SCHOOL OF CIVIL ENGINE | NSF/CEE_81022~

PRel-235921 |

Structural Engineering
CE-STR-81-1b

HYSTERESIS IDENTIFICATION OF
MULTI-STORY BUILDINGS

Sassan Toussi
and
James T. P. Yao

PURDUE RSN\







CE-STR-81-15
HYSTERESIS IDENTIFICATION OF

MULTI-STORY BUILDINGS

by

Sagsan Toussi and James T, P. Yao

Supported by
The National Science Foundation
Through

O
Grant No. PFR 7%6296

May 1981

School of Civil Engineering
Purdue University

West Lafayette, IN 47907






1o TN TROBUCT T ON e o oo e e oo e e e e e e e
1.1 Object and Soope— s e o e e e e e e s

1.2 Acknowledgement————m—m—————cm e e e

2. HYSTERESIS IDENTIFICATION METHOD == o o o oo o o e o e
2.1 System Model——— e e e e e e e e e e

2.2 TIdentification Procedure=———m—m—— e o e e e e

2.3 Systen's Damping e S

2.4 Frror Criterion~—--——-——m=——- T i
2.4.1 Least Squares Apprxoimate Solution-=-—mm—————e———-— ————

2.4,2 Ieast Squares Solution for Constrained Parameters-——-—-—-—

. LUMPED-MASS Y ST EM s o o o e e e e e e e e e e e e e e e e
4.  APPLICATIONS == == o o o e e e e e e e e
4.1 Description of Test Structure, Test Set-Up and Test Procedure

4,2 Data-Filtering PrOCeSS ———r —me o o o e e e e

4.3 TIdentification of Non-Linear Structural System-———————mm—~eem
4,3.1 Undamped System=————————————— o e ot

4.3.2 Linear-Visgcous-Damping System————m e — e e e

4.3.3 (Restricted) Linear-Viscous-Damping System—s—m——m———--

4.3.4 Non-Linear-Viscous-Damping System——————r———mme—————oe

5. SUMMARY AND CONCLUSIONS====——————m—m e e e m e m o
REF E RN O S e e e e e e e e e e e e e e e e e e e e o e e
FILGURES = st mim e e o e e e e e e e e e e e e e e e e e e '

TABLE CF CONTENTS







1. INTRODUCTION

1.1 Object and Scope

In an earlier report [14]; two simple techniques of system identifica-
tion were presented for the estimation of the behavior of single-degree-of-
freedom (SDOF)} structural systems subjected to earthquake excitation. It
was concluded that these methods can be further improved by using the appli-
cable eror functions in the analysis of noise-corrupted test data. Moreover,
these tgchniques can be extended to estimate the inter-story hysteretic be-
havior of multi-story structures.

In this report, results of the estimation of the behavior of multi-degree-
of-freedom (MDOF) structural systems are presented. First, the hysteresis
identification method and the corresponding error criterion are reviewed
and described. The error criterion is a least-squares estimation procedure
which is applied to both an unconstrained and a constrained problem. Then,

a lumped-mass model which is used to form "M" different independent responses
from the response of an "M" degrees of freedom structure is described. This
model enables us to consider each one of the "M" responses as the output of

a SDOF structural system which is, in fact, the relative response of a cer-—
tain floor with respect to the next lower floor. Pinally, the identification
technigue ié applied to estimate the inter-story behavior of a laboratory
tested, reinforced-concrete frame [3]1. The frame was constructed and dynami-
cally tested to failure at the University of Illinois by Healev and Sozen [3].
However, their data contained trends which needed to he filtered. The fil-
tering techniques as used herein are also discussed.

In addition, we tried to investigate the effect of damping in the re-
sponse of high-rise buildings. This investigation was focused on whether
or not damping force plays a significant role in the nature of the structural
response and, if so, what mathematical form for damping force would better

represent this effect.
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2. HYSTERESIS IDENTIFICATION METHOD

The hysteresis identification method is briefly discussed in the first
two sections herein. A detailed discussion of this technigue is given in
an ecarlier report [1l4]. In Section 2.4, the mathematical form for the damp-
ing force is described. The mathematical function was chosen in such a fas-—
hion that it would help to simplify the identification procedure. A litera-
ture review was also conducted to support the selected form. The remaining
sections deal with the treatment of noise-corrxupted data. The least~sguares
technigue is used for the estimation of constrained and non-constrained co-
efficients.

2.1 system Model

FPigure l-a indicates the system model whose mass is assumed to be time-~
invariant. For this model, the relative acceleration {with respect to the
base), ¥{(t), and the base acceleration, zZ(t) are known and available. The
restoring force, fR(t), is assumed to depend upon the relative displacement

and the relative velocity between the floor and the base., Thus, we have
fR(t) = £ (x{t) ,x (1)} (1)

Traditionally we may consider fR(t) to consist of two separable parts,
namely damping and spring forces which are functions of the relative velocity

and the relative displacement, respectively. The non-linear ‘damping and



spring properties of the system are shown in Figure l-b, while the system's
response to an arbitrary load is illustrated in Figure l-c. Because the ve-

locity and displacement change monotonically, forces should also change mono-

tonically within intervals ti - ti—l' i=1,2,3,... Therefore, restoring force can

be written in terms of two polynomials, one of which corresponds to the spring

force and the other to the damping force, i.e.,

fR(t) = fD(x) + fs(x) (2)
whe re
£ (X) =b_ + b % + b.%° + + b % (3)
p* = %o 1 2 e TR
F(x) =a_+ax+a x2 + + a xq (4)
$ ! 1 2 q
and
P+ q f_ni -1 {(5)

Substituting Equations 3 and 4 into Eguation 2, we obtain,

, oy g . .2 -
fR(x,x) = ¢ + al + a,x + ... F aqx + blx + b2x + ... +b xp

where,
c=a_+5b {(7)

2.2 Identification Procedure

The relative velocity and displacement time-histories are obtained by
integrating the relative acceleration response once and twice, respectively.
Suppose n, is the number of points within interval i. Repeating Egquation 6
for the components of response at each ni points gives n, egquations with n:.L

unknowns which in a matrix form is symbolized as follows:



F_o= Xp (8)

In this equation, FP is the vector of applied force; X is the response

matrix, and A represents the parameter vector to be estimated. The elements

of FR are determined from the system equilibrium equation.

£(t) = -mz(t) - mx{t) : (9)

where mx(t) and mZ(t) are, respectively, the inertia and the base excitation
forces. Since X and FR are known quantities in Equation 8§, The A vector
is simply derived by obtaining the inverse of matrix X and substituting

X_l and FR into Equation 10.

A=X_TF | ' (10)

Having the parameter vector calculated, the damping and spring forces are

obtained using the following egquation

£, (t) 1 x x . . .x¥ o 00 . . . 0 a

= (11)
£(t) oo 0 . . .0 1 % %=. . . a

2.3 System's Damping-Force

At present, there is a poor understanding of the damping mechanism in
structures. In many cases, the structure is assumed to possess no damping.
Howevey, under dynamic load with a broad frequency spectrum, it is unreason~
able to ignore damping effect since it prevents the structure from the exces-

sive vibration.



The most important mathematical models representing damping in structures
are linear viscous, Coulomb, and structural dampings. For viscous damping
models, the damping takes the form of a force proportional to velocity and
acting in a direction opposite to the velocity direction. Coulomb damping
also opposes the motion, but it has a constant magnitude. Finally, the
structural damping is aésociated with the internal energy dissipation due to
the hysteresis effect in cyclic stress.

In recent years, the viscous damping models for representing the energy
dissipation characteristics of actual structures are widely used. They are
used with simple transient or random excitation. On the other hand, structural
damping has shown'good agreement with the measured response of large structures
for typical low-frequency ranges. In using the structural damping models, the
basic assumption is that the energy dissipated in one cycle of harmonic motion
is propcrtional to the square of the amplitude and independent of the frequency
of motion. Some materials, however, do not conform with this assumption.
Moreover, Jerry and Ellis [4] from their experimental investigation concluded
that the building at various amplitudes had shown nonlinearity. And this non-
linearity should be found in the frequency and damping characteristics of any
mode.

In spite of the fact that the damping is not really proportional to the
velocity in any kind of material or systems, these models have been success-
fully applied in analyzing vibration problems. The viscous and structural
damping models have also given reasonable gualitative results for simple non;
linear systems.

The mathematical form of the viscous damping force used in our identifi-
cation technique was reversible, non-linear, and symmetrical with respect to

the origin, i.e.:



a
£,(¢) = R (12)

Although viscoelastic models are frequency dependent, it should be noticed
that our system identification technigque is applied to a SDOF system subjected
to earthquake excitation. Therefore, because the system's response is domi-
nated with its natural frequency we, indeed, always deal with only one fixed
frequency (i.e., system’s natural freguency). In other words, whatever is
chosen for the damping force, it is related to the system's natural frequency
only and is independent of any cther frequency.

The reversibility property of the damping force is due to a physical in-
terpretation. Since the damping force depends upon the velocity and the ve-
locity value must return to zero at the end of the motion (i.e. not any perma-
nent velocity), the damping force, therefore, has to pass through the origin.
Finally,lthe non-linearity of the damping force is due to the experimental
observations of Lazan [7]. He stated that nonlinear effects in damping are
beneficial since the effective damping usually increases with increasing
stress.

Finally, it should be mentioned that Coulomb damping model was inten-
tionally neglected. Because it is represented by a constant value which
is very difficult to distincuish it from the constant parameter of the
spring-force function. However, as Lazan [7] pointed out, the Coulomb fric-
tion dawmping was the only practical pase where the non-linear effects in
damping was not beneficial. Moreover, Den Hartog [2] showed that for a SDOF
system with constant ferce frictioned damping, the effective damping decreased
with increasing vibration amplitude up to the point where the damping no
longer could control the amplitudé. Tt means that the effectiveness of the
friction force is doubtful as the friction force is exceeded with the effective

excitation force.



A detailed look at damping methods, measurements, and analysis is con-

tained ir. Reference 13,

2.4 Error Criterion

So faf in the discussion of the present method, the importance of the
noise either resulted from the inaccurately measured input and/or output,
the imperfect mathematical representation of the system behavior, or the com-
bination of both was generally underestimated. AaAlthough, in many identifica-
tion techniques the data are assumed to be noise-free, in our method because
of performing the identification in rather short time-intervals, the éffect
of noise can not be ignored. The difficulties associated with the inversion
of the matrix X of Equation 8 represent an example of the sensitivity of this
method to measurement noise. The matrix is established with the assumpticn
that the data are error-free and the aésumed mathematical functions resemble
the actual behavior. Because théée are hypothetical considerations; we sheuld
expect to experience singularity problem in the matrix inversion process.

The presence of noise, therefore, compels us to refer to the mathematical
statistics which makes full and rather accurate utilization of the information
derived from the observations. At present, the method éf Least Squares is
widély applied in the treatment of the guantitative results obtained from ex-
perimental works. There are many textbooks which discuss the mathematical
and statistical aspects of this technigque. Among them, 0. M. Leland, who has
taught the least-squares method to civil engineering students over many years,
has prepared a practical book for engineers [8].

In the following, however, the necessary formulae are derived by simplyfing
the problem as the inversion of a matrix whose numbers of columns and rows
are not equal. Then, a very simple solution to the problem of restricted para-

meters is presented.



2.4.1 ILeast Squares Approximate Solution

According to the assumptions made for damping force, Equations 4 and
5 which, respectively, define the damping and restoring forces should be

redefined, i.e.,

fD(t) (13-1)

1]
[[Eaee]
o
—.
£
-]

and

fR(t) (13-2)
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Now we try to choose such values for p and g whose swmation, mi, is less
than the numbers of points within interval i (i.e. m, < ni).- Therefore,
the substitution of the restoring force of each point in the equilibrium equa-
tion (i.e. Equation 9) gives n, equations with m, unknowns where mi < n, which
means we have more equations than unknowns. Furthermore, since no point can
satisfy the equilibrium equation, it is inappropriate to consider Equation 8

as an eguality. Consequently, an ni X 1 error vector, e, should be introduced.
e = F_ - XA (14)

Now, the parameter vector, A, is estimated by minimizing
E=ee=(F~XA)T(FR—XA)_ (15)

This minimization which is called the least-squares estimation gives that A
which minimizes the norm of the error vector, e. If some equations are more
reliable than others but all equations are to be retained, a weighted least-

squares approximation can be used. That is we should minimize

_.T _ T
EQ = e Qe = (FR - XAa) Q(FR - Xa) (16)

where Q is a symmetrical, mixmi, non-sinqgular, and generally diagonal matrix.



To perform the minimization, Equation 16 is multiplied out and its deriva-

tives with respect to A are set equal to zero.

EQ = Fig FR - FgQ XA - AT XT o} FR + AT XTQ XA (17}
and

oF T T T T T T

§K9-= - FRQX - FRQX +AXQ0XE4+AX0X=0 _ (18)
This gives

ATXTQX = FiQX (19)
or

T T T -1
A = FRQX(X 0OX) (20)

Therefore, an estimate of vector A is obtained as follows

A= oxox T xTor (21)

The hat, "~", on A indicates that the derived formula for A is an estimated
of A, not its actual value. Error vector, e, can also be calculated as

2 T
|[e||Q = (F, - ¥A)" @ (Fp - XA) (22)

If 0 is a unit matrix, then & and the expression for e become

A = (XTX)*l XTFR (23)

leli? = @, - 7T (7, - xA) | (24)

, -1 T, . ‘ .
Matrix U = (XTX) X" is a particular example of the generalized or pseudo-

inverse of A [12].
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In any event, the mathematical models being used are always the result of simplify-
ing assumptions (e.g., the twisting and rocking motions may not be considered
in many cases). Whether the violation of such rules is an indication of the in-

adequacy of the form of such models is not clear.

2.4.2 Léast—Squares Soiﬁéion for Constrained’Parémeters

The previously discusséd least-squares estimation was a general case
where the parameters were not subjected to any equality and/or inequality
conditions. There are, however, cases where gome paramecters should not ex-
ceed certain limits or differ from fixed values. For example, consider the
sign of the damping force, FD = a4i, which should always be identical to

the sign of the velocity regsponse. Therefore, it compels us to enforce an

inequality condition to the estimation procedure, i.e.

a, >0 (25}

Those who have tried to find a solution to thié kind of problem have
aiways assumed that they have a clear idea about the error vector defined
in Equation 14. Zelner [16], for example, has considered the case of one
fixed variable when the error vector is assumed to have a multi-variate normal
distribution. In our case, there doesn't exist any information about the
probability distribution of vector e. Consequently, we should look for
that solution which doesn't require any prior knowledge about the e vector.
Judge and Takayama [5] specified a general framework for the cases where
there were linear ineguality restraints on the individual coefficients or com-
pbinations. What, however, we apply to the problem is a very simple proce-
dure which consists of two steps.

In the first step, we fit by least-sguares the regression relationship,

aix:L +a ..X ‘ (26)

fR(t) = g+l

Il o2

i=0
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Tf aq+l > 0, the estimates of coefficients are used without any modification,

But if aq+l < 0, then the second step is used which is to f£it the same regres-

sion model (by least squares) except we set a equal to zero. However,

g+l
Lovel and Prescott [2] showed that this procedure causes bias and can lead

to inefficient parameter estimates!

3. LUMPED-MASS SYSTEM

Figure 2 shows the typical model for high-rise buildings. This ﬁodel is
a lumped-mass system with masses Mi' i=1,2,...,N, where N is the number of
masses. It is assumed that these masses are connected by the nonlinear dash-
pots Ci' and the non-linear springs., Ki' The mass distribution is assumed to
be known from the drawings or can be obtained from impulse-momentum relation-
ship [91].

The recorded motions consist of the acceleration of the rigid base,
Z(t), and the absolute acceleration of the floors, §i, i=1,...,N. These
quantities should have been measured during the motion of structure at each
level by means of previously-installed accelerameters. The absolute velocity
and displacement of each floor is obtained by integrating the corresponding
absolute acceleration. The forces created in the springs and the dashpots
are assumed to depend upon the relative displacement and veldcity between

the neighboring masses, respectively, i.e.

Fs[xi(t)I, i

[F (t)], = =1,2,...,8 (27-1)

[P (0)], = FI%, (8], i=1,2,...,N (27-2)
where

x, (£) = vy, (&) -y, (€) (28-1)

x, (£) - v (0 - v, (B (28-2)
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Now the equation of motion governing the system can be formed as follows:
} P Ix (2)] + F )] =
MNYN(t) + FD[XN(t)] S[XN( )] 0

My-1¥n-1

: (29)
MY (E) 4+ FD[ii(t)] + F (0] = FD[ii+l(t)] + Fglx, (0]

(t) + FD[iN_l(t)} + FS[XN_l(t)] = FD{kN(t)] + P lxg(£)]

i+l

M () + FLIR, ()] + Folx, ()] = PolR, ()] + Folx,(£)]
MY (6) + F LR ()] + Flx (0] = FoIE (6)] + Fy(x, ()]

Adding i equations from the top together at a time while i = 1,...,N, gives
the following N equations
N
. P . ] = . Do o
Foli (0] + Folx (W1 = ] M ¥, 1=1,2,...,N (30)
k=1
In this equation, since the right hand side is known, the summation forces
are availakle at any instance of time. The next step is to apply the hystersis

identification method to distinguish these forces from each other.

4, APPLICATIONS

The applications of the identification technigque as described earlier is
presented herein, To investigate its feasibility and practicality, the re-
sponse of a ten-story concrete frame which was dynamically tested at the
University of Illinols was analyzed. The dynamic test procedure included a
series of strong base motions, simulating a scaled version of the north-south
component of the El-Centro earthquake of 1940. Healey and Sozen in [3] de-
scribed their experimental work and presented the acceleration and displace-
ment data obtained in three earthguake-simulation tests. Changes in the
dynamic properties of the structure, such as apparent frequencies and equiva-
lent damping were also discussed. In addition, the structure was subjected

to sinusoidal base motions and underwent several free-vibration tests. Our
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work, however, was restricted to the analysis of the response of the frame
due to the earthguake excitations. The details of their experimental work
is described by Healey and Sozen [3]. Nevertheless, the test structure,
testing equipment and experimental procedure are degcribed in the following
section.

4.1 Description of Test Structure, Test Set-Up and Test Procedure

The test structure consists of two parallel, small scale, ten-stoxry frames
carrying a total mass of 4540 kg distributed equally to each floor as shown in
Figure 3. TFigure 4 shows the overall nominal dimensions of the frames. The
height of the first and the tenth levels, as seen in Figure 3 and 4, were
almost twenty percent higher than those of the other floors. The structure
was tested with the earthquake simulator at the University of Illinois as
shown in Figure 5. The directions of the frames were parallel to the direc-
tion of the motion.

The input motion for the three earthquake simulation tests was the re-
corded north-south component of the earthguake motion as measured at El-Centro,
California in 1940. The acceleration levels, however, were different for each
test run., The maximum recorded base acceleraticons for the first through third
test was 0.4g, 0.95g and 1.42g, respectively. The acceleration at each level
was measured by one accelerometer which was fastened to the longitudinal con-
nections of the weights along the centerlines of the beams at each level and
at the top of the base girder. These accelerometers measured the horizontal
accelerations parallel to the imposed direction of motion. In addition to the
accelerometer, there were twenty-one linear-voltage-differential transformers
to measure the relative displacements. However, as will be discussed, tﬁe

recorded displacements are not used in this investigation.
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4,2 Data-Filtering Process

The displacement responses were obtained by integrating the recorded
acceleration responses instead of using the measured displacements for the
following reasons. First, there was a gap between the instance of recording
the acceleration magnitude and the instance of reccording the displacement
magnitude. Although this gap had been estimated to be a very small fraction
of a second, we decided not to use the displacement data because our techni-
que required the components of response to be measured at same moment in time.
Second, we happened to find that in converting the Illinois data tapes into
the system at Purdue University, some portioms of the digplacement data were
folded onto the other side of the zero line.

Figure & indicates the acceleration, velocity, and displacement of the
second floor (RUN1) where the last two components were c¢reated by integrating
the recorded acceleration history. Figure 8 indicates the same components of
the response cf the fourth floor for test run 2., The integration was performed
with the use of Simpson's rule together with Newton's 3/8-rule. From Figure
6, it is apparent that the velocity history contains a linear trend while the
displacement contains a parabolic one. The existence of these two trends
proved thét the recorded accelerations are noise corrupted. It should be
noticed that the term "noise" doesn't refer to the output noise, rather it
is the evidence of the presence of some ©Offset voltages in the electrical
instruments.

A traditicnal method of dealing with data containing a trend, is to fit
a simple polynomial curve tothe data. This fitted function provides a measure
of the trend. Then the untrended data are simply obtained by subtracting the
magnitude of the trend at each point from the magnitude of the original data
at that point. For example, in this case, a linear function can be fitted

to the velocity time-history to f£ind the existing trend.
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A second procedure for dealing with a trend is to use a linear filter

which converts one set of data {xt}, into another, {yt}, by the linear

operation
Y, = ] a_x (31)

where {ar} are a set of weights. In order to estimate the local mean, we

should c¢learly choose the weights so that Zar = 1. This equation is often

refered tc as a "moving average" [6]. A simple moving average is when
a = —% o= ~Qye..,q ' (32)
x 2g+1

and the smoothed value of xt {(i.e. yt) is

t+q
1
y, = Z X, {33)
t 2g+1 i=t-q i

This filtering technigue can be applied to our acgeleration time history to
find the value of the constant trend.

Finally, a useful way of removing a trend is simply to subtract the
point values of a data from their successive point values until it becomes
stationary [1]. However, we didn't try this technique since we were not
sure 1f earthquake motion time-history 1s stationary or not.

Our trend-removing process, however, appeared to be a trial-and-error
type of operation. Because, filrst, a moving average technique was used to
the acceleration data to find the constant-valued trend. It was then followed
by subtracting this extracted value from the whole acceleration record. In-
tegrating the trend-removed acceleration, once and twice gave the velocity
and displacement time histories, respectively. Unfortunately, the plots of the
results, obtained by the successive operations mentioned above, showed that
the filtering procedure had failed to remove the trends from the response.

From these plots, however, a better understanding of the problem was realized. It
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was found that the constant wvalued trend in the acceleration data varied
from one interval to another. Therefore, the remaining question was how to
find where each interval started and ended.

Because the filtering process was time consuming and regquired a lot of
labor, it was decided to remove the trend from only a portion of the acceler-
ation data and leave the search for a more efficient filtering technigue to
cur future work.

It was then decided to do the filtering on a five-second length of data
and 1f the process falled to remove the trend, thus, the length would be de-
creased. The approach resulted in three time intervals of 3, 4 and 5 second
time duration for test runs 1, 2 and 3 respectively. The removal of the
trend was accomplished through fitting a linear regression to each one of
the velocity data obtained by integrating the corresponding acceleration
data. The tangent of the slope of the estimated line gave us the trend's
constant value hidden in that specific portion of acceleration data. The
subtraction of the trend from the original acceleration response yielded
the horizontal acceleration response.

Pigures 8-10 present the absolute acceleration, velocity, and displace-
ment histories of the test structure for the first test run. Figures 11-13
and 14-16 show the responses of the test structure for the second and third.
test runs, respecitvely.

4,3 TIdentification of Non-Tinear Structural System

In this section, the application of the identification technique in
analyzing the structural response to each test run is presented. B2As men-
tioned earlier the input motion for all the test runs was the recorded
earthqguake motion at El-Centro, California (1940). The only difference
bhetween these inputs was the use of different mulipliers which gave the
test rune-3 input the highest intensity while the test run-1 input gained

the lowest intensity.
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Fach response was evaluated through the use of four different mathema-
tical forms for the restoring force. The spring force was restricted to a
polynomial of degree three, while the viscous damping force was given zero,
linear, restricted linear, and a third-degree reversal sysmetrical form,

The selection of four different forms for damping force was aimed to investi-
gate the effect of damping in high-rise buildings. To obtain the relative
response between the floors, we assumed that all the floor masses are egual.
This assumption, however, was not far from the actual situation since the total
structure mass had been evenly distributed through the floors. In addition,
the dimension of the different elements of the floors (beam, column, etc.)

were identical except that the height of the first and the tenth floors were
higher than those of others. Therefore, we prefered to factor out the mass
from the egquilibrium equation {i.e. Eguation 30) and let the forces be ex-
pressed in acceleration unit.

The relative regponses were utilized using the lumped-mass model des-
cribed earlier. Figure 17-19 illustrate the results of using the lumped-mass
system model to determine the inter-story responses of the test structure for
three test runs, respectively. In these figures, it is seen that some dis-
placement histories as well as a few velocity response histories become much
thicker in some portions of their time durations. This problem was the best
illustration of a highly-fluctuating time series., It also demonstrated why
most of the identification techniques required the use of an error function.

4.3,1 Undamped System

It wags assumed that the effect of the damping force is neglegible. &

polynomials of degree three was chosen for the spring force.

3 :
fS(X) = ] a % (34)
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Figures 20-22 present the estimated hysteretic behavior of floors for
test run 1 through 3, respectively. As mentioned earlier, the forces are
expressed in units of acceleration because the masses were factored out
through the‘equilibrium cquation.

4.3.2 Linear-Viscous-Damping System

The system was once again given the same form of spring force but it

gained a linear-viscous-damping force as follows:
F (%) = a, % (35}

The estimated hysteretic behavior of floors are shown in Figures 23-25
while the estimates of ay and their standard deviation, O, are presented in
Table 1. The most apparent feature of the table is that the standard devia-

tions of a, are rather large values in comparison with the mean value of a

4
On the other hand, there is no visible discontinuity between the segments of
the corresponding spring force-displacement diagrams. Therefore, it is con-
cluded that structural damping, can neither be modeled with a constant-valued

force nor a product of a constant coefficient and the velocity guantity.

4.3.3 (Restricted) Linear-Viscous-Damping System

There is a school of thought which describes structural damping as a
phenomenon to be in phase with the velocity. This consideration leads to
a less degree of frequency-dependence on damping forces which provides a
better agreement with the experimental results showing that the damping fofces
are nearly independent of the test frequency.

Therefore, by preserving the spring force form as before, the fol-

lowing linear-restricted function was used for modeling the damping force:

fD(k) = a,x {36}

where
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a, >0 (37)

The results are shown in Figure 27-29 for each test run, respectively.

4.3.4 XNon-Tinear-Viscous-Damping System

Finally, a cubic function which was symetrical with respect to the origin

was assumed for damping force
FL(x) = ax+a %% + a % (38)

Figures 29-31 show the hysteretic behavior of floors for each one of the

test runs, respectively.

5. SUMMARY AND DISCUSSION
The response of a ten-story reinforced-concrete test structure, constructed
and subjected to several simulated earthguake excitations at the University
of Illinols was used as a means to study the feasibility and practicality of
a hysteresis identification technique as presented herein. The main features
and significant findings of this investigation are listed in the following:

(1) The lumped-mass system was in most cases successful in utilization
of the inter-story response dominated by one apparent frequency.
However, in a few number of cases the results were not the repre-
-sentation of SDOF system responses. Indeed, the apparent frequency
decreased as nonlinearity started to dominate the behavior of
structure.

(2 Although damping doesn't seem to have a significant effect on the
nature of the response of structures subjected to earthquake exci-
tation, its consideration is beneficial in the sense that there
won't be a problem such as one shown in Figure 20-b. Moreover,
the loops of spring force-displacement curves estimated for the
system when the damping was considered are more meaningful from

the energy dissipation point of view than the case when the damping



(3)

(4)
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effect was neglected. Figures 32-35 ave used to illustrate a
comparison of the several cases where the system damping form

was chosen to be zero, linear, restricted linear, and symmetrical
cubic. It is apparent from these figures that a restricted linear-
damping force can not be a good model to represent structural damp-
ing. However, the technique used in the restricted linear case

was not a powerful estimation method in producing the minimum
error, in the least squares sense. As a concluding remark, damp-
ing should be considered and a linear-viscous-damping force suffices
this purpose.

One of the interesting results of this study is the similarity
between the conclusions made from the observed crack patterns as
shown in Figure 46 and those results as obtained from our identifi-
cation technique as shown in Figures 36-45. They both indicated
that the structure had behaved linearly for the first test run and
had experienced nonlinearity for the test runs 2 and 3.

A unigue feature of the present method which doesn't exist in other
similar system identification technique is that time-variant pro-
perties for the structure are considered herein. Udwadia and Xuo
[15], for example presented a nonparametric identification techni-
que which describes the structural characteristic with the use of
two polynomial series. However, unlike the present method, the
coefficients of the series remain constant throughout the whole
duration. Consequently, any permanent deformation can not be
identified. Similarly, the technigue presented by Masri et. al.
[11] did not include the consideration of any hysteretic~type
spring force. Therefore, if permanent deformation is used to
assess the damage occured to structure neither of the above-

mentioned techniques is applicable.
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Figure 17 {Cont.): Inter-Story Horizontal Responses, RUN 1.
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Figure 18 (Cont.): Inter-Story Horizontal Responses, RUN 2.
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Figure 19 (Conti): Inter-Story Horizontal Responses, RUN 3.
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Damping Has a Linear-Viscous Form, RUN 3.
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Figure 26: Identified Hysteretic Behavior of Floors Where Damping
Has a (Restricted) Linear-Viscous Damping, RUN 1. '
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