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Abstract

The knowLedge organization of a ruLe-based damage assessment system of

existing structures subjected to earthquake excitation is outLined first.

Then the appLication of the principLe of inexact inference to obtain a ra

tionaL soLution is presented. The fuzzy set theory and the production sys

tem with certainty factor are empLoyed jointLy in the inexact inference to

deaL with the continuous nature of the damage state and to attain the modu

Larity of uncertain knowLedge, respectiveLy.

1. Introduction

The roLe of damage assessment of existing structures is discussed re

centLy [31,32,33J. Existing structures in this paper refer to those aLready

buiLt and in existence. FrequentLy, there exists a need to evaLuate the

safety and reLiabiLity of a particuLar structure or a number of existing

structures either as a part of periodic inspection program or immediateLy

foLLowing a given hazardous event [5,30J. As an exampLe, consider the aft

ermath of a strong-motion earthquake in a metropoLitan area.

Prior to construction, each structure is anaLyzed and designed with the

use of mathematicaL formuLations, which are resuLts of ideaLization and gen

eralizations from avaiLable knowledge and past experience. Once the struc

ture is built, each structure has its own characteristics, which can no

longer be precisely described with the same initiaL mathematicaL models used

in the design phase [8,16,29J. More realistic behavior of existing struc

tures can be obtained during earthquakes. For this purpose, acceLerometers

and other instruments have been instaLLed to record the dynamic behavior of

certain building structures [36]. System identification techniques

[4,15,23] and damage assessment can be empLoyed jointLy to examine the reaL

behavior and to assess the safety state of these existing structures so that
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a correct decision may be reached for the immediate aLarm, the repair ac

tion, the prediction of future damage and the improvement of technoLogies

for aseismic structures.

The state-of-the-art in damage assessment of existing structures is

such that reLativeLy few experienced engineers are weLL quaLified to prac

tice it. Moreover, the transfer of this compLex decision-making practice to

younger engineers depends primariLy on many years of cLose working reLation

ship with these very few experienced and qualified engineers [32]. To-date,

severaL methods to assess the structuraL damage have been proposed [31], and

some reLated works on the faiLure resistance evaLuation or estimation of ex

isting buiLdings have been reported [2,5,22,28]. However, a complete and

rationaL soLution of the damage assessment probLem is not yet available.

Fu and Yao [10] suggested that the probLem of the damage assessment can

be considered in terms of the theory of pattern recognition. In pattern

recognition [11], when using decision-theoretic [13] or syntactic approaches

[9], it requires to describe the patterns under study in terms of a certain

mathematical modeL, which requires a fairLy cLear or statisticaL knowLedge

about the patterns., Such complete knowledge is frequently unavaiLabLe in

complex or pre-matured problems, or probLems invoLving subjective human fac

tor, such as in this damage assessment and medical diagnosis [20,26]. Ac

cordingLy, a recent damage assessment study [17] indicates the use of rule

based production system with certainty factor in order to realize a highLy

effective utiLization of the knowLedge of structuraL experts and an inexact

inference procedure. A relation between pattern recognition and some Al ap

proaches is discussed in [19].

This paper describes a ruLe-based damage assessment system of the ex

isting structures subjected to earthquake excitation, the name of the system
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is SPERIL (StructuraL PeriL). After a brief description of the reLevant

knowLedge organization, the principLe of an inexact inference empLoyed in

SPERIL is described. Fuzzy set theory [14,34,35] and production system with

certainty factor [18,24,25] are utiLized jointly in this inexact inference

to deal with the continuous nature of the damage state and to attain the

modularity of uncertain knowLedge respectiveLy.

2. Knowledge Organization

Structures are commonly cLassified according to their structuraL ma

teriaLs into foLLowing types [8,16,29]: (a) wooden, (b) masonry, (c) rein

forced concrete, and (d) steeL. During construction, certain parts of the

structure can be pre-fabricated for economicaL reason. In particuLar, rein

forced concrete can be further classified into (C-1) poured-in-pLace (or

in-situ) reinforced-concrete and (C-2) precast (or prestressed) reinforced

concrete. As a structure with a mixed property of reinforced concrete and

steel frame, (e) steel-framed reinforced-concrete structures are built in

Japan [16]. Among these types, because wooden and masonry construction are

frequently limited to Low-rise buildings, we will concentrate our attention

on reinforced concrete and steel structures herein.

Generally speaking, for the high-rise structure, the steel frame is

usually preferabLe because of its high strength, high ductility and uniform

quality. The construction cost of steel structure, however, is frequently

higher than that of reinforced concrete. Maximum height of existing

reinforced-concrete structures is limited, for instance, to about 60 stories

in United States and 18 stories (7 stories before 1974) in Japan.

As the first step to the system design, define the grade of the damage

state of existing structures as a numerical quantity between 0 and 10, where

o and 10 correspond to no damage and totaL collapse, respectively. In addi-
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tion, define its verbaL interpretation as shown in Fig. 1. This cLassifica

tion is not strict. However, each cLass is assumed to be associated with a

suitable recommendation and the cost for proper repair action. If a struc

ture is cLassified into destructive damage which is often obvious from visu

al inspection, its recommendation wiLL be demolition and rebuilding. In the

case of severe, moderate and slight damages which are very difficult for

inexperienced engineers to determine in precise manner, the recommendation

wiLL be major, considerable and minor repairs, respectively.

Now the probLem is one to construct a rationaL way for confirming the

hypothesis that the structure in question is severeLy damaged, to be true or

faLse, or to be more reasonabLe than other hypotheses from possibLe observa

tions. The observations may come from (i) visual inspection at various por

tions of the structure, (ii) reading of acceLerometer records during the

earthquake, (iii) nondestructive testing, and (iv) loading tests before and

after the earthquake. ALthough we wiLL primariLy consider the observations

(i) and (ii) in this paper, acceptabiLity of other observations shouLd be

considered in the design.

AvaiLabLe features for damage cLassification or assessment from the

visuaL inspection may incLude the detection fo deformations and cracks in

coLumns, beams, joints, fLoors, ceiLings, externaL & internaL waLLs, doors,

windows, stairs, nonstructuraL partitions, utiLities, eLevators, etc.

Features to be derived from the acceLerometer records by using system iden

tification techniques may incLude the change of naturaL frequency of the

building vibration, the change of damping factor, the maximum interstory

drift and the totaL energy absorption and dissipation during the earthquake.
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(Time histories of above changes are sometimes also good information for ex

perts.*) In addition, when we try to infer the damage state from above-

mentioned features, we should consider many other conditions regarding the

structures in question, such as structural material, height or number of

stories, areas of floors, shapes, soiL condition and foundation, the year

that the buiLding was buiLt, buiLding use, design parameters if avaiLabLe,

existence of walls, experience of human inspector, etc. which are stored as

reference data apart from inspection data and utiLized for the inference in

SPERIL.

To formulate the probLem, the approach of production system [6,25,27]

allows us to decompose a compLex problem into a number of simpLer sub-

probLems, the relations among which are hierarchical (parent and son) or

parallel (brothers). In addition, in order to accommodate knowLedge effi-

ciently from human experts, these sub-problems are fitted to knowledge units

of the experts. Keeping this in mind, the **framework for knowledge

representation or inference is determined and is shown in Fig. 2, where

several intermediate diagnostic states or sub-goals are introduced, the

grades of which are inferred from their Lower leveL nodes or sons.

Each numbered node corresponds to a set of ruLes in production system

for the inference, the principle of which is discussed Later. Each double

circled node denotes the data analysis process to obtain the feature from

the accelerometer records. We wiLL not go into further detaiLs in this pa-

per except one comment that one of the important things in the interpreta-

tion of the visuaL inspection is to telL inexperienced inspectors what is

structural component or non-structural. For example, interpretations of

*Sozen, M. A., private communication.
**This pre-formation of knowledge or inference framework is not required
in some other knowledge representation schemes.
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cracks appearing on shear walls, infill walls and non-structural walls are

often quite different.

3. Production System with Certainty Factor

Before going into the description of SPERIL1s inexact inference mechan

ism, let us see why direct applications of existing methods are incon

venient.

The certainty factor was first introduced into production system in MY

CIN [24,25]. The combining function of certainty factor plays an important

role for the production system to keep knowledge modularity even in uncer

tain situations. For the recent theoretical development of the certainty

factor in production systems, see [18].

Suppose that the same grade expressions as the final damage state of

Fig. 1 are used for the intermediate diagnostic states. For the purpose of

illustration, consider node No.2 in Fig. 2. According to the approach of

production system with certainty factor, a set of rules for confirming that

structural damage of global nature (GLO) is severe may be listed like RULE

201-207 of Table 1, where the numerical certainty factors of the rules are

indicated in parenthesis.

Combining function of the certainty factor can work well only for the

case that the rules to be combined are mutually independent in confirming a

hypothesis. Thus, a problem arises. Although the combining function may

work well, for exampLe, among RULE 201, 205, and 207, it does not work well

and sometimes leads into incorrect results such as an overestimation in the

confirmation, among RULE 201, 203, and 204. The reasons are: 1) the deci

sion is preserved until the final goal in the production system and there

fore there exists several possibilities of different hypotheses at one time

in an intermediate state, and 2) the inferred hypothesis has a continuous



- 8 -

nature in the damage assessment of existing structures. Some minor changes

to solve the above problem are possible, but they tend to lose the con

sistency and knowledge modularity of the production system.

4. Fuzzy Set Theory

In fuzzy set theory (14,34,35], a membership function and its opera

tions play the key roLe in the expression of ambiguous facts and inferences.

One important thing to understand the fuzzy set theory is, in authors' opin

ion, to know why maximum and/or minimum operations are used. There is no

rigid justification for this, except that a) the max. and/or min. operations

are the most naturaL extension of binary Logic from a viewpoint of satisfy

ing most of the algebraic axioms in binary Logic, and b) the results of

these operation are compatible with human intuition. The difference between

the probability and the membership function can be understood through the

property of the max. and min. operations.

This fuzzy set theory seems to give a convenient tool to the inference

of our damage assessment having continuous nature. Moreover, recentLy its

appLications in civiL or structuraL engineering [1,3,7,12,32] are beLieved

to provide a good measure for the interpretation of low-level features in

damage assessment.

Consider the same inference exampLe as in the previous section in terms

of fuzzy set theory under the framework of production system. First of all,

we define the damage grades as shown in Fig. 1 as fuzzy Linguistic vari

abLes. For example, let B denote the severe damage state. Then the mem

bership function may be specified as follows:
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0.2 , if d =4

0.5 , d =5

0.8 , d =6
\.Is (d) = (1)

1.0 d = 7,
0.8 , d = 8

0.4 d = 9,

where d denotes the numericaL grade of the damage state.

Let us use th_ foLLowing composition [21] to generate a fuzzy reLation

R from the conditionaL statement (IF:F, THEN:G), because it satisfies the

inference of modus ponens;

R = f (\.IF(u) A \.IG(v»/(u,v), (2)
UxV

where F and G are fuzzy subsets of universe sets U and V, respectiveLy, and

A denote min. operation. Then G1 inferred from F1 which is somewhat dif-

ferent from originaL premise F can be caLcuLated as,

G1 = R 0 F1

=f V [\.IR(u,v) A \.IF(U)]/v,
V UeU

where V denotes max. operation.

(3)

Consider RULE 201 of TabLe 1 ignoring the second premise which is a

non-fuzzy variabLe. if we treat the certainty factor to proportionaLLy de

crease the membership function of the concLusion,* fuzzy sets {STI1} and

{GL01} of the first premise and concLusion, respectiveLy, and the reLation

R1 are given,

*This treatment is seLected in connection with the foLLowing section.
Truth quaLification can be another approach.
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0.2 , if d = 4

0.5 d = 5,
0.8 , d = 6

{STI1} = 1.0 d 7
(4), =

0.8 , d = 8

0.4 , d = 9

0.12 , if d = 4

0.3 , d = 5

0.48 , d = 6
{GL01} = )lB(d) x 0.6 = 0.6 d = 7

(5),
0.48 , d = 8

0.24 , d = 9

R1 ={STI1} n{GL01} =

{STI}

4 5 6 7 8 9

4 .12 .12 .12 .12 .12 .12

5 .2 .3 .3 .3 .3 .3
{GLO} 6 .2 .48 .48 .48 .48 .4

(6)

7 .2 .5 .6 .6 .6 .4

8 .2 .48 .48 .48 .48 .4

9 .2 .24 .24 .24 .24 .24

After the membership of decendent state {STI} is determined, the membership

of {GLO} is obtained or inferred by Eq. (3) and (6).

Likewise, other {GLO}s can be inferred through RULE 203, 204, 205, 207.

According to the caLcuLus of fuzzy set theory, the finaL {GLO} is eventuaLLy

obtained by taking the maximum membership function of these {GLO}s at each

d.

The advantages of using fuzzy set theory in this appLication are that,

1) the range covered by a ruLe is broad, 2) redundant ruLes are aLLowed be~
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cause only one effective element is selected through the max. and/or min.

operations, and 3) the inference is realized for the continuous variabLes by

a smart mapping caLcuLations of fuzzy reLations.

described in previous section wouLd not exist.

However, because a strong ruLe acts to mask the other ruLes, the pro-

perty of inference accumuLating severaL confirmations from different evi

dences cannot be expected. For exampLe, for the case that both premises of

RULE 201 and 205 are satisfied, we must add a new ruLe;

RULE 2** IF: 1) STI is severe,

2) MAT is reinforced concrete, and

3) FRG is severe,

THEN: there is strong indication (0.7) that GLO is severe.

Otherwise, the contribution of RULE 205 is ignored. The necessity of using

this kind of rule addition impLies the loss of knowLedge moduLarity.

The other probLem of fuzzy set is how shouLd we treat the ruLes indi

cating disconfirmations of the consequence Like RULE 204. This consequence

clause may be repLaced by

THEN: there is a weak indication (0.3) that GLO is not severe.

Because the fuzzy set of not-severe is defined by 1 - ~B(d) (see Eq. (1»,

RULE 204 becomes to contribute the confirmation of no and slight damage

states. This effect itseLf is not unconvenient, but the expecting discon

firmation of severe damage state cannot be attained.

5. Membership Function of Certainty Factor

So far, we see that whiLe the production system with certainty factor

and the fuzzy set theory in production system have favorabLe properties in

some respects, their direct appLications are not necessariLy appropriate in

damage assessment because of their criticaL drawbacks.
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The idea of the knowledge representation or inference mechanism em

ployed in SPERIL is simple but very important. That is, the certainty fac-

tor rather than the damage grade itseLf is regarded as a fuzzy set aLong the

degree of damage state d. IndividuaL inference with a ruLe is conducted by

fuzzy inference using the fuzzy reLation. After this individuaL inference,

severaL resuLtant fuzzy sets of certainty factor from different ruLes are

combined to generate a fuzzy set of certainty factor confirming or discon-

firming a hypothesis by using a consistent combining function of certainty

factors [18].

Suppose that we have

RULE IF: HA is PA(d),

THEN: there is indication (Cb,a) that He is Peed),

where PA(d) and PB(d) are membership functions characterizing no, sLight,

moderate, severe or destructive damaged state, and Cb is a certainty fac-,a

tor of the ruLe. Since Cb takes a vaLue between -1 and 1 while PA(d) and,a

Peed) are in the range between 0 and 1, the fuzzy inference of Eq. (2) and

(3) is changed to,

(7)

and

where PA(d1) is the determined membership function of certainty factor of HA
in the inference.

Both the moduLarity of the knowledge and the capability of expressing

continuous nature can be achieved by taking advantages of the certainty fac

tor and fuzzy membership function, respectiveLy.
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6. Conclusions

The outline of the knowledge organization of a rule-based damage as

sessment system of existing structures subjected to earthquake excitation is

described. Then the principle of inexact inference to reach a rational

solution has been described. Fuzzy set theory and production system with

certainty factor are employed jointly in the inexact inference to deal with

the continuous nature of the damage state and to attain the modularity of

uncertain knowledge, respectively.

No special strategy to speed up the inexact inference process is adopt

ed at present. It is important for the system to build up gradually by ac

cepting new knowledge. Particularly, recent full-scale dynamic tests of

buildings are expected to provide usefuL information to this problem.
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Table 1 - An example of rules

RULE#

201 IF: 1) STI is severe, and
2) MAT is reinforced concrete,

THEN: there is considerable indication (0.6) that GLO is severe.

202 IF: 1) STI is severe, and
2) MAT is steel,

THEN: there is strong indication (0.7) that GLO is severe.

203 IF: STI is moderate or destructive
THEN: there is weak indication (0.3) that GLO is severe.

204 IF: STI is no,
THEN: there is weak negative indication (-0.3) that GLO is severe.

205 IF: FRG is severe,
THEN: there is considerable indication (0.4) that GLO is severe.

207 IF: 1) WAG is severe, and
2) MAT is reinforced concrete,

THEN: there is considerable indication (0.5) that GLO is severe.

Abbreviations

GLO damage of global nature

STI diagnosis of stiffness

FRG diagnosis of global nature of frames from field inspections

WAG diagnosis of global nature of structural walls from field inspections

MAT structural material
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Fig. 1. Grades of damage states and its verbal expressions.
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