tested slab panel, BH2MN, 

2) case 1 of the finite element analysis (Section 5.3.1), 

3) the tested slab panel, BH3MN, 4) case 2 of the finite 

element analysis (Section 5.3.1), 5) case 3 of the finite 

element analysis (Section 5.3.1), 6) case 6 of the finite 

element analysis (Section 5.3.1), and 7) case 4 of the finite 

element analysis (Section 5.3.1) . 

In order to evaluate the elastic in-plane stiffness 

of floor slabs, as described in Section 5.3, the slabs were 

represented by deep beams that had particular combinations 

of effective moment of inertia and shear area, and the elastic 

material properties E and G. To extend this procedure to post-

elastic regions, two hypothetical properties, named equivalent 

flexural stiffness (EI) and equivalent shear stiffness (AG) 
e e 
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w:re introduc.ed. The in-plane stiffness of floor slabs in 

post-elastic regions then was evaluated by combining the 

basic beam theory with these hypothetical stiffnesses. The 

calculation of these stiffnesses followed the procedure explained 

below: 

1. (EI) and (AG) of the investigated floor slab are 
e e 

assumed to be constant throughout the length, from 

the clamped edge to the loading edge. Either (EI) 
e 

or (AG) varies obviously depending upon the bending 
e 

moment and shear force applied to the cross section. 

The calculated (EI) and (AG) , therefore, represent 
e e 

the averaged stiffnesses of the floor slab rather 

than the actual properties. 

2. According to the loading condition imposed on the 

floor slab, load-deformation relationships are defined 

as: 

8 
Pi2 

2(EI) (5-6) 
e 

of 
Pi3 

for BH2MN, case 1, and case 6 (5-7) 
3(EI) e 

cS 
pi (5-8) 

s (AG) e 
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8 = 
3P,e.2 

2(EI) (5-9) 
e 

of 
5P,e.3 

for BH3MN and case 2 6(El) (5-10) 
e 

0 
p,e. 

s (AG) (5-11) 
e 

8 Mt 
(El) (5-12) 

e 

of 
Mt

2 
for case 3 2 (El) (5-13) 

e 

0 = 0 (5-14) s 

8 
p,e.2 

B(El) (5-15) 
e 

of 
p,e.3 

for case 4 12(El) (5-16) 
e 

0 
p,e. 

s (AG) 
(5-17) 

e 

o = (5-18) 
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8 = rotation at the loading edge for equations 

5-6, 5-9, and 5-12 and the rotation at the 

middle section for equation 5-15 (Refer to 

Fig. 5.7) 

Of = deflection due to bending along the loading 

line 

o = deflection due to shear along the loading line. 
s 

8 = total deflection along the loading line 

l length of the slab 

P = external force applied at the edge 

M = external bending moment applied at the edge 

The equations 5-6 through 5-18 equal those derived 

from the basic elastic beam theory except that equi-

valent flexural and shear stiffnesses substitute for 

the elastic flexural and shear stiffnesses. Fig. 5.7 

shows the loading and boundary conditions of the 

seven investigated slab panels. 

3. 8 and 8 are measured at various load levels, and at 

each load level, a pair of (EI) and (AG) are computed 
e e 

by substituting the measured 8, 0, and P or M in the 

proper equations. Since total deflections and total 

load rather than deflection increments and load incre-
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ment are used to compute the equivalent flexural 

and shear stiffnesses, these stiffnesses are associ-

ated with the secant stiffness of the floor slab at 

specified load levels. 

In Figs. 5.8 and 5.9, the computed (EI) 's and (AG) 's 
e e 

are plotted against the largest bending moments, which were 

applied at the clamped edges. The (EI) 's and (AG) 's, and the 
e e 

bending moments are non-dimensionalized respectively by the 

initial (EI)'s and (AG)'s, and the measured ultimate moments. 

The curves of BH2MN and case 1 or"the curves of BH3MN and case 2 

match closely in the figures, demonstrating the ability of the pro-

posed finite element model" described in Chapter IV to simulate the 

in-plane behavior of slab panels in post-elastic regions. Figs. 

5.8 and 5.9 show rapid decrease in equivalent flexural and 

shear stiffnesses once elastic limits are exceeded. The stiff-

nesses continuously decrease as the moment increase. With the 

exception of case 6, investigated slab panels have stiffnesses 

that are about 30 percent of their initial stiffnesses when the 

moments reach about 40 percent of the ultimate moments. At the 

ultimate stages, both equivalent stiffnesses range from 10 to 13 

percent of the initial elastic stiffnesses. In case 6, on the 

other hand, the equivalent stiffnesses degrade less than in the 

other slabs. They are reduced to about 30 percent of the initial 
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stiffness when the moment reaches about 70 percent of the 

ultimate moment, and to approximately 15 percent of the initial 

stiffnesses at the ultimate moment. 

Fig. 5.10 shows the composition of the total deflec

tions in the flexural and shear components for the investigated 

slab panels. It is seen that the compositions remain relatively 

constant regardless of load level; in BH2MN and cases 1 and 6, 

the shear proportion ranges from 0.5 to 0.7. In BH3MN and case 2, 

it ranges from 0.35 to 0.45, and in case 4, from 0.8 to 0.9. 

On the other hand, the proportions are 0.62 in BH2MN and cases 

1 and 6, 0.39 in BH3MN and case 2, and 0.87 in case 4 in the 

elastic range. These values are calculated from the equations, 

5-6 to 5-17, combined with the elastic material properties and 

effective moment of inertia and shear area defined in Section 

5.2. These values are shown by dotted lines in Fig. 5.10. It 

is interesting to note that the proportions remain unchanged 

from elastic to inelastic ranges. In Fig. 5.11, the same com

positions are plotted against total displacement for BH2MN and 

BH3MN, showing the trend in the post-ultimate load ranges. As 

pointed out previously, behavior beyond the ultimate load point 

was not obtained by the finite element analysis. The propor

tions essentially remain unchanged even in the post-ultimate 

load ranges. 
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Two important characteristics of the equivalent 

flexural and shear stiffnesses can be inferred from this study. 

First, the observation that the proportions remain constant 

indicates that the equivalent flexural stiffness degrades in the 

same proportion as the equivalent shear stiffness. That is, 

at a given load, the identical coefficient to represent the 

stiffness reduction, referred to as the reduction factor (a), 

can be used to evaluate both stiffnesses. Second, the obser

vation that the proportion in the post-elastic region is the 

same as that in the elastic region makes it convenient to use 

the basic elastic beam theory considering both flexural and 

shear deformations. The total deformation of floor slabs 

subjected to in-plane loads in post-elastic regions, then, 

can be calculated by means of the beam theory together with 

the degradation factor a. 

Although the discussion so far has been devoted to 

evaluating the secant stiffness of floor slabs, the tangent 

stiffness of floor slabs can also be evaluated by using the 

same procedures; the proportions of flexural and shear 

deformations to total deformation in the elastic range do not 

change in post-elastic regions. 
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5.4.3 Degradation Factor a 

The discussion in Section 5.4.2 has verified that the 

in-plane stiffness of floor slabs in post-elastic regions can 

be approximated by using the fundamental beam theory which 

includes both flexural and shear deformations together with the 

stiffness degradation factor a. The evaluation of a is developed 

.by examining of the flexural stiffness in pos't-elastic 

regions. As shown in Fig. 5.8, the flexural stiffness degrad-

ation curves of all investigated slab panels except case 6 are 

confined in a narrow band. This situation suggests that the 

moment gradient in the panel has little effect on the degrad-

ation of the equivalent flexural stiffness. (Fig. 5.7) The 

parameter which differentiated case 6 from the others was the 

amount of reinforcement; the amount of longitudinal (flexural) 

reinforcement in this panel was twice the amount in the other 

panels. On the other hand, the amount of flexural reinforcement 

is known to control the flexural stiffness of cracked cross 

sections. The observation that the flexural reinforcement con-

troIs both the equivalent flexural stiffness in the post-

elastic regions and the flexural stiffness at cracked cross 

sections infers the possibility to evaluate the equivalent 

stiffness of floor slabs in post-elastic regions based upon the 

flexural characteristics at their cracked (critical) sections. 

A simple method to compute the equivalent flexural stiffness of 

floor slabs in post-elastic regions is proposed below: 
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According to Fig. 5.12, the end rotation of the 

slab panel in the post-elastic region is the sum of the elastic 

rotation due to bending and the hinge rotation at the critical 

section. The end rotation is: 

8 (5-19) 

8 total end rotation 

8£ rotation due to elastic bending 

u 2 
8 = ~--~~------

f 2(EI) . for BH2MN and cases 1 and 6 
e, elastlc 

2 
3pl 

8 = ~--~--------
f 2(EI) . 

8 f 

e, elastlc 

(EI) 1 . e, e astlc 

for BH3MN and case 2 

for case 5 

¢ curvature at the critical section 

l = length of the hinge 
p 

Although the hinge introduced at the critical section is hypo-

thetical but represents the sum of non-elastic rotations caused 

by flexural cracks in the slab panel. The procedure described 

in Section 5.3.3 computes ¢'s at various load levels. Fig. 5.13 
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illustrates the moment-curvature relationship of two critical 

sections: the critical section of cases 1, 2, 3, and 4, 

and the critical section of case 6. The technique used to 

divide the total deformation into elastic deformation and hinge 

deformation is analogous to the tequnique which Mattock(2.28) 

d 1 (2.l3) . d d d 1 f' an Cor ay deVlce to etermine the ucti ity 0 reln-

forced concrete flexural members. Knowing the elastic rotation 

8f , hinge length l can be calculated from the total end 
p 

rotation 8 derived from either the experiment or finite element 

analysis and from the curvature ¢ calculated according to the 

procedure described in Section 5.3. As shown in Fig. 5.14, the 

calculated l 's range from 190 mm to 300 mm. The range is 
p 

limited to a relatively narrow band despite the wide variations 

of the parameters such as load level, loading condition, and 

amount of sttel among the investigated cases. 

The average of the l IS, 250 mm, is used to reconstruct 
p 

the equivalent flexural stiffness (El) in post-elastic regions. 
e 

Once the l is specified, data from either experiments or analyses 
p 

are not needed to compute (El). The procedure to compute (El) 
e e 

is explained for BH2MN: 

8 
Pl2 

-2-(E-l-)'::"="'---.- + ¢ xl 
e, elastlc p 

¢ is selected from Fig. 5.15, and l 
p 

250 mm. 
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(EI) 
e 

(5-21) 

(5-22) 

As evidenced in Figs. 5.8 and 5.15, the calculated equivalent 

flexural stiffness and consequently the degradation factor rea-

sonably duplicate those derived by means of vigorous experiments 

or finite element analyses. It should be pointed out, however, 

that 250 rnm of the hinge length { is valid within the range 
p 

covered in the investigated slabs. Mattock(2.28) and Corlay(2.l3) 

found that the depth of beams and the moment gradient primarily 

controlled the hinge length. On the other hand, the observation 

in this section does not show that the moment gradient signi-

ficantly influences the hinge length. Further investigation is 

needed to define the hinge length { more precisely for floor 
p 

slabs with different geometry, loading, and reinforcement. 

5.5 Ductility of Floor Slabs 

To evaluate the ductility of reinforced concrete 

members is difficult because of the interaction of several compli-

cated phenomena like cracking of concrete, the yielding or slip-

. f . f . . b ' . f ... ' 1 (3.28) plng 0 reln orclng ars, or tne cruslng 0 concrete. rlattoc~ 

d C 1 (2 . 13) d d f hI' k d . . an or ay pro uce two 0 t e ear lest wor s lscusslng 

the ductility of reinforced concrete flexural beams. Their basic 
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procedures used to evaluate the ductility of a simply 

supported beam with a concentrated force at mid-span are:. 

1) to assume that the total deflection of the beam consists 

of elastic deflection and inelastic deflection caused by a 

plastic hinge at the mid-span, 2) to compute the ultimate cur-

vature at the critical section (the section at the mid-span) of 

the beam by specifying the ultimate compressive strain of con-

crete, 3) to assume that the ultimate curvature spreads over 

a finite length, and next to compute the inelastic rotation at 

the critical section, and 4) to relate the total inelastic 

deformation to the inelastic rotation at the hinge according to 

an empirical formula. Mattock reported that the plastic hinge 

length was controlled by the effective depth of beam, the 

gradient of the applied bending moment measured by the distance 

between the locations of the maximum and zero moments, and the 

degree of confinement which limits the ultimate compressive 

strain. Mattock offered the following formula that defines 

the hinge length: 

l - O.4d + O.05z 
p 

d the effective depth of beams 

z the distance along span from section of 

(5-23) 

maximum moment to adjacent section of zero moment 
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Fiorato et al. (2.19) computed the ductility of their tested 

slender shearwalls by using the procedures devised by Mattock· 

They found that experimental and computed ductilities were 

comparable. 

The formula 5-23 and the moment-curvature curve 

shown in Fig. 5.13 calculates 14.9 rum of the ultimate deflection 

for both BH2MN and BH3MN. The calculated deflection is 

approximately twice as large as the ultimate deflection observed 

during the tests. The breaking of reinforcing bars controlled 

post-ultimate load deformation in the tested slab panels 

described in Chapter III, while Mattock's and Corley'sstudies 

assumed that the ultimate compressive strain of concrete limits 

the deformation. The reinforcement ratio of the tested slab 

panels ranged from 0.0025 to 0.005, while the ratio of the beams 

tested in Mattock's and Corley's studies ranged from 0.010 to 

0.030. The floor slabs had significantly less reinforcement 

than their tested beams. 

As shown in Fig. 4.13, the end rotations of BH2MN and 

BH3MN are 28 x 10-4 rad. and 43 x 10-4 rad. at the critical 

stages at which resistance decreased significantly due to the 

breaking of several reinforcing bars. The equivalent flexural 

stiffness, described in Section 5.4.2, are 
2 

54 kN x m for 

2 
BH2MN and 49 kN x m for BH3MN at the critical stages. These 

-153-



values are 4.0 and 3.6 percent of the respective initial flexural 

stiffnesses. An attempt was made to estimate the ductility of 

BH3MN and BH2MN by employing the simplified techniques and 

experimental findings noted in the previous sections of this 

chapter. Assumptions and procedures used are as follows: 

1. Computation of the ultimate strength was based upon 

the flexural capacity of the critical section. 

(Section 5.4.1) 

2. The sum of the flexural and shear deformations 

constituted the total deformation. The proportion 

of the flexural or shear deformation to the total 

deformation remained unchanged at all load levels. 

(Section 5.4.2) 

3. The degradation factor a at the ultimate load was 

computed based upon the curvature at the critical 

section and an empilical hinge length of 250 rom. 

(Section 5.4.3) 

4. The degradation factor a at the critical stage was 

taken as 0.038, the average of experimental values. 

Note that this value was purely empirical. 

With the procedures described above, the ductility can be 

computed without using any of deflections in the tests. The 

displacement at the ultimate load is 2.8 rom (0.11 in.) for 
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BH2MN and 1.9 mm (0.075 in.) for BH3MN. The critical displace

ment is 8.6 mm (0.34 in.) for BH2MN and 5.8 mm (0.23 in.) for 

BH3MN. The ductility then is 3.1 for both slabs, which 

approximates the experimental ductility listed in Table 3.15. 

This coincidence, however, is rather obvious because the de

gradation factor 0.038 was chosen to match the experimental 

results. The critical displacement is easily affected by the 

value of degradation factor at the critical stage. A minor 

change in this factor at the critical stage can easily double 

or halve the ductility. The precise evaluation of the critical 

displacement which corresponds to the breaking of reinforcing 

bars, therefore, is crucial. 

The instant when reinforcing bars would break is un

predictable since local conditions such as bond slip and secondary 

bending due to dowel action significantly affect-the strain at 

critical regions. Although the experimental results show that 

the slab panels BH2MN and BH3MN can deflect up to about 7 rom 

without a significant loss in resistance, to expect this level 

of deflection in floor slabs having various loading conditions 

is controversial. Furthermore, to rely the ductility on the 

performance of reinforcing bars appears to be unwise. It is 

tentatively suggested not to expect ductile behavior of floor 

slabs unless they are reinforced more heavily than floor slabs 

with usual reinforcement. 
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5.6 Effect of Cyclic Loading 

5.6.1 Effect on Strength 

The experimental results have shown that reversed load

ing (negative loading in monotonic loading tests) or cyclic 

loading (represented by the spectrum shown in Fig. 3.17) reduces 

the in-plane strength of the tested slab panels by as much as 

20 to 25 percent. The finite element analysis described in 

Chapter IV, on the other hand, did not show a reduction in the 

strength caused by either reversed or cyclic loading. The 

evaluation of the ultimate strength based on the flexural 

capacity at the critical sections, described in Section 5.3.3, 

did not indicate any such reduction, either. 

As several reinforcing bars were broken in the mono

tonically loaded slab panels at the end of positive loading, 

these bars obviously did not function in resisting negative 

loading. The flexural capacity of the critical section was 

recomputed with these bars removed. The reduction of the ulti

mate load, however, was not more than 4 percent. All removed 

bars, located either in the compression region or the vicinity 

of the neutral axis, had very little effect on the ultimate 

strength. Clearly, some characteristics not represented by 

either the finite element analysis or flexural capacity cal

culation were responsible for the reduction of the ultimate 
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strength of the panels under reversed or cyclic loading. 

It is suspected that precracked concrete lose some effective

ness in resisting compressive force even after cracks are 

closed. 

5.6.2 Effect on Stiffness 

5.6.2.1 Elastic Limit 

In cyclic loading tests BHlCY and BH3CY, the initial 

stiffness listed in Table 3.13 remained unchanged during the 

cycles with the 0.25 mm amplitude. During the loading in the 

first cycle of the 0.76 mm amplitude, cracks developed along 

the slab-wall junctions, causing the stiffness to decrease 

significantly as shown in Fig. 3.27 and 3.28. The cracks 

occurred in BHlCY at 28 kN (6.3 kip) under positive loading 

and at -28 kN (-6.3 kip) under negative loading and in BH3CY 

at 18 kn (4.0 kip) under positive loading and -14 kN (-3.2 kip) 

under negative loading. These cracks loads were 20 and 25 percent 

lower than the cracking loads taken place in the monotonic 

loading tests. (Section 5.4.1) The three preceding cycles in 

a lower amplitude evidently accelerated the development of the 

cracks. Interestingly, the cracking loads and the utli-

mate loads decreased by the same percentage under cyclic 

loading. In BH2CY, the cracking load decreased to 78 percent, 
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while the ultimate load decreased to 79 percent. In BH3CY, 

the cracking load decreased to 74 percent, while the ultimate 

load decreased to 73 percent. 

5.6.2.2 Stiffness in Post-Elastic Regions 

The technique to evaluate the in-plane stiffness of 

floor slabs by treating them as deep beams was extended to the 

post-elastic regions for slabs subjected to cyclic loading. 

Figs. 5.16 and 5.17 show the proportions of flexural and shear 

deflections to total deflection of BHICY and-BH3CY, respec-

tively. The definitions of the flexural and shear deflect-

ions and the procedures used to compute these deflections 

followed those described in Section 5.4.2. Rotation and 

deflection increments used in the calculations were taken in 

three different ways: 1) rotation and deflection increments 

from the point of the minimum deflection to the point of the 

maximum deflection of a hysteretic loop, which corresponds 

to the secant stiffness 1 defined in Section 3.6.3, 2) rot

ation and deflection increments from the point of zero de

flection preceding the maximum deflection to the point of the 

maximum deflection of a hysteretic loop, which corresponds to 

the secant stiffness 2 defined in Section 3.6.3, and 3) rotation 

and deflection increments from the point of zero deflection 

preceding the minimum deflection to the point of the minimum 
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deflection of a hysteretic loop, which corresponds to the 

secant stiffness 3 defined in Section 3.6.3. The proportions 

of flexural and shear deflections to total deflection are 

computed for the first cycle of each amplitude based upon these 

three different types of rotation and deflection increments 

and plotted against the amplitude in Figs. 5.16 and 5.17. 

As evidenced by these diagrams, the proportions are con

fined in a relatively narrow band and maintain the proportions 

found in the elastic region (indicated by dotted lines) regard

less of amplitude or load (or displacement) level. This find

ing supports the conclusions derived in Section 5.4.2, which 

discusses slabs subjected to monotonic loading. First, both 

the equivalent flexural and shear stiffnesses degraded by 

the same degree regardless of loading condition, load level, 

or amplitude. Second, the proportions of flexural and shear 

deflections to total deflection in the elastic region remained 

unchanged in post-elastic regions. Consequently, the in-plane 

stiffness of floor slabs under cyclic loading can also be 

evaluated by means of the basic beam theory which includes both 

flexural and shear deformations once the degradation factor a 

is specified. The degradation factor a is a function of load 

level, deflection and previous loading history. The following 

section describes the derivation of the degradation factor a 

for slabs subjected to cyclic loading. 

-159-



5.6.2.3 Degradation Factor for Slabs in Cyclic 
Loading 

Fig. 5.18 plots the secant stiffness 1, defined in 

Section 3.6.3, of cyclic loading tests BHICY and BH3CY against 

specified amplitudes. This diagram also plots the secant 

stiffness of the monotonic loading tests BH2MN and BH3MN, ' 

in which the stiffness is plotted against the deflection 

corresponding to the amplitudes. During the cycles of the two 

lowest amplitudes, 0.23 mm and 0.76 mm, the secant stiffnesses 

between the monotonic and cyclic loading tests are the same. 

According to Section 3.7.4.3, the initial stiffness of BH2MN 

is .significantly lower than those of all other tests. During 

these cycles, damage caused by cracks occuring in the previous 

cycles had not yet reduced the stiffness. During the three 

cycles of the 1.3 mm amplitude, in which the load reached 

approximately half of the ultimate load for the first time, the 

secant stiffness I equals approximately 75 percent of the secant 

stiffness of the corresponding monotonic loading tests. The 

secant stiffness 1 constantly ranges from 75 to 80 percent of the 

secant stiffness of the· corresponding monotonic loading tests 

in the succeeding cycles. Both the stiffness and the ultimate 

load are reduced due to cyclic loading by the same percentage. 
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Based upon this finding, a rule to evaluate the secant 

stiffness 1 of slabs under cyclic loading from the secant stiffness 

of the slabs when they are loaded monotonically is proposed: 

1. The secant stiffness 1 of a slab subjected to 

cyclic loading with a given amplitude is x times the 

secant stiffness of the slab subjected to monotonic 

loading at the deflection corresponding to the 

amplitude. 

2. The fraction x is the ratio of the ultimate load which 

can be reached if the slab is loaded monotonically 

to the ultimate load which can be reached if the slab 

is subjected to cyclic loading. The degradation factor 

a of the slab under cyclic loading, therefore, is x 

times the degradation factor of the slab under mono

tonic loading. 

3. During the cycles with amplitudes in which the load 

is less than half of the ultimate load, the secant 

stiffness 1 may equal the corresponding secant stiff

ness derived from the monotonic loading. 

The secant stiffness 1 represents only a portion of 

the stiffness of the slab panel subjected to cyclic loading. 

Nevertheless, this stiffness is one of the most suitable 

representations of the stiffness of slabs under arbitrary 
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reversed loadings. As pointed out in Section 3.7.4.2, the 

five types of stiffness defined in Section 3.6.3 varied little 

regardless of loading condition or load level. 

5.6.3 Effect on Ductility 

Experimental results show that cyclic loading reduced 

critical displacements by about 10 percent and increased 

by about 40 percent the deflection at which 90 percent of the 

ultimate load was reached for the first time. The approximately 

30 percent difference in ductility observed in monotonic and 

cyclic loading tests, as shown in Table 3.15, was attributed 

primarily to the larger deflection corresponding to 90 percent 

of the ultimate load taking place during the cyclic loading 

tests. However, it must be noted that the load-deflection 

relationship of cyclically loaded panels is heavily dependent 

on the loading spectrum. Consequently, significant variations 

may take place in the base deflection value for the calcul

ation of ductility. 

The ductility of the slab panels subjected to 

cyclic loading also depended upon the performance of rein

forcing bars. The breaking of several reinforcing bars at 

their intersections with major cracks caused significant loss 

in resistance. Although the test results show that cyclic 

loading reduced the critical displacement by only 10 percent 

-162-



and that resistance did not degrade in three cycles for most 

of the specified amplitudes of the test spectrum, these 

performances may not prevail under different loading systems. 

The suggestion offered in Section 5.5 can be pointed out again. 

With limited data available, we should not allow slabs to 

deflect under any loading conditions beyond the deflection 

level at which the ultimate load can be reached when the 

slabs are loaded monotonically. 

5.7 Effect of Vertical Load 

5.7.1 Effect on Strength 

The design service vertical load reduced the ultimate 

resistance of the tested slab by 15 percent. The vertical load 

also changed the crack pattern particularly in the middle port

ion of the bottom surface, where many cracks extended from the 

center of the slab in radial direction. Evidently, out-of-

plane bending moment caused these cracks. The vertical load, 

however, did not change the general in-plane behavior of the test 

panel. The major crack still developed along the boundary 

between the column and middle strips,and its complete formation 

governed the ultimate resistance. The opening and closing of 

the major crack also controlled the deformation of the panel 

in post-ultimate load regions. 
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Under in-plane loading, the major crack developed along 

the boundary between the column and middle strips, where a 

significant decrease of reinforcement took place. The boundary 

was least reinforced because the out-of-plane bending moment 

caused by the vertical load was small along the boundary. 

In other words, the boundary was the most critical section 

under in-plane loading but relatively safe under out-of-plane 

(vertical) loading. Along the slab-wall junction, on the other 

hand, the bending moment caused by the vertical load was the 

greatest; therefore, the junction was heavily reinforced. The 

junction with substantial reinforcement, then, increased 

the flexural capacity of the slab in its own plane. The junct

ion, therefore, was the most critical section under vertical 

loading but considerably stronger than the boundary against 

in-plane loading. The test result indicates that the boundary 

between the column and middle strips was still the most 

critical section under the combined vertical and in-plane load

ing. 

Cyclic loading reduced the ultimate load further by 18 

percent, which is about the same as the reduction on slab panels 

not subjected to vertical loading. The cyclic loading changed 

neither the crack pattern nor the development of major cracks. 
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5.7.2 Effect on Stiffness 

5.7.2.1 Effect in Post-Elastic Region 

In order to determine the suitability of treating 

floor slabs as deep beams and evaluating the in-plane stiff-

ness of floor slabs subjected to the design service vertical 

load, the porportions of flexural and shear deflections to total 

deflection were computed for BV1MN and BV2CY. The procedures 

used to calculate the flexural and shear deflections were those 

described in Section 5.4.2. Three types of rotation and 

deflection increments (BV2CY), were emp1'oyed to compute' equations 

5-6 through 5-8, as described in Section 5.6.2.2. According 

to Fig. 5.19, the proportions are confined in a relatively 

narrow band. They maintain the proportion in the elastic 

region regardless of amplitude or load level. This finding 

again supports the extension of the calculation procedure 

described in Section 5.4.2 for evaluating the in-plane stiffness 

of floor slabs under combined in-plane and out-of-plane load

ings. The in-plane stiffness of floor slabs subjected to 

combined vertical and in-plane loads (either monotonic or 

cyclic) can be evaluated by means of the fundamental beam theory 

which includes both flexural and shear deformations once the 

degradation factor a is specified. The degradation factor 

can be a function of in-plane load level, vertical load level, 

deflection, and previous loading history. 
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5.7.2.2 Degradation Factor of Slabs with Vertical 
Load 

The test results show that the design service vertical 

load reduced the initial in-plane stiffness by about 20 percent. 

(Section 3.7.4.7) The reduction was caused primarily because 

cracks developed under the vertical load. (Fig. 3.19) Unlike 

slab panels without vertical load, slab panels with vertical 

load immediately lost their initial in-plane stiffness. After-

ward, the stiffness gradually degraded as the load increased 

or reversed. 

For BH2MN, BVIMN, and BV2CY. the ratio of equivalent 

flexural stiffness (El) to the elastic flexural stiffness is 
e 

plotted against the displacement. (Fig. 5.20) This ratio 

matches the degradation factor. The equivalent flexural stiff-

ness of BVlMN ranged from 60 to 85 percent of that of BH2MN. 

The difference between these equivalent flexural stiffnesses 

was appreciable particularly in the vicinity of the deflection 

at which BH2MN reached its ultimate load. (2.9 mm of deflection) 

The stiffness of BVlMN degraded rapidly in the deflection range 

in which BH2MN approached its ultimate load, while varying its 

tangent stiffness slightly. The secant stiffness of the slab 

panels with the design service vertical load and which were 

loaded monotonically in their own planes, therefore, comprised 

60 to 85 percent of the secant stiffness of the panels with no 

vertical load. 
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· Like the slab panels without vertical load, the slab 

panels with the design service vertical load also show a 

correlation between the secant stiffnesses under cyclic and mono

tonic loadings. For a deflection of less than 1.1 rnm, the point 

at which BV2CY first reached about half of the ultimate load, 

each of the secant stiffnesses 1, 2, and 3 of BV2CY almost equalled 

the secant stiffness of BVlMN. For a larger deflection, the 

secant stiffnesse~ 1, 2, and 3 Qf BV2CY ranged from 80 to 90 per

cent of the secant stiffness of BVlMN. The relationship between 

the secant stiffn~ses of BVlMN and BV2CY was identfcal to those 

between BH2MN and BHlCY, and BH3MN and BH3CY. The rule stipula

ted in Section 5.6.2.3, therefore, can be used to evaluate the 

secant stiffness 1 of slabs with vertical load. 

The degradation factor of a slab to which vertical load 

is first applied and held constant during in-plane cyclic 

loading is x times y times the degradation factor of the slab 

to which only in-plane load is applied monotonically. The factor 

x is the ratio of the ultimate load which may be reached if 

the slab is loaded monotonically to the ultimate load which may 

be reached if the slab is subjected to cyclic loading. The 

factor y is the ratio of the ultimate load which may be reached 

if the slab is loaded monotonically with vertical load to the 

ultimate load which may be reached if the slab is loaded 
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monotonically without vertical load. For the slab panels in

vestigated in this study, x and yare 0.80 and 0.85 respectively. 

Data, however, are limited, and further research is indispensable 

to the proper evaluation of the combined effect of the intensity 

of vertical load and loading history on these factors, x and y. 

As in panels without vertical load, the secant stiff

ness 1 also is a reasonable representation of the stiffness 

in slabs with vertical load and subjected to cyclic loading. 

The five types of stiffness defined in Section 3.6.3 differed 

little regardless of load level, indicating that the secant 

stiffness 1 reasonably matches the tangent stiffness of a 

hysteretic loop in most regions. 

5.7.3 Effect on Ductility or Deformability 

As indicated in Section 5.6.3, ductility in cyclic 

loading tests is questionable because it is difficult to pin

point the deflection at which 90 percent of the ultimate 

resistance could first be reached. In addition, ductility 

was not computed for BVlMN since the test was terminated before 

the panel reached the critical displacement. The design 

service vertical load, on the other hand, reduced critical 

displacement by about 15 percent when the slab panel was 

subjected to cyclic loading, but increased critical displace

ment by about 25 percent when the pa~el. was subjected to mono-
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tonic loading. Like the panels without vertical load, the 

panel with vertical load lost its resistance when several 

reinforcing bars broke. The vertical load (at least up to the 

design service load level) cannot be a major parameter reducing 

the deformability of the slabs if the uncertainty of computing 

ductility as well as the slab's allowable deflection are taken 

into account. 

5.8 Summary 

In this Chapter, the critical in-plane characteristics 

of floor slabs: strength, stiffness, and ductilitY,were examined 

based on the experimental findings and data provided by the 

proposed finite element analysis (Chapter IV). Practical proce-

dures to predict the ultimate in-plane strength and in-plane 

stiffness of floor slabs have also been proposed. 

findings can be summarized as follows: 

Findings Concering Strength 

The important 

(1) Two failure modes were observed in the analyzed 

slab panels depending on imposed loading and 

boundary conditions. In the flexural failure mode, 

the major crack developed parallel to the clamped 

edge at a distance of about a quarter panel length 

(350 mm) and controlled the ultimate in-plane 

resistance. This location of major crack, labelled 
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the critical section, was very near the boundary 

between the column and middle strips of the panel. 

Many reinforcing bars were terminated here, according 

to out-of-plane bending considerations. The 

flexural capacity of the critical section governed 

the ultimate resistance. 

(2) In the shear failure mode, slab panels reached their 

ultimate loads when a diagonal crack completely 

separated a triangular portion from the remainder 

of the panel. A strong beam attached to the 

loading edge of the slab panel, simulating the 

situation where slabs are supported by shearwalls 

would ?revent the diagnonal separation of the panel 

and promote the flexural failure mode. 

(3) Increasing the amount of flexural reinforcement improved 

the in-plane strength of slab panels. On the other 

hand, increasing the size of concrete beams increased 

the elastic in-plane stiffness and the elastic 

limit load, but did not affect the ultimate res is-

tance. When panels failed in the flexural mode, 

the effect of the magnitude of shear on the ultimate 

strength was minimal, indicating that the moment

to-shear ratio did not influence the flexural capacity 

of the critical sections. 
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(4) Cyclic loading represented by the spectrum shown 

in Fig. 3.17 reduced the in-plane strength of slab 

panels by as much as 25 percent. Cumulative damage 

like cracking was responsible for the reduction. 

The effectiveness of concrete in resisting compress

ion was reduced by cracking even after the cracks 

had been closed. The application of the design 

service vertical load reduced the ultimate in-plane 

resistance of slab panels by not more than 15 per

cent. Vertical load did not alter the general 

behavior of the panels; the major crack· still de~ 

ve10ped along the boundary between column and middle 

strips. 

(5) The in-plane flexural strength of slab panels loaded 

monotonically without vertical load can be reasonably 

evaluated by using the theoretically calculated 

flexural capacity at the critical section by means of 

the Navier-Bernoulli hypothesis. (The procedure 

detail is described in Section 5.3.3) The standard 

ACI Code provision (11.5.6.2) for estimating the 

contribution of shear reinforcement to the shear 

capacity is applicable for the slab panels. The ACI 

provision (11.3.1.1) on the contribution of the 

cracked concrete overestimates the shear capacity. 
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Findings C6ncerning Stiffness 

(1) Slab panels not subjected to vertical loading started 

losing their initial in-plane stiffness upon appear

ance of a crack at the edge of the slab-wall junction; 

this point, therefore, was defined as the elastic limit. 

The load corresponding to the elastic limit was approx

imately 30 percent of the ultimate load, whereas the 

secant stiffness at this stage was about 30 percent of 

the initial valueo The secant stiffness continuously 

decreased as load increased, reaching approximately 15 

percent of the initial value at the ultimate load stage. 

(2) In cyclically loaded slab panels without vertical load 

application, the secant stiffness degraded in a 

similar manner as in monotonically loaded slab panels. 

Hysteretic load-deflection loops of these panels were 

narrow in width, indicating that energy absorption in 

a complete cycle was small. The secant stiffness, 

therefore, appears to be a relatively suitable 

representation of the stiffness of slabs subjected to 

arbitrary reversed loading. 

(3) Upon the application of the design service vertical load, 

two cracks developed on the slab panel's top surface, 

one along the slab-wall junction and the other along 

the loading line. These cracks apparently changed the 
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pattern of stiffness degradation under monotonic load

ing. Tangent stiffness of the panel degraded gradually, 

measuring near zero at the ultimate load. The verti

cal load promoted the development of cracks, and 

cracking in low load levels made the transfer of forces 

from concrete to reinforcing bars more gradual. When 

slab panels with the vertical load were loaded 

cyclically, however, the effect of the vertical load 

on stiffness degradation was small. The slab panel 

with the design service vertical load constantly showed 

an about 20 percent lower secant stiffness than the 

panel without such load. 

(4) In the elastic range, the stiffness characteristics 

of the slab panels may be reasonably estimated by 

treating them as deep beams considering both flexural 

and shear deformations (equivalent beams). The use 

of nominal moment of inertia and shear area, those 

computed from the gross cross section, is sufficient 

for evaluating the in-plane stiffness of floor slabs 

regardless of aspect ratio or relative beam size. 

(5) The equivalent beam simulation also can be used in 

post-elastic ranges if a hypothetical reduction factor 

is introduced. This factor represents a stiffness reduc

tion of the equivalent beam caused by variou~ inelastic 
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behavior such as cracking or yielding of reinforcing 

bars. Once a reduction factor is known at a given 

load level, the in-plane stiffness of a floor slab in 

the post-elastic region is computed by using the same 

procedure as for elastic deep beams. A simple 

procedure to compute the reduction factor is proposed 

in Section 5.4.3. This equivalent beam simulation is 

proven to be applicable not only for floor slabs sub

jected to monotonic in~plane loadings but also for 

floor slabs subjected to in-plane cyclic loadings or 

combined in-plane and out-of-plane loadings. 

Findings Concerning Ductility (Deformability) 

(1) Once the ultimate load was reached, the deflection of 

the tested slab panels was controlled primarily by 

the opening and closing of the major crack. Few new 

cracks started in this post-ultimate load region, 

while the level of resistance remained relatively 

constant. Finally, the breaking of reinforcing bars 

at the major crack reduced the resistance drasti-

cally. The effect of either cyclic loadings or combined 

in-plane and out-of-plane loadings on ductility was 

minimal. The slab panels under these loadings de-
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formed without a significant change in resistance 

to approximately 80 percent of the limit deflection 

of monotonically loaded slab panels. 

(2) In-plane ductilities of tested slab panels were com-

pared with theoretical ductilities computed by means 

of a conventional procedure. The computed ductilities 

were approximately twice as large as the experimental 

ductilities. The discrepancy was attributed to the 

difference in material behavior controlling the 

critical deformation. The breaking of reinforcing 

bars controlled deformation in post-ultimate load 

regions for tested slab panels. In contrast, the 

computational procedure assumes that the reinforcing 

bars can yield indefinitely and the ultimate com-

pressive strain of the concrete limits the deformation. 

(3) A technique is proposed to compute the ductility of 

floor slabs by using empirically defined ultimate stiff-

ness reduction factors. This technique functions satis-

factorily for the tested panels, but additional confir-

mation is still needed before its usefulness may be ex-

panded. With insufficient data available about the 

deflection corresponding to the breaking of reinforcing 

bars, it is tentatively suggested that in-plane ductile 

behavior of floor slabs should not be expected unless 

they are reinforced more heavily than usual. 
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VI DYNAMIC RESPONSE OF BUILDING INCLUDING 
IN-PLANE FLOOR SLAB DEFORMATION 

6.1 General 

This chapter examines influence of in-plane defor-

mation of floor slabs on the total seismic lateral load applied 

to a structure as well as on the distribution of this lateral 

load to the vertical load resisting elements. Shear forces 

and bending moments applied to floor slabs are also inves-

tigated. 

A relatively simple building model representing a 

reinforced concrete building with usual dimensions was selected, 

and the dynamic response of the model was investigated. The 

direct integration method was used to obtain the time-history 

relationship of this structural model. The ground motion 

selected for this study was the N-S component of the El Centro 

earthquake recorded in Imperial Valley, May 18, 1940. The var-

ious in-plane characteristics of the floor slabs defined in 

Chapter V as well as the stiffness and strength characteristics 

of the vertical elements (shearwalls and columns) were incor-

porated into the dynamic analysis. 

At the beginning of this investigation, elastic dyna-

mic analysis was executed based on the elastic characteristics 

of the floor slabs and vertical elements. The results obtained 

from this elastic analysis were used as the basis"for comparison 
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with the results derived from the succeeding analyses. In 

these analyses, the stiffness characteristics of the.floor slabs 

as well as vertical elements altered. First, the propriety 

of the rigid floor slab assumption was examined. Then, the 

change in the model structure's response due to the non-linear 

actions of vertical elements and floor slabs was investigated. 

6.2 Building Model Selected 

A reinforced concrete building model with seven 

stories, six bays in width, and one bay in depth was selected 

for this study. Fig. b-l illustrates the plan and elevation 

views of this building and its critical dimensions. The story 

height is 3.0 m from second through seventh stories~ while the 

first story is 3.75 m in height. The center-to-center span 

length is 6.0 m in two horizontal directions. A shearwall is 

located at each end. whereas the interior spans are supported 

by flexible frames. The thickness of the shearwalls is 320 mm, 

and the cross section of the columns is 600 mm x 600 mm with 

no capital. The floor slabs are 200 mm in thickness. Beams 

(300 mm x 500 mm) are attached to the lower sides of these slabs 

and along colunm lines in both directions. The ground motion was 

applied in the transverse direction of the structure. 
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This model has a relatively slender cross section, 

whose aspect ratio is 1 : 6. This arrangement was chosen 

intentionally so that the floor slabs would play a significant 

role on the distribution of lateral force to vertical elements. 

As discussed in Chapter II, a slender cross section tends to 

amplify the bending action of the floor slabs, referred to as 

bowing. In addition, a great difference in lateral stiffness 

between adjoined vertical elements increases the force to be 

transmitted by the floor slab connecting these components. This 

increase in force may cause severe distortion of the floor slab. 

6.3 Analysis of Building Model 

6.3.1 Simplification of Model 

To investigate the response of the building model, 

the structure was simplified to a discrete model. In this model, 

all structural components: floor slabs, frames, and walls, 

were treated as beams, named equivalent beams. These equivalent 

beams were assembled and jointed at each connection, forming 

a seventy-story six-bay frame. Since the ground motion was 

applied in the transverse direction, equivalent beam properties 

for the deformation in this direction were needed. The beam 

properties were determined so that these equivalent beams would 

appropriately simulate the original properties. Walls were 

treated as deep beams which have both flexural and shear de-
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formations. Floor slabs also were treated as deep beams; 

Chapter V has discussed this treatment in detail. Frames, 

composed of columns and beams, were represented as beams that 

have particular combinations of flexural and shear rigidities. 

The selection of both geometrical and material properties of 

the equivalent beams is described in further detail in Section 

6.4. Since both geometry of the model structure and input 

ground motion were symmetrical about the vertical axis (Fig. 6.1), 

only half of the structure must be analyzed. 

6.3.2 Formulation of Equations of Motion 

In dynamic response analysis, the equations of 

motion can be written as: 

[M]{u} + [C]{~} + [K]{u} = {R(t)} (6-1) 

where: [M] = mass matrix 

[C) = damping matrix 

[K] = stiffness matrix 

{u}= displacement vector 

{u} = 

{u} 

R(t) vector of arbitrary time varying loads 
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If the structure is uniformly subjected to the ground 

motion u , the equation can be expressed as: 
g 

[M]{u } + [C]{~ } + [K]{u } = -[M] x U r r r g (6-2) 

where {ur } is the relative displacement vector of the structure 

with respect to the ground, ie {ur } = {u } - {l} x ug • 

6.3.3 Formulation of Mass Matrix 

The mass of the structure was represented by lumped 

masses at junctions. Each lumped mass eq~lled to the mass within 

a tributary region of a junction. The mass of the service 

design vertical load, 3.8 kPa,acting on the floor slabs was added 

to the mass calculated from the structure's dead weight. Since 

rotational inertia was neglected, (Section 6.3.4), the lumped 

masses caused only translational inertia at the j~nctions. The 

mass matrix [M], then, is a diagonal matrix. 

6.3.4 Formulation of Stiffness Matrix 

The element stiffness matrix of equivalent beams re-

presenting floor slabs and walls can be expressed in terms of 

the deflections and rotations at end points: 
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Element stiffness matrices were first assembled for each 

floor or vertical span (wall or frame), making a set of sub-

structure stiffness matrices. 

The torsional rigidity of walls, frame and floor slabs was 

(6~3) 

taken to be zero. Elements associated with rotation (moment) 

were then condensed for each substructure stiffness matrix. 

This static condensation was permissible since the rotational 

inertia has been eliminated. After the static condensation, 

the substructure stiffness matrix, therefore, related trans-

-181-



latory di~lacementsto lateral forces.A global stiffness matrix 

was composed by assembling substructure stiffness matrixes 

and related the out·-of~plane forces at each joint of the planar 

frame to the corresponding. displacements. The procedure for 

making the stiffness matrix is schematically illustrated in 

Fig. 6.2. 

6.3.5 Formulation of Damping Matrix 

The Rayleigh damping was chosen to represent the 

viscous damping characteristics of the structure. The damping 

matrix is: 

[C] = arM] + S[K] . --
a and S are constants to be determined by given damping ratios 

that correspond to two unequal frequencies of vibrations. a and 

S were calculated by using the two lowest circular frequencies 

WI and w2 of the structure and then by employing 5 and 10 

percent of the critical damping in these two modes. After 

applying the mode superposition technique to the original 

equations of motion, the relationship between a and S, and 

W
1 

and w2 can be expressed as: 

a + ~ x (0.05)2 w, x 0.10 

a + B x (0.10)2 = w
2 

x 0.20 
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6.3-.6 Method of Integrating Equations of Motion 

Various integration techniques have been developed to 

solve the equations of motion for linear and nonlinear structures. 

The techniques are divided primarily into two groups. The first 

group, referred to as the implicit solution technique, includes 

the techniques such as the Houbolt method, the Newmark method, 

the Wilson e method, and the Park stiffly-stable method. The 

second group, referred to as the explicit solution technique, 

includes the central difference method, the two-cycle iteration 

with the trapezoidal rule, and the Runge-Kutta method. Algori-

thms for these solution techniques as well as their stability 

and accuracy have been investigated by many researchers-.- While 

the stability and accuracy of these tequniques for linear 

structures have been evaluated extensively, those for nonlinear 

structures can be studied only through numerical experimentation. 

In the present study, the Newmark method(6.6) was chosen to 

solve the equations of motion. This selectionwasbased 

upon the investigation completed by Nickell~6.7) Mondkar and 

(6.5) d d l' 1 (6.1) Powel, an A e 1 et a . 

Basically, the Newmark integration technique is an 

extension of the linear acceleration method and makes the 

following assumptions: 
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(6-5) 

= (6-6) 

a and 0 are parameters to be chosen by considering inte-

gration accuracy and stability. The present study used 

a = 1/4 and 0 = 1/2, which Newmark originally proposed as an 

unconditionally stable constant-average-acce1eration method. 

The equilibrium equations at time (t+6t) are: 

= - [MJ{ u } 
g 

(6-7) 

Solving from equation 6-6 for ut +6t in terms of ut +6t and 

substituting it into equation 6-5 result in two equations for 

ut +6t and ut +6t , each in terms of the unknown displacement 

ut +6t only. These equations for ut +6t and ut +6t are then 

substituted into equation 6-7 to solve for u
t
+6t , after which, 

using equations 6-5 and 6-6, u
t
+6t and ut +6t can also calculated. 

The complete algorithm of the Newmark method is presented in 

Bathe and Wilson(6.3) and Bathe. (6.2) 
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6.4 Selected Force-Deflection Relationship 

6.4.1 Force-Deflection Model for Floor Slabs 

The stiffness of the floor slabs in post-elastic range 

was determined by using the concept of reduction factor defined 

in Chapter V. Each equivalent beam representing a floor slab 

had a particular reduction factor according to the magnitude 

of the forces being applied to the beam as well as its previous 

history. As discussed in Sections 5.2.2, 5.4.1, and 5.4.2, the 

reduction factors for flexural and shear stiffnesses were 

assumed to be identical at any stage during loading and 

dependent upon the magnitude of the maximum bending moment 

applied to the equivalent beam. In the present study, the re-

duction factor·vs. moment relationship was approximated.in the 

following form: the reduction factor is 1.0, indicating that 

the floor slab is elastic when MIM is less than 0.3. 
max 

At 0.3 of M/~ax the reduction factor is decreased to 0.3, assuming 

that cracking occurs. As the moment increases, the reduction factor 

decreases linearly until the moment reaches its maximum value, 

at which the reduction factor is 0.15. This reduction factor vs. 

moment relationship is illustrated by the bold line in Fig. 5.17, 

which shows that this line reasonably approximates the actual 

degradation pattern of the reduction factor. After 

reaching its maximum value, the moment is' assumed to remain 

unchanged under continued deformation. On the other hand, 

the secant stiffness measured when unloading 
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begins is used for succeeding loading until the moment reaches 

the maximum value a second time. When this takes place, the 

stiffness is once again set at zero. This assumed moment

stiffness relationship was based on the e~perimental finding that 

the width of the hysteretic loops of slab panels was relatively 

narrow and that the tangent stiffness measured from a hysteretic 

loop of the slab panel varied only slightly regardless of the 

moment (or deformation) level. Detailed discussion of this charac

teristics can be found in Sections 3.7.4.2. and 5.6.2.3. Fig. 6.3 

illustrates the hysteretic law adopted for the floor slabs. 

6.4.2 Force-Deflection Model for Walls 

The behavior of shearwalls under seismic loadings 

has been investigated extensively as already discussed in 

Chapter II. Here in this study, the experimental work performed 

by Oesterle et ale (2.32)was referred to for determining the 

characteristics of the model structure's shearwalls. One of 

their tested shearwalls (R-2 specimen in their report), which 

did. not have any boundary frame,was utilized to represent the 

shearwalls. 

A number of analytical force-deflection models have 

been proposed for simulating hysteretic behavior of structural 

members and systems. These proposed models include for example: 
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(4) Cyclic loading represented by the spectrum shown 

in Fig. 3.17 reduced the in-plane strength of slab 

panels by as much as 25 percent. Cumulative damage 

like cracking was responsible for the reduction. 

The effectiveness of concrete in resisting compress

ion was reduced by cracking even after the cracks 

had been closed. The application of the design 

service vertical load reduced the ultimate in-plane 

resistance of slab panels by not more than 15 per

cent. Vertical load did not alter the general 

behavior of the panels; the major crack· still de~ 

veloped along the boundary between column and middle 

strips. 

(5) The in-plane flexural strength of slab panels loaded 

monotonically without vertical load can be reasonably 

evaluated by using the theoretically calculated 

flexural capacity at the critical section by means of 

the Navier-Bernoulli hypothesis. (The procedure 

detail is described in Section 5.3.3) The standard 

ACI Code provision (11.5.6.2) for estimating the 

contribution of shear reinforcement to the shear 

capacity is applicable for the slab panels. The ACI 

provision (11.3.1.1) on the contribution of the 

cracked concrete overestimates the shear capacity. 
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Findings C6ncerning Stiffness 

(1) Slab panels not subjected to vertical loading started 

losing their initial in-plane stiffness upon appear

ance of a crack at the edge of the slab-wall junction; 

this point, therefore, was defined as the elastic limit. 

The load corresponding to the elastic limit was approx

imately 30 percent of the ultimate load, whereas the 

secant stiffness at this stage was about 30 percent of 

the initial va1ueo The secant stiffness continuously 

decreased as load increased, reaching approximately 15 

percent of the initial value at the ultimate load stage. 

(2) In cyclically loaded slab panels without vertical load 

application, the secant stiffness degraded in a 

similar manner as in monotonically loaded slab panels. 

Hysteretic load-deflection loops of these panels were 

narrow in width, indicating that energy absorption in 

a complete cycle was small. The secant stiffness, 

therefore, appears to be a relatively suitable 

representation of the stiffness of slabs subjected to 

arbitrary reversed loading. 

(3) Upon the application of the design service vertical load, 

two cracks developed on the slab panel's top surface, 

one along the slab-wall junction and the other along 

the loading line. These cracks apparently changed the 
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pattern of stiffness degradation under monotonic load

ing. Tangent stiffness of the panel degraded gradually, 

measuring near zero at the ultimate load. The verti

cal load promoted the development of cracks, and 

cracking in low load levels made the transfer of forces 

from concrete to reinforcing bars more gradual. When 

slab panels with the vertical load were loaded 

cyclically, however, the effect of the vertical load 

on stiffness degradation was small. The slab panel 

with the design service vertical load constantly showed 

an about 20 percent lower secant stiffness than the 

panel without such load. 

(4) In the elastic range, the stiffness characteristics 

of the slab panels may be reasonably estimated by 

treating them as deep beams considering both flexural 

and shear deformations (equivalent beams). The use 

of nominal moment of inertia and shear area, those 

computed from the gross cross section, is sufficient 

for evaluating the in-plane stiffness of floor slabs 

regardless of aspect ratio or relative beam size. 

(5) The equivalent beam simulation also can be used in 

post-elastic ranges if a hypothetical reduction factor 

is introduced. This factor represents a stiffness reduc

tion of the equivalent beam caused by various- inelastic 
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behavior such as cracking or yielding of reinforcing 

bars. Once a reduction factor is known at a given 

load level, the in-plane stiffness of a floor slab in 

the post-elastic region is computed by using the same 

procedure as for elastic deep beams. A simple 

procedure to compute the reduction factor is proposed 

in Section 5.4.3. This equivalent beam simulation is 

proven to be applicable not only for floor slabs sub

jected to monotonic in~plane loadings but also for 

floor slabs subjected to in-plane cyclic loadings or 

combined in-plane and out-of-plane loadings. 

Findings Concerning Ductility (Deformability) 

(1) Once the ultimate load was reached, the deflection of 

the tested slab panels was controlled primarily by 

the opening and closing of the major crack. Few new 

cracks started in this post-ultimate load region, 

while the level of resistance remained relatively 

constant. Finally, the breaking of reinforcing bars 

at the major crack reduced the resistance drasti-

cally. The effect of either cyclic loadings or combined 

in-plane and out-of-plane loadings on ductility was 

minimal. The slab panels under these loadings de-
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formed without a significant change in resistance 

to approximately 80 percent of the limit deflection 

of monotonically loaded slab panels. 

(2) In-plane ductilities of tested slab panels were com-

pared with theoretical ductilities computed by means 

of a conventional procedure. The computed ductilities 

were approximately twice as large as the experimental 

ductilities. The discrepancy was attributed to the 

difference in material behavior controlling the 

critical deformation. The breaking of reinforcing 

bars controlled deformation in post-ultimate load 

regions for tested slab panels. In contrast, the 

computational procedure assumes that the reinforcing 

bars can yield indefinitely and the ultimate com-

pressive strain of the concrete limits the deformation. 

(3) A technique is proposed to compute the ductility of 

floor slabs by using empirically defined ultimate stiff-

ness reduction factors. This technique functions sat is-

factorily for the tested panels but additional confir-, 

mation is still needed before its usefulness may be ex-

panded. With insufficient data available about the 

deflection corresponding to the breaking of reinforcing 

bars, it is tentatively suggested that in-plane ductile 

behavior of floor slabs should not be expected unless 

they are reinforced more heavily than usual. 
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VI DYNAMIC RESPONSE OF BUILDING INCLUDING 
IN-PLANE FLOOR SLAB DEFORMATION 

6.1 General 

This chapter examines influence of in-plane defor-

mation of floor slabs on the total seismic lateral load applied 

to a structure as well as on the distribution of this lateral 

load to the vertical load resisting elements. Shear forces 

and bending moments applied to floor slabs are also inves-

tigated. 

A relatively simple building model representing a 

reinforced concrete building with usual dimensions was selected, 

and the dynamic response of the model was investigated. The 

direct integration method was used to obtain the time-history 

relationship of this structural model. The ground motion 

selected for this study was the N-S component of the EI Centro 

earthquake recorded in Imperial Valley, May 18, 1940. The var-

ious in-plane characteristics of the floor slabs defined in 

Chapter V as well as the stiffness and strength characteristics 

of the vertical elements (shearwalls and columns) were incor-

porated into the dynamic analysis. 

At the beginning of this investigation, elastic dyna-

mic analysis was executed based on the elastic characteristics 

of the floor slabs and vertical elements. The results obtained 

from this elastic analysis were used as the basis for comparison 
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with the results derived from the succeeding analyses. In 

these analyses, the stiffness characteristics of the floor slabs 

as well as vertical elements altered. First, the propriety 

of the rigid floor slab assumption was examined. Then, the 

change in the model structure's response due to the non-linear 

actions of vertical elements and floor slabs was investigated. 

6.2 Building Model Selected 

A reinforced concrete building model with seven 

stories, six bays in width, and one bay in depth was selected 

for this study. Fig. 0-1 illustrates the plan and elevation 

views of this building and its critical dimensions. The story 

height is 3.0 m from second through seventh stories~ while the 

first story is 3.75 m in height. The center-to-center span 

length is 6.0 m in two horizontal directions. A shearwall is 

located at each end 9 whereas the interior spans are supported 

by flexible frames. The thickness of the shearwalls is 320 mm, 

and the cross section of the columns is 600 mm x 600 mm with 

no capital. The floor slabs are 200 rom in thickness. Beams 

(300 rom x 500 mm) are attached to the lower sides of these slabs 

and along column lines in both directions. The ground motion was 

applied in the transverse direction of the structure. 
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This model has a relatively slender cross section, 

whose aspect ratio is 1 : 6. This arrangement was chosen 

intentionally so that the floor slabs would play a significant 

role on the distribution of lateral force to vertical elements. 

As discussed in Chapter II, a slender cross section tends to 

amplify the bending action of the floor slabs, referred to as 

bowing. In addition, a great difference in lateral stiffness 

between adjoined vertical elements increases the force to be 

transmitted by the floor slab connecting these components. This 

increase in force may cause severe distortion of the floor slab. 

6.3 Analysis of Building Model 

6.3.1 Simplification of Model 

To investigate the response of the building model, 

the structure was simplified to a discrete model. In this model, 

all structural components: floor slabs, frames, and walls, 

were treated as beams, named equivalent beams. These equivalent 

beams were assembled and jointed at each connection, forming 

a seventy-story six-bay frame. Since the ground motion was 

applied in the transverse direction, equivalent beam properties 

for the deformation in this direction were needed. The beam 

properties were determined so that these equivalent beams would 

appropriately simulate the original properties. Walls were 

treated as deep beams which have both flexural and shear de-
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formations. Floor slabs also were treated as deep beams; 

Chapter V has discussed this treatment in detail. Frames, 

composed of columns and beams, were represented as beams that 

have particular combinations of flexural and shear rigidities. 

The selection of both geometrical and material properties of 

the equivalent beams is described in further detail in Section 

6.4. Since both geometry of the model structure and input 

ground motion were symmetrical about the vertical axis (Fig. 6.1), 

only half of the structure must be analyzed. 

6.3.2 Formulation of Equations of Motion 

In dynamic response analysis, the equations of 

motion can be written as: 

[M]{u} + [eJ{~} + [K]{u} = {R(t)} (6-1) 

where: [M] = mass matrix 

[e] = damping matrix 

[K] = stiffness matrix 

{u}= displacement vector 

{u} = du 
dt 

{u} d2u 

dt
2 

Ret) = vector of arbitrary time varying loads 
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If the structure is uniformly subjected to the ground 

motion u , the equation can be expressed as: 
g 

[M]{il } + rCJ{~ } + [K]{u } = -[M] x u 
r r r g (6-2) 

where fUr} is the relative displacement vector of the structure 

with respect to the ground, ie fUr} = {u } - {I} x ug • 

6.3.3 Formulation of Mass Matrix 

The mass of the structure was represented by lumped 

masses at junctions. Each lumped mass eq~lled to the mass within 

a tributary region of a junction. The mass of the service 

design vertical load, 3.8 kPa,acting on the floor slabs was added 

to the mass calculated from the structure's dead weight. Since 

rotational inertia was neglected, (Section 6.3.4), the lumped 

masses caused only translational inertia at the j~nctions. The 

mass matrix [M], then, is a diagonal matrix. 

6.3.4 Formulation of Stiffness Matrix 

The element stiffness matrix of equivalent beams re-

presenting floor slabs and walls can be expressed in terms of 

the deflections and rotations at end points: 

-180-



p. 
1 

M. 
1 1 

P. M2 + 2B 
J 

M. 
J 

where: 

I 
I 

2 t I -2 t I 
I 
I 
I 
I 

2 2 B I t2 B t I -t / .. + 3A I 3 3A I 
I 

----------------~------------------
-2 -t 

t 2 
t 

3 

A == 

B == 

B 
3A 

t 
6EI 

x 

t 
AG 

I 2 -t I 
I 
I 
I 
I 

2t2+ l I -t I 
I 3 .. 3A 
I 
I 
I 

O. 
1 

8. 
1 

O. 
J 

8. 
J 

Element stiffness matrices were first assembled for each 

floor or vertical span (wall or frame), making a set of sub-

structure stiffness matrices. 

The torsional rigidity of walls, frame and floor slabs was 

(6~3) 

taken to be zero. Elements associated with rotation (moment) 

were then condensed for each substructure stiffness matrix. 

This static condensation was permissible since the rotational 

inertia has been eliminated. After the static condensation, 

the substructure stiffness matrix, therefore, related trans-
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latory di~lacements,to lateral forces.A global stiffness matrix 

was composed by assembling substructure stiffness matrixes 

and related the out·-of~plane forces at each joint of the planar 

frame to the corresponding displacements. The procedure for 

making the stiffness matrix is schematically illustrated in 

Fig. 6.2. 

6.3.5 Formulation of Damping Matrix 

The Rayleigh damping was chosen to represent the 

viscous damping characteristics of the structure. The damping 

matrix is: 

[e] ; arM] + S[K] 

a and S are constants to be determined by given damping ratios 

that correspond to two unequal frequencies of vibrations. a and 

S were calculated by using the two lowest circular frequencies 

WI and Wz of the structure and then by employing 5 and 10 

percent of the critical damping in these two modes. After 

applying the mode superposition technique to the original 

equations of motion, the relationship between a and S, and 

W
1 

and w2 can be expressed as: 

a + ~ x (0.05)2 ; w, x 0.10 

a + S x (0.10)2 ; w
2 

x 0.20 
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6.3.6 Method of Integrating Equations of Motion 

Various integration techniques have been developed to 

solve the equations of motion for linear and nonlinear structures. 

The techniques are divided primarily into two groups. The first 

group, referred to as the implicit solution technique, includes 

the techniques such as the Houbo1t method, the Newmark method, 

the Wilson 8 method, and the Park stiffly-stable method. The 

second group, referred to as the explicit solution technique, 

includes the central difference method, the two-cycle iteration 

with the trapezoidal rule, and the Runge-Kutta method. A1gori-

thms for these solution techniques as well as their stability 

and accuracy have been investigated by many researchers. While 

the stability and accuracy of these tequniques for linear 

structures have been evaluated extensively, those for nonlinear 

structures can be studied only through numerical experimentation. 

In the present study, the Newmark method(6.6) was chosen to 

solve the equations of motion. This selection was based 

upon the investigation completed by Nicke11!6.7) Mondkar and 

1 (6.5) d d 1· 1 (6.1) Powe , an A e l et a • 

Basically, the Newmark integration technique is an 

extension of the linear acceleration method and makes the 

following assumptions: 
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(6-5) 

= (6-6) 

a and 0 are parameters to be chosen by considering inte-

gration accuracy and stability. The present study used 

a = 1/4 and 0 = 1/2, which Newmark originally proposed as an 

unconditionally stable constant-average-acceleration method. 

The equilibrium equations at time (t+6t) are: 

-.--,--'~' - '- ,'-.-.,_-.-;,<.....:----. 

= - [M]{u } 
g 

(6-7) 

Solving from equation 6-6 for u
t
+6t in terms of ut +6t and 

substituting it into equation 6-5 result in two equations for 

., 
u t +6t and u

t
+
6t

, each in terms of the unknown displacement 

ut +6t only. These equations for ut +6t and ut +6t are then 

substituted into equation 6-7 to solve for u
t
+6t , after which, 

using equations 6-5 and 6-6, u
t
+6t and ut +6t can also calculated. 

The complete algorithm of the Newmark method is presented in 

Bathe and Wilson(6.3) and Bathe. (6.2) 
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6.4 Selected Force-Deflection Relationship 

6.4.1 Force-Deflection Model for Floor Slabs 

The stiffness of the floor slabs in post-elastic range 

was determined by using the concept of reduction factor defined 

in Chapter V. Each equivalent beam representing a floor slab 

had a particular reduction factor according to the magnitude 

of the forces being applied to the beam as well as its previous 

history. As discussed in Sections 5.2.2, 5.4.1, and 5.4.2, the 

reduction factors for flexural and shear stiffnesses were 

assumed to be identical at any stage during loading and 

dependent upon the magnitude of the maximum bending moment 

applied to the equivalent beam. In the present study, the re-

duction factorvs. moment relationship was approximated-in the 

following form: the reduction factor is 1.0, indicating that 

the floor slab is elastic when MIM is less than 0.3. 
max 

At 0.3 of M/~ax the reduction factor is decreased to 0.3, assuming 

that cracking occurs. As the moment increases. the reduction factor 

decreases linearly until the moment reaches its maximum value, 

at which the reduction factor is 0.15. This reduction factor vs. 

moment relationship is illustrated by the bold line in Fig. 5.17, 

which shows that this line reasonably approximates the actual 

degradation pattern of the reduction factor. After 

reaching its maximum value, the moment is' assumed to remain 

unchanged under continued _deformation. On the other hand, 

the secant stiffness measured when unloading 
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begins is used for succeeding loading until the moment reaches 

the maximum value a second time. When this takes place, the 

stiffness is once again set at zero. This assumed moment-

stiffness relationship was based on the experimental finding that 

the width of the hysteretic loops of slab panels was relatively 

narro,v and that the tangent stiffness measured from a hys·teretic 

loop of the slab panel varied only slightly regardless of the 

moment (or deformation) level. Detailed discussion of this charac-

teristics can be found in Sections 3.7.4.2. and 5.6.2.3. Fig. 6.3 

illustrates the hysteretic law adopted for the floor slabs. 

6.4.2 Force-Deflection Model for Walls 

The behavior of shearwalls under seismic loadings 

has been investigated extensively as already discussed in 

Chapter II. Here in this study, the experimental work performed 

(2.32) 
by Oesterle et ale was referred to for determining the 

characteristics of the model structure's shearwalls. One of 

their tested shearwalls (R-2 specimen in their report), which 

did. not have any boundary frame, was utilized to represent the 

shearwalls. 

A number of analytical force-deflection models have 

been proposed for simulating hysteretic behavior of structural 

members and systems. These proposed models include for example: 
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1) the ordinary elasto-plastic model, and 2) the degrading 

stiffness models, (6.4, 6.9) which consider such nonlinear 

behavior as the Bauschinger effect and the pinching effect. 

A comprehensive review and critique of those models has been 

made by Riddell and Newmark. (6.8) 

It was decided to represent the hysteretic behavior 

of the shearwa1ls by the force-deflection model used for floor 

slabs. (Section 6.4.2) This decision was made based upon 

the following reasons: (1) Oesterle et a1. reported that flexure 

dominates the behavior of the shearwal1 R-2 (2) The load-

deflection relationship of the shearwall R-2 is similar 

to those of the tested floor slabs. (However, the pinching 

effect is more appreciable in the shearwall.) (3) The algo·

rysm needed for this model is much simpler than those for 

other models. (6.9) 

6.4.3 Model for Frames 

Frames were also assumed to be beams which include both 

flexural and shear deformations (equivalent beams). Moment of 

inertia of the equivalent beam was taken as that of the 

frame's cross section. Shear area of the beam, on the other 

hand, ~s evaluated by equating the shear displacement of the 

equivalent beam to the lateral displacement of the frame. 
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Fig. 6.4 schematically shows the procedure to compute the shear 

area of equivalent beams. In this study, the frames were assumed 

to behave linear-elastically. 

6.5 Input Material and Geometrical Properties 

Table 6.1 lists the moment of inertia and shear area 

of equivalent beams representing floor slabs, walls, and frames. 

This table also shows the maximum moment levels which the critical 

sections of floor slabs or walls can reach. The elastic constants 

for all elements are: 24.1 GPa for the modulus of elasticity and 

0.15 of poisson's ratio. The lumped masses at junctions are listed 

in Table 6.2. Acco.rding .. to an eigenvalue analysis, the- frequencies 

of the model structure are 0.355 Hz for the first mode and 0.0852 

Hz for the second mode. From these frequencies and equation 6 .... 4, 

the damping coefficients a and B are computed to be 0.501 and 

0.00362 respectively. 

6.6 Results and Discussion 

The model structure was analyzed for the following four 

cases, referred to as cases I through 4: (1) linear elastic 

analysis, (2) linear elastic analysis with rigid floor slab 

assumption, (3) non-linear analysis, in which floor slabs 

are allowed to behave non-linearly as defined in the previous 

section, (4) non-linear analysis, in which both floor slabs 
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and shearwalls are allowed to behave non-linearly. The numeri-

cal results including maximum displacement, maximum acceleration, 

total base shear, base shear distributed in each shearwall or 

frame, and maximum shear and moment applied to floor slabs are 

tabulated for the four analyses in Tables 6.3 through 6.5. 

Fig. 6.5 shows lateral force distribution in shearwalls and 

frames, while shear forces in floor slabs are plotted in Fig. 6.6. 

Fig. 6.7 shows several displacement, base shear, bending moment vs. 

time relationships. For convenience of the following discussion, 

all comparisons of results are referred to that of the elastic 

analysis (case 1). 

When floor slabs are assumed to be infinitely rigid, the 

total shear is reduced to 88 percent, while it is increased to 102 

percent when slabs behave non-linearly. (Table 6.3) The change in 

the total base shear, however, is not great despite that basically 

three different structures (case I to 3) are analyzed. As antici

pated, the rigid slab assumption causes significant underestimate 

of the base shear resisted by the frames. (Table 6.4) The base 

shear in the middle frame (frame 3) is only 23 percent if the rigid 

slab assumption is adopted. Non-linearity of the floor slabs 

(case 3) also changes the lateral load distribution significantly. 

Decreased stiffness of floor slabs in the inelastic range causes 

frame base shear to increase by nearly 100 percent. Here, the 
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interaction among the vertical elements is lessened, resulting 

that each element responds more independently from one 

another. 

In the elastic analyses, shearwalls take a major por

tion of the shear: 75 and 92 percent in cases 1 and 2 res

pectively. When slabs and shearwalls behave non-linearly, on 

the other hand, the base shear transmitted by the shearwalls 

is decreased significantly (to 65 percent). This reduction 

apparently is caused by the degraded stiffness in the shearwalls. 

Frames, in turn, carry approximately 2.5 times larger base shear. 

Floor slabs behave like simply supported beams with 

distributed lateral force, causing maximum shear force at the 

junctions with shearwalls (exterior bents) and maximum bending 

moment at the mid-span (at the junction with the middle frame: 

frame 3). (Fig. 6.7) The shear force transmitted in the floor 

slabs is much smaller than the shear force which would be con

sidered to be critical. The ACI Code formula, (11.3.1.1) which 

specifies the lower limit for shear. effect consideration, gives 

1.05 MN of shear force, while the maximum shear force carried 

by the floor slabs is not more than 0.428 MN. Bending moment, 

on the other hand, is significant particularly at the mid spans, 

and exceeds the specified maximum moment in many occasions. As 

tabulated in Table 6-5, the bending moments of the floor slabs in 
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th~lowest five stories exceed the maximum moment level at the 

mid spans in case I (elastic analysis), while the top five stories 

reach this level when the floor slabs are allowed to behave 

non-linearly. A comparison between cases 3 and 4 reveals that 

the level of bending moment decreases as the variation in stiff

ness among the vertical elements decreases. 

As shown in Fig. 6.6, the distribution of lateral 

force applied to each story is approximately triangular except 

for the roof level. Lateral force is reduced at this level 

because masses at this roof level are signficar:tly smaller than 

those in other stories. No live load was assigned to this level. 

(Table 6.2) The distribution of lateral force in shearwalls, 

however, is far from triangular, rather, shear force is nearly 

constant for all floors'. The lateral force distribution in 

frames is close to triangular although the variation among story 

shears decreases considerably when non-linear behavior of floor 

slabs or shearwalls is considered (cases 3 and 4). This near rec

tangular distribution is appreciable particularly in the middle 

frame (frame 3). The complexity of the lateral force distri

bution in frames and shearwalls would be caused by the 

change in the relative story stiffness of the vertical 

elements (shearwalls and frames) at each story level. The story 

stiffness of frames is relatively constant, while the story stiff

ness in shearwalls decreases significantly in upper stories. 
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6.7 Summary 

The findings in this chapter'may be itemized as follows: 

1. The effect of the in-plane stiffness of the floor slabs 

on the base shear applied to vertical elements is appre

ciable in the analyzed model structure. The rigid floor 

assumption significantly underestimates the base shear of 

the frames. 

2. The stiffness of the shearwalls (major lateral force 

resisting elements in the model structure) also affects 

the base shear. Degraded stiffness of the shearwalls 

shifts some base shear to the frames. 

3. Shear force applied to the floor slabs is very small and 

practically negligible. Bending moment, however, is 

significant, particularly at the mid-span of the struc

ture, reaching the maximum moment level in many stories. 

The degraded stiffness of the floor slabs alters the base 

shear distribution, placing more load to the frames. 

4. The distribution of lateral force applied to each story 

is approximately triangular. The distribution of lateral 

force in shearwalls or frames, on the other hand, does 

not follow the triangular distribution. The change in 

the relative story stiffness of the vertical elements at 

each story level most probably causes this complexity 0 
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VII SUMMARY, CONCLUSIONS, AND RECOMMENDED RESEARCH 

This report presents a comprehensive study of the 

in-plane characteristics of reinforced concrete beam-supported 

floor slabs with various loading and support conditions and 

studies the effect of those characteristics on seismic building 

response. The discussion of experimental and analytical results and 

the application of the results and findings to the evaluation of 

the in-plane characteristics have been described in Chapters III 

through V. In Chapter VI, the effect of the in-plane deformation 

of floor slabs in building response has been examined. Important 

findings, suggestions and proposals for practical designs, and 

recommendations for future work are summarized as follows: 

Experimental Findings 

(1) The development of a crack, labelled a major crack, 

which developed along the boundary between the column 

and middle strips, controlled the ultimate in-plane 

strength of the test slab panels. 

(2) The cyclic loading represented by the spectrum adopted 

in the tests reduced the in-plane strength of the test 

slab panels by as much as 25 percent. Cumulative damage 

like cracking was responsible for the reduction. 

(3) The application of the design service vertical (gravity) 

load reduced the in-plane ultimate strength of the 

test slab panels by about 15 percent. 
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(4) The test slab panels with in-plane loading lost their 

initial stiffness after the formation of a crack at 

the clamped edge. The load at which this crack formed 

was approximately 30 percent of the ultimate load. 

(5) The application of the design service vertical load 

caused two cracks on the top surface of the test slab 

panels, one along the slab-wall junction, and the other 

along the loading line. The vertical load promoted the 

development of cracks, and cracking in low load levels 

made the transfer of forces from concrete to reinforcing 

bars more gradual. 

(6) The deflection in the post ultimate load range was con

trolled by the opening and closing of the major crack, 

while the breaking of reinforcing bars at the major crack 

caused the test slab panels to fail. 

(7) The effect of cyclic loading or combined in-plane and 

out-of-plane loadings on ductility of the test slab 

panels was minimal. 

(8) Because of insufficient available data regarding the 

performance of reinforcing bars which gontrol the duc

tility of floor slabs, it is tentatively suggested that 

a high degree of ductility should not be expected unless 

the slabs are reinforced more heavily than the test slab 

panels. 
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Analytical Findings and PrdposalsfdrPracticalDesigns 

(1) The in-plane ultimate strength of a floor slab is 

reached when the slab fails either by flexure or by 

shear. In the flexural mode of failure, a major crack 

develops along the boundary between the column and middle 

strips of the slab. 

(2) In the shear mode, on the other hand, the slab reaches 

the ultimate load when a diagonal crack separates a tri

angular portion from the remainder of the panel. 

(3) The in-plane flexural strength of the slab can be pre

dicted by the theoretical flexural capacity 

of the critical section of the slab. The detailed 

procedure is described in Sec~ion 5.3.3. 

(4) The standard ACI Code Provision (11.5.6.2) gives 

an accurate estimate of the in-plane shear strength 

of the slab. 

(5) The in-plane stiffness of the floor slab can be evalu

ated by representing the slab as a deep beam considering 

both flexural and shear deformations. The use of 

nominal moment of inertia and shear area is appropriate 

when computing the initial in-plane stiffness regard~ 

less of geometry of the slab. (Section 5.4.1) 

(6) The deep beam analogy is also valid when the in-plane 

stiffness of the floor slab in the post-elastic range is 

determined. A reduction factor is incorporated into the 
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computation in order to reflect the stiffness degra-

dation in this range. (Section 5.4.2) 

(7) A procedure to compute the reduction factor is proposed. 

(Section 5.4.3) A reduction factor at a given load 

level can be estimated on the basis of the curvature at 

the critical section and an empirical hinge length. 

Effects of Floor Slab In-Plane Def6rIDati6n on Seismic 
Building Response 

(1) The stiffness of floor slabs and vertical elements, walls 

and frames, can significantly affect the base shear 

distribution to the vertical elements. The rigid slab 

assumption underestimated the base shear distriputed to 

flexible frames by as much as 75 percent. 

(2) Nonlinear action of the floor slabs also altered the 

1atera11oad distribution, causing the frames to take 

base shear approximately twice as large as that com-

puted in the elastic analysis. 

(3) Shear force applied to the floor slabs was very small 

and practically negligible. Bending moment, however, 

was significant particularly at the mid-spans of the 

building, reaching the specified maximum moment level 

in many stories. 

(4) The distribution of lateral force applied to each story 

was considerably triangular. The distribution 
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of lateral force in each vertical element, however, 

did not follow the triangular distribution. The change 

in the relative story stiffness of the vertical 

elements at each story level caused this complexity. 

Future Research Needed 

(1) The in-plane behavior of floor slabs under C)Tclic 

loadings must be investigated further. 

It is known that the load-deflection relationship 

of slab panels depends heavily on the loading history. 

A different loading spectrum very possibly would affect 

the ultimate strength as well as the stiffness 

degradation. 

(2) The in-plane behavior of floor slabs under combined 

in-plane and out-of-plane loadings is also a 

subject for further study. The design ser-

vice vertical load reduced the ultimate resistance 

but did not change the general pattern of stiffness 

degradation or behavior in post-ultimate load regions. 

The intensity of the vertical load can yet be a major 

parameter to control the in-plane behavior of 

floor slabs. Although the critical section was 

located at the boundary between the column and middle 

strips in the test slab panels, a larger vertical load 
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or, alternatively, more reinforcement at this 

boundary may shift the critical section to the 

center line of the span where out-of-plane bending 

moment is the greatest. 

(3) Future study should be extended to investigate 

the interaction of floor slabs with supporting 

elements, that is, the combined effect of frame 

and diaphragm actions. When floor slabs are 

supported by columns, lateral load applied to the 

floor system induces both in-plane and out-of-plane 

deformations in the slabs. The in-plane characteris

tics of these slabs may be greatly affected by the 

out-of-plane bending. If a floor slab is supported 

by a wall on one edge and by columns on the other, 

warping can take place in the slab because of the 

difference between the rotational stiffnesses of the 

two vertical members. The combined effect of warp

ing and in-plane force on the in-plane characteris

tics of the floor slab may also be significant. To 

examine this combined effect, experiment must be 

performed by using subassemblages of floor systems 

rather than isolated slab panels. 
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APPENDIX 

The proportionality constant A used in the flow rule 

can be derived as follows: 

From equations 4-17 and 4-18: 

e 
dEd A.£L dEd = 

dOd 
(A.,.l) 

dEe = dE A.£L 
s s dT 

S 
(A-2) 

The elastic strain increments, dE d
e and dEse can be related 

to the stress increments, dOd and dTs as: 

do 
d 

dT 
S 

Substituting equations A-3 and A-4 to equation 4-20: 

df e 
d£ = dO d Dn (dE - A ~ ) + ~ D e 

d dO d dT s 22 

and A~(~:d)2 + (~:s~} = e (3£ ) e (3f ) L'ov OL ) Dll dOd dEd + D22 3Ts dEs 

e (~~ d) dEd 
e C~L) dE Dn + D22 dT s Then: A s 

{(~! / n~J} + 
d 
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NOMENCLATURE 

Symbols used in the text are defined where they first 

appear. A summary of frequently used symbols is presented below 

for convenience. Symbols with dual meanings are listed twice. 

A 

A 
e 

A s 

A 
v 

AI' A2 

(AG) 
e 

[B] 

[B
b

] 

b 
w 

[C] 

[D] 

D 

[D ] e 

[Dep] 

e 
DII ' D22 

e 

shear area of equivalent beam 

effective shear area 

area of steel 

area of reinforcement within a distance s(ACI 
Code) 

areas of steel placed in I and 2 directions 
and intersecting interface 

equivalent shear stiffness 

matrix relating centroidal displacements to 
concrete strains 

matrix relating centroidal displacements to 
truss element's strain 

web width (ACI Code) 

viscous damping matrix 

constitutive matrix 

dead load 

elastic constitutive matrix 

elasto-plastic constitutive matrix 

coefficients of elastic constitutive matrix 
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d 

E 

Eb 

Esl' Es2 

(El) 
e 

e 

f 

f 
c 

f ' 
c 

f 
y 

h 

hI' h2 

I 

I 
e 

[K] 

[K] 

kd 

k 
s 

L 

l 

distance from extreme compression fiber to 
centroid of tension reinforcement (ACI Code) 

modulus of elasticity of concrete 

modulus of elasticity of truss element 

modulus of elasticity of steel in 1 and 2 
directions 

equivalent flexural stiffness 

strain in concrete 

yield function 

concrete stress 

compressive strength of concrete (ACl Code) 

yield strength of nonprestressed reinforcement 
(ACl Code) 

centroidal distance of two triangular elements 

legs from centroid of element 1 and 2 to 
interface 

moment of inertia of equivalent beam 

effective moment of inertia 

element stiffness matrix (Chap. IV) 

stiffness matrix (Chap. VI) 

normal spring constant 

shear spring constant 

live load 

length of truss element (Chap. IV) 
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M 

[M] 

[M] 

p 

{p} 

[Q] 

[R] 

s 

t 

{u} 

{u} 

span length (Chap. V) 

length of projecting part in equivalent beam 
(Chap. V) 

distances between two centroids projected on 
local 1 and 2 axes (Chap. IV) 

external moment applied at edge 

matrix relating element displacements to 
relative displacements (Chap. IV) 

mass matrix (Chap. VI) 

coefficients of transformation matrix 

direction cosine of orthogonal steel 

direction sine of orthogonal steel 

applied in-plane load 

external force vector 

matrix relating centroidal displacements to 
element displacements 

transformation matrix from global coordinates 
to local coordinates 

spacing of shear reinforcement (ACI Code) 

slab thickness 

vector of element displacements in global 
coordinates 

vector of element displacements in local coordin
ates 

vector of centroidal displacements 

displacement vector 
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{~} 

{u} 

u 
g 

Vb 

V 
c 

V 
c 

V 
s 

V 
s 

W 

W, WI' 

x , 
g yg 

a 

a, S 

° 

{o} 

° , ° a s 

of' ° s 

°1' °2 

{s} 

W2 

velocity vector 

acceleration vector 

ground displacement 

total potential energy functional of truss 
element 

total potential energy functional of triangular 
element (Chap. IV) 

nominal shear strength provided by concrete 
(ACI code, Chap. V) 

total potential energy functional of smeared 
triangular element (Chap. IV) 

nominal shear strength provided by shear rein
forcement (ACI Code, Chap. V) 

design load of floor slab 

arbitrary point at interface 

coordinates of center of gravity of triangular 
element 

degradation factor (Chap. V) 

Rayleigh damping coefficients 

deflection along loading line in strength test 

vector of relative displacements 

edge deflections in stiffness test under anti
symmetrical and symmetrical loadings (Chap. III) 

flexural and shear deflections in equivalent 
beam calculation (Chap. V) 

relative displacements measured with respect to 
local 1 and 2 axes 

strain vector 
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{dE;} 

{dE } 
e 

{dE } 
p 

Eb 

Ed' E 
s 

E1 , E2 

Et 

8 

8 8 a' s 

8 
f 

Ie 

V 

~ 

~l' t:2 

{a} 

ab 

a p 

at 

a y 

fda} 

vector of strain increments 

vector of elastic strain increments 

vector of plastic strain increments 

strain in truss element 

normal and shear strain coefficients in 
strain vector 

cracking strain 

end rotation in strength test 

wall rotations in stiffness test under anti
symmetrical and symmetrical loadings 

end rotation due to flexure in equivalent beam 
calculation 

proportionality constant used in flow rule 

poisson's ratio 

vertical deflection in strength test 

viscous damping coefficients 

stress vector 

stress in truss element 

yield stress in uniaxial loading 

tensile strength of concrete 

compressive strength of concrete 

vector of stress increments 
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T 
P 

w 

yield stress in pure shear 

curvature at critical section 

circular frequency 
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Table 3.1 Dimensions of Test Specimen 

Items 

Center-to-Center Span Length 

Exterior Panels 

Interior Panel 

Slab Thickness 

Beam Width 

Beam Depth 

(projecting depth) 

Column Length 

(from the mid-plane of the 

slab) 

Column Cross Section 

Wall Thickness 

Wall Length 

Total Wall Height 

Dimensions 

(mm) 

1630 

2030 x 2440 

1030 x 2440 

39.6 

67.8 

95.8 

. 280 

136 x 136 

136 

3000 

612 

(in. ) 

64 

80 x 96 

64 x 96 

1.56 

2.67 

3.77 

11.0 

5.34 x 5.34 

5.34 

118.0 

24.1 
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.' 

Table 3.2 Selected Reinforcing Bar Sizes 

Items Bar Size 

Slab Reinforcing Bars D2.0, D2.S, D3.0 

Column Longitudinal Bars If3 

Column Stirrups D2.0 

Beam Longitudinal Bars D2.0, D3.0 

Beam Stirrups Wl4 

Wall Reinforcing Bars DS.O, 1f3, 1f4 
-
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3 

Table '3.9(a) Designation of Test Program 
(Five character alphanumeric 
code) 

4 5 

B slab-on-Beam floor system 

H Horizontal (in~plane) loading only 

V Vertical (out-of-plane) load included 

I panel l 

2 panel ~ 

3 panel 1. 

6 a whole specimen 

4-5 5S Stiffness test, ~ymmetrical loading 

SA 

MN 

Cy 

EXAMPLE 

BHIMN 

Stiffness test, Anti-symmetrical 

MoNotonic loading 

CYclic loading 

slab-on-beam floor system 

horizontal loading only 

panel 1 is tested 

under monotonic loading 
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Table 3.10 Stiffness Test Results 

Experiment SAP IV Beam 
Theory 

B-1 B-2 

Symmetrical 
loading 

<5 (m/GN) 6.24 6.50 5.42 5.11 

0 (rad./GN) 1.17 1.25 1.08 1.11 s 

Anti-symmetrical 
loading 

<5 (m/GN) 11.60 12.50 11. 90 * 8.02 
(8.30) 

0 (rad./GN) 4.15 4.32 3.81 * 2.39 a 
(2.42) 

* With artificially stiff beams along the Boundaries 
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Table 3.11 Vertical Reflection under Design 
Service Vertical Load 

Test Scale III Scale 112 Scale 
(nun) (nun) (nun) 

BV lMN 0.76 1.30 1.02 

BV 2CY 0.76 0.89 , 1.52 

Elastic Theory 0.42 1.17 0.42 
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Test 

BH 2MN 

BH ICY 

BH 3MN 

BH 3CY 

BV 1MN 

BV 2CY 

Table 3.12 Strength Test Results (Ultimate 
Resistance and Deflection) 

Ultimate Load (kN) Maximum Displacement (mm) 

Positive Negative Positive Negative 

120.0 - 88.5 8.48 - 7.44 

94.7 - 96.5 8.36 - 8.29 

56.9 - 38.7 7.32 - 6.17 

41.8 - 40.5 6.21 - 5.87 

102.0 - 89.8 9.22 - 9.22 

85.0 - 83.2 6.72 - 7.02 
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Table 3.13 Initial Stiffness in Strength Tests 

Test Initial Stiffness Experiment/Theory 
(MN/m) 

BH 2MN 218 0.663 

BH ICY 272 0.796 

BH 3MN 166 0.790 

BH 3CY 175 0.830 

BV 1MN 222 0.675 

BV 2CY 201 0.589 
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Table 3.14 Stiffness Change in Monotonic Loading Tests 

BH 2MN BH 3MN BV lMN 
(MN/m) (MN/m) (MN/m) 

Initial stiffness 218 166 222 

Tangent stiffness 33.8 (0.16) 22.0 (0.13) 0.0 (0.00) 
at ultimate 
resistance 

Secant stiffness 42.9 (0.20) 28.5 (0.17) -
at ultimate 
resistance 

Tangent stiffness 67.2 (0.31 33.7 (0.20) 83.3 (0.38) 
upon unloading 

Tangent stiffness 4.2 (0.019) 2.8 (0.017) 3.2 (0.015) 
in negative 
stable range 
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Table 3.15 Critical Displacement and Ductility in Strength Tests 

.. 

Critical 
Displacement Ductility Total 

Positive Negative Positive Negative Displacement 
(mm) (mm) (rmn) 

BH 2MN 7.62 - 7.62 3.2 -- 14.86 

BH ICY 6.75 - 6.30 2.1 2.0 l3.05 

BH 3MN 7.11 - 5.72 3.6 -- 12.83 

BH 3CY 4.60 - 5.42 2.6 2.5 10.02 

BV 1MN 9.22* - 9.22* -- -- 18.44 

BV 2CY 6.27 - 5.08 . 3.1 2.8 11.35 

* No breaking of bars, "Critical Displacement" not reached 
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Load 

Case 1 

Case 2 

Table 4.1 Comparison of Proposed Model With 
SAP IV (Elastic Analysis) 

Selected Direction 
paint of Proposed Model/SAP IV 

(Fig.4.8) Displacement 

1 x 1. 07 

Y 1.02 

2 x 1.05 

y 1.03 

1 x 1.05 

y 1.05 

2 x 1.06 

y 1. 06 

3 x 1. 07 

Y 1. 07 
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Table 5.l(a) Dimensions and Material Properties of Slab 
Panel in Effective Moment of Inertia and 

. Shear Area Calculations 

Item Symbol Dimension 

Depth d 1630 mm 

Length .e. 1630 x rom (ASPECT RATIO) 

Thickness t 39.6 !DIll 

Modulus of E 22 GPa 
Elasticity 

Poisson's .V 0.15 
Ratio 

Table 5.l(b) Relative Beam Size of Slab Panel in Effective 
Moment of Inertia and Shear Area Calculations 

Relative Beam Width x Depth (mm x mm) 
Size 

1.00 a 0 

1.43 68 96 * 
1. 61 81 114 

2.29 118 166 

2.71 136 192 

* The beam size of the tested slab panels 
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Table 6.1 Sectional Properties and Maximum Moment Levels of 
Model Structure 

I A Maximum 
(Moment of inertia) (Shear area) moment level 

(m 4) (m2) 01N x m) 

Slab 3.63 1. 08 2.94 

Wall 5.79 1.60 24.5 

Frame 3.24 0.0265 -
(lst 
story) 

Frame 3.24 0.0414 -
(2nd-7th 
story) 

Table 6.2 Lumped Masses in Model Structure 

~ 1 
Story 

7 15.9 

6 30.1 

5 30.L_ 

4 30.1 

3 30.1 

2 30.1 

1 31.9 

2 

20.3 

37.3 

37.3 

37.3 

37.3 

37.3 

38.0 

-226-

3 

20.3 

37.3 

37.3 

37.3 

37.3 

37.3 

38.0 

Unit: k 
g 

4 
(half) 

10.2 

18.6 

18.6 

18.6 

18.6 

18.6 

19.0 

I 



(1) Linear elastic analysis 

(2) Linear elastic analysis (rigid floor assumption) 

(3) Non-linear analysis (floor slabs can behave non-linearly) 

(4) Non-linear analysis (floor slabs and walls can behave 
non-linearly) 

Table 6.3 Maximum Displacement, Acceleration, and Total 
Base Shear 

Case 
Maximum Maximum Total Base 

Displacement Acceleration Shear 

CD cv CD cv 
(rom) 2 (m/sec ) (MN) 

(1) 34.2(5.00) 33.3(4.78) 9.74(4.98) 9.12(5.00) 8.24(4.78) 

(2) 29 • 6 (4. 72) 29. 6· ( 4. 72) 10.0(4.72) 10.0(4.72) 7.29(4.72) 

(3) 54.2 (5.04) 30.0 (5.04) 13.8(2.34) 6.52(4.86) '8.38(5.04) 

(4) 63.7(5.08) 53.9(5.10) 13.2(2.34) 8.25(5.04) 8.87(5.04) 

Number in parentbesis indicates the time when the 
maximum value is readied. 

CD
2
1 7th story middle 

@ 7th story end 

Table 6.4 Base Shear in Walls and Frames 

Case Wall Frame 1 Frame 2 Frame 

(MN) (MN) (MN) . (MN) 

(1) 3.16 0.322 0.462 0.515 

(2) 3.34 0.119 0.119 0.119 

(3) 2.43 0.555 0.931 1.09 

(4) 2.05 0.795 1.18 1.33 
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Fig. 3.4 Pedestal-Wall Connection 
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Fig. 3.5 Overall View of Test Setup 
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Fig. 3.6 Lateral Load Distribution Frame Placed 
for Strength Test 
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Fig. 3.8 Lateral Loading Jack 
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Fig. 3.10 Vertical Loading Frame 
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Fig. 4.14 Analytical Crack Patterns (BH2MN) 
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Fig. 4.l4(continued) Analytical Crack Patterns (BH2MN, BH3MN) 
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Fig. 4.14(continued) Analytical Crack Pattern (BH3MN) 

-284-

\ 



J N
 co
 

l.
n

 
J 

B
H

2M
N

 ~v
 

1v
 

~v
 

=:
~~
 

,: 

12
5 

10
0 

p 
8 

0=
1=

 
5

0
 

--
-.

0 

I I I I I I I I I 

, , , 
/ , 

" 
~'

 
/J

' 

I 
' 

L
.-

--
-,

/ 
+

 -1
0

0
 

, , , , , , I , , I I I I I 
8(

m
m

) 
8.

0 
-
-

T
E

S
T

 

-
-
-
-
-

M
O

D
E

L
 

F
ig

. 
4

.1
5

 
A

n
a
ly

ti
c
a
l 

L
o

ad
-D

ef
le

ct
io

n
 

C
u

rv
e 

o
f 

BH
2M

N 
U

nd
er

 L
oa

d 
R

e
v

e
rs

a
l 



J N
 

0
0

 
<

l'
 

1 

" 
" 

I '\J
 I 

, 
I~ 

" 
, 

,I
"
 

.'" 
' 

" ,
 , 

, 

M
O

DE
L 

B
H

2
M

N
 

\ 
\ \ , ,

 \ , 
, 

\ 
, 

' 
, 

\ 
, 

, 
, , ,

 

E
X

P
E

R
IM

E
N

T
 

-
-

P
O

S
IT

IV
E

 L
O

A
D

IN
G

 
-
-
-
-

N
E

G
A

TI
V

E
 

LO
A

D
IN

G
 

F
ig

. 
4

.1
6

 
A

n
a
ly

ti
c
a
l 

C
ra

ck
 P

a
tt

e
rn

 o
f 

BH
2M

N 
U

nd
er

 L
oa

d 
R

ev
er

sa
l 



~
 

0
0

 
'-

J
 

1 

-4
.0

 

P
{k

N
) 

B
H

IC
Y

 
10

0 
.".-

----
,,
".
.1
"~
MO
DE
L 

,,
-'

 
"
1

 
/ 

,,
-'

 I
 

1 
/.,

,"
 

I 
,'

"
 
/
/
 

I 

" 
.i~

/ 
I 

/ 
/1

 
'/

/,
 

I 
I 

I 

-2
.0

 
2.

0 

/
/
/
 

I 
~-

1
6

,
 /
~
~
 +

 -5
0

 
J 
~
/
 

,
,
~
/
 

/
~
 

I 
, 

I 
,,

' 
1 

."
 

I,"
 

+
 -1

0
0

 
I'

 

'E
X

P
E

R
IM

E
N

T
 

4.
0 

F
ig

. 
4

.1
7

 
A

n
a
ly

ti
c
a
l 

L
o

ad
-D

ef
le

ct
io

n
 C

ur
ve

 o
f 

BH
1C

Y
 



MOMENT 

PL 

SHEAR 

MOMENT 

-2 P 

I P 

SHEAR 

-Pi 

P 

80 

t 
Sym. 

Loading 

Anti - Sym. 

Loading 

Fig. 5.1 Equivalent Beam Calculation in Stiffness Tests 



d free ... 
edge 

~I 

MJ , t-

SLAB 

1-' 
L 

thickness = t 
L-
v 
~clamped 
~ edge 
v 

~I 

- - - - - - - -':-:-::::-:'---1 

Pst-----
I 

UNIT DISPLACEMENT 

UNIT ROTATION 

Fig. 5.2 Procedure to Compute Effective Moment of Inertia 
and Shear Area 

-289-



P 

~ 

P~ 
--------------------

~ . 

~ 

.~ 

BH2MN 

---------------- - ---

M=px1630 

~ CLAMPED 
L..__ _____ -...v ED G E 

CASE I 

---- .. _------------

NOSHEAR 

-------------.. ----

CASE 3 

---------

CASE 6 

P 

CASE 4 

P ~ 
~r-===r" 
1----------r-------- ----v 

~ V 

.1 ADDTIONAL V 
~ STEEL v 

v 
~ ~ 1--------------------It 
~----I 

CASE 7 

i-' 
-----------

~ -----------, 
" 

BH3MN 

, 
------------- ---- -----~ 

~ / 

CASE 2 

P ~ ~ 
-----------, 

~ ----------- / 

PURE " 
~ SHEAR ' , 
~ , --------- ... ----- -----, 
~ '-------V/ 
~-~ ~ 

CASE 5 

P 
~r------~ 

-----------------
.~ 

DOUBLED 
~ CONCRETE 

BEAM 

~ 
---------~L..__ ___ ..¥ 

CASE 8 

Fig. 5.3 Loading and Boundary Conditions of Analyzed 
Slab Panels 

,",290 ... 



~ 

~ 

~ 

~ 

~ 

------------------

FLEXURAL 
FAILURE 

STRONG 
BEAM 

~ 

~ 

~ 

~ 

~ 

\j 

\J 
\J 
~ 

--------------------

SHEAR 
FAILURE 

AyX fy xd 
Vs = s 

'J _________ _ 

Fig. 5.4 Failure Mode of Analyzed Slab Panels 

-291-



1 N
 

\0
 

N
 I 

· · · · 

C
R

IT
IC

A
L

 
S

E
C

T
IO

N
 

M
 • 

..
 CZ

> 
E

 
.... 

cr
y 

... 
.. 

f 

M
 = 

Tt
 x

 L
 I +

 T
c 

x 
L 2

 
T

 t 
~l

 
I 

+ 
C)

( L
 3 

--7
f1!

i_-
- r

r-
-· -

'0
 --

-.
 LI 

(C
U

R
V

A
TU

R
E

) 

A
 

Tc
 

I 
.
.
 
C

 

N
eu

tr
al

 a
xi

s 
by

 
T

t+
C

't
T

c
=

O
 

~3
 

F
ig

. 
5

.5
 

P
ro

ce
d

u
re

 
to

 
C

om
pu

te
 
F

le
x

u
ra

l 
C

ap
ac

it
y

 o
f 

C
ri

ti
c
a
l 

S
e
c
ti

o
n

 



4 

2 

U 
MICROSTRAIN/kN 

u 

2 

o~----~~--~~--~~----------~-----

-2 

-4 

I-I , 3-3 

2-2 ,4-4 

Meqsured Section 

2 

I I 

i-i I--ll-.e 
A B 

I, = 190mm 

FEM 
Linear Distribution 

Ex.pe r i ment 

Fig. 5.6 Strain Distribution of Slab Panels in 
Elastic Range· 

-293-



ICASE 3,41 

U ,~(8) 
2 (8) 

~Pt PfC===:}t 
M diagram M diagram 

~ ,"----~ 
V diagram V diagram 

ICASE 51 ICASE 71 

P.2. ( (8) .~ I~P ~ ~ ~ (8) , (8) (8) 

IPl ~ 
M diagram "'JPf 

M diagram 

0 Ip 
V diagram V diagram 

Fig. 5.7 Equivalent Beam Calculation in Strength Tests 

-294-



M/Mmax 

1.0 

0.8 

0.6 

0.4 

0.2 

a 
0.2 0.4 

--·BH2MN 
-.-.- BH2MN 

(FEM) 
-----BH3MN 
_ .. _ .. - BH3MN 

(FEM) 
............ - CASE 3 

(Moment only) 

0.6 

CASE G 
(Doubled steel) 

0.8 1.0 

(EDe /(E/)e,e/astic 

Fig. 5.S Moment - Equivalent Moment of Inertia Relationship 

-295-



M/Mmax 

1.0 \\ 

0.8 

\ 
\ 
\ 
\ 

\ 

BH2MN 

BH2MN 
(FEM) 

0.6 
~\ 

~. '. 

BH3MN 

BH3MN 
(FEM) 

0.4 

0.2 

o 

\\ \ 
~ '. 

\', '\. 
CASE 6 

(Doubled steel) 

"~'~'. "-.,<, ..... . 
"-' ..... "-.. 

0.2 

"""- ....... " '. ......... ' . .......... ........ " .......... .... ..... -.....::::::; ............... . . ----~ . 
~.-. '-. 

O~ 0.6 

.... '--", ...... -----. ..... 
\ \ I~ \ 

\ 
I 
\ , 

0.8 1.0 
(AG)e I(AG)e ,elastic 

Fig. 5.9 Moment - Equivalent Shear Area Relationship 

.,.,296-



M 
/Mmax 

CASE 6 
(FEM) 

1.0 

0.8 

0.6 

0.4 

0.2 

BH3MNI 
(FEM) \ 

~ 
I 
I 

BH3MN l 

• I 
\\ I 
. \ I 
\ \ I . \ I 

i ' I . 'I , 'I 
II 

. 'I 

\ l, 

°1 ,I. 
·a , ,. 
, II : I. 
I II 
I I • 
I I 
I I 
I I 

0- t 0.5 
ELASTIC RATIO: 0.39 

Shear 8 s 
~ 

I 
BH2MN lJ , 

1\ CASE 4 

': (FEM) 
V 
• 

J 
II 
I 
I 
I 

I 
I 
I 
I 
\ 
I 
I 
I 
I 8"8 I 
I 
I 

Flexure 8f .... 
Fig. 5.10 Proportion of Flexural and Shear 

Deformations in Slab Panels 

-297-



8.0 

5.0. 

o 

Deflection 
(mm) I I 

I I 
I I 
I I 

I I 

I I 
I I I 

BH3MN I I BH2MN I I 
I I I I 

Shear 8s Flexture 8f 

8s/8 

0.5 1.0 

Fig. 5.11 Proportion of Flexural and Shear 
Deformations in BH2MN and BH3MN (plotted 
against deflection level) 

."..,298 ... 



Panel 

~I 

Hinge 

------fd { 

Equivalent Beam 

Fig. 5.12 Elastic and Hinge Rotations in Equivalent Beam 
(Used for the calculation of degraded stiffness) 

.,...299-



I w
 

0 0 I 

30
0,

...
. 

I 
M

om
en

t C
kN

 x
 m

) 
-
-
-
-
-

---
=-

---
-"

J 
15

01
-

--
-'

""
 --=

 .-
L

IM
IT

 C
O

M
P

R
E

S
S

IV
E

 

2
0

0
 

1
0

0
r 

I 

1
0

J
 

/ 
5

0
 

0.
5 

S
TR

A
IN

 (
0

.0
0

3
) 

C
as

es
 1

-5
 

-
-
-
-

C
as

e 
6 

(D
o

u
b

le
d

 h
o

ri
zo

n
ta

l 
re

in
fo

rc
em

en
 t)

 

C
U

R
V

A
TU

R
E

 
-2

 
1.

0 
(x

iO
 

ro
d

/m
) 

01
 

O
~
r
 _

_
_

_
_

_
_

_
 ~
 _

_
_

_
_

_
_

_
_

_
 L
-
_

_
_

_
_

_
_

_
 ~
 _

_
 ~
 _

_
_

_
 -
L

 _
_

_
_

_
_

_
_

 -
L

 

C
as

e 
6 

C
as

e 
1

-5
 F

ig
. 

5
.1

3
 

M
o

m
en

t-
C

u
rv

at
u

re
 R

e
la

ti
o

n
sh

ip
 
a
t 

C
ri

ti
c
a
l 

S
e
c
ti

o
n

s 



M/Mmax 

1.0 

0.8 

0.6 

0.4 

0.2 

190 

o 
200 

---BH2MN 

....... - BH2MN 
(FEM) 

- BH3MN 

-'-'-BH3MN 
{FEM} 

- CASE 3 
(Moment 

only) 

==== CASE6 

(Doubled 
steel) 

310 
(mm) 

300 

Fig. 5.14 Hinge Length in Slab Panels 

-301,.... 



WMmax 

1.0 

0.8 

0.6 

0.4 

0.2 

o 0.2 

-- BH2MN 

---- BH3MN 

0-0- CASE 3 
(Moment only) 

CASE 6 
(Doubled steel) 

- .. -.0- MODEL (Chop 6) 

0.4 0.6 0.8 1.0 

a 
(Ene/(Elle ,elastic 

Fig. 5.15 Analytical Moment - Equivalent Moment of Inertia 
Relationships 

-302-



5.0 

o 

BHICY 

Deflection (mm) I 
l- I 

, .1 

'. I 
I- Secant I I I I 

'. I 'I I 
---- Secant 2 ,. I 

I- :! I 
----Secant 3 ' , I , . I 

I I 
l- I · , I , . 

I I 
1 -

I- I I 
I -

Flexture 8 t Shear 8s ~ \ 
I- ~ \ 

; \ 
\ - \ , 

I~I 8s/8 
1 I I I I I I 

0.5 1.0 

Fig. 5.16 Proportion of Flexural and Shear 
Deformations in BH1CY 

-303-



5.0 

0 

Deflec1ion 
(mm) 

Shear 8s 

-

• 

I 
• 

I . 
I • 
\ 
• 
\ 
• 

BH3CY 

• Secant I 

---- Secanf 2 
I 
I .-.- Secant 3 I 

t 
.~ : 
I I 

" II 
, I 
I I 
I f Flexture 8f 
I I 
, I 
, I 

, 
" 1\ 
I' , 

8s/8 J 

0.5 1.0 

Fig. 5.17 Proportion of Flexural and Shear 
Deformations in BH3CY 

.,..304-



STIFFNESS (MN 1m) 
300 

200 

100 

. --., --, , , 
, 
\ 
I , , 

BHICY 

BH3CY 

\ 
,=~ 
t 
\ 
\ 
~=~~-

\-
\ 
\ 

--BH2MN 

--- BH3MN 

-,---
----~ ...... --- ---.....:=~-----, -_ .. 

0.25 0.76 1.3 
I I I 

'--,--.... _-
2.8 4.3 5.8 7.6 

I I 

Ampl rtude (mm) 

Fig. 5.18 Comparison of Stiffness Degradation 
Between Monotonic and Cyclic Loading Tests 

..,...305-



8.0 ~ 

l-

5.0 

-

-

~ 

o 

Deflection (mml : 
I 
I 
I 

-:-BVIMN 

-

I Secant I 

f 
BV2CY 

---- Secant 2 

_.- Secant 3 
j 

/1 
• 

I 
; 

~ 

Shear 8s Flex ture 8f 

, 

1, , , 
J 

f 
I l\ I \. I 
'II! 

8s/8 
I I I J I J I 

0.5 
Fig. 5.19 Proportion of Flexural and Shear 

Deformations in Slab Panels with 
Vertical Load 

.--306-

1.0 



M/Mmax 

1.0 \ 
\ 
\ ., 
\ 
\ 

0.8 \ 
~\ \ 

\\\ 
." \ 

~\ 
.~ \ 

0.6 ~\ 

~\ ~\ :\\ 
.~ , 0.4 

BH2MN 

BVfMN 

BV2CY Secant I -

Secant 2 

Secant :3 

~, 
~ ........ 
"~~~"":-:. ........ '. .... '. .... .... 

~~, 
"~., "-

0.2 

o 
0.2 0.4 

\\ " ~.' \ 
~.\ \ 

'::.\ ' \\ " 
~;~ \ 

~ \ 
OS 0.8 
(E I)e /(E I)e ,elastic 

1.0 

Fig. 5.20 Degradation of Equivalent Moment of Inertia in 
Slab Panels with Vertical Load 

-307.,.. 



E 
to 
II 

W 

E 
ro 

~I 

I DoDluuu 
DBDJDDD 
BDB,IBBB 
BBB·BBB 
I II . II H 1 

WALL • FRA~E 2 F~AME 3 
FRAME I 

1-- 6m x 6=36m 

SLAB (200mm thick) 
BEAM (300mmx500mm) 

WALL (320mm thick) 

COLUMN (600mm x 600mm) 

Fig. 6.1 Dimensions of Model Structure 

..... 308 ... 



I LZZ7 

I 
1 ---------.----. 

I FLOOR SLAB 

I IIELEMENTII I 
I 

WALL FRAME 

• • " • 
• • • • 
• • • • 
• • , • 
• , • , 

• • • • 
• • • • 

FLOOR SLAB 
WALL 

IS U BS T R U C TU R Ell FRAME 

~ 
GROUND MOTION 

Axis of symmetry 

ISTRUCTUREll 

Fig. 6.2 Foumulation of Stiffness Matrix 

I 
I 
I 
I 
I 
I 
I 



b o J 

M
/M

m
a

x
 

1.
0 

0.
3 

In
it

ia
l 

0.
15

 I
n 

in
al

 

E
nv

el
op

e 
-0

.3
 

-1
.0

 

R
O

T
A

T
IO

N
 

F
ig

. 
6

.3
 

H
y

st
e
re

q
c
 H

o
m

en
t-

R
o

ta
ti

o
n

 H
o

d
el

 
fo

r 
F

lo
o

r 
S

la
b

s 
an

d 
W

al
ls

 



P P--" 

FRAME EQUIVALENT BEAM 

Fig. 6.4 Computation of Shear Area of Equivalent Beam 

-311-



7 
IMN 6 ;-------t..{ 

5 

4 

3 

'~ 
0. • -.. " 

~ \ 
" \ ',. \ 

t / ' : I 
: I :. / 

i I I 
:. I 

O.5MN: I 

}1 
I 

.:4''''-:. , 
,,.I) _~ 

,. . -----••• -;.t' __ 

.. '7--,-.",.---

Totalla-teral force per story Lateral force (wall) 

Lateral force 
(frame I) 

/ 

<. 

I 
I 
I 
I 

I 
/ , 

"' "', 

.. I 

.~ 

/ I: , ': 

I If 
if 
if . . 
If 

If 
/! 

Lateral force 
(frame 2) 

/ 

(, 

I 
I 

l 
/ 

... ... ... 

/ I 
/ -
I ff , .: 
, If 

I· f If 
i J 
j) 

.:. .. 
Lateral force 
(frame 3) 

--0) Elasfic --~-- (2) Elastic, rigid slob 
._.- (3) Slob nonlinear 
........... (4) Slob, wall non lin eo r 

Fig. 6.5 Lateral Force Distribution in Vertical Elements 

-312-



(.,
 

I->
 

W
 

I 

5 

O
.S

M
N

 

F
3

 
,,\

\ \
\ 
... 

F
2 

F
3

 
\'

\\
 '\

.F
I 

F
2

 
F

3
 

~
 7 

W
 

I 
W

 
.6

 
2 

5 
3 4 

I 
5 

2 
6 

3 
7 

4 

(I.
) 

E
la

st
ic

 
(3

) 
S

lo
b

 n
o

n
lin

ea
r 

(4
)S

fa
b

,w
aJ

l n
o

n
lin

ea
r 

F
ig

. 
6

.6
 

L
a
te

ra
l 

F
o

rc
e 

D
is

tr
ib

u
ti

o
n

 i
n

 F
lo

o
r 

S
la

b
s 



50mm 
7th floor Displacement, middle 

4 8 time (sec) 

Fig. 6.7(a) Time-Displacement (7th floor middle) Relationship 
in Elastic Analysis 
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Fig. 6.7(c) Time-Base Shear ,(frame 3) Relationship in 
Elastic Analysis 
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in Elastic Analysis 
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