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FOREWORD 

This paper is presented exactly in the same form at the 

Lifeline Earthquake Engineering Symposium at the 3rd u.s. 

National Congress on Pressure Vessels and Piping, San Fran­

cisco, California, June 25-29, 1979. 
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ESTIMATION OF STRUCTURAL STRAINS 

IN UNDERGROUND LIFELINE PIPES 

BY 

M. SHINOZUKA ANDT. KOIKE* 

Renwick Professor of Civil Engineering. and Research Associate, respectively, 
both at Columbia University, New York, N.Y. 10027. 

ABSTRACT 

The risk analysis methodology previously developed for underground pipe­
line systems by the senior author has made use of a conversion factor 8 in or­
der to estimate the structural strain in underground pipelines induced by the 
propagating seismic wave. The purpose of this study is (a) to derive a prac­
tical procedure to estimate the conversion factor that can be used not only for 
straight and bent pipes but also for structural details of more complex geometry 
and (b) to determine the conversion factor for a number of typical cases in or­
der to provide the analyst with the numerical insight as to its values consis­
tent with the physical conditions to which the pipeline system is subjected. 
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NOMENCLATURE 

= cross-sectional area 
= soil conditions 
= cohesion stress or seismic wave velocity 
= outer diameter of pipe 
= wall thickness 
= modulus of elasticity of steel 
= equivalent modulus of rigidity of soil 
= acceleration due to gravity 
= area moment of inertia of a cross-section 
= equivaient spring constant to reflect soil-structural interac-

tion (force per unit area, Eq. 1) 
= coefficient of soil reaction (force per unit area) 
= coefficient of soil reaction (force per unit volume) 
= seismic wave iength 
= quantity indicating a point of slip initiation 
= bending moment 
= parameter 
= coefficients 
- shear force 
= period of seismic wave 
= displacement profile .function 
= free field displacement 
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W = 3Lk/ (l6AEA) 
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Z; = (27T/L)Ed/G 
e 
A = ~k/ (4EI) 

1.1 
P 
PG 
a 
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lcr 
lG 
<P 
(u = 27T/T 
W = (27T/L) IE/p 

= (27Tk/L) IE/P 

= IKG/PA 

= displacement of pipe in the longitudinal direction 
= parameter 
= conversion factor 

quasi-static conversion factor to be applied to straight 
pipes 

= dynamic conversion factor to be applied to straight pipes 
= conversion factor for structural strain when the pipe is 

in slippage I 

= conversion factor for maximum relative displacement between 
straight pipe and soil when slippage occurs 

= conversion factors to be applied to elements (1) and (2) of 
bent pipe (Fig. 5) 

= conversion factors to be applied to elements (1) and (2) of 
a tee-junction (Fig. 6) 

= conversion factor to obtain resisting capacity in the I-th 
failure mode 

= critical shear strain of soil at which slippage initiates 
= shear strain in soil 

maximum shear strain in soil at the interface 
= relative displacement between pipe and soil 
= critical structural strain corresponding to Y 
= free field strain cr 
= structural strain in tbe longitudinal direction 
= resisting strain 
= parameter 

angle in bending 
= relative rigidity of pipe and soil 
= mean value 
= mass density of steel 
= mass density of soil 
= normal stress or standard deviation 
= shear stress of soil 
= c.ri tical shear stress corresponding to Y 
= shear stress in soil 
- angle of friction 
= frequency of seismic wave 

cr 

= frequency of wave of length L propagating longitudinally 
Ehrough the pipe 

= frequency of wave of length L/k propagating longitudinally 
through the pipe 

= frequency of simplified pipe-soil system model (Eq. 1) 

INTRODUCTION 

The risk analysis methodology developed for underground pipeline systems in 
(~) and (2) makes use of a conversion factor 8 in order to estimate the struc­
tural strain E in the underground pipelines induced by the propagating seismic 
Wave. The con~ersion is accomplished by multiplying the free field strain E 
by 8: E = 8E. Whether or not the risk analysis metqaaology can be implem~nt­
ed to pr5duce ~ credible assessment of siesrnic risk of 'the pipeline system ·dep­
ends largely, although not exclusively, on the availability of accurate esti­
mates of such a factor which in turn depends on structural details, pipe mater­
ials, properties of the surrounding soil, the nature of propagating waves, etc. 

The purpose of this study, therefore, is (a) to derive a practical proce­
dure to estimate the conversion factor that can be used not only for straight 
and bent pipes but also for structural details of more complex geom~_t_ry such as 
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tee-junctions and (b) to determine the conversion factor for a number of typical 
cases in order to provide the analyst with the numerical insight as to its val­
ues consistent with the physical conditions "to which the pipeline system is sub­
jected. 

The analytical results of previous studies, e.g. (3), are usually based on 
the simplified model of a straight pipe imbedded (in th; z-direction) in an in­
finite elastic (soil) medium for which the familiar differential equation can be 
established invoking D 'Alembert 's principle with respect to the inertii-fo-rc"e, 
the internal force within the pipe and the force proportional to the displace­
ment Us of the pipe relative to that of the free field u

G
: 

(1) 

where p = mass density of the pipe material, E = Young's modulus of the pipe ma­
terial and KG = equivalent spring constant to reflect the soil-structure inter­
action. The analytical results derived from Eq. 1 indicate that the structural 
strain is in approximation equal to the free field strain and the inertia ef­
fects are negligible provided that no slip takes place between the pipe and the 
surrounding soil. A field measurement performed by Sakurai et al (l) at the 
time of the Matsushiro earthquake supports these observations. 

It is important to note in this regard that these observations appear to be 
valid only ~~en the earthquake intensity is mild and the free field strain ,is as 
small as 10 or less so that no slip is generally expected. It also appears 
that, when the earthquake in~jnsity_~s severe and the free field strain reaches 
the order of magnitude of 10 ~ 10 , the chances of a slip taking place be­
tween the pipe and the surrounding soil significantly increases causing large 
strain concentrations at various joints and connections in the pipeline system, 
thus resulting in significant structural damages at these,structural locations. 
Therefore, for the proposed conversion factor to be useful particularly when the 
free field strain is large and hence significant pipe damages are expected, we 
must take the effect of possible slip between the pipe and the surrounding soil 
into consideration in the analysis. The simplified mechanism of slip we assume 
in this study involves more directly the shear stress T acting on the pipe sur­
face rather than the force proportional to the relative displacement between 
.the pipe and the free field displacement K (u - u ) (see Eq. 1). In particu­
lar, the slip initiates when the shear str~ssST exgeeds T = C + cr tan¢ where 
c = cohesion stress, cr : normal stress at the interface b~tween the pipe and the 
soil and ¢ = angle of friction between the pipe and the soil. The normal stress 
cr and therefore'c increase as the depth of soil cover increases. Therefore, , 
the slip initiate~rat a larger value of T when the depth of cover is larger. In 
the present analysis, we assume for numerical purposes, that the slie3takes place 
when T reaches a value correspondina to the shear strain y : 10 in the 
imrnedigte vicinity of the pipe surfac; and that T is givenC5y T : Gy 'where 

. h h d 1 f h '1 cr cr cr G 45 t e sear mo u us 0 t e S01 . 

ASSUMPTIONS IN DETERMINING THE CONVERSION FACTOR 

The conversion factor S is defined as the ratio of the structural strain E5 
to the free field strain E

G
. 

(2) 

Numerical evaluation of this factor can be made on the basis of the following as­
sumptions: 
(i) The free field strain is sinusoidally distributed with wave length L in 

the direction (z) of the pipe element. r ' 
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(ii) Shear stresses on the pipe surface are transmitted directly from the sur­
rounding soil medium (see Fig. 1). 

(iii) The relationship between T and y within the surrounding soil is of the 
type as shown in Fig. 2. 

(iv) Slippage initiates when the shear strain of the soil near the pipe sur­
face exceeds the critical shear strain y • 

(v) With respect to lateral motions, pipe elgfuents are assumed to be embedded 
in an infinite elastic medium which has an average radial resistance, k, 
per unit area (e.g. kgwt/cm2 ). 

STRAIN IN STRAIGHT PIPES 

Structural Strain and Free F.ield ___ S~rain 

Shear Stress 

Assume that the ground displacement near the pipe is given by 

(3) 

in which L = wave length, W = circular frequency of propagating wave, e:
G 

= free 
field strain and U(x) = displacement profile along the x axis perpendicular to 
the pipe axis, where 

lim Vex) = 1 as x -+ 00 

Throughout the paper, the variable t is suppressed as much as possible. For 
the discussion of spatial distribution of stress, strain, etc., use.t = Tr/W. 

(4 ) 

The displacement profile Vex) is a function of the difference in the·stiffnesses 
of the soil and the pipe, and also, of T among other physical and environmen-
tal conditions at the pipe surface. cr 

The shear strain distribution YG(x,z) in the soil medium follows from Eq. 3 
as 

(5 ) 

If the shear strain Y
G 

remains within the elastic range, the shear stress of the 
soil, T

G
, at x = 0/2 ~s given by 

TG = TG(Z) = G)'G(0/2,z) = G)'osin{wt - (2TT/L)·z) , (6) 

This is the shear stress acting on the pipe surface where G = shear modulus of 
the soil, 0 = outer diameter of the pipe and YO = maximum shear strain acting 
on the pipe surface, which is given by 

Yo = [C3u (x)/C3xlx=0/2· e:G·L/(2TT) 

Equation of Motion 

(7) 

Consider the free body diagram of a segment of pipe dz shown in Fig. 3 sub­
jected to an acceleration C3 2uS/C3t 2

• Applying O'Alembert's principle to the sur­
face, internal and inertia forces acting on this segment, we obtain 

A{OS + (C30s/az)dZ} + TTOTGdz = AOS + PAdzC3 2us/C3t 2 (8) 

in which d·= pipe wall thickness, aS = axial stress in the pipe and A = cross­
sectional area of pipe given by 
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A 7rd(D -:- d) - 7rDd (9) 

Noting that 

(10) 

we can rewrite Eq. 8 in the form 

(11) 

which reduces to the familiar one-dimensional wave equation in a homogeneous (p, 
E= constant) elastic rod as it should if U(x) = 1 and hence YO = LG = o. 

structural Strain 

We assume the structural displacement Us is given by 

Us (z) = B sin{wt - (27T/L)· z} 

Noting that 

a2 u /a 2 t = -w2 u S S 

Cl 2u
S

/Clz 2 = -(27T/L)2 uS 

and substituting Eqs. 6, 13 and 14 into 11, we obtain 

Hence 

in which 

B = 
(L/27T)2. GYO/(Ed) 

1 - (W/~)2 

~ = (27T/L) IE/P 

(12) 

(13) 

(14) 

(15 ) 

(16) 

The last quantity is the frequency of a longitudinal elastic wave of length L 
propagating through an infinite straight pipe with velocity c = ~. 

Combining Eqs. 7, 12 and 15, and also differentiating, the structural dis­
placement u and strain E are obtained as follows: 

S . S 

us(z) = (L/27T).E
G

·S
O 

sin{wt - (27T/L)·z}/h - (W/~)2} (17) 

(18) 

in which 

. (19) 
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Conversion Factor and Maximum Relative Displacement 

Following the general definition given by Eq. 2,.and evaluating the maximum 
ratio of ES to EG, the dynamic conversion factor for a straight pipe (taking the 
inertia effect into consideration) may be defined as 

(20) 

" Using SO' we can rewrite Eqs. 17 and 18 in the following form; 

us(Z) = SO·uG(~~z) (21) 

ES(Z) = -SO·EG cos{wt - (2TI/L)·z} (22 ) 

~ince the seismic wave usually propagat~s with a much smaller frequency 
than w defined in Eq. 16, if follows that w/w «1. We can therefore conclude 
from Eq. 20 that :the dynamic conversion factor is practically identical to the 
conversion factor based on the quasi-static consideration. 

The maximum relative displacement ~ between the pipe and the soil is ob­
served at Z = L/4 (point of maximum amplitude) and equal to 

" ~ = UG(~,L/4) - U
S

(L/4) = (1 - SO) ·£G· L/(2TI) (23) 

Displacement Profile Function 

" For an explicit analytical expression for the conversion factor So and So 
the functional form of U(x) must be assumed. In this respect, it appears reason­
able and mathematically expedient to assume that 

U(x) = 1 - exp{-~·(2TI/L)·x} 

in which 

~ = (2TI/L)·Ed/G 

Use of Eqs. 19 and 24 then produces the conversion factor So given by 

So = exp{-~· (2TI/L)·D/2} = 1/exp{~·(2TI/L)·D/2} 

(24) 

(25) 

(26) 

Since the argument ~. (2TI/L)oD/2 is usually much smaller than unity, So can be 
approximated by 

(27) 

ancJ. 

(w/~) 2}-

(28) 

in whic9 A == TIDd, K =2TIG = equivalent soil spring constant per unit ~rea (e.g. 
kgwt/cm ) and Wo = G/KG/PA : frequency of simplified pipe-soil model represent-
ed by Eq. 1. .. 

Similarly, YO in Eq. 7 can be shown to be 

(29) 
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Numerical Examples of 8
0 

and 8
0 

For~each of the three geological site conditions A, Band C, conversion 
factors 8 and 8

0 
are computed, where -A represents unconsolidated to poorly 

consolida~ed sed1ments, B semi-consolidated to moderately consolidated sedi­
ments, and C very dense ioneous and metamorphic rocks. The results are shown 
in Table I under the assumption,that the wave lengths are L = 400 m and 150 m 
respectively. In both cases, we observe that the straight pipes deform almost 
in unison with the soil under the conditions of no slipp~ge and that the dynam­
ic effect is negligible in the sense that the values of 8

0 
and BO are practi­

cally identical. 

Structural Strain When Slippage Occurs 

Structural Strain in Slippage 

As described in the Introduction, the slippage along the interface between 
the buried pipe and the surrounding soil can take place when the earthquake in­
tensity is severe enough so that the shear stress T produc~d in the interface' 
reaches the value T = c + a tan ¢. In the present study, we assume, as also 
indicated in the Intfoduction, that the value of L is such that y = L /G 

-3 cr cr cr is equal to 10 
Noting that YO in Eq. 7 is the maximum shear strain in the soil at the in­

terface, the following criteria can be used to determine whether the slippage 
will or will not take place at least in some portion along the interface: 

If Yo < Y cr slippage will not take place 

If Y > Y slippage will take place. a = cr ' 

Using Eq. 7 together with Eqs. 18 and 19, we can show under the conditions 
of no slippage that the maximum structural strain E can be expressed as ,­

cr 

Ecr = L/(2TI) ·G/(Ed) ·YO/{l - (W/~)2} = YO/~·l/{l - (W/~)2} = EGBO 

(30) 

Since Eq. 30 is still valid when YO becomes y , the maximum structural strain 
cr 

E at the onset of slippage is 
cr 

(31 ) 

Focusing our attention only on a pipe segment of length L (one seismic 
wave length) as shown in Fig. 4, and assuming the symmetric distribution of 
shear strain in the soil along. the interface (symmetric with respect t~ z = L/4 
and 3L/4), we observe that the slippage between the pipe and the surrounding 
soil occurs in the interval (1*, L/2 -1*) and (L/2 + 1*, L - 1*) along the ax­
ial direction of the pipe, where 1* is related to y through the following ex-
pression: cr 

1* = (L/2TT)arc sin(y /y) 
cr 0 (32) 

The distribution of shear stress in the soil at the interfac~ is then gJven by 

(33) 
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in the intervals (O,t*), (L/2 -lt7-, L/2 + .11.*) and (L - t*,L) where no slippage 
has occurred and 

TG(Z) =Gy cr (34) 

in the intervals (.11.*, L/2 - .11.*) and (L/2 + t*, L - .11.*) where the slippage has 
occurred. This distribution of shear stress is schematically shown also in 
Fig. 4 by solid lines and can be expanded into a Fourier sine series as below: 

(Xl 

TG(Z) = Gy l ~ sin{wt - (2TI/L)kz) 
crk=l 

(35) 

The structural displacement u (z) consistent with the shear stress given by Eg. 
35 can then be assumed to be 5f the following, form: 

ex> 

l Bk sin{wt - (2TI/L)kz) 
k==l 

Substituting Eqs. 35 and 36 into Eq. 11, we obtain 

(36) 

(37) 

where k = 1,2,3, ..• and ~k = (2TIk/L) ·/E/P = k~, Hence, the structural displace­
ment under the conditions of slippage is given by 

00 

uS(Z) = (L/2TI) SOEG (Ycr/Yo) k~l rh - (w/~)2}/{1 - (W/~k)2}] 

(38) 

where use of Eqs. 28 and 29 has been made. Differentiating Eg. 38 with respect 
to z, we obtain the corresponding structural strain as 

00 

== -BOEG(Y IYo) L [{I - (W/~)2}/{1 - (w/~k)2}J 
, cr k=l 

x (~/k)cos{wt - (2TI/L)kz} (39) 

At this point, we recall our assumption that, under the condi1:ion of no 
slippage, the structural displacement, strain and stress are all travelling 
waves of sinusoidal shape with the same frequency wand wave length L as those' 
of the propagating seismic wave. For the cases where the slippage is taking 
place, we are using essentially the same assumption. The only difference lies 
in the fact that the shapes of these travelling waves are no longer sinusoidal 
since they must be consistent with the shape of TG(Z) as shown in Fig. 4. 
While we believe that the assumption is reasonable and useful, it remains to be 
seen exactly to what degree and wi th what accuracy the assumption is 
valid. 

Conversion Factors and Maximum Relative Displacement 

We now introduce the conversion factor B which converts the free field' 
strain E hlta the maximum structural strain ~r in the straight pipe under 
the condftions of ' slippage: cr 

B = E /EG cr cr (40) 

-8-



While the maximum structural strain can, in principle, be obtained from 
Eq.' 39 by differentiation, it depends on the. value YO (~Y ). Also, such a 
detailed analysis may not really be justified in view of tfi~ simplifying assump­
tions on the basis of which Eq. 39 has been derived. We, therefore, first con­
sider the limiting case where £* = 0 or the slippage takes place throughout the 
interface along the pipe and hence the distribution of the shear stress ±T is 
uniform over each interval of length L/2 (e.g., 0 < z < L/2 in Fig. 4) i. cr 

= T f{oot - (2TI/L)z} 
cr 

(41 ) 

where f(~) is a periodic function such that f(~) = 1 for 0< ~ < TI andf(~) = 
-1 for -TI < ~ < o. Solving Eq. 11 with T given by Eq. 41, we obtain . G 

us(z) = -L2/(2TI)2/{1 - (oo/~)2}·T /(Ed) .g{oot - (2TI/L)z} 
cr 

-L/(2TT).SO·EG·(Y
cr

/Yo)·g{oot - (2TI/L)z} (42)· 

where g(~) is a periodic function such that g(~) = -TI~/2 + ~2/2 for 0 < ~ < TI 
and g(~) = -TI~/2 - ~2/2 for -TI < ~ < O. The corresponding maximum structural 
strain E is then obtained as maxlau (O,t)/dzl and is equal to 

cr S 

E cr 
A 2 

(TI/2) .(y /~)" l/{l - (oo/W) } = 
cr 

(43) 

When the pipe is partially in slippage or 0 < £* < L/4, it is expected that E 
cr 

is 

E = q(y /~) "l/tl - (W/~)2} = q(y /YO)SOEG cr cr' cr 

and hence, the conversion factor S can in general be written as cr 

S = E /E = q(y /~l· [l/{l - (oo/~)2}J/£G = q(ycr/YO)So cr cr G cr 

where 1 ~ q ~ TI/2. 

(44) 

(45) 

The-maximum relative displacement ~ between the pipe and the ground occurs 
at z = L/4 and is expected to be of the following form: 

(46) 

with 

S~r = q* (Ycr/Yo'SO 
(47) 

where q* is a quantity that depends on the extent of the slippage. with the aid 
of Eq. 45, Eq. 47 becomes 

B~r = (q*/q)Scr (48) 

If the slippage 
from Eq. 42 and 
slippage, on the 
proximation that 

is taking place throughout the pipe, we can show that q* = TI2/8 
q = TI/2 from Eq. 43, and therefore q*/q = TI/4. At the onset of 
other hand, y = Y and q* = q = 1.0. Hence, we assume in ap-
8* 6 reg~rdle~§ of the extent of the slippage. 
cr cr 
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Numerical Examples 

-3 . 
Using the data indicated in T.able 1, assuming Y = 10 as mentioned ear-

lier, and considering e: between 10:::4 and 10-2 , we e~~luated and listed in 
Table 2 the conversion ~actors BO' SO' (3 and B* as appropriate at the sites 
with the soil conditions A, Band C, re~~ectiveI9 under the free field strains 
of 10-2 and 10-3 , 5.0 x 10-4 and 10-4 . For the evaluation of Band B* , we 
have used q = 1.0 in Eq. 45 for reasons to be mentioned later~' cTable 2clndi­
cates that the free field strains of 10-4 and 5.0 x 10-4 considered respective­
~y for C and B are too small to initiate slippage so that the values of Bo and 
B are identical to those listed in Table 1. It further indicates that tne 
p~pes buried in site A and subjected to free field strains of 10-3 and 10-2 un­
dergo slippage with Band B* drastically decreasing as the free field strain 
incr.eases from 10-3 tgr 10-2 cr 

CONVERSION FACTORS FOR BENT PIPES AND TEE-JUNCTIONS 

Bent Pipes With a Right Angle 

When a seismic wave excites the ground, bent pipes experience additional 
stresses. In particular, if a bent pipe with a right angle is subjected to a 
seismic wave of wave length L propagating in the direction (z) of one of the 
straight legs, element (1), the largest relative displacement 6 will occur at 
the corner (z = L/4) when one of the nodes of the wave is passing the point 
(z =-0) a distance L/4 from the corner (see Fig. 5). The other leg, element 
(2), is assumed to be infinitely long and imbedded in the elastic soil with a 
coefficient of lateral reaction k (4). 

The relative displacement 6 between the soil and the straight pipe (of in­
finite length) is given by Eq. 23 under the conditions of no slippage and by 
Eq. 46 under the conditions of slippage. Since, however, the shear force S2 of 
element (2) acts as an axial force on element (1), an elongation 6

S 
is develop­

ed in element (1): 

(49) 

Then, the resultant relative displacement 6' as shown in Fig. 5 is approximately 

This 
pipe 

6' = 6 -6 
S 

(50) 

is an approximation since no exact boundary conditions -involving the bent 
has been used for solutions. 
Using the theory of structural analysis, we can-obtain 

bending moments Ml and M2 and angles of rotation 81 and 
shear forces Sl and 
8

2 
(see Fig. 5) as 

Sl = (1/4) . (k/A) • 6 ' S =: 3S
1 2 (51) 

Ml = M . = (1/4)· (k/,,2) '6' , 8
1 = 8 = (1/2)0" • 6' 

2 2' 
k 

where " = {k/ (4EI) } '< 0 It then follow that 

6' = (L/2TT) 0 (1 - B)oe: /(1 + W) 
. G 

(52) 

e:
Sl 

= (MlIEI)' (D/2) + S2/(AE) = {Q + (~)W}' (1 - B) 'e:G/(l + W) (53) 

e:
S2 

= (M
2
/EI).(D/2) = Q' (1 - B) 'CG/(l + W) (54) 

BIB {Q+(~r)W}'(l-B)/(l+W) (55) 
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6
2B

= Q. (1 - B)/(l + W) 

'" with 8 = BO under the conditions of no slippage and B = 
of slippage, 

Q = LDt. 2 /(4'JT) 

W,= (3/16) ·kL/(AEt.) 

(56) 

B* under the conditions 
cr 

(57) 

(58) 

where £ and £ = axial strains induced by the bending moments and shear 
forces t~ elemeR€s (1) and (2) respectively and BIB and B2B = conversion factors 
to convert the free field strain £G into axial strains eland £52 respectively. 
These conversion factors are listed in Table 3. 5 

Tee-Junction Pipes 

A typical tee-junction pipe configuration is shown in Fig. 6. Thedirec­
tion of the seismic wave is assumed to be parallel to the pipe element (1). 
Then, because of the symmetry, we observe that 

M = 
1 5 = e = e = 0 112 

(59) 

Shear force 52 and bending moment M2 are found to be 

S = 
2 

(1/2) • (kit.) • ~ , , M2 = (1/2) • (kit. 2) • ~ , (60) 

and the relative displacement~' is given by 

~, = (L/2'JT)· (1 - B) ·£G/{l + (4/J)W} (61) 

The resulting conversion factors BI for element (1) and B2T for element (2) are 
shown 'below as well as in Table 3. T 

SIT = {8/(3'JT)}·W· (1 - B)/{1 + (4/3)W} 

S2T 2Q· (1 - S)/{l + (4/3)W} 

(62) 

(63) 

Since, as in the case of bent pipes, these factors convert the free field strain 
£ into the axial strains in elements (1) and (2) , the expressions for the ax­
i~l strains similar to those in Eqs. 53 and 54 can obviously be obtained by mul­
tiplying 8lT and 82T by £G. 

Numerical Examples 

~he conversion factors derived above for bent pipes and tee~junctions are 
evaluated w~th the same data as used for straight pipes under the conditions 
that 8* = 8 = 0.1, ,0.5 and 0.9 and L = 400 m and 150 m. The results are 
shown iK Tab2e 4 which indicates that the conversion factors for bent pipes and 
tee-junctions are larger for smaller values of 8

0 
= 8*. This is physically 

expected since a smaller value of 8
0 

or 8* = 8 indreates a larger extent of 
slippage producing a larger relative displ~cemegt. It is for this reason that 
we have assumed q to be equal to unity in Eq. 45. Table 4 also shows that the 
conversion factors are generally larger for L = 400 m than for L = 150 m. 
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DISCUSSION AND SUMMARY 

To ~ummarize our findings above, Fig. 7 is constructed in which conversion 
factors 13 ,13* and 8 and 13 are plotted as functions of £: for the seismic 
wave leng~hs 8¥ L = 159, 170,2200 , 250, 300 and 400 m. For ~is purpose, the 
data listed in Table 1 are used with y = 10-3 In Fig. 7, the conversion 
factors So and 8* are plotted in log-~~ale on the ordinate and £:G is also in 
log-scale on thec&bscissa. Three horizontal bars along the abscissa indicate 
estimated ranges of free field strain values respectively on the sites with 
soil conditions A, Band C that may result from earthquakes ',of intensities 
VI - IX (2). A 

We e;alnate 8 using Eqs. 27 and 28 when y ~ y while 13* using Eq. 45 , 
with q = 1.0 when ~O ~ y .. The conversion fac~or.S~rdepen~s gri the soil con­
~ition and the wave leng~fi L but not on the free f1eld stra1n_~c.' F?r example, 

B is constant as indicated by the straight line pp' for L = 150 m under soil 
cgndition A with £:G producing y when it reaches 3.4 x 10-4 • When £: exceeds 
this value, the s11ppage takes ~face and the conversion factor to be ~sed is 
S* which decreases as an inverse function of £:G as indicated by the straight 
lf~e PiP". -

For bent pipes, the conversion factor SIB for element (1) is plotted in 
Fig. 7. For example, if £:G = 6.8 x 10-4 (pol.nt Q") under soil condition A and 
under the seismic wave of wave length L = 150 m, the value of B* = B can be 
shown (from Eq. 45 with q = 1.0) to be 0.48 (point Q). Using E&: 55,c~e can 
then show that 6

lB 
is equal to 0.5. p~!nt Q' on the straight line P'P" then in­

dicates the fact that if EG = 6.8 x 10 , BIB = 0.5 for soil condition A and 
L = 150 m. Point R on the straight line corresponding to L = 400 m and soil 
condition A also represents a combination of £G and B* that produces 81 = 0.5. 
In fact, the curve stretching between Q' and R is obt~fned by interpolat~ng 
these similar points at which 8 B = 0.5. Curves for 8

1B 
= 0.2, 0.6, 0.7, 0.8 

and 0.9 are also constructed an~ shown in Fig. 7. For soil conditions B and C, 
the estimated free field strains are confined to the range where theAcorrespond­
ing values of Yo are always less than y and the conversion factor 8

0 
is prac­

tically unity. The diagram indicating £fie conversion factor B2T for element (2) 
of tee-junctions is constructed in Fig. 7 using the sameAproceoure. • 

We observe from Fig. 7 that the conversion factors 6
0 

and 13* are smaller 
under seismic waves of shorter wave lengths. No such straightfo~ard trend can 
be observed for the conversion factors 8

lB 
and 6

2T
, however. We believe that 

these diagrams provide us with a practical and useful numerical insight to 
this rather difficult problem of estimating the strains in buried pipes under 
seismic conditions. Further studies are particularly suggested to examine and 
improve our assumptions on the displacement profile function and on the spatial 
distribution of the shear stress acting on the pipe in the state of slippage. 
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TABLE 1 Numerical Example of Conversion Factor 

L = 400 m 

Geological Site conditions 
Parameters 

A B C 

c m/s 150 300 500 

kgwt/crn 
2 344.4 1377.6 G 3826.5 

" 2 
KG kgwt/crn 2164 8656 24043 

Z;; - 1.15 0.287 0.103 

T sec 2 '-67 1. 33 0.8 

w rad/s 2.356 4.712 7.85 

~O 
rad/s 844.8 1689.7 2816.0 

w rad/s 80.4 80.4 .' 80.4 

2 0.08 x 10-4 0.08 x 10-4 10-4 
(w/wO) - 0.08 x 

'" 2 10-4 
34.35 x 10-4 10-4 

(w/w) - 8.65 x 95.33 x 

2 . 
90.63 x 10-4 22.66 x 10-4 10-4 

(21T/L) AE/KG - 8.16 x 

~O - 0.991 0.998 0.999 

60 
- 0.992 1.001 1.009 

.. 

L 150m 

, 

Parameters Geological Site Conditions 

A B C 

c m/s 150 300 500 

G kgwt/crn 
2 

344.4 1377.6 382E.5 

KG kgwt/cm 
2 

2164 8656 24043 

Z;; - 3.07 0.765 0.275 

T sec 1.0 0.5 0.3 

w rad/s 6.28 12.57 20.95 

UO rad/s 844.8 1689.7 2216.0 

'" 
w rad/s 214.5 214.5 214.5 

(w/w ) 2 - 0.55 x 10-4 -4 -4 
0.55 x 10 0.55 x 10 

0 -4 
(w/W) 2 -4 10-4 

- 8.57 x 10 34.34 x 10 95.39 x 

(21T/L) 2 oAE/K
G 

-4 io-4 -4 
- 644.48 x 10 161.14 x 58.03 x 10 

~o 
- 0.939 0.984 0.994 

6n - 0.940 0.988 1.004 
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Site 

TABLE 2 Conversion Factor for Straiqht Pipes 

y =10-3 ) 
cr 

Conditions Strains Conversion Factors 

Site Seismic Free 
Shear Critica.l 

For wave Field 
Srain Axial Static Dynamic 

Stain Lenqth Strain Strain 

" 
X 

L Er:: YO E 80 80 8cr .:l cr 

rn x 10-4 x 10-4 
x 10-4 

400 1.0 0.103 
97.1 

0.999 1.009 '\, 152.5 -
C 

150 1.0 0.275 
36.4 

0.994 1.004 '\, 57.2 -
34.8 

400 5.0 1.44 
'\, 54.7 0.998 1.001 -

B 13 .6 
150 5.0 3 .. 38 0.984 0.988 -

'\, 21.4 

8.8 
0.88 

400 10.0 1l.S '\, 13.R - - '\, 1. 0 
A 

3.25 0.33 
150 10.0 30.7 - -'\, 5.1 '\, 0.51 

8.8 0.09 
400 100.0 115.0 - -'\, 13.8 '\, 0.14 

A 
3.25 

0.03 
150 100.0 307.0 'V 5.1 - - ru 0.05 
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For 
Dispace-

ment 

'* 6cr 

-

-

-
-

0.88 
'\, 1. 0 

0.33 
'\, 0.4 

0.09 
'\, 0.1 

0.03 
ru 0.04 



TABLE 3 Conversion Factors for Bent Pipes and Tee-Junctions 

Structure No slippage Y > YO cr 
Slippage Y cr ;;, Y 0 

Straight So or Bo S cr 

(2/rr) W " Q + ( 2/rr) W * Q + (1 - Scr) (1) 
1 + W 

(1 - SO) 1 + W 

Bent 

(2 ) Q ... 
(1 - SO) Q * (1 - Scr) 1 + W 1 + W .. 

BW / (3rr) '" BW / (3rr) * (1) (1 SO) (1 - Scr) - 1 + (4/3) W 1 + (4/3)W 

Tee-
junction 

2Q 'i' 2Q * (2) 
(1 SO) (1 - Scr) - 1+ (4/3)W 1 + (4/3) W 
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TABLE 4 Numerical Examples of Conversion Factor 

L= 400 m 

A 

SO' S* Element (1) Element (2 ) 
cr 

, 
0.1 0.1 ---

0.5 0.5 ---
Straight 

0.9 0.9 ---

0.1 1.87 1. 29 

Bent 0.5 1.0'4 0.72 

0.9 0.20 0.14 

0.1 1.14 , 2.22 
c 

Tee- 0.5 0.63 1.23 
junction 

0.9 0.13 0.25 

L= 150 m 

"-

SOl S* cr Element (1 ) Element (2 ) 

0.1 0.1 ---

Straight 0.5 0.5 ---

0.9 0.9 ---

0.1 0.86 0.71 

Bent 0.5 0.48 0.39 

0.9 0.10 0.08 

0.1 0.19 1.29 

Tee- 0.5 0.11 o.n 
junctioll 

1-----... '.----.-

() . 'I IJ.O;) 0 . .1-1 

".'-,- --- ,_, __ ~ ______ 0- _. ___ • ___ 
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Fig.) Free Body Diagram of a Pipe Segment 
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