ODSEWS-2D
 OPTIMUM DESIGN OF STATIC, EARTHQUAKE, AND WIND STEEL STRUCTURES

by
Franklin Y. Cheng Professor
D. Srifuengfung
L. H. Sheng
Graduate Assistants

Department of Civil Engineering University of Missouri-Rolla Rolla, Missouri
 January, 1981

REPRODUCED 8 Y
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARIMENT OF COMmERCE

SPRINGFIELD, VA 22161
Prepared for the National Science Foundation under Grant No.
NSF PFR 7805694

BIBLIOGRAPHIC DATA SHEET	1. Kamot No. Structural Series 81-10	2.	3. Kec P8	s Accession Na. 232738		
4. Titice and Subterle ODSEWS-2D Optimum Design of Static, Earthquake, and Wind Steel Structures			5. Report DateJanuary, 1981			
			6.			
7. Author(s) Frankl in Y. Cheng, D. Srifuengfung, and L.H. Sheng			8. Performing Organization Rept No Structural Series			
9. Performink Offantzation Name and Address Civil Engineering Department University of Missouri-Rolla Rolla, Missouri 65401			10. Project/Task/Work Unir No.			
			11. Contract/Grant No. NSF PFR 7805694			
12. Sponsoring Organization Name and Address			13. Type of Report \& Period Covered			
Division of Problem-Focused Research Application National Science Foundation Washington, D.C. 20550						
			14.			
15. Supplementary Notes						
16. Abstracts An optimum design technique is presented for trusses and braced and unbraced frames with consideration of various constraints of stresses, displacements natural frequencies, member sizes, and upper- and lower-bounds of member stiffnesses A computer program ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures has been developed for which the dynamic input may be response spectrā or code provisions. More than 80 cases were designed in which the frames were varied from one story to 30 stories for examining various response parameters. Among them the particular interests are in the effect of the interacting ground motions including $\mathrm{P}-\Delta$ on the stiffness distribution at critical regions and at the entire system as well as in the assessment of structural systems and their serviceability. The method is considered to be superior to the conventional design technique because it can simultaneously provide the required stiffnesses and satisfy the given constraints which cannot be expected from the conventional design process.						
17. Key Words and locument Amalysis. 17a. bescriptors beams, bracings, columns, consistent mass, damping, design, displacement method, frames, modal, optimization, second-order, steel, stiffness, truss.						
17b. Identifiers/Open-Finded Terms						
17e. Sosatlfiehd simup	*					
18. Availability Statement		19. Security Class (ThisReport)UNCLASSHELED		$\begin{gathered} \text { 21. No. of Pages } \\ 314 \end{gathered}$		
				22. Price		

Civil Engineering Study Structural Series 81-10

ODSEWS-2D
OPTIMUM DESIGN OF STATIC, EARTHQUAKE, AND WIND STEEL STRUCTURES
by

Franklin Y. Cheng
Professor
D. Srifuengfung
L. H. Sheng Graduate Assistants

Department of Civil Engineering University of Missouri-Rolla
Rolla, Missouri
January, 1981

This report presents the optimum design for various plane steel structures, a component of 3-D systems, subjected to the multicomponent input of static loads, dynamic forces, and seismic excitations for the purpose of: 1) examining the effect of the interaction of ground motions on their relative stiffness requirements, overall stiffness distribution at critical regions, and on the entire system, 2) selecting suitable structural systems for certain types of loads, and 3) providing member properties for detailed design. The structural systems that have been studied are trusses, unbraced, single-braced, double-braced, and K-braced frameworks in which the constituent members are bar elements for bracings and truss-members and beam-column elements for columns and girders. The beam-column elements are either the built-up sections or the hotrolled wide flange sections available in the AISC Steel Construction Manual. The structures can be subjected to static loads, dynamic forces, and horizontal and vertical ground motions. The dynamic forces and the seismic excitations can be used on the basis of either direct integrations or response spectra. In addition, the equivalent lateral seismic force recommended by the Uniform Building Code can also be used for the design.

The recommended design method is based on an optimal criterion and a recursion relation for which the behavior constraints of static and dynamic displacements and stiffnesses as well as the constraints of natural frequencies are presented. Other constraints are the desirable sizes of the members and the limitation on the difference between the maximum and minimum moments of inertic of any given system.

The structural formulation, which is based on the displacement method, takes into consideration the consistent mass formulation and the second-order effect resulting from the static and dynamic forces that act axially on the columns. The columns and girders are considered to have axial and bending deformations, thus each node of a structural system has three degrees of freedom. Various displacement constraints can be applied to individual nodes with any specific numbers. A sophisticated computer program designated as ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures) has been developed for the design of static loads, dynamic forces, and seismic excitations, as well as for any combination of these.

Fifteen-story, one-bay unbraced, single-braced, double-braced, and K-braced framed structures have been designed for the multicomponent input of static loads and seismic excitations. It has been found that the K-braced system provides better serviceability than any other system for multicomponent ground motions. It also has been found that the first three modes are needed for a structural design subjected to one horizontal ground motion only; however, the first five modes are necessary for designing a structure subjected to the interaction of horizontal and vertical motions.

The Uniform Building Code underestimates the total shear forces, and the design based on the equivalent seismic forces provided by the Code yields a much lighter weight than that obtained by using either actual earthquake records or the average response spectra. A heavier sturctural design is needed to withstand the effect of a vertical ground motion that is combined with a horizontal earthquake
horizontal earthquake and a second-order P- \triangle effect than for a horizontal earthquake acting alone. Apparently the material savings in the design are of great interest; however, the most important point is the scientific approach of determining the stiffness distribution of various structural systems subjected to different loading conditions. The scientific design method, which can always provide the required stiffnesses and satisfy the designer's given constraints, is considered much better than the conventional design technique based on the trial and trial process by using either desk calculators or analysis computer programs.

This report is based on partial results obtained from a research project sponsored by the National Science Foundation under Grant No. PFR 7805694. The authors deeply appreciate the financial support and the continuous encouragement and advice that Dr. S.C. Liu, Program Manager, provided during the course of the investigation. They also wish to thank Dr. J.H. Senne, Chairman of Civil Engineering, for providing facilities and a substantial amount of computer time for this work. Finally, Mr. F.H. Niu's capable assistance in the drawings and Mrs. Margot Lewis' expert typing are gratefully acknowledged.
Page
ABSTRACT ii
ACKNOWLEDGMENTS v
LIST OF ILLUSTRATIONS x
LIST OF TABLES xvi
LIST OF SYMBOLS xvii
I. INTRODUCTION 1
A. OBJECTIVES 1
B. LITERATURE REVIEW. 2
C. SCOPE OF THE REPORT. 5
II. MATHEMATICAL FORMULATION OF A STRUCTURAL SYSTEM. 7
A. EQUATIONS OF MOTION FOR STATIC LOADS AND MULTICOMPONENT GROUND EXCITATIONS 7
B. CLOSED FORM SOLUTION FOR GROUND MOTION OR WIND EXCITATIONS 15
C. NUMERICAL SOLUTION FOR SEISMIC OR WIND EXCITATIONS 19
D. DISPLACEMENT AND STRESS RESPONSES TO STATIC AND DYNAMIC EXCITATIONS 24
III. STATIC LOADS AND SEISMIC EXCITATIONS 27
A. JOINT FORCES ATTRIBUTABLE TO STATIC CONCENTRATED AND UNIFORM LOADS 27
B. STRAIN ENERGY OF A UNIFORMLY LOADED MEMBER 28
C. SEISMIC EXCITATIONS 33

1. Response Spectrum. 34
2. Average Response Spectrum. 35
3. Code Provisions of Equivalent Static Lateral Forces 37
Page
D. MODIFICATION OF SPECTRAL VALUES. 41
IV. OPTIMALITY CRITERIA AND RECURSION RELATION 42
A. FORMULATION OF A GENERAL PROBLEM IN OPTIMUM STRUCTURAL DESIGN 42
B. KUHN-TUCKER CONDITIONS OF OPTIMALITY 43
C. RECURSION RELATION RELATED TO OPTIMALITY CRITERIA 44
D. CALCULATION OF LAGRANGE MULTIPLIERS FOR MULTIPLE ACTIVE CONSTRAINTS 48
v. CONSTRAINTS IN THE OPTIMUM STRUCTURAL DESIGN 51
A. FLEXIBILITY CONSTRAINTS FOR STATIC LOADS 51
B. STIFFNESS CONSTRAINTS FOR STATIC LOADS 54
C. FLEXIBILITY CONSTRAINTS FOR DYNAMIC LOADS 55
D. STIFFNESS CONSTRAINTS FOR DYNAMIC LOADS 59
E. CONSTRAINTS IMPOSED ON THE NATURAL FREQUENCIES OF A STRUCTURE 60
VI. CROSS-SECTIONAL PROPERTIES AND DESIGN VARIABLES 62
A. AISC WF SECTIONS 62
B. BUILT-UP WF SECTIONS 63
VII. NUMERICAL PROCEDURES 66
VIII. NUMERICAL EXAMPLES OF TRUSSES AND FRAMEWORKS 73
A. DESIGN OF TRUSSES 73
4. Design of a Cantilever Truss for Static Loads-- Example 1 73
5. Design of a Twenty-Bar Tower for Static Loads and Ground Motions--Example 2 75
Page
B. DESIGN OF FRAMED STRUCTURES 79
6. Design of a Two-Story, One-Bay Frame for Gravity and Wind Loads--Example 3. 79
7. Design of a Two-Story, Two-Bay Frame for Equivalent Seismic Forces--Example 4 89
8. Design of a Five-Story, One-Bay Frame for Dynamic Loads and Seismic Excitations--Example 5 92
9. Comparison of Design Results Based on the UBC
Equivalent Lateral Forces and the Average Seismic Acceleration Spectrum for a One-Bay Frame varied from One-Story to 30-Story--Example 6 95
IX. THE EFFECT OF MULTICOMPONENT SEISMIC MOTIONS ON 15-STORY STRUCTURAL SYSTEMS 99
A. 15-STORY UNBRACED FRAMES 100
10. Stress Constraints Only--Example 7 102
11. Stress and Displacement Constraints--Example 8 117
12. Constraints on the Relative Stiffness of the Constituent Members--Example 9 122
B. 15-STORY BRACED FRAMES 145
13. 15-Story Single-Braced Frame--Example 10 145
14. 15-Story Double-Braced Frame--Example 11 149
15. 15-Story K-Braced Frame--Example 12 166
16. Comparison of Single-Braced, Double-Braced, and K-Braced Systems--Example 13. 181

Table of Contents (continued)
Page
X. REVIEW AND CONCLUSIONS 212
A. REVIEW. 212
B. CONCLUSIONS AND REMARKS. 213
BIBLIOGRAPHY 217
APPENDICES 222
A. MATRICES OF STIFFNESS, MASS, GEOMETRIC STIFFNESS, ANDCROSS SECTIONAL PROPERTIES OF TYPICAL CONSTITUENTMEMBERS223
B. EIGENSOLUTION TECHNIQUE. 226
C. ODSEWS COMPUTER PROGRAM 232
Figures Page

1. Typical Diagram for the Axial Forces of P- \triangle Effect. 10
2. Arbitrary Forcing Function for Dynamic and Seismic Excitations 20
3. Uniform Load on a Typical Girder 29
4. Acceleration Spectrum of El Centro Earthquake, May 18, 1940. 36
5. Average Acceleration Spectrum. 38
6. Typical Built-Up WF Section 64
7. Flow Chart of Design Procedures 68
8. Cantilever Truss for Static Loads of Example 1 74
9. Optimum Weights of Cantilever Truss of Example 1 76
10. Truss Tower for Static Loads and Ground Motion of Example 2.. 78
11. Two-Story, One-Bay Frame for Wind Load of Example 3. 81
12. Forcing Function of Wind Load of Example 3 82
13. Response Spectrum for the Half Sine Wave of Figure 12. 83
14. Two-Story, Two-Bay Frame for UBC Equivalent Seismic Forces of Example 4. 90
15. Five-Story, One-Bay Frame for Wind Loads and Seismic
Excitations of Example 5. 93
16. Comparison of Optimal Weights of Example 6 97
17. Comparison of Base Shear of Example 6 98
18. 15-Story, Single-Bay Unbraced Frame of Examples 7 through 9.. 101
19. Optimum Weights of Unbraced Frame of Example 7. 103
20. Contribution of Energy of Individual Modes to the Design of Example 7 106
Figures Page
21. Column and Girder Moments of Example 7 107
22. Shear Envelopes of Example 7 109
23. Distribution of Moment of Inertia of Columns of Example 7 111
24. Distribution of Moment of Inertia of Girders of Example 7 112
25. Normalized Moment of Inertia of Columns of Example 7 113
26. Normalized Moment of Inertia of Girders of Example 7. 114
27. Ratio of Stress to Allowable Stress of Columns of Example 7. 115
28. Ratio of Stress to Allowable Stress of Girders of Example 7. 116
29. Displacements at Floor Levels of Example 7 118
30. Optimum Weight of Unbraced Frame of Example 8 119
31. Column and Girder Moments of Example 8. 120
32. Shear Envelopes of Example 8. 122
33. Distribution of Moment of Inertia of Columns of Example 8 124
34. Distribution of Moment of Girders of Example 8. 125
35. Normalized Moment of Inertia of Columns of Example 8. 126
36. Normalized Moment of Inertia of Girders of Example 8. 127.
37. Ratio of Stress to Allowable Stress of Columns of Example 8 128
38. Ratio of Stress to Allowable Stress of Girders of Example 8. 129
39. Moments in Columns of Example 8. 130
40. Moments in Girders of Example 8 131
41. Distribution of Moment of Inertia of Columns of Example 9 133
42. Distribution of Moment of Inertia of Girders of Example 9 134
43. Normalized Moment of Inertia of Columins of Example $9 .$. 135
44. Normalized Moment of Inertia of Girders of Example 9 736
Figures Page
45. Ratio of Stress to Allowable Stress of Columns of Example 9.. 137
46. Ratio of Stress to Allowable Stress of Girders of Example 9 138
47. Moments in Columns of Example 9 139
48. Moments in Girders of Example 9 140
49. Shear Envelopes of Example 9 141
50. Displacements at Floor Levels of Example 9 142
51. Comparison of Optimum Design Weight of Example 9 143
52. 15-Story, Single-Bay, Single-Braced Frame of Example 10 146
53. Optimum Weights of Single-Braced Frame of Example 10 147
54. Contribution of Energy of Individual Modes to the Design of Example 10 148
55. Distribution of Moment of Inertia of Columns of Example 10.. 150
56. Distribution of Moment of Inertia of Girders of Example 10 151
57. Distribution of Areas of Bracings of Example 10. 152
58. Normalized Moment of Inertia of Columns of Example 10 153
59. Normalized Moment of Inertia of Girders of Example 10 154
60. Normalized Cross-sectional Areas of Bracings of Example 10.. 155
61. Ratio of Stress to Allowable Stress of Columns of Example 10. 156
62. Ratio of Stress to allowable stress of girders of Example 10. 157
63. Ratio of Stress to Allowable Stress of Bracings of Example 10158
64. Moments in Columns of Example 10 159
65. Moments in Girders of Example 10 160
66. Axial Forces in Bracings of Example 10 161
67. Displacements at Floor Levels of Example 10 162
68. 15-Story, Single-Bay, Double-Braced Frame of Example 11 163
Figures Page
69. Optimum Weights of Double-Braced Frame of Example 11 164
70. Contribution of Energy of Individual Modes to the Design of Example 11 165
71. Distribution of Moment of Inertia of Columns of Example 11 167
72. Distribution of Moment of Inertia of Girders of Example 11 168
73. Distribution of Areas of Bracings of Example 11 169
74. Normalized Moment of Inertia of Columns of Example 11 170
75. Normalized Moment of Inertia of Girders of Example 11 171
76. Normalized Cross-sectional Areas of Bracings of Example 11 172
77. Ratio of Stress to Allowable Stress of Columns of Example 11. 173
78. Ratio of Stress to Allowable Stress of Girders of Example 11. 174
79. Ratio of Stress to Allowable Stress of Bracings of Example 11 175
80. Moments in Columns of Example 11 176
81. Moments in Girders of Example 11 177
82. Axial Forces in Bracings of Example 11 178
83. Displacements at Floor Levels of Example 11 179
84. 15-Story, Single-Bay, K-Braced Frame of Example 12 180
85. Optimum Weights of K-Braced Frame of Example 12 182
86. Contribution of Energy of Individual Modes to the Design of Example 12 183
87. Distribution of Moment of Inertia of Columns of Example 12... 184
88. Distribution of Moment of Inertia of Girders of Example 12 185
89. Distribution of Areas of Bracings of Example 12. 186
90. Normalized Moment of Inertia of Columns of Example 12. 187
91. Normalized Moment of Inertia of Girders of Example 12 188
Figures Page
92. Normalized Cross-Sectional Areas of Bracings of Example 12... 189
93. Ratio of Stress to Allowable Stress of Columns of Example 12. 190
94. Ratio of Stress to Allowable Stress of Girders of Example 12. 191
95. Ratio of Stress to Allowable Stress of Bracings of Example 12 192
96. Moments in Columns of Example 12 193
97. Moments in Girders of Example 12 194
98. Axial Forces in Bracings of Example 12 195
99. Displacements at Floor Levels of Example 12 196
100. Comparison of Optimum Weights of Braced Systems of Example 13 197
101. Comparison of Moment of Inertia of Columns of Braced Systems of Example 13 199
102. Comparison of Moment of Inertia of Girders of Braced Systems of Example 13 200
103. Comparison of Areas of Bracings of Various Systems of
Example 13 201
104. Comparison of Normalized Moment of Inertia of Columns of Example 13 202
105. Comparison of Normalized Moment of Inertia of Girders of
Example 13. 203
106. Comparison of Normalized Bracing Areas of Example 13 204
107. Comparison of Normalized Stress of Columns of Example 13 205
108. Comparison of Normalized Stress of Girders of Example 13 206
109. Comparison of Normalized Stress of Bracings of Example 13 207
110. Comparison of Moments in Columns of Example 13. 208
111. Comparison of Moments in Girders of Example 13 207

List of Illustrations (continued)

Figures Page
112. Comparison of Axial Forces of Bracings of Example 13 210
113. Comparison of Floor Displacements of Example 13. 211
114. Postive Forces and Deformations of Typical Member 224
Tables Page
I. Design Results of Example 1 77
II. Design Results of Example 2 80
III. Structural Weight at Each Design Iteration of Example 3 86
IV. Design Results of Example 3 87
V. Final Design Results of Example 4 91
VI. Final Design Results of Example 5. 94
VII. Final Weights, Natural Periods, and Displacements of 15- Story Frames 104
VIII. Final Weights, Natural Periods, and Displacements of Example 9 144
IX. Numerical Illustration of Eigenvalues 231

```
    A
\mp@subsup{\vec{A}}{mi}{}= vector of fixed-end actions (moments and shears) caused
    by uniform load on member i
    a}\boldsymbol{i}=\mathrm{ compatibility matrix connecting the generalized coordinates
    of a structure and those of the members
    a
    B
    b = width of the wide-flange section
    b
    b
    C = seismic coefficient
    C}= viscous damping matrix of a structure in system coordinate
    c}= viscous damping matrix of a structure in normal coordinate
    ci}=\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ diagonal term of the viscous damping matrix }\underline{c
    CN}=\mathrm{ i total number of structural masses lumped on member i
    \underline { D } = \text { diagonal matrix containing the Duhamel integrals}
    D ( = ith diagonal term of the matrix D
    d = depth of the wide-flange section
dmin}=lower bound of the depth 
d max = upper bound of the depth d
    E = modulus of elasticity
    \vec{e}=unit vector
    e = exponential number
    Fi}=\mathrm{ design lateral force at level i
    F
    F
```

$$
\begin{aligned}
f(t)= & \text { time function } \\
g & =\text { gravity acceleration } \\
g_{j}(x)= & j^{\text {th }} \text { constraint function } \\
h_{i}= & \text { height of level } i \text { from the ground level } \\
h_{x}= & \text { height of level } x \text { from the ground level } \\
I= & \text { coefficient depending on the importance of the structure } \\
I_{0}= & \text { cross sectional moment of inertia } \\
J= & \text { set of design variables unconstrained by the lower bounds } \\
J_{0}= & \text { set of design variables constrained by the lower bounds } \\
K= & \text { factor depending on the type of structural system } \\
\underline{K}= & \underline{K}_{s}+\underline{K}_{g}, \text { stiffness matrix of a structure in system } \\
& \text { coordinates } \\
K_{g}= & \text { geometric stiffness matrix of a structure in system } \\
& \text { coordinates } \\
K_{s}= & \text { structural stiffness matrix of a structure in system } \\
& \text { coordinates } \\
\underline{K}_{s}= & \text { stiffness matrix of a structure in normal coordinates } \\
K_{i}= & i \text { th diagonal term of the matrix } k \\
L= & \text { length of a typical beam member } \\
L(x)= & \text { auxiliary function } \\
L_{i}, l_{i}= & \text { length of member } i \\
M= & M_{n}+M_{s}, \text { total mass matrix of a structure in system } \\
& \text { coordinates } \\
M_{n}= & \text { nonstructural mass matrix resulting from the superimposed } \\
& \text { in system coordinates }
\end{aligned}
$$

$$
\begin{aligned}
& M=\text { bending moment } \\
& \mathrm{m}=\text { number of members } \\
& \mathrm{m}=\text { mass matrix of a structure in normal coordinates } \\
& m_{i}=i^{\text {th }} \text { diagonal term of the matrix } \underline{m} \\
& N=\text { number of the active behavior constraints } \\
& N_{i}=\text { weight of nonstructural masses acting axially on member } i \\
& n=\text { number of the behavior constraints } \\
& n_{s}=\text { number of story levels } \\
& P_{i}=\text { total axial force on member } \mathbf{i} \\
& p=\text { forcing frequency based on Rayleigh quotient formula } \\
& \vec{Q}_{j}=\text { vector of unit load in the } j^{\text {th }} \text { direction and zero values } \\
& \text { for others } \\
& \vec{q}(t)=\text { displacement vector in normal coordinates } \\
& q_{i}(t)=i^{\text {th }} \text { term of the vector } \vec{q}(t) \\
& \vec{R}=\text { vector of static load or fixed-end moments and forces at } \\
& \text { the structural nodes } \\
& \vec{R}_{c}=\text { vector of actual joint loads } \\
& \vec{R}_{e}=\text { vector of equivalent joint loads } \\
& \vec{R}_{0}=\text { vector of the magnitude of dynamic loads } \\
& \vec{R}(t)=\text { vector of dynamic load referred to system coordinates } \\
& \vec{r}=\text { vector of combined displacements referred to system } \\
& \text { coordinates } \\
& \vec{r}(x)=\text { vector of static displacements measured from the undeformed } \\
& \text { position to the equilibrium position } \\
& \vec{r}(x, t)=\text { vector of dynamic displacements measured from the equilibrium } \\
& \text { position after deformation caused by static loads } \\
& \stackrel{\stackrel{\rightharpoonup}{r}}{r}(x, t)=\text { velocity vector associated with } \vec{r}(x, t)
\end{aligned}
$$

```
\ddot{r}}(x,t)=\mathrm{ acceleration vector associated with }\vec{r}(x,t
    \mp@subsup{\vec{r}}{g}{}(t)=vector of ground accelerations
        S = site resonance factor
        S
        \mp@subsup{S}{i}{\prime}}=\mathrm{ vector of the internal forces on member i
        s
        s}\mp@subsup{i}{i}{= Lagrange multiplier associated to the i}\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ design variable
        T = building period
        T
        t = time
        tf}= flange thicknes
        tw
        U = strain energy
        u
        direction
u}(x,t)=\mathrm{ dynamic displacement constraint function for the j}\mp@subsup{j}{}{\mathrm{ th}
            direction
        V = shear
    vo
\mp@subsup{\vec{v}}{\mathfrak{i}}{}}(x)=\mathrm{ displacement vector of member i referred to member
            coordinates
        W = total weight of a building
        W(x) = objective function
        w = uniform load
    w
    w
    x}=\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ design variable
```

$$
\begin{aligned}
& x_{i}^{0}=\text { lower bound on the } i^{\text {th }} \text { design variable } \\
& x_{h}(t)=\text { specific horizontal ground acceleration } \\
& x_{v}(t)=\text { specific vertical ground acceleration } \\
& y_{j}(x)=j^{\text {th }} \text { behavior constraint } \\
& Z=a \text { zone coefficient } \\
& z(x)=\text { measuring function of static stiffness of a structure } \\
& z(x, t)=\text { measuring function of dynamic stiffness of a structure } \\
& \alpha_{j}=i^{\text {th }} \text { relative design variable } \\
& \beta_{i}=\text { relative damping ratio for the } i^{\text {th }} \text { mode } \\
& \delta=\text { deflection at member end } \\
& \eta_{i}=\text { ratio of cross sectional area to moment of inertia for } \\
& \text { member } \mathbf{i} \\
& \theta=\text { rotation at member end } \\
& \gamma_{i}=i^{\text {th }} \text { modal participation factor } \\
& \Lambda=\text { scaling factor } \\
& \lambda_{j}=j^{\text {th }} \text { Lagrange multiplier } \\
& \vec{\lambda}=\text { vector of Lagrange multipliers } \\
& \rho_{j}=\text { mass density of member } \mathbf{i} \\
& \vec{\sigma}_{i}=\text { vector of stresses on member } i \\
& \tau=\text { time variable for integration } \\
& \vec{\phi}_{i}=i^{\text {th }} \text { normal mode vector } \\
& \Phi=\text { matrix of normal modes } \\
& \Psi_{i}=1 / m_{i} \omega_{i} \\
& \underline{\Omega}=\text { diagonal matrix containing the square of the natural } \\
& \text { frequencies } \\
& \omega_{i}=i^{\text {th }} \text { undamped natural frequency } \\
& \omega_{d i}=i^{\text {th }} \text { damped natural frequency }
\end{aligned}
$$

I. INTRODUCTION

A. OBJECTIVES

It has long been recognized that there is an urgent need for the development of more efficient computer programs for seismic structural design. The methods for these programs should be more rational and reliable than those that are now commonly used and based on conventional trial and error processes. Recent progress in computer technology has, however, led to the development of some sophisticated computer programs that can be used to analyze complex structures. When these programs are used for design, the relative stiffnesses of the constituent members must first be assumed. If these preliminary stiffnesses are not correctly determined, in spite of the program's sophistication, repeated analyses can only yield an improved design. Apparently, such use does not guarantee an efficient design; this is particularly true in the case of aseismic designs. Current electronic applications are actually based on the conventional designs, and more art than science is required to use them.

Recent studies of the response behavior of plane structures subjected to combined horizontal and vertical earthquake motions indicate that the inclusion of the vertical ground motion can significantly cause an increase in the ductility requirement of some members and the displacement response of an entire system. ${ }^{8,9}$ The most recent analytical studies of the response behavior of three-dimensional braced and unbraced structures with and without floor slabs subjected to three-dimensional components of ground motions reveal that the interaction of three earthquake components remarkably increases both
the internal forces and moments and that the increase in some members of a system can be several times greater than that resulting from just one horizontal earthquake component. ${ }^{12,13}$

The multibay and multistory plane and space building systems, which were used in the study, were based on the conventional design of selecting the relative stiffnesses of the constituent members of the individual systems. The various stiffness distributions of a system can induce different response behavior. The effect of the interaction of ground motions on the structural response is definitely critical, but the influence on the structural parameters is not necessarily unique.

In this report, primary objectives are 1) to develop an efficient optimization method and a computer program for an automated design of typical bays of 3 -dimensional symmetric structural systems (plane structures) with and without bracings that can be used for both academic and industrial purposes, 2) to determine the influence of interacting earthquake on relative stiffness requirements and overall stiffness distributions at critical regions as well as on the entire system of various structures, 3) to evaluate the effectiveness of various bracing systems in a seismic structural design by observing the final design results of the structural weight, 4) to study the adequacy of seismic force requirement in the Uniform Building Code (UBC), and 5) to establish pilot work for further studying the optimum design and assessment of three-dimensional unsymmetric building systems for code provisions and parametric multicomponent earthquake motion.

B. LITERATURE REVIEW

In the past decade, a considerable amount of literature has been published in the area of optimum structural design. The
increasing number of publications corresponds closely to the rapid demand for economical and reliable structural designs in virtually all fields of endeavor. Most of the designs have been focused on minimum weight structures for static loads, much less has been published on optimum structural design for dynamic forces, and very little has been done on the optimum design of seismic structures. This is due to the fact that dynamic stresses and responses are parametric in time and can have discontinuous first partial derivatives with respect to the design variables. In addition, the seismic excitations are random in nature. Thus, the optimum design of dynamic and seismic structures can become extremely complex and difficult.

A literature review of structural optimization can be at least classified into three groups on the basis of 1) loadings and constraints, 2) types of structures, and 3) optimization methods. The boundaries of these classes are quite nebulous because there is some overlap. Nevertheless, a brief review of each is given, and typical references are cited.

The first group can be divided into four categories of a) static loads and constraints, ${ }^{2,10,24,31,44} \mathrm{~b}$) dynamic, seismic loads and constraints, $3,7,10,11,14,17,25,37,40,46,47,49,51$ c) aeroelastic requirements, ${ }^{48}$ and d) probabilistic approach and nonconservative systems. 5 The second group can be divided into a) trusses, $31,38,39,41$ b) frames, $2,4,5,7,31,45$ c) plates and shells. $5,19,48$ The third group includes a) mathematical programming, $1,2,3,4,17,26$ b) optimization criteria, ${ }^{10,11,15} \mathrm{c}$) optimal control theory, ${ }^{48}$ and d) dynamic programming. ${ }^{5,48}$ These references are typical but not exclusive.

In general, most of the optimization techniques have some limitations and are best suited for certain types of problems. The technique that is based on energy distribution has been proven to be effective for large structural systems in aerospace engineering. ${ }^{46}$ Recently, Venkayya and Cheng ${ }^{47}$ and Cheng and his associates 10,11 extended the optimization algorithm for structures subjected to earthquake motions. Previous studies of optimum seismic structural design are mostly based on the linearization technique and static equivalent seismic forces for simple structures and shear buildings. ${ }^{37,49}$ Cheng and Botkin ${ }^{4,7}$ studied the feasible direction technique for the design of tall buildings and large frameworks. They included the geometric nonlinearity of the $P-\Delta$ effect in their work. The technique was also studied by Ray et al. ${ }^{29}$ and Walker and Pister ${ }^{50}$ for optimal elastic structures. These references among others mainly deal with feasible seismic structural designs for which the feasible domain is an expression of the standards or code requirements; however, another distinct branch in seismic resistant design is associated with the problem of minimizing the total cost with a design, that is maximization of the total benefit minus the total cost; the merit function includes the building cost and the expected damage, $20,21,27,32$ but the constraints do not include engineering code requirements.

The development of optimality criterion methods 28,44 in the early 70's is considered to be a great contribution in the field of engineering optimization, because they offer major improvements over any other optimization methods currently in vogue. The significant advantage of the methods is that the number of iterations required to converge on an optimum (or pseudo-optimum) design is largely
independent of the number of variables in the problem, that is, in fact, a downfall of pure mathematical programming. Thus, the optimality criteria have been extended to this research work. C. SCOPE OF THE REPORT

A computer program ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures), based on the IBM 370/168 computer has been developed for six static and six dynamic loading conditions for multibay and multistory plane steel structures. The static loads can be uniform or concentrated, and the dynamic excitations can be applied as time-dependent forces, the ground motions of seismic or shock waves, and the equivalent seismic lateral forces recommended by the Uniformed Building Code. The second-order P- \triangle effect resulting from structural and nonstructural weight as well as vertical ground motion is included for the design of braced and unbraced structural systems. The constituent members of a system are made of either built-up sections or hot-rolled wide flange sections. The constraints considered herein are stresses (axial, bending, and shear), displacements, natural frequencies, maximum differences between relative stiffnesses, and upper and lower bounds of cross sections. The objective is to obtain the minimum weight of a structural system.

The contents of the following chapters of this report are outlined below.

Chapter II presents a detailed description of the method used to analyze a multi-degree-of-freedom system subjected to multicomponent ground motions and static loads. A closed form of integration for seismic and wind excitations is also included.

Chapter III describes the techniques used for transforming uniform loads into fixed-end action and of formulating the strain erergy of uniformly loaded members. The use of the response spectrum method and the UBC equivalent seismic forces is also presented.

In Chapter IV, the general problem of optimization and the KuhnTucker conditions of optimality are briefly introduced, and then the optimality criteria and the calculation of the Lagrange multipliers for multiple constraints are discussed in detail.

Chapter V contains the detailed derivations of the behavior constraints of stress and displacement for both static and dynamic cases and the constraint of natural frequencies.

The details of the cross-sectional properties of both built-up sections and hot-rolled wide-flange sections are discussed in Chapter VI.

Chapter VII includes the numerical procedure for deriving static and seismic structural designs.

Numerical design results are given in Chapters VIII and IX. Extensive studies of 15 -story building systems are presented in Chapter IX.

Chapter X reviews the work and lists the conclusions based on the results.

General structural systems of plane frameworks with and without bracing members are formulated on the basis of the displacement method and the consistant mass technique. ${ }^{6}$ The constituent members are prismatic between nodes and may have bending and axial deformations. Although the structures considered herein are linear, the second-order effect of the axial loads on the columns is included. The structural girders are modeled so that they have either three nodes at the midpoint and both ends of a member or two nodes at both ends of a member. The typical stiffness, mass, and the second-order geometric stiffness matrices of a constituent member, i, are given in Appendix A.

In this chapter, the motion equation for the combined action of the static load and multicomponent ground motions is established first, then the solutions of the motion equation are found in a closed form as well as in a piece-wise linear form, and the responses of displacements and internal stresses and the eigensolutions are finally noted.

A. EQUATIONS OF MOTION FOR STATIC LOADS AND MULTICOMPONENT GROUND

EXCITATIONS

The equations of motion for a multidegree-of-freedom structural system that is subjected to both static load and multicomponent ground motions can be expressed as

$$
\begin{gather*}
\left(\begin{array}{l}
M_{n} \\
\left.+\underline{M_{s}}\right) \overrightarrow{\dot{r}}(x, t)+\underline{C} \overrightarrow{\dot{r}}(x, t)+\left(\underline{K_{s}}-\underline{K_{g}}\right)(\vec{r}(x, t)+\vec{r}(x)) \\
=-\left(M_{n}+M_{s}\right) \overrightarrow{\dot{r}}_{g}(t)+\vec{R}
\end{array} .\right.
\end{gather*}
$$

in which

$$
\begin{align*}
& M_{n}=\text { nonstructural mass matrix resulting from } \\
& \text { the superimposed weight, } \\
& M_{S}=\text { structural mass matrix resulting from the } \\
& \text { weight of the structural members, } \\
& \underline{C}=\text { viscous damping matrix, } \\
& K_{S}=\text { structural stiffness matrix, } \\
& K_{g}=\text { geometric stiffness matrix, } \\
& \overrightarrow{\dot{r}}(x, t), \overrightarrow{\dot{r}}(x, t), \vec{r}(x, t)=\text { acceleration, velocity, and displacement } \\
& \text { vectors of system coordinates measured from } \\
& \text { the equilibrium position after deformation } \\
& \text { caused by static loads, } \\
& \vec{r}(x)=\text { static displacement vector measured from } \\
& \text { the undeformed position to the equilibrium } \\
& \text { position, } \\
& \overrightarrow{\vec{r}}_{g}(t)=\text { vector of ground accelerations, and } \\
& \vec{R}=\text { vector of static loads or fixed-end moments } \\
& \text { and forces at the structural nodes. } \\
& \text { Let the generalized coordinates of the } i^{\text {th }} \text { member and the structure } \\
& \text { be related in terms of } \\
& \vec{v}_{i}(x)=a_{i} \vec{r}(x), \tag{2.1a}\\
& \text { in which } \vec{v}_{i}(x) \text { is the displacement vector of the } i^{\text {th }} \text { member, and } a_{i} \text { is } \\
& \text { the compatibility matrix connecting the generalized coordinates of the } \\
& \text { member and those of the structural system. Then the system } \\
& \text { matrices in Eq. (2.1) can be obtained by assembling the member matrices } \\
& \text { as follows: }
\end{align*}
$$ $i^{\text {th }}$

$$
\begin{align*}
& \underline{M_{s}}=\sum_{i=1}^{m} \underline{a_{i}} \underline{M_{s i}} a_{i} \tag{2.1b}\\
& \underline{K_{s}}=\sum_{i=1}^{m} a_{i}^{\top} \underline{K_{s i}} a_{i} \tag{2.1c}\\
& K_{g}=\sum_{i=1}^{m} P_{i} \underline{a_{i}} K_{g i} \underline{a_{i}}, \tag{2.1d}
\end{align*}
$$

in which m is the total number of the constituent members of a system, and $M_{s i}, K_{s i}$, and $K_{g i}$ are the mass, structural stiffness, and geometric stiffness matrices of the $i^{\text {th }}$ member respectively, and

$$
\begin{equation*}
P_{i}=N_{i}+\sum_{k=1}^{C N_{i}} \rho_{k} A_{k} \ell_{k} \tag{2.1e}
\end{equation*}
$$

in which P_{i} is the total axial force, N_{i} is the weight of nonstructural masses acting axially on the $i^{\text {th }}$ member, and CN_{i} is the total number of structural masses lumped on the $i^{\text {th }}$ member. A typical structure is sketched in Fig. 1 for which typical P's are shown below:

$$
\begin{aligned}
P_{5}= & \frac{1}{2}\left[w_{1} \ell_{1}+w_{3} \ell_{3}\right]+\frac{1}{2} \rho\left[A_{1} \ell_{1}+A_{5} \ell_{5}+A_{8} \ell_{8}+A_{3} \ell_{3}+A_{8} \ell_{8}\right], C N_{5}=5, \\
P_{6}= & \frac{1}{2}\left[w_{1} \ell_{1}+w_{2} \ell_{2}+w_{3} \ell_{3}+w_{4} \ell_{4}\right] \\
& +\frac{1}{2} \rho\left[A_{1} \ell_{1}+A_{2} \ell_{2}+A_{6} \ell_{5}+A_{9} \ell_{9}+A_{3} \ell_{3}+A_{4} \ell_{4}+A_{9} \ell_{9}\right], C N_{6}=7, \\
P_{7}= & \frac{1}{2}\left[w_{2} \ell_{2}+w_{4} \ell_{4}\right]+\frac{1}{2} \rho\left[A_{2} \ell_{2}+A_{7} \ell_{7}+A_{10} \ell_{10}+A_{4} \ell_{4}+A_{10} \ell_{10}\right], \\
& C N_{7}=5,
\end{aligned}
$$

Figure 1. Typical Diagram for the Axial Forces of P- Effect.

$$
\begin{aligned}
& P_{8}=\frac{1}{2} w_{3} \ell_{3}+\frac{1}{2} \rho\left[A_{3} \ell_{3}+A_{5} \ell_{5}\right], C N_{8}=2, \\
& P_{9}=\frac{1}{2}\left[w_{3} \ell_{3}+w_{4} \ell_{4}\right]+\frac{1}{2} \rho\left[A_{3} \ell_{3}+A_{4} \ell_{4}+A_{9} \ell_{9}\right], C N_{9}=3, \\
& P_{10}=\frac{1}{2} w_{4} \ell_{4}+\frac{1}{2} \rho\left[A_{4} \ell_{4}+A_{10} \ell_{10}\right], C N_{10}=2 .
\end{aligned}
$$

M_{n} can be similarly established as M_{s} for uniformly distributed nonstructural masses and may include lumped masses associated with the concentrated superimposed weight.

The static displacements, $\vec{r}(x)$, can be obtained directly from the static equilibrium equation

$$
\begin{equation*}
\vec{r}(x)=K^{-1} \vec{R}, \tag{2.2}
\end{equation*}
$$

in which

$$
\begin{equation*}
\underline{K}=K_{S}-K_{g} . \tag{2.3}
\end{equation*}
$$

In Eq. (2.3), the negative sign indicates that the geometric stiffness matrix is due to the compressive forces only. The dynamic displacements, $\vec{r}(x, t)$, must be solved by employing the dynamic equilibrium equations, which can be derived from Eq. (2.1) by using

$$
\begin{equation*}
\underline{M} \overrightarrow{\dot{r}}(x, t)+\underline{C} \overrightarrow{\vec{r}}(x, t)+\underline{K} \vec{r}(x, t)=-\underline{M}_{g}(t), \tag{2.4}
\end{equation*}
$$

in which

$$
\begin{equation*}
M=M_{n}+M_{s} . \tag{2.5}
\end{equation*}
$$

Let the system coordinates in Eq. (2.4) be expressed separately in
terms of horizontal, vertical, and rotational directions, then

$$
M\left\{\begin{array}{l}
M
\end{array} \begin{array}{l}
\vec{r}_{h}(x, t) \tag{2.6}\\
\vec{r}_{v}(x, t) \\
\vec{r}_{\theta}(x, t)
\end{array}\right\}+\underline{C}\left\{\begin{array}{l}
\vec{r}_{h}(x, t) \\
\overrightarrow{\dot{r}}_{v}(x, t) \\
\vec{r}_{\theta}(x, t)
\end{array}\right\}+\underline{K}\left\{\begin{array}{c}
\vec{r}_{h}(x, t) \\
\vec{r}_{v}(x, t) \\
\vec{r}_{\theta}(x, t)
\end{array}\right\}=-\underline{M}\left\{\begin{array}{c}
\overrightarrow{\dot{r}}_{g h}(t) \\
\overrightarrow{\dot{r}}_{g v}(t) \\
\overrightarrow{\dot{r}}_{g \theta}(t)
\end{array}\right\},
$$

in which the subscripts h, v, and θ indicate the degree-of-freedom corresponding to horizontal, vertical, and rotational movement respectively.

By neglecting the effect of rotational ground motion, one may rewrite the horizontal and vertical ground accelerations in the following forms:

$$
\begin{equation*}
\overrightarrow{\dot{r}}_{g h}(t)=\vec{e}_{x_{h}}(t) \tag{2.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{\dot{r}}_{g v}(t)=\vec{e}_{v}(t) \tag{2.7b}
\end{equation*}
$$

in which $x_{h}(t)$ and $x_{v}(t)$ are the functions of the specific horizontal and vertical ground accelerations, respectively, and \vec{e} is a unit vector.

The substitution of Eqs. (2.7a,b) for the right side of Eq. (2.6)
yields

$$
\underline{M} \overrightarrow{\dot{r}}(x, t)+\underline{C \vec{r}}(x, t)+\underline{K} \vec{r}(x, t)=-\underline{M}\left\{\begin{array}{l}
\vec{e} \tag{2.8}\\
0 \\
0
\end{array}\right\} x_{h}(t)-\underline{M}\left\{\begin{array}{l}
0 \\
\vec{e} \\
0
\end{array}\right\} x_{v}(t) .
$$

Equation (2.8) represents a set of coupling second-order differential equations. These equations can be uncoupled by using the modal superposition technique, for which the damping matrix \underline{C} can be expressed in terms of mass and stiffness matrices as

$$
\begin{equation*}
\underline{C}=a_{0} \underline{M}+b_{0} \underline{K}, \tag{2.9}
\end{equation*}
$$

in which a_{0} and b_{0} are determined by employing the damping coefficient and the natural frequency of each mode to be used.

The uncoupling procedures require coordinate transformations.
This can be done by changing the system coordinates to normal coordinates and the eigensolutions of the eigenvalues and eigenvectors. The eigensolutions can be obtained first by employing Eq. (2.10),

$$
\begin{equation*}
\underline{K} \vec{\phi}_{i}=\omega_{i}^{2} \underline{M}_{i}, \tag{2.10}
\end{equation*}
$$

in which ω_{i} is the $i^{\text {th }}$ undamped natural frequency associated to the mode shape $\vec{\phi}_{i}$. Then the coordinate transformation can be expressed as

$$
\begin{equation*}
\vec{r}(x, t)=\Phi \vec{q}(t), \tag{2.11}
\end{equation*}
$$

in which Φ represents the eigenvector of each mode arranged in columns, and $\vec{q}(t)$ denotes the displacement vector associated with the normal coordinates. Thus, Eq. (2.8) becomes

$$
\underline{m} \overrightarrow{\dot{q}}(t)+\underline{c} \overrightarrow{\dot{g}}(t)+\underline{k} \vec{q}(t)=-\underline{\Phi} \underline{T}_{M}^{M}\left\{\begin{array}{l}
\vec{e} \tag{2.12}\\
0 \\
0
\end{array}\right\} x_{h}(t)-\underline{\Phi}^{T} M\left\{\begin{array}{l}
0 \\
\vec{e} \\
0
\end{array}\right\} x_{v}(t)
$$

In Eq. (2.12), $\underline{m}, \underline{c}$, and \underline{k} are diagonal matrices and are represented by

$$
\begin{align*}
& \underline{m}=\Phi^{\top} \underline{M} \Phi \tag{2.13a}\\
& \underline{c}=\Phi^{\top} \underline{C} \Phi, \tag{2.13b}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{k}=\Phi^{T} \underline{K} \Phi, \tag{2.13c}
\end{equation*}
$$

By employing Eqs. (2.13a) and (2.13c), one can rewrite Eq. (2.10) as

$$
\begin{equation*}
\underline{k}=\underline{m} \Omega, \tag{2.14}
\end{equation*}
$$

in which $\underline{\Omega}=\left[\omega_{i}^{2}\right]$ as a diagonal matrix containing the square of the natural frequencies.

The $i^{\text {th }}$ equation of the uncoupled system of Eq. (2.12) can now be expressed as

$$
\begin{align*}
& m_{i} \ddot{q}_{i}(t)+c_{i} \dot{q}_{i}(t)+k_{i} q_{i}(t)= \\
& -\vec{\phi}_{i}^{T}-\left\{\begin{array}{l}
\vec{e} \\
0 \\
0
\end{array}\right\} x_{h}(t)-\vec{\phi}_{i}^{T}-\left\{\begin{array}{l}
0 \\
\vec{e} \\
0
\end{array}\right\} x_{v}(t) . \tag{2.15}
\end{align*}
$$

From Eq. (2.14),

$$
\begin{equation*}
k_{i}=m_{i} \omega_{i}^{2} \tag{2.16}
\end{equation*}
$$

Also, let

$$
\begin{equation*}
\beta_{i}=\frac{c_{i}}{2 m_{i}{ }^{\omega} \boldsymbol{i}} . \tag{2.17}
\end{equation*}
$$

Then Eq. (2.15) becomes

$$
\begin{align*}
& \ddot{q}_{i}(t)+2 \beta_{i} \omega_{i} \dot{q}_{i}(t)+\omega_{i}^{2} q_{i}(t)= \\
& \left.-\frac{1}{m_{i}} \vec{\phi}_{i}^{T}-\left\{\begin{array}{l}
\vec{e} \\
0 \\
0
\end{array}\right\} x_{h}(t)-\frac{1}{m_{i}} \vec{\phi}_{i}^{\top}-\begin{array}{l}
0 \\
\vec{e} \\
\vec{e}
\end{array}\right\} x_{v}(t) . \tag{2.18}
\end{align*}
$$

Equation (2.18) represents the motion equation for a single degree-of-freedom system having a frequency, ω_{i}, a mass, m_{j}, and a relative viscous damping ratio, β_{i}, and which is subject to multicomponent horizontal and vertical ground motions. B. CLOSED FORM SOLUTION FOR GROUND MOTION OR WIND EXCITATIONS

The solution of the motion equation shown in Eq. (2.18) for multicomponent ground motions can be obtained by using the Laplace transformation. Let Eq. (2.18) be rewritten as

$$
\begin{equation*}
\ddot{q}_{i}(t)+2 \beta_{i} \omega_{i} \dot{q}_{i}(t)+\omega_{i}^{2} q_{i}(t)=-\frac{\gamma_{h i}}{m_{i}} x_{h}(t)-\frac{\gamma_{v i}}{m_{i}} x_{v}(t), \tag{2.19}
\end{equation*}
$$

in which

$$
\begin{align*}
& \gamma_{h i}=\vec{\phi} T_{i} M\left\{\begin{array}{l}
\vec{e} \\
0 \\
0
\end{array}\right\} \tag{2.20a}\\
& \gamma_{v i}=\vec{\phi}_{i}^{\top} M\left\{\begin{array}{l}
0 \\
\vec{e} \\
0
\end{array}\right\} . \tag{2.20b}
\end{align*}
$$

The terms $\gamma_{h i}$ and $\gamma_{v i}$ are called modal participation factors and are associated with the $i^{\text {th }}$ mode.

By using the Laplace transformations with the initial conditions of $q_{i}(0)=0$ and $\dot{q}_{j}(0)=0$, one may write

$$
\begin{align*}
& \ddot{q}_{i}(t)=s{ }^{2} \bar{q}_{i}(s)-s q_{i}(0)-\dot{q}_{i}(0)=s{ }^{2} \bar{q}_{i}(s), \tag{2.21a}\\
& \dot{q}_{i}(t)=s \bar{q}_{i}(s)-q_{i}(0) \tag{2.21b}\\
& q_{i}(t)=\bar{q}_{i}(s) \tag{2.21c}
\end{align*}
$$

and

$$
\begin{equation*}
c_{1} x_{h}(t)+c_{2} x_{v}(t)=c_{1} F_{h}(s)+c_{2} F_{v}(s) \tag{2.21d}
\end{equation*}
$$

in which c_{1} and c_{2} are constants and F^{\prime} s are functions in the Laplace transformation coordinates. Thus, Eq. (2.19) becomes

$$
\begin{equation*}
\left(s^{2}+2 \beta_{i} \omega_{i} s+\omega_{i}^{2}\right) \bar{o}_{i}(s)=-\frac{\gamma_{h i}}{m_{i}} F_{h}(s)-\frac{\gamma_{v i}}{m_{i}} F_{v}(s) \tag{2.22}
\end{equation*}
$$

Let

$$
\begin{equation*}
a=-\beta_{i} \omega_{i}-\omega_{i} \sqrt{1-\beta_{i}^{2}} \bar{i} \tag{2.23a}
\end{equation*}
$$

and

$$
\begin{equation*}
b=-\beta_{i} \omega_{i}+\omega_{i} \sqrt{1-\beta_{i}^{2}} i, \tag{2.23b}
\end{equation*}
$$

in which $\overline{\mathfrak{i}}$ is an imaginary number.
Substitute Eqs. (2.23a,b) for their equivalents in Eq. (2.22)
and solve for $\bar{q}_{j}(s)$ as follows:

$$
\begin{equation*}
\bar{q}_{i}(s)=\frac{1}{(s-a)(s-b)}\left[-\frac{\gamma_{h i}}{m_{i}} F_{h}(s)-\frac{\gamma_{h i}}{m_{i}} F_{v}(s)\right] . \tag{2.24}
\end{equation*}
$$

By employing

$$
\begin{equation*}
\frac{1}{(s-a)(s-b)}=\frac{e^{b t}-e^{a t}}{b-a} \quad a \neq b \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
F(s) G(s)=\int_{0}^{t} F(\tau) G(t-\tau) d \tau \tag{2.26}
\end{equation*}
$$

in which F and G are functions and τ is the time variable for integration, Eq. (2.24) can now be transformed back to its former condition as follows:

$$
\begin{align*}
q_{i}(t)= & \frac{1}{b-a}\left[-\frac{\gamma_{h i}}{m_{i}}\left\{\int_{0}^{t} x_{h}(\tau) e^{b(t-\tau)} d \tau-\int_{0}^{t} x_{h}(\tau) e^{a(t-\tau)} d \tau\right\}\right. \\
& \left.-\frac{\gamma_{v i}}{m_{i}}\left\{\int_{0}^{t} x_{v}(\tau) e^{b(t-\tau)} d \tau-\int_{0}^{t} x_{v}(\tau) e^{a(t-\tau)} d \tau\right\}\right] \tag{2.27}
\end{align*}
$$

By substituting a and b of Eqs. (2.23a,b) for their equivalents in Eq. (2.27) and using

$$
\begin{align*}
& \omega_{d i}=\omega_{i} \sqrt{1-\beta_{i}^{2}} \tag{2.28a}\\
& e^{i \omega_{d i}(t-\tau)}=\cos \omega_{d i}(t-\tau)+\bar{i} \sin \omega_{d i}(t-\tau) \tag{2.28b}
\end{align*}
$$

and

$$
\begin{equation*}
e^{-\bar{i} \omega_{d i}(t-\tau)}=\cos \omega_{d i}(t-\tau)-\bar{i} \sin \omega_{d i}(t-\tau) \tag{2.28c}
\end{equation*}
$$

the closed form solution of Eq. (2.19) can finally be obtained:

$$
\begin{align*}
q_{i}(t)= & -\frac{\gamma_{h i}}{m_{i} \omega_{d i}} \int_{0}^{t} x_{h}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau \\
& -\frac{\gamma_{v i}}{m_{i} \omega_{d i}} \int_{0}^{t} x_{v}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau \tag{2.29}
\end{align*}
$$

This proves that the dynamic response of a structural system subject to multicomponent earthquake motions can be obtained, without any secondorder effect, by using the superposition of the response associated with each individual component.

If the structure is subjected to both static loads and dynamic forces, such as wind excitations, $\vec{R}(t)$, the motion equations can be similarly established as

$$
\begin{equation*}
M \vec{r}(x, t)+\underline{C} \overrightarrow{\dot{r}}(x, t)+\underline{K}(\vec{r}(x, t)+\vec{r}(x))=\vec{R}(t)+\vec{R}, \tag{2.30}
\end{equation*}
$$

in which

$$
\begin{equation*}
\vec{R}(t)=\vec{R}_{0} f(t) \tag{2.31}
\end{equation*}
$$

Apparently, the solution associated with the dynamic response of Eq. (2.30) becomes

$$
\begin{equation*}
q_{i}(t)=\frac{\gamma_{i}}{m_{i} \omega_{d i}} \int_{0}^{t} f(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau \tag{2.32}
\end{equation*}
$$

For this case, the modal participation factor in Eq. (2.32) is

$$
\begin{equation*}
\gamma_{i}=\vec{\phi}_{i}^{T} \vec{R}_{0} \tag{2.33}
\end{equation*}
$$

C. NUMERICAL SOLUTION FOR SEISMIC OR WIND EXCITATIONS

It is apparent that the integration of Eqs. (2.29) and (2.32) can be evaluated exactly if the functions, $x_{h}(\tau), x_{v}(\tau)$, and $f(\tau)$, are the mathematical expressions suitable for integration. For seismic or wind excitations, these functions are not continuous expressions, for which the integration must be performed numerically.

Let us consider a typical discontinuous forcing function of an earthquake record. For a small portion of a time interval, $\Delta t=t_{2}$ - t_{1}, the seismic excitation can be represented linearly as shown in Fig. 2. For simplicity, let Eq. (2.19) consist of one earthquake component, $x_{g}(t)$, and be expressed as

$$
\begin{equation*}
\ddot{q}_{i}(t)+2 \beta_{i} \omega_{i} \dot{q}_{i}(t)+\omega_{i}^{2} q_{i}(t)=-\frac{\gamma_{i}}{m_{i}} x_{g}(t) \tag{2.34}
\end{equation*}
$$

In order to include the effect of the initial conditions at any time, t, the solution associated with the initial conditions can be

Figure 2. Arbitrary Forcing Function for Dynamic and Seismic Excitations.
added to the solution of Eq. (2.29) as shown in Eq. (2.35), which can be obtained directly by using the Laplace transforms:

$$
\begin{align*}
q_{i}(t) & =\frac{\gamma_{i}}{m_{i}}\left[e^{-\beta_{i} \omega_{i} t}\left(c_{i} \cos \omega_{d i} t+c_{2} \sin \omega_{d i} t\right)\right. \\
& \left.+\frac{1}{\omega_{d i}} \int_{0}^{t} x_{g}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau\right] \tag{2.35}
\end{align*}
$$

in which c_{1} and c_{2} are constants to be evaluated from the initial conditions at a given time.

Because the function of the ground excitation is assumed to be linear during any time interval, t_{1} and t_{2}, as shown in Fig. 2, it can be expressed as

$$
\begin{equation*}
x_{g}(t)=A+B t \tag{2.36}
\end{equation*}
$$

in which

$$
\begin{equation*}
A=x_{g}\left(t_{1}\right) \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{x_{g}\left(t_{2}\right)-x_{g}\left(t_{1}\right)}{t_{2}-t_{1}} \tag{2.38}
\end{equation*}
$$

By substituting Eq. (2.36) for its equivalent in Eq. (2.35) and considering only the second term in the brackets on the right side of the equation, one can obtain

$$
\begin{align*}
& \frac{1}{\omega_{d i}} \int_{0}^{t} x_{g}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau=\frac{e^{-\beta_{i} \omega_{i}}{ }^{t} \sin \omega_{d i} t}{\omega_{d i}} \\
& \int_{0}^{t}(A+B \tau) e^{\beta_{i} \omega_{i} \tau} \cos \omega_{d i} \tau d \tau-\frac{e^{-\beta_{i} \omega_{i} t} \cos \omega_{d i} t}{\omega_{d i}} \\
& \int_{0}^{t}(A+B \tau) e^{\beta_{i} \omega_{i} \tau} \sin \omega_{d i} \tau d \tau . \tag{2.39}
\end{align*}
$$

The integrals of Eq. (2.39) become

$$
\begin{equation*}
\frac{1}{\omega_{d i}} \int_{0}^{t} x_{g}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau=\frac{A+B t}{\omega_{i}^{2}}-\frac{2 \beta_{i} B}{\omega_{i}^{3}} . \tag{2.40}
\end{equation*}
$$

Thus, the solution of Eq. (2.35) is

$$
\begin{align*}
q_{i}(t) & =\frac{\gamma_{i}}{m_{i}}\left[e^{-\beta_{i} \omega_{i} t}\left(c_{1} \cos \omega_{d i} t+c_{2} \sin \omega_{d i} t\right)\right. \\
& \left.+\frac{A+B t}{\omega_{i}^{2}}-\frac{2 \beta_{i} B}{\omega_{i}^{3}}\right] \tag{2.41}
\end{align*}
$$

Differentiating Eq. (2.41) with respect to time yields the velocity, $\dot{q}_{i}(t)$, and acceleration, $\ddot{q}_{j}(t)$, at any time, t, during the linear forcing function; $q_{i}(t)$ and $\dot{q}_{j}(t)$ are then used to evaluate c_{1} and c_{2} by employing the following initial conditions at time t_{1} :

$$
\begin{equation*}
q_{i}(0)=q_{i}\left(t_{1}\right) \tag{2.42a}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{q}_{i}(0)=\dot{q}_{i}\left(t_{1}\right) . \tag{2.42b}
\end{equation*}
$$

By substituting Eqs. (2.42a,b) respectively into Eq. (2.41) and its associated velocity equation and then solving for c_{1} and c_{2}, one can find that

$$
\begin{equation*}
c_{1}=q_{i}\left(t_{1}\right)-\frac{A}{\omega_{i}^{2}}+\frac{2 \beta_{i} B}{\omega_{i}^{3}} \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\frac{1}{\omega_{d i}}\left\{\dot{q}_{i}\left(t_{1}\right)+\beta_{i} \omega_{i} q_{i}\left(t_{1}\right)-\frac{\beta_{j} A}{\omega_{i}}+\frac{\left(2 \beta_{j}^{2}-1\right) B}{\omega_{i}^{2}}\right\} . \tag{2.44}
\end{equation*}
$$

Consequently, the modal response at any time, t, within the interval of time, t_{1} and t_{2}, can be computed by substituting c_{1} and c_{2} in Eqs. (2.43) and (2.44) for their equivalents in Eq. (2.41) as follows:

$$
\begin{align*}
q_{i}(t) & =\frac{\gamma_{i} e^{-\beta_{i} \omega_{i} t}}{m_{i}}\left[\left\{q_{i}\left(t_{1}\right)-\frac{A}{2}+\frac{2 \beta_{i} B}{\omega_{i}^{3}}\right\} \cos \omega_{d i} t+\frac{1}{\omega_{d i}}\left\{\dot{q}_{i}\left(t_{1}\right)\right.\right. \\
& \left.\left.+\beta_{i} \omega_{i} q_{i}\left(t_{1}\right)-\frac{\beta_{i} A}{\omega_{i}}+\frac{\left(2 \beta_{i}^{2}-1\right) B}{\omega_{i}^{2}}\right\} \sin \omega_{d i} t\right] \\
& +\frac{\gamma_{i}}{m_{i}}\left[\frac{A+B t}{\omega_{i}^{2}}-\frac{2 \beta_{i} B}{\omega_{i}^{3}}\right] . \tag{2.45}
\end{align*}
$$

The velocity and the acceleration associated with Eq. (2.45) are

$$
\begin{align*}
\dot{q}_{i}(t) & =\frac{\gamma_{i} e^{-\beta_{i} \omega_{i} t}}{m_{i}}\left[\left\{\dot{q}_{i}\left(t_{1}\right)-\frac{B}{\omega_{i}^{2}}\right\} \quad \cos \omega_{d i} t+\frac{1}{\omega_{d i}}\left\{A-\omega_{i}^{2} q_{i}\left(t_{1}\right)\right.\right. \\
& \left.\left.-\beta_{i} \omega_{i}\left(\dot{q}_{i}\left(t_{1}\right)+\frac{B}{\omega_{i}^{2}}\right)\right\} \sin \omega_{d i} t\right]+\frac{\gamma_{i} B}{m_{i} \omega_{i}^{2}} \tag{2.46}
\end{align*}
$$

and

$$
\begin{align*}
\ddot{q}_{i}(t)= & \frac{\gamma_{i} e^{-\beta_{i} \omega_{i} t}}{m_{i}}\left[\left\{A-\omega_{i}^{2} q_{i}\left(t_{1}\right)-2 \beta_{i} \omega_{i} \dot{q}_{i}\left(t_{1}\right)\right\} \cos \omega_{d i} t\right. \\
& +\frac{1}{\omega_{d i}}\left\{-\beta_{i} \omega_{i} A+B+\beta_{i} \omega_{i}^{3} q_{i}\left(t_{1}\right)+\omega_{i}^{2}\left(2 \beta_{i}^{2}-1\right) \dot{q}_{i}\left(t_{1}\right)\right\} \\
& \left.\sin \omega_{d i} t\right] . \tag{2.47}
\end{align*}
$$

Equations (2.45) and (2.46) are used to compute the end values, which become the initial conditions for the next linear portion. The complete solution of the modal response over the required time-history can be obtained by repeating these equations.
D. DISPLACEMENT AND STRESS RESPONSES TO STATIC AND DYNAMIC EXCITATIONS

Once $q_{i}(t)$ is computed for all significant modes, the displacements associated with the system coordinates can be obtained by means of Eq. (2.11) as follows:

$$
\begin{equation*}
\vec{r}(x, t)=\Phi \Psi \Phi \Phi^{T} \vec{R}_{0} . \tag{2.48}
\end{equation*}
$$

In this equation, Ψ and \underline{D} are diagonal matrices, and their elements are given by

$$
\begin{equation*}
\Psi_{i}=\frac{1}{m_{i} \omega_{i}} \tag{2.49}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i}=\int_{0}^{t} f(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau \tag{2.50}
\end{equation*}
$$

The total displacements, \vec{r}, resulting from both the static loading and dynamic loading can be computed as follows:

$$
\begin{equation*}
\vec{r}=\vec{r}(x) \pm \vec{r}(x, t) \tag{2.51}
\end{equation*}
$$

in which $\vec{r}(x)$ and $\vec{r}(x, t)$ are taken from Eqs. (2.2) and (2.48) respectively.

The nodal stresses of the constituent members can be computed in a manner similar to that used for the displacement response. On the basis of Eq. (2.1a), the internal forces, \vec{S}_{i}, of the $i{ }^{\text {th }}$ member can be determined by using

$$
\begin{equation*}
\vec{S}_{i}={\underline{k_{i}}}^{\vec{v}_{i}}(x), \tag{2.52}
\end{equation*}
$$

in which $K_{i}=K_{s i}-K_{g i}$ of the member. Then the stresses, $\vec{\sigma}_{i}$, at the nodes of any member, i, can be computed from

$$
\begin{equation*}
\vec{\sigma}_{i}=B_{i} \vec{S}_{i}, \tag{2.53}
\end{equation*}
$$

in which B_{i} contains the cross-sectional properties of member i as shown in Appendix A.

The substitution of Eqs. (2.1a), (2.51), and (2.52) for their equivalents in Eq. (2.53) yields Eq. (2.54), in which the first term is due to static loading, and the second to dynamic loading;

$$
\begin{equation*}
\vec{\sigma}_{i}=B_{i} k_{i} a_{i} \vec{r}(x) \pm B_{i} k_{i} a_{i} \vec{r}(x, t) . \tag{2.54}
\end{equation*}
$$

It is apparent that Eq. (2.54) gives the upper bound solutions for the individual modes. An adjustment of the stress and displacement responses on the basis of root-mean-square is also employed in the computer program in Appendix C and is discussed in Chapter III.

It is also apparent that a considerable amount of computer time is needed for the analysis of the eigenvalue problems. It has been found, however, that only certain eigenvalues and their associated eigenvectors are significant to the optimum design. A method particularly suitable for finding a limited number of eigenvalues and eigenvectors is described in Appendix B. The method is based on the Sturm sequence property in conjunction with a simple bisection procedure with which any eigenvalue can be determined without having to find any of the other eigenvalues.

For the purpose of developing a computer program for a general optimum design, a structural system can be subjected to both static loads and seismic excitations. The static loads should be uniform and concentrated and should consist of the superimposed weight as well as the weight of the structure itself. For the seismic excitations, one of three forms should be used: 1) a response spectrum of any specific earthquake record, 2) an averaged response spectrum that is based on several earthquake records, or 3) the equivalent lateral forces recommended by the Uniform Building Code ${ }^{43}$. These three forms of seismic excitation that are discussed in this chapter can not only serve as an efficient technique for optimum design but can also be used for comparative studies of the optimum solutions resulting from a use of the Code and the response spectrum techniques. A. JOINT FORCES ATTRIBUTABLE TO STATIC CONCENTRATED AND UNIFORM LOADS

The static concentrated loads applied at a structural joint for which generalized coordinates are designated can be directly formulated as the loading vector, 郎, shown in Eq. (2.1). The uniform loads on the constituent members can also be directly formulated in \vec{R}, if they are lumped as various concentrated loads to which the structural joints are introduced. Consequently, the constituent members are divided into many segments, and the number of the degrees-offreedom of a system can be considerably increased.

The most efficient approach for taking uniform loads into account is to use fixed-end actions (moments and shears) that can be transformed into equivalent joint loads. The formulation of equivalent joint loads from fixed-end actions on members can be expressed as

$$
\begin{equation*}
\vec{R}_{e}=-\sum_{i=1}^{m} \frac{a_{i}^{T} \vec{A}_{m i}, ~}{m} \tag{3.1}
\end{equation*}
$$

in which

$$
\begin{aligned}
\vec{R}_{e}= & \text { vector of equivalent joint loads, } \\
\underline{a}_{i}= & \text { compatibility matrix connecting the generalized } \\
& \text { coordinates of a system and those of the } i^{\text {th }} \text { member, } \\
& \text { and } \\
\vec{A}_{m i}= & \text { vector of fixed-end actions (moments and shears) on } \\
& \text { the } i^{\text {th }} \text { member. }
\end{aligned}
$$

The equivalent joint loads are then combined with the actual joint loads, \vec{R}_{c}, to form the loading vector, \vec{R}, in Eq. (3.2):

$$
\begin{equation*}
\vec{R}=\vec{R}_{c}+\vec{R}_{e} \tag{3.2}
\end{equation*}
$$

The final joint forces for a member having a uniform load can be calculated by using

$$
\begin{equation*}
\vec{S}_{i}=\underline{K}_{i} \vec{v}_{i}(x)+\vec{A}_{m i} \tag{3.3}
\end{equation*}
$$

B. STRAIN ENERGY OF A UNIFORMLY LOADED MEMBER

As explained in Chapter IV, the strain energy of the members of a system is needed for a design based on optimality criteria. For a case in which the loads are applied to the structural nodes, the strain energy can be obtained by using the nodal deformations directly, but the strain energy of a uniformly loaded member must be calculated on the basis of the elastic curve of the member. Consider a typical member, Fig. 3, for which the positive end-forces and end-deformation are shown. In such a case, the strain energy

(a) Typical Forces

(b) Free-body Diagram

(c) Typical Deformations

Figure 3. Uniform Load on a Typical Girder.
attributable to the bending deformation can be generally expressed as

$$
\begin{equation*}
U=\int_{0}^{L} \frac{m^{2}}{2 E I_{0}} d x \tag{3.4}
\end{equation*}
$$

in which M is the bending moment at x, and $E I_{0}$ the flexural rigidity of the prismatic bar.

Because the elastic curve of the deformed bar can be related to the moment,

$$
\begin{equation*}
E I_{0} \frac{d^{2} y}{d x^{2}}=M \tag{3.5}
\end{equation*}
$$

The substitution of Eq. (3.5) for its equivalent in Eq. (3.4) yields

$$
\begin{equation*}
U=\frac{E I_{0}}{2} \int_{0}^{L}\left(\frac{d^{2} y}{d x^{2}}\right)^{2} d x \tag{3.6}
\end{equation*}
$$

By using the moment at any point x, one can obtain

$$
\begin{equation*}
M=-M_{j}+V_{j} x+\frac{w x^{2}}{2} \tag{3.7}
\end{equation*}
$$

Then, Eq. (3.5) becomes

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=-\frac{M_{j}}{E I_{0}}+\frac{v_{j} x}{E I_{0}}+\frac{w x^{2}}{2 E I_{0}} \tag{3.8}
\end{equation*}
$$

for which the integration yields

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{M_{j} x}{E I_{0}}+\frac{v_{j} x^{2}}{2 E I_{0}}+\frac{w x^{3}}{6 E I_{0}}+c_{p} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
y=-\frac{M_{j} x^{2}}{2 E I_{0}}+\frac{v_{j} x^{3}}{6 E I_{0}}+\frac{w x^{4}}{24 E I_{0}}+c_{1} x+c_{2} \tag{3.10}
\end{equation*}
$$

In the last two equations, c_{1} and c_{2} are evaluated by using the following boundary conditions:

$$
\begin{equation*}
\frac{d y}{d x}=\theta_{j}, \quad y=\delta_{j} \quad \text { at } x=0 \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d y}{d x}=\theta_{k}, \quad y=\delta_{k} \quad \text { at } x=L \tag{3.12}
\end{equation*}
$$

Employment of Eqs. (3.11) and (3.12) yields

$$
\begin{align*}
& c_{1}=\theta_{j}, \tag{3.13}\\
& c_{2}=\delta_{j}, \tag{3.14}\\
& M_{j}=\frac{E I_{0}}{L}\left(4 \theta_{j}+2 \theta_{k}+6 \frac{\delta_{j}}{L}-6 \frac{\delta_{k}}{L}\right)-\frac{w L^{2}}{12}, \tag{3.15}
\end{align*}
$$

and

$$
\begin{equation*}
v_{j}=\frac{6 E I_{0}}{L^{2}}\left(\theta_{j}+\theta_{k}+2 \frac{\delta_{j}}{L}-2 \frac{\delta_{k}}{L}\right)-\frac{W L}{2} \tag{3.16}
\end{equation*}
$$

The elastic curve of the member can finally be expressed as

$$
\begin{align*}
y= & \delta_{j}+\theta_{j} x-\frac{x^{2}}{L}\left(2 \theta_{j}+\theta_{k}+\frac{3 \delta_{j}}{L}-\frac{3 \delta_{k}}{L}\right)+\frac{x^{3}}{L^{2}}\left(\theta_{j}+\theta_{k}\right. \\
& \left.+\frac{2 \delta_{j}}{L}-\frac{2 \delta_{k}}{L}\right)+\frac{w x^{2}}{24 E I_{0}}(L-x)^{2} . \tag{3.17}
\end{align*}
$$

In order to formulate the strain energy equation, differentiate Eq. (3.17) twice as follows:

$$
\begin{align*}
y^{\prime \prime}= & -\frac{2}{L}\left(2 \theta_{j}+\theta_{k}+3 \frac{\delta_{j}}{L}-3 \frac{\delta_{k}}{L}\right)+6 \frac{x}{L^{2}}\left(\theta_{j}+\theta_{k}+2 \frac{\delta_{j}}{L}-2 \frac{\delta_{k}}{L}\right) \\
& +\frac{w}{12 E I_{0}}\left(L^{2}-6 L x+6 x^{2}\right) \tag{3.18}
\end{align*}
$$

By defining the terms on the right-hand side of Eq. (3.18) as

$$
\begin{align*}
y_{d}^{\prime \prime}= & -\frac{2}{L}\left(2 \theta_{j}+\theta_{k}+3 \frac{\delta_{j}}{L}-3 \frac{\delta_{k}}{L}\right) \\
& +6 \frac{x}{L^{2}}\left(\theta_{j}+\theta_{k}+2 \frac{\delta_{j}}{L}-2 \frac{\delta_{k}}{L}\right) \tag{3.19}
\end{align*}
$$

and

$$
\begin{equation*}
y_{e}^{\prime \prime}=\frac{w}{12 E I_{0}}\left(L^{2}-6 L x+6 x^{2}\right) \tag{3.20}
\end{equation*}
$$

the term $y^{\prime \prime}$ can be expressed as

$$
\begin{equation*}
y^{\prime \prime}=y_{d}^{\prime \prime}+y_{\mathrm{e}}^{\prime \prime} \tag{3.21}
\end{equation*}
$$

The substitution of Eq. (3.21) for its equivalent in Eq. (3.6) gives

$$
\begin{equation*}
U=\frac{E I_{0}}{2} \int_{0}^{L}\left(y_{d}^{\prime \prime}\right)^{2} d x+\frac{E I_{0}}{2} \int_{0}^{L}\left(y_{e}^{\prime \prime}\right)^{2} d x+E I_{0} \int_{0}^{L} y_{d}^{\prime \prime} y_{e}^{\prime \prime} d x \tag{3.22}
\end{equation*}
$$

$$
\begin{align*}
\int_{0}^{L}\left(y_{d}^{\prime \prime}\right)^{2} d x= & \frac{4}{L}\left\{\theta_{j}^{2}+\theta_{j} \theta_{k}+\theta_{k}^{2}+\frac{3}{L}\left(\theta_{j}+\theta_{k}\right)\left(\delta_{j}-\delta_{k}\right)\right. \\
& \left.+\frac{3}{L^{2}}\left(\delta_{j}-\delta_{k}\right)^{2}\right\} \tag{3.23}\\
\int_{0}^{L}\left(y_{e}^{\prime \prime}\right)^{2} d x= & \frac{w^{2} L^{5}}{720\left(E I_{0}\right)^{2}} \tag{3.24}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\left.\int_{0}^{L} y_{d}^{\prime \prime} y_{e}^{\prime \prime} d x=y_{d}^{\prime \prime} y_{e}^{\prime}\right]_{0}^{L}-y_{d}^{\prime \prime} y_{e}\right]_{0}^{L}+\int_{0}^{L} y_{d}^{i v} y_{e} d x=0 \tag{3.25}
\end{equation*}
$$

Equation (3.25) is based on the physical interpretation of Eqs. (3.19) and (3.20) for the former $y_{d}^{i v}=0$ and for the latter $y_{e}^{\prime}=y_{e}=0$ at $x=0$ and $x=L$. Substitution of Eqs. (3.23) through (3.25) for their equivalents in Eq. (3.22) gives the following strain energy of a uniformly Toaded member:

$$
\begin{align*}
U= & \frac{2 E I_{0}}{L}\left\{\theta_{j}^{2}+\theta_{j} \theta_{k}+\theta_{k}^{2}+\frac{3}{[}\left(\theta_{j}+\theta_{k}\right)\left(\delta_{j}-\delta_{k}\right)\right. \\
& \left.+\frac{3}{L^{2}}\left(\delta_{j}-\delta_{k}\right)^{2}\right\}+\frac{w^{2} L^{5}}{1440 E I_{0}} . \tag{3.26}
\end{align*}
$$

C. SEISMIC EXCITATIONS

The response of a structure subject to seismic excitation is parametric with time. To avoid using excessive computing time to solve for the dynamic response, the time parameter is eliminated by
using three methods: the response spectrum, the average response spectrum, and the equivalent static lateral forces recommended by the Uniform Building Code. These three methods are used in this report for the purpose of showing how the individual loading consideration affects the optimum results.

1. Response Spectrum. As discussed in Chapter II, the response of a multidegree-ofafreedom system can be simplified to that of a single-degree-of-freedom system for simultaneous horizontal and vertical ground motions, for which the result is given in Eq. (2.23). The solution of Eq. (2.29), which requires integration at different time intervals, demands a considerable amount of computational effort. In order to avoid the time dependency, one can define the spectral displacement as

$$
\begin{equation*}
s_{d}(\omega, \beta)=\left|\frac{1}{\omega_{d}} \int_{0}^{t} x_{g}(\tau) e^{-\beta \omega(t-\tau)} \sin \omega_{d}(t-\tau) d \tau\right|_{\max } \tag{3.27}
\end{equation*}
$$

in which $x_{g}(t)$ is a ground excitation as a function of time. By using the integration technique shown in Eq. (2.45), one can eliminate the time dependency by finding the maximum values of the integral of Eq. (3.27) for various values of the natural frequencies, ω, and the damping ratio, β.

Therefore, the maximum response as expressed in Eq. (2.29) can be found as follows:

$$
\begin{equation*}
\left|q_{i}(t)\right|_{\max }=-\frac{\gamma_{h i}}{m_{i}} s_{d h}\left(\omega_{i}, \beta_{i}\right)-\frac{\gamma_{v i}}{m_{i}} s_{d v}\left(\omega_{i}, \beta_{i}\right) \tag{3.28}
\end{equation*}
$$

in which

$$
\begin{equation*}
s_{d n}\left(\omega_{i}, \beta_{i}\right)=\left|\frac{1}{\omega_{d i}} \int_{0}^{t} x_{h}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau\right|_{\max }, \tag{3.29a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{d v}\left(\omega_{i}, \beta_{i}\right)=\left|\frac{1}{\omega_{d i}} \int_{0}^{t} x_{v}(\tau) e^{-\beta_{i} \omega_{i}(t-\tau)} \sin \omega_{d i}(t-\tau) d \tau\right|_{\max } \tag{3.29b}
\end{equation*}
$$

The spectral accelerations are

$$
\begin{equation*}
s_{a h}\left(\omega_{i}, \beta_{i}\right)=\omega_{d i}^{2} s_{d h}\left(\omega_{i}, \beta_{i}\right) \tag{3.30a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{a v}\left(\omega_{i}, \beta_{i}\right)=\omega_{d i}^{2} s_{d v}\left(\omega_{i}, \beta_{i}\right) \tag{3.30b}
\end{equation*}
$$

The spectral accelerations of the 1940 El Centro earthquake are shown in Fig. 4.

It should be noted that Eq. (3.28) always gives the conservative value of the response, because the maximum values for the individual modes do not occur at the same time. Consequently, the method provides a safe design result. A technique of leveling off the maximum responses is discussed in Section D of this chapter.
2. Average Response Spectrum. The average response spectrum which is based on Housner's work ${ }^{16}$, can be obtained by computing the response spectra for two components of each of four different earthquakes and then normalizing, averaging, and smoothing the resulting curves. The four strong ground motions that are used in the average spectrum are El Centro 1934, El Centro 1940, Olympia 1949,

and Tehachapi 1952. A typical average acceleration spectrum is shown in Fig. 5, for which the ordinates should be multiplied by scale factors to bring them into agreement with the specific ground motion, for instance 2.7. 1.9, and 1.6 for El Centro 18 May 1940, E1 Centro 30 December 1940, and Taft 21 July 1952 respectively.
3. Code Provisions of Equivalent Static Lateral Forces. The Uniform Building Code considers earthquake excitations as the equivalent of static lateral forces that are applied along the floors of a structure. The basic provisions of the Code provide a design base shear, V, which is defined as

$$
\begin{equation*}
V=Z I K C S W, \tag{3.31}
\end{equation*}
$$

in which
$Z=a$ zone coefficient having a value anywhere from 0 to 1 depending on the earthquake zone,

I = a coefficient that depends on the importance of the structure and ranges from 1 for ordinary buildings to 1.5 for essential buildings,
$K=a$ factor that defines the type of structural system,
$C=$ the seismic coefficient,
$S=$ the site resonance factor, which depends on the ratio of building period, T, to the site period, T_{S}, and
$W=$ the total weight of the building.
Methods are provided for determining the site period through the use of geotechnical investigations. However, the site period used for designing must lie within the interval of $0.5 \mathrm{sec} . \leq T_{s} \leq 2.5 \mathrm{sec}$.

The factor S may be as little as 1 , if the building period and site period are widely separated. It can range up to a maximum of

Figure 5. Average Acceleration Spectrum.
1.5, if the building period and site period are the same. Two transition formulas are specified for determining the value of S.

$$
\begin{equation*}
\text { For } \frac{T}{T_{s}}>1, \quad S=1.2+0.6 \frac{T}{T_{s}}-0.3\left(\frac{T}{T_{s}}\right)^{2}, \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } \frac{T}{T_{S}} \leq 1, \quad S=1+\frac{T}{T_{S}}-0.5\left(\frac{T}{T_{S}}\right)^{2} \tag{3.33}
\end{equation*}
$$

but T may not be taken as less than 0.3 second for determining S.
The building period can be determined by using the Rayleigh quotient formula given by

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{\sum_{i=1}^{n_{s}} W_{i} \delta_{i}^{2}}{g\left[F_{t} \delta_{n s}+\left[F_{i} \delta_{i}\right]\right.}} \tag{3.34}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \begin{aligned}
w_{i} & =\text { weight at level } i, \\
F_{i} & =\text { design lateral force at level } i, \\
\delta_{i} & =\text { computed lateral displacement at level } i, \\
n_{s} & =\text { total number of levels, and } \\
g & =\text { gravity acceleration. }
\end{aligned} \\
& \text { Equation (3.34) is available in the computer program. One may also } \\
& \text { find the exact natural frequencies by using the eigenvalue } \\
& \text { subroutine. }
\end{aligned}
$$

The seismic coefficient is specified to be

$$
\begin{equation*}
C=\frac{1}{15 \sqrt{T}} \tag{3.35}
\end{equation*}
$$

and the upper limits are specified for both C and the product CS as

$$
\begin{equation*}
C \leq 0.12 \tag{3,36}
\end{equation*}
$$

and

$$
\begin{equation*}
C S \leq 0.14 \tag{3.37}
\end{equation*}
$$

The force assigned to the top is a function of the building period.

$$
\begin{array}{ll}
\text { For } T \leq 0.7 \text { sec. }, & F_{t}=0, \\
\text { for } T>0.7 \mathrm{sec} ., & F_{t}=0.07 \mathrm{~V}, \tag{3.39}
\end{array}
$$

and for any case, $F_{t} \leq 0.25 \mathrm{~V}$. The remainder of the base shear is distributed linearly according to the following formula:

$$
\begin{equation*}
F_{x}=\left(V-F_{t}\right) \frac{w_{x} h_{x}}{\sum_{i=1}^{n_{s}} w_{i} h_{i}} \tag{3.40}
\end{equation*}
$$

in which

$$
\begin{aligned}
& F_{x}=\text { design lateral force at level } x \\
& w_{x}=\text { weight at level } x, \text { and } \\
& h_{x}=\text { height of level } x \text { from the ground level. }
\end{aligned}
$$

The dynamic responses can be obtained by using any of the three options: a) direct superposition of desired modes, b) superposition of absolute quantities of desired modes, and c) the root-mean-square method that is the square root of the sum of the squares of the desired modal responses. Methods (a) and (b) are quite straightforward. Method (c) can be illustrated by showing the maximum total displacement vector, $|\vec{r}(x, t)|_{\max }$, as

$$
\begin{equation*}
|\vec{r}(x, t)|_{\max }=\left[\sum_{k=1}^{D M}\left|\vec{r}_{k}(x, t)\right|_{\max }^{2}\right]^{1 / 2}, \tag{3.41}
\end{equation*}
$$

in which k is the number of desired modes (DM) to be used. Similarly, the maximum internal forces of member \mathfrak{i} can be approximated by using

$$
\begin{equation*}
\left|\vec{s}_{i}\right|_{\max }=\left[\sum_{k=1}^{D M}\left\{\left(k_{s i}-{k_{g i}}^{D}\right) a_{i}\left|\vec{r}_{k}(x, t)\right|_{\max }\right\}^{2}\right]^{1 / 2} . \tag{3.42}
\end{equation*}
$$

Note that the portion of the energy density, μ_{j}^{\prime}, associated with the dynamic response must be consistently calculated according to the displacements obtained by one of these three methods.

Although it has been recognized that the correlation between modal responses for modes with closely spaced frequencies may lead to overly conservative or unsafe results, yet the superposition techniques discussed above do not present any difficulties in the design because the frequencies are far spaced. Nevertheless, the new technique of complete quadratic combination (CQC) method can be easily implemented in the program.

IV. OPTIMALITY CRITERIA AND RECURSION RELATION

The optimization technique is based on optimality criteria that are derived on the basis of Kuhn-Tucker conditions. The recursion relation is used as an iterative procedure to satisfy the optimality requirement for an optimum structural design.
A. FORMULATION OF A GENERAL PROBLEM IN OPTIMUM STRUCTURAL DESIGN

A general problem in optimum structural design can be stated as follows:

in which

$$
\begin{aligned}
W(x) & =\text { objective function, } \\
x & =\text { vector of design variables, } \\
g_{j}(x) & =\text { the } j^{\text {th }} \text { constraint, and } \\
n & =\text { total number of constraints. }
\end{aligned}
$$

In an optimum structural design, $W(x)$ can represent the total cost of the structure; however the total weight of the structure has been widely used in most publications and is used as the objective function in this work.

The constraints, $g_{j}(x)$, may represent bounds on frequencies and the behavior constraints of stress and displacement limitations imposed on a structure. These behavior constraints may be required for both static loads and seismic excitations. The problem shown in Eq. (4.1) is an inequality form of constrained minimization. To develop an algorithm for solving this problem, the
characteristics of an optimization known as the Kuhn-Tucker conditions must be considered.
B. KUHN-TUCKER CONDITIONS OF OPTIMALITY

Kuhn-Tucker's conditions for optimality may be stated as follows:

Assume that $W(x)$ is to be minimized and is subject to the constraints $g_{j}(x) \leq 0, j=1,2, \ldots, n, x \geq 0$ and that $W(x)$ and $g_{j}(x)$ are differentiable. Then x^{*} can be an optimal solution to the above nonlinear optimization problem if and only if there exist n numbers, $\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{n}^{*}$ such that the following conditions are satisfied:

$$
\begin{align*}
& \frac{\partial W(x)}{\partial x_{i}}+\sum_{j=1}^{n} \lambda_{j} \frac{\partial g_{j}(x)}{\partial x_{i}}=0, \quad x=x^{*}, \text { for } x^{*}>0, \tag{4.2}\\
& \frac{\partial W(x)}{\partial x_{i}}+\sum_{j=1}^{n} \lambda_{j} \frac{\partial g_{j}(x)}{\partial x_{i}} \geq 0, \quad x=x^{*}, \text { for } x^{*}=0, \tag{4.3}
\end{align*}
$$

$$
\begin{equation*}
g_{j}\left(x^{*}\right)=0, \text { for } \lambda_{j}^{*}>0, \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
g_{j}\left(x^{*}\right) \leq 0, \text { for } \lambda_{j}^{*}=0 \text {. } \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
x^{*} \geq 0 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{j}^{*} \geq 0 \tag{4.7}
\end{equation*}
$$

Equations (4.2) through (4.7) are the necessary conditions for the objective function $W(x)$ to be a relative or local minimum. It should be noted that these conditions are necessary but not sufficient.

Only if additional conditions are imposed, it can be claimed that they are sufficient to guarantee an optimum. For instance, if $W(x)$ is concave and the constraints form a convex set, the conditions are sufficient for x^{*} to be the optimal solution.

C. RECURSION RELATION RELATED TO OPTIMALITY CRITERIA

The optimization technique considered in this project can be applied to trusses and frameworks that have or do not have bracing members. The trusses are composed of two-force members. The members of frameworks that do not have bracings are subjected to combined bending and axial forces as beam-columns, and the frameworks having bracings include beam-columns and two-force members. Thus the formulation for the braced frames can be a generalized presentation for all three types of structures. Based on the Kuhn-Tucker necessary conditions, the problem in the optimum design of a braced plane frame can be expressed as follows:

$$
\begin{align*}
& \text { Minimize } w(x)=\sum_{i=1}^{m} \rho_{i} n_{i} x_{i} \ell_{i} \tag{4.8}\\
& \text { subject to } g_{j}(x)=y_{j}(x)-b_{j} \leq 0, \quad j=1,2, \ldots, n \tag{4.9}\\
& x_{i} \geq x_{j}^{0}, \quad i=1,2, \ldots, m \tag{4.10}
\end{align*}
$$

in which
$W(x)=$ total weight of a structure composed of columns, girders, and bracing members,
$\rho_{i}=$ mass density of the $i^{\text {th }}$ member,
$\eta_{i}=$ ratio of the cross-sectional area, A_{i}, to the moment of inertia, x_{j}, for the i th member,

$$
\begin{aligned}
x_{i} & =\text { primary design variable of the } i^{\text {th }} \text { member, } \\
\ell_{i} & =\text { length of the } i^{\text {th }} \text { member, } \\
y_{j}(x) & =\text { expression of the } j^{\text {th }} \text { behavior constraint, } \\
b_{j} & =\text { limitations imposed on the } j^{\text {th }} \text { behavior constraint, } \\
x_{i}^{0} & =\text { lower bound on the } i^{\text {th }} \text { design variable, } \\
m & =\text { total number of members, and } \\
n & =\text { total number of behavior constraints. }
\end{aligned}
$$

The primary design variable, x_{i}, are the moments of inertia for the columns and girders and represent the cross-sectional areas for bracings and truss members. Apparently, the ratio of the crosssectional area to the moment of inertia for the $i^{\text {th }}$ bracing member is unity. The functions, $y_{j}(x)$, may represent the stress, displacement, and natural frequency of a structure.

By using the necessary conditions of Kuhn-Tucker to characterize any local minimum, Eqs. (4.8) through (4.10) can be written for each design variable as

$$
\begin{equation*}
\frac{\partial W(x)}{\partial x_{i}}+\sum_{j=1}^{n} \lambda_{j} \frac{\partial y_{j}(x)}{\partial x_{i}}-s_{i}=0, \quad i=1,2, \ldots, m \tag{4.11}
\end{equation*}
$$

with

$$
\begin{align*}
& \lambda_{j}\left[y_{j}(x)-b_{j}\right]=0, \quad j=1,2, \ldots, n, \tag{4.12}\\
& s_{i}\left[x_{i}^{0}-x_{j}\right]=0, \quad i=1,2, \ldots, m, \tag{4.13}\\
& \lambda_{j} \geq 0, \quad j=1,2, \ldots, n, \tag{4.14}
\end{align*}
$$

and

$$
\begin{equation*}
s_{i} \geq 0, \quad i=1,2, \ldots, m \tag{4.15}
\end{equation*}
$$

in which the variables λ_{j} and s_{j} are the Lagrange multipliers associated with the constraints in Eqs. (4.9) and (4.10) respectively. By examining Eqs. (4.12) and (4.14), one can observe that when the $j^{\text {th }}$ constraint is active $\lambda_{j}>0$, and when the constraint is not active, the corresponding $\lambda_{j}=0$. Similar observations can be applied to the side constraints expressed in EqS. (4.13) and (4.15).

For simplicity, the active side constraint's can be separated from the active behavior constraints. Let N denote the number of active behavior constraints, then the separated form of the KuhnTucker necessary conditions from Eq. (4.11) can be simplified to

$$
\begin{equation*}
\frac{\partial W(x)}{\partial x_{i}}+\sum_{j=1}^{N} \lambda_{j} \frac{\partial y_{j}(x)}{\partial x_{i}}=0, \quad i \varepsilon J \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial W(x)}{\partial x_{i}}+\sum_{j=1}^{N} \lambda_{j} \frac{\partial y_{j}(x)}{\partial x_{i}} \geq 0, \quad i \varepsilon J_{0}, \tag{4.17}
\end{equation*}
$$

in which J is the set of design variables for the conditions of $x_{i}>x_{i}^{0}$, and J_{0} is the set of design variables constrained by the lower bounds, x_{i}^{0}.

The separated form of the Kuhn-Tucker necessary conditions in Eqs. (4.16) and (4.17) can be combined into a single equation as follows:

$$
\begin{equation*}
-\frac{\sum_{j=1}^{N} \lambda_{j} \mu_{j i}}{\tau_{i}}=I_{i}, \quad i=1,2, \ldots, m \tag{4.18}
\end{equation*}
$$

in which

$$
\begin{align*}
& I_{i} \begin{cases}=1, & i \varepsilon J \\
\leq 1, & i \varepsilon J_{0}\end{cases} \tag{4.19}\\
& \mu_{j i}=\frac{\partial y_{j}(x)}{\partial x_{i}} \tag{4.20}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{i}=\frac{\partial W(x)}{\partial x_{i}} \tag{4.21}
\end{equation*}
$$

Equations (4.18) and (4.19) are the optimality criteria. Any design that satisfies these criteria is a relative minimum. However, it should be pointed out that these criteria are necessary but not sufficient to guarantee global optimum as a general case of mathematical nonlinear programming.

The recursion relation can now be derived by using the optimality criteria in Eq. (4.18) with all $x_{i}>x_{i}^{0}$, that is $I_{i}=1, i=1,2, \ldots, m$. Therefore, Eq. (4.18) becomes

$$
\begin{equation*}
-\frac{\sum_{j=1}^{N} \lambda_{j} \mu_{j i}}{\tau_{i}}=1, \quad i=1,2, \ldots, m \tag{4.22}
\end{equation*}
$$

For the convenience of computer programming, let

$$
\begin{equation*}
x_{i}=\Lambda \alpha_{i}, \quad i=1,2, \ldots, m \tag{4.23}
\end{equation*}
$$

in which α_{i} are the relative design variables corresponding to the design variables, $x_{i} ; \Lambda$ is a scaling factor. By multiplying both sides of Eq. (4.22) by $\left(\Lambda \alpha_{i}\right)^{2}$, rearranging the terms, and taking the square root, one obtains

$$
\begin{equation*}
\Lambda \alpha_{i}=\alpha_{i}\left[-\frac{\sum_{j=1}^{N} \lambda_{j} \mu_{j i}^{\prime}}{\tau_{i}^{\prime}}\right]^{1 / 2}, \quad i=1,2, \ldots, m \tag{4.24}
\end{equation*}
$$

in which

$$
\begin{align*}
& \mu_{j i}^{\prime}=\Lambda \mu_{j i} \tag{4.25}\\
& \tau_{i}^{\prime}=\frac{\tau_{i}}{\Lambda} \tag{4.26}
\end{align*}
$$

and $\Lambda \alpha_{i}$ is the $i^{\text {th }}$ design variable, which is expressed as a function of α_{i}.

The form of Eq. (4.24) suggests the following recursion relation for determining the design variable in each cycle:

$$
\left(\Lambda \alpha_{i}\right)_{v+1}=\left(\alpha_{i}\right)_{v}\left[-\frac{\sum_{j=1}^{N} \lambda_{j} \mu_{j i}^{\prime}}{\tau_{i}^{\prime}}\right]_{v}^{1 / 2}, \quad i=1,2, \ldots, m \text { (4.27) }
$$

in which the subscripts v and $v+1$ denote the cycles of iteration. The use of the recursion relation expressed in Eq. (4.27) is the same as forcing the final design to satisfy the Kuhn-Tucker necessary conditions given in Eqs. (4.18) and (4.19).
D. CALCULATION OF LAGRANGE MULTIPLIERS FOR MULTIPLE ACTIVE CONSTRAINTS

At any stage in the design process in which Eq. (4.27) is used, it is possible that there is more than one active constraint. Therefore, it is necessary to find the Lagrange multipliers that correspond to the active constraints of the current design variables. The calculation of the multipliers can be accomplished from Eq. (4.22) by forming an auxiliary function, $L(\lambda)$, as follows

$$
\begin{equation*}
L(\lambda)=\sum_{i=1}^{J}\left[1+\frac{\sum_{j=1}^{N} \lambda_{j} \mu_{j i}}{\tau_{i}}\right]^{2} \tag{4.28}
\end{equation*}
$$

This is minimized by solving the set of linear equations,

$$
\begin{equation*}
\frac{\partial L(\lambda)}{\partial \lambda_{j}}=0, \quad j=1,2, \ldots, N \tag{4.29}
\end{equation*}
$$

for the Lagrange multipliers, λ_{j}. Equation (4.29) can then be written in an expanded form as follows:

$$
\begin{align*}
& \frac{\partial L(\lambda)}{\partial \lambda_{1}}=0=\left(E_{11}+E_{12}+\ldots+E_{1 J}\right)+\left(E_{11}^{2}+E_{12}^{2}+\ldots\right. \\
& \left.+E_{1 J}^{2}\right) \lambda_{1}+\left(E_{11} E_{21}+E_{12} E_{22}+\ldots+E_{1 J} E_{2 J}\right) \lambda_{2} \\
& +\ldots+\left(E_{11} E_{N 1}+E_{12} E_{N 2}+\ldots+E_{1 J} E_{N J}\right) \lambda_{N} \\
& \frac{\partial L(\lambda)}{\partial \lambda_{2}}=0=\left(E_{21}+E_{22}+\ldots+E_{2 J}\right)+\left(E_{21} E_{11}\right. \\
& \left.+E_{22} E_{12}+\ldots+E_{2 J} E_{1 J}\right) \lambda_{1}+\left(E_{21}^{2}+E_{22}^{2}+\ldots\right. \\
& \left.+E_{2 J}^{2}\right) \lambda_{2}+\ldots+\left(E_{21} E_{N 1}+E_{22} E_{N 2}+\ldots\right. \tag{4.30}\\
& \left.+E_{2 J} E_{N J}\right) \lambda_{N} \\
& \frac{\partial L(\lambda)}{\partial \lambda_{N}}=0=\left(E_{N 1}+E_{N 2}+\ldots+E_{N J}\right)+\left(E_{N 1} E_{11}+E_{N 2} E_{12}\right. \\
& \left.+\ldots+E_{N J} E_{1 J}\right) \lambda_{1}+\left(E_{N 1} E_{21}+E_{N 2} E_{22}+\ldots\right. \\
& \left.+E_{N J} E_{2 J}\right) \lambda_{2}+\ldots+\left(E_{N 1}^{2}+E_{N 2}^{2}+\ldots+E_{N J}^{2}\right) \lambda_{N}
\end{align*}
$$

in which

$$
\begin{equation*}
E_{j i}=\frac{\mu_{j i}}{\tau_{i}} \tag{4.31}
\end{equation*}
$$

In matrix form, Eq. (4.30) becomes

$$
\begin{equation*}
\underline{H} \vec{\lambda}=\vec{G} \tag{4.32}
\end{equation*}
$$

in which

$$
\begin{equation*}
H_{j k}=\sum_{i=1}^{J} E_{j i} E_{k i} \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{k}=-\sum_{i=1}^{J} E_{k i} . \tag{4.34}
\end{equation*}
$$

The matrix, H , has the property of being symmetrical. By solving Eq. (4.32), the Lagrange multipliers corresponding to the active constraints can be determined from the current design variables. These multipliers are then used in Eq. (4.27) for determining the design variables of the next cycle in the design process.

V. CONSTRAINTS IN THE OPTIMUM STRUCTURAL DESIGN

The behavior constraints, $y_{j}(x)$, considered in optimum structural design are the limitations of displacements (flexibility) and stresses (stiffness) that are imposed on both static and seismic structures. However, for seismic structures, an additional behavior constraint of natural frequencies is taken into account. The side constraints are the limitations on the size and moment of inertia or cross-sectional area of the constituent members. This chapter presents the derivations of various behavior constraints.
A. FLEXIBILITY CONSTRAINTS FOR STATIC LOADS

The flexibility constraints of a system result from the displacement limitations of either certain nodes or all the nodes. The displacement constraint function may be expressed by using the following virtual work at any nodal point:

$$
\begin{equation*}
u_{j}(x)=\vec{Q}_{j}^{T} \vec{r}(x), \tag{5.1}
\end{equation*}
$$

in which
$\vec{Q}_{j}=$ load vector with unit value for the $j^{\text {th }}$ direction and zero values for others, and
$\vec{r}(x)=$ vector of generalized displacements attributable to the static load, \vec{R}.

Differentiating $u_{j}(x)$ of Eq. (5.1) with respect to the design variable, x_{i}, yields

$$
\begin{equation*}
\frac{\partial u_{j}(x)}{\partial x_{i}}=\vec{Q}_{j}^{T} \frac{\partial \vec{r}(x)}{\partial x_{i}}, \tag{5.2}
\end{equation*}
$$

in which $\vec{r}(x) / \partial x_{i}$ can be obtained by differentiating Eq. (2.2) with respect to x_{i} and considering \vec{R} independent of the design variables. Thus,

$$
\begin{equation*}
\frac{\partial \vec{r}(x)}{\partial x_{i}}=-\underline{K}^{-1} \frac{\partial \underline{K}}{\partial x_{i}} \vec{r}(x) . \tag{5.3}
\end{equation*}
$$

The substitution of Eq. (5.3) for its equivalent in Eq. (5.2) yields

$$
\begin{equation*}
\frac{\partial u_{j}(x)}{\partial x_{i}}=-\vec{Q}_{j}^{\top} K^{-1} \frac{\partial K}{\partial x_{i}} \vec{r}(x) . \tag{5.4}
\end{equation*}
$$

Let $\vec{q}_{j}(x)$ be a vector of the generalized displacements attributable to load \vec{Q}_{j}, then

$$
\begin{equation*}
\vec{q}_{j}^{\top}(x)=\left(\underline{K}^{-1} \vec{Q}_{j}\right)^{\top}=\vec{Q}_{j}^{\top} \underline{K}^{-1} \tag{5.5}
\end{equation*}
$$

and Eq. (5.4) becomes

$$
\begin{equation*}
\frac{\partial u_{j}(x)}{\partial x_{i}}=-\vec{q}_{j}^{\top}(x) \frac{\partial K}{\partial x_{i}} \vec{r}(x) . \tag{5.6}
\end{equation*}
$$

From Eqs. (2.1c), (2.1d), and (2.3), one can write

$$
\begin{equation*}
\frac{\partial K}{\partial x_{i}}=a_{i}^{T} \frac{\partial K_{s i}}{\partial x_{i}} a_{i}-\frac{\partial P_{i}}{\partial x_{i}} a_{i}^{\top} K_{g i} a_{i} . \tag{5.7}
\end{equation*}
$$

Because the elements in $K_{s i}$ and $\partial P_{i} / \partial x_{j}$ have a linear relationship with the design variable, x_{i}, Eq. (5.7) can be written in the following form:

$$
\begin{equation*}
\frac{\partial K}{\partial x_{i}}=\frac{1}{x_{i}} a_{i}^{\top} K_{s i} a_{i}-\frac{P_{i}^{\prime}}{x_{i}} a_{i}^{T} K_{g i} a_{i}, \tag{5.8a}
\end{equation*}
$$

in which

$$
\begin{equation*}
P_{i}^{\prime}=\frac{\rho_{i} n_{i}^{l} i}{2} . \tag{5.8b}
\end{equation*}
$$

Note that the second term of the right-hand side of Eq. (5.8a) can be applied only to the column. The substitution of Eq. (5.8) for its equivalent in (5.6) yields

$$
\begin{equation*}
\frac{\partial u_{j}(x)}{\partial x_{i}}=-\frac{1}{x_{i}} \stackrel{\rightharpoonup}{q}_{j}^{\top}(x) a_{i}^{\top} K_{s i}{\underset{\underline{a}}{i}}_{\vec{r}}(x)+\frac{P_{i}^{\prime}}{x_{i}} \vec{q}_{j}^{T}(x) a_{i}^{\top} K_{g i} \underline{a}_{i} \vec{r}(x) . \tag{5.9}
\end{equation*}
$$

Now the terms $\mu_{j i}^{\prime}$ and τ_{i}^{\prime} in the recursion relation of Eq. (4.27) can be physically expressed as

$$
\begin{equation*}
\mu_{j i}^{\prime}=\Lambda \frac{\partial u_{j}(x)}{\partial x_{i}} \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{i}^{\prime}=\frac{1}{\Lambda} \frac{\partial W(x)}{\partial x_{i}} \tag{5.11}
\end{equation*}
$$

In Eq. (5.11), $W(x)$ is given in Eq. (4.8). In a case where there is only a single displacement constraint in the $j^{\text {th }}$ direction, the optimality criteria of Eq. (4.18) has the following form:

$$
\frac{\vec{q}_{j}^{T}(x) a_{i}^{\top} \frac{K_{s i} a_{i} \vec{r}(x)-P_{i}^{\prime} \vec{q}_{j}^{\top}(x) a_{i}^{\top} \frac{K_{g i}}{a_{i}} \vec{r}(x)}{\rho_{i} n_{i} x_{i}^{l}{ }_{i}}}{=\text { constant }, ~} \begin{gather*}
 \tag{5.12}\\
i=1,2, \ldots, m
\end{gather*}
$$

Equation (5.12) may reveal some physical meaning that the optimum structure for the specified displacement is the one in which the ratio of the average virtual strain energy density to the mass density is the same for all its members.
B. STIFFNESS CONSTRAINTS FOR STATIC LOADS

The stiffness constraints are used to measure the limitations of the allowable shear stress and the allowable combined stress of axial and bending.

The stiffness of the structure can be described by the work caused by the static load, \vec{R}, multiplied by the generalized displacement, $\vec{r}(x)$, in the form of

$$
\begin{equation*}
z(x)=\frac{1}{2} \vec{R} \mathrm{~T} \vec{r}(x), \tag{5.13}
\end{equation*}
$$

because the product, $\vec{R}^{\top} \vec{r}(x)$, is an inverse measure of the stiffness. Thus, $z(x)$ may be called a measuring function of static stiffness. Differentiating Eq. (5.13) with respect to the design variables, x_{i}, yields

$$
\begin{equation*}
\frac{\partial z(x)}{\partial x_{i}}=\frac{\vec{R}^{\top}}{2} \frac{\partial \vec{r}(x)}{\partial x_{i}} \tag{5.14}
\end{equation*}
$$

After substituting Eqs. (5.3) and (5.8) for their equivalents in Eq. (5.14), one obtains either

$$
\begin{align*}
\frac{\partial z(x)}{\partial x_{i}}= & -\frac{1}{2 x_{i}} \vec{R}^{\top} \underline{K}^{-1} \underline{a_{i}^{\top}} K_{s i} \underline{a}_{i} \vec{r}(x) \\
& +\frac{P_{i}^{1}}{2 x_{i}} \vec{R}^{\top} \underline{K}^{-1} a_{i}^{\top} K_{g i} a_{i} \vec{r}(x) \tag{5.15}
\end{align*}
$$

or

$$
\begin{align*}
\frac{\partial z(x)}{\partial x_{i}}= & -\frac{1}{2 x_{i}} \vec{r}^{\top}(x) a_{i}^{\top} K_{s i} a_{i} \vec{r}(x) \\
& +\frac{P_{i}^{1}}{2 x_{i}} \vec{r}^{\top}(x) a_{i}^{\top} K_{g i} a_{i} \vec{r}(x) . \tag{5.16}
\end{align*}
$$

Consequently, $\mu_{j i}^{\prime}$ in the recursion relation of Eq. (4.27) becomes

$$
\begin{equation*}
\mu_{j i}^{\prime}=\Lambda \frac{\partial z(x)}{\partial x_{i}}, \tag{5.17}
\end{equation*}
$$

The optimality criteria of Eq. (4.18) for a single loading condition can be expressed as

$$
\begin{gather*}
\frac{1}{2} \frac{\vec{r}(x) a_{i}^{T} K_{s i} a_{i} \vec{r}(x)-\rho_{i}^{\prime} \vec{r}(x) a_{i}^{\top} K_{g i} a_{i} \vec{r}(x)}{\rho_{i} \eta_{i} x_{i} l_{i}}=\text { constant } \\
i=1,2, \ldots, m \tag{5.18}
\end{gather*}
$$

Note that the numerator of Eq. (5.18) represents the average strain energy in which the second term is associated with the column members only.
C. FLEXIBILITY CONSTRAINTS FOR DYNAMIC LOADS

The dynamic displacement constraint function can be expressed in a form similar to that of Eq. (5.1) in terms of virtual work as follows:

$$
\begin{equation*}
u_{j}(x, t)=\vec{Q}_{j}^{T} \vec{r}(x, t), \tag{5.19}
\end{equation*}
$$

in which
$\vec{Q}_{j}=$ load vector with unit force for the $j^{\text {th }}$ direction only, and the time function is also a unit value, and $\vec{r}(x, t)=$ vector of generalized displacements attributable to the dynamic load, $\vec{R}(t)$.
Differentiating Eq. (5.19) with respect to the design variables, X_{i}, yields

$$
\begin{equation*}
\frac{\partial u_{j}(x, t)}{\partial x_{i}}=\vec{Q}_{j}^{T} \frac{\partial \vec{r}(x, t)}{\partial x_{i}} \tag{5.20}
\end{equation*}
$$

in which $\partial \vec{r}(x, t) / \partial x_{i}$ can be found by using the following motion equation:

$$
\begin{equation*}
\overrightarrow{M r}(x, t)+\underline{k} \vec{r}(x, t)=\vec{R}(t) \tag{5.21}
\end{equation*}
$$

Damping is included in the response analysis and therefore is not considered in the above equation.

In order to find $\partial \vec{r}(x, t) / \partial x_{i}$ in Eq. (5.20), take the first variation of Eq. (5.21), which is

$$
\begin{equation*}
M \frac{\partial \overrightarrow{\dot{r}}(x, t)}{\partial x_{i}}+K \frac{\partial \vec{r}(x, t)}{\partial x_{i}}=-\frac{\partial M}{\partial x_{i}} \overrightarrow{\ddot{r}}(x, t)-\frac{\partial K}{\partial x_{i}} \vec{r}(x, t) . \tag{5.22}
\end{equation*}
$$

After substituting Eqs. (2.1b), (2.5), and (5.7), Eq. (5.22) becomes

$$
\begin{align*}
& M \frac{\overrightarrow{\ddot{r}}(x, t)}{\partial x_{i}}+\underline{K} \frac{\partial \vec{r}(x, t)}{\partial x_{i}}=-a_{i}^{T} \frac{\partial M_{s i}}{\partial x_{i}} a_{i} \overrightarrow{\ddot{r}}(x, t) \\
& \quad-a_{i}^{T} \frac{\partial K_{s i}}{\partial x_{i}} a_{i} \vec{r}(x, t)+\frac{\partial P_{i}}{\partial x_{i}} a_{i}^{T} K_{g i} a_{i} \vec{r}(x, t) . \tag{5.23}
\end{align*}
$$

The elements in the matrices, $M_{s i}, K_{s i}$, and $\partial P_{i} / \partial x_{i}$, are linear with the design variable, x_{i}; therefore, Eq. (5.23) can be rewritten in the following form:

$$
\begin{align*}
& M \frac{\partial \overrightarrow{\ddot{r}}(x, t)}{\partial x_{i}}+\underline{K} \frac{\partial \vec{r}(x, t)}{\partial x_{i}}=-\frac{1}{x_{i}}\left[a_{i}^{\top} M_{s i} a_{i} \overrightarrow{\ddot{r}}(x, t)\right. \\
& \left.\quad+a_{i}^{\top} K_{s i} a_{i} \vec{r}(x, t)-P_{i}^{\prime} a_{i}^{\top} K_{g i} a_{i} \vec{r}(x, t)\right] . \tag{5.24}
\end{align*}
$$

Solutions of Eq. (5.24) can be obtained by using the modal analysis based on the same eigenvectors employed in the response analysis as shown in the following equation:

$$
\begin{align*}
& \frac{\partial \vec{r}(x, t)}{\partial x_{i}}=-\frac{1}{x_{i}} \Phi \Psi \underline{\Phi} \Phi^{\top}\left[a_{i}^{T} \underline{M_{s i}} a_{i} \overrightarrow{\vec{r}}(x, t)\right. \\
& \left.\quad+a_{i}^{T} K_{s i} a_{i} \vec{r}(x, t)-P_{i}^{\prime} a_{i}^{T} K_{g i} a_{i} \vec{r}(x, t)\right] . \tag{5.25}
\end{align*}
$$

The terms Φ_{i}, Ψ_{i}, and D_{i} have been defined in Eqs. (2.10), (2.49), and (2.50) respectively.

Because the displacements resulting from the applied load can be expressed by a finite number of harmonic motions, the frequency p, of a vibrating system may be approximately obtained by using the Rayleigh quotient,

$$
\begin{equation*}
p^{2}=\frac{\vec{r}^{T}(x, t) \underline{K} \vec{r}(x, t)}{\vec{r}^{T}(x, t) M \vec{r}(x, t)} \tag{5.26}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\overrightarrow{\dot{r}}(x, t)=-p^{2 \vec{r}}(x, t), \tag{5.27}
\end{equation*}
$$

and Eq. (5.25) becomes

$$
\begin{align*}
\frac{\partial \vec{r}(x, t)}{\partial x_{i}}= & -\frac{1}{x_{i}} \Phi \underline{\underline{D}} \underline{\Phi}^{T}\left[-p^{2} a_{i}^{T} M_{s i} a_{i} \vec{r}(x, t)\right. \\
& \left.+a_{i}^{T} K_{s i} a_{i} \vec{r}(x, t)-P_{i}^{1} a_{i}^{T} K_{g i} a_{i} \vec{r}(x, t)\right] . \tag{5.28}
\end{align*}
$$

Substitution of Eq. (5.28) for its equivalent in Eq. (5.20) yields

$$
\begin{align*}
\frac{\partial u_{j}(x, t)}{\partial x_{i}}= & -\frac{1}{x_{i}} \vec{Q}_{j}^{\top} \Phi \underline{\Psi} \underline{D} \Phi^{T}\left[-p^{2} a_{i}^{T} M_{s i} a_{i} \vec{r}(x, t)\right. \\
& \left.+a_{i}^{T} K_{s i} a_{i} \vec{r}(x, t)-P_{i}^{\prime} a_{i}^{T} K_{g i} a_{i} \vec{r}(x, t)\right] . \tag{5.29}
\end{align*}
$$

The application of $\vec{Q}_{j} f(t)$ induces $\vec{q}_{j}(x, t)$ of which the motion equations are

$$
\begin{equation*}
\overrightarrow{M \ddot{\dot{q}}}_{j}(x, t)+\overrightarrow{\underline{q}}_{j}(x, t)=\vec{q}_{j} f(t) \tag{5.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{q}}_{\mathrm{j}}(x, t)=\Phi \Psi \underline{\underline{D}} \Phi^{T} \vec{Q}_{\mathrm{j}} . \tag{5.31}
\end{equation*}
$$

Thus, Eq. (5.29) can be simplified to

$$
\begin{align*}
\frac{\partial u_{j}(x, t)}{\partial x_{i}}= & -\frac{1}{x_{i}}\left[\vec{q}_{j}^{T}(x, t) a_{i}^{T} \underline{K}_{s i} a_{i} \vec{r}(x, t)\right. \\
& -P_{i}^{\prime} \vec{q}_{j}^{T}(x, t) a_{i}^{T} K_{g i} \frac{a_{i}}{} \vec{r}(x, t) \\
& \left.-p^{2} \vec{q}_{j}^{T}(x, t) a_{i}^{T} M_{s i} a_{i} \vec{r}(x, t)\right] \tag{5.32}
\end{align*}
$$

and the term $\mu_{j i}^{\prime}$ in the recursion equation of Eq. (4.27) can be based on Eq. (5.32) as follows:

$$
\begin{equation*}
\mu_{j i}^{\prime}=\frac{\Lambda \partial u_{j}(x, t)}{\partial x_{i}} . \tag{5.33}
\end{equation*}
$$

As noted before, the second term of the right-hand side of Eq. (5.32) can be applied to columns only. Then p is determined from Eq. (5.26) for any number of desired modes.

D. STIFFNESS CONSTRAINTS FOR DYNAMIC LOADS

The measuring function of dynamic stiffness may be established in a manner similar to that of Eq. (5.13) as follows:

$$
\begin{equation*}
z(x, t)=\frac{1}{2} \vec{R}_{0}^{T} \vec{r}(x, t) \tag{5.34}
\end{equation*}
$$

in which \vec{R}_{0} represents the magnitude of the dynamic load vector.
Differentiating Eq. (5.34) with respect to the design variable,
x_{i}, yields

$$
\begin{equation*}
\frac{\partial z(x, t)}{\partial x_{i}}=\frac{\vec{R}_{0}^{\top}}{2} \frac{\partial \vec{r}(x, t)}{\partial x_{i}} . \tag{5.35}
\end{equation*}
$$

After substituting Eq. (5.28),

$$
\begin{align*}
\frac{\partial z(x, t)}{\partial x_{i}}= & -\frac{1}{2 x_{i}} \vec{R}_{0}^{\top} \Phi \underline{\Psi} \Phi^{\top}\left[-p^{2} \underline{a}_{i}^{\top} M_{s i} \underline{a}_{i} \vec{r}(x, t)\right. \\
& +a_{i}^{T} \frac{K_{s i}}{a_{i}} \vec{r}(x, t) \\
& \left.-P_{i}^{\prime} a_{i}^{T} K_{g i} a_{i} \vec{r}(x, t)\right] . \tag{5.36}
\end{align*}
$$

From Eq. (2.48) of $\vec{r}(x, t)=\Phi \Psi \underline{D} \Phi^{\top} \vec{R}_{0}$, Eq. (5.36) finally becomes

$$
\begin{align*}
\frac{\partial z(x, t)}{\partial x_{i}}= & -\frac{1}{2 x_{i}}\left[\vec{r}^{\top}(x, t) a_{i}^{\top} K_{s i} a_{i} \vec{r}(x, t)\right. \\
& +\vec{r}^{\top}(x, t) a_{i}^{\top} K_{g i} a_{i} \vec{r}(x, t) \\
& \left.-p^{2} \vec{r}^{\top}(x, t) a_{i}^{\top} M_{s i} a_{i} \vec{r}(x, t)\right] . \tag{5.37}
\end{align*}
$$

Consequently, the term $\mu_{j i}^{\prime}$ in Eq. (4.27) can be expressed in terns of Eq. (5.37) as

$$
\begin{equation*}
\mu_{j i}^{\prime}=\frac{\Lambda \partial z(x, t)}{\partial x_{i}} . \tag{5.38}
\end{equation*}
$$

Equation (5.37) or (5.38) represents the average strain energy density combined with kinetic energy density of any member, i. E. CONSTRAINTS IMPOSED ON THE NATURAL FREQUENCIES OF A STRUCTURE

The natural frequency of any mode, ω_{j}, of a structure can be obtained by using the Rayleigh quotient

$$
\begin{equation*}
\omega_{j}^{2}=\frac{\vec{\phi}_{j}^{\top} \underline{K} \vec{\phi}_{j}}{\vec{\phi}_{j}^{\top} M \vec{\phi}_{j}} \tag{5.39}
\end{equation*}
$$

in which ω_{j} represents not only the natural frequency but also a mathematical function. Differentiation of Eq. (5.39) with respect to the design variable, x_{i}, yields

$$
\begin{equation*}
\frac{\partial \omega_{j}^{2}}{\partial x_{i}}=\frac{2\left(\partial \vec{\phi}_{j}^{\top} / \partial x_{i}\right)\left(\underline{K}-\omega_{j}^{2} M\right) \vec{\phi}_{j}+\vec{\phi}_{j}^{\top}\left(\partial K / \partial x_{i}\right) \vec{\phi}_{j}-\omega_{j}^{2} \vec{\phi}_{j}^{\top}\left(\partial M / \partial x_{i}\right) \vec{\phi}_{j}}{\vec{\phi}_{j}^{\top} M \vec{\phi}_{j}} \tag{5.40}
\end{equation*}
$$

By observing Eq. (2.10), one may find that $\underline{K}=\omega_{j}^{2} \underline{M}$, thus Eq. (5.40) may be reduced to
$\frac{\partial \omega_{j}^{2}}{\partial x_{i}}=\frac{\vec{\phi}_{j}^{\top} \frac{a_{i}^{\top} K_{s i}}{\alpha_{i}} \vec{\phi}_{j}-P_{i}^{\prime \vec{\phi}_{j}^{\top}} \frac{a_{i}^{\top} K_{g i} \frac{a_{i}}{\phi_{j}}-\omega_{j}^{2 \vec{\phi}_{j}^{\top}} a_{i}^{\top} \underline{M_{s i}} \frac{a_{i}}{\vec{\phi}_{j}}}{x_{i} \vec{\phi}_{j}^{\top} M \vec{\phi}_{j}} .}{}$

Thus, the term $\mu_{j i}^{\prime}$ in Eq. (4.27) becomes

$$
\begin{equation*}
\mu_{j i}^{\prime}=\frac{\Lambda \partial \omega_{j}^{2}}{\partial x_{i}} \tag{5.42}
\end{equation*}
$$

Because $\phi_{j}^{\top} M_{j}$ is a constant, the recursion relation of Eq. (4.13) for the specified $j^{\text {th }}$ natural frequency can be expressed as

Note that the numerator of the above equation represents the difference between the strain energy density and the kinetic energy density of the $j^{\text {th }}$. mode and that the second term of the numerator can be established for columns only.

The columns and girders of a framework are assumed to be wideflange steel sections. The bracing members can be solid bars of rectangular or circular shape. Because the bending behavior of the members is of primary importance, the moment of inertia, I_{0}, is selected as the design variable of the member. The wide-flange cross sections can be either selected from the AISC Manual ${ }^{22}$ or designed for built-up sections.

A. AISC WF SECTIONS

In the AISC Construction Manual, the cross sectional properties of area, section modulus, and moment of inertia are given for each WF section; however, these properties do not have any simple linear relationship. Because the moment of inertia, I_{0}, is considered to be a primary design variable, the section modulus, S_{0}, and the cross sectional area, A_{0}, must be related to the moment of inertia by a mathematical expression such that S_{0} and A_{0} are functions of I_{0}. These approximate relations are suggested by Brown and Ang^{2} for most of the economical WF sections available in the Manual. The properties of these sections are first plotted, and then the approximate relations are obtained by curve fitting with selected algebraic expressions, which are

$$
S_{0}= \begin{cases}\sqrt{60.6 I_{0}+84100}-290, & 0 \leq I_{0} \leq 9000 \tag{6.1}\\ \frac{I_{0}-8056.3}{1.876}, & 9000 \leq I_{0} \leq 20300\end{cases}
$$

and

$$
A_{0}= \begin{cases}0.465 \sqrt{I_{0}}, & 0 \leq I_{0} \leq 9000 \tag{6.2}\\ \frac{I_{0}+2300}{256}, & 9000 \leq I_{0} \leq 20300,\end{cases}
$$

in which the units are $i n^{4}, i n^{3}$, and in^{2} for $\mathrm{I}_{0}, \mathrm{~S}_{0}$, and A_{0} respectively.
B. BUILT-UP WF SECTIONS

The wide flange sections in the AISC Manual are not adequate for all design problems, particularly when large cross sections are needed for tall and heavy buildings. Thus the built-up sections can be used in the computer program. Figure 6 shows a typical built-up section of steel for which the moment of inertia, I_{0}, is considered as a primary design variable, and the depth, d, flange thickness, t_{f}, and web thickness, t_{w}, are the secondary design variables.

The expression of the cross sectional area, A_{0}, the moment of inertia, I_{0}, the section modulus, S_{0}, and the shear flow, v_{0}, of the section are

$$
\begin{align*}
& A_{0}=d^{2}\left[\frac{t^{w}}{d}+2 \frac{t_{f}}{d}\left(\frac{b}{d}-\frac{t^{w}}{d}\right)\right] \tag{6.3}\\
& I_{0}=d^{4}\left[\frac{b}{2 d}\left(\frac{t_{f}}{d}\right)\left(1-\frac{t_{f}}{d}\right)^{2}+\frac{1}{12} \frac{t^{w}}{d}\left(1-\frac{2 t_{f}}{d}\right)\right] \tag{6.4}\\
& S_{0}=d^{3}\left[\frac{b}{d}\left(\frac{t_{f}}{d}\right)\left(1-\frac{t_{f}}{d}\right)+\frac{1}{6} \frac{t^{w}}{d}\left(1-\frac{2 t_{f}}{d}\right)\right] \tag{6.5}
\end{align*}
$$

and

Figure 6. Typical Built-Up WF Section.

$$
\begin{equation*}
v_{0}=\frac{d^{2}\left[\frac{b}{2 d}\left(\frac{t_{f}}{d}\right)\left(1-\frac{t_{f}}{d}\right)+\frac{1}{12} \frac{t^{w}}{d}\left(1-2 \frac{t_{f}}{d}\right)\right] \frac{t^{w}}{d^{2}}}{\left[\frac{b}{2 d}\left(\frac{t^{\prime}}{d}\right)\left(1-\frac{t_{f}}{d}\right)+\frac{1}{8} \frac{t^{w}}{d}\left(1-\frac{2 t_{f}}{d}\right)^{2}\right]} \tag{6.6}
\end{equation*}
$$

in which

$$
\begin{aligned}
v_{0} & =\text { shear flow of WF section }\left(i n^{2}\right), \\
b & =\text { width of WF section }(i n), \\
d & =\text { depth of WF section (in), } \\
t_{f} & =\text { flange thickness of WF section (in), and } \\
t_{W} & =\text { web thickness of WF section (in). }
\end{aligned}
$$

The upper and lower bounds of the design variables are imposed on the secondary design variables instead of the primary design variable, and they are

$$
\begin{equation*}
d_{\min } \leq d \leq d_{\max } \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{t_{f}}{d}\right)_{\min } \leq \frac{t_{f}}{d} \leq\left(\frac{t_{f}}{d}\right)_{\max } \tag{6.8}
\end{equation*}
$$

However, the ratios of the minimum moment of inertia to the maximum moment of inertia of both girders and columns can be specified. The width, b, and the ratio of web thickness to depth, t_{w} / d, of the WF section are kept constant for each design variable.

An outline of the design procedure for using an optimality criterion algorithm is given below. The design steps correspond with the numbers shown in the flow chart (Fig. 7). Explanatory notes for the computer program can be found in Appendix C.

1. All the input must be supplied according to the input data format.
2. The design begins with the solution of equal sizes for all the design variables. The stiffness and mass matrices are then assembled.
3. If it is a dynamic design, the operator can proceed to Step 6.
4. The structure is analyzed for static loads. The static displacements are computed by solving Eq. (2.2).
5. In the case of static design only, the operator can proceed to Step 12.
6. The eigenvalues and eigenvectors are determined by using the Sturm sequence property in conjunction with the bisection procedure as described in Appendix B.
7. A determination is made as to whether the frequency requirements are violated. The design can proceed to Step 9, if they are within the limits.
8. The structure is scaled to satisfy the frequency requirements. The most violated constraint is recorded.
9. The dynamic displacements are computed by using Eq. (2.48).
10. The operator can proceed to Step 12 if the design is for a dynamic case only.

(a) Partial Flow Chart of Figure 7.
Figure 7. Flow Chart of Design Procedures

11. The dynamic displacements are then added to the static displacements determined in Step 4 by Eq. (2.51).
12. A determination is made as to whether the displacement requirements are within limits. The operator can proceed to Step 14, if the requirements are not violated.
13. The structure is scaled to satisfy the combined static and dynamic requirements. The most violated constraint is also recorded.
14. The member stresses resulting from the combined static and dynamic loads can be determined by using Eq. (2.54).
15. The operator can proceed to Step 17, if all the stresses are within the limits.
16. The structure is again scaled to satisfy the combined static and dynamic requirements. The most violated constraint is then recorded.
17. The change in the scaling factor in Steps 8, 13 , and 16 is insignificant, if

$$
\begin{equation*}
\left|\frac{\Lambda_{\text {new }}-\Lambda_{\text {old }}}{\Lambda_{\text {new }}}\right| \leq \varepsilon \tag{7.1}
\end{equation*}
$$

in which $\Lambda_{0 l d}$ and $\Lambda_{\text {new }}$ are the scaling factors at the beginning and at the end of a design cycle, and ε is a prescribed tolerance. The operator can proceed to Step 19, if the change in the scaling factor is insignificant.
18. If the change in the scaling factor is significant, the proportion of the structural to nonstructural mass determines the effect of this scaling on eigenvalues and eigenvectors. There are

three possible cases:

Case 1: Structural mass only.
The eigenvalues and eigenvectors are uneffected by the scaling.
Case 2: The structural mass is insignificant.
The eigenvalues can be scaled in the same proportion as the design variables but the eigenvectors have to be modified.

Case 3. The structural and nonstructural masses are of similar proportions.

Both eigenvalues and eigenvectors have to be updated. In this case, Steps 6 through 16 have to be repeated.
19. In this step, the limits on section properties of the built-up sections as defined in Chapter VI are checked.
20. For a desired design variable (moment of inertia), the ratio of t_{f} / d can be determined by keeping the depth of the builtup section constant as follows:

$$
\begin{equation*}
\left(\frac{t_{f}}{d}\right)_{v+1}=\frac{2\left\{\frac{I_{0}}{d^{4}}-\frac{1}{12} \frac{t_{w}}{d}\left[1-2\left(\frac{t_{f}}{d}\right)_{v}\right]^{3}\right\}}{\frac{b}{d}\left[1-\left(\frac{t_{f}}{d}\right)_{v}\right]^{2}} \tag{7.2}
\end{equation*}
$$

in which the subscript v refers to the cycle of iteration. Equation (7.2) is derived from Eq. (6.4) and can be used to determine the required t_{f} / d with a few cycles of iteration.

If the t_{f} / d ratio exceeds the upper limit, the depth of the built-up section can be increased while maintaining the ratio at the upper bound by using the following relation:

$$
\begin{equation*}
d=\left[\frac{I_{0}}{\left\{\left[\frac{b d}{2 d}\left(\frac{t_{f}}{d}\right)_{\text {max }}\left[1-\left(\frac{t_{f}}{d}\right)_{\text {max }}\right]^{2}+\frac{1}{12} \frac{t^{w}}{d}\left[1-2\left(\frac{t_{f}}{d}\right)_{\max }\right]^{3}\right\}\right.}\right]^{0.25} . \tag{7.3}
\end{equation*}
$$

Equation (7.3) is also derived from the Eq. (6.4) with t_{f} / d replaced by $\left(t_{f} / d\right)_{\text {max }}$.

An equation similar to Eq. (7.3) can be used to calculate d, if t_{f} / d is less than its lower limit;

$$
\begin{equation*}
d=\left[\frac{I_{0}}{\left\{\frac{b}{2 d}\left(\frac{t_{f}}{d}\right)_{\min }\left[1-\left(\frac{t_{f}}{d}\right)_{\min }\right]^{2}+\frac{1}{12} \frac{t_{w}}{d}\left[1-2\left(\frac{t_{f}}{d}\right)_{\min }\right]^{3}\right\}}\right]^{0.25} . \tag{7,4}
\end{equation*}
$$

If d determined from Eq. (7.4) is less than $d_{\min }$, then $d_{\min }$ should be used.

The operator proceeds to Step 12, when the section properties are changed.
21. The feasible weight of the structure is determined. If it is the first cycle, the operator can proceed to Step 24.
22. The design is stopped when the number of iteration exceeds the maximum allowance.
23. The design is also terminated when the current weight is more than the previous weight. Then the operator proceeds to Step 26.
24. Either $\mu_{j i}$ or $\mu_{j i}^{\prime}, i=1,2, \ldots m$, given in Eq. (4.20) or (4.25) is determined for each constraint j. When the constraints are the displacements of a structure, μ^{\prime} is expressed in Eqs. (5.10) and (5.33) for the static and dynamic loads respectively. For a combined static and dynamic design, the combination of both equations should be used for $\mu_{j i}^{\prime}$. Similarly, if the constraints are stresses,

Eqs. (5.17) and (5.38) should be respectively employed for static and dynamic loads. Apparently, $\mu_{j i}^{\prime}$ in Eq. (5.42) is for the frequency constraint. The term τ_{j}^{\prime} is computed from Eq. (5.11).
25. The Lagrange multipliers associated with the active constraints are determined by solving Eq. (4.32). Therefore, a set of resizing design variables can be calculated by using the recursion relation of Eq. (4.27). The Lagrange multiplier associated with nonactive constraints can also be determined by solving Eq. (4.32). Hence, there are ($n-N$) sets of resizing design variables that correspond to the remaining nonactive constraints. The maximum value of each resizing design variable from these sets is to be used for the next design cycle. The operator then proceeds to Step 2.
26. When the current weight of the structure is more than the one given in the problem, the current design variables are replaced by the previous design variables.
27. The member stresses and the displacements corresponding to the final design are calculated, and the results of the program are printed.

VIII. NUMERICAL EXAMPLES OF TRUSSES AND FRAMEWORKS

The ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures) computer program has been developed for the design of trusses and framed structures subjected to the multicomponent input of static loads and dynamic excitations. Dynamic excitations are wind forces and horizontal and vertical earthquake motions. The response for these can be obtained by using either direct numerical integrations or response spectra. The members of the trusses and bracings are bar elements, and the girders and columns of the frameworks are beam-column elements that can be either built-up sections or hot-rolled wide flange sections available in the AISC Steel Construction Manual. In this chapter, various applications of the computer program and comparisons of the design results are discussed, and in Chapter IX, comparative studies of the effect of multicomponent motions on 30-story unbraced, single-braced, doublebraced, and K-braced structural systems are reviewed.

A. DESIGN OF TRUSSES

1. Design of a Cantilever Truss for Static Loads--Example 1. The ten-bar truss shown in Fig. 8 illustrates the conditions for the iteration cycles versus the structural weight at each design cycle. The structure has ten design variables and eight degrees of freedom. The static loads of $100 \mathrm{kips}(445 \mathrm{kN})$ are applied at nodes 2 and 4 . The member properties of the design problem are the modulus of elasticity, $E=10 \times 10^{6} \mathrm{lbs} / \mathrm{in} .^{2}\left(69.0 \mathrm{GN} / \mathrm{m}^{2}\right)$, the mass density, $\rho=0.10 \mathrm{lb} / \mathrm{in}^{3}\left(2.764 \mathrm{~g} / \mathrm{cm}^{3}\right)$, and the allowable stress,

Figure 8. Cantilever Truss for Static Loads of Example 1.
$\sigma_{a 11}= \pm 25,000 \mathrm{lbs} / \mathrm{in} .^{2}\left(172.5 \mathrm{MN} / \mathrm{m}^{2}\right)$.
The two behavior constraints considered in this example are Case (a), stress constraint only, and Case (b), both stress and displacement constraints. The displacement constraints are $\pm 2.0 \mathrm{in}$. (5.08 cm) for all nodes in both the x and y directions. The lower bound of the design variables is assumed to be $0.10 \mathrm{in} .^{2}\left(6.45 \mathrm{~cm}^{2}\right)$ which is the side constraint in both cases.

A plot of the number of design iterations versus the structural weight corresponding to each iteration is shown in Fig. 9. Table I reveals the final design results of the cross-sectional areas and the stresses of the individual members. The optimum results of Case (a) are due to the stress constraints active in members 1, 3, 4, 7, 8, and 9, and those of Case (b) are due to the displacement constraints active in the vertical direction at nodes 1 and 2. These two displacement constraints, which are simultaneously active under the given loading condition, represent a typical case of the multiple constraint problenıs discussed in Chapter IV.
2. Design of a Twenty-Bar Tower for Static Loads and Ground Motions--

Example 2. Figure 10 shows the configuration of a 20-bar tower, which has a concentrated dead load of $38.64 \mathrm{kips}(171.95 \mathrm{kN}$) acting respectively at nodes 9 and 10. The structure has 20 design variables and 16 degrees of freedom and was designed to withstand a dead load and a horizontal ground motion. The earthquake excitation is represented by the average spectral acceleration shown in Fig. 5 with 0.33 g and 5% damping. The member properties of the structure are modulus of elasticity, $E=10 \times 10^{6} 1 \mathrm{bs} / \mathrm{in} .{ }^{2}$ $\left(69.0 \mathrm{GN} / \mathrm{m}^{2}\right)$, mass density, $\rho=0.10 \mathrm{lb} / \mathrm{in} .^{2}\left(2.764 \mathrm{~g} / \mathrm{cm}^{3}\right)$, and

Figure 9. Optimum Weights of Cantilever Truss of Example 1.

TABLE I. DESIGN RESULTS OF EXAMPLE $1\left(1 \mathrm{in}^{2}=6.452 \mathrm{~cm}^{2}, 1 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}\right.$ $=6.9 \mathrm{kN} / \mathrm{m}^{2}, 1 \mathrm{lb}=0.453 \mathrm{~kg}$)

	Case (a)		Case (b)	
Member numbers	$\begin{aligned} & \text { Areă } \\ & \left(\text { in. }{ }^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Stress } \\ & \left(1 \mathrm{i} / \mathrm{in} .^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Areă } \\ & \left(\text { in. }{ }^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Stress } \\ & \left(1 \mathrm{~b} / \mathrm{in} .^{2}\right) \end{aligned}$
1	7.938	25000	30.512	6621
2	0.100	15533	0.100	52
3	8.062	25000	21.901	9040
4	3.938	25000	15.154	6599
5	0.100	0	0.101	20047
6	0.100	15533	0.100	52
7	5.745	25000	8.924	15526
8	5.569	25000	21.496	6712
9	5.569	25000	21.431	6599
10	0.100	21967	0.100	73
Final weight (1b)	1593.2		5088.2	
No. of iterations	20		20	

Figure 10. Truss Tower for Static Loads and Ground Motion of Example 2.
the allowable stresses, $\sigma_{a 11}= \pm 25,000 \mathrm{lbs} / \mathrm{in}^{2}{ }^{2}\left(172.5 \mathrm{MN} / \mathrm{m}^{2}\right)$. The displacement constraints of 0.25 in . (0.635 cm) are imposed on all the nodes in both the x and y directions. The lower bound of the design variables is $0.10 \mathrm{in} .^{2}$ ($0.645 \mathrm{~cm}^{2}$).

The tower is designed for two different cases: Case (a) is for a horizontal ground motion only, and Case (b) is for both the dead load and the ground motion. For the dynamic design, the first five modes are used. The design results are given in Table II. B. DESIGN OF FRAMED STRUCTURES

1. Design of a Two-Story, One-Bay Frame for Gravity and Wind Loads--

Example 3. The two-story, one-bay frame of Fig. 11 with six design variables and 12 degrees of freedom is designed for gravity and wind loads. The nonstructural masses of the floor are $w_{1}=$ $2 \mathrm{kips} / \mathrm{ft}(2970 \mathrm{~kg} / \mathrm{m})$ for the first story and $\mathrm{w}_{2}=1 \mathrm{kip} / \mathrm{ft}(1485 \mathrm{~kg} / \mathrm{m})$ for the second. The displacement constraints are $2.4 \mathrm{in} .(6.10 \mathrm{~cm})$ and $3.0 \mathrm{in} .(7.62 \mathrm{~cm})$ for the first and the second story respectively. The members of the frame are the hot-rolled wide flange sections for which the relationships of the cross-sectional properties are expressed in Eqs. (6.1) and (6.2). The material properties of the members are modulus of elasticity, $E=29 \times 10^{6} \mathrm{lb} / \mathrm{in} .{ }^{2}\left(200.1 \mathrm{GN} / \mathrm{m}^{2}\right)$, the mass density, $\rho=0.283 \mathrm{lb} / \mathrm{in}^{3}\left(7.823 \mathrm{~g} / \mathrm{cm}^{3}\right)$, and the allowable stress, $\sigma_{a 11}=29,000 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}\left(200.1 \mathrm{MN} / \mathrm{m}^{2}\right)$. The lower bound of all the design variables is $10 \mathrm{in}^{4}\left(416.23 \mathrm{~cm}^{4}\right)$.

The wind force has a magnitude of $35.7 \mathrm{lbs} / \mathrm{ft}^{2}\left(1.71 \mathrm{kN} / \mathrm{m}^{2}\right)$
and a half-sine time function, which is shown in Fig. 12. The response spectrum of the function is given in Fig. 13. The force is distributed on the frames spacing at a distance of $20 \mathrm{ft}(6.1 \mathrm{~m})$ center to center.

TABLE II. DESIGN RESULTS OF EXAMPLE $2\left(1 \mathrm{in} .{ }^{2}=6.452 \mathrm{~cm},{ }^{4} 1 \mathrm{lb} / \mathrm{in} .{ }^{2}\right.$ $=6.9 \mathrm{kN} / \mathrm{m}^{2}, 1 \mathrm{lb}=0.453 \mathrm{~kg}$)

	Case (a)		Case (b)	
Member numbers	$\begin{aligned} & \text { Areă } \\ & \text { (in. }{ }^{2} \text {) } \end{aligned}$	$\begin{aligned} & \text { Stress } \\ & \left(1 \mathrm{~b} / \mathrm{in} .{ }^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { (in. }{ }^{2} \text {) } \end{aligned}$	$\begin{aligned} & \text { Stress } \\ & \text { (1b/in. }{ }^{2} \text {) } \end{aligned}$
1	0.100	8.6883E-03	0.100	$7.3781 \mathrm{E}+02$
2	0.100	1.8568E-02	0.100	$1.5301 \mathrm{E}+01$
3	0.138	2.7816E-02	0.100	$1.4308 \mathrm{E}+03$
4	0.302	4.0701E-02	0.839	$5.0411 \mathrm{E}+02$
5,9	27.581	$2.4553 \mathrm{E}+03$	28.961	$3.6767 E+03$
6,10	20.011	$2.4769 \mathrm{E}+03$	23.626	$3.7186 \mathrm{E}+03$
7,11	12.533	$2.5080 \mathrm{E}+03$	14.654	$4.7641 \mathrm{E}+03$
8,12	5.451	2.5048E+03	9.274	$5.5345 E+03$
13,17	8.949	$2.2734 \mathrm{E}+03$	8.546	$2.4367 \mathrm{E}+03$
14,18	8.985	$2.2616 \mathrm{E}+03$	8.554	$2.4407 \mathrm{E}+03$
15,19	9.211	2.2013E+03	8.599	$2.4222 E+03$
16,20	9.922	$2.0370 \mathrm{E}+03$	8.633	2.4229E+03
Final weight (1b)				
No. of iterations				

Figure 11. Two-Story, One-Bay Frame for Wind Load of Example 3.

Figure 12. Forcing Function of Wind Load of Example 3.

Figure 13. Response Spectrum for the Half Sine Wave of Figure 12.

The structure is designed without consideration of the $P-\Delta$ effect for the following three cases:

Case (a): i) The frame is designed to resist only a wind force for which the uniform load of $35.7 \mathrm{lbs} / \mathrm{ft}^{2}\left(1.71 \mathrm{kN} / \mathrm{m}^{2}\right)$ is treated as a static load. ii) In addition to the static load considered in i), the gravity load of the slab weights is included in the design.

Case (b): i) The frame is designed for a wind force, which is treated as an undamped dynamic excitation for which the forcing function is shown in Fig. 12. ii) The design is due to a combined load of the dynamic force and the slab weights. The frequency, p, of the wind force is assumed to be $3 \mathrm{rad} / \mathrm{sec}$. For computational convenience, the minimum fundamental frequency, ω, of the structure is chosen to be $3 \mathrm{rad} / \mathrm{sec}$., because the response spectrum indicates that when $\omega / 2 p \geq 0.5$ the maximum responses always occur in the forced vibration era. Let the time interval, Δt, be 0.05 sec , then the total number of time steps for the design is 25 . At any time step, i, the maximum responses of the internal forces occurring between $t=0$ and $t=t_{i}$ are recorded. Thus, the maximum internal forces at $t=0$ through the end of the forcing function are used in this design for which the response analysis is apparently exact but time consuming. The example is used only for comparison of this design result with the one that is based on the approximate approach of the response spectrum in Case (c).

Case (c): i) The siructure is designed for a wind load for which the response spectrum of Fig. 13 and the root-mean-square technique are used. ii) The design takes into account the combined load of the
slab weights and the response spectrum of the wind force. Use of the response spectrum eliminates the time parameter and thus saves computing time. Because the maximum responses of individual modes do not necessarily occur at the same time, the root-mean-square technique is employed to level off the peak response of all the modes involved.

The structural weights and the iteration cycles of these three cases are given in Table III in which one can observe the convergence of the recursion process and the differences between the design results. The moment of inertia, the combined stress of the axial and bending forces, the total number of iterations, the floor displacements, and the violated constraints are listed in Table IV. The cross-sectional areas, A_{0}, and the section modulus, S_{0}, are not shown and can be obtained by using Eqs. (6.1) and (6.2). Case (a)i has multiple active constraints that are the stress of member 2 and the displacement at the top floor. However, Case (a)ii has one behavior constraint violated as the stress of member 2 . The violated constraints of (i) and (ii) of Case (b) are the displacement at the top floor and the stress of member 1 respectively. Case (c)i has the multiple constraints violated as the top floor displacement and the stresses of members 4 and 6 , whereas Case (c)ii has a single constraint violated. Note that the structural weight resulting from the design for the static wind force is about 74\% of that based on the dynamic force design, which in turn yields almost the same amount as that resulting from the response spectrum approach.

TABLE IV. DESIGN RESULTS OF EXAMPLE $3\left(1 \mathrm{lb} / \mathrm{in}^{2}=6.9 \mathrm{kN} / \mathrm{m}^{2}, 1 \mathrm{in}^{4}{ }^{4}=41.623 \mathrm{~cm}^{4}, 1 \mathrm{lb}=0.453 \mathrm{~kg}\right.$, $1 \mathrm{in} .=2.54 \mathrm{~cm}$)

Member numbers	Case (a)				Case (b)				Case (c)			
	i		ii		i		ii		i		ii	
	$\begin{gathered} \mathrm{I}_{0} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\stackrel{\sigma}{(1 b / i n ?)}$	I (in? ${ }^{4}$)	$\begin{gathered} \sigma \\ (1 b / i n ?) \end{gathered}$	$\begin{gathered} \mathrm{I}_{0} \\ (\mathrm{in} 4) \end{gathered}$	$\begin{gathered} \stackrel{\sigma}{(1 b / i n} ?) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{0} \\ & (\mathrm{in} 4) \end{aligned}$	$\left.\begin{array}{c} \sigma \\ (1 b / i n ? \end{array}\right)$	$\begin{gathered} \mathrm{I}_{0} \\ (\mathrm{in} 4 .) \end{gathered}$	$\stackrel{\sigma}{(1 b / i n ?)}$	$\begin{aligned} & I_{0} \\ & (\mathrm{in} 4) \end{aligned}$	$\begin{gathered} \sigma \\ (1 b / i n ?) \end{gathered}$
1	604	22364	1679	26909	958	24813	2013	28999	972	24155	2033	28782
2	27	28978	644	28996	94	23364	781	28800	98	24957	782	29000
3	441	26780	981	28275	784	26936	1390	27506	765	26422	1374	27303
4	441	26780	981	28275	784	26935	1390	27546	765	26422	1374	27303
5	51	25800	677	26989	90	28460	1096	21245	98	29000	1089	21409
6	51	25800	677	26989	90	28460	1096	21192	98	29000	1089	21409
Final weight (1b)	b) 30	3096	6486		4194		7411		4212		7406	
No. of iterations		10		3		5		3		5		3

table iv. design result of example 3 (continued)

	Case		Case		Case	
	i	ii	i	ii	i	ii
Member numbers	$\begin{aligned} & (\mathrm{Io} 4) \\ & (1 \mathrm{ib} / \mathrm{in} ?) \end{aligned}$	$\begin{aligned} & \left.\left.\mathrm{I}_{(\mathrm{in} 4}\right)_{(\mathrm{lb} / \mathrm{in} \text { ? }}^{\sigma}\right) \end{aligned}$	$\begin{gathered} \mathrm{Io}_{\left(\mathrm{in}^{4}\right)} \quad(\mathrm{lb} / \mathrm{in} \text { ? }) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{(\mathrm{in} 4} \quad(\mathrm{Ib} / \mathrm{in} \text { ? }) \end{aligned}$	$\underset{(\mathrm{in} 4)}{\mathrm{I}_{\mathrm{i}}} \quad \underset{(\mathrm{lb} / \mathrm{in} \text { ? } ? ~}{\sigma}$	
Constrain violated		${ }_{2}$	u_{2}	${ }_{1}$	${ }_{4},{ }_{6}, u_{2}$	σ_{2}
$\begin{aligned} & \text { Displ. } \\ & u_{1} \\ & u_{2} \end{aligned}$	$\begin{aligned} & 1.99 \mathrm{in} . \\ & 3.00 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.76 \mathrm{in} . \\ & 0.96 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 2.02 \mathrm{in} . \\ & 2.99 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.92 \mathrm{in} . \\ & 1.18 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 1.98 \mathrm{in} . \\ & 2.99 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.91 \mathrm{in} . \\ & 1.18 \mathrm{in} . \end{aligned}$

Example 4. Figure 14 of a two-story, two-bay frame is designed to resist the equivalent seismic forces specified by the Uniform Building Code. This example has ten design variables and 21 degrees of freedom for which the nonstructural masses of the slabs are 2 kips $/ \mathrm{ft}(2970 \mathrm{~kg} / \mathrm{m})$ and $1 \mathrm{kip} / \mathrm{ft}(1485 \mathrm{~kg} / \mathrm{m})$ for the first and top floor respectively. The displacement constraints are $u_{1}=2.4 \mathrm{in}$. $(6.10 \mathrm{~cm})$ and $u_{2}=3.0 \mathrm{in} .(7.62 \mathrm{~cm})$. They correspond respectively to the first and top story. The properties of the constituent members, the allowable stresses, and the lower bound of the design variables are the same as those given in Example 3.

The lateral equivalent seismic loads are computed according to the recommendation of the 1976 Uniform Building Code as the earthquake-zone coefficient, $Z=1.0$, the important factor of the building, $\mathrm{I}=1.5$, the stiffness coefficient of the building, $K=$ 1.0, and the estimated site period, $T_{S}=1.0$.

The frame is designed without a $P-\Delta$ effect for two cases: Case (a) is the design resulting from equivalent lateral seismic loads, whereas Case (b) is due to the gravity loads of the slabs combined with these lateral forces. The final design results are shown in Table V, which includes the moments of inertia and combined stresses of the individual members, the final weight, number of design iterations, and the actual displacements. It is apparent that the critical constraints at the final design are the stresses in members 1 and 3 for Cases (a) and (b) respectively. Because the members are based on the AISC wide flange sections, the section modulus, S_{0}, and the area, A_{0}, of the final design results are

Figure 14. Two-Story, Two-Bay Frame for UBC Equivalent Seismic Forces of Example 4.

TABLE V. FINAL DESIGN RESULTS OF EXAMPLE 4 ($1 \mathrm{in} .^{4}=41.623 \mathrm{~cm},{ }^{4}$ $\left.1 \mathrm{lb} / \mathrm{in} .^{2}=6.9 \mathrm{kN} / \mathrm{m}^{2}, 1 \mathrm{lb}=0.453 \mathrm{~kg}, 1 \mathrm{in} .=2.54 \mathrm{~cm}\right)$

Member numbers	Case (a)		Case (b)	
	Moment of inertia $I_{0}\left(\mathrm{in} .{ }^{4}\right)$	$\begin{gathered} \text { Stress } \\ \sigma\left(1 \mathrm{~b} / \mathrm{in} .^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Moment of } \\ & \text { inertia } \\ & I_{0}(\text { in. } 4) \end{aligned}$	$\begin{gathered} \text { Stress } \\ \sigma(\mathrm{lb} / \mathrm{in} . \mathrm{Z} \end{gathered}$
1	573	29000	1113	24239
2	294	24536	1118	28592
3	105	24313	263	28999
4	60	20057	398	26914
5	566	26154	604	14224
6	94	25285	166	18366
7	768	26469	1399	18263
8	152	22753	255	26361
9	392	17148	1556	19464
10	91	11847	538	20849
Final weight (1b)	4460		7331	
No. of iterations	3		3	
Disp: u_{1}	1.57 in.		0.81 in.	
u_{2}	2.18 in .		1.04 in.	

calculated by the computer according to Eqs. (6.1) and (6.2) and then printed in the output.
3. Design of a Five-Story, One-Bay Frame for Dynamic Loads and Seismic

Excitations--Example 5. The five-story, one-bay frame shown in
Fig. 15 is designed for two loadings. The first loading is the dynamic wind loads that result from a uniform load of $35.7 \mathrm{psf}\left(1.71 \mathrm{kN} / \mathrm{m}^{2}\right)$ that is distributed on the frames at $20 \mathrm{ft}(6.1 \mathrm{~m})$ spacing. The shock spectrum and 5\% damping shown in Fig. 13 are taken into consideration. The second loading is due to a horizontal ground motion that is based on the average spectral acceleration, 5% damping, and 0.27 g as shown in Fig. 5. The uniform loads on girders, w, are $180 \mathrm{lb} / \mathrm{in} .(3210.2 \mathrm{~kg} / \mathrm{m})$.

Two design cases are considered: Case (a) is for the frame to resist the wind load and the seismic excitations that act independently as two loading conditions, and Case (b) is for the frame to resist these two loadings, each of which is combined with the static gravity load. The first three natural modes are used to approximate the dynamic response on the basis of the root-mean-square technique. The member properties, the allowable stress, and the lower bound of the design variables are the same as given in Example 3. No $\mathrm{P}-\Delta$ effect is considered for this design. The displacement constraints are based on the allowable deflection relative to the ground which is equal to 0.005 times the floor height. The final design results are shown in Table VI. Note that the columns at each floor are assumed to be identical and are treated as one design variable, which is selected according to Eqs. (6.1) and (6.2). This example is designed to show that the ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures) computer program is

Figure 15. Five-Story, One-Bay Frame for Wind Loads and Seismic Excitations of Example 5.

TABLE VI. FINAL DESIGN RESULTS OF EXAMPLE $5\left(1 \mathrm{in} .{ }^{4}=41.623 \mathrm{~cm},{ }^{4}\right.$ $1 \mathrm{lb} / \mathrm{in}^{2}=6.9 \mathrm{kN} / \mathrm{m}^{2}, 1 \mathrm{lb}=0.453 \mathrm{~kg}$)

versatile enough for the optimum design of various steel structures subjected to various types of loading.

4. Comparison of Design Results Based on the UBC Equivalent Lateral

Forces and the Average Seismic Acceleration Spectrum for a One-Bay
Frame Varies from One-Stroy to 30 -Stories--Example 6. One-story to 30 -story one-bay frames are designed according to the 1976 Uniform Building Code (UBC) and the average acceleration spectrum of 0.27 g and 5\% damping as shown in Fig. 5. The unbraced single-bay frames have a typical span length of $21 \mathrm{ft}(6.40 \mathrm{~m})$ and a typical floor height of $12 \mathrm{ft}(3.66 \mathrm{~m})$. The dead load on each floor is $180 \mathrm{lb} / \mathrm{in}$. $(3210.2 \mathrm{~kg} / \mathrm{m})$. The allowable combined stress for the bending and axial force is $\sigma=29 \mathrm{ksi}\left(200.1 \mathrm{MN} / \mathrm{m}^{2}\right)$, the allowable shear stress is 0.65σ, and the allowable deflections at any floor are equal to 0.005 times the height of the story from the ground level. Neither the static stress nor the P- Δ effect occasioned by the superimposed masses on the floors are considered. The first five modes are used in conjunction with the root-mean-square technique in the design. The natural periods are obtained by using the eigensolution subroutine. The properties of the built-up sections described in Chapter VI are $b=10 \mathrm{in} .(25.4 \mathrm{~cm}), d_{\text {max }}=36 \mathrm{in} .(91.2 \mathrm{~cm})$, $d_{\min }=8$ in. $(20.3 \mathrm{~cm}),\left(t_{f} / \mathrm{d}\right)_{\max }=0.045,\left(\mathrm{t}_{\mathrm{f}} / \mathrm{d}\right)_{\min }=0.023$, and $t_{W} / d=0.020$.

For the solution associated with the equivalent seismic forces as specified by the Uniform Building Code, the values of Z, K, S, and I are assumed to be one which corresponds to Zone 4 of the highest seismic risk. The natural period is ubtained by using the Rayleigh quotient equation in the Code.

Figure 16 shows the comparison of the design results of the total weight of each of the 30 unbraced, single-bay frames. The figure indicates that the Uniform Building Code requires a much lighter structural weight than the average response spectrum for which only a moderate magnitude of 0.27 g is used. The base shear factor, CS, which corresponds to the final design of Fig. 16, is illustrated in Fig. 17 for both design cases. It is apparent that the Uniform Building Code underestimates the total shear forces as compared to the average acceleration spectrum of 0.27 g in magnitude.

IX. THE EFFECT OF MULTICOMPONENT SEISMIC MOTIONS ON 15-STORY STRUCTURAL SYSTEMS

In this chapter, the design results for 15-story braced and unbraced buildings are compared. These buildings are considered to have been subjected to the horizontal and vertical ground motions of the 1940 El Centro earthquake for which the acceleration spectra with 5% damping are given in Fig. 4. In addition to the consideration of vertical component of the ground motion, the second-order $\mathrm{P}-\Delta$ effect on the design is also included. The P- Δ effect is a result of all the axial forces exerted on the columns. These forces are composed of the dead loads of the structural and nonstructural masses and the associated inertial forces occasioned by vertical acceleration. The structures are assumed to have two models: Model I has two nodes at both ends of a girder, and Model II has three nodes at both ends and at the mid-span of a girder.

The 15 -story buildings discussed in this chapter have the following structural dimensions, weights, member properties, and allowable stresses: The span length and floor height are $21 \mathrm{ft}(6.405 \mathrm{~m}$) and $12 \mathrm{ft}(3.66 \mathrm{~m})$ respectively. The dead load (nonstructural mass) on each floor is $180 \mathrm{lbs} / \mathrm{in}$. $(3210.2 \mathrm{~kg} / \mathrm{m})$. The mass density and the modulus of elasticity of the construction material are $0.283 \mathrm{lbs} /$ in. ${ }^{3}\left(7.823 \mathrm{~g} / \mathrm{cm}^{3}\right)$ and $29,000 \mathrm{ksi}\left(200.1 \mathrm{GN} / \mathrm{m}^{2}\right)$ respectively. The allowable stress, σ, for bending combined with the axial forces of the columns and girders is $29 \mathrm{ksi}\left(200.1 \mathrm{MN} / \mathrm{m}^{2}\right.$), and the allowable shear stress, σ_{v}, is less than or equal to 0.65σ. The allowable axial stress of the bracings is assumed to be 20 ksi ($138 \mathrm{MN} / \mathrm{m}^{2}$).

Although different allowable deflections may be imposed at any particular node, the allowable deflection of each floor is limited to 0.005 times the height of that floor from the ground level. The columns and girders are made of the built-up sections described in Chapter VI and have the following properties: $b=25 \mathrm{in} .(63.50 \mathrm{~cm}), \mathrm{d}_{\text {max }}=75 \mathrm{in}$. $(190.50 \mathrm{~cm}), d_{\min }=15 \mathrm{in} .(38.10 \mathrm{~cm}),\left(t_{f} / d\right)_{\max }=0.045,\left(t_{f} / d\right)_{\min }=$ 0.023 , and $t_{w} / d=0.020$.
A. 15-STORY UNBRACED FRAMES

The 15 -story unbraced frame shown in Fig. 18(a) is used to study the significant effect of multicomponent ground motion and of various constraints on the optimal design results. The optimal design results of the structure are observed by considering the stress constraints only, the stress and displacement constraints, and the constraints on the relative stiffness of the constituent members. Four design cases are considered by using Models I and II shown in Fig. 18(b): Case (a) is designed for horizontal ground motion only, Case (b) for a horizontal ground motion and the P- Δ effect of the dead load associated with the structural and nonstructural masses, Case (c) for horizontal and vertical earthquake components but no P- Δ effect, and Case (d) for horizontal and vertical earthquake components as well as the $\mathrm{P}-\triangle$ effect occasioned by the dead load and the vertical inertial forces associated with the structural and nonstructural masses. In this chapter, the design results are identified by $H, H+P \Delta(D L), H+V, H+V+P \Delta(D L+V)$, which correspond to Cases (a) through (d) respectively. The stresses caused by gravity loads on girders are not included in

(a) 15-story Unbraced Frame

MODEL II
(b) Structural Models

Figure 18. 15-Story, Single-Bay Unbraced Frame of Examples 7 through 9.
the design of Examples 7 through 9. Thus the design results are based on the dynamic excitations only.

1. Stress Constraints Only --Example 7. The plot of the total weights versus the number of iterations for Case (a) through Case (d) is shown in Fig. 19. Table VII lists the final weights of these four cases, which are identified as Group A. The table also includes the final displacement at the top floor, the number of modes, and the associated natural periods used in the design. It is apparent that the multicomponent ground motion when combined with the $P-\Delta$ effect of the structural and nonstructural masses can yield nearly 3% of an increase in the structural weight over that which would be required for one horizontal component only.

Figure 20 shows the ratio of the energy (kinematic and strain), W, of the individual modes to the total energy, W_{T}, associated with the total number of natural modes included in the design. This plot signifies that the first mode is the most significant for all cases. The modes beyond the third have little effect on a structure subject to a horizontal motion such as in Cases (a) and (b) of Model I. However, when a structure is subjected to combined horizontal and vertical ground motions as in Cases (c) and (d) of Model II, the first five modes are needed for an adequate design.

The moments of columns and girders are shown in Figs. 21 (a) and (b). The shear envelopes at individual floor levels are plotted in Fig. 22, which shows that the shear at each level is uniform1y increased from the top floor to the bottom. The inclusion of the vertical ground motion and the $P-\Delta$ effect significantly increases

Figure 19. Optimum Weights of Unbraced Frame of Example 7.

TABLE VII. FINAL WEIGHTS, NATURAL PERIODS, AND DISPLACEMENTS OF 15-STORY FRAMES ($A=$ UNBRACED WITH STRESS CONSTRAINTS, $B=$ UNBRACED WITH STRESS AND DISPLACEMENT CONSTRAINTS, $C=$ SINGLE-BRACED, $D=$ DOUBLE-BRACED, $E=K-B R A C E D)$ (1 kip $=453 \mathrm{~kg}, 1 \mathrm{in} .=2.54 \mathrm{~cm}$)

Group	Case	Final Weight (kips)	Natural Period (sec.)					Disp. at top floor (in.)
			1	2	3	4	5	
A	a	51.88	2.409	0.796	0.462	0.327	0.245	13.19
	b	53.03	2.412	0.792	0.461	0.323	0.243	13.21
	c	52.15	2.413	0.792	0.461	0.326	0.245	13.22
	d	53.32	2.409	0.786	0.458	0.322	0.242	13.22
B	a	60.44	2.152	0.694	0.404	0.282	0.212	10.80
	b	62.21	2.179	0.671	0.386	0.268	0.202	10.80
	c	60.77	2.158	0.692	0.402	0.281	0.217	10.80
	d	62.21	2.152	0.677	0.395	0.276	0.212	10.80
C	a	45.02	1.879	0.490	0.256	0.247	0.187	9.00
	b	46.48	1.876	0.479	0.274	0.252	0.209	9.05
	c	45.04	1.874	0.488	0.291	0.255	0.224	9.02
	d	46.75	1.874	0.485	0.288	0.253	0.221	9.02
D	a	30.67	2.136	0.510	0.316	0.265	0.263	10.75
	b	32.02	2.120	0.502	0.313	0.261	0.260	10.63
	c	30.87	2.140	0.531	0.402	0.362	0.337	10.80
	d	31.55	2.134	0.509	0.398	0.361	0.335	10.80

TABLE VII. FINAL WEIGHTS, NATURAL PERIODS, AND DISPLACEMENTS OF 15-STORY FRAMES (continued)

Group	Case	Final weight (kips)	Natural Period (sec.)					Disp. at top floor (in.)
			1	2	3	4	5	
E	c	28.13	2.104	0.522	0.277	0.271	0.179	10.47
	d	28.61	2.111	0.519	0.274	0.269	0.178	10.55

Figure 20. Contribution of Energy of Individual Modes to the Design of Example 7.

Figure 21 (a). Column Moments of Example 7.

Figure 21 (b). Girder Moments of Example 7.

Figure 22. Shear Envelopes of Example 7.
increases the shear forces at all the floor levels.
Figures 23 and 24 show the distribution of the moments of inertia of the columns and girders respectively. The moment of inertia for the columns is the smallest at the top floor and increases almost linearly from the top floor to the second floor and abrubtly increases at the first floor. The moment of inertia for the girders is relatively small at the first floor and increases suddenly at the second floor. It decreases almost linearly from the second to the 13th floor and abruptly decreases from the 14th to the top. If the moments of inertia of all the four cases are divided by the corresponding moments of inertia of Case (a), the normalized moments of inertia of the columns and girders corresponding to Fig. 23 and 24 can be shown as they appear in Figs. 25 and 26 , respectively. Apparently the moment of inertia associated with Case (a) is normalized to one, and the normalized moments of inertia of the other cases can reflect how much the multicomponent ground motion affects the stiffness requirements. From Figs. 25 and 26, one can observe that the vertical ground motion when combined with the horizontal ground excitation and the $P-\Delta$ effect can significantly increase the moments of inertia of both columns and girders.

The ratios of the combined stresses of the axial and bending forces to the allowable stresses for the columns and girders are respectively plotted in Figs. 27 and 28 in which the variations of the actual stresses in the final design can be observed. The

Figure 23. Distribution of Moment of Inertia of Columns of Example 7.

Figure 24. Distribution of Moment of Inertia of Girders of Example 7.

Figure 25. Normalized Moment of Inertia of Columns of Example 7.

Figure 26. Normalized Moment of Inertia of Girders of Example 7.

Figure 27. Ratio of Stress to Allowable Stress of Columns of Example 7.

Figure 28. Ratio of Stress to Allowable Stress of Girders of Example 7.
stresses of the columns at the first floor and top three floors are close to the allowable stress. The stresses of girders reach the allowable stress for all floors except the top and the first floor for which the stresses at the first floor are the smallest.

Figure 29 shows a plot of the displacements at the different floor levels relative to the ground for the four cases. On the basis of the final design weight listed in Table VII, the displacements are obviously inversely proportional to the overall stiffness of the structure.
2. Stress and Displacement Constraints--Example 8. In addition to the allowable stress of $29 \mathrm{ksi}\left(200.1 \mathrm{MN} / \mathrm{m}^{2}\right)$ that is imposed on all the members, the allowable displacement of 0.005 times the story height from the ground is imposed on each floor. Figure 30 shows the interation history and the corresponding structural weights for the four cases of (a) through (d). The final weights, periods, and displacements at the top story for all cases are listed in Table VII in Group B. The design result shows that the structural weight, which is needed to withstand the effects of a vertical ground motion and a P- \triangle effect, is about 3.0% greater than the structural weight needed for a horizontal ground motion alone. It is apparent that the displacement constraints cause the structure of Group B to be more rigid than those in Group A; thus, the final structural weight of Group B is much heavier than that in Group A.

The distribution of the moments in columns and girders is given in Figs. 31 (a) and (b). The shear envelopes are illustrated in Fig 32. The moments of the columns are the largest at the first floor and gradually decrease from the second floor to the top. The moments of the girders are remarkably small relative to those at the second floor which are in fact the largest. Some variations in the shear envelopes are

Figure 29. Displacements at Floor Levels of Example 7.

Figure 30. Optimum Weight of Unbraced Frame of Example 8.

Figure 31 (a). Column Moments of Example 8.

Figure 31 (b). Girder Moments of Example 8.

Figure 32. Shear Envelopes of Example 8.
shown for cases of (a) through (d) at certain floors.
Figures 33 and 34 reveal the distribution of the moments of inertia of the columns and girders respectively. The moment of inertia of the columns is the smallest at the top, the largest at the supports, and almost linearly increases from the second floor to the top floor. The moment of inertia of the girders is small at the first floor, suddenly increases at the second floor, and gradually decreases from the second to the sixth floor. It becomes practically constant from the sixth to the 12 th and significantly decreases from the 12 th to the top floor. The normalized moments of inertia of the columns and girders are shown in Figs. 35 and 36 respectively. Note that the moments of inertia of Case (a) is greater than that of other cases for the columns above the eighth floor and for the girders above the tenth floor.

The ratios of the actual combined stresses to the allowable stress of both the columns and girders are shown in Figs. 37 and 38 respectively. Note that all the design cases have been terminated, because the allowable deflection at the top floor is violated as shown in Table VII. The displacements at the floor levels are sketched in Fig. 39 and the significance of the individual modes for the design is shown in Fig. 40.
3. Constraints on the Relative Stiffnesses of the Constituent Members
--Example 9. As shown in the previous design examples, the final moments of inertia of the columns and girders of a system can have a great deal of difference in magnitude. In engineering practice, the

Figure 33. Distribution of Moment of Inertia of Columns of Example 8.

Figure 34. Distribution of Moment of Girders of Example 8.

Figure 35. Normalized Moment of Inertia of Columns of Example 8.

Figure 36. Normalized Moment of Inertia of Girders of Example 8.

Figure 37. Ratio of Stress to Allowable Stress of Columns of Example 8.

Figure 38. Ratio of Stress to Allowable Stress of Girders of Example 8.
cm.

Figure 39. Displacements at Floor Levels of Example 8.

Figure 40. Contribution of Energy of Individual Modes to the Design of Example 8.
cross-sectional properties of the columns and girders of a structure are limited for constructional as well as architectual reasons; thus, the ratios of the maximum moments of inertia to the minimum moments of inertia are usually restrained. For the purpose of studying the effect of relative stiffness on optimum results, the 15-story building depicted in Fig. 18 has been redesigned for the following three cases: Case (i), the ratios of the maximum to the minimum moments of inertia of the columns and girders are equal to or less than 10; Case (ii), the ratios are equal to or less than 5; and Case (iii), the moments of inertia of the columns and girders for every two floor levels are assumed to be the same; however the ratios of the maximum moments of inertia to those of the minimum for the system cannot be more than 10. The design results of these three cases are compared with those of Case (iv), which is actually duplicated from Case (d) in Example 8.

Figures 41 and 42 illustrate the distribution of the moments of inertia of the columns and girders respectively for the four cases. The additional constraint of the ratios of the maximum to minimum moments of inertia somewhat changes the final design but not the distribution pattern from the first floor to the top. Other comparisons of the design results including the normalized moment of inertia, combined stresses, moments, shear envelopes, displacements, and design weights are shown from Figs. 43 through 51.

Table VIII lists the final weights, periods, and displacements at the top floor for the four cases. All the design cases have been terminated, because the allowable deflection at the top floor is

Figure 41. Distribution of Moment of Inertia of Columns of Example 9.

Figure 42. Distribution of Moment of Inertia of Girders of Example 9.

Figure 43. Normalized Moment of Inertia of Columns of Example 9.

Figure 44. Normalized Moment of Inertia of Girders of Example 9.

Figure 45. Ratio of Stress to Allowable Stress of Columns of Example 9.

Figure 46. Ratio of Stress to Allowable Stress of Girders of Example 9.

Figure 47. Moments in Columns of Example 9.

Figure 48. Moments in Girders of Example 9.

Figure 49. Shear Envelopes of Example 9.

Figure 50. Displacements at Floor Levels of Example 9.

Figure 51. Comparison of Optimum Design Weight of Example 9.

TABLE VIII. FINAL WEIGHTS, NATURAL PERIODS, AND DISPLACEMENTS OF EXAMPLE 9 ($i=I_{\max } / I_{\min }=10, i i=I_{\max } / I_{\min }=5$, $\mathrm{iii}=$ SAME MOMENT OF INERTIA OF COLUMNS AND THAT OF GIRDERS FOR EVERY TWO FLOORS AND $I_{\max } / I_{\min }=10$, iv = NO LIMIT (SAME AS CASE (d) OF EXAMPLE 8))
$(1 \mathrm{kip}=453 \mathrm{~kg}, 1 \mathrm{in} .=2.54 \mathrm{~cm})$

		Natural Period (sec.) Final Weight (kips)				1	2

violated. As expected, the final weight of Case (iv) without the restraint on the relative stiffness has the least weight.

B. 15-STORY BRACED FRAMES

Three types of braced frames, namely the single-braced, doublebraced, and K-braced, are designed so that the effect of the interaction of ground motions on the optimum solutions can be studied. All of the design information is the same as that given at the beginning of this chapter with the stress and displacement constraints except that the minimum depth for the columns and girders, $d_{\min }$, is 10 in . (25.40 $\mathrm{cm})$. The maximum and minimum areas for the bracings are assumed to be $23 \mathrm{in.}^{2}\left(148.39 \mathrm{~cm}^{2}\right)$ and $1 \mathrm{in} .^{2}\left(6.45 \mathrm{~cm}^{2}\right)$ respectively. All of the design examples of the braced systems include the static stresses resulting from the weight of the nonstructural masses on the girders. 1. 15-Story Single-Braced Frame--Example 10. Figure 52 shows the configuration of the 15-story, single-braced frame for which the design variables of the columns on each of the floor levels are assumed to be the same. Figure 53 illustrates the total weights versus the number of iterations for the four cases of (a) through (d). Other design results are given in Table VII of Group C. Examination of the figure reveals that the multicomponent ground motions when combined with the P- \triangle effect can increase the structural weight by 40% over the structural weight for the horizontal component only.

The ratios of the strain and kinematic energies of the individual modes to those of all the modes in the design are plotted in Fig. 54. The plot indicates that the first three modes and the first four modes are adequately accurate for the design of Models I and II of the singlebraced systems respectively.

(a) 15-Story Single-Braced Frame

MODEL I

MODEL II
(b) Structural Models

Figure 52. 15-Story, Single-Bay, Single-Braced Frame of Example 10.

Figure 53. Optimum Weights of Single-Braced Frame of Example 10.

Figure 55. Distribution of Moment of Inertia of Columns of Example 10.

Figure 56. Distribution of Moment of Inertia of Girders of Example 10.

Figure 57. Distribution of Areas of Bracings of Example 10.

Figure 58. Normalized Moment of Inertia of Columns of Example 10.

Figure 59. Normalized Moment of Inertia of Girders of Example 10.

Figure 60. Normalized Cross-sectional Areas of Bracings of Example 10.

Figure 61. Ratio of Stress to Allowable Stress of Columns of Example 10.

Figure 62. Ratio of Stress to Allowable Stress of Girders of Example 10.

Figure 63. Ratio of Stress to Allowable Stress of Bracings of Example 10.

Figure 64. Moments in Columns of Example 10.

Figure 65. Moments in Girders of Example 10.

Figure 66. Axial Forces in Bracings of Example 10.

Figure 67. Displacements at Floor Levels of Example 10.

(a) 15-Story Double-Braced Frame

MODEL I

MODEL II
(b) Structural Models

Figure 68. 15-Story, Single-Bay, Double-Braced Frame of Example 11.

Figure 69. Optimum Weights of Double-Braced Frame of Example 11.

Figure 70. Contribution of Energy of Individual Modes to the Design of Example 11.
necessary for an accurate design based on Model I, but the design based on Model II requires at least the first four modes.

Figures 71 through 73 respectively indicate the distribution of the moments of inertia of the columns and girders as well as the bracing areas. These figures show that the frames with double bracings demand smaller moments of inertia for the columns and girders than single-braced frames. Note that the moments of inertia for all the girders and those of columns between the 13th and 15 th floor are a minimal $289 \mathrm{in}^{4}$ ($12029 \mathrm{~cm}^{4}$) and that the distribution of the bracing areas follows a pattern similar to that of the singlebraced frame; however, the areas required for the double-bracings are about half those for single-bracings. The normalized moments of inertia of the columns and girders and the normalized areas of the bracing members are shown in Figs. 74 through 76 respectively.

The ratios of the actual combined stresses to the allowable stress of the columns and girders are practically similar for all the floors except the columns at the top three floors as illustrated in Figs. 77 and 78. Figure 79 includes the ratio of axial stresses to the allowable stress of the bracings for all four cases. The maximum moments of the columns and girders and the axial forces of the bracings are shown in Figs. 80,81 , and 82 respectively. The displacements are shown in Fig. 83.
3. 15-Story K-Braced Frame--Example 12. For the 15-story K-braced frame shown in Fig. 84(a), only Model II of Fig. 84(b) can be employed for the design because the bracing members intersect at the mid-span of the girders. The configuration of K-bracing can increase the longitudinal

Figure 71. Distribution of Moment of Inertia of Columns of Example 11.

Figure 72. Distribution of Moment of Inertia of Girders of Example 11.

Figure 73. Distribution of Areas of Bracings of Example 11.

Figure 74. Normalized Moment of Inertia of Columns of Example 11.

Figure 75. Normalized Moment of Inertia of Girders of Example 11.

Figure 76. Normalized Cross-sectional Areas of Bracings of Example 11.

Figure 77. Ratio of Stress to Allowable Stress of Columns of Example 11.

Figure 78. Ratio of Stress to Allowable Stress of Girders of Example 11.

Figure 79. Ratio of Stress to Allowable Stress of Bracings of Example 11.

Figure 80. Moments in Columns of Example 11.

Figure 81. Moments in Girders of Example 11.

Figure 82. Axial Forces in Bracings of Example 11.

Figure 83. Displacements at Floor Levels of Example 11.

(a) 15-Story K-Braced Frame

(b) Structural Model

Figure 84. 15-Story, Single-Bay, K-Braced Frame of Example 12.
stiffness of the structure and consequently reduces the effect of the vertical ground motion. Because a node must be assumed at the mid-point of girders, Model II is used for loading Cases of (c) and (d) of which the design results are shown in Table VII as well as Fig. 85.

Figure 86 represents the contribution of the energies of the individual modes to the design for all cases. The modes beyond the fourth contribute little to the design, because they correspond mainly to the vertical earthquake component.

The $P-\Delta$ effect requires somewhat larger columns and bracings as shown respectively in Figs. 87 and 89. The girders are designed on the basis of minimum sizes. The corresponding ratios of the normalized section properties of columns, girders, and bracings are illustrated in Figs. 90 through 91.

The ratios of the combined stresses to the allowable stresses of the columns, girders, and bracings are shown in Figs. 93 through 95 which indicate that the actual stresses of these two cases are very close and that the columns at the support are only the members reach the allowable stress. The stress behavior of the columns can be further observed from Fig. 96 where the moments of the support columns are very large. The moments of the girders, the axial forces in the bracings, and the displacements at the floor levels may be found in Fig. 97 through 99 respectively. 4. Comparison of Single-Braced, Double-Braced, and K-Braced Systems--

Example 13. Figure 100 represents the comparison of the design weights of Case (d) for the single-braced, double-braced, and K-braced

Figure 85. Optimum Weights of K-Braced Frame of Example 12.

Figure 86. Contribution of Energy of Individual Modes to the Design of Example 12.

Figure 87. Distribution of Moment of Inertia of Columns of Example 12.

Figure 88. Distribution of Moment of Inertia of Girders of Example 12.

Figure 89. Distribution of Areas of Bracings of Example 12.

Figure 90. Normalized Moment of Inertia of Columns of Example 12.

Figure 91. Normalized Moment of Inertia of Girders of Example 12.

Figure 92. Normalized Cross-sectional Areas of Bracings of Example 12.

Figure 93. Ratio of Stress to Allowable Stress of Columns of Example 12.

Figure 94. Ratio of Stress to Allowable Stress of Girders of Example 12.

Figure 95. Ratio of Stress to Allowable Stress of Bracings of Example 12.

Figure 96. Moments in Columns of Example 12.

Figure 97. Moments in Girders of Example 12.

Figure 98. Axial Forces in Bracings of Example 12.

Figure 99. Displacements at Floor Levels of Example 12.

Figure 100. Comparison of Optimum Weights of Braced Systems of Example 13.
systems of Examples 10, 11, and 12 . The K-braced system is the lightest structure, which is about 40 and 10% lower than the weights of single-braced and double-braced systems respectively.

Comparisons of the moments of inertia of the columns and girders as well as the areas of the bracings corresponding to the three systems have been replotted in Figs. 101 through 103. Other comparisons of normalized member properties of moment of inertia and area, normalized stresses, and moments and axial forces are shown in Figs. 104 through 112. Figure 113 shows the floor displacements of the three braced systems for which the displacement responses are almost identical and violate the allowable deflection at the top floor.

Figure 101. Comparison of Moment of Inertia of Columns of Braced Systems of Example 13.

Figure 102. Comparison of Moment of Inertia of Girders of Braced Systems of Example 13.

Figure 103. Comparison of Areas of Bracings of Braced Systems of Example 13.

Figure 104. Comparison of Normalized Moment of Inertia of Columns of Example 13.

Figure 105. Comparison of Moment of Inertia of Girders of Example 13.

Figure 106. Comparison of Normalized Bracing Areas of Example 13.

Figure 107. Comparison of Normalized Stress of Columns of Example 13.

Figure 108. Comparison of Normalized Stress of Girders of Example 13.

Figure 109. Comparison of Normalized Stress of Bracings of Example 13.

Figure 110. Comparison of Moments in Columns of Example 13.

Figure 111. Comparison of Moments in Girciers of Example 13.

Figure 112. Comparison of Axial Forces of Bracings of Example 13.

Figure 113. Comparison of Floor Displacements of Example 13.

A. REVIEW

In this report, the effect that ground motions have on the relative stiffness requirements, on the overall stiffness distribution at critical regions, and on the entire system of various plane structures (a component of 3-D symmetric structures) has been examined. The structural systems studied are trusses, unbraced, single-braced, doublebraced, and K-braced steel frameworks for which the constituent members are bar elements for bracings and truss-members and beam-column elements for columns and girders. The beam-column elements are either the built-up sections or the hot-rolled wide flange sections that are available in the AISC Steel Construction Manual. The structures can be subjected to static loads and dynamic forces as well as to horizontal and vertical ground motions. The dynamic forces and the seismic excitations can be used on a basis of either direct integrations or response spectra. In addition, the equivalent lateral seismic force recommended by the Uniform Building Code can also be used for the design purposes.

The optimum design method is based on an optimal criterion and a recursion relation for which the behavior constraints of static and dynamic displacements and stiffnesses as well as the constraints of natural frequencies are presented in detail. Other constraints are the desirable sizes of the members and the limitation on the difference between the maximum and minimum moments of inertia of a system. The method is considered to be more advantageous than any of the other optimization methods currently in
vogue, because the number of iterations required to converge on an optimum design is independent of the number of variables in the problem. Thus, the method can be applied practically to the design of large structural systems.

The structural formulation is based on the displacement method, and consideration is given to the consistent mass formulation and the second-order effect resulting from static and dynamic forces acting axially on the columns. It is postulated that the columns and girders have axial and bending deformations, thus each node of a structural system has three degrees of freedom. Various displacement constraints can be applied to the individual nodes with any specific numbers. A sophisticated computer program, ODSEWS (Optimum Design of Static, Earthquake, and Wind Structures), has been developed for the design of static loads, dynamic forces, and seismic excitation as well as for any combination of these. The program is based on an IBM 370/168 for which the input and output formats are detailed in Appendix C. B. CONCLUSIONS AND REMARKS

The following is a summary of the important conclusions determined from this investigation:
(1) The use of a response spectrum in conjunction with a root-mean-square technique can yield very satisfactory design results compared to those resulting from application of an exact response method, which is based on numerical integrations.
(2) The use of wind forces as static loads in the design can yield a much lighter structure than one that is based on actual wind forces.
(3) The distribution of the moments of inertia of the columns of an unbraced system shows that the moments of inertia are relatively small at the top floor and increase almost linearly from the top to the second floor and abruptly increases at the first floor. The distribution is consistent for both constraint conditions (stress constraints and stress displacement constraints) and the four loading of cases (a) through (d).
(4) The distribution of the moments of inertia of the girders of an unbraced system indicates that the moments of inertia of a rigid system (based on both stress and displacement constraints) are relatively small at the first floor, increase suddenly at the second and gradually decrease from the second to the sixth floor. It becomes practically constant from the sixth to the 12 th and significantly decreases from the 12th to the top floor. The moments of inertia of the girders of a flexible system (based on the stress constraints only) are also small at the first floor and increase suddenly from the second to the fifth. They decrease almost linearly from the second to the 13th and then decrease abruptly from the 13 th to the top.
(5) The restraint of the ratios of the maximum moments of inertia to the minimum of moments of inertia does not change the distribution pattern as discussed in (3) and (4) above but increases some moments of inertia to the members having small stresses because of the side constraint of $I_{\max } / I_{\min }$. The increase depends on the magnitude of the restraint.
(6) The distribution of the moments of inertia of the columns of single-braced and double-braced systems is similar to those of unbraced frames except that the braced-systems require much smaller moments of inertia because bracings are used in the frames. The moments of inertia of the supporting columns and those of the first floor girders of both braced systems are not abruptly changed as the case of unbraced systems. The
girders of a double-braced system from the first to the top are actually governed by the lower bound of the design variables.
(7) The bracings of a single-braced system are relatively large for the first floor and are considerably smaller at the top. The distribution of double-bracings is similar to that of singles, and the areas of the individual doubles are about half of those of corresponding single bracings.
(8) The distribution of the moments of inertia of columns and girders of a K-braced system is similar to that of singlebraced and double-braced systems. Because the K-bracings intersect at the midspan of girders, the longitudinal structural stiffness is increased considerably and consequently reduces the effect of the vertical ground motions on the structural design. The Kbraced system is the lightest structure among all the structures investigated.
(9) Even though the first mode is the most significant in dynamic response, the first three modes are needed to provide an adequate design for structures subject to a horizontal ground motion only. However, the first five modes are necessary for designing structures subject to multicomponent earthquake motions. Model II can describe the response behavior of multicomponent ground motions better than Model I.
(10) The Uniform Building Code underestimates the total shear forces compared to those resulting from the use of either actual earthquake records or the average acceleration spectrum. Therefore the design based on the equivalent seismic forces provided
by the Code yields a much lighter weight than that obtained by using the spectrum method.
(11) A heavier structural design is needed to withstand the effect of a vertical ground motion that is combined with a horizontal earthquake and a second-order $P-\Delta$ effect than for a horizontal movement acting alone.
(12) For tall buildings, the design is mostly controlled by the displacement constraint at the top floor and has a few members reaching fully stressed.
(13) In the design, the material savings are apparently of great interest. However, the most important point is the scientific approach of determining the stiffness distribution of various braced and unbraced systems. The scientific design method, which can always provide the required stiffnesses and satisfy the designer's given constraints, is considered to be much better than the conventional design technique based on the trial and error process by using either the desk calculators or the analysis computer programs.
(14) The ODSEWS program is sophisticated and versatile that can be used for the design of various systems subjected to static loads, wind forces, and multicomponent seismic input, as well as any combination of these.

1. Arora, J.S. and Haug, E.J., Jr., "Efficient Optimal Design of Structures by Generalized Steepest Descent Programming," International Journal for Numerical Methods in Engineering, Vol. 10 , (1976), 747-766.
2. Brown, D.M. and Ang, A.H., "Structural Optimization by Nonlinear Programming," Journal of the Structural Division, ASCE, Vol. 92, ST. 6 (1966), 319-340.
3. Cassis, J.H. and Schmit, L.A., Jr., "On Implementation of the Extended Interior Penalty Function," International Journal for Numerical Methods in Engineering, Vol. 10, (1976), 3-23.
4. Cheng, F.Y. and Botkin, M.E., "Nonlinear Optimum Design of Dynamic Damped Frames," Journal of the Structural Division, ASCE, Vol. 102, ST. 3 (1976), 609-628.
5. Cheng, F.Y., Venkayya, V.B., Khachaturian, N., et al., Computer Methods of Optimum Structural Design, 5th Annual Short Course Notes, Vols. 1 and 2, University of Missouri-Rolla, Rolla, MO, 1976.
6. Cheng, F.Y., "Dynamic Response of Nonlinear Space Frames by Finite Element Method," Proceedings of the International Association of Shell Structures, 817-826, 1972.
7. Cheng, F.Y. and Botkin, M.E., "P- \triangle Effect on Optimum Design of Dynamic Tall Buildings," Proceedings of the ASCE-IABSE Joint Regional Conference on Tall Buildings, Bangkok, Thailand, 621632, January 1974.
8. Cheng, F.Y. and Oster, K.B., "Ductility Studies of Parametrically Excited Systems," Proceedings of the Sixth World Conference on Earthquake Engineering, New Delhi, India, January 10-14, 1977.
9. Cheng, F.Y. and Oster, K.B., Dynamic Instability and Ultimate Capacity of Inelastic Systems Parametrically Excited by Earth-quakes--Part II. Technical Report of the National Science Foundation, National Technical Information Service, U.S. Department of Commerce, PB261097/AS, 1976.
10. Cheng, F.Y., "Evaluation of Frame Systems Based on Optimality Criteria with Multicomponent Seismic Inputs, Performance Constraints, and P-D Effect" published in Vol. I of the NSF-NATO Advanced Study Institute on Optimization of Distributed Parameter Structural Systems, 1980.
11. Cheng, F.Y., "Energy Distribution Criteria for Braced and Unbraced Structural Design Subjected to Parametric Earthquake Motions", presented at the 7 th World Conference on Earthquake Engineering, Istanbul, 1980 Proceedings, Vol. 6, pp. 665-672.
12. Cheng, F.Y. and P. Kitipitayangkul, "Inelastic Behavior of Building Systems to Three-Dimensional Earthquake Motion", presented at the 7th World Conference on Earthquake Engineering, Istanbul, 1980, Proceedings, Vol. 7, pp. 495-502.
13. Cheng, F.Y. and Kitipitayangkul, P., "Multicomponent Earthquake Analysis of Mixed Structural Systems," Proceeings of the U.S.Japan Seminar on Composite Structures and Mixed Structural Systems, Tokyo, January 1978, Proceedings, pp. 337-347.
14. Feng, T.T., Arora, J.S., and Haug, E.J., Jr., "Optimal Structural Design under Dynamic Loads," International Journal for Numerical Methods in Engineering, VoI. 11, (1977), 39-52.
15. Gellatly, R.A., Berke, L., and Gibson, W., "The Use of Optimality Criteria in Automated Structural Design," Presented at the Third WPAFB Conference on Matrix Methods in Structural Mechanics, October 1971.
16. Housner, G.W., "Behavior of Structures during Earthquakes," Journal of the Engineering Mechanics Division, ASCE, Vol. 85, EM. 4 (1959), 109-129.
17. Kato, B., Nakamura, Y., and Ankura, H., "Optimum Earthquake Design of Shear Buildings," Journal of the Engineering Mechanics Division, ASCE, Vol. 98, EM. 4 (1972), 891-909.
18. Kavlie, D. and Moe, J., "Automated Design of Frame Structures," Journal of the Structural Division, ASCE, Vol. 97, ST. 1 (1971), 33-62.
19. Khot, N.S., Venkayya, V.B., Johnson, C.D., and Tischler, V.A., "Application of Optimality Criterion to Fiber Reinforced Composites," AFFDL-TR-73-6.
20. Liu, S.C. and Neghabat, F., "A Cost Optimization Model for Seismic Design of Structures," Bell Technology Journal, Vol. 51, (1972), 2209-2225.
21. Liu, S.C., Dougherty, M.R., and Neghabat, F., "Optimal Aseismic Design of Building and Equipment," Journal of Engineering Mechanics Division, ASCE, Vol. 102, EM3, Proc. Paper 12208, (June 1976), 395-414.
22. Manual of Steel Construction, 7th Edition, American Institute of Steel Construction, 1970.
23. McCart, B.R., Haug, E.J., and Streeter, T.O., "Optimal Design of Structures with Constraints on Natural Frequency," AIAA Journal, Vol. 8, 6(1970), 1012-1019.
24. Moses, F., "Optimum Structural Design using Linear Programming," Journal of the Structural Division, ASCE, Vol. 90, ST. 6(1964), 89-104.
25. Pierson, B.L., "A Survey of Optimal Structural Design under Dynamic Constraints," International Journal for Numerical Methods in Engineering, Vo7. 4, (1972), 491-499.
26. Pope, G.G. and Schmit, L.A., "Structural Design Applications of Mathematical Programming Techniques," AGARDograph 149, Technical Editing and Reproduction L.td., Harford House, London, England, February, 1971.
27. Portillo, M. and Ang, A.H.W., "Safety of Reinforced Concrete Buildings to Earthquakes in Vol. 5, Earthquake Resistant Design, Proceedings of the Sixth World Conference on Earthquake Engineering, New Delhi, India, January 1977.
28. Prager, W. and Taylor, J.E., "Problems of Optimal Structural Design," Journal of Applied Mechanics, ASME Transactions, Vol. 90, (March, 1968), 102-106.
29. Ray, D., Pister, K.S., and Polak, E., "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," EERC Report 76-12, University of California, Berkeley, 1976.
30. Rubin, C.P., "Minimum Weight Design of Complex Structures Subject to a Frequency Constraint," AIAA Journal, Vol. 8, 5(1970), 923-927.
31. Ramstad, K.M. and Wang, C.K., "Optimum Design of Framed Structures," Journal of the Structural Division, ASCE, Vol. 94, ST. 12 (1968), 2817-2845.
32. Rosenblueth, E. and Mendoza, E., "Optimum Seismic Design of an Auditorium," Fifth World Conference on Earthquake Engineering, Rome, Italy, 1973.
33. Schmit, L.A. and Fox, R.L., "An Integrated Approach to Structural Synthesis and Analysis," AIAA Journal, Vol. 3, 6(1965), 1104-1112.
34. Schmit, L.A. and Farshi, B., "Some Approximation Concepts for Structural Synthesis," AIAA Journal, Vol. 12, 5(1974), 692-699.
35. Sheu, C.Y., "Elastic Minimum Weight Design for Specified Fundamental Frequency," Internationai Journal of Solids and Structures, Vol. 4, 10(1968), 953-958.
36. Sheu, C.Y. and Prager, W., "Recent Developments in Optimal Structural Design," Applied Mechanics Reviews, Vol. 21, 10 (1968), 985-992.
37. Solnes, J. and Holst, 0.L., "Optimization of Framed Structures under Earthquake Loads," Fifth World Conference on Earthquake Engineering, Rome, June 1973.
38. Taleb-Agha, S. and Nelson, R.B., "Method for the Optimum Design of Truss-Type Structures," AIAA Journal, Vol. 14, 4(1976), 430-445.
39. Taylor, J.E., "Minimum-Mass Bar for Axial Vibration at Specified Natural Frequency," AIAA Journal, Vol. 5, 10(1967), 1911-1913.
40. Taylor, J.E., "Optimum Design of a Vibrating Bar with Specified Minimum Cross Section," AIAA Journal, 6(1968), 1379-1381.
41. Templeman, A.B., "A Dual Approach to Optimum Truss Design," Journal of Structural Mechanics, Vol. 4, 3(1976), 235-355.
42. Turner, M.J., "Design of Minimum Mass Structures with Specified Natural Frequencies," AIAA Journal, Vol. 5, 3(1967), 406-412.
43. Uniform Building Code, 1976 Edition.
44. Venkayya, V.B., Khot, N.S., and Reddy, V.S., "Energy Distribution in an Optimum Structural Design," AFFDL-TR-68-156.
45. Venkayya, V.B., "Design of Optimum Structures," International Journal of Computers and Structures, Vol. 1, (1971), 265-309.
46. Venkayya, V.B., Khot, N.S., and Berke, L., "Application of Optimality Criteria Approaches to Automated Design of Large Practical Structures," Preprint of Paper Presented at the AGARD Second Symposium on Structural Optimization, Milan, Italy, April, 1973.
47. Venkayya, V.B. and Cheng, F.Y., "Resizing of Frames Subjected to Ground Motion," Proceedings of the International Symposium on Earthquake Structural Engineering, University of MissouriRolla, August 1976.
48. Venkayya, V.B., "Survey of Optimization Techniques in Structural Design," Technical Memorandum, FBR-78-43, Wright-Patterson Air Force Base.
49. Vitiello, E., "Optimum Design with Equivalent Seismic Loads," Fifth World Conference on Earthquake Engineering, Rome, June 1973.
50. Walker, N.D. and Pister, K.G., "Study of a Method of Feasible Directions for Optimal Elastic Design of Framed Structures Subjected to Earthquake Loading," Report EERC 75-39, University of California, Berkeley, 1975.
51. Zarghamee, M.S., "Optimum Frequencies of Structures," AIAA Journal, Vol. 6, 4(1968), 749-750.
52. Chu, S.L., Amin, M., and Singh, S., "Spectral Treatment of Actions of Three Earthquake Components on Structures, "Nuclear Engineering and Design, Vol. 21, 1972, pp. 126-316.
53. Gupta, A.K. and Chu, S.L., "A Unified Approach to Designing Structures for Three Components of Earthquake, "Proceedings of the International Symposium on Earthquake Structural Engineering (Edited by F.Y. Cheng), 1976, pp. 581-596.
54. Hadjian, A.H., "On the Correlation of the Components of Strong Ground Motions," Proceedings, Second International Conference on Microzonation, San Francisco, CA, 1978, Vol. 3, pp. 1199-1210.
55. Wilson, E.L., Kiureghian, Der A., and Bayo, E.P., "A Replacement for the SRSS Method in Seismic Analysis," to be published in the Journal of Earthquake Engineering and Structural Dynamics.
56. Cheng, F.Y., "Inelastic Analysis of 3-D Mixed Steel and Reinforced Concrete Seismic Building Systems", presented at the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics, Joint Institute for Advancement for Flight Sciences, October 1980, Pergamon Press, pp. 189-196.
57. Cheng, F.Y., "Assessment of Optimum Design of Various Structural Models", Proceedings of the Canadian Society for Civil Engineering, May, 1980.

APPENDICES

APPENDIX A. MATRICES OF STIFFNESS, MASS, GEOMETRIC STIFFNESS, AND CROSS SECTIONAL PROPERTIES OF TYPICAL CONSTITUENT MEMBERS

STIFFNESS, GEOMETRIC, AND MASS MATRICES
The coordinates and positive forces and deformations of the typical constituent members of a structural system are shown in Fig. 93. The typical members are beam-column elements of either girders or columns and two-force bar elements of bracings. The matrices of stiffness, $K_{s i}$, mass, $M_{s i}$, and geometric stiffness, $\underline{K}_{g i}$, of a girder or column are:

$\underline{M_{S i}}=\frac{\rho_{\mathbf{i}} A_{i} L_{\mathbf{i}}}{g}\left[\begin{array}{cccccc}1 / 3 & 0 & 0 & 1 / 6 & 0 & 0 \\ 0 & 13 / 35 & 11 \mathrm{~L}_{\mathbf{i}} / 210 & 0 & 9 / 70 & -13 \mathrm{~L}_{\mathbf{i}} / 420 \\ 0 & 11 \mathrm{~L}_{\mathbf{i}} / 210 & \mathrm{~L}_{\mathbf{i}} / 105 & 0 & 13 \mathrm{~L}_{\mathbf{i}} / 420 & -\mathrm{L}_{\mathbf{i}} / 140 \\ 1 / 6 & 0 & 0 & 1 / 3 & 0 & 0 \\ 0 & 9 / 70 & 13 \mathrm{~L}_{\mathbf{i}} / 420 & 0 & 13 / 35 & -11 \mathrm{~L}_{\mathbf{i}} / 210 \\ 0 & -13 \mathrm{~L}_{\mathbf{i}} / 420 & -\mathrm{L}_{\mathbf{i}}{ }^{2} / 140 & 0 & -11 \mathrm{~L}_{\mathbf{i}} / 210 & \mathrm{~L}_{\mathbf{i}}{ }^{2} / 105\end{array}\right]$

(a) Coordinates of a Planar Member

(b) Positive Forces and Deformations for both Girders and Columns

(c) Positive Forces and Deformations for Bracings

Figure 93. Positive Forces and Deformations of Typical Member

$$
\underline{K}_{g i}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 6 /\left(5 L_{\mathfrak{i}}\right) & 1 / 10 & 0 & -6 /\left(5 L_{\mathfrak{i}}\right) & 1 / 10 \\
0 & 1 / 10 & 2 L_{\mathbf{i}} / 15 & 0 & -1 / 10 & -L_{\mathbf{i}} / 130 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -6 /\left(5 L_{\mathfrak{i}}\right) & -1 / 10 & 0 & 6 /\left(5 L_{\mathfrak{i}}\right) & -1 / 10 \\
0 & 1 / 10 & -L_{\mathfrak{i}} / 30 & 0 & -1 / 10 & 2 L_{\mathfrak{i}} / 15
\end{array}\right] .
$$

The matrices of stiffness, $\underline{K}_{s i}$, and mass, $\underline{M}_{s i}$ of a bracing member are:
$K_{s i}=\frac{E A_{i}}{L_{i}}\left[\begin{array}{cccccc}1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\underline{M}_{s i}=\frac{\rho_{i} A_{i} L_{i}}{g}\left[\begin{array}{cccccc}1 / 3 & 0 & 0 & 1 / 6 & 0 & 0 \\ 0 & 1 / 3 & 0 & 0 & 1 / 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 / 6 & 0 & 0 & 1 / 3 & 0 & 0 \\ 0 & 1 / 6 & 0 & 0 & 1 / 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
The cross sectional property matrix, $\mathcal{B}_{\mathbf{i}}$, of a beam-column element is

$$
\underline{B}_{\mathbf{i}}=\left[\begin{array}{cccccc}
1 / A_{\mathbf{i}} & 0 & -1 / S_{\mathbf{i}} & 0 & 0 & 0 \\
0 & 1 / v_{\mathbf{i}} & 0 & 0 & 0 & 0 \\
1 / A_{\mathbf{i}} & 0 & 1 / S_{\mathbf{i}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / A_{\mathbf{i}} & 0 & -1 / S_{\mathbf{i}} \\
0 & 0 & 0 & 0 & 1 / v_{\mathbf{i}} & 0 \\
0 & 0 & 0 & 1 / A_{\mathbf{i}} & 0 & 1 / S_{i}
\end{array}\right] .
$$

For bracings, the cross sectional property matrix becomes

$$
\underline{B}_{i}=\left[\begin{array}{cccccc}
/ A_{i} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / A_{i} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The symbols used in this appendix are:
$A_{i}=$ cross sectional area of member \mathbf{i},
$E=$ modulus of elasticity,
$\mathrm{g}=$ gravity acceleration,
$I_{i}=$ moment of inertia of member i,
$L_{i}=$ length of member i,
$S_{i}=$ section modulus of member i,
$v_{i}=$ shear flow of member i for built-up sections only, and
$\rho_{i}=$ mass density of member \mathbf{i}.

DESCRIPTION OF STURM SEQUENCE PROPERTY AND BISECTION PROCEDURE
The eigensolution technique employed in this research possesses two distinguishing characteristics: the eigenvalues and eigenvectors of any desired modes can be obtained directly without using any of the remaining modes, and the determination of any eigenvalues, whether fundamental or higher modes, does not require inverting the stiffness matrix. The method was presented early by Peters and Wilkinson* and has the Sturm sequence property for the following equation:

$$
\underline{A} \vec{x}=\lambda \underline{I} \vec{x},
$$

in which λ is the eigenvalue, \vec{x} the eigenvector, and \underline{I} the identity matrix.

When \underline{A} is real and symmetric, the leading principal minors of ($\underline{A}-\lambda \underline{I}$) form a Sturm sequence; that is, the number of eigenvalues greater than λ is equal to the number of agreements in sign between consecutive members of the sequence, P_{r}, for $r=0,1, \ldots, n$. The term P_{r} is defined as

$$
P_{r}=\operatorname{det}\left(A_{r}-\lambda I\right),
$$

in which A_{r} is the leading principal submatrix of the order r of A.
The term P_{0} is assumed to be equal to one.

[^0]Peters and Wilkinson have shown that the Sturm sequence property is valid for the problem in the following form:

$$
\overrightarrow{A x}=\lambda \underline{B} \vec{x}
$$

When the matrix \underline{B} is symmetric and positive definite, the sign of $\operatorname{det}\left(\underline{A}_{r}-\lambda \underline{B}_{r}\right)$ is the same as that of $\operatorname{det}\left(\underline{A}_{r}-\lambda \underline{I}\right)$.

By using the Sturm sequence property in conjunction with a simple bisection procedure, the eigenvalues of any desired modes can be obtained, and the associated eigenvectors can be determined by using an iteration procedure based on the following recurrence relation:*

$$
\left(\underline{A}-\lambda_{i} \underline{B}\right)_{i}^{\vec{v}+1}=\underline{B}_{i}^{v}
$$

in which the subscript i signifies the mode number, and v refers to the cycle of iteration.

NUMERICAL ILLUSTRATION
Let \underline{A} and \underline{B} be symmetric and positive definite as shown below:

$$
A=\left[\begin{array}{rrr}
60 & -60 & 0 \\
-60 & 180 & -120 \\
0 & -120 & 300
\end{array}\right]
$$

and

$$
\underline{B}=\left[\begin{array}{ccc}
1.0 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 2.0
\end{array}\right]
$$

*Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, 0xford, 1965.

Assume that it is necessary to find the second mode of the eigenvalue, and it is also assumed that all the eigenvalues are in the interval ($-150,150$).

Starting with $\lambda=0$, the leading principal minors of ($\underline{A}-\lambda \underline{B}$) are calculated as

$$
\begin{aligned}
& P_{0}=1 \\
& P_{1}=60 \\
& P_{2}=60(180)-(-60)(-60)=7200,
\end{aligned}
$$

and

$$
P_{3}=60[180(300)-(-120)(-120)]-(-60)[-60(300)]=1296000
$$

The number of agreements in sign between consecutive members of the sequence, $P_{r}, r=0,1,2,3$, defined as $S(\lambda)$, is three. Therefore, there are three eigenvalues that are greater than $\lambda=0$, which means that all the eigenvalues lie within (0,150).

By employing a simple bisection procedure, one can find the new value of λ by using

$$
\lambda=\frac{0+150}{2}=75
$$

With the new value of $\lambda=75$, one can again calculate the leading principal minors of $(\underline{A}-\lambda \underline{B})$ and then find $S(\lambda)=2$, which indicates that there are two eigenvalues greater than 75 . In order to obtain the second mode, one should use a λ greater than 75 for the next
calculation. This process of calculating is continued until the difference between the upper and lower values of the interval is less than some appropriate value which is equal to 0.001 for this example. The solution of this example is $\lambda=96.396$. The detailed calculations are given in Table IX.

It should be noted that only the signs of the leading principal minors of ($\underline{A}-\lambda I$) are of interest and not their magnitudes. The computer program has a simple method* of evaluating the leading principal minors of a square matrix. It is a variation of Gaussian elimination with partial pivoting.

TABLE IX. NUMERICAL ILLUSTRATION OF EIGENVALUES

λ	P_{0}	P_{1}	P_{2}	P_{3}	$S()$	Interval	
0.0	1.0	60.000	7200.000	1296000.000	3	$0.0-150.000$	
75.00	1.0	-15.000	-4612.500	-475875.000	2	$75.000-150.000$	
112.500	1.0	-52.500	-4190.625	441703.125	1	$75.000-112.500$	
93.750	1.0	-33.750	-4928.906	-68502.000	2	$93.750-112.500$	
103.125	1.0	-43.125	-4691.602	181162.312	1	$93.750-103.125$	
98.438	1.0	-38.438	-4843.211	54043.625	1	$93.750-98.438$	
96.094	1.0	-36.094	-4894.297	-7916.687	2	$96.094-98.438$	
97.266	1.0	-37.266	-4870.812	22906.000	1	$96.094-97.266$	
96.680	1.0	-36.680	-4883.070	7453.500	1	$96.094-96.680$	
96.387	1.0	-36.387	-4888.812	-242.125	2	$96.387-96.680$	
96.533	1.0	-36.533	-4885.974	3603.062	1	$96.387-96.533$	
96.460	1.0	-36.460	-4887.402	1679.875	1	$96.387-96.460$	
96.423	1.0	-36.423	-4888.109	718.750	1	$96.387-96.423$	
96.405	1.0	-36.405	-4888.461	238.062	1	$96.387-96.405$	
96.396	1.0	-36.396	-4888.637	-1.938	2	$96.396-96.405$	
96.400	1.0	-36.400	-4888.551	117.937	1	$96.396-96.400$	
96.398	1.0	-36.398	-4888.594	57.938	1	$96.396-96.398$	
96.397	1.0	-36.397	-4888.617	27.875	1	$96.396-96.397$	
96.396	1.0	-36.396	-4888.625	12.688	1	$96.396-96.396$	

INPUT DATA

I. TOTAL NUMBER OF STRUCTURES

Columns Entry
1- 5 Total number of structures to be designed.
II. CONTROL CARD $(815,10 A 4)$
1- 5 Total number of members.
6- 10 Total number of nodal joints.
11-15 Total number of restrained degrees of freedom.
16-20 Total number of loading conditions.
21-25 Displacement constraint code:
Eq. 0; No displacement constraints,
Eq. 1; Displacement constraint is the same for all nodal joints, and
Eq. 2; Displacement constraints can vary per nodal joints.
26- 30 Design type code:
Eq. -1; Static design,
Eq. 0; Static + dynamic design, and
Eq. 1; Dynamic design.
31- 35 Maximum number of iterations.
36-40 Type of section Eq. 0; Built-up sections
Eq. 1; Wide flange sections based on the AISC Manual
40- 80 User identification.
a. Girder-Column Property Card
(i) BUILT-UP SECTION (2F10.0, $2 F 5.0,5 F 10.0$)

Columns Entry
1- 10 Modulus of elasticity.
11-20 Specific weight.
21-25 Width.
26-30 Initial depth.
31-40 Maximum depth.
41- 50 Minimum depth.
51-60 Maximum t_{f} / d.
61-70 Minimum t_{f} / d.
71- 80 Ratio of the minimum moment of inertia to the maximum moment of inertia.
(ii) WF SECTION (6F10.0)

1- 10 Modulus of elasticity.
11-20 Specific weight.
21- 30 Initial moment of inertia.
31- 40 Maximum moment of inertia.
41- 50 Minimum moment of inertia.
51- 60 Ratio of the minimum moment of inertia to the maximum moment of inertia.
b. Bracing Property Card (5F10.0)

1-10 Modulus of elasticity.
11-20 Specific weight.
21- 40 Maximum area.
41- 50 Minimum area.
c. Girder Identification Cards (415, 2F10.0, 15)

Columns Entry
1- 5 Identification number of structural numbers (numbering the independent variables first, the subsequent members are then numbered in the order of the common design variables).

6- 10 First node number (smaller nodal number at both ends).
11- 15 Second node number (larger nodal number at both ends).
16-20 Member-type code (2 for girder).
21- 30 Allowable stress.
31- 40 Uniform nonstructural weight/unit length.
41- 45 Design variable number (use the number of the independent variable if that is the common design variable for this member).
d. Column Identification Cards ($415,2 \mathrm{~F} 10.0,8 \mathrm{I} 5 /(1615)$)

1- 5 Identification number.
6- 10 First node number (see Girder Identification).
11-15 Second node number (see Girder Identification).
16-20 Member-type code (1 for column).
21-30 Allowable stress.
31- 40 Additional axial force ($P \Delta$ force).
41- 45 Design variable number (see Girder Identification)
46- 50 Number of members contributing their weights to this column (see Fig. 1 and Eq. (2.1)).

51-55 Identification number of the member contributing its weight.

Repeat for additional members.
e. Bracing Identification Cards (415, F10.0, 10X; 15)
Columns Entry
1- 5 Identification number.
6- 10 First node number.
11- 15 Second node number.
16-20 Member-type code (0 for bracing).
21- 30 Allowable stress.
31-40 Blank.
41-45 Design variable number (see Girder Identification).
IV. JOINT INFORMATION CARDS (I5, 2F10.0)
1- 5 Joint identification number.
6-15 X-coordinate.
16-25 Y-coordinate.
v. BOUNDARY CONDITION CARDS (16I5)
1- 5 Number of the degree of freedom of the node which is
restrained. For node K, the degree of freedom numbers
are $3 * K-2,3 * K-1,3 * K$.
6- 10 Repeat for additional nodes.
VI. STATIC LOADING CARDS
The following set of data is for one loading case. Repeating
of this set of data is necessary for multiple loading cases.
a. Control Card (I5)
1- 5 Loading Parameter:
GE. O; Number of load components in the $i^{\text {th }}$ loadingcondition.
LT. 0 ; Equivalent seismic loads by UBC.
b. Loading Cards
(i) LOADING PARAMETER $\geq 0(3(F 10.0,2 I 5))$

Columns Entry
1- 10 Magnitude of load.
11-15 Direction of load (X-dir. = 1, Y-dir. $=2$, Z-dir. $=3$).
16-20 Number of node where the load is applied.
Repeat for additional nodes.
(ii) LOADING PARAMETER <0
(ii-7) INFORMATION CARD (15, 4F5.0)
1- 5 Total number of stories.
6-10 Earthquake-zone coefficient.
11- 15 Coefficient depending on the importance of structure (1.0-1.5).

16-20 Coefficient determined by type of structure (0.67-1.33).

21-25 Site period ($0.5 \mathrm{sec} .-2.5 \mathrm{sec}$.).
26- 35 Gravity acceleration.
(ii-2) STORY-INFORMATION CARDS (2I5, 2F10.0)
1- 5 Story-Tevel.
6- 10 Node number where the equivalent story-force is applied.
11-20 Height of the story from the ground level.
21-30 Total nonstructural weight for each story.
VI. DYNAMIC PROPERTY CARDS

Enter a blank control card for a static design and skip (b)
through (d).
a. Control Card (4I5, F10.0)

Columns Entry
1- 5 Option code: Eq. 1; Design using only significant modes.
Eq. 2; Design using all specified modes.
6- 10 Type of mode superposition:
Eq. -1; Direct superposition.
Eq. 0; Root-mean-square superposition.
Eq. 1; Absolute superposition.
11- 15 The first of the desired modes.
16- 20 The last of the desired modes.
21-30 Gravity acceleration.
b. Damping Ratio Cards (8F10.0)

1- 10 Damping ratio (modal damping/critical damping) of the first of the desired modes.

11- 20
c. Additional Nodal Mass Cards (8F10.0)

1-10 Additional nodal mass at the ${ }^{\text {th }}$ node.
11-20 (j $=1, \ldots$, joints).
d. Dynamic Loading Information Cards

The following set of data is for one loading case. Repeating of this set of data is necessary for multiple loading cases.
(i) CONTROL CARD (4I5, 3F5.0, I5, 10A4)

1- 5 Loading Parameter:
GE. 0 ; Number of load components in the $i^{\text {th }}$ loading condition.

LT. O; Earthquake motion in the $i^{\text {th }}$ loading condition.

```
Columns Entry
```

6- 10 Direction of earthquake motion:
Eq. 1; Horizontal direction.
Eq. 2; Vertical direction.
LT.0; Both horizontal and vertical directions.
11-15 Type of input acceleration data:
Eq. 0; Time-history data.
Eq. 1; Spectrum data.
16-20 Number of acceleration data.
21-25 Load multiplier or scale factor for horizontal motion.
26-30 Scale factor for vertical motion.
31- 35 Time increment.
36- 40 Number of time steps.
41- 80 User identification.
(ii) LOADING CARDS (3(F10.0, 2I5))

This set of cards is needed only when the loading parameter is greater than zero.

1- 10 Magnitude of load.
11-15 Direction of load.
16-20 Number of node where the load is applied.
(iii) ACCELERATION DATA CARDS
(iii-1) PERIOD OR TIME CARDS (8F10.0)
1-10 First data of period or time.
11-20 Repeat for additional data.

Columns Entry

1- 10 First data of acceleration spectra or ground acceleration in the horizontal direction.

11-20 Repeat for additional data.
(iii-3) VERTICAL ACCELERATION CARDS (8F10.0)
This set of cards is needed for the multicomponent ground motions.

1- 10 First data of acceleration spectra or ground acceleration in the vertical direction.

11-20 Repeat for additional data.

VII. DISPLACEMENT CONSTRAINT CARDS

Either (a) or (b) is necessary to be used in according to the displacement constraint code.
a. Same Displacement Constraint for All Nodes $\langle 3 F 10.0\rangle$

1- 10 Allowable displacement in X-direction.
11-20 Allowable displacement in Y-direction.
21-30 Allowable displacement in Z-direction.
b. Displacement Constraints Vary
(i) CONTROL CARD (I5)

1- 5 Number of allowable displacements.
(ii) ALLOWABLE OISPLACEMENTS (3(F10.0, 215))

1-10 Allowable displacement.
11-15 Direction code (1 for X-dir., 2 for Y-dir. and 3 for Z-dir.).

16- 20 Node Number.
Note that one card is needed for three allowable displacements.
VIII. FREQUENCY CONSTRAINT CARDS (8F10.0)

Skip these cards for static design.
Columns Entry
1-10 The allowable natural frequency for the first of the desired modes.

11-20 The allowable natural frequency for other nodes if any.

Nmm	NMNTO 0 mmmmm
222	くで
2＜mb	$<2<0$
444	4444＊

EARTHQUAKE AND WIND

㲾 2

ENRTIA（B，D，TFD，T）＝（D＊＊ 1 ）＊（FLANGE（B，C，TFD，T）＋WEB（B，C，TFD，T））

 nunumint $\operatorname{nng}_{\rightarrow \rightarrow-1} \ln _{\operatorname{man}}$

でででて
 2n2222

Musum

> $0 \times+E M x<\infty$

$4 \operatorname{sic}^{2+2} 2$
แuルS
\rightarrow－\quad－
世IUSUSUZ

∞
0
in
O
N
N
n
$\underset{\rightarrow \infty}{\infty} \quad \infty$
TFITNDEX 20.20 .31

STATIC LCADING INFCRMATION

O N
n
N

$z z z z z \geq z \geq<z z 2 z z z \geq z z z z$

 TINNNNNNTNNNMMMIMMMMMMGE NNNNANNANNNNNNNNNNNNTNN
$z \geq 2 z z z z<z z<z z z z z<z<z z<z$

INFORMATICA OF DISPLACEMENT CCNSTRAINTS

00
tin
mo m m on ol mo

טUN
$\begin{array}{cc}00-4 & H \\ 0 & 0 \\ N & 0\end{array}$
Now

Nind	
0	0

mund	N	-4	n	+4n	$\infty 00$
NNM	m	$*$	$*$	*	$\rightarrow+10$
$\underline{4 m-4 m}$	\cdots	-	\cdots	- ${ }^{\text {and }}$	

O0000MMTMAMTAN-0000000000 	ormonornm MMMMMMMM	Tinormornmmsin unanagooo0000 Mmmmmmstuvyv
		$2 Z 2 Z 2 Z 2 Z 2 Z Z 2$ Hz

OmNM numun $+4+5$	untuturintio 00000000000 m
	2
田 4×4	

Omamainomogominmunor

[^1]0_{m}^{n}
0
+
N
0
N
N
N
-1
$-N O$
0

∞	$m m$	m	m
N	N	N	

$\begin{aligned} & z z z z \\ & 4<\pi \\ & 4=2 \end{aligned}$		$\frac{2 z}{2 \pi}$	$=2 \geq 2$	$2 \pi 2$			$2 \lll$		482		888		$\frac{18}{24} 2$	
					\because				$!$		$!$		1	W）
					$\stackrel{\square}{4}$				，		！		！	\cdots
					\％				1		！		，	＊
					0		－		1		！		1	1
							2		＇		，		1	，
					－		0		1		！		－	1
					\leq		－		1		！		\cdots	，
					$=$		－				！		\cdots	
					\sim		0		1		1		－	
					世		2		1		1		z	
	－				－		8		11		－		0	1
	$\ddot{\square}$				0		\checkmark		！		$\stackrel{\square}{\sim}$		－	1
	8								1		N		－	
	m				u		2		i		\sim		0	
	－				0		－		1		z		z	
	－						0		1		O		0	
	\bigcirc				\propto		4		1		－		0	1
	z				แ		0		1		5			！
	\bigcirc				¢		－		1		－		0	
	－	－		－	2				1		0		2	
		\sim	$=$	\％	20		I		1		2		m	
		0	7	0	2x		S		1		C		0	－
	2	8	－	－	足		4		1		0		8	－
	\cdots	0	山	0	¢		W		1				0	10
	0	$\xrightarrow{-1}$	2	$\xrightarrow{-1}$	43				1		0		\cdots	$\stackrel{1}{ }$
－	\bigcirc	\cdots	2	\cdots			$\underset{\sim}{\sim}$		11		2			2－1
m	\times	II	0	1	인		－		\sim		0		zm	4
$-\infty$	N	\rightarrow	E	\rightarrow	5		\times		0		8		\underline{x}	\propto
E	－I	－	11		no		inco		H5		0		1	들
ZM	Cu	隹	2	ξ	＞＋		$\stackrel{-8}{\circ-8}$		岛足		\cdots		－11	$\stackrel{4}{2}$
い	mu	\cdots	$=$	？	山山		U0		4		2		H2	¢
110		－m	$\stackrel{\square}{-}$	－	zz		\cdots				m		－	UN
\cdots	山¢	－-	으으N	－	Uu		cu		0				－	
\times	ar	－4	$\sum m$	N	00		4		$z<$		\sim		74	\pm
\underline{m}	${ }^{11}$	4∞	n	4	x x		－ 0		ボッ゙		\sim		\cdots	40
－	I	dx	3^{N}	$\xrightarrow{-1}$	$\stackrel{\alpha}{8}$		\cdots		宸		－		$\underline{m a}$	U
	Na	$0 \times$	z	0	¢0				の《く		$\rightarrow 0$		－	－
\propto	\cdots	－0	G0	－	面页		＜－F－		4u0		난		O－m	－m
－	잔	\cdots	－	몰		$\underset{\sim}{\sim}$	$\bigcirc 0$		con		on	N	山O	－4
	－ú	ーッ゙ー	50	¢゙m	$\xrightarrow{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	¢ ${ }^{\text {cox }}$			0	世山	$\stackrel{n}{n}$		\bigcirc
山z\％		－	20	ッ゙ッ	ない	\sim	$\sin _{3}$		如采	\bigcirc	$\stackrel{u}{u}$	N	山	U－0
＜－u	，	mi			ON	$\stackrel{0}{0}$	－Wu发			\cdots		$0{ }_{0}$	－	－\times－
－\quad o	Oо	2ーm	－	2r	Hx	2	x moz	4	4		둘		－r	GNL
z－	ミ4	－－	nto	－	－	－	こ×0\％		エエ	un	－	Nen	－	A0＊
$\cdots \rightarrow$		2－4	0．1	z－	Im	z	zmzo		－o，	O	つa	－0	$\rightarrow 4$	－200
$0-6$	In＇	－	S	－	O＊	\cdots	－		が，	\cdots	－T	\％		－
	－	－10in	－-0	－	0		$\cdots \ln$		$\cdots \times x$		二小			
2min	$\times \times$	－	\rightarrow	－0，	$\cdots \times \infty$	${ }_{0}$	－1n＋ou		NTN		arvm		NNT	NかWN
110－0	N	O．	－－	zOO	ONE	z	O $\times \times=$		O4		－	－－1	－	－－ 0
－mxm	－	mx	ルuて	！11mm	M－		$\cdots \times 0$				Mx	a 11	amx	mxinm
－N	－	－NO	－0	\cdots	－－		NN\a			－	－N	心つ	＋N	－Nm．
9－0	－	－－	＞－	0	－		ローール	？	－		－		－0－	0－0
の－ト	50	－F－	－15	N－	，		ード	－	－	－		－		
け山【い	4	いく	的口o（	い吅山	山《下	onz	いく【		い	－＜1	いく	二゙吅	山¢	－山あ《u
		4－s		Nut	－ 5	N1	－玉エエ	－	Em	E	1tジ	－	－ 5	Oト玉玉官
	$-\frac{1}{-10}$	mot		－	max	2	max	2	－a	－	－		－	ツacの
○ロロの	－	¢00	○u，	coa	¢ON	0	¢00in	－0	ロum	U00	¢0		＜¢0	－a0ca
	U．	＝u2	ローツ	－5x			奋叫		54．		近			7415
σm	\pm	On	\vec{n}		Mno		$\ln _{n-\infty}$				OnN		∞	$\begin{aligned} & \text { Gmin } \\ & \text { inNN } \end{aligned}$
NO	0	NO	\sim		NO		NOO	$\stackrel{\sim}{\sim}$		O	NO	\sim	NO	NOO
\cdots	m	m			m		mm		m	m				mm

279	$\begin{aligned} & \text { CONTINUE } \\ & \text { OC } 285 \text { L }=1, M E M E S \\ & A E(1 / A E(L) / A M A X A E \\ & I F I J Y P E G L /) \end{aligned}$
281	IF (AE(L)*BASEAE.LT.ABRMIN) $A E(L)=A B R M I N / B A S E A E$ (F (AELLi*BASEAE:GT.ABRNAX) AE (L) =ABRMAX/EASEAE
283 285	IF (AE) L (*BASEAE.LT.AEMNMM) AE(L)=AEMNMM/BASEAE
	WRITE (6,3040)
3040	FORMATIM1/f12x,18H...STEP REDUCE...)
	KCCUNT $=$ KCCUNT+1
	CONTINUE
	CALCULATE DISPLACEMENTS DUE TO UNIT LOAD IN THE DIRECTICN CF THE VICLATED DISPLACEMENT CCNSTRAINT
	IFILMTDSP) 305,305,301
	$\mathrm{KJ}=0$
	$\begin{aligned} & \text { DO } 303 \mathrm{~J}=1, L C A D S \\ & K N=N D E F Q(3) \end{aligned}$
	IF (KN.LE.O) GO TO 303
	$\mathrm{DC}, 303 \mathrm{~K}=1, \mathrm{KN}$
	$K K=J D E F E Q(K, J)$
	DO $302, I=1, N N$
	CF(1,KJ)
302	
303	CCNTINUE
	CALL REDUCEIFF,IBND, NN, NBNDRY, NDI SPL, NNMAX)
	CAL GAUSSISKK, FF, ${ }^{\text {CF }}$, ICOL, IDIAG, NDI SPL, NM, NNMAX, NDCOMP)
	CALL RESTOR(DF, IBAC, NN, NBNCRY, NCISPL, ANMAX)
305	continue
	calculate frequencies cf structure
	CC $311 \mathrm{~J}=1$, LOACS
	$F Q(J)=0$
	SuM1 ${ }^{\text {a }}$ =0
	IF (INDEX) $340,320,320$
320	DO 326 II = NBEGIN, NDE
	CALL CHANGE(OI, DM, HH,VV,NSIGN,II, LOADS, NN, MDMAX, NNMAX) CALL MLTPLY(SK,FI,CI, ICOL, ICIAG,LOADS, RM,NAMAXI

Moogonnmyinormonominm inormogond

$z 2 z z z z \angle z z z z<z z z<z z z z 2 z z \geq z z$

MJinumonomrumynurmono

ででででごでくてるこてるこてく

menO-mNmatu जonoooomo $\operatorname{Mr\|r000000000} 00$	OPCOOMANMT $00001 \mathrm{man} m \mathrm{man}$ $\infty 00000000000$

 mmmandinNNNNNNNTIM

$z \geq z 2<z \geq \geq z z z \geq z \geq z \geq z$

Mmeni

$\underset{\sim}{0} \frac{0}{0}$
450
4020

 $\infty \infty \infty \infty \infty \infty \infty \infty \infty \infty$

कogonNM in in mononmin or mo－n GHNNNNNNNNNNMMMMMMMMMM TH 	Mvinomogominms ononomanonora	Unorm ununtif onon	$\begin{aligned} & 90 \\ & 00 \\ & 00 \end{aligned}$
 	z2でて22＜222z2 	$\begin{aligned} & z=2 z \\ & \sin =4 \pi \\ & 2=2 x \end{aligned}$	$\begin{aligned} & 2 z \\ & 4 女 \\ & 2 x \end{aligned}$

$\begin{aligned} & \text { ANM, } \\ & 0.000 \\ & 00000 \end{aligned}$	- NMAtiom 0 OOMNMt	HNMNTHONOONONM	ma
$\geq \geq \geq \geq 2$		NNNNNNNNNNNNX	mm
4 nca		D@OCLmCGCOCOD	OL
4世44a		Qcomodmomotad	00
			-

1001
으N 이잉

n
4
4
4
4 (訝

0 N NO
\cos

-NMs

צロưoucugon

ω
$\rightarrow \mathrm{H}$
$\ln _{m} \underset{m}{0} \underset{m}{\infty}$

$\mathrm{mHN}+10 \mathrm{~N}+\mathrm{m}+\infty$ Un UMWMMINHM	
WCTM000	
H0¢40040	

щшய Deso U-

mNMはUGNomonNritu

 шышышшш

unus

NotOMNM甘

00uvoug
 －

4

 $x \times x \times \times \times \times \times$

OmANmis MNONN

WHuntut $x \ggg \gg x$ 00 mol 4. 44.4

maOnmyin omonominmanio

コつコつつつコつコココココココココココココココ Z $Z \lll \lll Z \lll \lll \lll \lll<$

 $0=1-4$

acanacanananancana HFHFMHFHFHFFFF

$$
\begin{aligned}
& N
\end{aligned}
$$

$+\quad \infty \quad+\quad \operatorname{con} 0$

> SUBRCUTINE PDELTA: IN COLUMN

以usu

wow

 z

뚜뚜 Frrr anaina

unue

（n）	ONOOOMNMNG	ormaominmuin －maninNNNNN	OR 	$\begin{aligned} & 0-\sim N M \\ & G N G \end{aligned}$
	$\propto \propto \propto \propto \propto \propto \propto \propto \propto \propto$			வロロロロ
F				ードド
Q	anoanonoma		Qagauganomaqua	$a 004 a$

IF（NZ（NRU）） 20.20 .1
\rightarrow Nom
un
$\rightarrow \quad 0$
U TIME－HISTORY ${ }^{\circ}$ $3185307 \times x$

USING EXPLICIT INTEGRATION

40	$\underset{r}{\infty}+\infty$	tninumininintumino 00000
cor	cowa	
-	¢0a	- F-F-K
vin	viviv)	

OO
vưu

K

$\infty \quad \infty \quad \infty+0$

in
00 H
NOO

OOHMNUNOR	wonommmtuonconominm Hm NNNNNNNNNNMMMM
nusumunumunos	nunununusununnunununcs
$2 z<2 z<2<2 z$	$<2 \ll z<2 z<2 z<z z 2<$
ツードサードロッド	

шшшшиитшшшшшшшни
 ＝

Mm-HNNNNN

$$
\bar{E}
$$

[^0]: *

 Peters, G. and Wilkinson, J.H., "Eigenvalues of $A x=\lambda B x$ with Band Symmetric A and B," Computer Journal, Vol. 12, (1969), 398-404.

[^1]: uO
 No
 0

