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CHAPTER I -~ INTRODUCTION

Earthquakes are a manifestation of the earth's geologic development.
Their occurrence has been a topic of concern to man for thousands of
years. This led to the development of earthquake engineering which seeks
to define the expected hazard due to earthquakes and to control and
reduce the consequences of these events to man's environment. These
goals entail two central ideas, that of seismic hazard and seismic risk.
In earthquake engineering these concepts are defined as follows: seismic
hazard is the "expected occurrence of future seismic events", and seismic
risk is the "expected consequence to future seismic events." This report

deals with seismic hazard and the methods by which it is described.

I.1 ELEMENTS OF SEISMIC HAZARD ANALYSIS

Seismic hazard analysis is concerned with modeling of earthquake
occurrences on seismic sources and with defining the distribution of

seismic intensity in the region surrounding the source.

The modeling of seismic occurrences has developed considerably in
the last fifteen years. The probabilistic models that have been used to
describe the future occurrence of earthquakes are the stationary Poisson
model, (Cornell, 1968; Shah et al., 1975), the nonstationary Poisson
model, (Savy, 1979), and Markov chain models, (Vagliente, 1973;
Kiremidjian, 1979). Bayesian techniques have also been developed to
update occurrence and magnitude information, {(Benjamin, 1968; Esteva,

1969; Mortgat, 1976; Campbell, 1977).



The second aspect of seismic hazard analysis is that of deseribing
the ground shaking intensity given the occurrence of an event. The
methods employed in this area are strictly empirical, (McGuire, 197U4;
Shah et al., 1975; Idriss, 1978). Seismic intensity models consist of a
description of the event size, a transmission path model, and a method of
characterizing ground shaking. Both instrumental and subjective measures
of the ground shaking hazard have been employed in seismic hazard

analysis.

The complete probabilistic methodology for describing the seismic
hazard at a site is a convolution of the effects due to all seismic
sources for a future time period, (Cornell, 1968). The overall
methodology is given graphically in terms of peak value characﬁerizations
of the ground shaking intensity in Figure I.l1.1. Similarly Table I.1.1
presents a general summary of deterministic and probabilistic methods of

seismic hazard analysis.

This report deals with the methods of defining the ground shaking
hazard for application to seismic hazard analysis. The next section

reviews the current methods of modeling strong ground motion.

I.2 . MODELING OF STRONG GROUND MOTION

A critical part of a seismic hazard analysis is the model used to
describe the ground shaking intensity for an event. Strong ground motion
due’to earthquakes is the result of the dislocation on a fault and the
propagation of seismic waves through a nonhomogeneous earth. The
recorded strong motion time history has been considered in the past as a

sample realization of a random process, (Housner and Jennings, 1964).
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However, as each earthquake is studied more 1is learned about strong
ground motion and the degree of uncertainty associated with it is slowly
reduced, (Savage, 1966; Aki, 1967, 1968; Heaton and Helmberger, 1977;
etc.). The state of practice in modeling strong motion for prediction
has developed along simplified empirical 1lines. This has been due in
part to the complicated nature of the process and our 1level of
understanding. MecCann (1980) has discussed the various empirical methods
used in attenuation studies. This approach to ground motion modeliné has

a number of drawbacks, which will be discussed in the next section.

I.3 PROBLEM IDENTIFICATION

The state of the art in modeling strong ground motion is based on
simplified techniques and depends completely on observations from past
earthquakes. Also, the simplest parameters have been used to define the
intensity of acceleration time histories. These methods are a major part
of a seismic hazard analysis with virtually all types of hazard analyses
being based on these techniques, from probabilistic seismic zone mapping,
(Shah et al., 1975), to deterministic approaches of developing design

loads.

The model used to define the propagation of seismie wave energy, the
magnitude and distance model, makes a number of assumptions about the
earthquake process. For example, this approach defines seismic events of
the same Local Richter magnitude to be identical in terms of the mean
level of ground shaking produced, neglecting the fault type, the dynamics
of the fault rupture, and the regional transmission path. Similar

statements can be made about the parameters that have been used to model



the intensity of ground shaking. That is, it can also be questioned as
to whether peak values realistically represent the intensity of ground

shaking, (Arias, 1970; Housner, 1975; Hanks and Johnson, 1976).

The improvement of these modeling techniques for use in seismic
hazard analysis is the subject of this work. The problem to be addressed

is discussed in the next section.

1.4 - PROBLEM FOCUS

This research work is concerned with the development of an improved
methodology for modeling strong ground motion for application in seismic
hazard analysis. Of interest is the means of modeling the fault rupture

as well as the propagation of seismic waves in the earth.

Earthquakes represent .a complicated release of elastic wave energy
throughout the earth. The variabilipy of simple empirical models to
realistically predict future strong ground motion accentuates the
complexity of the problem. The focus of this work is to develop a
probabilistic model that takes into account the earthquake source and the
transmission of seismic waves in a practical manner. This work will also
consider an alternative means of characterizing the intensity of ground
shaking. The improved seismological understanding of strong ground
motion in recent years has not yet been incorporated into current
modeling methods. Therefore the developments in this work will serve as

a beginning to the improvement of this state of affairs.

I.5 SCOPE OF THIS RESEARCH

In this work a method is developed for the probabilistic estimation



of strong ground motion. The method 1is based on an event defined
according to its size and seismotectonic properties. A major aspect of
this research will be to take into account the information available for
estimating future strong ground motion. In carrying out these

objectives, this research work develops in the following manner.

A Bayesian model is developed in Chapter II that is designed to
incorporate the information from empirical studies as well as theoretical
seismological modeis into the estimate of future strong ground motion.
The methodology presented in this chapter defines what information is

available and compares it to that used in the current state of practice.

The normal mode method is the theoretical seismological model
selected to provide additional input on strong ground motion into the
Bayesian model. The method is deseribed in Chapter III'for obtaining the

Fourier transform of acceleration due to a propagating line segment.

To demonstrate the capability of the normal mode technique to model
strong motion, the model is used in Chapter IV in a deterministic manner.
An Imperial Valley earth structure is chosen for which the modal
characteristics are determined. The model is first used to demonstrate
the effects of various source parameters on ground motion, after which
recorded displacement and acceleration motion are modeled for two events

in this area.

Chapter V describes the Monte Carlo simulation used to generate
observations of ground motion acceleration that represent realizations of

a random fault rupture process.



Examples demonstrating the probability model of Chapter II are
presented in Chapter VI. A sensitivity study is performed to identify
the effects of the various source parameters on the predicted strong

motion.

Chapter VII presents the conclusions of this work and

recommendations for future research.



CHAPTER II - A PROBABILISTIC MODEL FOR GROUND MOTION SPECTRA

IT.1 INTROUCTION

Probabilistic methods, contrary to a common misconception do not
provide a decision regarding the selection of possible alternatives, but
are however, a means of information processing. Decision analysis on the
other hand is concerned with the problem of making a choice between
alternatives whose outcome is uncertain. In this chapter a probabilistic
model is developed which attempts to 1include available information in
estimating the ground shaking due to a seismic event. The model is
founded on the Bayesian view of probability and uses Bayes theorem to

combine different sources of information.

The use of Bavesian analvsis in engineering is not new, (Benjamin
and Cornell, 1970). 1In seismic hazard analysis in particular, Bayesian
methods have been used in modeling of earthquake occurrences and event
sizes, (Benjamin, 1968; Esteva, 1969; Mortgat, 1976; Campbell, 1977;
Eguchi and Wiggins, 1979). It would appear that Bayesian models are
introduced as a method for combining two sources of information.
Although true, this does not begin to illustrate the concept of
probability endorsed by Bayes theorem, or its rational approach of
introducing new information to apriori beliefs. For this reason a review

of Bayesian probability is presented.

Section II1.3 begins the study of strong ground motion modeling with
a review of what 1is known about the earthquake process, and the methods

used to model it. The state of practice in strong motion modeling is



then reviewed in a Bayesian context. This serves to define the
transition from the state of knowledge about earthquake ground motion to
the simplified models that have become the state of practice in
earthquake engineering. The result of this review illustrates the need
to access the other sources of information that are available, but as yet

not taken into account.

The remaining sections present a Bayesian model for incorporating
new information into the estimate of strong motion at a site. To
implement the model, the root mean square acceleration is used as the
avenue for carrying out the updating process. The result of the model is
a probabilistic power spectral density function at the site, due to

events of a given size.

II.2  BAYESIAN ANALYSIS - A REVIEW

This section presents a review of the basic concepts of Bayesian
analysis. It will outline the Bayesian or subjective view of
probability, as opposed to the once very strongly held frequency
definition. Although for many years controversial, Bavesian probability
makes the formation of inferencés from K data straight forward and allows
the consideration of problems that would be otherwise untouchable. It
should become clear to the reader that the true contribution of Bayes is
not expressed in the simple equation that bears his name, but rather in
the concept of probability being endorsed. In words, what Bayes theorem
does is to describe the way in which we learn from our experiences,
making clear the fact that probability assignments define one's degree of

belief, and are always conditional on the state of information.

10



IT.2.17  HISTORICAL REVIEW

For many centuries the definition of probability was centered around
the concept of relative frequency. The probability of an event was
defined to be the relative number of occurrences of an event in a
sequence of trials. This view was held by statisticians to be the
meaning of probability. Even to the beginning of this century this was
the most commonly held definition. Statisties developed under this
"frequentist" concept, but problems existed and there were matters that
could not be properly addressed under this theory. As a result, other
schools of thought developed hoping to bridge the gap 1left by the
frequentist approach. Of these, the Bayesian or subjective school has
taken the leading role in the present day advancement in probability
theory, particularly with respect to applications in business, science
and engineering. The subjective view defines probability as the degree
of belief that the event of interest will take place. Subjective
probability, or personal probability as it is sometimes called, (Savage,

1961), is the view associated with Bayes theorem.

In 1763 an essay by the Reverend Thomas Bayes was published two
years after his death. The essay presented for the first time what is
known as Bayes theorem. A simple mathematical fact based on the
fundamentals of probability, this theorem introduced a revolutionary
concept in probability theory. However, the suggestion that subjective
input is incorporated in a probability statement seemed to oppose all
goals of objectivity being sought in statisties. Thus, for many years
this view was rejected. Statisticians simply refused to consider what it

actually meant. Not until the early twentieth century was an effort made
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to understand what Baves theorem and subjective probability had to offer.
The early investigators into subjective probability were De Finetti

(1951), Good (1965), and Savage (1961),(1962), among others.

I1.2.2 BAYES THEOREM

Bayes theorem is a simple mathematical statement of the way in which
we learn from new experiences. To illustrate the derivation of Bayes
theorem, consider two events, A and B. From the conditional probability
theorem, the probability of event B occurring, given that event A has

taken place, is denoted P[B|A], and is defined as,

P[B|A] = f—%ﬁ—]—é]— (I1.2.1)

where AVB 1is read, A intersection B, meaning A and B occur at the same
time. It should be clear that, P[BfA] = P[ANB], thus P[A(IB] can be

rewritten,

P[ANB] = P[A|B] P[B] (I1.2.2)

Substituting this result into eq. (I1I.2.1),

P[B|A] = P[Alf[]A]P[B] (11.2.3)

Eq. (II.2.3) is known as Bayes theorem and an uncontested result of the
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fundamental theories of probability. In words, eq. (11.2.3) can be

expressed in the following manner,

Pldata|hypothesis] P[hypothesis]
Pldatal

P[hypothesis|data] (I1.2.4)

where the terms in eq. (I1.2.4) are defined as follows;
P[hypothesisldata] is known as the posterior or updaéed probability, in
this case on event B, given the new information that event A has
occurred. P[hypothesis] is defined simply as the apriori probability
that the hypothesis is true, or in this case that event B will occur.
P[data]hypothesis] expresses the likelihood that the data would be
observed given that the hypothesis is true, or in the present example,
this can be stated as the probability of event A occuring given that
event B has occurred. P[datal is essentially a normalizing constant as
was P[{A] in eq. (II.2.1). The controversy over Bayes theorem lies with

the prior probability, P[B].

The prior probabilitv on the occurrence of an event may range from
total ignorance, to a belief that the event will certainly occur. What
Bayes theorem suggests is that apriori probabilities represent the
information at hand before the data are available. The apriori
information may be a purely subjective opinion about the event, or it may
be the result from a previous experiment. The slightest suggestion that
subjective input be permitted into a field where total objectivity is the
goal was considered preposterous by statisticians. The concept of

subjective probability however, was not the only problem. If one were to
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accept this idea, the question would soon be raised as to how probability
is defined. Certainly it could no longer be defined in a relative
frequency sense, since the weight of ones' opinions cannot be counted
like the number of heads in a coin tossing experiment. These pitfalls
led to the virtual banishment of Bayes theorem from application and
research in the years following its publication. There were short 1lived
comebacks, but not until the early part of this century did a serious
effort sustain itself in the study of Bayes theorem. This rebirth has
continued to the present, extending into many fields of research and

application.

The view of probability associated with Baves theorem can be
explained 1in the following way. A probability is the measure of one's
state of information about something. The actual numerical measure is
the encoding of this state of information, (Tribus, 1969; Jaynes, 1958;
Howard, 1968). This definition recognizes all forms of information, from
purely subjective opinion to M"objective" data. The first and most
important step before applying Bayes' probability theory, is to
understand this concept of probability. Once this transition has been

made, the understanding and use of Bayes theorem is straightforward.

One of the important elements in employing Bayesian probability is
the methodology that results. It is a rational and consistent means of
taking into account new information in the development of updated or
refined probability assignments. Quite simply, Bayes theorem describes
the development of updated opinions based on recent information. Jaynes
(1958) points out that very often in science the key to a problem is not

a new mathematical tool but rather a new viewpoint, a new way of
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reasoning. In fact, Jaynes makes this statement while discussing his own

development in the area of statistical mechanics. Indeed this has been
the case in probability theory as well. As demonstrated previously, the

mathematical tools for deriving Bayes theorem were available, namely
conditional probability. The breakthrough by Bayes was not in deriving
an equation but in the definition of probability he presented. Therefore
to summarize Bayesian analysis is to present what has developed as a
result of this new viewpoint. The basic concepts of Bayesian analysis

are now summarized.

Bayesian probability is consistent with the fundamental theorems of
probability, and therefore if more than one method of solving a problem
is available, both methods should give the same result. Another
important aspect of Bayesian analysis is that of updating current
probabilities given new information. This implies that each source of
information made available, be wused in its entirety in developing a
probability statement. If this is not the case, then the posterior
probability statement will be inconsistent or incomplete, (Jaynes, 1958;
Savage, 1961). Bayesian analysis does not replace or improve what have
been the fundamentals of probability theory, but instead enhances its
realm of application. What it does do in all instances is impart a
consistent and rational method to probabilistic analysis. Finally, this
methodology does not replace the fact that an infinite sample of the
variable of interest will give the best estimate of the parameters of a

distribution.
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IT.3 A REVIEW OF THE STATE OF INFORMATION FOR MODELING

EARTHQUAKE STRONG GROUND MOTION

This section presents a review of the information that is available
on strong ground motion. As discussed in the previous sections,
probability assignments are merely the encoding of the state of
information. Consequently, this represents a major part in the
development of a Bayesian probability model, the assessing of available
information on the event of interest. Tnis section will review the
sources of information on strong ground motion, both empirical and
theoretical, and form the basis for a review of ground motion
modeling from a Bayesian perspective. This leads to the development of a

probability model for estimating strong ground motion.

IT.3.1 THE EARTHQUAKE PROCESS

An earthquake can be defined as the complex release of elastic
strain energy in the form of seismic waves. In this section a summary is
presented of the state of knowledge of those characteritics of the
earthquake process that are believed, through theoretical understanding
and observation, to have first order effects on strong ground motion.
This summary will refer to many works that have observed a given effect
or have demonstrated its potential importance in theoretical studies.
This will not be an indepth coverage, but by reference and a simple
review, the current understanding of the earthquake process will be

summarized.

Figure II.3.1 presents an example of a typical source site

arrangement from a crossection view of the earth. With the aid of this
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figure the basic understanding of the earthquake process is presented.
An earthquake can be considered in two parts, the source and the
transmission path. Figure 1II.3.1 shows an earth structure whose
properties vary laterally and with depth. The earthquake hypocenter and
epicenter are shown for a particular fault with different slip
directions. Below the figure are 1listed three categories, source
effects, transmission path and local site conditions. For each group, a

summary of its major characteristics are given.

Starting with the seismic source, dislocation theory requires that
the shear dislocation on the fault be described as a function of space
and time, (deHoop, 1958). This 1is of course impossible to predict
beforehand or to derive for a past event. Therefore the source
dislocation is usually described by other parameters such as seismic
moment and average values of stress drop, dislocation, rupture velocity,
etc. (Haskell, 1964; Aki, 1966; etc.). Below the entry for the
dislocation function, Do(x,y,z,t), other characteristics commonly used to
define the earthquake source are given. References are listed for each
parameter, where the effect on ground motion has been demonstrated.
Identifying the earthquake source and the details that define it, in
effect emphasizes the obvious fact that the forcing function in a

vibrations problem is of first order importance.

The next category is the transmission path traveled by seismic
waves, which can be described completely by the earth structure. This
accounts for the mechanical properties of the material, as well as
geologic structures. As shown in Figure II.3.1 the mechanical properties

are defined in terms of the seismic wave velocity and density
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distribution as a function of depth. The importance of the transmission
path on the waveform produced at a site cannot he over emphasized. The
fact that the fundamental dynamic characteristics of a system are an
integral part of what determines the response, does not require a
detailed discussion. However the degree to which this has been neglected
in ground motion studies requires its emphasis. The importance of the
transmission path has been pointed out in many studies and will be

demonstrated later in this work.

The 1local site conditions are often identified as a separate
category when in fact it is merely the final part of the transmission
path. Therefore in this discussion the local conditions refer to
soil-structure effects that determine the input motion to a structure.
The filtering effect of structure imbedment has been observed and studied

analytically.

In summary, this section has graphically and by reference attempted
to identify the basic parts of the earthquake process that are recognized
to play a major role in generating strong ground motion. The sections to
follow briefly discuss empirical and theoretical modeling of the
earthquake process. It should be noted that no attempt was made in this
section to quantify these factors, but rather by a general coverage to
demonstrate apriori to the prediction of future ground motion, what is

known.

II.3.2 EMPIRICAL METHODS

This section addresses empirical techniques of modeling ground

motion intensity. This review will describe that part of the available
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information on earthquake ground motion that is incorporated in empirical
models. The discussion will be concerned with instrumentally recorded

measures of earthquake intensity.

Empirical models consist of three main parts: a measure of the size
of the earthquake that produces the observed motion, the parameter(s)
describing the ground shaking intensity, and a transmission path model.
The earliest work in this area began with simple models to describe what
has come to be known as the attenuation of strong ground motion. The
general form of these models has not changed appreciably, and can be

expressed in the following manner,

ground motion parameter = f(M,d,ci) (I1.3.1)

The ground motion parameter is defined as a function of earthquake
magnitude M, distance d, and other parameters ci, such as local soil
condition, or higher order functions of magnitude. A large percentage of
attenuation models are functions of magnitude and distance only, (Idriss,

1978). A common functional form for eq. (II.3.1) is,

fny = A+ B M+ Cg(d) + f'(xi) (I1.3.2)

where n is the logarithm, y denotes the strong motion parameter and A,
B, and C are constants derived from a statistical analysis of strong

motion data. The term f'(x) may be a binary or other function dependent
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on subsurface conditions, (Trifunac and Brady, 1975). The function g(d)
defines the distance dependence and is often of the form fn (d). This
function has been allowed to take many other forms in order to model
attenuation of ground motion intensity. Idriss (1978) presents a summary

of a number of works and the functional forms they used.

In a comprehensive review of the methods of modeling earthquake
ground motion, Idriss (1978) addressed many of the features of the
earthquake process presented in the previous section. In his review, the
importance of other factors, besides magnitude and distance were
recognized, as was the potential of other means of characterizing strong
ground motion. However, based on available data, there is an
insufficient statistical base upon which well founded conclusions on the
influence of these parameters can be made. Therefore, what was a
fundamental understanding of the earthquake process, has been reduced to
the conceptual model in eq. (II.3.1), and the common functional form of
eq. (I1.3.2). The drawbacks of this model are clear. This is not to
imply that empirical models do not provide any insight into ground motion
attenuation, indeed thev are very informative. To abandon such efforts
would be to ignore the only real link to the earthquake process. 1In
terms of those parameters being used to model the process, a great deal
has been discovered, (Hanks and Johnson, 1976; Boore et al., 1978;‘etc.).
However, these methods should be assessed based on the current

understanding and/or beliefs as expressed in section II.3.1.

To summarize the information as processed through empirical modeling
techniques, the following general observations are made. The available

data of strong earthquake ground motion represents a sparse sampling of
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the multi-dimensional earthquake process. As evident from the parameters
used in empirical studies, the most reliable information is available for
magnitude, distance, and local site conditions. Even for these factors,
the amount of data is far from sufficient. In essence what 1is taking
place is a form of aliasing in the parameter domains of magnitude,
distance, and soil condition, and a spatial averaging of the effects due
to other parameters. Therefore conclusions or statements concerning
ground motion attenuation are in fact general statements related onlyv to
the parameters sampled and represent an averaging of the other factors
not considered. For example, the radiation pattern effect is never
considered in strong ground motion studies. Therefore attenuation laws
based on magnitude and distance, result in an averaging of the effects
due to source radiation. Similarly, this can be said of the other
properties not considered. For the parameters that are investigated a

spatial aliasing occurs, since in no instance does sufficient data exist.

Figure 11.3.2 presents the view of seismic attenuation as accounted
for by empirical models. This states that earthquakes of the same
magnitude, and recorded at the same distance from the source on an
alluvial, stiff, or rock site, produce the same average intensity. 1t
should be pointed out that recent models do consider the uncertainty
about the mean, (McGuire, 1974), However, this uncertainty is due in
part to the aliasing effect as well as the statistical uncertainty. This
type of MOdeling is not consistent with what is understood about the

earthquake process.
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I11.3.3 THEORETICAL MODELING OF SEISMIC EVENIS

Keeping in mind that the reviews presented in this and the previous
section are for the purpose of demonstrating the degree to which
available information on strong ground motion 1is used, theoretical
modeling techniques are considered next. Two types of seismological
modeling or analysis tools are of interest in this work; seismic spectrum
scaling laws and time domain waveform modeling based on dislocation

theory.

The use of seismic spectrum scaling laws was discussed by MeCann
(1980). 1In addition to that discussion, it is stated that scaling law
relationships provide one method of obtaining a set of static, average
measures or summaries of a seismic event. For major events this type of
analysis is usually carried out, (Kanamori and Anderson, 1975). The data
used in these studies are usually teleseismic or other data bases and
therefore estimates of source parameters independent of the strong motion

data can be obtained.

The second form of modeling used in seismology is the use of wave
propagation models and shear dislocation theory. A few of the methods
commonly adopted are the generalized ray technique, (Heaton and
Helmberger, 1978), the normal mode method, (Takeuchi and Saito, 1972:
Swanger and Boore, 1978), the finite element method, (Archuleta and
Frazier, 1978), etc. These models have been used to understand the
dynamics of fault rupture and wave propagation in the earth. They have
the demonstrated capability to reproduce observed strong motion
displacements, (Heaton and Helmberger, 1978; Swanger and Boore, 1978;
Archuleta, 1979; etec.). Modeling past events also provides estimates of

source parameters such as seismic moment, average stress drop, fault

24



rupture dimensions, rupture velocities, dislocation rise times, etec. For
a major, well instrumented earthquake, a number of investigative teams
employing different techniques will study the recorded ground motion.
Consequently the parameters of the event become '"reasonably" well
constrained. In general, estimates of seismic moment will be determined
to within a factor of two or better, and similarly for stress drop,
(Wyss, 1977). The estimates of source parameters depends very much on
the degree of strong motion instrumentation and scientific interest in
the event. For example, large earthquakes along the Aluetian Trench are
not given the attention that similar sized events in the Imperial Valley
get. However, for those events for which there is overwhelming interest
and more importantly adequate instrumentation, excellent understanding of
the earthquake can be attained. The 1971 San Fernando earthquake has
been studied for many vears, and the recent Imperial Valley earthquake
may be one of the finest instrumented events and therefore is being
studied by a number of investigators using different data sets and

methods, (Kanamori, 1980; Archuleta and Sharpe, 1980).

The point of this discussion is to present the fact that through the
many sources of available ground motion data and the different methods of
analysis, information about earthquake dynamics 1is available. This
information extends considerably beyond the magnitude, distance, and peak
value summaries which are standard in earthquake engineering. Kanamori
and Anderson (1975) and Geller (1976) for example have summarized, for a
number of world wide events, some of the standard seismological
parameters derived from scaling law relations and dynamic source models.

At the present time, in only a few cases are the parameters of events
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well constrained. The basic reason being insufficient instrumentation,

thus limiting the ability to constrain model solutions.

IT.3.4  BAYESIAN REVIEW OF THE STATE OF THE ART

OF MODELING STRONG GROUND MOTION

In view of the uncertainties in trying to model future strong ground
motion it is of no surprise that probabilistic methods are used. As
pointed out in the previous sections, empirical and theoretical methods
of modeling strong ground motion are blanketed in a veil of uncertainty
and inadequate information. Thus the development of probabilistic models
was a natural course. A fundamental aspect of modeling strong motion is
the fact ¢that the set of strong motion records does not representi a
complete or sufficient ensemble of realizations of the earthquake
process. Therefore, a basic belief of seismologists and engineers is
that levels of ground shaking intensity higher than those that have been
observed to date are possible even though such motion has not been
recorded. The assigning of non-zero probabilities based on few or no
observations of ground motion implies a definition of probabilitv other
than the relative frequency concept. The differences in the definition
of probability were discussed in the section on Bayesian analysis. Here
the intent is to take a Bavesian view of what has transpired in ground

motion modeling to produce the state of practice.

Engineers by the nature of their profession are Bayesian. Their job
calls for the application of physical laws, often on the basis of too
little information. Invariably, "engineering judgement" comes into play,

representing the engineer's degree of belief in a particular outcome.
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This Jjudgement, combined in some way with the available data, leads to a
decision. Formally this is Bayesian analysis, and "engineering
Judgement" is the engineers subjective probability or apriori
information. It was suggested in section I1I.2 that the introduction of
Bayesian probability was not represented by the simple equation known as
Bayes theorem, but by the philosophy of reasoning and analyzing uncertain
information. This same approach is taken here. That is, the discussion
to follow will develop an interpretation of the state of practice in
modeling strong ground motion. It should be noted that modeling as
referred to here, means the methods applied in earthquake engineering,
thus the use of the term state of practice. It is the improvement of

these methods to which this work is addressed.

Section I1.3.1 covered briefly, current understandings of the
earthquake process. These have been developed from observation and
theory, and were summarized in Figure II.3.1. This represents apriori to

modeling of future ground motion, the available information.

From section I1.3.2 two ideas or concepts were presented. The first
being the type of empirical models used to predict eafthquake ground
shaking, and second, the fact that empirical models are the only ones
used in seismic hazard analysis. Section II.3.3 summarized the fact that
seismologists, through various theoretical techniques, derive information
about the earthquake process beyond the standard observed or derived

parameters used in engineering applications.

In the process of adopting empirical models, a tremendous transition

has taken place between what is understood about the earthquake process
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(Figure II.3.1) and how the earthquake is modeled in seismic hazard
analysis, (Figure 1I.3,2), This section attempts to interpret this

transition.

To proceed with this review, the seismic hazard problem is defined
in the following way. A particular site is defined, for which the future
ground shaking hazard is to be assessed. This information defines the
tectonic and geologic environment and the particular hazard. The
parameter to define the ground shaking hazard is left undefined so that
the discussion can remain general. This discussion is refined further,
by considering a single event of a given size. The problem is reduced to
one of estimating the ground shaking hazard for a given seismic event.
The complete seismic hazard is derived by applying the total probability

theorem for all event sizes.

To solve this problem, the seismic hazard analyst must define what
is given, determine its degree of importance, and quantify these factors
to develop the estimate of strong ground motion. Before the model is
developed, the analyst recognizes that the size of the earthquake and the
type of event play a role in defining the expected motion. Similarly,
since the geology of the region is known, and fundamental wave
propagation theory would predict that the medium of transmission is
important in the estimated response, the analyst feels that this should
also be viewed as relevant input. It is assumed that the analyst's
understanding of the seismic event, prior to the hazard analysis, is
summarized by Figure 1I.3.1. The problem, it is recalled, is to estimate
the strong motion due to the defined event, in terms that have been left

open for this discussion. An apriori or subjective probability statement
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will simply be the encoding of this initial information about the

expected ground motion.

Based on the understanding of the earthquake as presented in section
IT.3.1, the analyst makes an implied probability assignment. That is,
for the problem at hand some method of describing ground motion intensity :
must be developed. The analyst proceeds to ask what can be said about
the expected ground shaking given his particular apriori knowledge.
Based only on the understanding of Figure II1.3.1 it would be very
difficult indeed to define a probability distribution on the ground
shaking parameter. To realize this, two fundamental questions can be
asked. What 1is the expected value of ground shaking intensity, and
second, how does the distribution vary about the mean. Keep in mind
that the response to these questions is based on the information in
Figure 1I.3.1 and not on any form of analvsis, empirical or otherwise.
Possibly an estimate of the mean value could be made, but around the mean
the distribution would change slowly, and the result will be a
probability density function that has considerable variation, (Savage,

1961). The result of this exercise of encoding the state of prior

information, is shown in Figure 1I.3.3, where the prior probability
density function is denoted f'(x), for a general ground motion parameter
x. The actual process of encoding prior probabilities is an interesting
and complex subject. The mechanics of this is not covered in this work

and the reader is referred to studies in this specific area, (Morris,

1971).

Recognizing the wide variation in this estimate, the hazard analyst

looks to observations of similar processes to help improve the
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probability assignment on the expected ground motion. Statistical

£' (%)

prior probability
density function

T

X (ground motion parameter)

Figure I1I1.3.3 Prior probability density function for
a ground motion parameter X.

analyses of strong motion data are performed, and an empirical model is
developed, as described in section 1I.3.2. This analysis provides a
probability statement on the ground motion parameter for an event of the
same size and at a distance equal to that for the site being studied.
Bayes theorem is applied to combine the apriori probability, f*'(x), and
the data based information. The data based probability assignment is
denoted L(x) and is called the likelihood function. Applying Bayes

theorem,

f'"(x) = N L(x) £'(») (11.3.3)

where f"(x) is the posterior or updated probability density function on

30



the ground motion parameter x. It represents the analysts prior
information, f'(x), and the results of empirical attenuation studies,

BAYESIAN ANALYSIS
l [ |

- posterior -
likelihood

X (groung motion parameter)

Figure 1I.3.4 An example of a Bayesian analysis for

the case of a diffuse prior. The

posterior probability is data based

in this case.
L(x). The result of this analysis is shown graphically in Figure II.3.4.
Recalling that the priori probability was very vague (had a wide
distribution), the result of the analysis is dominated by L(x).
Distributions of this type are called diffuse priors, (Benjamin and

Cornell, 1970), and f"(x) is known as a data based posterior

distribution.

What is accomplished by this exercise? Why go through this detail
when the result is based solely on the data anyway? The reasons are

many, and 1lie at the heart of Bayesian analysis. Every probability

statement is based on any and all available information, regardless of
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how vague, or whether it is derived from the observations of an
experiment or from personal opinion. Therefore, defining a prior
probability function sets in motion the information processing, and the
evaluation of alternatives. Savage (1961) goes as far as to say that the
encoding of prior information requires an honest evaluation of what is
known and the degree of belief in this knowledge. Secondly, it results
in a defined realm of what is considered likely to occur by the analyst,
and begins a consistent approach to the problem. Note that an engineer
or scientist will always have a personal bias about what results are
expected. In discussing this subject, Savage (1961) recognizes the
difficulty in defining what our apriori understandings and expectations
are. As pointed out earlier, Bayesian probability requires that all
information be made available, or the resulting probability statement
will be incomplete. It is apparent from the strong motion modeling
techniques in current use that the likelihood function, L(x), is based on
a limited description of the seismic event, in view of what seismologists

have learned from this same data set.

To summarize the Bayesian review of the state of practice, the
following comments can be made. First, current methods of predicting
ground motion are in faet posterior probability estimates of the ground
shaking hazard. Having defined what is known about the earthquake
process, it is recognized that current methods represent an incomplete
description of the seismic intensity. That is, for the earthquakes
observed to date, thé magnitude, distance, and peak value attenuation
relations do not represent a statement based on a complete use of all the

information derived from this data base. This will be referred to as the
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stage I Bayesian analysis. The sections to follow develop a method to

include all sources of information into the state of practice.

IT.4 A PROBABILITY MODEL FOR STRONG GROUND MOTION

In this section a method is developed that provides a probabilistic
power spectral density at a site. The method is a Bavesian approach to
updating ground motion estimates as obtained from current empirical
methods. The model is founded on the discussion in the previous sections
that define the earthquake process and the current sﬁate of practice.
The Bayesian model developed here is unlike tvpical applications of Bayes
theorem. That is, Bayes theorem is used in this work to update the
estimate of ground motion at a site based in part on the data base used
during the stage I analysis. However, much of the information which has
been derived from this data base, (section 1II.3.3), has not been
utilized. This is due to the recentness of these findings and the
tendency for change being slow. Therefore instead of applying Bayes
theorem in series with previous results, in which new and independent
information is 1incorporated, a different viewpoint is required. The
methodology presented here employs Bayes theorem in a parrallel sense,
from an information processing point of view. To summarize this idea,

Figure II.l4.1 presents a diagram of the information flow.

The objectives of this model are twofold. The first is to present a
model that in an information processing sense will provide a probability
statement based on the complete set of available information. Secondly,
sufficient apriori information exists that would indicate that some of

the parameters of the earthquake process not taken into account have
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first order effects on the ground motion and in given circumstances will
greatly effect the ground motion prediction. The model to be used will

allow for this possibility.

II.4.17 A BAYESIAN APPROACH TO GROUND MOTION MODELING

In Bayesian analysis, new information about a process is usually
derived from an experiment or a new set of observations. In the present
case, the strong motion data base represents the only observations of
earthquake ground motion. The number of observations is quite limited in
view of the complexity of the process. Ideally, additional samples of
the process would allow a more thorough statistical analysis to be
performed taking into account each parameter of the earthquake. Clearly,
earthquakes cannot be repeated, or triggered at will so as to collect
additional data. The solution proposed here to the problem of acquiring
additional observations involves performing numerical experiments of the
earthquake process. A mathematical model of the earthquake source and
propagation path are used that employs as part of its input, the
information which is available but not yet incorporated into the estimate
of ground motion. The observations of the process are generated for a
stochastic rupture model from a Monte Carlo simulation. The simulation
generates observations of the earthquake defined in the current problem,

(see section II1.3).

This proposed solution can be stated as follows. For the situation
described, current modeling procedures will predict the expected ground
motion based solely on the magnitude of the event, and the source-site

distance. The review presented in section II.3 showed that parameters of
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the process other than magnitude and distance are important, and that not
ineluding these factors results in an incomplete probability assessment.
Therefore, since a very limited strong motion data base restriets further
statistical analysis, the solution proposed is to generate a data set for
the present set of circumstances. A simulation provides an ensemble of
realizations of strong motion recordings at the site. From this data
base, a 1likelihood function on the ground motion parameter can be
generated. Employing Bayes theorem, this additional information can be
combined with the previous probability assignment. This second
application of Bayes theorem constitutes an incorporation of the factors

of recognized importance, which to date have been neglected.

To summarize the basic concept, a model is developed to incorporate
in a realistic manner information about the earthquake source and
transmission media in the estimate of strong ground motion. Due to the
limited number of observations of earthgquake ground motion, empiriecal
modeling techniques consider a minimum number of parameters of the
earthquake process. Using a mathematical - model, observations of the
process can be generated by a Monte Carlo simulation for a stochastic
fault rupture. From these realizations a likelihood function on the
ground motion parameter is derived and combined with the posterior
distribution of the stage I analysis by Bayes theorem. This second
application of Bayes theorem will be referred to as the stage II

analysis. The next section discusses how this concept is carried out.

II.4.2 A PROBABILISTIC MODEL FOR GROUND MOTION SPECTRA

The previous section outlined the development of a model for
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updating ground motion predictions using Bayes theorem. In this section
a specific approach will be taken that uses the root mean square
acceleration as the ground motion parameter. Exploiting its dual role as
a time domain as well as a frequency domain summary, the root mean square
is used as a spectral intensity measure. An appropriate theoretical
model is used to model the propagation of seismic waves from the
earthquake source. The result of carrying out the proposed model will be
a probabilistic power spectrum at the site. Recall that this discussion
is carried out, given that a seismic event has occurred and is specified
in the manner of a standard seismic hazard analysis, by event size,

earthquake fault and site location, (Mortgat, 1976).

MeCann (1980) studied the root mean square acceleration and duration
as an alternative means of characterizing strong ground motion. The
basic theoretical properties of the rms made it an attractive parameter
to employ in ground motion studies. One of the results of that study
were attenuation relations for rms acceleration. That analysis

corresponds to the stage I analysis discussed in this chapter.

Before proceeding, it is important to define the random variable of
interest and what the uncertain parameter(s) are. The random variable is
the rms acceleration at a site, which is some distance r from the source.
It is assumed in this work that the mean rms acceleration, i, is the
unknown parameter and that the variance, 02, is known and determined from
the stage I analysis. The Bayesian method considers the parameter(s) of
a distribution to be random, (Benjamin and Cornell, 1970), and therefore

the analysis 1is carried out to update the distribution on the mean rms

value at the site. The probability density function on the rms
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acceleration is conditional on knowledge of the mean and is denoted
f(rlu). Having defined the random variable and the uncertain parameter,
the stage I analysis is summarized as follows, fi(u) is the prior
probability density function on the mean rms acceleration with a mean and

variance denoted ui and 0'2. The 1likelihood function is L1(xlﬁ) with

1
mean m and variance si. The posterior distribution is f{(u) with mean
and variance denoted u~g and 012, respectively. The variance of the

process, which is assumed known, and determined from the stage I analysis

is denoted 02.

Having defined the random variable and its distribution, the
Bayesian analysis proceeds as follows. The posterior from stage I,
serves as the prior distribution for the second stage analysis. That is,
f;(u) is equal to fé(u), where fé(u) is the prior information on the mean
rms upon entering stage II. The parameters of the prior are also renamed

" - L ” - t
as, ul = Wy and ol = 02 .

To update this information, it was suggested that an appropriate
mathematical model be used to generate additional observations of the
process, A model 1is chosen that has the capability to consider the
dynamic characteristics of the earthquake source, as well as the
properties of the transmission path of the region. The theoretical model

to be used in this study is discussed in Chapter III.

Although excellent models are available for modeling strong ground
motion, the problem of prediction is quite another storv. The details of
the fault rupture are not known beforehand. However, information is

available on the possible values the parameters of the rupture process
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may take on, (Kanamori and Anderson, 1975; Geller, 1976; Seih, 1979).
Therefore the rupture on a fault is considered a stochastic process,
(Boore and Joyner, 1978; Savy, 1978), with the parameters of the source

as random.

For each simulation of fault rupture, the theoretical model will
generate a power spectral density at the site. At the end of the
simulation an ensemble of power spectra is obtained. Recalling the

frequency domain definition of the root mean square, realizations of the

rms acceleration are also determined. For the ith simulation the rms
acceleration is,
27t 1
[ (T max 13
rms, = G(w), dw (I1.4.1)
i l i ‘

o

where f __ is the maximum frequency in the spectrum, and G(w); is the

th
one-sided power spectral density realized as a result of the i

simulation. From the ensemble of rms values, the likelihood function on
the mean rms acceleration is determined. This is denoted
L2(2|u) and is the likelihood of observing the sample 2z, given the true

value of 1.

Also from the simulation, an ensemble of spectral shapes is

observed. For the ith simulation, the spectrum shape is defined as,

NG, = ———1———2—G(w)i (11.4.2)

(rmsi)
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Similarly, the probability distribution on spectral shape can be

determined, and is denoted, f(N(w,)). N{(w), the spectral shape function,

3

has wunit area and can be considered as the distribution of the mean

square acceleration as a function of frequency.

Having developed the likelihood function on the mean rms value, this
new information is combined with the prior distribution on the mean rms
through Bayes theorem. The posterior probability density function on the

mean becomes,

£5(0) = N Ly(z|w £5) (1I.4.3)

This is shown graphically in Figure IT.4.2. The posterior distribution
on the mean is the result of incorporating the available information on

strong ground motion.

Recalling that the original distribution on the rms acceleration was
conditional on knowledge of the mean value, f(r|u), applying the total
probability theorem, the unconditional distribution on rms acceleration,

f(r), is derived. This is shown in eq. (II.4.4).

o0

f(r) = / £(r]w £500) du (II.4.4)

(o}

Combining the distribution on the rms acceleration and the probabilistic
spectral shape obtained from the simulation, a probabilistic power

spectrum can be derived by a standard change of variable, (Benjamin and
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Figure II.4.2 A graphical presentation of the second
stage Bayesian analysis.

Cornell, 1970). This is shown in eq. (II.4.5),

S(w) = rms® - N(w) (I1.4.5)

where S{(w) is the power spectrum at the site. The probability density
function on S(wj) is f(s(wj)), which 1is the probability density on
the spectral ordinate S(wj) at frequency wJ. Knowledge of f(S(wJ)) makes
it possible to provide consistent risk spectra for design, where each

spectral ordinate has the same probability of being exceeded, (McGuire

1974).

In summary, a probabilistic model is presented that takes into
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account information that can be derived from a seismological model. A
Monte Carlo simulation is performed which generates observations of the
earthquake process for the event of interest. This information is
combined through Bayes theorem, with the prior knowledge from empirical
models. The mean value of the rms acceleration is the uncertain
parameter updated by Bayes theorem. With an updated distribution on the
rms acceleration, the mean square acceleration is used as a spectral
intensity which is distributed according to the spectral shape function
derived from the simulation. The result is a probabilistic power

spectrum from which consistent risk spectra can be defined.

II.4.3 PROBABILITY MODEL

In the previous section the probabilistic method for deriving an
updated distribution on the root mean square acceleration was présented.
The development presented the mathematical relationships needed to carry
out the updating process. This section presents the probabilistic aspect
of the model. To demonstrate the methodology a conjugate prior analysis
is used, which is a standard approach in Bayesian analysis, (Raiffa and
Schlaiffer, 1961). The meaning and implications of this approach are

discussed.

The probability model is based on the root mean square acceleration.
In the stage I analysis presented in section 1II.3.4, the posterior
probability distribution was data based, and therefore of the form of the
likelihood function. For the event and site that were defined, the
likelihood function is derived from statistical studies of strong motion

data. This analysis defined the rms acceleration as a function of
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distance. It should be pointed out that the probability density function
derived from the attenuation model is not a likelihood function in the
strictest sense, but should be more properly defined as a data based

distribution, (Benjamin and Cornell, 1970).

A conjugate prior analysis is used in this work. What this means is
the following, of the many possible distfibutions that could be used to
define the prior probability density funetion, the natural conjugate of
the likelihood function is selected. The natural conjugate combines with
the sample likelihood to provide a mathematically tractable solution for
the posterior distribution. The conjugate prior analysis in fact results
in a posterior distribution of the same form as the prior probability
density function. The advantage of this approach lies in the closed form
solution, which obviates expensive, tedious numerical integrations, and
statistical derivations of probability distributions. Also for model
development and testing, reasonable first order analyses can be made

using this approach.

In Section II.3.2 the assumed form of the attenuation law, eq.
(I1.3.2) implies that the ground motion parameter, in this case the rms
acceleration, is Log-Normally distributed. In this analysis the mean of
the rms distribution is uncertain, and therefore the probability density
function on the mean is of interest. It is assumed in this work that the
distribution on the mean rms value, is Normal. This assumption therefore
implies that the posterior probability of stage I is also Normal. The
parameters of the posterior distribution are the mean and standard

deviation, denoted uf and Of.
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The posterior probability density function on the mean rms from the

stage I analysis is defined as,

£ = NG, o) (I1.4.6)

where the symbolic notation, N(m,s), is used to denote the Normal
distribution with mean m and standard deviation s. Since the parameters
from the regression analysis are derived for the logarithm of the
variable, the parameters of the distribution on the variable itself must
be determined. For the particular case where the random variabhle is the
mean, the approximation of assuming a Normal distribution is reasonable,

(Benjamin and Cornell, 1970).

The sample likelihood represents the likelihood of observing the
sample set z, given the true value of the mean. In this case the samples
of the process are obtained from the Monte Carlo simulation. Thus for a

sample set z, where
' L] .
z = (zl, Zys Zgs v v o Z ) (11.4.7)

the likelihood function, Lz(zlu)is determined. To facilitate the use of
a conjugate prior analysis, the generating process of the root mean
square is assumed to be Gaussian. Therefore from the definition of the

likelihood function,
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n
LGew = T £ w (11.4.8)
i=1

where f(zi|U) is the probability distribution on the rms evaluated at zi.

The likelihood function on the mean becomes,

LGzlw = Nz, =5 (II.4.9)
Ja

where Z 1is the sample mean, n is the number of samples of the rms
acceleration, and o//n is the standard deviation of the distribution on
the mean. Recall that the variance of the process is assumed known, thus

U is used in the likelihood function.

The assumption that the generating process is Normal is clearly an
approximation. However, since the distribution of the mean value and not
the variable itself is of interest, the degree of approximation is not.
critical., From the simulation, only an estimate of the mean value is

required.

Also during the simulation the spectral shape function was
determined. From this ensemble the probability density on the spectral
ordinates can be derived. In this work this distribution is assumed to
be Gamma type. This is consistent with theoretically predicted
distributions of spectral ordinates and observations for earthquake
spectra, (Bendat and Piersol, 1971; Kiremidjian, 1976). The distribution

on spectral shape, f(N(wJ)) is,
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A

k k-1 -Aw,
W, e ]
=
f(N(wj)) ——J——————~F(k_l) (I1.4.10)

with parameters )\ and k. The mean and variance of this distribution are,

k
E[N(wj)] = 5
2 _ ko (1I1.4.11)
N(w,) AZ
k|

The parameters A and k are determined from sample estimates of the mean
and variance. There will be a probability distribution function

corresponding to each ordinate of N(w).

Given the prior, fé(u), and the sample likelihood, L2(z|u), Bayes
theorem is applied to determine the posterior distribution on the mean

rms. Applying eq. (II.4.3), the posterior, fg(u) is, (Ang and Tang,

1975),
£5(0) = N L (z[w) £500
-2 o=y 2
= N—1 vV n exp(—%(l‘l ~ 2y ) — exp(--% ( 5 2) )
v 2ma" o/Vn v Imo) 2
o0 (11.4.12)
where: N = f Lz(zlu) fé(u) du

-0

and the mean and standard deviation are given as,

2/ (1% + tu/ (op?

u" —
SN VG S I VI CIO R
(11.4.13)
2 ~ 2
2 ) (o/ V)

(cé)2 + (crNr”{)2
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Equation II.l.13 illustrates that the updated estimate of the mean rms
value is a weighting of the prior and likelihood mean values, depending

on their respective variances.

Given updated information on the mean, the total probability theorem

can be applied to obtain,

o)

f(r) = / £(r|W f'z'(u) dr (II.4.14)

- OO

where f(r|u ) was assumed Normally distributed in this analysis with

parameters 1 and d., The integration over u yields, (Ang and Tang, 1975),

(0 = Ny, Voo + ap?) (11.4.15)

The result of the Bayesian analysis is then an updated distribution on
the root mean square acceleration which is approximated in this work by a
conjugate prior analysis, where the prior and the generating process are
assumed Normal. The probability distribution on the power spectral
density is found by applying eq. (I1.4.5). This final result is
obtained by numerical integration in order to determine f(S(wj)) at each

spectral ordinate.
IT.5 SUMMARY

In this chapter a Bayesian probability model for estimating a

probabilistic power spectrum at a site is presented. The model is based
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on the use of the root mean square acceleration as a spectral intensity
measure. The mean rms acceleration at a site is the uncertain parameter
updated through the use of a theoretical model to generate observations
of the earthquake process. These additional realizations constitute a
numerical experiment from which the likelihood function on the mean is
derived. Bayes theorem is used to combine prior information on ground
motion as derived from empirical attenuation studies and the likelihood
information determined from the simulation. The result of the analysis

is a probabilistic power spectrum at the site.
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CHAPTER III - DETERMINING THE FOURIER TRANSFORM

OF ACCELERATION BY THE NORMAL MODE METHOD

III. INTRODUCTION

This chapter describes the theoretical model that is wused to
genérate the Fourier transform of acceleration at a site. The
information obtained from this model is used in the Bayesian analysis
discussed in Chapter I1I. The technique adopted is the normal mode method
in which the free oscillation modes of the earth are determined and used
to obtain the response of the earth to the dislocation on a fault. The
application of normal mode methods in seismology has been a topic of
considerable interest for many years. The method has been applied to the
problem of finding the periods of free oscillation of the earth, in the
analysis of surface waves for flat or spherical, multilayered earth
structures, and in modeling of strong ground motion displacements. It
has also been applied tovthe development of earth models and the
investigation of earthquake source mechanisms. Modal superposition is
familiar to both engineers and seismologists in modeling the dynamic

response of linear elastic systems.

In section II11.2 a general review of normal mode analysis and wave
propagation is presented. This section will develop the background for
understanding the use of normal mode techniques in seismology and
describe seismic waves traveling in a dispersive medium. The normal mode
method of dynamic analysis is outlined in section III.3, illustrating the

principle of modal superposition.
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The remaining sections present the method for the case of earthquake
ground motion in a spherical earth. The model is described in two parts,
the first is an explanation of the computational procedure for
identifying the earth's eigenfrequencies and eigenfunctions, and the
second presents the derivation of the Fourier transform of acceleration
at a‘ site due to the rupture of a single fault segment. The model
derivation is based on the work of Kanamori (1970), Takeuchi and Saito
(1972), Fukao and Abe (1971), among others. This presentation is not a
contribution of this work, since it is available in the geophysical
literature, however for completeness and understanding, the major details
of the model derivation are presented. The - application of this
particular procedure for modeling strong motion acceleration is however a

new development.

ITII.2 NORMAL MODE ANALYSIS IN SEISMOLOGY

Modal superposition methods have been employed by Fukao and Abe
(1971), Hermmann and Nuttli, (1975a), (1975b), Kanamori and Stewart,
(1976), and Swanger and Boore (1978) with considerable success in
modeling ground motion displacements. Gilbert and Dziewonski (1975) have
studied the use of this method in determining earthquake source
mechanisms. In this work the normal mode method is used to generate an
ensemble of Fourier transforms of acceleration at a site, to provide

updated information on strong ground motion as discussed in Chapter II.

The earth is a spherical structure which has three vibrational modes
that distinguish its dynamic response. These modes are of the radial,

torsional, and spheroidal type. The radial mode is often referred to as
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‘the "breathing" mode of the earth since it corresponds to uniform radial
displacement. This mode is actually a special case of the spheroidal
modes. Torsional modes correspond to the twisting motion of the sphere,
examples of which are given in Figure II1.2.1a,b. Spheroidal modes
represent a distorting of the spherical shape as shown in Figure
III.2.1c. The mode shapes shown in the figure are representative of the
surface distortions for long period modes. The same principle holds for

frequencies in the range of interest for strong ground motion.

To describe the free oscillation modes of a sphere, three parameters
are required as opposed to the single parameter needed in the case of a
one dimensional system. In geophysics these parameters are denoted 2, m,
and n; where % is the angular order and defines the surface oscillation
as a function of latitude. The term m 1is the azimuthal order and
characterizes the surface motion as a function of longitude, and the
parameter n defines the modal depth dependence and is known as the mode
or overtone number. A free oscillation mode of a sphere can be
characterized by these parameters plus the designation whether torsional
or spheroidal modes are being considered. The symbolic notation, as used
in Figure III.2.1 is $T2 and':S2 for torsional and spheroidal modes
respectively, where the longitudinal dependence was held constant,

(Press, 1965).

Determining the free oscillations of a sphere has been a problem of
interest in mechanies for many years. Love (1927) determined the period
of the fundamental spheroidal mode of a sphere the size of the earth,
with the rigidity of steel and a Poissons' ratio of 1/4 to be

approximately one hour. Since that first calculation, numerous
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investigators have made refined estimates using more realistie earth

ﬁ 0'2 (-Sin2e) 5; s
"Twist" mode —
g 43.8 min. Yy 28.5 min.
(a') . . (b.)
(| + y 052 (-P5(Cos8))
A "Footbal 1" mode
(c.)
Figure III.2.1 Example of the free oscillation modes of

the earth, (a.) torsional and (b.) spheroidal.
(from Pilant, 1979)
models. The recording and verification of the fundamental spheroidal
mode did not take place until 1960 with the Chilean earthquake, (Press,
1965). Subsequently, 1literally hundreds of modes have been observed,
(Gilbert and Dziewonski, 1975). In the remainder of this section the

normal mode method is discussed in relation to wave propagation.

The modes of a sphere, as pointed out, are of two independent types
torsional, and spheroidal. As might be anticipated, particular wave
types can be associated with the modes of vibration. For example, the
fundamental torsional mode oscillations corresponds to Love surface
waves, and similarly the fundamental spheroidal mode oscillation defines

Rayleigh surface wave motion. As higher modes or overtones are



considered, the torsional modes correspond to SH body waves,
(horizontally polarized shear body waves), and the spheroidal modes are
P-SV waves, (compressional and vertically polarized shear waves); In
engineering applications, horizontal motion is of prime importance and

thus SH motion or the torsional modes are modeled in this work.

Surface waves are so called because they are constrained to travel
on or near the earth's surface. There are two types of surface waves,
Love waves which are SH waves traveling along the free surface, and
Rayleigh waves whose particle motion is elliptical in a vertical plane in
the direction of propagation. Rayleigh first suggested the existence of
a special class of waves along boundaries of elastic solids in a
homogeneous half space and thus one type bears his name. Love
investigated the theory that a type of surface wave may exist having
motion predominantly transverse to the direction of propagation. This
phenomena had been observed, but not explained. Love proceeded to
demonstrate the existence of surface waves of this type in the presence
of a layer over a half space, and in the process discovered that these
transverse surface waves are dispersive. That 1is, the propagation
velocities are functions of wavelength. Similarly, Rayleigh waves are
dispersive due to the heterogenity of the earth's properties with depth.
Figure 1II1.2.2 illustrates a typical example of Love wave dispersion

curves for an Imperial Valley structure.

Dispersion curves describe wave velocity as a function of frequency
or period. Note the two velocities shown, phase velocity, c{(w), and
group velocity, u(w). The phase velocity is defined as w/k, where w is

the circular frequency and k is the wavenumber. The wavenumber is a
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spatial frequency and is defined as 27T/wavelength. To measure the phase

T T T
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LOG (PERIOD (sec.l))
Figure 1I11.2.2 An example of Love wave dispersion curves.

velocity, observations in the same direction, at distances X, and X, from
a source must be made. The phase velocity is x2-x1, divided by the
phase delay. The group velocity on the other hand, is the rate at which
energy travels for a particular frequency group and is defined as
dw/dk. The group velocity can be measured as the distance traveled,

divided by the time of arrival of a wavegroup.

To demonstrate the concept of dispersion, a graphical example is
given illustrating the definitions of phase velocity and group veloeity.
Consider the situation in Figure 1I1.2.3. A point source is applied to
the system with waveforms recorded at twenty stations starting at a
distance of 40 km. and spaced at 1 km. increments. The phase velocity
can be observed by considering two stations close to one another and
measuring the phase delay of a particular peak or zero crossing. The

phase velocity is then,
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Figure III.2.3 An example demonstrating the dispersion of seismic
waves. From these observations dispersion curves
could be developed for phase and group velocity.
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cl(w) = ——— (I11.2.1)

- where x2-x1 is the distance traveled by the wave, and the phase delay,

tp, is the delay of a particular peak traveling from point 1 to point 2.

The group velocity is defined as the source-site distance divided by
the time of arrival of a wave group. The group velocity can be thought
of as the veloecity at which an envelope function for a given frequency
group travels. Since energy is proportional to the amplitude squared,
group velocity is often referred to as the velocity of energy flow. In
Figure III.2.3 the phase and group velocities can he measured as the wave

travels from the source.

A variational method is used in this work to determine the free
oscillation modes and dispersion characteristics of a radially
heterogeneous earth. Most applications of modal superposition techniques
use a flat earth model. A spherical earth is considered in this work due
to the stability of the variational method, and the availability of the
computer algorithms. This is described in section III.4. The limitation
of considering a laterally homogeneous earth is not viewed as a major
handicap in modeling strong ground motion in view of the relative short
distances, generally less than 100 kilometers, of interest in earthquake
engineering. The advantage of having an earth model with radially
varying characteristics 1is an important step towards the improvement of
the state of the art in modeling strong ground motion for use in seismic

hazard analysis.
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III.3  NORMAL MODE ANALYSIS

The normal mode method is discussed in a general way to outline the
analysis procedure and to present its advantages in computing the
response motion of a linear elastic system. The normal mode method of
analysis is a popular computational technique in engineering, {(Clough and
Penzien, 1975), and seism~logy, (Kanamori and Stewart, 1976; Swanger and
Boore, 1978). The method is based on the existence of normal modes of
vibration of a system, each with a characteristic shape and frequency.
The response of the system to arbitrary loads is defined as a weighted

superposition of all modes.

Modal analysis is based on the principle that the response of a
linear system can be composed of the superposition of the normal modes of
the system. In structural engineering applications, the systems analyzed
are often discrete and the number of modes equals the number of degrees
of freedom associated with the individual masses. In seismology, a
spherical or flat multilayered earth are examples of continuous systems
where the method is applied. Normal mode analysis offers considerable
advantage in that the modes and frequencies of vibration are calculated
once, with the information then stored for repeated use. The response of
the system to different 1loading functions 1is determined by the
appropriate superposition of the modes. In the remainder of this

section, the normal mode method is presented.
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III.3.1 DETERMINING THE FREE OSCILLATION MODES AND FREQUENCIES

Consider the equation of motion for the undamped free oscillations

of a multi-degree of freedom system,

MIU®)] + K (U] = 0] (II1.3.1)

where:
@ = mass matrix
g = stiffness or rigidity matrix

[0(t) 1, [O(t)]

vectors of acceleration and displacement,

respectively

[0] = null vector

Assuming that in a normal mode the system response is harmonic, the

displacement and acceleration of the jth mode is,

[U(t)]j [Y]j Sin(uﬁt + ¢j)

(I11.3.2)

. -
[U(t)]j -[Y]j W 51n(u3t + ¢j)

where [Y]J is the maximum amplitude vector of the jth mode, w, is the

J
angular frequency and <% the phase angle. Substituting eqs. (III.3.2)

into (III.3.1) to obtain,
(K - w0l ¥ [¥]; = [0] (I11.3.3)
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which i3 a set of n simultanteous linear equations. The solution of
these equations requires that the determinant of the expression on the

left hand side is zero. This condition is given in eq. (III.3.4).

K- M = 0 (1I1.3.4)

th order algebraic equation in w2 is obtained having n roots. The

An n
roots of this characteristic equation are the eigenfrequencies. For a
given ug, eq. (III.3.3) can be solved for [Y]J to within an arbitrary

constant. The [Y]j's are the eigenvectors or modes of vibration.

It can be shown that the eigenvectors are orthogonal or normal to
one another, (Clough and Penzien, 1975). The orthogonality property
allows the problem of determining response to be decoupled into a set of
n 2nd order differential equations, which are solved separately in the
normal coordinate system, (Clough and Penzien, 1975). The final solution
involves transforming the decoupled response in normal coordinates, back

to the original coordinate system.

IIT.3.2 RESPONSE TO A STEP FUNCTION FORCE

Consider the following example, where the response [U(t)l is desired
due to a step function in time, [H(t)], which is applied to a discretized
' multi-degree of freedom elastic system. The undamped equation of motion

for this systenm is,
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MU + K [UE)] = [E0)] (I11.3.5)

By the orthogonality property of the normal modes, the mode shapes are
used to define a generalized coordinate system where the total

displacement is represented as a weighted superposition of the modes.

Thus ,

modes

U] = Y 1l (g, () (111.3.6)
n=1

where [Y]n is the mode shape vector for the n'" mode and [¢n(t)] is the

amplitude vector of the n'! mode. Applying the orthogonality principle

and substituting eq. (III.3.6) into the equation of motion, the

following result is obtained,

. - * .
§ [o(e)] + E [6(e)] = [H ()] (I11.3.7)
where:
M* = YT M Y
K* = fT K Y
% ?F R (111.3.8)
[H (t)] = [H(t)]

Eq. (III.3.7) can be rewritten,

. , (B (0]
[<I>(t)]n to [#(O)] =——F— (111.3.9)
M
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th mode. The solution

which is the decoupled equation of motion for the n
for [¢n(t)] is the result for a single degree of freedom oscillator, with

natural frequency uh, where,

[m" (©]
[e(e)] = ——i*——~—-(1-coswt) (I11.3.10)
wn g

The total response, upon transforming the individual modal responses to

the original coordinates, is,

all modes

[H ( t)]
[U(t)] = Z[Y] Itl—cosu) t) (I11.3.11)

[U(t)] is the displacement response vector of the system due to a forcing
function which varies stepwise. This exercise illustrates the principle
of modal superposition to determine the response. A major advantage of
modal analysis is that once the system is defined, that is once g and §
are known, the eigenfrequencies and free oscillation modes can be
determined and stored. The response of the system 1is found for any
forcing function by applying eqs. (III1.3.7) - (III.3.11). This same
principle applies to normal mode analysis in seismology. That is, the
determination of the earth's normal modes will be a function of the earth

structure, and not the fault or event size.
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III.4  COMPUTATION OF NORMAL MODES AND DISPERSION CHARACTERISTICS

FOR A SPHERICAL EARTH

In this section the computational method used to detérmine the free
oscillation modes, and the frequency dependent phase and group velocities
of a spherical earth model is presented. The previous sections described
the general form of normal mode analysis and the fact that the earth is a
dispersive medium having propagation velocities that vary with
wavelength. A number of methods have been used in the past to compute
the eigenfunctions and dispersion properties of surface waves for layered
earth models, such as the Thomson-Haskell matrix method, (Harkrider,
1964). Routines are readily available for most techniques. In this work
the variational approach developed by Wiggins (1976) is used. Geller
(1979) suggests that variational methods offer considerable advantage
over other techniques in terms of computational efficiency and accuracy.
The method presented by Wiggins is a Rayleigh-Ritz procedure. The method
is outlined in this section, describing the basic variational approach
and solution technique for determining the normal mode eigenfrequencies
and dispersion curves. 1In seismology the term overtone is often used to
describe the higher order modes. The 1lowest order mode is the
fundamental, with the higher modes denoted as the first, second

overtones., etc.

The  method presented by Wiggins is a Rayleigh-Ritz procedure that
makes use of the principle that the Lagrangian remain stationary. 1In
order to estimate the natural frequencies and normal modes of a system
through the use of. Rayleigh's principle, an assumption about the mode

shape or an estimate of the eigenfrequency is required. This is true for
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the earth or any elastic system. The method can be applied for the

fundamental and any number of higher overtones.

The earth is assumed to be a radially heterogeneous sphere whose
free oscillation modes are sought. The earth is described according to
the radial variation of its density and elastic properties, or
equivalently by its compressional and shear wave velocities. The earth
also has boundary conditions at the outer surface and at the liquid-solid
interface of the core-mantle boundary. These conditions are; zero stress
at the outer surface and liquid-solid interface and displacement and
stress continuity across vinternal boundaries such as between solid
layers. Since the earth is modeled as a radially heterogeneous sphere,

the eigenfunction will be a function of r, the radial coordinate only.

Following the formulation of Ritz, the eigenfunction can be
considered as a linear sum of interpolation functions. Once the form of
these functions has been chosen, potential and kinetic energy integrals
can be found. Following Hamilton's principle, the solution for the
eigenfrequencies corresponds to a minimizing of the Lagrangian. For the
case of a radially heterogeneous earth, the Lagrangian is given by

Takeuchi and Saito (1972) to be,

I = L -1, - @-1) @42) I,
a
I1 = f p(r) rzyi(r) dr
(@]
a
o = [ u® @@ -y e
° © (IIT.b.1)
a
_ 2
I3 = f u(r) yl(r) dr
[s}
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where a is the earth's radius, w is the eigenfrequency, y1(r) is the
depth dependent displacement eigenfunction, u(r) is the shear modulus,
p(r) is the density, and % is the angular order. Also 1n eq. (III.4.1),
;1(r) is dy,(r)/dr. Applying the condition that the Lagrangian be
stationary, the standard form of the eigenvalue problem is obtained. The
solution for the eigenfrequencies and the eigenfunctions can be

carried out by a standard eigenvalue solution routine.

A free oscillation mode, y1(r), is modeled as a linear sum of

interpolation functions as shown in eq. (III.4.2).

m

yl(r) = Zci ¢i(r) (111.4.2)
i=1

For a defined set of interpolation functions, ¢i(r), the c¢,'s are the

i
unknowns and can be considered as a set of generalized coordinates. For
engineers this method is familiar as the basis of the finite element
method of structural analysis. 1In practical problems the system, in this
case the earth, is divided into segments, within which the eigenfunction
is described by eq. (III.4.2). A set of natural coordinates is employed
where the segments are of unit length. Substituting eq. (III.4.2) into

eq. (I11.4.1), VWiggins gives the following expression for the

Lagrangian,
1 = fe1” alel - o [e]"Ble]
A = Al + (2-1) (2+2) A2
where: -
a .
Mg = f RO 00 - ) (k) - 4) ar

(o]
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a

hyys = f W(E) 8 () ¢, (x) dr (IT1.4.3)
(o)
a

Bij = f o(x) r2 ¢i(r) ¢J.(r) dr
o)

[e]? = [egs €ps o v v+ ]

where T denotes the transpose. Minimizing the Lagrangian with respect to
the unknown generalized coordinate, [e], the standard form of the

eigenvalue problem is obtained.

Alel - o Ble] = [o] (II1.4.4)

Summarizing the development of the solution for the normal modes to
this point, a Rayleigh-Ritz method is used to set up the eigenvalue
problem for an elastic sphere. The earth's structure is described by the
variation of mass density and shear wave velocity with depth. For this
system the eigenfunction is a function of depth, and is modeled as a
series of segments. Within each segment the eigenfunction is described
as a linear sum of interpolation functions. Substituting the discretized
eigenfunction into the Lagrangian, eq. (IITI.4.3) was obtained. The
remaining undefined components are the interpolation functions which are

described next.

Wiggins has chosen to use Hermite polynomials as the interpolation
functions. These functions in natural coordinates are,
2 3
¢, (x)

3x -~ 2x
¢, (x)

—x2+x
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1l - 3x2 + 2x3

¢y(x) =
2 3 (I11.4.5)
¢4(x) = x - 2%x° + x
where x = %Ei- for the radial interval r = a to r = b. The shape of the

¢=3x'~2x3
qb= -x 24x 3
\ <f)=|-3x"+2x3

<f)=x-2x'+xs

(] 1

Figure III.4.1 The interpolation functions used to

represent the eigenfunction, shown

with their polynomial representation,

(Wiggins, 1976).
interpolation functions are shown in Figure III.4.1. These interpolation
functions have been chosen such that the slope or displacement is 0 or 1
at the ends. For systems with boundary conditions this choice is
particularly advantageous. The boundary conditions at internal layer
boundaries and at the earth's surface are met by appropriate modification
of the A matrix. Conditions such as displacement and stress continuity
at the boundary between layers and the requirement of zero stress at the

free surface are taken into account and have been demonstrated by Wiggins

(1976).

The solution for the eigenvalues and corresponding eigenvectors is
carried out through the use of the inverse iteration method. For an
initial estimate of wi,the corresponding eigenvector is determined. If

this is not the solution, the Ravleigh quotient gives the next estimate,
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R TSE

(II1.4.6)

This process is repeated until the Lagrangian is stationary.

When a particular eigenfrequency and mode have been found, the group

and phase velocities of the wave can be computed, (Takeuchi and Saito,

1972),
_ wa
clw = 73173
. (II1.4.7)
28 +1 3
B T
1

where u(w) is the group veloecity and c¢(Ww) the phase veloeity and a, 2%,

and w are as defined earlier.

To use the inverse 1iteration method of solving the eigenvalue
problem, reasonably good estimates of the eigenvalue or eigenfunction
must be made. For the fundamental mode this is not so critical, since
given a poor eigenvalue estimate, the routine will generally find the
fundamental eigenfrequency. For other modes the initial estimate must be
within about 10% of the true value. To obtain accurate initial estimates
of the eigenvalues the following technique is used. For a given angular
order, the Lagrangian 1is calculated over a wide range of w's,
incrementing w by ' or 2 percent on each iteration. The routine

identifies the eigenvalue number that the current value of w is closest
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to, (Wiggins, 1976).

This method of determining the normal modes of the earth has a
number of specific advantages over other techniques that have been used
in the past. Previous methods model the earth as a layered media whose
elastic properties vary in a stepwise manner with depth., Realistically
the earth would be better represented by a gradient of some fornm.
Wiggins' routine allows for a linear variation of p(r), vp(r) and vs(r)
with depth. The method does not however, require that these properties
be continuous across boundaries and therefore discontinuities can also be

modeled.

To conclude, the Wiggins variational method offers an efficient,
accurate method of determining the free oscillation modes and dispersion

characteristics of a realistic model of the earth's structure.

II1.5 MOTION DUE T SINGLE FAULT SEGMENT

This section develops the acceleration motion at a site due to an
arbitrary fault segment that propagates unilaterally along a line. The

development follows that of Kanamori, (1970),

Fukao and Abe, (1971), Takeuchi and Saito, (1972), ete. in
obtaining the Fourier transform of displacement due to a double-couple
point source varying stepwise. The model 1is extended to consider a
propagating line source, a dislocation time function that is a ramp, and
acceleration motion. The development presented here will be for the

transverse component of the SH motion.

The form of the torsional mode displacement motion, as derived from
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the wave equation in spherical coordinates is,

U(r,t) = 0
Y, (6,4) .
~ 1 2m -1t
Ug(r,t) = -5 ¥, (0) 3¢ N (I11.5.1)
¥, (6,4) .
_ _&I_n—— -1wt
U¢(r,t) = -Yl(r) 30

where the spherical coordinates r, 6, and ¢ are shown in Figure III.5.1.
Eq. (III.5.1) defines the free oscillations of the earth when vibrating
in a torsional mode. In the above equation, y1(r) is the depth dependent
displacement eigenfunction and Yzm(6,¢) is the spherical surface harmonic
which is independent of depth and earth structure, and describes the
oscillations of the surface of a sphere. Also, £ 1is the angular order
number, m the azimuthal order number, and w, the eignfrequency. The
radial displacement, Ue(r,t) depends on m, and the transverse
displacements will depend on £. For the torsional modes, the radial

motion is negligible.

As pointed out in section III.2, the normal modes of the earth are
defined by 2 parameters, n and £, for constant azimuthal order m.
Therefore the modal properties to be described in this section, y1(p), w,
L,(u)), LZ(UJ), etc., are functions of the mode, n, and the angular order
2. To simplify notation the subseripts, n and £, are implied for the

remainder of this discussion for frequency dependent functions.

The form of the spherical surface'harmonics, Ylm(6,¢), is given in

eq. (II1.5.2),
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Figure I11.5.1

Y

FALT PLANE

(b.)

(a.) Polar coordinate system with nara-
meters, r,0,0 and (b.) fault representa-
tion defining the slip vector D and slip
angle )\ which is measured counter clock-
wise from the x, axis and the dip angle &
measured from the negative X, axis,
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Ylm (6,9) = -1)" 22;1 %%iﬁ%% P?(cos@) eim¢ m >0
= (D™ ¥, (6,0) m <0 (II1.5.2)

where P"(cos 6 ) is the Legendre polynomial, which for an argument X,

satisfies the differential equation,

m

P: (x) = (1—x2)2 — p:(x) m>0 (111.5.3)

Knowledge of the displacement field as given in eq. (III.5.1) makes
it possible to determine the potential and kinetic energy integrals as
derived by Takeuchi and Saito (1972), and expressed in the previous
section (see eq. (I1X.4.3)). After considerable algebra, equations
(II1.5.1) to (III.5.3) are solved to give the displacement due to a point
source in terms of the normal modes of the earth. The total displacement
motion is then expressed as a superpostion of each mode. The general
form of the displacement, U (r,t), observed on the surface of the earth,
and excited by a point double-couple source varying stepwise, is given

by,

(Eij(rs) Mij) yl(rs)

DD I D
n £

o’ y, (T o) y, ()

(1l-coswt)

(I11.5.4)
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where the forcing function [H*(t)] in eq. (III.3.11) is replaced by the
term eij(rs)Mij' This represents the foreing function of the earthquake
applied at a point rs. Eij is the strain tensor at the source and Mij is
the seismic moment tensor, (Geller, 1979).

Eq. (I11.5.4) represents the solution for ground displacements by

the normal mode method. After evaluating the strain tensors, the result

for the transverse component, U¢(r,t), is,

Uq)(r,t) = E Z yl(r) cosw t
n £

1 2
dP, (cosB) dP, (cosf)
'3 (111.5.5)
(L (Wa —g— + L@p g )

The terms, p and q, in eq. (II1I.5.5) are geometric factors that depend

on the fault mechanism and source site azimuth and are defined as,

(refering to Figure I1I1I.5.1a,b),

-(cosA cosl) sind + (sint cos28) cosd

£
"

(111.5.6)
(sinA sin cos§) sin2d + (cos) sind) cos2d

ev]
I

L1(w) and Lz(u» are the earthquake foreing functions for a given mode and

angular order which are independent of source geometry, and defined to

be,

20 +1 Ya2(ry)

L (w) =
1 4ﬂug Il U(rs)
vy, (r)
Ly(w) = 22;1 1 s (II1I1.5.7)
4w Il rs
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where the subscript s denotes the value of the variable at the source
depth. I1 is the energy integral defined in eq. (III.4.1) and yz(r) is

the depth dependent stress eigenfunction, defined as,

dyl(r) yl(r)

dr r

yz(r) = ( ) (I11.5.8)

The equation for transverse displacement, eq. (III.5.6), is for a unit
moment. Geller (1979) presents the modal amplitude factors A1(w) and

Az(w) for the case of a moment tensor at the source, varying stepwise,

Al(w)

Ly (@) (M + M)

1

(I11.5.9)
7 (Mg = M)

Az(w) = Lz(m) (_M6¢ +

where the moment tensors were, p and q, in the case of a unit moment

without the azimuthal dependence ¢.

The time domain representation of the transverse component was given
in eq. (III.5.5), where U¢(r,t) was represented by a summation over the
number of modes. To solve for U (r,t), the asymptotic expansion of the

¢
Legendre polynomial is used, which is
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P?Z(cos@) x QIO gm cos( (L + %) 8) +

m1 s 2
(7 - Z) Trsind (111.5.10)

By a change of variable, the summation over £ in eq. (III.5.6) is
replaced by an integral over, w, the frequency. The variable change, k =
(2+ 1/2)/a and d L = dk/(dw/dk), is used where k is the wavenumber and
dw/dk is recognized to be the group velocity u{w). Expansion of eqgs.
(1I11.5.5) and (I11.5.10) into complex form, and substituting eq.

(II1.5.10) into the new expression for U¢(r,t), leads to the following

result,

U‘b(r’t) = 2—1,”— 1 Z/ v,(0) [p pl(w) + iq Qw1
\/sine n v

exp (- %?) exp (-iwab/c(w)) exp (iwt) dw

" (I1I.5.11)

This is the Fourier transform integral for U¢(r,t). Simplifying notation

and identifying terms,

1 _ T 2 1 a
P(w)——y 2 ¥ +_2_)Tx—(—m7 L, (w)
(111.5.12)
-1 _ T 1 a

where L1(w) and LZ(UD are the source terms which depend on source depth

and the earth structure as defined earlier. Also,
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C(w)y = 1 [p Pl(w) + iq Ql(w)]

‘/sine

exp (-1 %) ©exp (-iwab/c(w))  w >0  (1171.5.13)
c(-w) = C () w <0

which is the Fourier transform of displacement due to a unit double
couple source varying stepwise, and p and q are the geometric factors
accounting for source-site azimuth and fault geometry. The 1/¥sinf  term
accounts for the geometric spreading of surface waves where O is the

source-site distance in radians.

In seismology, where the generation of synthetic seismograms is of
interest, the source excitation terms are interpolated at equal spacing
over the desired frequency range, and inverse Fourier transformation
produces the time domain signal. In this work the frequency function is
of interest and therefore C(w) is used throughout the remainder of this

chapter.

The solution derived to this point describes the displacement at a
site due to a point source with a step function execitation. In this work
acceleration motion due to the propagating rupture of a fault segment is
desired. By the derivative theorem, the Fourier transform of

acceleration, A{w), is given by

Alw) = -w Cw) (III.5.14)

For other than the first point of rupture, the excitation due to a

general segment will be shifted in time until the rupture reaches that
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point. Denoting the time of rupture initiation at a segment j as trj, by

the shift theorem the acceleration transform becomes,

Alw) = —w2 Clw) e

-ivtr (111.5.15)

The Fourier transform of displacement derived previously was for a
source dislocation function that varied stepwise in time. This is shown
in Figure III.5.2a. In this work a ramp dislocation function, (Haskell,
1964), is used, as shown in Figure 111.5.2b. Therefore to transform the
results for a step function, to that for a ramp, the time domain function
is’ convolved with what is known as the far field source function. This
function is equal to the derivative of the desired source dislocation
function. In this case the derivative of the ramp function is a box-car

of duration equal to the time until the final dislocation, D , is reached

0’
(see Figure I1I1I1.5.2b)., The far field source function is shown in Figure
I1IT1.5.2¢c. The time it takes to reach Do is known as the rise time and is
denoted by T. In the frequency domain, the convolution with a box-car

results in a multiplication with a sinc function, (sin x/x), the box-car

transform. Thus A(w) now becomes,

sin (Tw/2)

AW = - C(w) e

exp (—iw(trj + 1/2)) (111.5.16)

The acceleration spectrum is further modified due to the fact that

the earthquake source is no longer a point but a propagating finite line
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Figure I11.5.2 Source dislocation functions vary-
ing as a (a.) step function, (b.)
ramp function with rise time T, and,
(c.) the far field source time func-
tion.
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source having a velocity v, over a length L. The effect due to rupture
over a finite source is known as directivity and was first studied by
Ben-Menahem (1961). The acceleration transform is modified due to this
effect in a manner similar to that for a ramp dislocation. The

directivity effect is

31n(TLw/2) —iTLw/Z
T 0/2 € (II1.5.17)
- L ,1 cos
where L 2 (Vr c(w )

¢ 1is the source-site azimuth, and c(w) is the wave phase velocity. The
resulting Fourier transform of acceleration due to a general fault

segment is,

9 . 5y sin(T w/2)
Aw = -’ o Sl ;s (I11.5.18)

exp (—iw(trj +1/2 + TL/Z))

The final factor to be included in the ground motion model is the
anelastic attenuation of seismic waves. This is taken into account by a

filter of the form,

expG—:EQ—O

2Qu(w) (111.5.19)

where r is the source to site distance on the earth's surface in
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kilometers, w 1is the frequency, Q is the specific attenuation factor and

u{w) is the group velocity.
II1.6 SUMMARY

In this chapter the model for generating the Fourier transform of
acceleration at a site was presented. The development was for a
propagating line segment of arbitrary position in space and time where‘
the motion is determined by the normal mode method. The modal
superposition method permits modeling of a radially heterogenous earth
with linear velocity gradients. The variational procedure of Wiggins was
used to identify the eigenfrequencies and modes to permit calculation of
the source excitation coefficients. The model presented is based on the
method developed by a number of researchers, as cited, and extended by

standard techniques to consider the directivity effect due to a
propagating source, a ramp source time function, and acceleration motion.
The normal mode method provides a realistic means of taking into account
the earth structure and free surface in estimating strong ground motion.
Also, since the eigenfrequencies and eigenfunctions are calculated once,
the method is quite efficient in generating synthetie spectra» or
waveforms. The next chapter demonstrates various aspects of this model

and applies it in modeling of strong ground motion from observed events.
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CHAPTER IV - THE NORMAL MODE METHOD: DETERMINTISTIC MODELING

IV.1  INTRODUCTION

Chapter TII presented the normal mode method for determining ground
motion due to a general fault segment. From this result an expression
for the total motion due to the complete fault rupture can be given as
the superposition of individual segment contributions. Although well
founded theoretically, the usefulness of a wave propagation model is
Judged by its ahility to reproduce recorded waveforms given the "propert
input. This statement +s admittedlv vague in its definition of model
verification. The philosophv of scientific investigation, as discussed
hy Jeffreys (1961), involves the basic differences hetween inductive and
deductive logic. In the n"esent‘discussion, the following approach is
taken. Ohserved ground motion data are modeled to demonstrate the
abilitv of the normal mode method to reproduce the distribution of energy
as a function of frequencv. This 1is to sav, that spectral levels are
considered of orime importance in the present work. Although time domain
comparisons are wused throughout this chapter when modeling ground
displacement and acceleration, spectral measures are more appropriate for
defining the future seismiec hazard. The reasons for this are related to
the complex dependence of the waveform phase on the fault rupture and
dispersion properties of the transmission medium, Thus spectral
amplitudes, which are not dependent on phase, are adopted. Fxamples of
these are the Fourier amplitude spectrum, power spectral density and peak
response spectrum, (McGuire, 1974: Anderson and Trifunae, 1977; Savy,

1979) .
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This chapter has two ohjectives; to Ademonstrate the effect various
source parameters have on geround motion, and then by modeling past
events, the capabilitv of the normal mode method to reproduce observed
ground motion. To carry out these tasks a location must be selected
where the earth's structure is known, and where strong ground motion
recordings are available. The Imperial Vallevy in southern Catifornia
meets these criteria, and is adopted as the studv area in this work.
This choice is particularly advantageous since other investigators have
modeled earthquake strong ground motion in this region with different
theoretical models, (Heaton and Helmberger, 1977, 1978; Swanger and

Boore, 1978).

After selecting the Imperial Vallev, results of the solution for the
normal modes and dispersion curves are presented. To demonstrate the
model in a general sense, examples of radiation pattern, directivitv,
dislocation rise time, and source denth effects are given. This will
serve to demonstrate the features of the model, as well as to define the
effect dvnamiec and geometric source characteristics have on ground
motion. Two seismic events are then selected to demonstrate in more
detail the normal mode technique, these are the 1968 Borrego Mountain
earthquake and the 1976 Brawlev earthquake. For each event the
displacement waveforms are modeled. In addition, for the Borrego
Mountain earthquake, synthetic acceleration time histories are compared
to the accelerograph recording obtained at the F1 Centro station. The
term synthetic refers to the waveform generated by the theoretical model.
The synthetic Fourier amplitude spectra of acceleration are compared to

the ohserved spectrum to assess the ability of the model to oredict the
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energy distribution as a function of frequencv.

IV.2  IMPERIAL VALLEY REGION

The Imperial Vallevy is an active seismiec region in southern
California which has exverienced a number of moderate to large (ML
greater than 5.5) earthquakes in the last 40 years. Figure 1V.2.1

presents a map of the Imperial Valley and surrounding region, denoting

1915(6Y4,6Ya '
NSon Diego . o

‘/‘ \\\
1934650~

) 3 <‘ Browley L_——T
% 1942(6.5) s .

—— e

o v 100 Miles

N M S R )

[is56(6.8,61,6.3,6.4)]
N

100 200 Kms.

Figure IV.2.1 Earthquakes of magnitude 6.0 and greater in the
southern California region, 1912 - 1972,
(Hileman et al., 1973).

events of magnitude 6.0 and greater.

The 1940 Tmperial Valley earthquake oproduced one of the most
significant acceleration recordings of ground shaking ever obtained.
Recently, the 1979 Imperial Vallev earthquake produced a recording with

the highest vertical acceleration ever, 1.74g, (USGS Open-File Report
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79-1654, 1979). For reasons of seismicity alone, the Imperial Vallev is
an excellent region to consider for this study. In addition, and just as
important, is the fact that the geologic structure in the Imperial Vallev
is well understood and in fact forms an ideal waveguide, (Biehler et al.,
19643 Clayton and McMechan, 1980). The events to be studied in this work
have been investigated bhv other researchers, (Heaton and Helmherger,
1977, 1978; Swanger and Boore, 1978), emploving the generalized rav
technique and the modal superposition method for a flat earth,
respectivelv. These works serve as a guide in the choice of fault models

to be used in this study.

Iv.2.1 IMPERIAL VALLEY EARTH STRUCTURE

Biehler et al. (1964) carried out P-wave refraction studies in the
Imperial Vallev region, Their study provides the tvpe of information
necessary to apply models such as the normal mode method. Figure 1V,2.2
shows the Imperial Vallev area, and the locations of the seismic
refraction profiles. Based in part on their results, Heaton and
Helmberger (1977) used a laver over a half-space in modeling the 1068
Borrego Mountain earthquake. Swanger and Boore (1978) on the other hand
used the more complicated strﬁcture given in Table IV.2.1. Their model
was set up to take into account the variation in lateral thickness of the
Imperial Vallev that exists between the hvpocentral area of the Berrego
Mountain earthquake and the Fl1 Centro recording station. Their earth
structure is adopted in this work to model the Borrego Mountain
earthquake and the 1976 Rrawlev event, except that the model in this
study uses linear gradients to describe the variation with depth of the

earth's density and seismic velocities. The earth structure used in this
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and the epicenter of the M4.9, November 4,1976 earth-
quake. Stippling indicates generalized outline of pre-
Tertiary crystalline rocks bordering the Salton trough.

. This figure has been modified -from Biehler et al. (1964).
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work is shown 1in Figure IV.2.3 with the structure in Table IV.2.1. The

Table IV.2.1

STRUCTURE USED BY SWANGER AND BOORE (1978)

Thickness P Velocity S Velocity Density3
(%m) (km/sec.) (km/sec.) (gm/cm.”)
0.25 1.7 1.0 2.0
0.30 2.1 1.2 2.2
1.35 2.4 1.4 2.2
0.95 3.3 1.9 2.4
1.65 4.3 2.5 2.5
7.0 | 6.2 | 3.6 ’ 2.9
3.5 7.1 4.1 3.0
—— 7.8 4.5 3.1

shear wave velocity and densitv are shown since the torsional modes are
considered in this work,. The 1linear gradient model is intuitivelv a
realistic model of the earth's seismic profile but not one to which the
Wiggins routine is restricted. In some cases, linear gradients within
layers, and discontinuities at laver boundaries, mav be the most
suitable, and one which the’present routine can handle. The effect of
having discontinuities between lavers is to insure sharp reflections, and
to clearly define a waveguide. The desirabilitv of this depends on the
structure being considered. Recent studies of the Imperial Vallev
structure indicate that the use of 1linear grédients is a realistic

representation of the seismiec profile, (Clavton and McMechan, 1980).

85



*Topouw juoTpead aesuf] 9yl dn Surzjzes ur opind ®
se pasn seMm YoTym ‘(8/61) ©iocog pue aaduemg Jjo Topou
9yl Y3aTa umoys £pn3is oYyl UT poSn INIdonals yiaes Iyl €°7°AI 2an3T4

/ , i | -0¢
\ Jlom STY3 — — } \ i

8/6T ‘@aoog pue aadueng

\ : |

\| | - 02

Coutt
L i
L L

e
—
:

r

o
-

r
1 4

Ny
v

W~

(-29s/wy) A (ewoywb) d

86



IV.2.2 RESULTS OF NORMAL MODE CALCULATIONS FOR THE

IMPERIAL VALLEY EARTH STRUCTURE

For the Imperial Valley earth structure presented in the previous
section, Wiggins' variational routine is used to generate the fundamental
and seventeen higher torsional overtones (a total of 18 modes). The
dispersion curves and eigenfunctions for each mode are calculated. The
excitation coefficients are determined at nineteen depths, from t to 19
kilometers spaced at one kilometer increments. For the purpose of
demonstrating the present probahilitvy model, eighteen modes provide
frequency information uo to approximately 5 hz., depending on the depth
of the earthquake. There is no numerical reason whv additional modes
could not be determined and included in the solution. This section

summarizes the results of the normal mode calculations.

Figure IV.2.U4 gives the dispersion curves for the Imperial Valley
structure in Figure IV.2.3. Figure IV.2.5 is an example of the depth
dependent displacement eigenfunctions for three modes; the fundamental,
the third overtone, and the seventh overtone. The mode shapes are shown
for angular orders corresponding to frequencies of 1.0, 2.0, and 5.0 hz.
Note that the higher overtones sample to a greater depth than the
fundamental mode at a given frequencv. As more overtones are included in
the analysis, body waves are being modeled as opnosed to surface waves
when only the fundamental and first few overtones aras considered. Since
body wave amplitudes are of major importance in determining the strong

motion, considering the higher overtones is essential.
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FUNDAMENTAL

THIRD
OVERTONE

SEVENTH
OVERTONE

Figure IV.2.5

2 hz 5 hz

Examples of the depth dependent, displacement eigen-
functions for the fundamental mode, and the third

and seventh overtones. The eigenfunctions are
selected at angular orders corresponding to frequen-
cies of 1, 2, and 5 hz. Note the difference in depth
penetration at a given frequency.
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IV.3  EFFECT OF SOURCE PARAMETERS ON GROUND MOTION

This section demonstrates the effect different source properties
have on ground motion. Examples are presented to illustrate the effects
due to the radiation pattern of different source mechanisms, dislocation
rise time, directivity, and source depth. The examples are presented by
wav of displacement time histories. Since displacement waveforms in
general consist of the fundamental mode and 4 or 5 overtones, the time
histories are low frequency and relatively narrowband. Consequently,
phase and amplitude variations can be observed quite easily. The
corresponding effect on the Fourier amplitude spectrum is easily
understood, since the time domain effect will have a well known
counterpart in the frequency domain, due to the linearitv of the Fourier
transform. Unless otherwise noted the displacement motion in the
examples is for strike-slip motion on a vertical fault plane, (& = 900,

A = 09),

Iv.3.1 RADIATION PATTERN

The influence of fault geometry and radiation pattern for different
earthquake source mechanisms is considered first, The fault and

source-site geometric factors were presented in Chapter III. For easy

reference, Figure III.5.1 is shown here.

The angles & and A define the source geometry, and $ defines the

source-site orientation. The following focal mechanisms are considered:
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Figure III.5.1 (a.) Polar coordinate system with para-
(repeated) meters, r,$,0 and (b.) fault representa-

tion defining the slip vector D and slip
angle A which is measured counter clock-
wise from the x, axis and the dip angle §
measured from tée negative X, axis.

The source is a point with a dislocation time function that is a ramp
with a 1.25 second rise time. The time histories for each case are given
in Figures 1IV.3.1 - IV.3.4, For each focal mechanism the azimuth is
varied to demonstrate amplitude and polarity variation. Note the spvecial
case when the site lies on a radiation pattern node where no motion
exists. See for example Figure IV.3.1 for a strike-slio event, (§ = 907,
A= 0°), at a 45° azimuth. This phenomena does not occur during actual

earthquakes since P and SV motion will be dominant at these azimuthal

locations. Radiation pattern effects are a major comoonent in the
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analvsis to identify the focal mechanisms of earthauakes, (Bath, 1973).
As an example of observed seismic wave radiation, the El Centro recording
of the 1968 Borrego Mountain event lies almost exactly on a maxima of the
radiation pattern for SH motion and therefore the recorded motion is

predominantly transverse, (Heaton and Helmberger, 1977).

The radiation pattern and focal mechanism have first order
significance on ground motion. This is predicted by theory, and is

observed for everv earthquake.
Iv.3.2 RISE TIME

As shown in Chapter III, a source dislocation function that varies
as a vramp, modifies the time domain function by convolution with a
hox-car. This results in a smoothing of the time history to a degree
that depends on the rise time duration and the frequencies of interest;
Two examples of waveforms generated for a source with non-zero rise times
are shown in Figure IV.3.5. Syntheties for rise times of 0.5 and 3.0
seconds are presented. The tremendous smoothing by a 3 second rise time
is quite clear in Figure IV.3.5h. A nonzero rise time also results in a
phase shift of-u%;. The hox car function which describes the particle
velocity of a point on the fault is referred to as the far field source
function. The use of a ramp dislocation is a common approach but not

unique, (Aki and Richards, 1980).

IV.3.3 SOURCE DIRECTIVITY

The third source factor to be considered is directivitv. This is

the term used to describe the influence of rupture propagation alonz a
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(a.) T = 0.5 seconds and (b.) T = 3.0 seconds.
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source of finite 1length on the seismic radiation field. Waveform
amplification occurs at forward azimuths due to constructive wave
interference, contrasted by a deamplifying at back azimuths attributed to
destructive wave 1interference. Ben-Menahem (1961) first studied the
directivity function which has the form sin x/x, as given in Chapter III.
Boore and Jovner (1978) have also studied directivity effects. The

directivity function is repeated here for reference.

sin(TLw/Z) ~iT. w/2
T. w/2 L
L (111.5.17)
T = L CJ; _ cosd
whepe L 2 Vr (o4 (w)

In Figure 1V,.3.6, taken from the paper hv Boore and Joyner (1978), the
dependence of the directivity factor TL on the ratio of the rupture
velocity to the wave phase velocity and azimuth in a homogeneous whole

space is shown.

The directivity effect on spectral amplitudes for forward azimuths
is to increase the amplitudes of those frequencies above the corner
frequencay, fo. Figure 1IV.3.7 presents a time domain example of the
azimithal effeat on displacement waveforms. The fundamental mode and
four overtones are used in the calculations with a 3.0 second duration
far field source function that is a svmmetric triangle. The radiation

pattern and rise time contributions are constant in these examples.
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There 1is approximately a factor of 5 difference in the motion at the

forward azimuth, ¢=0°, relative to the back azimuth, ¢=1800.

T I' T }’ T r T l T

10.0

Y IIYIIVYI

T lll”.‘

[1/(v/B) -cosB] ™"
o

T

YJ‘YI

v/B
Figure IV.3.6 The dependence of the directivity on Mach
: number and azimuth. The peak motions are
proportional to the ordinate. Note the
disproportionate change going from azimuths
of 0° to 90° compared to that from 90° to
180°. This figure is for a homogenous whole
space and therefore does not hold for all

frequencies in the present model (Boore and
Joyner (1978)).

As observed by Swanger and Boore (1978), there is a complex
interaction between the phase veloeitv, c(w), and the.rupture velocitv.
Figure 1IV.3.8 is an example in the time domain ‘illustrating this point
for the fundamental mode Love waves. This is similar to the frequencv
domain demonstration of Swanger and Boore. There is a factor of 7
differénce between the case for a rupture velocitv of 2.5 km./sec. and 1

km./sec.

Few cases have been ohserved where directivitv has been accurately

indentified as having pnlaved a major role. This is due in part to a lack
of adequate multiple recordings for seismic events. One event for which

directivity has been identified as having amplified the observed ground

99



motion is the 1979 Covote Lake earthquake, (Archuleta, 1979).

DIRECTIVITY - AZIMUTHAL EFFECT
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Figure IV.3.7 An example of the azimutal effect due to
source directivity. The fault in this
example was 11 km. long at 6 km. depth.
The rupture propagated at a velocity of
2.5 km./sec. Results for the forward,
$ = 0°, and the back azimuth, ¢ = 180°

are shown.
IvV.3.4 SOURCE DEPTH

The depth of the earthquake source which is modeled as a point or
line source in this work, will have a distinct effect on ground motion.
How different depths actuallv effect the motion will depend a great deal
on the earth structure. For example in cases similiar to the Imperial
Valley where there 1is a well defined waveguide, the motion is
significantly altered if the event occurs in the waveguide or in the
region below. Considerable variation in amplitude, frequencv content,

and duration can result.
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DIRECTIVITY EXAMPLE
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An example demonstrating the complex
interaction between rupture velocity and
phase velocity for the fundamental mode.
The fault is 11 km. long, and rupture
propagates toward the site with the
velocities shown.
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for the shallow (4 km.) event. :
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An example of waveform variation due %o source depth is given in
Figure IV.3.9 for depths of U4, 6, 8 and 10 km. The fundamental mode and
four overtones are used in the calculations. In this case the source
time function is a symmetric triangle of duration 0.75 seconds. There is
a pronounced amplitude difference between the source at 4 km. and the
others. A difference‘in the amnlitude of the Love wave oscillations {(the
long period motion at the end of the time history) can also be obhserved.
The source at U km. is in the low veloecity waveguide (see Figure
IV.2.3), thus resulting in high surface wave amplitudes. As the source
is buried below the low velocity laver the relative amplitude of the

surface waves to body waves is reduced.

IV.4 BRAWLEY FARTHQUAKE OF 1976

The 1976 Brawlev event occurred on November 4 and had a 1local
Richter magnitude of u,g. This was the largest event of a swarm that
occurred in early November. The event triggered two displacement meters,
the first at Imperial Vallev College (IVC) and the second in El Centro
(ELC). This event has been studied by Heaton and Helmberger (1978) using
the Cagniard-deHoop technique, and by Swanger and Boore (1978) empvloving
the modal superposition routines of Harkrider (1064)., Both methods met
with reasonable sucecess in modeling the transverse motion. In this
section the tangential motion at both stations is modeled and the seismic
moment and far field source time function is estimated. The specific

attenuation factor Q, is set to 200 throughout this studv.

IV.4.1 MODELING GROUND DISPLACEMENTS

Heaton and Helmberger (1978) presented a focal mechanism solution
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determined from the Caltech-USGS network in southern California. Their
findings indicate the fault dislocation was predominantly strike-slip on
a near vertical plane, (6=90°, %=0°). Station IVC lies almost exactlv on
a P-SV radiation pattern node, thus the motion recorded was predominantly
transverse, Station ELC lies just 130 off the P-SV node and therefore it
also recorded a major nportion of the SH motion, (Heaton and Helmberger,
1978). Figure 1IV.2.2 showed the earthquake epicenter and station
locations for this earthquake. Station IVC is 33 km. from the
epicenter, and station ELC is 36 km. away. From the results of Heaton
and Helmberger (1978) the source is put at a depth of 7 kilometers on a
vertical strike-slip fault. The earth structure 1is the one presented in

section 1IV.2.

Figure IV.4.1 presents the step function response at each station of
the fundamental mode and four overtones. The observed transverse
displacement is shown at the top of each figure. Note the similarity in
the observed waveforms, and in the synthetics for both stations. This is
expected due to the proximity of the stations to one another and the
finiteness of the source with respect to the source-site distances. The
arrival time of the direct rav is shown on each figure thus allowing an
accurate alignment of the syntheties with the observed record. This

procedure is used throughout this studv.

Figure IV.4.2 shows the result of applying a far field source
function that is a symmetric triangle of 1.50 seconds duration. The
observed displacements are given at the ton of each figure. The
synthetics quite clearlv reproduce the overall character of the observed

waveforms at both sites. Although some of the later peaks in the
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synthetics have early arrival times which mav be due 1in part to the
earth structure used in these calculations, the waveform match is very
good. Heaton and Helmberger (1978) in modeling the same event, have a
first layer of approximately 1.0 km. thickness with a shear wave
velocity of 0.88 km./sec. This is about 15% bhelow the shear wave
velocity in the present model., The seismic moment for the svnthetics in
Figure IV.4.2 was 4,65 x 1023 dyne-em which compares well with the value
of 3.2 x 1023 dvne~cm determined by Heaton and Helmberger (1978). Note
that four overtones were reguired to reasonablv repnroduce the obhserved

mot.ion.

This exercise demonstrated the overall ability of the normal mode
method to model strong motion displacements. It also served to
illustrate the importance of the earth structure. For the frequencies
modeled in the displacement waveforms, onlv a point source was required,
thus the earth structure almost entirelv determined the motion in this
frequency band., The implications of this for modeling future strong
ground motion in seisﬁic hazard analysis are important and highlight the
inadequacv of empvirical attenuation models when these do not take into
account the earth structure. The seismic moment estimate for this event
was 4.65 x 1023 dyne-cm, and the far field source function is estimated

to be a symmetric triangle of 1.5 second duration.

IV.5 BORREGO MOUNTAIN FARTHQUAKE

The Borrego Mountain earthquake of April 4, 1968 had a local Richter
magnitude of 6.1, The event occurred on the Covote Creek fault with

dislocation on the fault primarilvy right lateral. The displacement and
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acceleration motion recorded in El1 Centro are modeled in this studv., The
results of Heaton and Helmherger (1977) and Swanger and Boore (1978) are
used as a guide in the selection of source parameters., The intent in
this study is not to present a complete seismological study of this
event, but to demonstrate the general capability of the normal mode
method to reproduce the observed ground shaking intensity at the
recording site., The displacement recording is considered first, after
which the acceleration record and the Fourier amplitude spectrum of

acceleration are studied.

Figure IV.5.1 shows the epicenter and aftershock zone of the Borrego
Mountain event and the El Centro recording station. As shown in the
figure, the recording station has an azimuth of, 80, and therefore lies
very close to a maxima of the SH radiation pattern. The motion at Fl
Centro was therefore predominantlv transverse, as shown in Figure IV.5.2
where the observed radial, transverse, and vertical components of
displacement as deconvolved from the Carder displacement meter are
presented. The FEl1 Centro station is 60 km. from the earthquake
epicenter. The specific attenuation factor, Q, is assigned a value of

200 throughout this study.

IV.5.1 MODELING GROUND DISPLACEMENTS

The event is modeled first as a point source at a depth of 6 km.
with a source dislocation function that varies stepwise. This result is
shown in Figure IV.5.3 where the contrihution of the first six modes are
given with the sum. The step function response is convolved with two

different far field source functions. The results of each convolution
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Figure 1IV.5.1 Map of the Imperial Valley area showing the epi-
center of the 1968 Borrego Mountain earthquake
and location of the El Centro recording site.
The hatched rectangular area denotes where most

of the aftershocks occurred, (Map modified from
Swanger and Boore, 1978).
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Figure 1IV.5.2 Observed ground motion displacements at the

El Centro Station rotated into vertical,
radial and tangential components.
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Figure IV.5.3
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are given in Figure 1IV.5.4, with the observed displacement record. The
seismic moment estimate and the arrival time of the direct ray are shown

on each figure.

The synthetic waveforms reproduce the overall character of nearly 40
seconds of motion. In both examples the relative amplitudes of the peaks
are not the same as in the observed record. Swanger and Boore (1978)
point out the effect of the depth of focus on the relative amplitudes and
suggest a focus depth of 8-9 km. for a point source would give better

results.

The source is modeled next as a propagating line with two segments.
In the first example the line source is at 6 km. depth and the rupture
propagates with a veloeity of 2.4 km./sec. for a step function
disclocation in both segments. The segment lengths are 22 and 11 km.
with the longer segment rupturing toward the recording site. Six modes
are included in the solution for each segment and are shown in Figure
IV.5.5 with the sum and the observed record. The first 6 waveforms are
the contribution of the segment rupturing away from the site, the next 6
are for the segment rupturing toward El Centro. Note the contrast in the
contributions to the total motion of the two segments. This is due to
the directivity effect demonstrated earlier, and to the fact that the
segment rupturing toward the site contributes 2/3 of the total seismic
moment for an assumed distribution of the moment hased on source length.
Note that the later oscillations have been lost. Figure IV.5.6 presents
the result of convolving the stepfunction response with a svmmetric
triangle of 3 second duration as the far field source time function. The

match is improved over that of the stepfunction.
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Comparison of the observed transverse component and
the synthetic for the step function response in
Figure VII.5.3 for a far field source function that
is a symmetric triangle of 3 second duration. The
moment estimate is in dyne-cms. The arrival time of
the direct ray is shown.
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Figure IV.5.4(b.) Comparison of the observed transverse component and

the synthetic for the step function response in
Figure VII.5.3 for a far field source function that
is an inverted triangle of 4 second duration. The
moment is in units of dyne-cms. The arrival time of
the direct ray is shown.

113



DISP

BORREGO MOUNTAIN EARTHAQUAKE

| L

1
- 26
. Mb—l.leO

> observed

8cm
sum

Is | fifth

fourth

third

second

first

fundamental

fifth

fourth

third

second

first

fundamental

e oo,

{ i { |

Figure IV.5.5

20 40 60 80
TIME (sec.)

A comparison of the synthetic step
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2.4 km. /sec. towards El Centro. The

rupture velocity in the shorter seg-
ment was the same. The arrival time
of the direct ray is shown. ’
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Figure IV.5.6
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A comparison of the step function response in
Figure VII.5.5 convolved with a symmetric triangle
far field source function that has a duration of 3
seconds. Note the later Love wave oscillations are
lost. The arrival time of the direct ray is shown.
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Figure IV.5.7 presents the stepfunction response for a much shorter
fault that ruptures bilaterally 5 km. toward El Centro and U km. awav.
Figure IV.5.8 shows the stepfunction response convolved with various far
field source time functions. On each figure the observed record is given
along with the seismic moment estimate. Both cases reproduce the general
character of the observed record. Note that in the examples presented,

the motion is modeled adequately bv three or four modes.

The results of modeling the strong motion displacements show no
clear constraints on the source dimensions. A point source seems to
model the E1 Centro recording as well as an extended source. The 9 km,
length fault and the point source appear to match the observed motion
equallv well. On the basis of these preliminarv observations the
suggestion by Burdick and Mellman (1976) that the Borrego Mountain
earthquake was due to a massive rupture on a small ruoture plane cannot
be disputed. Their estimate of a ecircular rupture area, had an 8 km.

radius and a stress drop of 96 bars,

The average seismic moment estimated from the results in Figures
IV.5.4 and 1IV.5.8 is 9.3 x 1022 dvne-cm. As poiﬁted out by Swanger and
Boore (1978) the Carder Displacement readings are 1less than those
obtained from the doublv integrated accelerogram. Therefore the seismic
moment based on comparisons with these displacements will be
underestimated by aporoximatelv 20%, (Swanger and Boore, 1978). On this
basis the seismic moment is increased to 1.12 x 1026 dvne-cm. This
compares well with the results of Burdick and Mellman (1976) who

estimated the moment to he 1.10 x 1026 dvne-cm., and Swanger and Boore

(1978) who found an average moment of 1.2 x 1026 dvne-cm.
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Figure IV.5.8(a.) Step function response of Figure VII.5.7
convolved with a reversed ramp far field
source function of 4 second duration,
compared with the observed displacements.
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IvVv.5.2 MODELING STRONG MOTION ACCELERATION

Also recorded during the Borregzo Mountain earthquake was an
accelerogram ohtained at the same recording station. The acceleration
recording was processed by the Earthquake Engineering Research Laboratorv
at Caltech, (Trifunac and Lee, 1973). Svnthetic acceleration time
histories are generated for various sources and compared to the observed
motion. The Fourier amplitude spectra are also compared to determine
whether the energy has been accurately distributed over the frequency

band being modeled.

In modeling the ground accelerations at Fl1 Centro the following
approach is taken. Based on this work and that of Burdiek and Mellman
(1976), Heaton and Helmberger (1977), and Swanger and Boove (1978), the
seismic moment is assumed known and equal to 1.0 x 1026 dvne-cm. The
fault rupture 1is then modeled to ohtain svnthetic acceleration time
histories. These time histories are compared to the observed data for

phase and amplitude correlation.

The first source considered is a point at 6 km. depth with a
dislocation rise time of 0.75 seconds. Figure 1IV.5.9 shows the complete
synthetic and the eighteen contributing overtones. Note for this case
that all modes contribute abou*t equally to the total motion, with the
exception of the fundamental and the first overtone. The observed
acceleration record is shown at the top of the figure which has been low
pass filtered with a 3.5 hz. cutoff frequency to allow for a better

comparison. There is a distinct similarity in the major arrivals of the
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synthetic and the observed record. The amplitude of the svynthetic
acceleration 1is approximately an order of magnitude greater than the
actual record. This is due to the large stress drop associated with the
point source. Comparing the Fourier amplitude spectra of the observed
and synthetic, it can be seen that the shave of the generated spectrum
does not compare well with the observed. This is shown in Figure

Iv.5.10.

Figures IV.5.11 and IV.5.12 opresent the synthetic acceleration time
histories for an extended source of 5 km. length at a depth of 6 km. 1In
both cases a rise time of 0.75 seconds is used and the rupture propagates
unilaterally toward E1 Centro for the entire fault 1length. In Figure
IV.5.11 the rupture velocity is 1.5 km./sec. and in Figure IV.5.12 it is
2.5 km./sec. The observed record is shown at the top of each figure. A
number of observations can bhe made from these examples. The rupture
velocity and phase velocity interaction is evident in the time historv
amplitudes. The higher rupture velocityv produces amplitﬁdes about 3
times those in the lower rupture velocity case. A comparison of the
svnthetic waveforms with the observed reveals that for a slow rupture
velocity, the match with the recorded motion is not verv good. The
comparison is considerably better in the case of a 2.5 km./sec. rupture
velocitv. The major wave arrivals of the synthetic align extremelv well
with those in the observed motion. The relative amplitudes of the major
peaks compare favorably to their éounternart in the ohserved, however the
amplitudes of the svnthetics are still an order of magnitude greater than

the observed motion.

Figure 1IV.5.13 compares the Fourier amplitude spectra of the
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A comparison of the observed Fourier amplitude
spectrum and the synthetic spectrum produced
by a fault of 5 km. length that ruptures
unilaterally toward El Centro. The rupture
velocity is 2.50 km./sec. and the rise time

is 0.75 sec.
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synthetic 1in Figure 1V.5.12 and the observed record. The spectral shave
has been improved considerably over the stepfunction response with the
introduction of a propagating source, but the amplitudes are
significantly higher than for the observed. This is due to the high
stress drop corresponding to the event. If the source is rectangular,
and the length is assumed twice the width, (Geller, 1976), the average
stress drop would be about 1280 bars., This 1is an unrealisticallv high
value for the average stress drop, (Kanamori and Anderson, 1975), as the

acceleration motion reflects.

The next source investigated consists of a hilateral rupture which
ruptures 5 km. toward and U km. awav from the recording station. The
rupture velocitv was 2.5 km./sec. with a rise time of 0.75 seconds in
both segments. The waveform is shown in Figure IV.5.14 with the observed
acceleration. The comparison is aeain verv good. The maior wave
arrivals are matched well for approximatelv twentv =seconds. Comoaring
the synthetics in Figure IV.5.12 and IV.5.14, it is noticed that there is
very little difference between these results. This indicates the strong
directivity effect leading to the domination of the motion by the segment
rupturing toward the recording station. Figure 1V.5.15 compares the
Fourier amplitude spectra of the synthetic and the recorded waveform.
The spectral amplitudes are still significantly larger than those for the
observed record. The average stress drov associated with this event is

219 bars,

It is apparent from the svnthetics generated to this point, that the
motion is moverned tn a considerable degree by the earth structure. This

appears to be the case, since for nearlv everv source modeled there are
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FOURIER AMPLITUDE (CM/SEC.)
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Figure IV.5.15 A comparison of the observed Fourier amplitude
spectrum and the synthetic spectrum for a fault
with bilateral rupture. Two segments of 4 and 5
km. rupture away and toward the site respectively.
The rupture velocity is 2.50 km./sec. and the
rise time is 0.75 in both segments.
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distinct arrivals of certain phases. This was true for the point source
as well as the extended sources. The directivity effect is verv evident
in the examples for an extended source. The difficultv in obtaining a
solution rests in the abilitv to resolve the source characteristies,
namely, the source dimensions, ruoture velocity, rise time, and denth.
For a single station, located at almost a zero azimuth, this task is
particularly difficult. Since the stress drop 1is bproportional to
acceleration, the acceleration amplitudes can be reduced hv a
corresoonding decrease in the average stress drop. For a given seismice
moment, this is accomplished by increasing the dimensions of the rupture
area. The examples to follow take this into acecount, along with the

effect of source depth.

Figure IV.5.16 presents an example of four events with the same
source characteristics but buried at depths from 6 to 9 km. The source
is 13 km. long and is modeled with two segments. A 7 km. segment
ruptures toward E1 Centro and a 6 km. segment ruptures awav. The
rupture velocity and rise time are 2.7 um./sec. and 0.7% seconds
respectively in both segments. The increase in depth has the effect of
reducing the amplitudes of all waves, in particular the later surface
wave oscillations. However bv increasing the fault dimensions, the
waveform amplitudes have been reduced hut are still quite a bit higher

than those in the ohserved record.

Figure IV.5.17 oresents two svnthetics to test the effect of low
rupture velocities for the segment rupturing toward F1 Centro. The
rupture velocities are 1.90 and 2.1 km./sec. The first observation to be

made is that the slow runture velocities result in a lengthening bf the
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ma jor peaks, and a corresponding decrease in the wave amplitudes.
Basicallv the slow rupture results in a 1loss in the character of the
svnthetic waveform. This suggests that for the segment rupturing toward
El Centro, a rupture velocitv greater than 2.1 km./sec. 1is indicated.
This lower bhound is similar to the value suggested by Swanger and Boore

(1978) in their studv of ground displacements.

The next group of svnthetics considered are for faults of
increasingly longer rupnture lenghts., These examples are set up based on
the previous results that seem to indicate that a single line source be
placed at a depth of 6 - 7 km. and that a relatively short segement of
about 5 km. length rupturing toward F1 Centro dominates the observed

motion.

The results shown in Figure IV.5.18 attempt to obtain a reasonable
amplitude match with the observed record. As the segment that ruptures
awav from El Centro is increased in length the amplitudes improve. Due
to the destructive interference of the directivitv effect, the changes in
rupture velocity or length of the segment rupturing awav does not effect
the motion as recorded at E1 Centro. The best amplitude-phase match is
for the case of a 55 km. fault where a 50 km. segment ruptures from the

focus to the north.

A comparison of the Fourier amplitude spectrum of the observed
record and the synthetic indicates that the shape and spectral values
match reasonably well with the observed, This 1is shown in Figure

1V.5.19.

The examples presented in this section demonstrate the strong
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- A comparison of the Fourier amplitude spectra of the observed

record and the synthetic, for a fault that ruptures 5 km.
toward El Centro and 50 km. away from the site. The rupture
velocity and rise time are 2.5 km./sec. and 0.75 sec.
respectively. The observed spectrum has been smoothed.
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sensitivity of the acceleration motion to the details of the fault
rupture. As expected, the rupture velocity, directivitv, and the average
stress drop are the dominant factors. Based on a single station
recording, efforts to resolve these factors are quite constrained.
Results based on acceleration amplitudes suggested that the fault

ruptured for a length of 55 km., but are in no way conclusive.

The studvy presented was intended to demonstrate the ahilitv of the
normal mode method to model strong ground motion. The observations of
previous investigators have been used throughout this studv in selecting

source parameters.

IV.6  SUMMARY

This chapter nresents results using the normal mode method desceribed
in Chapter III. The Imperial Vallev structure was chosen as an
appropriate region for this study due to the excelient information on the
Imperial Vallev structure and the availabilitv of strong motion data.
Fffects on strong motion due to radiation pattern, focal mechanism, rise
time, directivity, and source depth were aiven, These factors
demonstrated the variation of ground disnlacements due to different

properties of the seismic source and source-site geometrv,

Two earthquakes were considered to show the capahility of the normal
mode method to model strong ground motion, these were the 1976 Brawlev
earthquake and the 1968 Borrego Mountain event. Fo» both events the
ground displacements were modeled, and for the Borrego Mountain
earthquake ground acceleration was also considered. For the Brawley

earthquake a point source was used to reproduce the overall character of
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the ohserved Aisplacements. The seismic moment estimated for this event
was U.h x ‘IO;H3 dvne-cm. This event not only served to demonstrate the
capabilitv of the normal mode method to reoroduce recorded strong motion
displacements, but also clearly showed the importance of the earth

structure.

The Borrego Mountain earthquake served to demonstrate the importance
of the earth structure as well as the significance 1in being able to
define the details of the source when modeling high frequency motion.
Thia event provided an opportunitv to model ground accelerations as well

26

as displacements. A seismic moment of 1.12 x 10 dvne-cm is estimated

from the displacement synthetics for this earthquake.

The results of modeling the acceleration motion indicate the extreme
sensitivity of the waveform amplitudes to stress drop and rupture
velocity. Source directivitv played a major role in generating svnthetic
accelerograms havine the proper phase and relative amplitude match.
Modeling the acceleration motion made it possible to obtain an estimate
of the spatial extent of the fault rupture which could not be
accomplished 1in modeling the displacement motion. The preliminary
results of this studv suggest that the motion observed at El1 Centro was
dominated bhv the rupture along a single fault segment that rupntured
toward the recording station. This sesment is estimated to be 5 km.
long, and the rupture velocity i3 approximatelv 2.5 km./sec. A lower
bound on the rupture veioecitv of 2.1 km./sec. 1s sugrested for this
segment . With data from just one recording station it becomes very
difficult to resolve anv details of the rupture as it propagates away

from the site. As a result the solution presented is not verv well

137



constrained. The excellent match of the waveform phases emphasizes the
first order importance of the Imperial Vallev structure on future efforts
to predict strong ground motion and suggest that modeling ground
accelerations mav be well suited to resolve source dimensions and rupture

characteristies.
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STRONG MOTION ACCELFRATION

V.1 INTRODUCTION

This chapter describes the Monte Carlo simulation emploved  to
generate obhservations of the earthquake bprocess discussed in Chapter
II. This approach is similar to the one used by Boore and Jovner (1978),
and Savv (1978), to mgenerate realizations of a stochastic rupnture process.
Monte Carlo simulation is a realistic method to obtain numericallv, a
statistical sample from a probahilistic model that may bhe extremely
complex or imoossible to solve analvtically. Simulation mav in some
cases he the only means to obtain a solution. The other topics to bhe
addressed in this chapter are the description of the random variables of
the process, the statistical information available about these variahles

and their assumed probabilitv distributions.

The simulation presented in this studv can be used for a number of
applications other than the one discussed in Chapter IT. For example,
the ability to generate an ensemble of realistic acceleration time
histories at a site due to a maximum credible event, would be one such
application. This capability mav be particularlvy advantageous for

special structures snuch as nuclear power plants, LNG facilities, etec.

V.2 MONTE CARLO SIMULATION

The problem of interest in this work is to determine the derived
distribution of a variable(s) which is a function of a number of random

variahles. Monte Carlo simulation is an alternative solution technigue
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that can be used to "solve" such probhlems. The cost effectiveness of
modern computers makes simulation a reasonable and practical alternative

" in many applications.

The concept of simulation is one of sampling a sufficientlv large
number of times from the prohabilitv distributions of the functionally
independent variables to obtain observations of the dependent variable,
given their functional relationship. The term sufficientlv large
theoretically means infinitv, but in practical applications the number of
similations is usually chosen based on the degree of accuracy needed. A
simulation therefore constitutes a set of experiments, which if repneated
an infinite number of times would produce a histogram that is exactly the

probability distribution of the dependent variable.

During the experiment a random sample is obtained from the
probabilitvy distribution of each independent variable. Sampling from a
prohabilitv distribution is carried out bv obtaining a set of random
numbers that are mapped throuch the cumulative distribution function of
the random variable of interest. This is usuallv done bv choosing random
numbers from s table, (Abramowitz and Stegun, 1972), or as generated from
a computer algorithm, that are equally likelv (Uniformly distributed).
The Uniform random variable is then related, or mapned by a mathematical

function, into the random variable of interest.

Mathematically, for continuous variables, sampling from the
probability distribution of a random variable x, can be defined as

follows. Let,

140



Fx(xo) = P [X< XO]

and (v.2.1)

|
ot

fY(yo) o<y <1

0
Since samples of vy are Uniformlv distributed, the problem is that of a
derived distribution to map v into x. What is required, therefore, is a

function, g(v), such that,

e
1

g(y)
(V.2.2)

FX(xo) = FY(g—l(y))

where the function g(v) represents the one to one transformation o~

maopping of v into x.

To summarize, sampling from the orobability distribution of a random
variable requires the abilitv to generate or obhtain samples of a
Uniformly distributed random variable and a functional relationshio

describing the mapping to the random variable of interest.

V.3 STOCHASTIC FAULTING PROCESS

Seismic occurrence models, such as Poisson or Markov models describe
the distribution of seismic events in time. The method presented here is
conditional on the occurrence of an event, therefore the =size of the
earthquake 1is assumed known. The extension of the model to the total
seismic hazard simply involves 1including the event size as a random
variable, (Savy, 1978). This discussion is also 1limited to a single
seismiec source. Once again considering more than one ~source in the

hazard mode)l involves a summation of the hazard due to each source, (Shah
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et al;, 1975). With this introduction, the Monte Carlo simulation begins

with the following known information: the seismiec source and

information needed to define it geometricallv, the

the

site location. Figure V.3.1 presents graphicallv the input

described.

V.34

\seismic source

M (seismic moment)
o

OVSite

(a.) plan view

r'd

T

8 o(r)
v (1)
Vz(r)

(b.) cross-section A-A

Figure V.3.1 A view of the problem input as consid-
ered in this work, (a.) plan view
defining the seismic source, event
size and site location, and (b.) a
crossection defining the fault geometry,
and earth structure.

RANDOM FAULT SEGMENTS
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transform of acceleration due to a single fault segment rupturing along a-
line source. The form of the solution due to the compiete fault rupture
is the sum of the individual segment anontributions, where the fault is
modeled as a seriés of line segments at constant depth. These segments
are called coherent segments, (Boore and Joyneﬁ, 1978; Savy, 1978),
meaning along their length, the random variables of the fault rupture are

constant.

The concept of introducine randomness into the description of the
fault or rupture nrocess is not new, (Haskell, 1966; Boove and Jovner,
1978; Kanamori, 1979). The basic theme is to take into account in
dislocation models, the roughness o» spatial variation of frictional

resistance alone the fault, Nur (1978),

Before the fault segments can be descrihed, the region on the fault
plane that ruptures must be identified. The fault has hbeen modeled as a
dippine plane described by the location o? its surface strike, and dip
angle. In seismic hazard analysis it is generallv assumed that the
occurrence of an event is equallv likelv at anv point on the fault., If
different parts of a fault exhibit varving levels of seismicity, the
fault is often divided 1into separate seismic sources. The assumption of
equally likelv occurrence is also made here, therefore the center of the
fault area to rupture is assumed to bhe Uniformlv distributed along the

fault length.

Kanamori and Anderson (1975) have looked at data relatine seismic
moment and average stress drop to the area of rupture, For a constant

stress dron, log (S) Vv 2/3 log M, where S is the ruoture area and M_ is
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the seismic moment. In their study, events were grouped according to
whether they occurred on faults that are inter-plate faults, that is thev
are boundaries between major tectonic plates or intra-plate, meaning the
fault lies within a plate. Thev found that events ocecurring on
inter-plate faults have average stress drops of ahout 30 bars. Similarlv
intra-plate events had an average stress dronp of around 100 bars, For
those events not belonging to either group, an average stress drop of 60
bars was suggested. For an assumed stress drop and seismic moment, an
estimate of the rupture area 1is obtained from the relation derived bhv
Kanamo»i and Anderson (1975). The rupture area is estimated according

to,

log (S) = % [log (M) - log (co)] (V.3.1)

where AC is the averapme stress drop and ¢ is a geometriec factor depending
on the shape of the rupture area. In this work strike-slip events are

considered, therefore equation {(V.3.1) becomes,

log (5) = % [log (M) - log (% Ach )] (v.3.2)

where Ar is the aspect ratio of ruoture width to length. Geller (1976)
has shown empirically, with considerable scatter, that the asnect ratio
has a mean value of 1/2. Since, as Geller points out, no distinction can
be made between inter and intra plate events, the aspect ratio is

considered random, and Uniformly distributed between 1/3 and 2/3 with a
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mean of 1/2. Fo» a realization of the aspect ratio, the rupture area is

determined, since, Mo’ and Ao are hoth known.

From the location of the center of the runture zone on the fault,
and the rupture area, the bounds on the region of fault dislocation is
defined. From this point the fault segments can he generated. After

Boore and Joyner (1978), the coherence length of a segment is taken to

follow the exnonential probability law with parameter AQ. The
exponential probahility density function is given as,
£.o(x,) = A e-Ang (V.3.3)
X L L o
'3
XQ.Z 0

The mean coherence length is 1/A2. A maximum value of the segment length
is set, thus truncating the above distribution. Beginnineg at one end of
the fauilt, segments are generated and their corresponding widths

determined from the aspect ratio.

The moment corresponding to each fault segment is proportional to

its area such that,

all
segments
Mo B :E: Mo,
=1 7 (v.3.5)
M = Si M
o S o

The result of this part of the simulation is shown in Figure V.3.2.
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fault plane

4

segment i rupture area
center

Figure V.3.2 A view of the fault plane divided into
a series of random fault segments. For
each segment the rupture velocity and
dislocation rise time is also generated.

v.3.2 RUPTURE VELOCITY AND RISE TIME

Geller (1976) has carvied out an empirieal study of a number of
moderate and large earthquakes. From that study an average value of the
rupture velocitv of 0.72B was found, where 3 is the shear wave velocitv.
There is considerable variation in observed rupture velocities with no
significant trends offered. Therefore the rupture velocitv is assumed to

he Uniformlv distributed from 0.58 to 1.0R.

Geller (1076) also studied the dislocation rise time, and based on
certain assumntions related it to the ruoture area of the fault. This

scaling law relationship is given as,

:[—:___—__.._, (V.3-5)
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where S is again the rupture area and 8 the shear wave veloecitv at the
source, and T is the mean rise time, of a Uniform distribution. For each

fault sesment a value of the rupture veloerity and rise time are selected.

V.4  FARTHQUAKE FOCUS

The point of rupture initiation or focus of the earthgouake is
assumed to occur with equal likelihood at anv point along the length of
rupture, The depth of the focus is somewhat more constrained in that
shallow strike slip events are modeled in this work, and to ensure
reasonable frequency information for the 18 modes generated in Chapter
1v. The depth of focus is also Uniformlv distributed, from 4 to 8
kilometers. This is an assumption of this work, but one which could be

relaxed by including higher modes.

V.5 = DISCUSSION

The probhahility distributions on the random variables described in
the previous sections have bheen develoned based on readilv available
published results or standard assumptions used in seismic hazard
analvsis. Specifically, the works of Geller (1076) and Kanamori and
Anderson (1975) have been used to estimate source oproperties. This
information is quite general in that no specific fault or tectonic region
was considered. This section discusses briefly more refined asvects of

definine information about the faulting orocess.

The probabilitv distributions emploved 1in the present model were
based on generalized results or scaling laws, and common assumptions

based on little or no information. However, for particular regions or
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for a particular fault, there may in fact be considerable information
available. This statement is particularlv true for variables such as the
location of the runture gzone, focus location, state of stress on the
fault, ete., (Seih, 1979). The methods to obtain and refine this type of
information have increased significantlv in recent vears, particularlv
with the interest in earthaqualke prediction. Similarly, as the number of
recorded strong motion events inereases, for a varticular fault or fault
svstem, the possibility of refined, source specifiec 1information on
dvnamic fault properties is quite possible., With 1improved information

more realistic probabilitv densitv functions will be Aerived,

This state of affairs mav require a more Aetailed development of the
probahility distributions on the random variables of the earthquake., The
nse of Bavesian analvsis to sort and combine the many possible sources of

information may be a possibility in the future,

V.6  TOTAL MOTION DUE TO A FAULT RUPTURE

The motion at the site is the superposition of the effects due  to
individual fault segments. The total motion is then a double summation
over the number of modes, and segments. Recall there is an 1implied
summation over angular order as discussed in Chanter III. From eq.

(I171.5.18) this is,
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nseg modes

9 - (sin(T,w /2))
A(w) = Z : E - C. (w) K (v.6.1)
» 3 (Tkw /2) <9
k=1 j=1
(s1n(TL w /2)) . TL Wt
k exp(-iw(t_ + —E-+ — ) exp(- k )
(T. w/2) r, 2 2 Qu(w) -
L, k
k
1 1
where: Cj(w) = ——— (kaj (w) + iqu;(u)))
/sinek'
exp(-i 7 ) exp(—iwad, / c,(w) >0
P 4 xp(-iwad cj w)) w >
C.(w) = C(w 0
. = (W <
i j ®
. . th
vr, = rupture velocity (km/sec.) in the k segment
ci(w) = phase velocity (km/sec.) of the frequency w
uj(w) = group velocity (km/sec.) of the frequency w
. th
P>y = geometric factor for the k segment
1 1, . . . - .
PjQ»), Qjﬁg) = excitation coefficients corresponding to
the jth mode
TL = directivity factor for the kth segment
k
) Lk , 1 cosd)k )
2.0 vr, cj(w)
s . th
T, = rise time for k~ segment
X , th
tr = trigger time for k= segment
k ' ‘
. L. th
rk = distance(km.) from the géurce to the k segment
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Bk = distance(radians) from the source to the kth segnent
Q = specific attenuation factor
th . )
Lk = length of the k segment in km:
a = radius of the earth
: . . . th
¢k = gource-site azimuth (radians) for the k  segment

Note that the earth's dampine has been ineluded in eq. (V.6.1). For
each simulated event eq. (V.6.1) is applied, generatineg a realization of

the Fourier transform of acceleration.

V.7  SUMMARY

To summarize the simulation process, Figure V.7.1 is a flow chart
indicating the steps followed. The result, as deseribed in Chapter 1T,
is the 1ikelihood function on rms acceleration at the site, and an
ensemble of spectral shape functions from which the probabilitv

distribution on spectral amplitude is derived,
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Monte Carlo Simulation

I. Begin loop on

the number of
simulations

|

IT. Determine rupture area given, M ,
o
Ao and, Ar

ITI. Simulate fault segments from f (xQ),
Xl {
and rupture velocities and

rise times for each. segment

IV. Sample the focus
location

V. Calculate Fourier transform

of acceleration using Eq.V.6.1

VI. Calculate statistics
for rms acceleration

d N(w,
an (J)

Figure V.7.1 A flowchart indicating the Monte
Carlo simulation procedure.
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CHAPTER VI - PROBABILISTIC APPLICATIONS

VI.1  INTRODUCTION

This chapter presents numerical results for the probability model
presented in Chapter II. Results are also presented from a sensitivity
study that identifies, in a stochastic setting, the dependence of the rms
acceleration, frequency content, and time histories on ‘the source
parameters. An example applying the Bayesian model is presented first,

followed by the results of the sensitivity study.

VI.2  BAYESIAN PROBABILITY MODEL

In Chapter IT the problem of interest was defined according to

knowledge of the seismic source, the seismic moment of the event, and the
site where the ground shaking hazard was to be determined. An example is

presented based on input of this form to demonstrate the use of the

Bayesian model.

Figure VI.2.1 presents the source-site geometry and earth structure

for the event to be modeled. The parameters of the event are summarized
in Table VI.2.1 along with the variables to be used in the Monte Carlo

simulation.

The Bayesian analysis proceeds in the following way. The stage I
analysis provides a posterior estimate of the mean rms acceleration based
on the strong motion data. This probability density function was
denoted, f;(u). Proceeding with the stage II analysis, the stage I

posterior represents the prior information and is denoted, fé(u)-
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(b.) crossection view

Figure VI.2.1 Geometric and earth structure input
for an example of the Bayesian
probability model.
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Therefore the stage II prior information on the mean rms for an event of
this size, is given by an attenuation curve similar to that presented
by McCann (1980) for events with a seismic moment on the order of 1026
dyne-cm. The prior input is summarized in Table VI.2.2. Recall that the
prior distribution on the mean rms is approximated by a Normal

distribution, therefore the prior probability density function 1in the

stage II analysis, fé(u), is N(24.66, 5.29).

Table VI.2.1

Parameters of the Example Problem

Seismic Moment: 5.0 x 1026 dyne-cm.
Source-site distance: 60 km.

Fault Type: inter-plate, Ao = 15 bars
Fault dip: 80°

Variables Used in the Monte Carlo Simulation

Mean Range
Focus depih (km.) 6.5 ‘ 5-8
Rupturs velisccisy (fract. of the 0.75 0.5 - 1.00
shear wavs vealocity)
Aspect ratis (width/length) 0.5 0.4 - 0.60
Coherencs length {(km.) 5.0 0.0 - 10.0
Maximum number of fault segments 10
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Table VI.2.2

Summary of Prior Information

E[gn(rms)] = a + B &n(dist) |
a = 6.804
8 | = -0.928
n = 14
2
o y |x=60 = 0.625
O Ely|x=601 = 0.045
E[rmssol = 24,66 cm/sec.2
2
0[Pm860] = 17.01 cm/sec.
2
e = 5.29 cm/sec.
G{- L..D6O ]

Table VI.2.3

Results of Monte Carlo Simulation

no. of simulations: 25

I 70.17 cm/sec.2
' 2

o,t 34.55 cm/sec.
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For the parameters in Table VI.2.1, a Monte Carlo simulation was
performed to generate observations of ground motion due to a stochastic

fault rupture. The results of the simulation are given in Table VI.2.3,

MEAN SPECTRAL SHAPE

4 — T I ]
& 3r ]
a
I
)
22t :
&
}-— ¥
o ! ’
&1 g\‘ééiga 'i 1
LR
Lag ¥
nl” | | ] !
C 1 o 3 4 5

FREQUENCY (hz.)

Figure VI.2.2 The mean power spectrum shape for
the simulation parameters in
Table IX.2.1.

and the mean power spectral density shape is given in Figure Vi.2.2. The
likelihood function, denoted L(z|u), has a mean and standard deviation of
70.17 and 3.40 cm/sec.2 respectively. Recall that the variance of the
process was assumed known and equal to the variance derived from the
stage I analysis. Thus the 1likelihood function, Liz|w, is
N(70.17, 3.40). The posterior distribution on the mean rms acceleration,

which is also Normally distributed, is determined from Baves theorem and
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is found to be N(57.56, 2.86). Note the significant effect the
additional observations have on the expected value of the rms. This new
estimate is a weighted value based on the uncertainty in the mean value
from each source of information. 1In this example the variation in the
likelihood estimate of the mean is lower than its counterpart in the
prior. As a result the updated estimate of the expected rms value is

significantly influenced by the likelihood information. This is shown

BAYESIAN ANALYSIS
03 T ] ]

posterior

likelihood

prior
G l

10 30 50 70 90
U

Figure VI.2.3 The Stage II Bayesian analysis for the example
’ described in the text. Note the significant
effect the likelihood function has on the
posterior probability density function. This
is an illustrative example and mot meant to
represent an actual case.

graphically in Figure VI,2.3.

The marginal distribution on the rms acceleration is determined
using eq. (II.4.4), This distribution is also Normal with a mean of

57.56 and a standard deviation of 23.16, each in units of cm/sec.2 The
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final result derived from the probability model 1is the probabilistic
power spectrum as defined by eq. (II.U4.5). For assumed independence of
the spectral shape and the rms acceleration, the expected value of the
power spectral ordinates and their variance can be determined by the

following relations,

BIS(w,)] = E[rms’] BINGw,))
E[szwj)] = El(rms?) 2 ] E[Nz(wj)]
OZ(S(wj)) = E[Sz(wj)] E[S((uj)] ©(VE.2.1)

The complete distribution, f(S(mj)), is determined from a numerical

integration of eq. (II.4.5).

VI.3  SENSITIVITY STUDY

Of major importance in applying the model developed in this work is
to understand the degree of sensitivity of the rms acceleration,
duration{ time histories, and spectral values on the 1input parameters.
Examples are presented to consider the effect when the source parameters
are varied. A standard case is defined, then each parameter 1is altered
individually to identify that parameters relative effect. Examples of
time history realizations and Fourier amplitude spectrum realizations are

given.

The results of the simulation are provided in Table VI.3.1 where the
source parameters are defined in terms of example number 1, the standard
case. After the first case, the parameter list identifies the variable

that has been changed from the standard. The nominal case 1is the one
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shown in Figure VI.2.1 with the parameters listed in Table VI.2.1. The
simulation results are summarized by the mean and standard deviation of
the rms, the mean spectral value at frequencies of 1.0 and 2.0 hz., and
the range of the strong motion duration as determined using the method

developed by McCann (1980).

Figures VI.3.1 - VI.3.7 present time history realizations for each
simulation case, and Figure VI.3.8 is the corresponding realization of
Fourier amplitude spectra for the first case. The functions plotted in
these figures have been normalized. The simulation results indicate the
strong dependence of ground acceleration on the average stress drop,
rupture velocity, and station azimuth. From these results and the
example in the previous section it 1is recognized that the use of the
model in applications will have to be studied in depth to calibrate its

use for a given region.

VI.4 DISCUSSION

As demonstrated in Chapter IV, and further recognized in the
simulation results of this chapter, the waveform amplitudes are very
sensitive to the details of the fault rupture. The rupture velocity,
stress drop, and source directivity appear to have the greatest effect.
The stress drop describes the source strength in the frequency range
where accelerations are dominant. The effect of stress drop was
recognized in Chapter IV in modeling the acceleration motion recorded at
El Centro during the Borrego Mountain earthquake. Similarly, the
significant effect of source-site azimuth and rupture velocity - phase

velocity interaction were demonstrated. These factors can result
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Figure VI.3.1  7Time history realizations for simulation case l.
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Figure VI.3.2 Time history realizations for simulation case 2.
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Figure VI.3.4 " Time history realizations for simulation case 4.
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individually, in a factor of five or more in their extreme effects.
Therefore the numerical values reported are significant only in terms of
the relative effects of the parameters studied. An important and

extensive effort in the future would be to look into the calibration of

theoretical models for the prediction of strong ground motion. This
study would entail a refinement of the source parameter input. Such
refining will involve the development of regional source parameters and a

derivation of more realistic probability density functions for the random

variables.
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CHAPTER VII - CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

VII.1t INTRODUCTION

This chapter summarizes the major conclusions and results of this
research effort. In the course of any research work many new and
interesting projects are visualized but are secondary to the problem at
hand. To aid in continued developments in the area of seismic hazard

analysis recommendations for future research are presented.

VII.2 CONCLUSIONS

This research work consisted of three basic elements, all of which
contributed to the development of a Bayesian model for estimating strong
ground motion. These three entities were the empirical information on
rms acceleration and duration, the development of the Bayesian
probability model for ground motion spectra, and the application of the
normal mode method for modeling strong ground motion. The major results

of this work are the following:

e a Bayesian review of the state of the art in modeling strong
ground motion was presented, defining the state of

information and the state of practice.

e a Bayesian probability model was developed to incorporate
the available sources of information in providing a

probabilistic power spectrum at a site.

170



e the acceleration motion recorded at El Centro during the
1968 Borrego Mountain earﬁhquake was modeled with
considerable success indicating that for the Imperial Valley
earth structure, the capability exists to use theoretical

models to predict future strong ground motion.

e the directivity effect was suggested to have a dominant

effect on the motion recorded at the El Centro site.

e sensitivity studies indicate the strong dependence of
predicted ground motion on stress drop, rupture velocity and

azimathal location of the site.

VII.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Topies for future research are suggested based on the findings of

this work. Subjects that deserve future investigation are:

e including the P-SV motion or spheroidal modes in the normal

mode model so that the complete motion may be determined.

e including a more realistic model for Q, the specific

attenuation factor.

e a study of the effect of different earth models on the
ground motion, i.e., 1linear gradient models vs. step

gradients.
e application of the normal mode method to other regions.

e incorporation of an occurrence model to develop the total

seismic hazard at a site.
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