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ABSTRACT

The results of forced and ambient vibrations studies of a twelve

story apartment building, constructed with prefabricated wall panel and

slab elements are presented. Dynamic characteristics, such as resonant

frequencies, damping, and vertical and horizontal mode shapes of the

structure were determined and correlated with analytical results using

the computer program TABS-77.

Rigid floor diaphragm action and serious structure-foundation inter

action were observed. Including the foundation flexibility in the

analytical model using experimental vibration data resulted in resonant

frequencies and mode shapes showing excellent agreement with the test

data. Accounting for the foundation flexibility using actual soil and

pile test data did not produce a satisfactory correlation with the

dynamic vibration test results.
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1. INTRODUCTION

1.1 General

The design of multistory structures subjected to dynamic forces

resulting from foundation motions requires a consideration of both the

characteristics of the ground motion and the dynamic properties of the

structure. Ground motions as caused by an earthquake are random and,

although not prescriptible for aseismic design, have been fairly well

studied for certain well-known past earthquakes. The engineer is there

for mainly interested in the dynamic properties of the structure when

designing for earthquake forces and is only indirectly concerned with the

ground motion characteristics.

High speed digital computers and more sophisticated idealizations

and computer model formulations of structures can predict the elastic and,

provided that proper non-linear algorithms can be defined, also the inelastic

response of such structures when subjected to earthquakes. However, the

accuracy of the results in large measure depend upon the computer model

formulation of the structure and its foundation. In order to determine the

accuracy of the calculated results and to accumulate a body of information on

the dynamic properties of structures, especially when these structures have

novel design features, dynamic tests have been conducted on full-scale

structures (1).

In order to evaluate the dynamic characteristics of a prefabricated

type structure, dynamic tests using both forced and ambient methods were

performed on the Wesley Manor Building in Campbell, California, a IIForest

City Dillon ll type prefab panel structure. Because of the potential advantages

of the ambient vibration method in dynamic testing of full-scale structures,

it was desirable to compare the results of both methods and to assess the

accuracy of each method in evaluating the dynamic properties of this structure.
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The building is described in Chapter 2, and the results of the dynamic

tests, from forced, as well as ambient vibration studies, are given in

Chapters 3 and 4, respectively. A comparison of the experimental results

obtained from both studies is presented in Chapter 5. For purposes of

correlation a mathematical model of the structural system was formulated, and

the calculated and experimental dynamic properties were compared. The for

mulation of the mathematical model including the foundation, as based on

actual soil and pile data, and the analytical dynamic results obtained, are

described in Chapter 6. A general comparison and discussion of the experi

mental and analytical results is presented in Chapter 7.

1.2 Acknowledgement

The authors gratefully acknowledge the financial support provided by

the National Science Foundation under Grant NSF PFR 79-08257-2NF. They also

wish to thank the owner, Wesley Manor, Inc.; the architects, Ogren, Juarez

and Givas, especially Mr Bob Ogren; and the contractors, Campbell Construction

Company of Sacramento and Tecon Pacific especially Mr. Jim Clark of Tecon

Pacific, for their help and cooperation in coordinating and carrying out

the test program.
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2. DESCRIPTION OF BUILDING

2.1 General

The Wesley Manor Building in Campbell (Fig. 2.1), a Forest City Dillon

reinforced concrete prefab building, was tested in October 1978. This

building system uses solid slab elements and cellular wall panels. At the

construction, reinforcement is placed in the cells which are -subsequently

grouted. As the modular design of the building system includes prefabricated

kitchen and bathroom units, construction progressed at a rate of about one

story every two days.

2.2 Architectural Layout

The overall floor dimensions of the Wesley Manor Building are approxi

mately 164 1 x 80 1
• The building has 12 stories for a total height of 105 1 -4".

The building contains only apartments, except for a portion of the first

floor where space is reserved for laundry rooms, mechanical rooms, lounge

and a reception area. The building is serviced by two elevators, located

in the center. In addition, stairwells are located on either end of the

building as shown in Fig. 2.2.

2.3 Structural System

The vertical and horizontal load-carrying system consists of reinforced

concrete shear walls in both the transverse and the longitudinal directions.

These walls have a typical thickness of 8 in. over the entire height of

the building. Wall reinforcement placed in the cells varies over the

height as shown in Figure 2.3. The minimum concrete strength for the

panels and grout is specified as f~ = 4000 psi. The overall wall design

effectively results in a shear wall system.

3



The solid floor slab elements are 4 in. thick, with plan dimensions

of 8 1 by 22 1
• At the site additional reinforcement is placed across the

22 ft. long s"lab functions (#4 x 41 -0" @ 18" c.c.) and a 4 in. concrete

topping is placed over these elements, thus resulting in a total slab thick

ness of 8 in. Details of exterior and interior wall-to-f100r panel joints

are shown in Figure 2.4. The prefabricated kitchen and bathroom units have

a slab thickness of 8 in. with protruding reinforcing bars tying into

the adjacent 4 in. thick topping slab to provide continuity.

The structure is founded on piers with a diameter of 24 in. and

varying lengths from 30 1 to 53 1
• The piers are located at intervals of

approximately 5 feet, as shown in Fig. 2.5. The same figure also shows

through solid lines the layout of the first-floor walls.

2.4 Soil Conditions

The following excerpts, describing the soil conditions at the site

and Figures 2.6 through 2.8 are taken from the report by LeRoy Crandall and

Associates, Consulting Geotechnical Engineers, Los Angeles, CA as provided

by the project architect.

"Evidence of existing fill (debris, etc.) was not encountered
in the exploration borings."

"The natural soil beneath the site consists of sandy silt, under
lain by sand, sandy silt, silty clay and clayey silt. The upper
natural soils are moderately firm to firm at ~resent moisture
content but would become weaker and more compressible when wet.
Below depths of 30 to 35 feet, the soils are firm to very firm
with layers of moderately firm soils." /

"Borings 1 through 3 (as identified in Fig. 2.6) wer~rilled using
rotary wash-type drilling equipment with drilling mud to prevent
caving. The mud was removed following completion of the drilling
to permit water level measurement. Observation 16~ hours after
removal of the mud in Boring 2 indicated no water in the boring.

4



Borings 4 and 5 were drilled to a depth of 50 feet using conven-

ti ona1 bucket-type dri 11 i ng equi pment and water was not encountered
within the depth explored. Since raveling occurred in Boring 5;
however, casing or drilling mud was not used to extend the boring

to the desired depth."

The results of Boring 2, located under the center of the building,

is presented in Figure 2.7; the key to log of borings is shown in

Figure 2.8.

5
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3. FORCED VIBRATION STUDY

3.1 General

The forced vibration study was carried out and completed during

October 1978. The bUilding was structurally completed prior to the

experimental work. The experimental apparatus employed in the dynamic test

is described below. The general experimental procedures, equipment used,

and procedures for data reduction applied, for forced vibration study

conducted are also described. Finally, the experimental results are presented

and discussed.

3.2 Experimental Equipment

The experimental apparatus employed in the tests were two vibration

generators, twelve accelerameters and equipment for the measurement and

recording of the frequency responses. The apparatus is described in the

following sections.

3.2.1 Vibration Generators

Forced vibrations were produced by two rotating-mass vibration

generators or shaking machines, one of which is shown in Fig. 3.1. These

machines were developed at the California Institute of Technology under

the supervision of the Earthquake Engineering Research Institute for the

Office of Architecture and Construction, State of California. Each machine

consists of an electric motor driving two pie-shaped baskets or rotors,

each of which produces a centrifugal force as a result of the rotation.

The two rotors are mounted on a common vertical shaft and rotate in

opposite directions so that the resultant of their centrifugal forces is

a sinusoidal rectilinear force. When the baskets are lined up, a peak

value of the sinusoidal force will be exerted. The structural design of

the machines limits the peak value of force to 5,000 lbs. This maximum

14



force may be attained at a number of combinations of eccentric mass and

rotational speed, since the output force is proportional to the square of

the rotational speed as well as the mass of the baskets and the lead

plates inserted in the baskets. At higher speeds the eccentric mass

must be reduced in order not to surpass the maximum force of 5,000 lbs.

The maximum operating speed is 10 cps, and the minimum practical speed is

approximately 0.5 cps. At 0.5 cps with all lead plates in the baskets, a

force of 200 lbs. can be generated. The relaUonship between output

force and frequency of rotation of the baskets for different basket loads

is shown in Fig. 3.2.

The speed of rotation of each motor driving the baskets is controlled

by an electronic amplidyne housed in a control unit. The control unit

allows the machines to be synchronized or operated 1800 out-of-phase.

This makes it convenient to excite, in structures with a line of symmetry,

either torsional or pure translational vibrations without changing the

position of either machine. Acomplete description of the vibration gen

erators is given in (2).

In the subject study the vibration generators were mounted on the

12th floor at the east and west sides of the building, as indicated in

Fig. 3.3; namely, about 80 feet. Associated vibration control and

recording equipment was also placed on the 12th floor.

3.2.2 Accelerometers

The transducers used to detect horizontal floor accelerations of the

building were Statham Model A4 linear accelerometers, with a maximum

rating of ± 0.25 g.

3.2.3 Equipment for MeasurernentofFreguency

For the vibration generators, the vibration excitation frequencies

were determined by measurement of the speed of rotation of the electric

15



motor driving the baskets. A tachometer, attached to a rotating shaft

driven by a transmission belt from the motor, generated a sinusoidal signal

of frequency 300 times the frequency of rotation of the baskets. Hence,

the maximum accuracy of frequency measurements was ± 1 count in the total

number of counts in a period of 1 second (the gating period), i.e., ± 1/3

of 1% at 1 cps and ± 1/9 of 1 %at 3 cps.

3.2.4 Recording ~guipment

The electrical signals for all accelerometers were fed to amplifiers

and then to a Honeywell Model 1858 Graphic Data Acquisition System with

8-in. wide chart. In frequency-response tests, the digital counter reading

was observed and recorded manually on the chart alongside the associated

traces.

3.3 Experimental Procedure and Data Reduction

The quantities normally determined by a dynamic test of a structure

are: resonant frequencies, mode shapes, and damping capacities. The

experimental procedures and reduction of data involved in determining

these quantities are described in the next section.

3.3.1 Resonant Frequencies

With the equipment described on the previous page, resonant fre

quencies are determined by sweeping the frequency range of the vibration

generators from 0.2 to 10 cps.

In the case of the vibration generators, the exciting frequency is

increased slowly until acceleration traces on the recording chart are

large enough for measurement. Above this level, the frequency is increased

in steps until the upper speed limit of the machine is reached. Near

resonance, where the slope of the frequency-response curve is changing

16



rapidly, the frequency-interval steps are as small as the speed control

permits. These steps are relatively large in regions away from resonance.

Each time the frequency is set to a particular value, the vibration response

is given sufficient time to become steady-state, before the acceleration

traces are recorded. At the same time, the frequency of vibration, as

recorded on a digital counter, is observed and written on the chart with

its corresponding traces. Plotting the vibration response at each

frequency step results in a frequency-response curve.

Frequency-response curveS in the form of acceleration amplitude

versus exciting frequency may be plotted directly from the data on the

recording chart. However, the curves are for a force which increases

with the square of the exciting frequency, and each acceleration amplitude

should be divided by the corresponding square of its exciting frequency

to obtain so-called normalized curves equivalent to those for a constant

force (assuming linear stiffness and damping for the structural system).

If the original acceleration amplitudes are divided by the frequency to

the fourth power, displacement frequency-response curves for constant

exciting forces are obtained. In cases of fairly low damping (under 5% ),

there is little difference between results obtained for resonant fre

quencies and damping capacities measured from the different curves.

3.3.2 Mode Shapes

Once the resonant frequencies of a structure have been found, the

mode shapes at each of these frequencies may be determined. In this study,

with twelve accelerometers available, it was decided to develop the mode

shapes by taking simultaneous measurements at each floor, with one

accelerometers kept in reserve.

The structure was vibrated at each of the resonant frequencies, and

the vibration amplitude was determined for all accelerometers at each

frequency.
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It is generally necessary to make corrections to the recorded ampli

tudes to compensate for differences between calibration factors for each

accelerometer. Absolute calibration is not required for mode shapes, and

cross-calibration is sufficient. The accelerometers and all equipment

associated with them in their respective recording channels are cross

calibrated simply by placing them all together and measuring the vibration

amplitude of all the accelerometers when the structure is vibrated at

each of the resonant frequencies. Cross-calibration is generally carried

out at the beginning and end of each day. The average calibration factors

as derived from the pre- and post-test cross-calibration runs are used

to adjust the recorded amplitude.

In general, the number of points required to define a mode shape

accurately depends on the mode and the number of degrees of freedom in the

system. For example, in a dynamic test on a 15-story building (3) four

points were sufficient to define the first mode, whereas it required measure-

ments of the vibration of all 14 floors and the roof to define the fifth

mode shape accurately.

3.3.3 Damping Capacities

Damping capacities may be found from resonance curves in the normal

ized frequency-response curves by the formula:

~ =t;f
2f

where

~ = damping factor,

f = resonant frequency,

t;f = differences in frequency of the two points on the resonance
curve with amplitudes of 1/12 times the resonant amplitude.
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Strictly, the expression for ~ is only applicable to the displacement

resonance curve of a linear, single degree-of-freedom system with a small

amount of viscous damping. However, it has been used widely for systems

differing appreciably from that for which the formula was derived, and it

has become accepted as a reasonable measure of damping. In this respect,

it should be remembered that in the case of full-size civil engineering

structures, it is not necessary to measure damping accurately in a per

centage sense. It is sufficient if the range in which an equivalent vis

cous damping coefficient lies known. Meaningful ranges might be

defined as: under 1%, 1-2%, 2-5%, 5-10%, over 10% (1,4).

The bandwidth method described above is extremely useful when the

damping factor lies in the range of 1-10% of critical. However, if the

damping lies below 1%, difficulties may be encountered in observing suf

ficient points on the resonance curve. Also, the small frequency difference

between two relatively large frequencies becomes difficult to measure

accurately. Above 10% of critical damping, resonance curves often become

poorly defined due to interference between modes, and the results from

the bandwidth method have little meaning.

3.4 Experimental Results

3.4.1 General

The vibration equipment was bolted to the 12th floor throughout

the test program as shown in Figure 3.3. Also shown are the centers of

stiffness (C.S.) and mass (C~M.) as derived analytically. The selection

of the location of the two vibration genreators is typically guided by

the structural layout of the building to be studied, and thus, the

anticipated dynamic response. In that respect, ideally, the shakers

should be placed along one of the center lines and as far apart as possible
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(the latter requirement to achieve a maximum torsional input under a

180o-out-of-phase excitation). As it was not possible in this case

to install the equipment along the EW center line, it was decided to place

the shakers as close as practically possible near that center line.

Admittedly, the center line itself is an arbitrary line as it is based in

the anticipated center of stiffness.

In general the vibration equipment allows excitation of a structure

in both the NS, EW and torsional modes. Even with a certain off-line

position (or eccentricity) of the equipment separate excitation of the

translational and torsional frequencies normally cause little trouble,

provided the translational and torsional resonance frequencies are

sufficiently separated and the structural damping is small (less than

2 to 3% of critical). However, the Wesley Manor Building was found to be

highly susceptible to a trnaslational (EW) - torsional coupling. Hence,

with the shakers operating in a translational longitudinal (EW) forcing

manner, the structure failed to develop a clean translational excitation.

Instead, at resonance, a combined translational-torsional motion developed.

In fact, the frequency response behavior of the building under longitudinal

translational excitation and torsional excitation was found to be virtually

identical, indicating the absence of a true translational resonance condition.

3.4.2 Frequency Response Data

The frequency response curves for North-South, East-West and torsional

forcing conditions are presented in Figures 3.4, 3.5 and 3.6. The first

figure shows a clear N-S translational resonance frequencies at about 2.2

cps. However, Figures 3.5 and 3.6 both indicate a large response at about

1.76 cps and a considerably smaller at about 2.10 cps. The results seem to

indicate that the translational and torsional resonance conditions coincide;
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an unusual condition. The basic response signals for the EW excitation were

EW accelerations, while for the torsional excitation (NS 1800 out-of-phase)

NS accelerations were recorded. In general, the curves are plotted in

the form of normalized displacement amplitude versus exciting frequency.

The ordinates were obtained by dividing the measured acceleration by the

square of the exciting frequency (cps) to obtain acceleration amplitudes

for a constant equivalent force amplitude, i.e., the force amplitude that

would be generated by the eccentric masses rotating at 1 cps. The values

thus obtained are divided by the square of the circular frequency (rad/sec)

to obtain normalized displacement amplitudes. Also presented in Figures 3.4

thru 3.6 are the actual exciting force (Fr ) and displacement amplitude (ur )

for each of the resonance frequencies, as well as the calculated damping

ratios.

The resonant frequencies and critical damping percentages derived

from the frequency response curves are summarized in Tables 3.1 and 3.2,

respectfully. Also shown in the last table are the damping values obtained

from free-vibration decay data. In that case the free vibration of the

building was recorded following resonance excitation and subsequent stoppage

of the vibration generators. The pertinent vibration data are plotted in

Figures 3.7 thru 3.9.

TABLE 3.1 RESONANT FREQUENCIES (cps)

Excitation

. NS

EW
EW

Torsional
Torsional

Frequency (cps)

2.18

1.76
2.09

1.75
2.09
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TABLE 3.2 DAMPING RATIOS

Excitation (cps) From Resonance Curves From Decay Curves

NS (2.18) 2.2% 1.2%
EW{1.76) 1.4% ---
EW (2.09) 1.4% 2.8%
Torsional (I. 75) 1.1% 1.8%
Torsional (2.09) 1.3% ---

Finally, the exciting force (Fr ) generated by both shaking machines

and the corresponding displacement amplitude CUr) at resonance are tabulated

in Table 3.3

TABLE 3.3 SUMMARY OF THE BUILDING RESPONSE AT RESONANCE

I Excitation Force Response at 12th Floor [in.]or
Moment Center West End

N-S (2.18 cps) I 5,905 LB 25. 62xl0- 3 -----

N-$ (2.22 cps) 984 LB 4.09xlO- 3 -----

E-W (l. 76 cps) 2,992 LB 20. 41xlO- 3 -----
E-W (2.09 cps) 4,134 LB ! 11. 09x10- 3 -----

Tors. (I. 74 cps) 241,784 LBFT I ----- 41.84xlO- 3

Tors. (1. 76 cps) 141,256 LBFT f 31. 62xlO- 3

I
-----

I

Tors. (1. 79 cps) 50,910 LBFT ----- I 9.18x10- 3

(2.08 cps)
I I 20. 59xlO- 3Tors. 334,069 LBFT ! -----

II I
Tors. (2.12 cps) 73,214 LBFT j i 4.16xl0- 3

: ----- I

3.4.3 Mode Shapes

The vertical mode shapes under resonance are presented in Figures 3.10

thru 3.14. These mode shapes are plotted along vertical lines at the center

of the building and along a center line in the west side of the building.
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The NS motions are typically plotted to the right and the a~ motions to

the left of the two vertical axes (center and west side). As shown in

Fig. 3.10, a significant base rotation was recorded, indicating the need

to consider soil-structure interaction in any analytical procedure.

The horizontal mode shapes for both the 6th and 12th floor levels at

the different resonance frequencies are shown in Figures 3.15 thru 3.19.

General observations based on acceleration data recorded at different

slab locations, clearly indicated that the floor slabs acted as rigid

diaphragms. It should be noted that the NS resonance mode shapes are

NS-normalized at the center of the roof. However, all other mode shapes,

EW and torsional, are EW normalized at the center of the roof. Closer

Observation of the floor mode shapes at 1.76 cps for EW excitation and

1.74 cps for torsion indicates the clear absence of NS translation at the

center. However, for the 2.09 cps and 2.08 cps resonance conditions the

NS translational amounts to 30% - 40% of the normalized EW translational

modal component. The rotational contributions due to both EW and tor

sional excitations are virtually the same, as shown in Figs. 3.16 and 3.17

(for EW excitation at 1.76 and 2.09 cps, respectively) and in Figs. 3.18 and

3.19 (for torsional excitation at 1.74 and 2.08 cps, respectively).

3.5 Discussion of Experimental Results

Only the first transaverse (N-S), longitudinal (E-W) and torsional

resonance frequencies could be excited. Equipment limitations prevented

the search for frequencies higher than 6.75 cps. Whereas the N-S mode

has only small contributions from E-W and torsional motion, the E-W and

torsional modes are highly coupled. This phenomenon is illustrated by the

frequency response curves of Figs. 3.4 and 3.5 with resonant frequencies

under both E-W and torsional excitation occurring at the same frequencies,

namely 1.76 cps and 2.09 cps.
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In case significant translational and torsional modal coupling occurs

at two resonant frequecnies, one could term the resonance condition with

the largest torsional components as the "torsional ll resonant frequency

and the other as the "translational" resonant frequency. However, as in

this case the torsional components are virtually identical, such identi-

fication is impossible. This rare condition makes modal identification

of the experimental data and a comparison with analytical results difficult.

The floor modes at the resonant frequencies were observed for the

12th and 6th floor. The floor slab behaved like a rigid diaphragm; a sig-

nificant result in the subsequent development of the analytical model of

this structure.

The damping factors were calculated from resonance curves (Figs. 3.4

through 3.6) and from force-vibration decay data (Figs. 3.7 through 3.9).

The results from the two methods, compared in Table 3.2, are reasonably

close and define a distinct damping ratio range of between 1 and 3%.

Finally, a comparison of the experimental resonance data with the

results of a standard UBC analysis of the fundamental period, as

T = 0.05 H;O- is of interest. The two different resonance data are presented

in Table 3.4.

TABLE 3.4 COMPARISON OF FUNDAMENTAL EXPERIMENTAL AND UBC PERIODS

Excitation Exp. Resonance UBC (sec.) Difference
(sec.)

NS 0.46 0.59 - 22%

EW 0.57 0.41 + 39%
0.48 +17%

As the experimental EW resonance conditions did not permit identifying the

fundamental EW resonance frequency, both resonance values are presented

in the table. Despite the uncertainty, the results indicate that for
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the short NS (or. according to the Code, the "weak" direction) the UBC

underestimates the effective stiffness (0.59 sec. versus 0.46 sec.).

This situation would effectively become worse if, according to the Code.

the foundation flexibility should be brought into account; thus increasing

the period to about 0.7 sec. On the other hand, a similar correction would

bring the Code and experimental EW resonance data in closer agreement.

However, most likely, the experimental data would still reflect a lower

stiffness condition in the longitudinal direction, than the Code would

imply.
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4. AMBIENT VIBRATION STUDY

4.1 General

Ambient vibration studies use field measurements of wind and micro

tremor induced vibrations. The method has been in use for 45 years by

the United States Coast and Geodetic survey (6) to measure fundamental

periods of buildings. At present it is commonly used to identify higher

resonance frequencies and mode shapes (7,8,9,10,11,12).

The ambient vibration study of the dynamic properties of the structures

is a fast and relatively simply method of field measurements. It does

not interfere with normal building functions, and the measuring instruments

and equipment can be installed and operated by a small crew.

The objective of performing the ambient vibration study was to obtain

dynamic properties of the building and then compare these results with

those obtained from the forced vibration study to assess efficiency of

both techniques.

The ami bent vibration, experimental and analytical procedures were

first suggested by Crawford and Ward (7,12). An assumption in the analysis

technique is that the exciting forces are a stationary random process

possessing reasonably flat frequency spectrum. For multistory buildings

and other large above ground structures, the largest ambient vibrations

are produced by wind. If the frequency spectrum of the vibrational excit

ing forces is reasonably flat, a structure subjected to this input will

respond in all its normal modes.

The vibration measuring equipment employed in the ambient vibration

dynamic test is described below. The general experimental procedures and

procedures for data analyses applied are also described. Finally, the

experimental results are presented and discussed.
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4.2 Field Measurements

4.2.1 Measuring Equipment

The wind induced vibrations were measured using Kinemetric Ranger

5eismomenters, Model 55-1. The seismometer has a strong permanent magnet

as the seismic inertial mass moving within a stationary coil attached to

the seismometer case. 5mall rod magnets at the periphery of the coil

produce a reversed field which provides a destabilizing force to extend

the natural period of the mass and its suspension.

The resulting sei~ometer frequency was 1 Hz. Damping was set at

0.7 critical. The output for a given velocity is a constant voltage at

all frequencies greater than 1 Hz and falls off at 12 dB/octave for

frequencies less than 1 Hz.

The Kinemetrics Signal Conditioner, Model SC-1 (Fig. 4.1) was used

to amplify and control simultaneously four seismometer signals. The four

input channels have isolated circuitry to integrate and differentiate the

amplified input signal. All outputs are simultaneously or independently

available for recording. A modification to the signal conditioner allows

for outputing each channel separately or for taking the sum or difference

on two channels and outputing the average of those channels. Each channel

provides a nominal maximum gain of 100,000. An 18 dB/octave low pass

filter is available with a cut-off frequency continuously selectable

between 1 Hz and 100 Hz for each channel.

The amplified analog signals were recorded and directly converted to

digital format using the Kinemetrics Digital Data System, Model 005-1103.

A direct recording oscillograph was provided to display and monitor the

four signal levels during tape recordings. The data was digitized at 40

samples per second. The DDS-1103's rate of scan across multiple input

channels is 40,000 Hz. This rapid scan rate is sufficient to retain the

phase relationship between channels.
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A Rockland FFT 512/S Real-Time Spectrum Analyzer was used in order

to facilitate the rapid determination of the modal frequencies (Fig. 4.1).

This unit is a single channel analyzer with 512 spectral lines calculated

but only 400 lines displayed to reduce aliasing errors. Twelve analysis

ranges are provided from 0-2 Hz to 0-10 KHz.

4.2.2 Measurement Procedures

When measuring ambient and forced vibrations of the buildings, it is

usually assumed that the structure can be approximated by a one-dimensional,

damped discrete or continuous system. In most of the cases (10,11,13),

measurements indicate that for the level of excitation applied, floor

structures are sufficiently stiff so that the above assumption is acceptable.

In the experimental study of building vibration which is based on

the linear model, it is assumed that the resulting motions can be expressed

as the superposition of modes associated with the discrete frequencies

(14,15). This approach then requires a simultaneous measurement of motion

in a given direction at at least two different floors to obtain their

relative amplitude and phase, the two quantities needed to determine mode

shapes. During the measurements of wind induced vibrations, it is not

necessary to find the actual amplitudes that are recorded because all that

is eyer used in determining mode shapes is the relative amplitude of the

same two instruments.

The modal frequencies were obtained by placing seismometers near the

outer walls on the north and south and east and west sides of the 12th floor

of the building (see Fig. 4.2). They were oriented so that the signals from

the seismometers on the north and south sides could be used to detect

the east-west frequencies. Similarly, the signals from those on the

east and west sides were used to determine the north-south frequencies.

The signal conditioner was set so that seismometers 1 and 2 would be out-
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put as channel It giving the average of the sum of these two readings t and

channel 2t the average of the difference of seismometers 1 and 2. The out

put of seismometers 3 and 4 were similarly averaged. In this waYt the

translational frequencies could be obtained from the average of the sum

of the seismoeter readings and the torsional frequencies from the average

of the differences of the seismoeters readings. TypicallYt the data was

recorded for a total of 300 seconds.

For determining the translational and torsional modest one pair of

seismometers always remained on the roof t as a reference placed near the

outer walls along either one of the building centerlines (see Fig. 4.3).

The second pair of seismometers was oriented in the same way and relocated

successively on each floor to allow the evaluation of the model response

over the height of the building (Figs. 4.4 through 4.8). As in the case

for determining the modal frequencies. the sum of the two seismometer

signals at each floor was averaged to give translational modal data. The

ratio of the two pairs of averaged readings provided a modal data point

normaltzed to the roof motion. Torsional modal information was obtained

in a similar manner t except that the difference t rather than the sum of

the seismometer signals at each floor level was used. On each channel

the low pass filter was set at 10 Hz to attenuate all higher frequencies.

thus completely remoVing electrical noise and other possible high frequency

vibrations. The voltage output to the recorder was adjusted to not exceed

about ±1.5 volts. The unattenuated calibration constant for the seiemometers

used was approximately 4.32 volts/in/sec. Corresponding first mode accel

eration and displacement were about ± 0.03 x 10- 5 g and ± 5.5 x 10- 5 inches,

respectively.
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4.3 Data Analysis

4.3.1 Fourier Analysis

It is convenient to use Fourier transforms to analyze low level

structural vibrations (16), and exhibit the frequency content of the

recorded vibration, thus identifying modal frequencies when" the input

force frequency spectrum is reasonably flat. Comparing measured amplitude

and phase between various points on the structure provides an estimate

of the mode shape.

4.3.2 Data Processing

Four simultaneous outputs were recorded on magnetic tape during each

run. All runs were digitized at a sample rate of 40 discrete points per

second. Because of the high frequency filtering present in the field

instrumentation, no significant frequencies above 10 Hz were found in

the recordings. For the resonant frequency runs, 4096 data points were

selected for the translational and torsional modes. A total of 10 transforms

separated by 890 points were calculated and averaged over the 12107 data

points gathered.

For each mode shape run, 1024 data points were selected and a total

of 19 transforms were taken. The Fourier amplitude spectrum was an average

of the 10 transforms computed.

The spectral estimates were smoothed by 1/4, 1/2, 1/4 weights. The

1024 spectral estimates are uniformly distributed between 0 and 40 sample/

sec. giving a frequency resolution of 40/1024, or about 0.0391 Hz.

4.3.3 Frequencies and Modes of Vibrations

The natural frequencies of the excited modes are given in Table 4.1.

Mode sh~pes were calculated under both N-S and E-W forcing conditions as
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well as under torsion. The results, together with modal data from forced

vibrations are presented in Figs. 4.4 through 4.8.

TABLE 4.1 - RESONANT FREQUENCIES (cps)

Excitation Frequency I
N-S 2.24
E-W 1.82
E-W 2.14

Torsional 1.82
Torsional I 2.14

4.3.4 Damping

In the case of forced vibration study, damping in the structure can be

determined by the bandwidth method or by measuring a free vibration decay

response. In ambient vibration studies only the first method can be used,

provided that wind excitations are random and stationary in time (12).

Using the bandwidth method provided the dampings ratios as presented in

Table 4.2.

TABLE 4.2 - DAMPING RATIOS

Excitations

N-S (2.24 cps)
E-W (1.82 cps)
E-\~ (2.14 cps)

Torsional (1.82 cps) I
Torsional (1.82 cps) i

Damping Factors

0.7 %
0.9 %
0.7 %
1.2%
0.8 %
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5. COMPARISON OF FORCED AND AMBIENT VIBRATION STUDIES

The dynamic properties (resonant frequencies, modes of vibration and

damping values) of the Wesley Manor Building were determined by a full-scale

dynamic test using both forced and ambient vibration methods. Resonant

frequencies and damping factors from both studies are summarized and compared

in Table 5.1

The resonant frequencies from the forced vibration test are 2 to 4%

smaller than the resonant frequencies from the ambient vibration test.

This nonlinear effect reflects the greater effective stiffness under small

displacements. The same basic effects can be noted from the frequency shifts

under low levels of excitation, as illustrated in Figs. 3.4 and 3.6.

Equivalent viscous damping factors obtained from the two vibration

studies show some difference, indicating basically larger damping values

under increasing loads (or displacements). However, the differences are

not pronounced. In general, the results can be viewed more appropriately

as an indication of the range of damping, rather than as specific damping

values associated with each mode.

Mode shapes associated with translational (E-W and N-S) and torsional

excitations are compared in Figs. 4.4 through 4.8. The results from both

studies show good agreement.

TABLE 5.1 COMPARISON OF RESONANT FREQUENCIES AND DAMPING RATIOS

I Forced Vibration Ambient Vibration

Mode I Damping Ratios from
Frequency decay freq. response Frequency Damping

I (cps) curve curve (cps) Ratios

NS 2.18 1. 2 % 2.2 % 2.24 0.7 %
-_.. '_.. ~- .. '-'-;'''-'' ....• -..... ,

EW 1. 76 - - - 1.4 % 1.82 0.9 %
EW 2.09 1.8% 1.1 % 2.14 0.7 %

h_

Tors. 1. 75 2.8 % 1.4 % 1.82 1.2 %

Tors. j 2.09 - - - 1.3% 2.14
1

0.8 %1 ! i
o-.-_---J.
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Because of a total lack of vibration generation requirements and the

ease of equipment handling, the total field effort for ambient vibration

studies is significantly smaller than for forced vibration studies. Also,

because accurate frequence response data can not be generated under ambient

conditions, fewer measurements are required in such studies. Furthermore,

each meas~rement requires less time. On the other hand, data analysis is

slightly more complicate because of computer use for Fourier analysis.
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6. FORMULATION OF MATHEMATICAL MODEL

6.1 General

A mathematical computer model of the Wesley Manor Building was formulated

to assess its dynamic characteristics. The model was formulated using both

a rigid base and a flexible base. The computer program employed fn the

dynamic analysis of the model and the models themselves are described below.

6.2 Computer Program

TABS-77, a general computer program developed by the Division of

Structural Engineering and Structural Mechanics of the Department of Civil

Engineering at the University of California, Berkeley, was used to calculate

the frequencies and mode shapes of the building. A complete description

of this program is given in reference (17).

The dynamic analysis in this investigation were performed on a CDC 6400

digital computer using the standard TABS~77 program. The program considers

the floors rigid in their own plane and to have zero transverse stiffness.

All elements are assembled initially into planar frames and then transformed,

using the previous assumption, to three degrees of freedom at the center of

mass for each story level (2 translational, 1 rotational).

6.3 Modeling of Structure

The basic model of the building was formulated as a system of frames and

shear wall elements interconnected by floor diaphagms which were rigid in

their own plane and fixed at the 1st floor level.

All walls were treated as "wide columns". This required a reduction of

properties (I, A, Av) to the elastic centroid of each wall. Where a wall

is met by a perpendicularly oriented wall, a portion of the latter wall is

assumed acting as a flange and thus included in the resonant of inertia

calculation. For a IIhalf-flange ll condition, where two panels form a single
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corner, the effective flange width is considered as 1/6 of the overall

building height, or 11 1 -9". In case of a "full-flange Jl condition, as

shown in Fig. 6.1, the effective width is 1/3 of the height, or 23 1 -6".

The above assumption is based on the fact that the walls are effectively

interconnected at each floor level. The resulting dowel action over the

height of the building seems to justify the assumed wall coupling at least

under small amplitude vibrations.

Although not entirely correct for flanged shear walls, the shear area

(Av) for all walls were set to 5/6A, where A is the area of the wall parallel

to the direction of motion.

Wherever shear walls were positioned in one line parallel to the dir

ection of motion, it was assumed that those walls would be coupled by a

portion of.the floor slab, having a width of 18 times the thickness of the

floor, or 12'. The effective span of these coupling girders was reduced

to the clear distance between the walls; a possible option of the TABS

program. In as far as the story deformation occur only over the clear dis

tances between two stories, this effect needs to be captured. This can be

achieved by increasing the moment of inertia of each wall by the ratio

{Lo/Ll)3, where La is the story height and L1is the clear distance between

stories. In this case the amplification factor was typically {8.67/8)3 =

1.27. Fig. 6.1 illustrates the manner in which the shear walls were

idealized for the analysis.

In the analysis the modulus of elasticity for the reinforced concrete

was assumed as 4000 ksi. The effective floor mass, considering the floor

slab and structural walls only, was estimated at 53 kips sec2/ft. The rota

tional mass, with a radius of gyration of 48.8 ft. was taken as 126,220 kips

sec2 /ft.
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6.4 Foundation Modeling

Initial analytical studies, assuming a rigid base, showed 30 to 50%

larger resonance frequencies than those obtained experimentally. Hence, it

was essential to account for the actual foundation stiffness. Two different

ways of obtaining stiffness values for the foundation, one using vibration

test data and the other using available soil data are described in the

following sections.

6.4.1 Vibration Test Data Process

The computer program TABS, used to compute the dynamic properties of

the structure, does not permit the input of rotational, lateral and vertical

springs at the foundation level. This makes it necessary to model a so

called IIdummy story" below the foundation level to account for the soil

stiffness. This can be achieved by determining for both the NS and EW

directions, dummy stories which properly reflect the translational and

rotational foundation stiffnesses for each direction. The solution of each

of the two 2-degree of freedom systems (see Fig. 6.2) follows from the

force-displacement relationship:

f::} = EI

4 6
I - [2

-6 12
[2 - P {::1 , where

M = overturning moment at the bas~,o
V = base shear,o
r = base rotationm

rv = base displacement,

EI = flexural rigidity of dummy story, and

L = height of dummy story.
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With estimated constant floor masses of 53 kips sec 2/ft. for every

story and the measured rloor accelerations for the two fundamental trans

lational modes it is possible to calculate the base shear and the over

turning moment using the dynamic forces at the resonance frequency

(Fig. 6.3). Calculating the actual base displacement from the measured

acceleration at the base and approximating the base rotation by the secant

of the mode shape between the first and second floor, the force-displacement

relation can be solved for EI and L. The results for the uncoupled NS and

coupled EW/torsional modes are presented in Table 6.1.

TABLE 6.1 DUMMY STORY PROPERTIES

Mode Frequency (cps) L{ft) EI (kp. ft 2
)

N-S 2.18 32.27 3.662*10 10

E-W/Torsion 1. 76 23.86 1. 962*10 1
0

E-W/Torsion 2.09 37.95 5.356*1010

As the dummy story height for both NS and EW directions has to be the same,

an optimum dummy story element had to be developed. Following several

alternatives, the length of the dummy story obtained from the uncoupled

NS mode was chosen for the analysis. Consequently the stiffness values for

the other modes had to be modified. The EI values were scaled by (Lo/L),

where Lo = 32.27 ft., thus setting the lateral stiffness right but changing

the rotational stiffness. The stiffnesses for the dummy as computed and

actually used in the model are summarized in Table 6.2. Using the dummy

story properties very good agreement between experimentally measured and

analytically computer frequencies and mode shapes could be achieved. But

since the prediction of the dynamic properties of a structure is essential 

for a good design against earthquake loading, an attempt was made to model

the foundation using available information about the soil.
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TABLE 6.2 LATERAL AND ROTATIONAL SOIL STIFFNESS

From Experimental
Data

From Soil Data

N-S (2.18 cps)

4EIKROT = -L-

12EI
KLAT =~

4.539 X 1012

L308 X 1010

[
lb ftl
rad]

r ~~ ]
4.438 X 1012 11 b ftlLradJ

0.401 x 1010 [~~J
*Soil Resistance

I:!i (1. 76 cps)

_ 4EI
KROT - -L- 3. 291 x 1012 rl b f,t1

[ rad "J 19.277 X 10 12 - rigid

E-W (2.09 cps)

_ 4EI
KROT - -L-

Actua lly used
in the Model

5.645 X 1012

6.020 X 1012

[lb ftJ
rad

nb ftJr rad

2.882 X 1012 - pile groups
I,II,III

12.7938 x 10 12 - flexible
structure

E-W (1. 76 cps)

12EI
KLAT =---cr

E-W (2.09 cps)

12EI
KLAT = --c:r
Actually used
in the Model

6.4.2 Soil Data Process

1. 734 X 10 10 [~~] 0.401 X 10 10 [~~]
*Soi1 Resistance

1.176 x 1010 [~~]

1. 734 X 10 10 [~~] I
I

The dynamic modulus of elasticity of the soil was determined by a seismic

downhole survey in boring 2 at the site (Fig. 6.4). The propagation velocity

of the shear waves was measured and together with the information about the

dry density used in the" formula v = IG*gjy (18), where
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v = velocity of the shear waves (ft/sec)

y = dry density (lbs/ft 3 )

g = constant of gravity (ft/sec 2 )

G = shear modulus of the soil (lbs/ft 2
)

The increase of Gwith depth is shown in Fig. 6.5. A Poisson1s ratio of

0.3 was selected for the soil. It has to be noted that the shear modulus

decreases with higher shearing deformation and also depends on the frequency

of the loading. In this study constant values for G and v are used. The

structure is founded on piles as shown in detail in Fig. 6.6.

6.4.2a Vertical Stiffness

Since the piles are not resting on bedrock and the displacements

necessary to obtain point resistance are much larger than the displacements

for the development of skin resistance the point resistance was assumed

to be zero. A second assumption had to be made about the variation of the

skin friction along the pile. A triangular variation of skin friction with

the maximum at the top and zero at the pile point, yielding a parabolic

axial force distribution in the pile (see Fig. 6.7), was found to be in

agreement with experimental data (19) and previous modeling experience (20).

With these assumptions the stiffness Kp for each pile type could be calculated.

Because the pile transmits loads to the soil through friction, the skin

forces of the pile were applied to a finite element model of the soil directly,

rather than using a model of a pile-soil system and enforcing displacement

continuity at the nodes. The resulting axisymmetric 72 element model is

shown in Fig. 6.8, with the element G values based on the shear modulus data

presented in Fig. 6.5. The computer program FEAP (21) was used in this

analysis. The calculated displacement of the soil at the pile top permitted

an estimate of the soil stiffness Ks . The soil and pile stiffness were
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combined to give the stiffness of the pile-soil system for one pile in the

vertical direction by adding the flexibilities, I/Kv = I/Kp + I/Ks .

Table 6.3 summarizes the obtained values for the vertical stiffness (Kv).

The total vertical stiffness of the foundation is the sum of the individual

pile stiffnesses.

TABLE 6.3 VERTICAL PILE STIFFNESSES

(ft) Kp:(lbs/ft ) Ks(lbs/ft )
,

Kv (lbs/ft)PHe Length I,

29.5 19.56 x 10' 4.35 X 10' 3.56 X 10'
36.0 16.02 x 10' 5.06 X 10' 3.84 X 10'
41. 5 13.24 x 10' 5.66 X 10' 3.97 X 10'

47.0 11. 92 x 10' 6.25 X 10' 4.10 X 10'

52.5 10.76 x 10' 6.85 X 10' 4.19 X 10'

6.4.2b Rotational Stiffness

The coordinates Ko'Vo of the resulting vertical stiffness of the entire

204 pile foundation were calculated using standard procedures (i.e., Vo =

(EKvi x Vi) ( E Kv;). Assuming that the pile-cap foundation plane remains

plane, or effectively the building acts as a rigid system, the rotational

stiffnesses of the entire foundation with respect to the NS and EW directions

can be determined (i.e., KROT-NS = E Kv; x~ , where Xi is the distance in

the EW direction between pile i and the center of stiffness), Table 6.2 shows

the results of these analyses and indicates for the NS direction an excellent

agreement between the calculated rotational stiffness and the experimentally

determined value. However, the calculated rotational stiffness for the

longer side of the building, in E-W direction, differs by a factor of about

6 from the experimental value. This result indicates that the assumption of

a rigid system is not true for the longer and more flexible direction of the

structure.
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In order to attempt to capture the effective foundation stiffness

several different stiffness assumptions were considered. For instance,

rather than considering the foundation as one single pile system, three

separate totally uncoupled rigid pile groups were considered as an alternative

system (see Fig. 6.6). In that case the combined EW rotational stiffness

was found to be in relatively close agreement with the experimental value;

namely, 2.88 x 1012 lb.ft/rad versus 3.30 x 1012 lb.ft/rad, respectively.

Of course using the separate three pile group approach for calculating the

NS rotational stiffness. the difference with the rigid approach is minimal.

and the agreement with the experimental results excellent.

A second alternative considered the entire building as a beam on an

elastic foundation. Without pursuing a detailed analysis, the building

was modeled as a simple beam, supported at the center of each of the earlier

noted three pile groups (see Fig. 6.9). The rotational stiffness in this

case, was found to be a factor of 4 too large. A more refined model. con

sidering complete vertical shear deformation of the building and discrete

vertical pile stiffnesses may lead to a better correlation. However, such

an approach was considered beyond the basic scope of this investigation.

6.4.2c Lateral Stiffness

The later stiffness of a single pile was obtained by solving the
. dl+u

equatlon EpI p dz4 = -p{z), where

EpI p = flexural regidity of the pile,

u = lateral deflection,

p{z) = reactive lateral pressure of the soil against the pile, and

z = depth.

This equation was solved numerically assuming that the ratio of pressure

(p(z)) to deflection (u) fulfills: p{z)/u = Kh = nh x z (22), where
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K= soil reaction modulus, and

n =coefficient of soil reaction (empirical quantity).

The coefficient of soil reaction was determined using a formula given by

Vesic (23),

B = diameter of the pile

Es = modulus of elasticity of the soil

v =Poisson's ratio for the soil (=0.3).

According to this assumption the soil reaction modulus K
h

increases

with depth as shown in Fig. 6.10. The pile deflections for both a rotation-

ally free and rotationally fixed pile head are shown in Fig. 6.11 and indicate

that the lateral deflections are almost zero below the 8 foot level. Thus,

it can be concluded that, in this case, the lateral pile stiffness only

depends on the soil properties of the uppermost layer.

Summing the lateral stiffness of all piles results in a total lateral

stiffness KLAT of 0.401 x 10 10 lb/ft, as noted in Table 6.2. This stiffness

is only about 25 to 30% of the experimentally derived values. This result

is not surprising as the total lateral stiffness is actually a result of

not only the lateral pile resistance but also, and seemingly more important,

of the resistance provided by the soil against the pile-cap beams and by

the possible friction between soil and floor slab.

6.5 Analytical Results

The final analytical model used in the correlative analyses had a simple

32 1 -4" high dummy story as discussed previously. The analytical results and

the experimental data for both forced and ambient vibration tests are pre

sented in Table 6.4. Also presented are the analytical results assuming a

rigid base.
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TABLE 6.4 EXPERIMENTAL AND ANALYTICAL FREQUENCIES (cps)

\

i Experiment
r'Forced 1 Ambient
Vibration I Vibration

Analysis ~
Rigid I Flexible I

Base j Foundation 1

!

!
I
I
I

Forcing
Direction

E-WjTorsion
E-WjTorsion
N-S

1. 76
2.09
2.18

1.82

2.14
2.24

I
I 2.27
I 2, 2.7
i

! 3.14

1.71

2.08
2.19

Code

2.44
1.69

The results for the flexible base condition agree very well with the

experimental forced-vibration data. The slightly higher frequencies for

the ambient vibration results clearly indicates a foundation non-linearity.

In fact a softening of the foumdation modes increased forcing and displacements

levels as noted, could be expected.

For each of the three basic resonance frequencies the vertical center-

line mode shapes for both the experimental and analytical results are shown

in Figs. 6.12 through 6.14. The horizontal mode shapes for the 6th and

12th floors for the same resonance conditions are presented in Figs. 6.15

through 6.17. The results show in general an excellent agreement between

experimental and analytical data.
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7. CONCLUSIONS

The results presented herewith clearly show that forced and ambient

vibration studies can be carried out effectively and show very good agree

ment. Considering a frequency range of up to about 7 HZ t only the three

fundamental modes of vibration could be identified t thus indicating that

the building would basically respond to seismic excitation in a first

mode motion. The dynamic tests indicate a high coupling between the

translational EW and torsional modes. This highly coupled response could

possibly be reduced by changing the floor plan layout.

Neglecting the foundation flexibility (rigid base model)t shows an

overestimation of the experimental frequencies by 30 to 50%. Thus t in

the analysis of rigid structures on flexible foundations t the soil-structure

interaction must be considered. In order to account for the flexibility

of the foundation a dummy story was added to the analytical model in

this case. Two approaches were used in determining stiffness values for

the foundation t one using vibration test data and the other using available

soil-pile data. In using the soil-pile data difficulty was encountered

in evaluating the effective pile stiffness especially in assessing the

dynamic behavior of the soil-structure system in the longitudinal direction

of the building. With the final analytical model used t taking into account

the flexible foundation through the addition of a dummy storYt very good

agreement was obtained with the experimental data.
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