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NOTATION 

The following symbols are used in this report: 

[A] = real symmetric matrix of order 2m, defined by Eq. (3.18) 

A. = constant of partial fraction defined by Eq. (I!. 19) 
J 

ajR, = constant used in Eqs. (3.9) and (3.24) 

* * [~JT[A][~] and AR"B t 
::: diaronal elements of diagonal matrices: 

[~] [B][¢] respectively 

a .,b. = real and imaginary parts of the jth element of complex 
J J eigenvector {¢.} 

J 

[B] ::: real symmetric matrix of order 2m, defined by Eq. (3.18) 

[C] = damping matrix 

Cy 
::: damping parameter 

Cy . ,Ce. ::: total translational and rotational damping value for the ith , , floor 

C.M. = center of mass 

C.R. = center of resistance or stiffness 

Cl,C2,Dl,D2,E2,E3,F = constant of partial fraction defined by Eq. (11.18) 

[0] = real symmetric matrix of order 2m defined by Eq. (3.18) 

E[o] = expected value 

e = eccentricity parameter 

e =e.,e = eccentricity in the x- and y-direction at ith floor 
xi ' y i 

F = Rayleigh's dissipation function 

[F.] complex symmetric matrix defined by Eq. (3.20) 
J 

f. 
J 

I. 
1 

= jth mode shape of a response quantity 

= mass moment of inertia of the ith floor 

11 (w) ,1 2(w) ::: frequency integral function defined by Eqs. (11.2), (11.5) 

[K],[R] = stiffness and mean stiffness matrix 

xi 



K 
(l. 

1 

k ,k x·. y .. 
lJ lJ 

L 

l· 
1 

[M],[M] 

M ,M 
X·· y .. 
lJ lJ 

m 

m· 1 

N 

n 

P,Q,R,S 

stiffness parameter 

= total translational stiffness in the x- and y-direction 

= total rotational stiffness in a-direction 

= x- and y-direction translational stiffness of the jth 
column in the ith story 

= the lagrangian 

= column length or story height 

= mass and mean mass matrix 

= bending moment in the x- and y-direction of the jth 
column at ith story 

= mass parameter 

= mass of the ith floor 

= number of stories 

= number of columns in floor lay-out (Fig. 2.2) 

= constants of partial fractions iri Eq. (3.1) 

P',Q',R',S' = constants of partial fractions in Eq. (3.16) 

r· 1 

{r} 

s,t,u,v 

T 

{u} 

V 

Var[.] 

= jth complex eigenvalue 

= mean square value of a response quantity f, defined by Eq. 
(3.1) for proportional damped case and by Eq. (3.16) for 
nonproportional one 

= radius of gyration of the ith floor 

= random mass and stiffness values 

= influence coefficient vector 

= elements of constant matrix [c] defined in Appendix II 

= Kinetic Energy 

= relative displacement vector 

= Potential Energy 

= variance 

xii 
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Wl ,W2,W3,W4 = elements of vector {W} defined by Eqs. (ILl7) 

xi = a design variable 
-xi = mean value of design variable xi 

y. = relative translational displacement 
1 .. 

Yg = base acceleration time history 

x .. ,y.. = x- and y-coordinate of the jth column measured from center. 
lJ lJ of mass in the ith floor 

y. 
J 

E;' 
1 

n· 1 

8. 
1 

K· 
1 

= constant damping coefficient defined in Eq. (2.5) 

= damping ratio parameter = Cy/2mw 

= jth modal damping ratio 

jth participation factor 

= nondimensional eccentricity ratio = ei/r 

= real and imaginery part of eigenvalue Pj (Pj = - ~R+i~I) 

= translational stiffness ratio = Ky./Ky 
1 

= rotational displacement in 8-direction 

= rotational stiffness ratio K8./r2~ 
1 

Aj = real eigenvalue 

11' 1 
= translational damping ratio = Cy./Cy 

1 

Pi = mass ratio = mi/m 

ox. = standard deviation of variable Xi 
1 

{~j} = jth eigenvector 

w 

w· 
J 

a 
ax 

= lower half part of complex eigenvector 
2 = rotational damping ratio = Co./r Cy . 

1 1 

= frequency parameter = IKy/m 

= jth modal frequency 

= partial derivative with respect to a design parameter x 
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CHAPTER 1 

INTRODUCTION 

1.1 General Remarks and Literature Review 

Dynamic response of a structural system depends upon its mass, 

stiffness and damping characteristics. These quantities can rarely be 

estimated precisely as they depend upon uncertain parameters such as 

member size, material properties like density and stiffness, and energy 

dissipation characteristics. Thus these quantities should be considered 

as random variables in an analytical model of a structure and the 

calculated dynamic response should reflect and include the uncertainties 

associated with these parameters. 

Often in a dynamic analysis of a structure for earthquake induced 

ground motions, the effects of the variabilities of these parameters on 

the design response are included by parametric variation studies in 

which some extreme values of these parameters are used to obtain a bound 

on the calculated response. This approach may be adequate but does not 

combine the uncertainties in a rational and consistent manner. The 

uncertainties can be combined in a consistent fashion if these para

meters are considered as random variables with their variabilities com

bined probabilistically to ascertain the variability of a response. 

Several investigations have been performed in the past in which the 

effects of changes in these parameters on the dynamic characteristics 

like frequencies and mode shapes have been obtained. Fox and Kapoor 

[13J developed a formulation to obtain the rates of change of eigen

values and eigenvectors with respect to a design parameter. Similar 

approaches were also used by Collins [9J, Collins and Thomson [10], 



Hasselman and Hart [17,18J, Hadjian [14J, Soong [36J, Hart [15J and 

possibly many others, to ascertain the statistical properties of eigen

values and eigenvectors for given statistical properties of structural 

parameters. However, only a limited literature is available on the 

incorporation of structural parameter uncertainties in the evaluation of 

structural response. Liu, Child and Nowotny [24J used a Monte Carlo 

type of approach to incorporate parametric uncertainties in the genera

tion of floor response spectra. 

Recently Singh [32J presented a formulation whereby parameter un

certainties are transmitted to structural response through the rates of 

change of dynamic characteristics. A structural reponse quantity like 

bending moment or story shear, etc., can be expressed as a function of 

dynamic characteristic such as natural frequencies, mode shapes, modal 

damping, and participation factors and thus its rate of change can be 

expressed in terms of the rates of change of these dynamic characteris

tics. This rate of change of response can, in turn, be used in the 

calculation of variance of response quantity by a first order approxima

tion if the parameter uncertainties are known. Higher order approxima

tions can also be used to improve results if it is desired; however, al

gebraic manipulations become considerably more involved. In this inves

tigation the first order approximation approach has been used to ascer

tain the variances of various response quantities for given variances of 

the mass and stiffness properties of the structure. 

For a structure subjected to earthquake induced ground motions, 

usually a symmetric structural layout is preferred to avoid torsional 

response (In large size structures the torsional response may still be 
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induced by travelling seismic waves. See Newmark [26J. This, however, 

is not the subject of this study). Inspite of best efforts to achieve a 

symmetric layout, however, some inadvertant eccentricity between the 

mass and stiffness center may still be present because of uncertainty in 

the distribution of structural mass and stiffness across the structure. 

In some cases eccentricities could be due to architectural features, or 

may just be unavoidable. Also the magnitude of such eccentricities will 

not be precisely known, as these are random variables. It is therefore 

of interest to study the effect of eccentricity on dynamic response and 

include its randomness in the evaluation of seismic response. 

Structural systems with eccentricity between mass and stiffness 

centers possess some special characteristics. Especially if the eccen

tricites are small, the systems will usually have closely spaced (nearly 

equal) frequencies in certain circumstances. The modes with nearly 

equal frequencies, often referred to as "closely spaced moded", gener

ally interact strongly. As a result such systems usually require 

special analysis procedures to calculate their dynamic response accur

ately. The eccentric structural systems (herein also referred to as 

torsional systems), therefore, have been of considerable research in

terest to many investigators. Rosenblueth and Elorduy [28J, Amin and 

Gungor [2J, Singh et al [29J, Singh and Chu [33J, Der Kieureghian [llJ 

have considered systems with closely spaced frequencies and suggested 

the use of special procedures to obtain accurate responses. Kan and 

Chopra [21,22,23J have studied eccentric multistory structural systems 

in detail to suggest some simplified analysis procedures. Tso and 

Dempsey [37J have also examined a single story two-degree-of-freedom 

system in order to study the effect of eccentricity on the response and 

to review various code provisions. 

3 



Structural systems made with different materials in different parts 

would, generally, have nonproportional damping matrices [34J. Other 

energy dissipation mechanisms could also lead to nonproportional damping 

matrices in the analytical models. Such matrices cannot be diagonalized 

by undamped normal modes. That is, if a nonproportional matrix [C] is 

pre- and post-multiplied by undamped modal matrix [~], the resultant 

matrix, [~]T[C][¢], will have some off-diagonal terms. These off-dia-

gonal terms represent a modal coupling through damping terms. In eccen

tric structural systems, where prequencies are closely spaced, and thus 

the interaction effects are large, these off diagonal terms may attain a 

special significance. It is suspected that in such systems (with eccen

tricities), if these off-diagonal damping coupling terms are neglected 

(that is, if a nonproportional damping matrix is assumed to be a propor

tional one) the calculated dynamic response may have some significant 

errors. It is, therefore, of interest here to study eccentric systems 

with nonproportional damping characteristics. 

The analysis of nonproportionally damped systems has also been of 

considerable interest to many researchers. Bailak [4], Clough and 

Mojtahedi [6], Hasselman [16J, Itoh [20J, Johnson and McCaffery [20J, 

Rosset, Whittman and Dobry [28J, Singh [30J, Warbuton and Soni [38], 

etc., have studied various aspects of this problem. Several methods of 

analysis have also been proposed for such systems. In this investiga

tion nonproportional dynamic systems with varying eccentricities have 

been analyzed by the approach proposed by Singh [30J. For a given 

nonproportional damping matrix, this approach provides a mathematically 

accurate response for structures excited by ground motions defined in 
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stochastic terms or by response spectra curves. For comparison pur

poses, here the response results have been obtained with and without the 

assumption of proportionality. 

1.2 Scope of Study 

In this investigation the effects of uncertainties of mass and 

stiffness on the response of a structural system have been examined. For 

given coefficients of variation of mass and stiffness, the coefficient 

of variation of design response has been obtained. Also structures with 

and without torsional oscillations have been examined. The effects of 

varying the eccentricity between the mass and stiffness centers on the 

dynamic characteristics and response of a multistory building has been 

examined. Since eccentric systems are expected to be more susceptible 

to nonproportional damping effects, the responses of such systems with 

nonproportional damping matrix have been studied in details, and the 

effect of the commonly made assumption of proportionality for nonpro

portionally damped systems on the calculation of dynamic response has 

been evaluated. Only linearly behaving structures have been considered 

in this investigation. 

1.3 Organization 

Chapter 2 contains the derivation of the equations of motion for a 

multistory structural system. The mass, damping and stiffness matrix 

for such a system are given in Appendix I. In Chapter 3 the procedures 

for the evaluation of seismic response, and also its rate of change, for 

proportionally and nonproportionally damped structures for stochas

tically defined ground motion are presented. Further details of the 

rates of change of various parameters and frequency integrals are given 
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in Appendix II. The numerical results for a 5-story torsional building 

obtained by the procedures described in Chapter 3 are presented in 

Chapter 4. Summary and conclusions are provided in Chapter 5. 
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CHAPTER TWO 

EQUATIONS OF MOTION OF A STRUCTURAL SYSTEM 

2.1 Introduction 

For dynamic analysis of structural systems subjected to earthquake 

induced ground motions, the equations of motion can be written in the 

following form: 

[MJ{u} + [CJ{u} + [KJ{u} = -[MJ{r}Yg(t) (2.1) 

in which [MJ, [CJ, [KJ, respectively, are the mass, damping and stiff-

ness matrices of the structure; {u} is the relative displacement vector; 

Yg(t) is the base acceleration time history; {r} is the displacement 

influence coefficient vector [8J and a dot over a vettor represents its 

time derivative. 

Here these matrices are defined for various building systems in 

which masses are assumed to be concentrated at floor levels and the 

stiffness is provided by elements such as columns or shear walls con-

necting or supporting various floors. The floor systems are assumed 

rigid and thus undeformable. In large floors shear deformation may not 

be entirely insignificant, however, such floor deformations have not 

been considered here. 

In a rigid-floor multistory structure, the floor mass when excited 

by a horizontal ground motion will, in general, have three degrees of 

freedom: motion in two horizontal directions plus rotation about the 

mass center of the floor. However, if the mass and resistance (stiff

ness) centers are at the same location (that is, zero eccentricity), the 

rotational component of the motion may be absent if the base excitation 
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is applied uniformly. This will happen in a symmetrically laid-out 

building in which the horizontal and rotational motions will be un

coupled and their dynamic behavior can be studied just by separate 

excitations along the two horizontal directions. Such symmetrical 

systems represent a special case of more general eccentric systems 

studied here. 

Of special interest here are the systems in which mass and resis

tance centers do not coincide and are at a distance e, commonly re

ferred to as eccentricity. In such cases the translational motion in 

two horizontal directions will be.coupled with the rotational motion. 

(Because of the presence of torsional motion here, these systems will 

often be referred to as torsional systems.) Here the dynamic behavior 

of such systems has been studied in somewhat greater detail. The 

effects of variability of eccentricity and its influence on the assump

tion of proportionality for a nonproportional damping matrix have been 

studied in detail. In the following section, the development and non

dimensionalization of the equations of motion of a torsional system are 

presented. 

2.2 Equations of Motion of a Torsional System 

In general, each floor of a torsional system representing a multi

story building, would have 3 degrees-of-freedom. Each floor could 

possibly have its own arrangement of connecting elements like columns 

and shear walls, and this may give rise to different eccentricities for 

each floor. However, to limit the number of problem parameters in this 

study, structures with the following special characteristics are 
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examined: 

1. Each floor mass has only two degrees of freedom: translation 

in one of the two horizontal directions and rotation about a vertical 

axis. This assumes that the resistance center lies on one of the axes 

of symmetry passing through the center of mass, and the ground motion is 

applied in a direction perpendicular to the axis of symmetry. Thus as 

shown in Fig. 2.1, the eccentricity in the x-direction alone has been 

considered and the excitation is applied in the y-direction. 

2. For analytical ease of parameter manipulation and modeling pur-

poses, but without loss of generality, the stiffness in the system is 

assumed to have been provided by column elements which connect various 

floors. The relative locations of the columns with respect to the 

center of mass determine the torsional rigidity of the system. 

Assuming that the coordinate origin is located at the center of 

mass, the total translational and rotational stiffnesses provided by the 

resisting elements connecting the (i-l)th and ith floors can be written 

as [21J: 

n 
K = I k (2.2a) x. Xij 1 j=l 

n 
Ky. = I k (2.2b) 

j=l y .. 
1 lJ 

n 2 n 2 K = I k y .. + I k x· . (2.2c) 
i j=l x·. lJ j=l y .. lJ 

lJ lJ 

in which k and ky .. ' respectively, the x- and y-direction trans-are x .. 
lJ lJ 

lational stiffnesses of the jth column in the ith story; x·· lJ 
and y. " lJ 

respectively, are the x- and y-coordinates of the jth column measured 
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from the center of mass on the ith floor; Kx. and Ky., respectively, are 
1 1 

total translational stiffnesses in the x- and y-directions; Ka. is the 
1 

rotational stiffness in the a-direction; and n is the total number of 

columns in the ith story. 

These total translational stiffnesses can be assumed to be concen-

trated at the center of resistance. The coordinates of the center of 

resistance with respect to the mass center define the eccentricities in 

the system as follows [21]: 

(2.3a) 

(2.3b) 

For the systems considered here, ey . = 0; that is, they are symmetrical 
1 

about their x-axes. Henceforth the eccentricity e will be denoted by 
xi 

, 
3. It is assumed that the centers of mass for all floors lie on a 

common vertical axis. The centers of resistance for all floors are 

also assumed to lie on another vertical axis which is at a distance 

e. from the axis of the centers of mass. 
1 

4. To account for energy dissipation by damping in each deforming 

element, viscous (relative velocity proportional) dashpots are assumed 

to exist in parallel with each stiffness element. That is, it is as

sumed that corresponding to each stiffness element, there is a dashpot. 

If cx .. and cy .. represent the damping 
lJ lJ 

and ky .. ' then total translational and 
lJ 

the ith story can be written as: 

10 

constants corresponding to kx .. 
lJ 

rotational damping constants for 



n 
cx. = L c x .. 

1 j=l lJ 
(2.4a) 

n 
cy . = I c 

j=l y .. 
1 lJ 

(2.4b) 

n 2 n 2 C = I c y .. + L cy .. Xij 8· j=l x·· lJ j=l 1 lJ lJ 
(2.4c) 

These damping constants will provide a stiffness proportional 

damping matrix if cx .. and cy .. are assumed directly proportional to 
lJ lJ 

kx .. and ky .. with the same constant of proportionality. However, if 
lJ lJ 

proportionality constants are not equal, the combined damping matrix 

will be nonproportional. Here it is assumed that 

c = a k ,c = a k x.. x x.. y.. y y .. 
lJ lJ lJ lJ 

(2.5) 

Where, if the proportionality constants ax and ay are different, the 

damping matrix will be nonproportional; otherwise it will be propor-

tional. By adjusting the values of ax and ay ' different degrees of 

nonproportionality can be easily achieved. 

5. The floor plan for each story is assumed to be the same and is 

shown in Figure 2.2. The radius of gyration, r, for each floor is also 

assumed to be the same. 

For a structural system described above, the equations of motion 

can be derived using either Newton's second law, or the method of Vir

tual Work or Lagrange's equations. Here the Lagrange's equation ap

proach has been used. The Potential and Kinetic energies of the ith 

floor mass of the system are as follows: 
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Kinetic Energy, T: 

1 • • 2 1 ·2 T. = -2 m. (Y. + Y) + -2 I.e. 
1 1 1 g 1 1 

i = 1,2, .•. N (2.6) 

where mi = mass of the ith floor; Yi = relative translational displace

ment in the y-direction; 6i = rotational displacement in the e-direc

tion; Yg = ground excitation velocity in the y-direction; Ii = mass 
2 moment of inertia with respect to the center of mass (mir i ); and N = 

total number of stories. 

Potential Energy, V: 

1 2 V. = 7) K [(Y.-Y. 1) + e.(e.-e. 1)] 
1 ~ y. 1 1- 1 1 1-

1 

+ 12 K [(Y'+l-Y') + e·+1(e·+1-e.)]2 Yi+l 1 1 1 1 1 

1 2 1 2 
+ -2 Ke (e.-e. 1) + -2 Ke (e·+1-e.) i 1 1- i+1 1 1 

i = 1,2, ... N (2.7) 

Rayleigh's dissipation function, F, 

1 •• •• 2 
F = -2 C [(Y.-Y. 1) + e.(e.-e. 1)] y. 1 1- 1 1 1-

1 

1 •• •• 2 
+ -2 C [(Y·+l-Y.) + e.+,(e'+l-e .)] Yi+l 1 1 1 1 1 

1 •• 2 1 •• 2 
+ -2 Ce (e,-e._,) + -2 Ce (e'+l-e,) 

ill i+1 1 1 

i=1,2, ... N (2.8) 

In terms of the Lagrangian, L, 

L = T-V (2.9) 

the equations of motion can be obtained from the following equation [25] 

(2.10) 
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where qi's are generalized displacements which in our notations represent 

the displacement, V;, and rotation, 8;. Using Eqs. (2.2)-(2.9), the 

equations of motion for the ;th floor ;n terms of relative displacement 

Yi and rotation 8i can be written as follows: 

m.Y. + (-C )Y. 1 + (C +C )Y. + (-C )V'+l 1 1 Yi 1- Y; Yi+1 1 Yi+l 1 

+ (-K ) Y. 1 + (K + K ) Y. + (-K ) Y . +1 
Y; 1- Y; Yi+1' Y;+l 1 

+ (-e.C )8. 1 + (e.C + e·+1C )e. + (-e"+lcyi +
1

)8"+1 
, Yi'- , Yi ' y;+l ' 

= -m.Y , g (2.11a) 

2" • 
m.r.e. + (-e.C )Y. 1 + (e.C + e·+1C )V. + (-e·+1C )V'+l , , , , y;'- , Yi ' Yi+1 1 , Yi+l ' 

+ (-e. K ) Y. 1 
1 y. ,, 

+ (-C e . ) 8; _ 1 + 
1 

+ (-Ke.)e i _l + , 

+ (eiKy; + ei+1KYi+1)Yi + (-ei+1KYi+l)Y;+1 

(Ce; + Cei +
1
)8; + (-Cei+1)8i+1 

(Ke . + Ke )e. + (-Ke. )e'+l = o. 
, ;+1' i+l' 

(2.11b) 

To study the effects of various system parameters, it is sometimes 

convenient to nond;mensiona1ize the equations. For this purpose, a mass 

parameter "m" (which could be the mass of a floor), a stiffness para

meter "Ky" (which could be a story stiffness), a damping parameter IICy" 

(which could be the damping of a story), a frequency parameter w = lKy/m 

and a damping ratio parameter B = Cy/2wm, have been introduced. Also 

various terms encountered in the equations are expressed in terms of 

translational stiffness ratios ni = 

2 ratio Ki = Ke./r Ky., translational 
1 1 
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Ky.lKy' rotational stiffness , 
damping ratio ~i = Cy./Cy ' rota, 



tional damping ratio wi = ce./r2cy ., and mass ratio Pi = mi/m. The 
1 1 

eccentricity is expressed in nondimensional terms as E. = e./r. 
1 1 

In terms of these nondimensional parameters, Eqs. (2.11) can be now 

writteni n the following form: 
.. 

PiVi + 2Bw{-~iYi_l + (~i+~i+l)~i - ~i+l~i+l + Ei~i(r6i_l) 

2 
+ w {-n· V. l+(n.+n·+l)V. - n·+1V·+l + E·n·(re. 1) 1 1- 1 1 1 1 1 1 1 1-

+ (Eini+Ei+lni+l)(rei) + (-Ei+lni+l)(re i +l )} = -PiY9 (2.12a) 

r i 2 .. 
Pi(r-) (rei) + 2Bw{(-Ei~i)~i_l + (Ei~i+Ei+l~i+l)~i + (-Ei+l~i+l)Yi+l 

+W
2
{(-E.n.)V. 1 + (E.n.+E·+ln·+l)V. + (-E·+ln:+l)V"+l 1 1 1- 1 1 1 1 1 1 1 1 

= O. (2.12b) 

Similar equations are obtained for each floor mass. When combined, 

these can be written in matrix form as Eq. (2.1), with matrices [M], 

[C], [K] and vector {u} defined in Appendix I. These matrices can also 

be written in partitioned form, where each submatrix is analogous to the 

corresponding matrix for a one story, two-degree-of-freedom torsional 

structure. 

2.3 Dynamic Chatacteristics of a Single-Story System 

It has been pointed out by various investigators [2,27,29J that 

closeness in frequency is controlled by the eccentricity ratio, E, and 
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the rotational stiffness parameter, K. In the following, this 

has been verified by the study of a single story, two-degree-of-freedom 

system (see Fig. 2.3) for which the eigenvalues can be obtained in 

closed form in terms of these parameter values. 

For a single-story system, the equation of motion can be written as 

foll ows: 

[
1. 

0 0] I ~ I + 2 SWll[1. 0 £] { ~ I 
o 1.0 re £ ~ Ire 

[1. 0 ] .. 
= - {r}y 

o 1. g 

2 [1.0 +w n 
£ 

(2.13) 

The eigenvalues for an undamped system can be obtained from the solution 

of the following characteristic equation: 

2 2 
W n-A. W n£ = O. 

2 2 
W n£ W nK-A 

which gives two eignevalues as follows: 

,_ 2 (1+K)±/(1+K)2-4(K-£2) 
A - W n 2.0 

(2.14) 

(2.15) 

For these two eigenvalues to be equal to each other, the discriminant 

should be zero. That is, 

2 2 (l+K) - 4K + 4£ = O. 

or 
2 2 (l-K) = -4£ 

which requires that 
e "'=-=0 c.. r . 

and 

(2.16) 

(2.17) 

(2. lSa) 
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K 

K : r2~y : 1. a (2. 18b) 

Thus, for small values of nondimensional eccentricity, E, and stiffness 

ratio, K, close to 1.0, the discriminant will be close to zero and the 

two frequencies -translational and torsional- of the system will be 

close to each other. It is in these situations that these modes inter-

act strongly with each other and affect the choice of the methodologies 

to be used for accurate evaluation of structural response. 

Similar behavior has also been observed in multistory buildings. 

That is, if the eccentricity ratios, Ei' in various floors are small and 

torsional stiffness ratios, Ki' are near a value of 1.0, the structural 

frequencies in translation and torsion will be close to each other. 

There could possibly be other structural systems where frequencies may 

also be closely spaced. These are the very same systems in which the 

s impl e-to-use method of ~quare-~oot-of-the-~um-of-the-~quares (SRSS) 

procedure gives erroneous results [29J. A correct evaluation of re-

sponse in such systems requires a proper consideration of interaction of 

modes with close frequencies [27,29,33J. 

The multi-degree-of-freedom systems examined in this investigation 

possess these properties. The closeness in the frequencies has been 

achieved by controlling the eccentricity ratio, Ei' and torsional 

stiffness ratio, Ki' as mentioned above. Various column floor plans, as 

shown in Fig. 2.4, have been examined. The torsional stiffness ratios 

of these systems are listed in Table 2.1. The floor plans, Figs. 2.4 in 

which columns are clustered and uniformly distributed around the geo-

metric center, provided torsional stiffness ratio values close to 1.0. 

16 
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The torsional systems considered here, therefore, are representative 

of such building floor plan lay-outs, Figs. 2.4. 
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CHAPTER 3 

SEISMIC RESPONSE ANALYSIS 

3.1 Introduction 

To study the dynamic behavior of structures under earthquake 

loads here, ground motions have been modeled as stationary random 

processes which can be characterized by a spectral density function. It 

is realized that earthquake induced ground motions are essentially 

nonstationary and thus cannot be characterized by spectral density func

tions. However, earthquake ground motions have often been modeled by 

stationary random process by many investigators in the past [2,11,27, 

33], as some conclusions of general validity can still be obtained by a 

study of structures excited by stationary excitations. 

In this chapter, seismic response evaluation procedures for struc

tures excited by randomly characterized ground motion are presented. Of 

special interest here is the evaluation of the sensitivity and vari

ability of response vis-a-vis the changes in various structural para

meters. The necessary formulation for systems with proportional and 

nonproportional damping matrices are presented. As the modal analysis 

approach is quite often used in seismic analysis and design, especially 

if one intends to obtain design response from a response spectrum pre

scribed as seismic design input, the following formulation is also 

developed with the normal mode approach. 

For structural systems excited by randomly characterized ground mo

tion, the design response is directly related to the root mean square 

response. Usually, the root mean square response is amplified by a 

factor called the peak factor to obtain the design response. It is, 
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therefore, of interest here to examine the mean square response. The 

formulations to obtain the mean square response for proportionally and 

nonproportionally damped systems using the modal analysis approach have 

been developed elsewhere. In the following section the expressions used 

to obtain the mean square response are given. These expressions are 

then examined with a view to ascertain the variability of the response 

due to the variabilities of structural parameters. 

3.2 Structural Systems with Proportional Damping Matrices 

If the damping matrix, ICJ, in Eq. (2.1) is proportional to either 

mass or stiffness or a combination of them (see Caughey [6J), then the 

coupled equations of motion, Eq. (2.1), can be easily decoupled using 

the undamped normal modes. In terms of these normal modes, the mean 

square response can be written as [33J: 

R2 -
m 2 2 Il(w.) m m 

f - .r y.f. J + 2 I r YjYkfjfk J=l J J 4 j=l k=J+l 
w· J 

1 2 1 (3.1) { 4 [QI l (Wj) + Pr I2(wj)J + 4 [SI 1(wk)+RI 2(wk)J} 
w· wk J 

in which R~ is the mean square value of a response quantity f, f. is 
J 

the jth mode shape of the response quantity, m = the number of degrees 

of freedom, Yj is the jth participation factor defined as 

{~j}T[MJ{r}/{~j}T[MJ{~j}' {~j} is the jth relative displacement mode 

shape, Wj is the jth natural frequency, r = Wj/wk' and Il(wj) and 

I2(wj) are the frequency integrals defined in Appendix II. These inte

grals depend on the excitation spectral density function, modal fre

quency, wj ' and modal damping. Sj' For proportional damping matrix [C], 

the modal damping ratio is defined as follows: 
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(3.2) 

The factors of partial fraction, P, Q, Rand S, are also defined in 

Appendi x II. 

Eq. (3.1) defines the iquare-Root-of-the-ium-of-the-iquares (SRSS) 

procedure for calculation of mean square and design response. For 

structural systems where some frequencies are close to each other, the 

consideration of the double summation terms in Eq. (3.1) is important to 

properly include the modal interaction effect to evaluate response 

accurately [27,33]. 

The variability of response defined by Eq. (3.1) vis-a-vis the 

variabilities of mass, stiffness, and eccentricity is now examined. If 

it is assumed that the design response is a constant times the mean 

square response, then the variability of the design response can be 

assessed from the variability of the mean square response. Here, to ob-

tain the variability in the mean square response, which is a function of 

various basic parameters such as mass, stiffness, eccentricity, etc., a 

first order perturbation approach is used. Expanding a response quan-

tity, R, which is a function of variables xl' x2' ... , xn' in terms of 

Taylor series about the mean value of the variables, and retaining only 

first order terms, we obtain [3,5J 

E[R(xl ,x2"" ,xn)J '" R(xl ,x2'oo. ,xn) 

_ ~ aR 2 2 Var[R(xl ,x2'oo.,x )J - t. (-.;-x) a n . 1 o. X. 
1= 1 1 

(3.3) 

(3.4) 

in which E[·J denotes the expected value and Var[.] denotes the var-

20 
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iance, ~R is the partial derivative with respect to variable x. ob-
xi 1 

tained at the mean values xils and a IS are the standard deviations of 
xi 

the variables, xils. 

This approach requires the evaluation of the rate of change of the 

response quantity, ~R . Here R is expressed in terms of dynamic ox· 
1 

characteristics of the structure, Eq. (3.1), which in turn are functions 

of basic variables x .. Thus evaluation of ~R will require evaluation 
1 oX i 

of the rates of change of dynamic characteristics such as frequencies, 

eigenvectors, participation factors, etc., with respect to the basic 

variable. For example, for Eq. (3.1) 
2 

dR f _ 1 a(R f } 

ax; - 2Rf ~ 

and 

(3.5 ) 

a(R~) m 
I 

j=l 

Il(w.) ". df. 2 2 Il(w.) 
{ 2 f J (~f. + _J) + . f. ~ ( J) } ---ax y.. 4 ax J YJ· ax YJ J ax 4 

J J w. w. 
J J 

(3.6) 
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a Il(w.) a 12(w.) 
where the derivatives of frequency integral ax [ 4J ], ax [ 4J] 

w· w. 
aP J aQ aR ~S 

and the derivatives of partial fraction factors ax' ax' ax and ax 

are defined in Appendix II. 

3.2.1 Rates of Change of Dynamic Characteristics for Proportionally 
Damped Case 

To obtain the rates of change of wj , {~j}' etc., required in equa

tion (3.6), the following equations, which are derived based on the 

approach presented by Fox and Kapoor 

dA. 
_J = 

T aK aM] {~j} ([ax] - A/ax ){~j} 
ax {~j}T[M]Hj} 

where Aj is the jth eigenvalue = w~. 

obtained from: 

aW. 1 aA. 
J- J 
ax - 2wj ax 

[13] , have been used: 

(3.7) 

The rate of change of Wj is 

(3.8) 

To define the rate of change of eigenvectors, the expansion theorem has 

been used as: 

(3.9) 

in which aj2 are defined as: 

(3.10) 

if j = 2 

The rate of change of a participation factor can be expressed in terms 

of the rates of {~j} and [M], and thus the expressions are straighfor

ward. For the modal damping ratio defined by Eq. (3.2), the evaluation of 

22 

• 



• 

its rate of change is also straightforward. 

3.2.2 Rates of Change with Respect to t1ass, Stiffness and Eccentricity 

Variables. 

As mentioned befor~ the design variables of mass, stiffness and 

eccentricity, e, have been considered in this study. The variability in 

the mass variable is characterized by a random variablerm which has a 

mean value of 1.0 and standard deviation of om as follows: 

[M] = rm[~](3.l1) 

where [M] is the random mass matrix with a mean of [~]. This form of 

variability assumes that all masses in the structure are prefectly 

correlated. A similar form is assumed to characterize the variability 

in stiffness: 

(3.12) 

where rk is also a random variable with mean value of 1.0 and standard 

deviation ok' More complicated characterization of mass and stiffness 

variabilities (such as different mass and stiffness elements being 

characterized by different variables) are also possible, but have not 

been considered here. Various rates of change defined by Eqs. (3.7-3.10) 

can follows: now be specialized for these basic variables as 

Rates of change with respect to rm: with [aM] = 
arm 

ay, 1 a 8, 

~=2Yj {~}= 
Rates of change with respect to r k: with [3M] = 

ark 
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[~J, [~~ ] = 
m 

O. , 

(3.13) 

0., [~K ] = 
ark 

[R] , 



(3.14) 
dy-
_J = 0 " . ark 

Rates of change with respect to eccentricity, e: with [~~] = 0., 

dA - T dK 
ae J = {<p j} [ae] {<p j } (3.15a) 

(3.l5b) 

(3.15c) 

(3.l5d) 

3.3 Structural Systems with Nonproportional Damping Matrices 

As discussed in Chapter 2, in this investigation a nonproportional 
a 

damping matrix is obtained by using values of ~ other than 1.0. For 
ay 

such a damping matrix, undamped normal modes cannot be used to decouple 

the equations of motion. However, as shown by Singh [30], it is still 

possible to obtain the response by an SRSS procedure, similar to Eq. 

(3.1), if 2m-dimensional complex eigenvalues [25] are used. Herein, 

this approach has been referred to as 2m-dimensional state vector. A 

special advantage of this approach is that commonly used response spec

tra can be used as seismic input for the calculation of design response. 

The equation defining the mean square response by this approach is as 

fo 11 ows [30]: 

(3.16) 
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whp.re A
j

, a
j

, pi, QI, RI and SI are defined in Appendix II. The fre

quency integral Il(w j ) and 12(wj) are the same as in Eq. (3.1) and are 

also defined in Appendix II. 

To obtain the rate of change of R~ with respect to a design var

iable, the rates of change of complex eigenvalues and complex eigenvec-

tors (whith define A
j

, a
j

, pi, QI, RI, 51) are required. The procedure 

to obtain these rates is given in the following section. 

3.3.1 Rates of Change of Dynamic Characteristics for Nonproportionally 
Damped Case: 

The equations of motion, Eq. (2.1), for nonproportional damping 

matrix [CJ can be recast in the following form [25J: 

[A]{z} + [BJ{z} = -[DJ{~~'~} Yg (3.17) 

in which the state vector, {z}, and matrices [A], [BJ and [0] are de-

fined as follows: 

{z} = {{Ll} } [A] 
(2m,1) (~~:l) (2m,2m) 

[B] = [::~:-L=~~: j 
(2m, 2m) [0.] : [K] 

(2m, 2m) 

= ----------- ; 
[

[0.J: [r~]] 
[M] : [C] 

[0] = [:~~:-L:~~:l 
(2m,2m) [O.J: [M] 

(2m, 2m) 
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The eigenvalue problem for Eq. (3.17) can be written as: 

[F.J {~.} 
J J 

(2m,2m) (2m,1) 

in which 

= {o.} 

(2m,1) 

[F.J = p.[AJ + [B] 
J J 

j = 1,2m (3.19) 

(3.20) 

and {~j} is the jth 2m-dimensional complex eigenvector and Pj is the jth 

complex eigenvalue. Premultiplying Eq. (3.19) by {~j}T and taking the de

rivative with respect to a design variable x, we obtain: 

(3.21) 

Since [FjJ is a symmetric matrix, the first and the last terms are the 

same and are equal to zero in view of Eq. (3.19). Thus Eq. (3.21) 

becomes 

(3.22) 

Substituting for the derivative of [FjJ in terms of the derivative of 

[AJ and [BJ, we obtain: 

(3.23) 

To obtain the rate of an eigenvector, the expansion theorem is used 

as: 

(3.24) 

Using Eq. (3.19) 

d~. aF. 
[F.]{-J} = _ {--.1.}{~.}. 

J ax ax J 
(3.25) 
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3¢ . 
Substituting for {~} from Eq. (3.24) 

2m 3F. 
[Fj ] Q,I

l 
aj£{¢",J = -[af]{¢j} (3.26) 

Premultiplying Eq. (3.26) by {¢k}T, 

2m T T aF. 
Q,I

l 
aj£{¢k} [Fj ]{¢£} = -{¢k} [axJ]{¢j} (3.27) 

Using orthogonality condition 

. {¢k}T[Fj ]{¢£} = O. if k t Q, (3.28) 

(3.29) 

The numerator of Eq. (3.29) can be written as: 

(3.30) 

The first term on the right hand side of Eq. (3.30) is zero because of 

the orthogonality condition. The denominator of Eq. (3.29) can also be 

written in terms of the complex eigenvalues as follows: 

T * * {¢£} [Fj ]{¢£} = PjA£ + B£ (3.31) 

in which 

A: = {¢£}T[A]{¢£} and B: = {~Q,}T[B]{~Q,} (3.32) 

* If the eigenvectors are normalized with respect to [A], that is A£ 

* = 1.0, then from equation (3.31), BQ, = -p£. Substituting these in 
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equation (3.31) we obtain: 

T 
{~~} [FjJ{~~} = Pj-P~ . (3.33) 

Using Eqs. (3.30) and (3.33), aj~ is defined as follows: 

= __ 1_ }T( [dAJ + [~J){ } aj~ p._p {~~ Pj ax ax ~j 
J ~ 

if j t ~ (3.34) 

To defineaj~ for j=~, we use the eigenvector normalization equation as: 

(3.35) 

Differentiating with respect to x, we obtain: 

(3.36) 

Using Eq. (3.24), 

2 ,I~ aj,{.,lT[A]{.jl + {_jlT[:e]{.jl • O. (3.37) 

Using orthogonality and normalization, Eq. (3.35) for eigenvectors, we 

obtain: 

(3.38) 

With aj~ defined by Eqs. (3.34) and (3.38), the rate of change of an 

eigenvector is obtained from Eq. (3.24). 

Eqs. (3.23), (3.24), (3.34) and (3.38) giving the rates of change 

of Pj and complex eigenvectors are defined in terms of matrices and 

vectors in 2m-dimensional space. However, realizing that the upper and 

lower parts of an eigenvector are simply related as [25J, 

{¢ . } 
J 

(2m,1) 

(3.39) 
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the equation defining the rates can be written in terms of the lower 

eigenvector {¢j}L alone, as follows: 

Rate of Eigenvalue: 

(3.40) 

Rate of Eigenvector: 

(3.41) 

where 

"if j = 9, 

(3.42) 

The {¢j} in Eqs. (3.40)-(3.42) now represent only the lower part of the 

j th ei genvector. 

The derivatives of quantities such as Aj' aj , pi, QI, RI and SI are 

in turn defined in terms of the rate of Pj and {¢j} and are given in 

Append i x I!. 

In Eq. (3.16), the frequency integrals are defined in terms of the 

frequency Wj and modal damping ratio 

the eigenvalue Pj as follows [30J: 

= hZ+rz Wj '>R '>1 

6j , which in turn are related to 

(3.43) 

(3.44) 

where sR and sI are the real and imaginary part of the eigenvalue Pj 

defined as follows: 

(3.45) 

29 



The rates of change of Ulj and Sj can now be defined in terms of rates of 

change of real and imaginary parts of Pj' obtained by Eq. (3.23), as 

foll ows: 

aw. 1 a(R a(1 
__ --1 = - (( -- + r -) 
'J 'R ',)X 'I ','x I x w.· ) 

J 
(3.46) 

(3.47) 

3.3.2 Rates of Change with Respect to Mass, Stiffness and Eccentricity 
Variables 

The rates of change of Pj and {¢j} can now be specialized for the 

basic variables rm, r k and e as follows: 

Rates of change with respect to rm: 

Clp. 2 T 
~= - Pj {¢j} [M]{¢j} 

m 

2m 
+ I 

£'=1 
Mj 

Rates of change with respect to r
k

: 

3p. 
_J = - {¢J.}T[R]{¢J'} 
3rk 

Rates of change with respect to e: 

ClPj = _ {~ }T(p [~] + [~]){~ } 
3e ~j j Cle 3e ~j 

30 

(3.48a) 

(3.48b) 

(3.49a) 

(3.49b) 

(3.50a) 

t 
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2m 
+ I 

£=1 
£fj 

1 T( CdC] + [~]){~.} (p -p.) {<I>£} Pj ae de 'l'J 
£ J 

3.4 Rate of Change of a Response Quantity Mode Shape 

(3.50b) 

To assess variabil ity of R~ from Eqs. (3.1) and (3.16), we need the 

rate of a response quantity mode shape. This response quantity 

could be story shear, story torsion, bending moment in a column, etc. 

The mode shapes of these quantities are linearly related to the defor

mation mode shape {<I>j} as follows: 

{fj} = [T]{<I>j} (3.51) 

in which [T] is a transformation matrix, which for force response quan

tities will involve the stiffness parameter of the system. Using Eq. 

(3.51), the rate of fj can be written as: 

(3.52) 
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4.1 General 

CHAPTER 4 

NUMERICAL RESULTS 

In this chapter, various numerical results obtained for a five 

story, 10-degrees-of-freedom torsional building system shown in Fig. 2.1 

are presented. Response values for maximum relative displacement, 

maximum rotation, base shear, base torsional moment and bending moments 

in the two corner columns of the first story are obtained. Systems with 

parameter ~ varying between 0.001 to 0.5 have been considered. (The 

results for very large ~ (>. 3 or more) may not be of much practical 

interest. However, they are given here for comparison purposes.) 

Various combinations of damping ratio values used here are: S = 0.02, 

Ux/Uy = 2.5; S = 0.02. ux/uy = 4.0; S = 0.02, ux/uy = 1.0 and S = 0.05, 

ux/uy = 0.40. Numerical results are obtained by the complex mode state 

vector approach, as well as by the normal mode approach. Comparison of 

the results obtained by the two approaches shows the sensitivity of the 

system response to the assumption of proportionality. The frequency 

parameter, w, characterizes the stiffness of the system and its values 

of 1.0,6.0, 10.0 and 40.0 cycles per second (CPS) have been considered. 

This parameter governs the lowest frequency of the system. For w = 1.0 

and 40.0 CPS., lowest frequencies of 0.28 and 11.40 CPS, respectively, 

were obtained. These fundamental frequencies represent a spectrum of 

structures ranging from a flexible tall multi-story building to a more 

stiff nuclear power plant. 

Also obtained are the rates of change of frequencies, displacement 

and rotational responses, base story shear and torsional moment and 
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column bending moments with respect to change in mass, stiffness and 

eccentricity ratio parameters. These rates show the sensitivity of a 

response quantity with respect to the variable. 

Ground motion used in this study has been modeled by a stationary 

random process, defined by a spectral density function of the Kanai-

Tajimi form [4] as follows: 

3 
<Pg (w) = I Si 

i=l 

422 2 w.+4S·w.w 
111 

222 222 (w.-w ) +4S·w.w 
1 1 1 

(4.1) 

The parameters Si' wi and Bi of this density function are given in Table 

4.1. This density function represents a fairly broad-band seismic 

input, suitable for design purposes [33]. 

4.2 Frequency and Response Characteristics of the System 

4.2.1 Frequency Characteristics: 

Fig. 4.1 shows the variation with ~ of two lowest frequencies, 

which can be identified as translational and rotational frequencies. 

The frequencies were obtained, both by the undamped (normal mode) and 

damped (complex mode) eigenvalue analyses. However, the difference in 

the values calculated by the two approaches is indiscernible. Thus the 

presence of nonproportionality apparently does not affect the values of 

frequencies. For small values of ~, the two frequencies are close to 

each other, as has been mentioned by several investigators in the past 

[2,29]. This indicates a strong coupling between the translational and 

torsional mode. However, as ~ increases, the separation between these 

two frequencies increases with decreasing modal interaction effect. The 

rates of change with respect to mass and stiffness parameters and 

eccentricity, e, for these two frequencies are shown in Figs. 4.2 and 

4.3. 



4.2.2 Characteristics of Relative Displacement and Rotation Responses: 

Fig. 4.4 shows the variations of the root mean square (RMS) values 

of the maximum relative displacement (in ft.) and rotational displace

ment (re, in ft. units) of the system: the values for the top floor 

represent the maximum values. The relative displacement values are 

first seen to decrease with an increasing value of ~ and then start to 

increase, whereas, the floor rotation, as would be expected, increases 

with increasing value of ~. 

Fig. 4.5 shows these values obtained by the two approaches: Normal 

and complex mode approaches. The effect of assuming proportionality, 

i.e. ignoring the nonproportionality effect introduces some error in the 

calculation of responses for some low values of ~; however, it does not 

appear to be very large. 

For various sets of damping ratios used, Figs. 4.6-4.8 show the 

variation with ~ of the rates of change of the relative displacement and 

rotational responses with respect to the mass and stiffness parameters 

and eccentricity ratio ~. 

4.2.3 Characterisitcs of Base Shear and Torsional Moment Responses: 

The base shear and torsional moment are obtained by a cummulative 

summation of shear forces and torsional moments obtained in various 

stories of a multistory system. Such total forces are commonly used in 

earthquake design of structures, and their values are obtained on the 

basis of building code specification. Code provisions usually consider 

inelastic behavior of structures. Here, however, the forces have been 

obtained only for elastically behaving torsional systems, mainly with 

the purpose of studying their sensitivity to the change in various 

structural parameters. 
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Figs. 4.9 and 4.10 show the variations of normalized base shear and 

torsional moment RMS values with ~ for various combinations of damping 

ratios. Normalization is done with respect to the weight parameter mg. 

Thus, the plotted values in these figures represent the actual values 

of base shear and torsional moment divided by mg. Again to examine the 

effects of the assumption of proportionality, both the story shear and 

torsional moments have been obtained by the normal and complex mode 

approaches. Again some differences are noticed for small value of ~. 
r 

Of special design significance is the rapid build up of torsional 

moment due to introduction of even small values of ~ = 0.05. A corre-r . 

sponding reduction in the story shear is also noted. However, if the 

presence of eccentricity is in advertant, no advantage of reduction in 

story shear may be taken in a design. On the other hand, the effect of 

the increased torsional moment must be considered to ensure safety of a 

structural design. 

Figs. 4.11-4.13 show the rates of change of these design quantities 

with respect to mass and stiffness parameters and eccentricity ratio ~. 
r 

Large values of the rates of changes and their variation for small 

values of ~ may also be noted. 

4.2.4 Column Bending Moment Response: 

For earthquake design of a structure, one usually obtains the total 

story shear and torsional moment as per the provisions of an appropriate 

code. These shear and moment values are then distributed among various 

columns and other resisting elements to obtain the design bending 

moments in them. In a dynamic analysis of an elastic system, however, 

the column bending moment can also be obtained directly by using the 

bending moment modes in Eq. (3.1). For example, the mode shapes for 
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bending moment in the jth column of the ith story can be written in 

terms of the relative displacement and rotation mode shapes as follows: 

M x· . 
1J 

M y .. 
1J 

1 = ;, k L. [X. -X. l-Y·· (8. -8. 1) ] 
~ xij 1 1 1- 1J 1 1- (4.2a) 

1 
= -2 k L.[V.-V. 1+x .. (8.-8. 1)] Yij 1 1 1- 1J 1 1-

(4.2b) 

in which Mx .. and My .. are the bending moments in the x- and y-direc-
1J 1J 

tions, respectively, are the x- and y-relative displacement and 8i is 

the rotation of the ith floor; and x·· and y .. are the coordinates of 
1J 1 J 

the column with respect to the mass center. 

The variations with i of the normalized root mean square bending 

moment response of columns 1 and 5 of Fig. 2.2 are shown in Figs. 4.14-

4.18 for various damping ratio combinations. Again, the normalization 

is done with respect to the parameter mg. In the calculation of bending 

moments in these columns, the values of xij and Yij equal to IfJ5 r 

have been used. This will be the case for the corner columns support

ing a square floor slab. The lower set of curves is for the bending 

moment in the x-direction and the higher set is for the bending moment 

in the y-direction. A difference in the variation trend for columns 1 

and 5 is noted. Also plotted on the same scale in Fig. 4.16 are shown 

the bending moment values in the x- and y-direction for these two 

columns. The bending moment in column 1 is seen to increase with i 
(almost monotonically, except near the small value of i). whereas in 

column 5, it becomes constant with increasing i. Probably it is due to 

the reason that for large i, it is the difference between Vi and 

(8 ixij /r) that determines the bending moment in column 5 and as seen 

from Figs. 4.4 and 4.5 it does not increase rapidly with i. For column 
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1 it is the sum of Y. and (e.x . . /r) that determines the bending moment 
1 1 lJ 

and as shown from Fig. 4.16, it is seen to increase.more rapidly with 
e 
r· 

Also shown are the results obtained by the normal and complex mode 

approaches to evaluate the effect of nonproportionality. It does not 

seem to introduce much error for column 1, but for column 5 some differ-

ences are noted, especially in the y-bending moment values for small 

values of ~. 

Figs. 4.19-4.24 show the variations with ~ of rates of change of 

the bending moments in column 1 and 5 with respect to mass and stiffness 

parameters and eccentricity ratio ~ for various sets of damping values. 

Sensitivity of the bending moment response with respect to eccentricity 

ratio ~ at small values of ~ is indicated by large change in the rate of 

change. The differences in the rate of change characteristics of bend

ing moments in the two opposite side columns, column 1 and 5, especially 

near small values of fmay also be noted. 

4.3 Effect of Variation of Frequency Parameter: 

The results shown in Figs. 4.1-4.24 were obtained for a frequency 

parameter value of 10 cps. which gave a lowest frequency of 2.81 cps. 

for the system. To examine what effect the bending stiffness will have 

on various response characteristics, similar plots were also obtained 

for other values of the frequency parameter. The numerical values of 

various results were different, but the variation in the values had a 

similar trend and therefore the results for other values of w have not 

been shown. However, for comparison selected results of the response 

values of base shear, base torsional moment and V-bending moments in 

columns 1 and 5 are plotted in Figs. 4.25-4.28 for different values of 
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the frequency parameter. Higher response values are obtained for a 

frequency parameter of 10 cps, as the input spectral density function, 

Eq. 4.1, has a relatively higher ordinates in the frequency range near 

the corresponding fundamental frequency of 2.81 cps. For the other two 

frequency parameter values, the spectral density ordinates are of 

relatively smaller magnitude. 

4.4 Coefficient of Variation of Root Mean Square Response 

Using Eqs. (3.3) and (3.4), the coefficient of variation of the 

root mean square response of base shear, base torsional moment and bend-

ing moments in columns 1 and 5 due to the variabilities in the mass 

parameter, stiffness parameter and eccentricity ratio, ~, have been 

obtained. The coefficients of variation of rm, r k and ~ have been taken 

as 0.15. Columns 2, 3 and 4 in Tables 4.2-4.6 show the coefficients of 

variation for various responses due to each parameter variation individ-

ually, whereas the combined coefficient of variation is shown in column 

5. To obtain the combined coefficient of variation, the random vari

ables rm, r k and ~ are assumed to be independent. No specific trend in 

the values is apparent; and even if there were a trend that would be 

attributable to characteristics of the system. These results, however, 

demonstrate the application of the methodology proposed herein for the 

calculation of the uncertanity in the response. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

In this study the effects of changes in various structural param

eterson the response of a structure excited by random ground excitation 

has been studied. The random parameters considered are: the structural 

mass, stiffness and eccentricity between mass and stiffness centers on a 

floor. The variabilities in the mass and stiffness are characterized by 

the random variables with the mean values equal to 1.0 and known standard 

deviations. This assumes that all masses and stiffnesses varry in the 

same proportion. More involved variations of masses and stiffnesses are 

also possible. A uniform multistory building with eccentric mass and 

stiffness center has been studied. The rates of change of frequencies 

and various response quantities with respect to mass, stiffness and 

eccentricity parameters are obtained. These rates of change indicate 

the sensitivity of a quantity with respect to a parameter and emphasize 

the relative importance of that parameter for that response. These 

rates are also used in the calculation of response coefficient of 

variation for given coefficient of variation values of the parameters. 

Numerical results are obtained for a five-story, lO-degrees-of

freedom structural system with various damping ratio and frequency 

parameter values. Both approaches of response calculations- a more 

accurate complex mode approach and an approximate normal mode approach -

have been used to see what error is introduced if the nonproportionality 

effects of a damping matrix are ignored. Based on these results the 

following conclusions can be drawn: 
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1. For large ~ ratios, the system frequencies are rather well 

separated. In such a case neglecting off-diagonal terms of the matrix 

[~]T[C][~], which represent the nonproportional damping coupling are not 

important and can be neglected. That is, the damping matrix [C] can be 

assumed to be proportional and the modal damping ratios can be obtained 

by Eq. 3.2. This may, however, not be done if the ~ ratio is small and 

the torsional stiffness ratio parameter is close to 1.0. In such a case 

the structural frequencies are not well separated and modal interaction 

is possible and it may affect some structural response. However, not 

very severe effects were observed in some response values even at these 

low ~ values. Torsional moment response values are in large errors; 

however, since the torsional moment values are very small at small ~, 

these large errors are of no practical significance. The differences in 

the story shear values, Fig. 4.10, and column bending moment values, 

Fig. 4.18, calculated by the two approaches, may differ significantly 

for small ~ ratio (less than 0.05). Thus in such a case, if the damping 

matrix is nonproportional, it may be necessary to use the nonproportional 

damping analysis approach presented in Ref. [30J. However, at this 

stage of analysis it appears that for a safe design, the effect of 

eccentricity may be neglected to obtain a conservative estimate of the 

total base shear. 

2. An introduction of eccentricity in a direction introduces tor-

sional moments in the system. This, however, is seen to reduce the 

direct story shear. There is a sharp drop in the shear and a fairly 

sudden rise in torsional moment up to ~ = 0.05. However, no advantage 

in a design can probably be taken of this reduction in a story shear. 
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For a safe design a value for ~ = 0 should be used in the calculations 

for shear. This conclusion, however, needs further verification by a 

more complete study in which an eccentricity in the y-direction is also 

considered~ The effects of inadvertent eccentricity inducing torsional 

moment should, however, be considered, even if a structure is intended 

to be symmetrical. A consideration of an ~ value of the order of 0.05 

for an inadvertant eccentricity seems very desirable. 

3. The response coefficient of variation values calculated here 

reflect the effect of uncertainties in the parameters. No dramatic 

values of variabilities are obtained. It probably is due to the fact 

that the seismic input defined by the spectral density function of Eq. 

(4.1) represents a wide band input. A response spectrum curve for this 

input is shown to be a broad band spectrum with a flat top over a fairly 

wide frequency range. The variations in the mass and stiffness, though 

cause a change in the system frequencies, do not produce much variations 

in the response. This may, however, not be the case if the input is not 

broad banded such as the filtered motion of a floor. In such cases, a 

proper use of the methodology presented here may be desirable to include 

the variabilities of parameters in the calculation of design response. 
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Table 2.1 TORSIONAL STIFFNESS RATIOS FOR 9 DIFFERENT COLUMN LAYOUTS 
IN FIGS. 2.4 

FLOOR Ratio of translational stiffness in x- and y-direc. Kx/Ky 

PLAN 0.50 0.75 1. 00 1. 25 1. 50 1. 75 

a 2.25 2.62 3.00 3.38 3.75 4. 13 

b 1. 65 1. 73 1. 80 1.88 1. 95 2.03 

c 1. 40 1.43 1. 46 1.49 1.51 1. 55 

d 1. 29 1. 31 1. 32 1. 34 1.35 1. 37 

e 1. 65 1. 73 1. 80 1.88 1.95 2.03 

f 1. 75 2.13 2.50 2.88 3.25 3.63 

9 1. 50 1. 65 1. 80 1. 95 2.10 2.25 

h 0.97 1. 19 1. 42 1. 65 1. 88 2.10 

i 1. 02 1. 22 1.44 1. 64 1.84 2.04 
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Table 4.1 PARAMETERS Of SPECTRAL DENSITY FUNCTION, ¢g(w), Eq. (4.1) 

i S; w· 1 
(3. 

1 

ft2 -sec/rad rad/sec. 

1 0.0015 13.5 0.3925 

2 0.000495 23.5 0.3600 

3 0.000375 39.0 0.3350 
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Table 4.2 Coefficient of Variation of Root Mean Square Response of 
Base Shear for Px = 0.05 and Py ::; 0.02 

Coefficient of Variation 
in Percent Due To 

Eccentricity 
Ratio Mass Stiffness Eccentri city Combined 

0 Parameter Parameter Ratio 
(1) (2) (3) (4) 

0.001 4.272 3.167 0.031 5.318 

0.01 3.510 2.411 2.083 4. 740 

0.02 2.971 1.855 3.509 4.970 

0.03 3.067 1.997 3.210 4.868 

0.04 3.304 2.250 2.528 4.730 

0.05 3.512 2.473 1.932 4.710 

0.06 3.667 2.641 1.481 4.755 

0.07 3.778 2.766 1. 149 4.821 

0.08 3.857 2.860 0.901 4.886 

0.10 3.954 2.991 0.564 4.990 

0.15 4.017 3.186 0.133 5.128 

0.20 3.942 3.366 0.092 5.184 

0.25 3.744 3.622 0.209 5.214 

0.30 3.399 4.008 0.175 5.258 

0.40 2.293 5.170 0.827 5.716 

0.45 1.762 5.718 "1.932 6.287 

0.50 1.563 5.922 3.142 6.883 
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Table 4.3 Coefficient of Variation of Root Mean Square Response of 
Base Torsional Moment for ~x = 0.05 and ~y=0.02 

Coefficient of Variation 
in Percent Due To 

Eccentricity 
Ratio Mass Stiffness Eccentricity Combined 

[. Parameter Parameter Ratio 
(1) (2) (3) (4) 

0.001 9.822 8.687 14.949 19.885 

0.01 8.436 7.299 11. 186 15.798 

0.02 6.657 5.513 6.349 10.724 

0.03 5.683 4.529 3.694 8.152 

0.04 5.187 4.022 2.336 6.967 

0.05 4.917 3.740 1.592 6.380 

0.06 4.759 3.570 1.152 6.060 

0.07 4.662 3.459 0.875 5.870 

0.08 4.599 3.381 0.692 5.750 

0.10 4.529 3.282 0.478 5.613 

0.15 4.467 3.172 0.297 5.487 

0.20 4.406 3.174 0.266 5.436 

0.25 4.237 3.317 0.226 5.386 

0.30 3.863 3.677 0.027 5.334 

0.40 2.251 5.268 1.907 6.038 

0.45 1.206 6.298 4.343 7.744 

0.50 0.463 7.020 7.862 10.550 

48 



Table 4.4 Coefficient of Variation of Root Mean Square Response of 
y-Bending Moment in Column 1 for ~x = 0.05 and ~y = 0.02 

; 

Coefficient of Variation 
in Percent Due To 

Eccentricity 
Ratio Mass Stiffness Eccentricity Combined 

£ Parameter Parameter Ratio 
(1) (2) (3) (4) (5) 

0.001 4.630 11.772 0.264 12.653 

0.01 5.268 11. 174 0.777 12.378 

0.02 4.980 11. 550 0.173 12.579 

0.03 4.789 11.849 0.537 12.791 

0.04 4. 730 12.020 0.501 12.928 

0.05 4.732 12.131 0.315 13.025 

0.06 4.761 12.213 0.077 13.109 

0.07 4.802 12.282 0.180 13.189 

0.08 4.848 12.342 0.445 13.269 

0.10 4.944 12.450 0.985 13.431 

O. 15 5.139 12.642 2.431 13.861 

0.20 5. 181 12.671 4.101 14.290 

0.25 4.948 12.421 6.039 14.671 

0.30 4.297 11. 573 8.187 14.954 

0.40 1.359 8.789 12.273 15.157 

0.45 0.680 6.752 13.801 15.380 

0.50 2.429 5.020 15.556 16.525 
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Table 4.5 Coefficient of Variation of Root Mean Square Response of 
y-Bending Moment in Column 5 for ~x = 0.05 and ~y::::O.02 

Coefficient of Variation 
in Percent Due to 

Eccentri city 
Ratio Mass Stiffness Eccentricity Combined 

f.. Parameter Parameter Ratio 
(1) (2) (3) (4) (5) 

0.001 4.244 12. 152 0.289 12.875 

0.01 2.852 13.485 1.713 13.890 

0.02 3.201 12.979 0.055 13.368 

0.03 3.868 12.334 0.844 12.901 

0.04 3.895 11. 990 0.949 12.643 

0.05 3.966 11. 802 0.802 12.476 

0.06 3.980 11. 684 0.601 12.357 

0.07 3.967 11. 599 0.403 12.265 

0.08 3.943 11.532 0.223 12.190 

0.10 3.882 11.423 0.075 12.069 

0.15 3.733 11. 246 0.538 11.862 

0.20 3.626 11.133 0.706 11.730 

0.25 3.558 11. 064 0.607 11.638 

0.30 3.496 11. 004 0.192 11.548 

0.40 3.089 10.602 1. 720 11. 176 

0.45 2.501 10.028 3.354 10.866 

0.50 1.705 9.242 5.464 10.871 
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APPENDIX I 

MASS, DANPING AND STIFFNESS MATRICES 

Relative displacement vec r, {u}, and nondimensional mass [M], 

damping [C] and stiffness [K] matrices of the torsional system are given 

as follows: 

{U} = 
(m,l ) 

[M] = 
(m,m) 

a 

o 

83 

( I. 1) 

p (t:N)2 
N r 

(I. 2) 
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[C]=2Sw 
(N,N) 

[K] =w 
(N,N) 

lll+ll2 -ll2 

-ll2 ll2 +ll3 o. 

-ll' 1 lli+lli+l -llit 1 

O. -llN-l llN-l+llN 

-llN 

nl+n2 -n2 

-n2 n2+n3 -n3 O. 

2 -ni ni+n;+l -nit 1 

O. 
-llN-l -nN-1+nN 

-nN 
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APPENDIX-II 

Various terms and their corresponding derivatives used in propor

tional and nonproportiona1 damping cases in Chapter 3 are defined in this 

Appendix. 

11.1 Proportional Damping Case 

11.1.1 Frequency Integrals 

Frequency integrals used in Eq. (3.1) are defined as follows: 

a. (ILl) 

This integrals for the spectral density defined by Eq. (4.1) can be 

written as: 

where 

Gl(w.,s.) 
J J 

2 2 2 2 
= (S·w·+S·w.)[w. + w· + 4S·S·w.w. + 4S.w.] 

1 1 J J 1 J 1 J 1 J 1 J 

- w.w.(S.w. + S·w.) 
1 1 1 J J 1 

2 2 B(w.,(3.) = w.w.[(S·w. + S.w.) + (S.W. + S.w.) ] ;J J 1 J , J J 1 1 1 J J 

(11.2) 

(11.3) 

2 2 ) ( ) - (S.w. + f3.w.)(f3.w. + S.w.)(w. + w. + 4f3.f3.w.w. 11.4 
1 1 J J 1 J J 1 1 J 1 J , J 

in which Si' Wi and 13; are parameters of the spectral density function as 

shown in Table 4.1. 

b. 
2 2 

2 00 w· W 
I2(w.) = C f ~ (w) 2 J dw 

J 9 . ( 2)2t4Q2 2 2 
-00 Wj - W IJj Wj W 

(II.5) 

which can be written as: 
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in which u = -2(1-2S~); v = 1.0; s = -2r2(1-2S}); t = r4; w1 = 0.; w2 = 
2 2 1.0; w3 = -(l+r -2sj skr); and w4 = r . 

The rates of change of partial fraction factors ~~, ~~, ~~ and ~~ 
with respect to a structural parameter can be obtained by solving the 

following equations: 

(I1.16) 

in Which.{~~} and-[~~] are obtained by straight forward differentiation 

of terms in [c] and [WI with respect to parameter x of interest. 

11.2 Nonproportional Damping Case 

11.2.1 Frequency Integrals 

Frequency integrals used in equation (3.16) are identical to pro

portional damping case in Section 11.1.1. 

11.2.2 Partial Fraction Factors PI,QI,RI,SI 

Factors PI,QI,RI,SI can be obtained from Eq. (11.15) in which ma

trix [CI remains the same as in Eq. (11.15) and the elements of vector 

{W} are defined as: 

W1 = Dl ; W2 = C1Dl + D2 + E2 

W4 = C2D2 

in which 

(I1.17) 

D2 = 4r[a j akSj '\ + b}k Il-SJ II-if - a jbkSj II-if - akbj Sk II-Sj ] 

C1 = -(1 + r2 - 4s j skr) ; C2 = r2 (I1.18) 
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F =- -8[aj ak(Sk - rsj ) - (ajb k ~ - bjakr Il"Sj)] 

The derivatives of 01' D2, Cl , C2, E2, E3 and F and consequently of W" 

,W2' W3 and W4 are straightforward. Also, factor Aj is defined as: 

A. = b~ + (a~ - b~) s~ - 2 a.b. S. ~ 
J J J J J J J J J (II.19) 

and its derivatives are straightforward. 
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