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This report is in line with the modified work plan submitted with

the supplement to the original proposal. Following the recommendations of

the reviewers, and at the request of the National Science foundation emphasis

was to be placed on the experimental aspect of the research, with some

analysis involved. All aspects have been covered, and the goals of the

investigation reached.

The investigation has resulted in two doctoral dissertations and one

Master's dissertation:

Doctoral Dissertation 1: "The Effect of Anisotropy and

Strain on the Dynamic Properties of Clay Soils", by Gary

F. Bianchini.

Master's Dissertation: liThe Behavior of Clays Subjected

to Slow Cyclic Loadings", by Louise P. Shook.

Doctoral Dissertation 2: IISteady State Response of a

Circular Foundation on a Transverse Isotropic Medium:

by David J. Kirkner~

Part lof this final report gives a' "comprehensive surmnaryll of the

first doctoral dissertation. A copy of the detailed text will be forwarded

to the National Science Foundation as soon as it is ready; in the very near

future.

Part II is the integral text of the Master's Dissertation.

Part III is the integral text of the second Doctoral Dissertation.

Parts I and II are mostly experimental in nature and Part III

analytical. The experiments in Part I were all conducted on thin long

J J /



hollow cylinders in a modified Drnevich resonant column with the strains

limited to the range attainable in this device. Those strains were below

10-3. Within the framework of the whole study those strains are referred to

as small. However, within the framework of Part I, and the use of the

resonant column, 10,..3 is considered a large strain compared to 10..5 which

the device is capable of measuring.

The experiments in Part II, i.e. in the Master's Disseratation, were

all conducted in SPAC, a pneumatic analog computer capable of applying

multidirectional states of stress in a slow cyclic way on thin long hollow

cylinders.

The Doctoral Thesis in Part III is mathematical and solves the problem

of the-circular footing resting on a semi ..infinite cross anisotropic medium

and subjected to axial, torsional and rocking excitation. In this analytical

study, some results obtained in the resonant column tests of Part I provided

ample justification for the use of a simplifying relation which led to a

closed form solution of a soil-structure interaction problem as of now

unsolved. Thus, although the revised research proposal and the modified

work plan did not intend to stress theoretical analysis, that aspect of the

investigation has been very well served by this research.

All three parts will soon be prepared for publication in scientific

and professional journals.

Respectfully submitted,

/4Ilvt / jpwla-
I Adel S. Saada

Principal Investigator
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PART I

THE EFFECT OF ANISOTROPY ANO STRAIN ON THE

DYNAMIC PROPERTIES OF CLAY SOILS

(This is a comprehensive summary of the Thesis)

••.
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INTRODUCTION AND PRELIMINARY INFO~~TION

The mechanical behavior of saturated clay soils has been intensively

investigated in the last 25 years within a framework valid only for isotropic

materials. It is only relatively recently that researchers have started

thinking in terms of determining the mechanical properties of clays taking

into account their natural structural and mechanical anisotropy. It is a well

established fact that deposition, fol1owed by one dimensional consolidation,

arranges the clay particles and results in bonds such that the material

acquires the property of cross anisotropy with the axis of symetry along the

direction of consolidation.

In a linearly elastic material the behavior is described by 5 constants.

Following Lekhnitskii (8) the stress ..strain relations are written (Fig. 1)

=1 (a "va ) v' _ 1
EX E . X Y "fT az Yxz -G"' ·xz

Yez
_ 1

1 v' 1
- 6' Tez

Ey -f (ay-vax ) -f1 az Yyz - Gl ·yz (l)

= v' (a, + a ) 1 YXy
_ 1 2(1+v}

E
Z -y ,+ -- 'cr - G' • = •X Y E' 'z xy E xy

E and E' are the Young's moduli with respect to the direction lying in

the plane of isotropy and perpendicular to it; v is the Poisson coefficient

which characterizes the transverse reduction in the plane of isotropy for

tension in the same plane; v' is,the Poisson coefficient which characterizes

the transverse reduction in the plane of isotropy for the tension, in the directional

normal to it; G' and G are the shear moduli for the planes normal and parallel to

the'plane of isotropy respectively. For a constant volume material v ~ 0.5 and
E

0.5 E~ +')'-::;-'; in this case, three measurements, namely those of E, Eland 'G are
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sufficient to describe the elastic response.

The Drnevi ch resonant column a11 ows one to measure E' and G'on

the same vertical specimen. It is of the fixed ... free type and pr.ovides means

to excite the specimen,to resonance in the axial mode and i'n the torsional

mode. This gives E' and 6', E ;'s'then measured on a horizontal specimen,

which, in all respects, is identical to the vertical except that it is

rotated 90 degrees.

Even under very small strain the response of clay involves a certain

amount of material damping. This damping can be measured in the resonant

column from the decay of the resonant strain amplitude or by the magnification

factor method.

The resonant column can also be used to establish response curves for

various levels of stress excitation. Such response curves are an excellent

tool to investigate the validity of presently used models.

The theory behind the use of the resonant column and the various'

approximation it involves can be found in the soil dynamicsl iterature. They

will also appear in detail in the Doctoral Thesis of which this part of the

report is a condensation (2).



TESTING EQUIPMENT, SAMPLES PREPARATION

AND MATERIALS PROPERTIES

The Drnevich resonant column was modified to accomodate thin, long,

hollow cylinders and equipped with a central piston rod through the base

plate. This rod moves along the axis of the hollow cylinder and can be

fastened to the top cap with a bayonet type of lock. It is used to apply

torsional and axial loads prior to the shaking of the specimen and is actuated

by a pneumatic servomechanism programmed to maintain Ko consol idation

conditions when desired. Axial and torsional motions at the top of the

specimen are monitored by accelerometers.

To obtain cross anisotropic specimens clay slurries in a very fluid

condition were consolidated irr'B large oedometerto a pressure high enough

to allow for hollow circular cylinders to be trimmed from the resulting

blocks. The vertical specimens (Fig. 1) were placed between two membranes ..

The cell' spressure was then slowly increased whil e the pneumatic servomecha",:

nism automatically applied the necessary axial force to maintain a Ko consol i­

dationcondit;on. After the final cell pressure was reached, enough time was

allowed for complete equilibrium. The axial load was then released and the

specimens allowed to rebound under the cell pressure ac' This procedure, while

resulting in a small overconsolidation in the vertical direction, gives a

highlyorientedcl ay -fabric -(9) and exce-llent reproduci bil i ty; Di fferent-

final cell pressures and back pressures yielded different moisture contents.

The horizontal specimens that were tested in the resonant column

were trimmed from clay blocks which had been subjected in the largeoedometer
/

to an axial pressure equal to the one indicated by the servomechanism during

the one dimensional consolidations of the vertical specimens in the cell.

3
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They were then placed in the cell and allowed to reach equilibrium unde.r

the effective pressure of the corresponding vertical spectmen.

To obtain isotropic specimens the clay was hand mixed and kneaded

with that amount of water whi"ch would give it the minimum stiffness compatible

with the trimming and the placing of the hollow cylinders in the cells. It

was stored for two weeks 'in a 100 percent humidity room.' Trimming was followed

by consolidation under the desired pydrostatic pressure and enough backpressure

to insure saturation. In all cases the samples had an outer diameter of 2.8

in., and an inner diameter of2iri. The length was approximately 5 in.

Two materials were 'used;a kaolinite clay known as Edgar Plastic Kaolin

and an illitic clay known as Grundite. The first has a liquid limit of 56.3%,

plastic limit of 37.5% and a specific gravity Gsof 2.62; the second has a

liquid limit of 47.80%, a plastic limit of 24.96 and a specific gravity Gs of

2.7. A considerable amount of data on the static behavior of these clays

has been published (10,11). A salient feature of Ko consolidated clays is

that they behave totallY differently in extension and compression. While

such a behavior cannot be detected at the small strains involved in the

resonant column it is very clearly seen at the larger strains reached in

classical triaxial cells. Fig. 2 shows results of compression, extension and

pure torsion "tests on both K consolidated (anisotropic) clays and isotropico
clays for two consolidation cell pressures (11). The anisotropic clay ;s

moreducti-le in extension than in compression as well as much weaker.



EFFECT OF THE WATER CONTENT

ON THE MAXIMUMVALUEOF THE 1-lODULI

Each of the clays used gave a different water content for the same

consolidation pressure. A straight ltnerelation on a semi-logarithmic plot

held true for all clays. This relation is represented by

(l)

where Wis the water content, Cl and C2 constants and Uc the consolidation

pressure. Each clay had its own Cl and C2.

Similarly, each clay gives a different value of E, EI and GI depending

on the water content and the strain. Fig. 3 shows the variation of the

moduli with the water content for the smallest strains obtained in this

investigation. Such stratns are in general close to 2 X 10-5 in the shear

mode and 0.15 X 10-5 in the longitudinal mode. The relations look reasonably

linear and, for the same water content, differences as high as 100 percent exist

between isotropic and anisotropic clays.

In Fig. 4, the value of E for the anisotropic clay is compared to that of 3G.

The two should be equal for a constant volume material where v = 1/2. The

values are practically identical. The assumptions that the volume is constant

and that the clay-water acts like a single material are thus quite justified.

Also plotted in Fig. 4 are the values of 3G ' for the two Ko consolidated clays.

They lead to lines falling between those of E and EI
• While for one clay the

ratio E~ decreases as W% increases, it is the opposite for the other one.

If one wishes to ignore anoisotropy, three times the value of G' is a reason-

ably good approximation for E and E' •

A careful examination of the Hardin and Black equation (5) and an

5-
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analysis of its parameters in the ligo,t of the experiment~ld~tq, led

to the conclusion that it can adequately be used to predtct the maximum

values of the moduli for normally consolidated clays; provided its constant

His experimentally obtained. Thus

(2)

where H is to be determined in the shear or the axial mode. Fig. 5 shows

actual experimental data fitted wtth the Hardin and Black equation. The con~

stant H is 1359 for theKo consolidated Kaolinite and 1538 for the isotropic

Kaolinite. While these values are different from the 1230 given by Hardin

and Black, these differences are not as large as the one obtained with the

Grundite clay; its value of H being 595 (1).

In the solution of the problem of wave propagation in elastic media,

the elastic constants have often been assumed to be related to each other by

the equation

E'= ---=-E
4 ~ '[I

for the constant volume materials (see Part III). The motivation for using

this constraint appears to be the resulting mathematical simplifications.

from Eqs. 1 and the constant volume conditions we have
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so that the assumption reduces to

G = E
G' r

Tabulated results in the Thesis (2) show that this relation ;s quite

satisfactorily supported by the experimental data.



EFFECT OF OVERCONSOLIDATION

ON THE MAXIMUM VALUE OF THE MODULI

All anisotropic specimens were prepared by Ko consolidation. Prior

to testing, the vertical pressure in excess of the -cell pressure was

removed; so that there was a Slight overconsolidation in the vertical

direction compared to the lateral one. Additional overconsolidation

was obtained by allowing the specimen to rebound under a reduced cell

pressure. The overconsolidation ratio is defined in terms of mean

(or octahedral) normal pressures.

With its overconsolidation term included, Hardin's equation is

written

(OCR)K = (3)

1

For a constant H of 1359 previously obtained for Ko consolidated

Kaolinite, for a plasticity index PI = 19% (K=O.l72) and with the

measured value ofG' one can compare the actual (OCR)K to thatmax
computed using the Hardin and Black equation. A large number of tests

with three overconsolidation ratios and various cell pressures were

conducted; the results of which appear in the following table:

(OCR)K measured K KOCR (OCR) -average- (OCR)~ from H &B

1.294
2.81 1.287 1.285 1.194

1.275

1.211
5.63 1.253 1.248 1.35

1.281

1.26 1.268 1.268 1.517

8
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While the values obtained from the Hardin and Black equation increase, the

experimental valuessl.ightly decrease or can simply be considered to be

unaffected by the overconsolidation ratio,

Fig. 6 gives the relation between Gi and the water content formax
various overconsolidation ratios.. Such curves are seen to be parallel to

each other, Therefore, if one knows the relation for a normally consolidated

clay and the value of G'foranother overconsolidation ratio and one watermax
content, one can obtain the shear·modulus for any other water content.



~Ff~CT OF LAR~E DISTURBANCES

ON THE MAXIMUM VALUE OF THE MODULI

The central piston rod through the base of the resonant column was

used to apply to the top cap of the hollow cylinder axial and torsional defor-

mations. One full cycle in either mode was usually applied with a period of

approximately 30 seconds. Immediately after, E1 and G1 were measuredmax max
and their value recorded as a function of time.

The table below shows the properties of the specimens on which the

tests were conducted:

(j (Psi) Compress. Strength KoCU Tensile Strength KoCU Pure Torsion K CUc 0

-

40 75.4 Psi 54.4 Psi 34.5 Psi

60 - 96.6 Psi -77.0 Psi - 48.5 Psi

90 - - -

Various'stress levels were applied and the moduli measured at frequent

intervals. The pore water pressure increased monotonically and never dropped to

zero even when the stress was removed. There always remained a residual pore

pressure with the residual strain.
G1

F· 7 h max19. sows fG
'

) as the function of time for various values of
\ max . "t' 11nl 1a

disturbing stresses (compare to the failure stress shown in the above table). The

regain in G1

max is linear as a function of the logarithm of the time; but this

regain did not show signs of ever becoming complete.

10
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E'max
Fig, 8 shows similar results for -~.....,....;..::;.:;..:..~~

lE \nax) i'nttia1

It is obvious that at least the pore water pressure and the permanent strain

with the change in structure it involves are responsible for the lack of

total regain of G1 and E1
.• It was not possible to separate the 2max max

effects since opening the drainage would result in a change in the water

content. Additional information and data can be found in the body of the

thesis of which this is a condensed version.



EfFECT OF STRAIN ON THE MODULr

Hardin and Drnevich (6) collected a large amount of data and

suggested a hyperbolic relation between the shear modulus and the shear strain:

= 1
1 + Y

(7)

where G is the secant modul us at a given strain and Gmax is obtained from the

tangent at the origin of a stress-strain curve. G was judged to be wellmax
represented by the values obtained in a resonant columm for strains of the

order of 10-5. Eq. 7 implies a finite negative slope at zero st~ain when the

relation between~ and 'Y is drawn on a normal scale. Such a finite negative
max

slope is in contradiction with the results of all the tests conducted in this

'investigation. The semi logartthmtc representation which is very much in use

results in a distorti'on of the graphs that makes it difficult to study their '

true shape at very small strain. On the other hand the Ramberg-Osgood repre­

sentation allows for a zero slope at zero strain provided R:> 2. Fjg 9 shows

the relations between the moduli E, G, E', G1 for both Ko consolidation of

pressures are illustrated in semi'-logarithmic forms., Such graphs do not seem to

contradict the general slopes published in the literature; but when the same data

is plotted on normal scales, the curvatures for small strains are in the opposite

direction.

Fig. 10 shows the normalized values of E' and G' versus strain on a

normal scale for Ko consolidated anisotropic clay; Fig. 11 shows the normalized

values of E and G for isotropic clay. Notice that in all cases the curves have

a horizontal tangent near the zero strain. This as mentioned previously is in

contradiction wtth rouchof the data accumulated by Hardin and Drnevich (6) and

Hall (4),'Thispoint willbe~ooked at in more detail in the section on

nonlinear behavior.
12
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It is believed that the large amount of data obtained in this inves­

tigation have reasonable weight when compared to the collection made by

Hardin and Drnevich. The differences may have been caused by the differences

in testing devices. The resonant column used in this investigation is a

true fixed-free column and does not require assumptions or involved equipment

calibration. Further comparative studies are suggested along this line.

While it is quite tempting to assume that the material behaves in

the same way whether it is excited in the axial or the torsional mode, such

an assumption would be totally unjustified. Figs. 9, 10, and 11 show that

the strains investigated in the axial mode were about one one order of magnitude

smaller than those investigated in the shear mode. Cross anisotropic clay

behaves totally differently in extension and in compression, and the

difference becomes more noticeable (since it can be more easilY measured) as

the strains get larger. This will be shown very clearly in Part II of this

report,



THE RAMBERG-OSGOOD REPRESENTATION

The relation between the modulii and the strain can be expressed

in terms of the Ramberg-Osgood equation. While other equations have been

proposed, RO seems to be the most popular. It can be written in various

forms depending on the variables to be represented. One form is

(4)

a and R are the RO constants andy and T are reference shear strain andr r

shear stress to be chosen in the most convenient way.

chosen by Hardin and Drnevich as shown in Fig. 12 as

Tr and Yr have been
Tmax

T = T and Y = -G---r max r max
Also the ratio ~ can be replaced by G where G is the secant modulus, so that

Y

Eq. 4 can be written:

G _ _ __--:...1--.:::----.:-- = 1__-;:-_-;;-

Gmax - IR - 1 I G IR - 1
1 + exl~max 1 + ex G

max
J

r

(5)

Y will be chosen as 10-4, which means that T = 10-4G G and yarer . ~x ~x

experimentally obtained for various levels of excitations in the resonant

column; G . corresponds to the smallest level.max . Equation 5 can be written:

= log a + (R - 1) 10gl~ Y-41
max 10

(6)

Thus a plot on a double logarithmic paper yields a and R. Values for ex and R

will be given in the section on damping and its relation to the moduli. Similar

equations can be written for Young's modulus E. If one deals with cross aniso-

tropic materials, then depending on the direction of the shear and of the axial

force on the specimen G and E are changed to GI and EI.

14



DAMPING

Two methods are available for measuring damping in the resonant

column: The logarithmic decrement method and the magnification factor

method. For larger strains an average logarithmic decrement would give

slightly erroneous results; the decaying amplitudes must be looked at two

or three at a time. Both methods were used in this investigation with more

weight given to the magnification factor method. Fig. 13 shows typical decay

curves for small and large strain.

The strain in the longitudinal direction was much smaller than in the

torsional direction because of the high axial rigidity of the specimen. Fig.

14 shows the damping ratio as a functien of the strain, in the axial and the

torsional directions, for anisotropic and isotropic materials; and for various

consolidation pressure. One notices that there is practically no difference

among the various consolidati'en pressures; i.e. the various ,,:water contents

and that no significant feature differentiates the isotropic from the anisotropic

clay. Dobry (3) refers to more than one mechanism coming into play and influencing

the damping as the pressure varies. He refers to two private communications and

presents data shoWing damping to first increase and then decrease as the consol i­

dation pressure increases.

Another feature common to all the curves is the existence of a minimum

dampi:ng Amin' It is not known whether thi s damping is affected by the equipment

or only due to the material. It varies however with the type of clay. The

value for the Kaolinite varied between 1.35 and 1.6 and that for the Grundite

varied between 2.08 and 2.12. Thus the total damping seems to be due to two

components: one connected to the nonlinear force-displacement relations of the

clay and the other, which shall be called Amin' whose origins are not quite

clear.
15
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A(measured) w2
One way of normalizing damping data is to plot ...A. X-:::--7

mln. Wn

versus the strain. The ratio of the squares of the frequencies is equivalent

to~ Fig. 15 shows graphs for both Kaolinite and illite clays; Graph (a),
max

for kaolinite includes both normally consolidated and overconsolidated aniso-

tropic material; Graph (b) for kaolinite involves normally consolidated

"isotropic material at various consolidation pressures; Graph (c) for illite
,

involves normally consolidated:anisotropic material. An examination of those

three graphs shows that there does not seem to be much differences among

normally consolidated, overconsolidated, isotropic and anisotropic clays;

the values, however, vary from clay to clay; note the difference in slopes

between the kaolinite and illite clays.



RELATION BETWEEN SHEAR MODULUS AND DAMPING RATIO

Hardin an9 Drnevich (7) proposed a simple relation between the

dampingratio.and the shear modulus. Their equation is written

~ -~)
\ max

(8)

If one takes into account A . , a plot of a measure of the damping versusmln .

(1 -~) should therefore yield a straight line. Fig. 16 shows
'\ max

~'measured - 00:: 'mtn) versus

anisotropic kaolinite, Fig. 16

~ -~) ; Fig. 16 (a) is a plot for
\ max
(b) for isotropic kaolinite, Fig. 16 (c) for

illite and Fig. 16 (d) for overconsolidated kaolinite. Such plots can be very

adequately represented by strainght lines showing that a relation of the type

represented by Eq. 8 corrected for the effect of ~min would be quite adequate.

The slope of those lines is related to Amax ' or, as will be shown later, to the

coefficient R of the Ramberg-Osgood equation.

17



NONLINEAR BEHAVIOR

Clays are nonlinear materials of the strain softening type. They

result in hysterisis loops whenever they are subjected to cyclic loading.

Such loops seem to be independent of the rate of loading within a large range

of frequencies. Tests in the resonant column result in strains falling within

the nonlinear .range. The strain response is not proportional to the excitation

fora given frequency,

Amodel predicting the dynamic response "could" have in it a nonlinear

spring and a dash pptwhose equivalent viscosity coefficient is inversely

proportional to the frequency; this characterises hysteritic damping. Static

stress~strain curves are often represented by the Ramberg-Osgood equation and

referred to as backbone curves. The hysteresis loops are built around those

backbone curves with the loading and unloading parts following Masing's criteria.

An attempt to use nonlinear theorY was made by Hall, but his data differed

considerably from the predicted values. The curvature of the line expressing

the variation of the resonant frequency with the strain did not fit the predic­

tions:of Pisarenko~s work. Such predictions however agree reasonably well with the

results obtained in this research. However, while Pisarenko used Davidenkov's

formulation °toexpress thestress~strain relations, Ramberg-Osgood's was used in

this research; its flexibility has made it quite popular in recent years.

The governing differential equation is that of a material with hysteritic

damping and nonlinear stiffness

.
Mx + 2C~ + P(x) = FoCos wtxy

18
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which is non-dimensionalized to read (Fig. 17)

(l0)

It is solved by the method of slowly varying parameters by assuming

= (11)

x
where ~ and ~ are the slowly varying parameters.xy

P(x) = stress-strain loop of the Masing type

n

= natural frequency of small oscillations

T = w tn

,When averaged over the cycle the solution yields(7):

Response Curve

At Resonance

C(x )o

2

+ 2Amin.] (12)

(13 )

(14 )
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In the equations above,

II 21TP (Xo Cos e' Sin e de
1T Py xy )

o

4a (R _ 1) (Po\R+l
1T (R + 1) P;)

--~G~)-"---"- (15 )

x
G(x ) = ...Lo Xo

21T

If _,X
o f Cos e) Cos ede

1TX '\:
o y

(16 )

~W is the work done in a cycle (area of the 100p),K is the tangent modulusmax
at the origin (Fig. 17) and a and R are Ramberg-Osgood constants. For a linear

system a = 0, S(x ) = 0, C(x ) =1 and the equations reduce to those of the simpleo 0 ' -

degree of freedom system.

Whether the above theory can be applied to c1ays~or not can be checked

by deducing the Ramberg-Osgood coefficients from the measured values of either

the shear modulus or of the damping; both peing functions of the strain

amplitude. Therefore, one set of a andR is obtained from the moduli versus

strain curves at resonance and another set is obtained from the damping versus

strain at resonance; the two sets should be identical if the theory applied to

clay -so;ls.-- Fig'- '18 shows the measured and predi'cted values plotted as a function

of strain, As one can see the differences are quite large. Additional curves

for various values of the water content and different clays can be found in the

thesis,



RESPONSE CURVES

In the case of this research a response curve is a plot between

the displacement and the frequency for a given excitation. It is clear from

Fig. 18 that one set of a and R is inadequate to fit resonance data and therefore

could not predict response curves. A mixed approach was attempted and yielded

good results: S(xo) was determined using a and R obtained from damping data

(in others words,~ ) was determined using a and Robtained
max

from moduli data fH.

Fig. 19 shows the response for 2 low levels of excitation while Fig. 20

shows the response for levels 10 ttmes higher. xy is always chosen equal

to 10,...4; the natural frequency is close to 75 Hz. and the clay is kaolinite

at an effective hydrostatic pressure of 10 PSI and an overconsolidation ratio of 4.

The solid lines are the predicted ones and the dots are experimental values.

Agreement is quite rea.sonableleading totheconcluston that there is room for the

theory above to be used in sotl mechanics. Instability and jump phenomena were

Very clearly seen on th.e osci'lloscope during the generatton of the data points.

It is therefore suggested that the resonant frequency be found going down along

the frequency axis rather than going up since the two approaches lead to different

results. Fig. 21 shows the displacement versus the excitation.force for various

values of the frequency; notice the instability for a frequency of 75 herz.
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LAYERED SYSTEMS

Soil masses are seldom homogeneous and layering is more the rule than

the exception. Each layer may be homogeneous itself but is often cross aniso­

tropic because of the sedimentation and Koconsolidation precesses. It is of

interest to study in the resonant column the variation of the natural frequency

of a soil system as a function of the number of layers, their respective thickness

and stiffness and the order in which they are with respect to the top mass.

Can a rule of mixtures be justified and used?

Yang and Hatheway (13) tested layers of limestone and reached the con­

clusion that shear wave velocities determined in the laboratory were lower

than those obtained in the field. However, the 'study does not seem to have

been pursued further.

Combination of kaol inite andi11ite cl ays were used to make the layered

system. Blocks of each were prepared in the large oedometer as explained at the

beginning of this report. Sections of the proper dimensions were cut, fused

together and hollow cylinders made. further Ko consol idation of the hollow

compQsite cylinders in the'resonant column cell completed the fusion between

the sections of the different materials. Changes in length of the elements of

k~olinite a~d illite weresilllple to monitor wi'th cathetometers since one clay

is white and the other dark grey. The configurations shown in Fig. 22 were

tnvestigated~ Each configuration was investigated at consolidation cell pressure

of 40, 60 and 80 psi.

It happens that under the same consolidation pressure Ko the modulus

of the kaolinite clay is about 60 percent larger than that of the illite clay.

Thus the difference in stiffness will be well expressed by the results and not

obscured by small experimental errors. The two materials have approximately

the same mass density so that an average value was considered for the computattons

22



is small the relative position of the soil layers becomes unimportant. If

is large the recorded displacements'are equal to those of a single degree of

The ratio of the mass polar moments of inertia of the specimen Is. and

top cap It has a bearing on the determination of the resonant frequency. If

23

(2 X 10-3 gr sec2/cm4), and of course the same polar moment of inertia (178 ~m4).

Only very small vibrations were considered so that damping is at its minimum

value and could be ignored in determining the natural frequency. This damping

was about 2.1% for the illite and 1.65% for the kaolinite.

the

It
r;
It

~
freedom system. Each layer is equivalent to a spring and,

1 n 1

Keq
= L Ki

i=l

(9)

It .
where Keq is the equi va1ent sti ffness. In the present case r; = 11.

The solution for finding the natural frequency of a two layer system

with the boundary conditions of the resonant column can be found in the thesis.

The single degree of freedom system can be applied by defining and equivalent

stiffness CEq. 9) and an equivalent moment of inertia equal to the inertia of

the top cap plus one third of the inertia of the rod specimen.

frequency of .the system would then be given by

w
n

= f ~eq
eq

The natural

(10)

Three and multilayer systems solutions are also presented in the thesis

together with cases where there is no top mass.

The approximate equations (9) and (10) were used to calculate natural

frequencies of two and three layer systems knowling the properties of their

_components. Those natural frequencies were also measured experimentally.
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-Fig. 23 shows two graphs of measured versus predicted values for torsional

and axial modes. Three values of crc are involved, namely 40, 60 and 80 psi.

The points fall close or within the 10% lines and the prediction appears to be

quite satisfactory.



CONCLUSIONS OF PART I

It was experimentally established that for the same water content

the modulii of a cross anisotropic clay can vary very substantially (as much

as 100%) from those of isotropic clay. Each can be represented by a Hardin

and Black equation provided the constant H is changed from clay to clay. It

is to be remembered that under the same consolidation pressure an isotropic and

an anisotropic clay will yield totally different moisture contents.

Large disturbances were found to decrease the value of the moduli.

While time restored some of the lost values one hundred percent recovery ;s not

to be expected. Both the change ;-n structure and the generation of pore water

pressures are respons;'b1e for this permanent loss.

The variation of the moduH with strain can be well represented by a

Ramberg-Osgood model. The hyperbolic model was found to be invalid because

of the finite negative slope required for very small .strains; and the fact that

all the data 'potnts recerded resulted in a curve of shear modulus versus strain

with a curvature in a direction opposite to that given by the hyperbola.

There was not much difference in damping characteristics between· iso­

tropic and anisotropic clays but each clay had a minimum amount of damping which

varied from -clay to clay. The relation between the damping and the shear

modulus given by Hardin and Drnevich can be used for anisotropic as well as for

isotropic {!lays prov;dedit is corrected for the value-uf the minimum damping.

An attempt was made to use a model with a nonlinear spring and hysteretic

damping to represent this clay. A backbone curve represented by a Ramberg ..

Osgood equation and a hystenses loop of the Mas;ng type were part of the solution.

rtwas shown that the shear moduli predicted using measured values of damping

differed substantiallY from the experimentally determined ones; and vice versa.

25
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- However, when Ramberg-Osgood coefficients were obtained from combined

measurements of modulii and damping, predicted response curves agreed quite

well with measured ones. The instability associated with. nonlinear behavior

of strain softening material was very much put in evidence.

Finally experiments on layered systems led to the conclusion

that an equivalent stiffness of the layers could be defined leading to predicted

natural frequencies very close to the measured ones.
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BEHAVIOR OF CLAYS

SUBJECTED TO SLOW CYCLIC LOADING

Abstract

by

LOUISE PALMER SHOOK

One of the major considerations of the design of offshore

structures is the effect of wave action on the foundation of the

structures. This involves a study of cyclic loading done at low

frequencies, and the consequence such loading has on the soil

properties. The anisotropic nature of the material plays an

important role in the dynamic as well as the static behavior of

soil s.

An experimental program has been undertaken to determine the

trends in behavior of clays subjected to large strain cyclic loading.

Laboratory prepared clays, which are assumed to be isotropic, and

normally Ko-consolidated and over consolidated clays, which have

varying degrees of anisotropy and differing stress-strain charac­

teristics have been cycled at periods of 20 to 40 seconds using

different levels of stress. Damping, modulus degradation, and

increasing strain values are compared with respect to overconsoli­

dation ratio, level of applied stress, direction of applied stress,

cycle number, and consolidation pressure.

i i
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The test results were fit to a mathematical model, and it

was concluded that the model was not adequate to fully describe

the soil response.
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CHAPTER I

INTRODUCTION

One of the major considerations of the design of offshore

structures is the effect of wave action on the foundation of the

structures. This involves a study of cyclic loading done at low

frequencies, and the consequence such loading has on the soil

properties. The anisotropic nature of the material plays an

important role in the dynanic as well as the static behavior of

soils (18,21).

Many of the proposed models deal with soils at small strains

where the soil is more or less linearly elastic. The response to

large strain cycling (greater than ~10%) has not been so thoroughly

researched. An experimental program has been undertaken to deter­

mine the trends in . behavior of clays subjected to such loadings.

Laboratory prepared clays, which are assumed to be isotropic, and

normally Ko-consolidated and overconsolidated clays, which have

varying degrees of anisotropy and differing stress-strain character­

istics, have been cycled at periods of 20 to 40 seconds using

different levels of stress. A triaxial cell using applied stress

(17) on long thin hollow circular cylinders was used. The response

was recorded as deformation and pore pressure changes. Damping,

modulus degradation, and increasing strain values are shown to vary

with overconsolidation ratio, level of applied stress, mode of

applied stress, cycle number, and consolidation pressure. An attempt
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was made to fit the test results to a mathematical model, incor­

porating the effect of increasing strain as the test progressed.



CHAPTER II

REVIEW OF THE LITERATURE

Much effort has been spent over the years to try to describe

the behavior of soils. It has been necessary to classify the

material into its constituent components to help distinguish the

obvious differences between sands. silts, and clays. This study

concerns clay soils.

A. Structure of Clays

As in all materials. the structure of the clay plays a very

important role in describing it. This structure depends on a number

of things. among which are the electrochemical properties of the

particles and pore fluid. and the method of deposit of the particles.

Yong and Warkentin (30) describe the basic structural units

of clays as examined by electron microscopy. Domains are made up

of a few platelets. which are usually stacked in a parallel

arrangement. Fabric units. or peds. are relatively large groups

of domains. The particles within a fabric unit may be randomly or

orderly arranged. and the peds themselves may be randomly or pre­

ferentiallyoriented. Fig. 2-1 describes four combinations of order

ranging from total isotropy (random domain positions) within

random ped positions) to total anisotropy (peds and domains all

parrallel.)

An ideal condition to study the effects of anisotropy would

be compare total fabric isotropy to total fabric anisotropy. The
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nearest to totally isotropic that could be developed was a clay

compacted with continually changing axis of compaction. Seed and

Chan (23) suggested that clays compacted at a moisture content ­

lower than the optimum water content would have a flocculated ar­

rangement of particles, and that those compacted higher than

optimum would have a dispersed arrangement. Diamond (4) showed that

the relative positions of the groups of particles, or domains, did

not differ much between the wet or dry sides of the optimum, but

the size of the voids were larger on the dry side. He also found

only a small degree of preferential orientation normal to the axis

of compaction for both wet and dry samples.

The natural sedimentation process of clay particles in fresh

water results in a fabric whose properties are cross-anisotropic.

One dimensional consolidation further emphasizes the ordered

structure of the material. The mechanical properties of such a

material have been investigated by Saada and Ou (21) and Saada

and Bianchini (18). Stress-strain relationships were found to vary

depending on the direction of applied stresses. Coefficients of

anisotropy were described to compare stress-strain curves for

different angles of principal stress.

B. Dynamic Properties of Clays

It has been maintained (ll,29) that cycling a sensitive nor~

mally consolidated clay breaks down the sensitivity of the material

and reorients the fabric until it acts like a remolded clay. This

has encouraged researchers to believe that their laboratory
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compacted clay represents that found in the field when considering

dynamic loading. The wide range of values normally found for cyclic

loading from various different researchers make it difficult to

compare results with respect to clay structure.

The wide interest in liquifaction of sand due to earthquakes

has generated a lot of research involving the dynamic response of

soil. While clays have not shown the liquifaction phenomena, they

have been known to suffer loss of strength when dynamically stressed.

The analysis of pavement subgrade reaction to transient or cyclic

loading was one of the first investigations into the dynamic pro­

perties of clay. One sided compressive loading was used by a

number of investigators (3,5,9,22,24,26,29), some using pulse

loading and others with sine or triangle waves.

Lee and Focnt (11) presented a comprehensive survey of the

research done on dynamic loading of clay up to 1975. They concluded

that "reversing cyclic stress is more detrimental than one-direc-"

tiotlal cyclic stress. 1t It was thought that the large excess pore

pressures caused the decrease in soil strength encountered after

cycling.

When applying two sided loading, for strain-controlled tests

the stress typically decreased with cycle number, and for stress­

controlled tests the strain increased as the test progressed. This

notion has been identified as a degradation, or decrease in cyclic

strength. There has appeared a level of loading in which thi5

degradation does not show up; it has been termed the IIthreshold
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stress" (5,9,22).

Some models have been proposed to describe cyclic stress-

strain response. The two that are most commonly used are the Hardin-

Drnevich nyperbolic stress-strain model (6):

Y, = --:;--~--

_1_ + -:i..-
6' ,

max max

and the Ramberg-Osgood model (7,15):

,
Y = Yr G' Y

max r {
R-l)

1 + a IGI ma'xYr I

in which G' = shear modulus at strains less than 10-40/
max 10.

Yr = a reference strain

'max = maximum static shear stress

- , ') = cyclic amplitudes of stress and strain

'l,R Ramberg-Osgood coefficients

Shibata et al. (27) introduced a four-parameter relation to take

into account the degradation of G' and, in the hyperbolicmax max
equation. Idfiss et al(7) did the same with the Ramberg-Osgood

model.

With dynamic testing, numerous failure criteria have been

adopted. Some define failure in terms of pore pressure buildup or

effective stress criteria (19,22),while many others involve strain

amplitude or rate (13,19,28).



CHAPTER III

EQUIPMENT AND MATERIAL USED

The material used in this research project was a frequently

used commercially available clay, Edgar Plastic Kaolin from Florida.

Its plastic and liquid limits are 37.5% and 56.3%, respectively, with

specific gravity Gs of 2.62. A hydrometer analysis showed 76% clay

content.

For purposes of comparison, the clay was prepared by two methods

designed to impose either a flocculated structure or a dispersed

structure to the clay.

The dispersed structure was achieved by a one-dimensional

consolidation process. A slurry was prepared at 125% water content.

using de-aired de-ionized water. It was consolidated in a 8"

diameter oedometer for 5-6 days until reaching a 40 psi axial

pressure. The final water content was approximately 50%. This

clay was called the anisotropic clay. (The anisotropy was later

emphasized through additional Ko consolidation in the cell prior to

shearing. )

An attempt was made to prepare the flocculated clay by compac­

tion at a water content comparable to the consolidated clay; it

proved to be too soft for the compaction rod. An average water

content of 40% was then used, and the clay was kneaded manually.

Considerable force was used to achieve a high saturation. The clay

had particles which were of a more random orientation. The material

properties were assumed equivalent in all directions. This clay was

:rr.- 7
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called the isotropic clay. (Isotropy was maintained by further

isotropic consolidation in the cell prior to shearing.)

Both types of clay were stored for at least a week in a humid

room. They were cut into hollow cylinders with an outside diameter

of 2.8" and an inside diameter of 2.0". The lengths ranged from

5.5" to 6".

A modified triaxial cell was used for testing. The static

testing and the one-sided testing were done in a cell in which the

piston was attached to the top cap of the specimen"with a bayonet

type connection. This connection allowed an axial tension or com­

pression force to be applied in combination with a torque. The

magnitudes of these forces were controlled ·by SPAC (17), a pneuma­

tic analog computer which applies shear and/or axial stresses in

any designated ratio.

The two-sided loading used a triaxial cell with air bearings

in the bushings to eliminate the effects of piston friction. The

confining fluid was silicon oil with a short layer of air at the

top of the cell.

One-dimensional consolidation before testing was applied to

all anisotropic specimens. This was achieved by applying an axial

displacement proportional to the amount of water expelled, such

that lateral strain was kept at zero (16). Confining pressure was

increased at 14.4 psi/hr until the desired cell pressure was

reached. This procedure simulates field conditions for naturally

deposited clay.
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After primary consolidation was completed, the excess axial

load was lifted and the clay was allowed to rebound hydrostatically

so that testing could start from a deviator stress of zero. The

amount of area change during this rebound phase was minimal. The

isotropic clay was consolidated hydrostatically.

One-sided loading was controlled with pressure switches. The

two-sided loading cycles were applied by a voltage output signal

generator. A Fairchild current-pressure transducer converted the

signal to air pressure. and SPAC was used to apply axial forces and

torque. Axial force. torque. pore pressure, and axial and rota­

tional displacements were all measured by transducers and recorded

on a Gould chart recorder and two Hewlett-Packard X-V recorders.

Three basic types of tests were run: static, one-sided cyclic,

and two-sided cyclic. Slow monotonic loading was done to get the

static strengths for normally KO-consolidated, isotropically consol­

idated, and overconsolidated clays. A total of thirty-five static

tests were run.

Normally Ko-consolidated and isotropic clays were tested using

one-sided loading. in which the stresses never changed direction

(Fig. 5-1). Twelve of these tests were carried out and evaluated

to examine the differences between the two clay structures.

Two sided cyclic loading was done on normally KO-consolidated.

isotropically consolidated, and overconsolidated clay. Of the nor­

mally consolidated specimens, eleven had a single stress level for

the duration of the" test and four were cycled using increasingly
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greater stresses. The overconso1idated specimens were all tested

with a minimum of three stress levels.



CHAPTER IV

RESPONSE TO MONOTONIC LOADING

Monotonic loading was done primarily to compare static be­

havior of one-dimensionally consolidated clays to the compacted,

isotropic clay. The failure strengths obtained were used as para­

meters for the subsequent cyclic loading.

A. Testing Procedure

Kaolinite clays, consolidated from a slurry, were cut into

hollow cylinders and further consolidated one-dimensionally in the

triaxial cell. The final cell pressure was reached in two to four

hours. After eight hours the axial load was reduced to hydrostatic

permitting the specimen to rebound axially for eight hours minimum.

This resulted in an overconsolidation ratio of 11Ko in the

vertical direction and 1.0 in the lateral directions, or an approxi­

mate average of 1.3 overall. These specimens were called the

normally Ko-conso1idated specimens.

For tests done on overconsolidated clays the same consolida­

tion procedure was followed until rebound, when the Hydrostatic

pressure was reduced by the overconsolidation ratio. This left an

overconsolidation ratio for the vertical direction twice as high

as that for the radial direction, or an actual average overconsoli­

dation ratio 1.3 times higher than the overconsolidation ratio.

The isotropic clays were consolidated hydrostatically, with

the final cell pressure being reached in two to four hours. The

lI- 11



specimen was left to stabilize for at least eight hours after pri­

mary consolidation.

The testing was done using SPAC, with the stresses being

applied at a constant· rate, 0.2 psi/min. for axial loading and 0.1

psi/min. for torsional loading. Failure was noted for brittle

materials with sudden deformation. Overconsolidated clays tested

in torsion were defined to reach failure condition when the axial

deformations reached a maximum. This usually occurred at shear

strains of 6 to 9%.

Static tests were run on normally and hydrostatically consol­

idated clays at effective confining pressures of 40 psi and 60 psi

in the extension, compression, and torsional loading directions.

The overconsolidated clays were tested in the three directions at

effective cell pressures of 10, 15, and 20 psi with lateral over­

consolidation ratios of 2 and 4. An additional trio of tests were

run at an effective cell pressure of 10 psi with an overconsoli~

dation ratio of 8.

B. Normally Consolidated Clay, Anisotropic

Examination of the stress-strain curves and pore-pressure

curves in Fig. 4-1 shows that the clay is always stronger in com­

pression than extension, although more brittle. The failure strain

for compression is about half that for extension, while the

failure strength, (01-03)' is about 1.4 times higher.

The pore pressure created in compression is always positive

and always increasing. It levels off only at failure. In the
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extension mode, though, the pore pressure changes such that the

ultimate decrease in pore pressure is one-fourth the pore pressure

developed in compression. The stress-strain curves in the pure

torsional loading are similar in shape to the extension mode, and

the pore pressure increases gradually, then levels off.

In the extension mode, for the tests done at confining

pressures of 40 psi, the minor principal effective stress, 03'

decreased below zero and continued into suction for a short time

until failure. The Mohr's circle at failure covered the origin of

the 1-0 axes, creating a situation in which it was impossible to

define a friction angle. [The fact that the clay itself was in

tension has also been shown by Bishop and Garga (2)J.

This strength in pure tension was further shown with small

cylindrical specimens tested in a triaxial Geonor Cell. l It was

found that for both one-dimensionally consolidated and compacted

Kaolinite the minor principal effective stress became less than

zero before failure had occured. This indicates that the Kaolinite

clay particles themselves maintain a tensile force, possible due to

what has often been called the true cohesion of the clay.

C. Isotropic or Compacted Clay

The effect of the clay fabric becomes very evident when the

compacted clay, which has particles of more random orientation than

the one-dimensionally consolidated clay, is compared to the more

lTests run by R. Snyder, See Appendix 1
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ordered structure of the Ko-consolidated clay. It was noticed that

the strength of the compacted clay was less than the strength of

the anisotropic clay for the respective confining pressures. This

occurred even though the compacted clays had water contents in the

range 30-35%, and the Ko-consolidated ones 39-43%. If it had

been possible to test a Ko-consolidated saturated sample at 30%

water content, the static strength would have been greater than

either of the clays actually tested. So the strength difference

cannot be accounted for by the difference in water contents alone,

and therefore is highly influenced by differences in clay struc­

ture and bonds.

As seen in Fig. 4-2, the shapes of the monotonic loading curves

were not always similar to those curves for anisotropic material.

The compacted material in compression was much more ductile than

the anisotropic clay, with a consistently lower tangent modulus

until failure. The extension and torsion tests had the same shaped

curves for both clay fabrics; however, the extension strength was

much closer to the compression strength for compacted clay. Due

to the increased ductility and lower strength in compression, the

failure strains were comparable for extension and compression,

while the failure strains for KO-consolidated clay were twice as

high for extension than compression.

The pore pressures also show different behavior for the com­

pacted clay. For all three directions of loading, the pore pres­

sure development was positive until it reached a maximum value
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near one-third of the failure strain, and then it gradually de­

creased. This resulted in a change in the effective stress paths

for the extension and torsional loading, even though the shapes

of the stress-strain curves were similar.

D. Overconso1idated Clay

Normally consolidated clay may be considered to be overconsol­

idated with an overconsoli~ation ratio of one. Therefore, there

should be a smooth transition in stress-strain behavior as overcon­

solidation ratio increases. A trend was observed along these lines

in the compression and torsional directions of loading, with static

strength continuing to increase with overconsolidation ratio. The

compression curves became more brittle with higher values for the

tangent modulus as overconsolidation ratio increased. Higher

failure stresses were observed with increased overconsolidation

ratio. Typical stress-strain curves and pore pressure development

curves are presented in Fig. 4-3.

The failure stresses in the extension and torsion directions

also were greater as overconsolidation ratio rose. The torsion

stress-strain curve resembled the normally Ko-consolidated curve,

w th a shape similar to the first part of the extension curve.

Extension behavior displayed the greatest difference between

normally consolidated and overconsolidated clay. Ductility was

increased tremendously. Many times, 18% strain was exceeded with­

out indicating a failure condition. The height limitations of the

testing cell prevented some of the tests from stressing until a
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failure condition was noted. In all cases, extension strength was

greater than compression strength for overconsolidation ratios of

two or more.

The stress-strain curves in the extension direction initially

followed curved paths very similar to those of the normally consol­

idated extension tests. However, near 2-3% strain, the curves

became linear, and remained so. These straight line portions had

slopes ranging from 200 to 300 psi/unit strain, with no dependence

on consolidation pressure or overconsolidation ratio. During this

linear behavior the minor principal effective stress decreased to

zero and continued in the negative direction. In over 70% of the

cases, the minor principal total stress decreased past zero and held

a suction force without showing failure.

It was loted that the minor principal effective stress became

less than z~ro for all extension tests. This also happened for t6r­

sional tests with low consolidation pressures and low overconsolida­

tion ratios. Negative pore pressure development was maintained for

extension and torsional loading. The compression loading initially

had a positive pore pressure development, eventually decreasing to

less than 15% of the peak and crossing zero in 85% of the tests.



CHAPTER V

ONE SIDED LOADING

Loading is defined as one sided when the deviator stress

is always positive or always negative. Low frequency triangle

waves were applied to both Ko-consolidated and isotropically con­

solidated clays to examine the differences in response.

A. Testing Procedure

Consolidation for the two types of clay was carried out as

explained in the previous chapter. Both isotropic and Ko-consol­

idated clays were tested at 40 and 60 psi effective confinin9 pres­

sures. Three loading directions were evaluated: axial compression,

axial extension, and pure torsion. The maximum deviator stress per

cycle was 85% of the failure stress in static loadinql for each

direction while the minimum stress per cycle was 3 psi, as illus-

trated in Fig. 5-1.

Stress application was done by a motorized pressure regula­

tor. Electro-pneumatic switches reversed direction of the motor at

the maximum desired stress, thus producing a triangular stress input.

All tests were run at periods from 20 to 40 seconds. Force, torque,

axial deformation, rotational deformation, and pore pressure res-

ponse were measured by various transducers and recorded. Each

specimen was cycled for a minimum of 200 cycles or until failure.

Failure was noted as a sudden increase either in average deformation

or in strain amplitude.

1 For Ko-consolidated clay, static strengths were determined by Ou (2).
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B. Strain Behavior

Stress-strain loops were open at the beginning of each test.

As the number of cycles, N, increased, the loops closed while

migrating in the direction of positive strain. The average strain,

defined as ~(€max-~in)' (Fig. 5-2), continued to increase slowly,

while the strain amplitude remained fairly constant, until failure.

A comparison of the isotropic and the Ko-consolidated clay

strain behavior plotted versu~ N indicated different responses. As

can be seen from Fig. 5-3, the average strain for Ko-consolidated

Kaolinite increased at a lower rate than the isotropically formed

clay for the three loadinq directions. Extension and torsion tests

had equivalent envelope shapes for both clay structures, but iso-

tropic specimens were much less brittle in the compression mode.

This tendency parallels that noted in the monotonic loading. Al­
ad

though an 85% stress level t<fclmax,static) was used for all tests,

failure was observed more often and at fewer cycles for compacted

clays than the one-dimensionally consolidated clays. The randomly

oriented clays lost their strength much more rapidly than the

orderly clays.

The differences in strain behavior which were noted in the

monotonic loadinq were also present in this cyclic, one sided

loading. Both the relative ductility of the compressive specimens

and the average strains at failure distinguished between isotropic

and Ko-consolidated specimens. Although the Ko-consolidated speci­

mens had achieved a substantial disturbance. they still retained

many properties of their initial structure. So while it is
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acknowledged that disturbance will greatly affect cyclic prop-

erties, the clay fabric is also an important factor in behavior.

C. Pore Pressure Development

Pore pressure was measured from the base of the specimen.

The cyclic amplitude of the pore pressure was not fully trans­

mitted to the transducer although both the outside and the inside

of the cylindrical specimen were covered with filter paper. It

was expected that the measured pore pressure fluctuations gave

a relative indication of the effect of the clay anisotropy.

The shapes of the pore pressure development curves for

monotonic compression loading compared to the cyclic pore pressure

curves presented in Fi9. 5-4 indicate that the average pore pres-

sure increases for the anisotropic clay. The isotropic clay showed

a levelling off of the pore pressure development curve, and then a

decrease, as in the static case. The extension and the torsion

modes appear to have no difference in pore pressure for isotropic

or anisotropic clay.

D. Secant Moduli

, or

in secant modulus indicates a decrease in strain amp-

could only be measured when the loops finally closed.

I

The secant modulus, G or E ,defined as the slope of the
T - T •

line connecting the tips of the hysteresis loops, max mln
Ymax - Ymin

0' -0.max mln,
E: max -Emin
An increase

litude, which is often called a strengthening effect.

As seen in Fig. 5-5, the anisotropic extension and torsion

specimens appeared to have constant secant moduli as N increased
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until relatively high values of N were reached, when secant moduli

rose slightly. In the isotropic specimens the increase in G and

E occurred almost immediately. The relationship between secant

modulus and cycle number is discussed in Chapter 6.

E. Equivalent Damping Ratio

Equivalent damping ratio is defined as 1 bW , where bW

is the area of the hysteresis loop (total ene~ay~si per unit

volume) and y is one-half the cyclic strain difference, ~(Ymax-Ymin).

To fit the definition, this had to be measured after the loops had

closed, so damping for the initial cycles was not accurately

evaluated.

The damping ratio showed no dependence on direction of loading

or on initial consolidation pressure, Fig. 5-6. For controlled

stress tests the strain increased with each cycle, yet the damping

showed very little dependence on strain. In fact, there was a

slight decrease of damping as cycle number increased for both the

anisotropically and isotropically consolidated specimens. Overall,

the equivalent damping ratios for the Ko-consolidated clays were

20% to 30%, and for isotropically consolidated clay 25% to 35~.



CHAPTER VI

TWO SIDED LOADING

The bulk of the experimental program involved two sided loading

of hydrostatically and one-dimensionally consolidated clay. Both

normally consolidated and overconsolidated cases were studied. The

main area of concern was the strain response, involving total defor­

mation as well as secant moduli and damping. A comparison was made

of these properties that showed a definite degrading behavior as the

number of cycles increased. The data was fit with a Ramberg-Osgood

model, to be discussed in Chapter 7.

A. Testing Procedure

The consolidation procedure was as described in Chapter 3.

After consolidation the clay was allowed to rebound for a minimum

of eight hours so that a hydrostatic stress condition existed at the

start of loading. Deviator stresses for some tests were applied

with the triangular loading system used for one-sided loading. A

wave generator provided sine waves for other tests. An inspection

of the response showed that strain amplitude differed little be­

tween the two wave types, and the shape of the cyclic deformation

was very similar for both triangle and sine waves. This is prob­

ably due to the high level of damping associated with the clay at

the given stresses.

Loading was always symmetrical with respect to the hydro­

static stress condition. Stress amplitude depended on the failure

stress obtained in the monotonic loading. For the torsional loading

Jr- 21
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the stress level was simply the ratio of single amplitude deviator

stress to static strength. Since the loading was in a direction

normal to the material's axis of symmetry (for anisotropic clay),

there was no distinction between positive and negative shear.

For the axial loading, one half of each cycle was in com­

pression and one half in extension. To determine the stress level

the lower failure stress of the two directions was taken as the

reference. Thus for the normally consolidated specimen the stress

level was the percentage of deviator stress to extension strength,

and for overconso1idated clay it was the percentage of the com­

pression strength. This results because for overconsolidated clay

the failure stress in extension is higher. than in compression -

Fig. 4-4.

Some specimens were tested with a constant stress level

until failure was noted by rapidly increasing strain amplitude. If

no failure had developed they were cycled at least 100 times. No

stress level was maintained for more than 1000 cycles. On other

specimens loading was incremented at increasingly greater stresses

with each stress level being applied for 100 or more cycles. 1 An

increment began from a hydrostatic stress state after an interval

of 10 to 20 minutes. In the event local buildups occurred during

the previous loading, the drainage remained closed during this in­

terval but the pore pressure was believed to have equalized itself.

For a few of the extremely low stress levels when deformation was
too small to be detected, loading was stopped before 100 cycles.
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The possible change in strength and maximum shear modulus which may

have occurred during the previous loading-period was assumed negli­

gible when compared to the disturbance caused by the first few cycles

of the next larger stress level.

Changes in pore pressure, axial and rotational deformations,

and forces were recorded on strip charts. Force-deformation loops

were recorded on X-V recorders. Damping was measured from these

loops, and secant modulus from the chart recordings.

B. Strain Behavior

Clay responds with the same strain magnitude when shear

stresses are applied in either the positive or negative directions.

Therefore, the stress-strain loops maintain symmetric strain for

symmetrically applied stress. Fig.,6-1 shows stress-strain loops

for a torsional test in which the average strain, !ypos' - IYnesl,

is nearly zero for all cycles.

An examination of the static stress-strain behavior for clays

in compression and extension always indicates a strain for a given

stress which is greater in the extension direction. It follows

that the strain on the extension side of the cyclic loading is

larger than the compressive strain, and that the average strain

will be an extension strain. The Ko-consolidated clay maintained

an extension strain from the start of each test. Fig. 6-2 shows

typical behavior for axial loading on this clay, with the loops

completely on the extension side of the stress axis.

A simple model to describe this behavior is the kinematic

hardening model. A typical stress-strain curve in the axial



ctirection has a weaker, more ductile extension curve, while the

compression side has a higher tangent modulus. If a loop is im­

posed on the clay with equal stresses in extension and compression,

the loop will migrate to a steady position with strains being mostly

extension strains. If the clay is subjected to equal strains in

compression and extension, the loop will shift to show mostly com­

pressive stresses. Thus the model predicts a shift from the ori­

gin whenever a material has properties which differ in opposing

directions. (20)

The extent of this shift in average strain is significant

for the Ko-consolidated clay when compared to the isotropic, com­

pacted clay. The isotropic clay had a more ductile static com­

pression curve, with tangent modulus being much closer to the ex­

tension curve for that material. The cyclic loading in the axial

direction produced an average strain still on the extension side,

but much closer to zero, Fig. 6-3. This average strain behavior

was changed little by the number of cylces, except at failure. So

by looking at the strains produced in the Nth cycle. it was easily

determined whether the clay was anisotropic or isotropic by no­

ticing the position of the average strain relative to the strain

amplitude. It is concluded that the distinctive behavior of iso­

tropically and anisotropically formed clays prevents them from

being substituted for each other in any testing program.

Failure was noted with a sharp increase in strain amplitude.

The isotropic clay typically failed much sooner than the
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anisotropic when cycled at the same stress level. The strain ampli­

tude consistently was greater for isotropic than anisotropic material.

As with the one-sided loading tests in Chapter 5, the two-

sided cyclic tests displayed a steady increase in pore pressure

such that the effective stress became zero or negative on the ex-

tension side of loading. This usually occurred several cycles

before failure was noted, which may have been a result of the change

in sign of the effective stresses.

C. Secant Modulus

The hysteresis loop of the Kaolinite tested was such that

maximum strain occurred at the instant of maximum stress, and mini-

mum strain at the instant of minimum stress. Secant modulus is

defined as the slope of the line connecting the tips of the hyster-

esis loop. This line becomes equal to the shear or elastic modulus,
I

G max
I

G max

I

or E max' as strain becomes very small. The quantities
I

and E max were measured in the resonant column device (1) for

each of the consolidation methods and water contents used in the

testing program. Secant moduli measured in the slow cyclic load-
I I

ing tests were usually normalized by dividing by Gmax or E max

for comparison purposes.

For a controlled stress test the stress amplitude was kept

constant and the corresponding strains were recorded. Each loop

was assumed to be centered at the origin of the stress-strain axes,

even though it is acknowledged that loop migration took place. So
• I 0d

as strain amplitude increased, G =~ or E =-- decreased. This
y £z
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reduction in secant modulus is called degradation. and indicates

the difference between the first cycle loop and the Nth cycle

loop, or the first cycle strain and the Nth cycle strain.

Two things must be emphasized before any further discussion:

1) The strain behavior for a constant stress amplitude may be

characterized by average strain migration and by strain amplitude,

both of which depend on N. 2) The initial cycle presents a loop

which has a large strain before the first stress reversal, and

upon return of the stress to the initial position the strain does

not come close to its original position. Loop O-A-B-C in Fig. 6-2

is not closed, so the secant modulus is undefined in this 'loop'.

Therefore, the 'first l cycle response must be determined from

extrapolation of subsequent cycles. This extrapolated first cycle

secant modulus in some cases coincided quite well with the measured

modulus, especially for low stress levels. On the other hand, when

it did not represent the measured conditions, the extrapolated

value differed as much as 30% from the measured modulus. In any

case, all analyses were made with the extrapolated value for the

(6-1)

by the degradation index(17)

log N, Fig. 6-4, shows typical degra-
I

Eof -. are extended to N=l, and this
E max I I

The secant modulus for the Nth cycle, Gn or En

initial secant modulus
I 'Gn En

<5 = -,- or -,-
G

1
E1

loop instead of the measured data.
I

EA plot of log -I vs
Emax

The values

first

dation behavior.
E'

is taken as _1
E'

is related to ~~~



For small levels of stress the degradation index (which can also be
Yl Tn

defined as -- for a constant stress amplitude, or as -- for a con-
Yn . Tl

stant strain amplitude) forms a line which has a linear plot with N

on log-log scales (7). The slope of this line is defined as t,

the degradation parameter.

(6-2)

Stress levels greater than 30% usually produced a non-linear degra-

dation curve, mostly with slope increasing with N. Degradation

index is plotted versus Nfor several loads on anisotropic clay

in Fig. 6-5.

Other investigators (7) using constant strain amplitude

tests and the linear relation o=N-t , obtained a smooth curve re-

lating the parameter t with strain amplitude. With constant stress

amplitude tests, when degradation parameter t was obtained by a

power fit least squares method, most tis were found within a band

which increased with stress level. The range of values of t with­

in this band was too wide to be used for prediction purposes.

Fig. 6-6 shows little correlation between t and stress level for

isotropic clay, and small dependence of t on stress level for

anisotropic clay.

D. Damping

Damping energy is defined as work done during a cycle of

loading, (10,26). This is measured as the area within the force­

deformation loop divided by the specimen volume. Fig. 6-7 shows
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that as N increases. the energy lost increases for a constant stress

amplitude.

Specific damping capacity is the ratio of the energy lost

per unit volume, ~l ' to the maximum potential energy stored during

the cycle. The maximum potential energy can be defined as the

ave~age of the potential energy from the positive loading direc-

tion and that from the negative direction, or as ~(Aa+Ab) on Fig.6-8.

These areas can be equated by moving the y=O position to midway

between Ya and Yb. Thus the maximum potential energy is ~TY, in

which Y is one half the double amplitude strain response. In terms
I 2

of shear stresses and strains, P.E'max=~TY.or ~G Y

specific damping capacity = ~W~Vol
~G i (6-3)

Equivalent damping ratio, or equivalent damping, is simply
1

4n times the specific damping capacity. This is Lehr's definition

of damping ratio. Various definitions determine the amount of

potential energy used in the equivalent damping relation. Roelig(25)

damping is defined as

where Wi is the area of energy under the loading half of the loop,

shaded in Fig. 6-9. If it is assumed that the secant modulus line

divides the loop in half, then

(6-5)
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From Lehr's definition of damping,

1 '2
~w = 4~(- G y )OLehr

2 (6-6)

Combining Eq. 6-5 and Eq. 6-6 into Roelig's definition of damping,

°DR 1· Lehroe 19 = ---
4+2~OLehr

(6-7)

Most of the measured values of 0Lehr were in the range of

20-30%, so Roelig damping was one-fifth to one-sixth Lehr damping.

To be consistent with the literature, the Lehr definition was used

on all damping ratio evaluations.

In most tests, damping remained relatively constant through-

out the entire test. The isotropically consolidated clays pre­

sented a trend of slightly decreasing damping ratio as N increased.

Normally, the area of the loop grew with N as cyclic strain grew.

The stored potential energy, however, grew by at least the same

amount so the effects of increasing strain were not evident in the

damping ratio. The Ko-consolidated clays displayed a very slight

decreasing damping behavior with N. Typical damping vs N data is

shown in Fig. 6-10. This condition has been noted by Idriss, et al.

(7) using controlled strain amplitude testing.

It is interesting to note that there appeared a small de-

pendence of damping ratio on stress level. Naturally, the strain

amplitude for any given N increased as stress level increased.

Traditionally it has been indicated that damping ratio rises with

strain, so it should rise with stress level since damping shows
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little dependence on N. The effect of the stress level is seen

particularly for low stress levels; for stress levels higher than

30% this effect is negligible. An envelope may be described when

damping ratio vs strain is plotted for each test, Fig. 6-11, showing

the general trend towards higher damping ratios with higher strain

amplitudes.

Overconsolidated clay reacted very similarly to the normaily

Ko-consolidated clay. The overconsolidation ratio had no effect on

the magnitude of the damping ratio. There was a definite decrease

with N in damping ratio for all the axial loading. Most of the

torsional tests (oc = 10 and 0c = 20 psi) showed a small but steady

increase in damping. As expected, there occurred an increase in

damping ratio with stress level. Fig. 6-12 shows typical damping

ratios for overconsolidated clays.



CHAPTER VII

RAMBERG-OSGOOD MODEL

In this study, we need to know three things about any

particular stress-strain loop. The first is the position of the

center of the loop. This may be determined from a relationship

between the average strain expected for a certain stress level

and a given cycle number; it depends on the amount of non-symmetry

between the two loading directions. The second is strain amplitude,

given by the amount of secant modulus degradation involved and

the estimate of the first loop's strain amplitude. The third is

the damping ratio, which can be reasonably estimated within the

range of stress levels used in this testing program. The second

and third items here may be described by a mathematical model for

two sided loading. Such a model would be the Ramberg-Osgood

model (14).

A. Backbone Curve

For a material cycled under a constant stress amplitude, the

hysteresis loop defines two strain extremes. The magnitude of

strain measured betwppn these extremes is the peak-to-peak strain,

and the strain amplitude is defined as one-half of this magnitude.

Different stress levels result in loops with different strain

amplitudes. A plot of the stress levels versus the strain

amplitudes yields what is called the backbone curve.

E- 31
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If a material has the same behavior in extension and compres-

sion and does lot degrade during cycling then the backbone curve

coincides with the stress-strain curves. If a material, such as

most soils, has different behaviors 1 extension and compression

then the hysteresis loops will shift away from the origin of a

stress-strain diagram. The back00ne curve will still des~ribe

the strain amplitude, but will have no bearing on the position of

the loop. In this case the backbone curve will not concur with

the stress-strain curves.

B. Ramberg-Osgood Equation

Most static stress-strain curves for clay can be well repre-

sented by a Ramberg-Osgood (14) type of equation. Since in most

cases the backbone curve shows similarity to the monotonic loading

curve, it will be assumed that the Ramberg-Osgood equation adequate­

ly describes the backbone curve.

The Ramberg-Osgood equation is stated as:

Y = Yr Gil (1 + a IGil IR-l)
maxYr maxYr

(7-1)

in whi:::h Y = strain amplitude
l = stress amplitude
Y = reference strain

G' r = secant modulus at strains lowermax than 10-6
a,R = Ramberg-Osgood parameters

Yr is often arbitrarily chosen as a small strain such as 10-4

and then a will depend on this reference strain. In this study

the reference strain was a constant relating to the material
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i

properties of the clay, Y
f

= G:::. i max and G~ax primarily depend

on the consolidation pressure, water content, and degree of aniso-

tropy (6).

The backbone curve is now described by

or
G1

max - 1 + ~ !SL!R-l
~-

(7-2)

( 7-3)

where G' =~ and SL = stress level
y

= _1_
1 max .

For the axial loading the Ramberg-Osgood equation becomes

Em'ax R 1-rr- = 1 + ~ ISL! -

One can see that as SL approaches zero, [' becomes E' .max
The clay tested had all been previously tested in static lcad-

ing, so 1max and amax were known. They were also te~ted in tr~

resonant column to get G~lX and E~ax' so the only unknowns in the

model were ~ and R.

Since the first cycle of loading imposed total strains on the

specimen, it is incorrect to describe the backbone curve and all

subsequent behavior with the constants obtained for the first

cycle. It is common in the literature to find the tenth cycle

used to describe the backbone curve for the purpose of predicting
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earthquake responses. This is reasonable beacuse any single earth-

quake is not expected to create more than ten cycles of a certain

amplitude. As mentioned previously, the end points of the tenth

cycle loop define the strain amplitude used in constructing the

backbone curve for the cycle.

Using Eq. (7-3) and fitting the tenth cycle data from the

Ko-consolidated clay, the axial tests for 0c = 40 psi gave coeffi­

cients of 4.09 for Rand 123.0 for a.

The Masing criterion (12) is used to describe loading and

unloading. It is assumed that the loading branch of the loop

is twice the ordinates of the backbone curve, and that the unloading

branch is symmetrical about zero. Having the mathematical expression

for the loop enables one to determine the area within the loop,

and thus get a relation for damping ratio. Jennings (8) expressed

damping ratio using the Masing criterion with a Ramberg-Osgood

backbone curve as

(7-4)

(7-5)

which can be simply expressed as

2 R-l GI

A = ; R+l (1- ~).
max

It is aC/antageous to use this form of the equation because

there is only one coefficient to find. After the R has been found

the data is put back into Eq. (7-3) to find a.



JI- 35

As was seen in Chapter VI, the damping ratios were all within

the range 20-30%, while the secant moduli had large differences

between stress levels.

Using Eq. (7-5) R can be evaluated for each loop measured at

each stress level. For the tenth cycle, each stress level

predicted a different R which in all cases was lower than the R

obtained by linear regression of the backbone curve. The a'S in

all cases were lower than the a predicted by the backbone curve.

In Table I Ramberg-Osgood coefficients are obtained using

eqs. (7-5) and (7-3). Thus the combination of the Masing criterion

with this version of the Ramberg-Osgood backbone curve does not

represent the actual data. Masing predicts a loop of larger area

than that which actually happens, which indicates that the loading

and unloading sides of the loop generally don't follow the back­

bone curve or its slope. The last column in Table I gives A pre­

dicted by Eq. (7-5) using the R value from the fourth column. These

A's are always higher than those measured. The calculated and the

measured A's are shown in Fig.7-l, plotted with the measuredE~ or ~.
max max

C. Degradation

It has been shown that as the number of cycles increases, the

secant moduli decrease. A plot of the backbone curve for various

cycle numbers indicates that the curve itself degrades, Fig. 7-2.

Previous investigation (5, 9, 22) suggests a threshold stress or

strain before degradation can occur, so it is presumed that G'max

itself does not degrade. Idriss, et al. (7) introduced the degradation
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idea into the Ramberg-Osgood equation by multiplying T by 1/0, where

o is the degradation index. Their revised expression for the back-

bone curve is:

or oG'
G~x = 1 + CL ISoL IR- 1 (7-6)

Following this lead, Jennings' expression for damping ratio

based on Eq. (7-4) is

which becomes

2 R-l ( GI )

A = ; R+l 1-~
max

(7-7)

Contending that 0 = N- t with t depending on stress level,

and

(7-8)

(7-9)

The CL and R calculated by linear regression for the tenth cycle with

the computed t, G', and SL for the axial mode at 0c = 40 psi are

CL = 4.45 and R : 2.30. These are much closer to the original CL and

R obtained from the first cycle compression and extension tests,

but a little lower. Table II lists the Ramberg-Osgood coefficients
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for this form of the backbone curve.

The damping expression, Eq. (7-9), when used to predict the

coefficient R, gives more consistent results when the degradation

is taken into account. The axial case presented a higher R when

evaluated by the backbone curve than from the damping curve,

while the opposite happened for the torsional mode. An examination

of the damping ratios predicted from Eq. (7-9) using the R obtained

from the backbone curve shows underestimation of the actual damping.

However, the damping ratios do not vary quite as much with stress

level as when evaluated using Eq. (7-5), and this follows the

trend found in the data.

Eq. (7-8) may be very useful for predicting~ if the
max

degradation index 0 follows the form N- t . Stress levels in excess

of 20% usually do not have such a simple relationship, and there-

fore this expression is not representative of what actually

happens. For the bulk of the stress levels tested, an expression

was not found which described the degradation index in terms of N,
G1

so the definition o=GT was used. A look back at Eqs. (7-6) and
1

(7-7) bri ng

G' G~ax
(7G"'=l+a

1
(7-10)

or

and

or A - 2 R-l ( G, )
- -; R+l 1- ~x .

(7-11)

(7-12)



~- 38

It is recommended to use these forms of the Ramberg~Osgood

and damping equations when the relation 0 = N- t does not apply,

especially for large strain responses.

Using Eq. (7-12), the damping ratio becomes independent of

the cycle number if the Ramberg-Osgood coefficient R is assumed

independent. This fits the damping data much more closely than

the other formulations of the damping ratio .. However, it does

not explain the ~ight decrease in damping ratio with increasing

cycle number.

Eq. (7-11) may be stated

G' G'
max - 1 + a \-1 y\R-1.
~ - 'max

If the cyclic strain remains constant then it is evident that for

all cycles the coefficients a and R remain constant. However, for

constant stress amplitude tests the strain increases with cycle

number and therefore a and/or R must be functions of N. Therefore,

the idea of Ramberg-Osgood 'constants' does not apply when degrada­

tion is introduced into the Ramberg-Osgood equation. Assuming a

unique backbone curve for each cycle N, and solving the backbone

curve for a and R, the values in Table III are obtained. When

plotted on log-log scales, the a and R coefficients form smooth

curves of approximately consistent shapes, Fig. 7-3. For torsional

loading, the higher consolidation pressure had higher values of a

and R than the lower consolidation pressure. However, the opposite

is true for the axial cyclic loading. The a and R curves seem to
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level out as the cycle number increases, and may reach a constant

value for non-failure behavior. It is suspected that tests run at

other consolidation pressures would result in a and R following

the same trends.

Given specific R vs and a vs N curves for a consolidation

pressure, Eq. (7-11) may be solved for secant modulus:

G~ _ Gi SL 1
~ - -G-'- G' ~Rlmax max - ( max -1 n-

an ~
1

(7-13)

G'
_I is found using the expression for the backbone curve
G~ax

with an = a1 and Rn = Rl . Substituting Eq. (7-3) into Eq. (7-13),

an expression involving a, R, and SL is obtained:

G'n _

G~ax -

1

~ ISL ~Rl-Rn~ r:R;;"

1 + a
1
ISL IRl -l

(7-14)

It is imperative that the stress level be constant for this equation.
G'

Eq. (7-14) enables one to determine~ without having to
max

compute Gi. Its accuracy depends on the accuracy of the previously

determined relationship between Rl , a l , Rn, and an' Note that if

a and R are assumed to be constants (ie., al = a and Rl = R ) thenn n

G'n _

G~ax -

and there has been no degradation.
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The dependence of G~ in Eq. (7-13) on G1creates much room

for error because of the uncertainty in determining G1· Q 1 and Rl
may be obtained from Eq. (7-3), which uses an extrapolated value of

G" or it may be extrapolated from the a vs Nand R vs Ncurves. In

either way, it is not usually obtained directly from experimental

data. The consequences of this show up when the secant modulus

is predicted from Eqs. (7-13) or (7-14).
G1

Eq. (7-13) was used to predict~ using the an and Rn from
max

Fig. 7-3. Stress levels greater than 40% showed good agreement

with the measured secant modulus values. For stress levels

approaching zero the predicted secant moduli had very poor agree­

ment with the measured ones. As indicated" in Fig. 7-4, the secant

modul us for N=l approaches EI , as expected. However, themax
predicted modulus for small stress levels increased as N increased,

and became greater than E~ax' This has been proven otherwise in

the resonant column device. Consequently, it is concluded that

this form of the Ramberg-Osgood model does not represent well the

backbone curve for small stress levels.

Re-examining Eq. (7-12),

A = ~ R-1(1- -3- )
n R+l G' ,max

it is evident that as R decreases the damping ratio will decrease

also. The change in damping ratio predicted by this equation exceeds

the slight change in damping actually observed. Conversely, if this

equation is to be used to predict the Ramberg-Osgood R, then the
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variation in R vs Nwill be quite small when compared to the

R's obtained from the backbone curve.

A comparison of the secant modulus and damping values

predicted from Eqs. (7-11) and (7-12) is illustrated in Fig. 7-5.

The solid lines represent both the measured modulus and measured

damping. The measured secant modulus is used in the backbone

curve, Eq. (7-11), to derive Ramberg-Os;ood coefficients a and R.

This R then is used in Eq. (7-12) to ca cu1ate the damping ratio

predicted by the Masing criterion.

The dashed line in Fig. 7-5 plots the measured secant modulus

vs the calculated damping ratio. These calculated damping ratios

differ from the measured values by as much-as 40%. The predicted

damping rctios were generally less than the measured ratios for

stress levels less than 40%, and higher for higher stress levels.

The measured damping ratios were used in Eq. (7-12) to determine

H:: Ramberg-Osgood R. This R was then used in Eq. (7-11) to predict

secant modulus. The predicted values differed by up to 60%, and

in most cases were lower than the measured moduli. The dotted line

in Fig. 7-5 shows the predicted modulus plotted with the measured

damping data.

These results show that the Ramberg-Osgood model used in

conjunction with the Masing criterion does not adequately describe

the behavior of Kaolinite when loaded with large amplitude stress

cycles.
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D. Overconsolidated Clay

The secant modulus degradation for overconsolidated clay

appears to be independent of overconsolidation ratio. The damping

ratios also show no dependence on the overconsolidation ratio, so

it is assumed that the backbone curve will have the same form as

for normally consolidated clay.

The Ramberg-Osgood coefficients a and R, when determined from

the backbone curve, were found to vary in the same manner with the

cycle number N as with the normally Ko consolidated clay. Smooth

curves were plotted to show that in all but one case, a and R

decreased as N increased. Fig. 7-6 shows a and R for 0c = 10 psi.

There appeared no dependence on either the consolidation pressure

or the overconsolidation ratio.

The secant modulus and damping ratios for the fifth cycle

in the torsional mode are presented in Fig. 7-7. The solid line

represents the measured modulus and damping. The measured moduli

were used in the backbone curve, Eq. (7-11), to find the Ramberg­

Osgood R. This R was then used in the damping equation, Eq. (7-12),

to determine a damping ratio. This damping, plotted as a dashed line

in Fig. 7-7, was in most cases greater than that measured, i.e. it

predicted more energy lost per cycle than actually happened.

Eq. (7-12) with the measured damping ratios were used to

obtain an R value. The R was then placed in the backbone curve to

predict a secant modulus, plotted as a dotted line in Fig. 7-7.

Most of the derived moduli were lower than those measured, with
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greater differences at higher stress levels.

These results reinforce the conclusion that the Masing

criterion does not fit well with anisotropic clay loaded with a

constant stress amplitude.



APPENDIX 1

EXTENSION TESTS ON REDUCED AREA SPECIMENS

A series of four extension tests were carried out in a

Norwegian Triaxial Cell. Isotropically formed and anisotropically

formed samples were each tested at effective consolidation pressures

of 40 and 60 psi. The samples had reduced diameters in the center

portion of their height, as shown in Fig. A-l. Due to the reduced

area, the tension stress in the center of the specimen is greater

than the stress existing near the caps. A conventionally-shaped

specimenJFig. A-2 Jnecks when the minor principal effective stress

approaches zero due to the cap's inability to apply an actual

tension force to the specimen.

All four tests created minor principal stresses (axial)which were

negative. The isotroDic specimens showed minor principal effective

stress of zero at 58% and 78% of their failure strains, while the

two anisotropic specimens reached it at 37% and 42% of their failure

strains. This is relatively early in the test.

Fig. A-3 shows the stress-strain curves for the anisotropic

and the isotropic specimens at 0c = 60 psi. Plots of °1/°3 are also

shown on these graphs.

A discontinuity exists at the point where 03 = o. Attempts

to describe a failure criterion using this effective stress ratio

are therefore meaningless.
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APPENDIX 3

NOTATION

areas located on Fig. 6-8

Lehr damping

Roelig damping

Young's modulus for strains less than 10-6

secant moduli

secant moduli for first cycle

secant moduli for nth cycle

shear modulus for strains less than 10-6

specific gravity

coefficient of lateral earth pressure at rest

cycle number

overconsolidation ratio

maximum potential energy in one cycle

Ramberg-Osgood coefficient

stress level

Saada Pneumatic Analog Computer

degradation parameter

area under loading portion of loop

Ramberg-Osgood coefficient

Ramberg-Osgood coefficients for first cycle
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NOTATION

Ramberg-Osgood coefficients for nth cycle

shear strain; shear strain amplitude

shear strain limits for one sided loading

shear strain amplitude for nth cycle

reference strain

shear strain limits for two sided loading

degradation index

pore pressure development

energy lost per unit volume

axial strain limits for one sided loading

equivalent damping ratio

effective confining pressure at start of test

deviator stress

axial stress limits for one sided loading

major and minor principal effective stresses

shear stress; shear stress amplitude

static shear strength

shear stress limits for one sided loading
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Fig. A-2 Standard Triaxial Specimen Tested in Extension
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TABLE I

RAMBERG-OSGOOD COEFFICIENTS FOR
UNDEGRADED BACKBONE AND DAMPING CURVES

10th Cycle

Measured From Eq. (7-3) Wrom Eq.(7-5) Fr?m Eg
EI , GI 7-5)

SL A r'~ R a R a Itmax max

.20 .178 .529 3.92 98.11 .182
AXIAL 4.09 122.57.40 .283 . 131 3.09 45.21 .336

(j =40
Ss i .42 .268 .110 2.80 38.40 .334

.79 .214 .0157 2.04 80.06 .381

TORSIONAL .36 .312 .335 6.60 608.4 .315

.39 .213 .221 2.51 14.55 .369
cr =40 6.84 766.42c .53 .289 .099 3.03 33.04 .427
psi

.57 .262 .019 2.45 16.35 .350

.10 .055 .742 2.01 3.53 .089

AXIAL .20 .106 .481 1. 94 4.94 . 178

(j = 60 .40 .219 .176 3.35 61.04 2.43 17-.-41 .283
c
psi .41 .248 .123 2.60 29.65 .302

.60 .223 .0336 2.14 51.41 .332

TORSIONAL .36 .222 .289 2.93 17.58 .263
3.78 41. 91

o = 60 .53 .283 .122 3.05 26.46 .325c
psi



I[- 81

TABLE II

RAMBERG-OSGOOD COEFFICIENTS FOR CURVES

USING <5 = N-t

10th Cycle

I r From Eq. (7-6) From Eq. (7-9) q. (7-9)

*SL t (l R (l R A

.20 .045 383.8 5.18 .104AXIAL

.40 .293 5.93 3.98 .186
cr :: 40

.42 .322 4.45 2.30 4.52 3.42 I .193c

psi I

.79 .526 6.15 2.10 .237

TORSIONAL .36 .233 4 X 10-4 -14.57 .088

.39 .169 6.14 2.97 .140
Gc = 40 2.00 1. 96

.53 .453 0.632 4.43 .149
psi

.57 .794 0.813 2.75 .183

.10 .026 5.86 2.37 .054
AXIAL

.20 .033 4.70 2.06 .123

.40 .228 5.72 2.34 5.00 2.92 .179
(j = 60c .41 .245 6.92 2.98 .200
psi

.60 .379 7.33 2.23 .235

TORSIONAL .36 . 127 10.86 3.64 .066
ij = 60 .53 .387 2.13 1.41 0.977 4.45 .076c

psi

* Compare to measured A in Table I.



l:[-82

TABLE III

RAMBERG-OSGOOD COEFFICIENTS FOR

DEGRADED BACKBONE CURVE-EQ. (7-11)

-----, --
AXIAL TORSIONAL

N Cl R Cl R

1 65.45 3.87 253.03 6.53
(j = 40c 5 18.34 3.22 7.60 4.20

psi
10 10.54 2.91 3.12 3.00

20 7.01 2.29 2.01 2.61

50 8.45 2.82 1.64 1.66

1 30.96 3.01 18.32 3.07

ij = 60 5 14.37 2.68 26.63 4.74
c

psi 10 9.85 2.49 10.15 3.91

20 6.66 2.28 5.21 2.88

50 5.56 2.21 2.64 1. 99
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STEADY STATE RESPONSE OF A CIRCULAR FOUNDATION

ON A TRANSVERSELY ISOTROPIC MEDIUM

Abstract

by

DAVID JOHN KIRKNER

The steady state response of a circular foundation

vibrating harmonically on a transversely isotropic elastic

half space is investigated. The analytical solution to the

massless disc problem requires the elastic constants to

satisfy a certain constraint equation. Typical values of

the elastic constants for actual soils are shown to agree

well in many instances with this constraint equation.

Dimensionless parameters which are functions of the elastic

constants are utilized to define the degree of anisotropy

when the foundation is undergoing vertical, rocking or

translational vibrations. Impedance and compliance coef­

ficients are presented in tables and curves for a wide

range of a dimensionless frequency parameter.

Approximate impedance and compliance coefficients

are also obtained for a visco-elastic soil.

The effect of the mass of the foundation on the

amplitude of vibration is also studied. A principal

JTIr-iii



result is that for massive foundations undergoing harmonic

vibrations the dimensionless part of the isotropic impe­

dance function may be used with the expression for the

anisotropic static stiffness to obtain the amplitude of

vibration. A dimensionless parameter determines the

Poisson's ratio of the equivalent isotropic soil. The

result is important for the design of machine foundations

since it allows for an approximate analysis by using the

available isotropic solutions.
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CHAPTER I

INTRODUCTION

1.1 Object of Study

Recent years have seen considerable research activ­

ity in the dynamic response of structures founded on soils.

Requirements for nuclear power plant structural safety in

the event of an earthquake have given great impetus to

this activity (1). The problem also has direct applica­

tion in the design of machine foundations.

To date, this research activity has been directed

toward the response of machines or structures founded on

isotropic soils. It is the intent of this study to deter­

mine the effect that material anisotropy has on the dynamic

response of structures.

It has been observed that the process of sedimenta­

tion followed by one-dimensional consolidation results in a

material possessing cross anisotropic or transversely iso­

tropic mechanical properties (2). Also, it can be shown

(3), (4), (5) that a mass of material consisting of an alter­

nating system of individual homogeneous layers is equivalent

to a single mass of a cross anisotropic material, provided

the thickness of the layers is small compared to the other

dimensions of the problem. Varved clays are an example of

this type of medium. Thus the study of soil structure inter­

action effects considering soil anisotropy is of considerable

practical interest.

~-l



.tIL~2

There are numerous analytical techniques

available in the literature for obtaining the dynamic

response of structures including the effects of ground

interaction. Probably the most widely used in practice

today is the finite element method, (1), (6). A major

drawback to the finite element method is its inability

to model infinite regions. Unless a significant amount

of material damping is present, energy which should

radiate to infinity is reflected back into the soil

mass. This difficulty was partially overcome by the

development of the so-called transmitting boundary (7 ),

(8). This enabled the lateral boundaries of the finite

element grid to be placed almost at the edge of the founda­

tion. However, a rigid lower boundary is still required

at some finite depth, whether one actually exists or not.

The method has some obvious advantages for this problem.

It easily handles embedded foundations, layered media and

even anisotropic materials.

There are techniques which are not entirely numer­

ical, but utilize a continuum solution along with numerical

procedures (9), (10), (11). The foundation of these tech­

niques is usally the solution to some basic problem such

as a uniform stress, harmonic in time, distributed over a

rectangular region on the surface of an elastic half space.

A number of these rectangular regions are then assembled

to give the desired foundation configuration. The
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amplitude of the uniform stress over each subregion is

adjusted to yield the overall specified foundation

disPlacement(lO). Techniques such as this account

properly for the radiation of energy to infinity. The

main advantage is the ability to model foundations of

arbitrary shape. Solutions have also been presented

for foundations on layered media(9).

A third method is to solve the governing differ-

ential equations of motion, usually for a simple founda-

tion geometry (12),(13),(14),(15),(16),(17),(18).
The problem is difficult, however, because it involves

mixed boundary conditions. The standard procedure is

to reduce the equations of motion and boundary conditions

to one or two integral equations. The integral equation(s)

may then be solved numerically to any desired degree of

accuracy. The results, usually presented in dimensionless

form, include the total force under a rigid, massless

footing undergoing unit harmonic vibrations, i.e., the

dynamic stiffness or impedance. The equations of motion

for a given structure can be written to include the dy­

namic stiffness of the soil.

Analytical solutions offer distinct advantages

over other methods especially for half space problems.

Besides the

more accurate.

relatively low cost, they are inherently

The purpose of this study is too assess the

effect of soil anisotropy. This will obviously entail
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a large number of analyses and so an analytical solution

is economically attractive. Also, the effect of the anis­

otropy is most easily assessed if the least number of

parameters other than the soil anistropy are introduced.

A basic problem which is amendable to an anlytical solu­

tion and which fits this requirement is the circular

foundation supported on the surface of an eTastic half

space. This will be the problem studied herein.

1.2 Historical Review

The first attempt at the solution of the harmoni­

cally vibrating footing was made by Reissner in 1936 (19).

He solved the problem by integrating the solution to a

harmonically vibrating point load on an elastic half

space (previously determined by Lamb (20) ) over a circular

area. He thus approximated the rigid footing with a

uniform pressure distribution.

Several years later Sung (21) and Quinlan(22)

examined other assumed stress distributions and presented

results for low values of a dimensionless frequency

parameter (a o = wro/c s ) first introduced by Reissner. In

this expression w is the circular frequency, r o is the

radius of the disc and Cs is the shear wave velocity of

the soil. Bycroft (23) assumed the static stress distri­

bution existed under the footing and examined all modes

of vibration. He also attempted an approximate solution
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to the coupling motions between rocking and sliding.

Again solutions were presented only for low values of

the dimensionless frequency. The results of Bycroft were

used in the early soil-structure analyses (24).

It will be noted that in all the above solutions,

the actual mixed boundary value problem was converted

to a first boundary value problem by assuming a stress

distribution under the footing. Lysmer (25) attempted to

circumvent this by replacing the footing with a set of

concentric rings each with a uniform stress. By adjusting

the value of the stress on each ring he was able to get

a uniform displacement and thus approximate the behaviour

of a rigid footing. Lysmer noted, as did Reissn~r, that

the equation of motion of the ci rcular footing was

analogous to that of a single degree of freedom oscillator

with the impedance or dynamic stiffness of the soil acting

as a spring and a dashpot. Of course this II spr ing and

dashpot ll were frequency dependent. By adjusting the

equivalent spring and dashpot to values which were indepen­

dent of a o he arrived at an approximate equation of motion

for the mass which was truly analogous to a single degree

of freedom oscillator. This has been dubbed IILysmer's

analog ll (2S).

The first attack on the problem as a true mixed

boundary value problem was by Robertson(26). Since the

vertical oscillation problem is axially symmetric he was
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able to reduce the equations of motion and boundary

conditions to a pair of dual integral equations, via

Hankel transforms. The dual integral equations were of

the type possessing a Hankel kernel and an arbitrary

weight function and were reduced to a single Fredholm equa­

tion of the second kind by methods as described in

Sneddon (27). Robertson expanded the kernel of the in­

tegral equation in a power series allowing him to present

results valid only for low dimensionless frequencies.

Gladwell (28), beginning with the general solution

to the isotropic equations of motion expressed in circular

coordinates (due to Sezawa (29) ), was able to follow

a method similar to Robertson and give results for the

rocking and translational problem; again only valid for

low dimensionless frequencies.

Shah (30), by a different technique obtained the

same integral equation as Robertson which he solved numer­

ically yielding results over a wide range of frequencies.

At approximately this same time, Luco and Westmann(12)

using Gladwell's technique recapped the integral equations

for all modes of vibration and presented extensive results

including contact stresses 9nd far field surface displace­

ments.

In (14), (15), and (16) the solutions were ex­

tended to layered media, by methods similar to the half

space problem. Luco in (17) replaced the elastic constants
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with complex moduli and solved the viscoelastic

problem for the half space and for a single layer

overlying a half space.

1 .3 Scope of Study

There are three main areas to this study. The

first is the determination of the harmonic force­

displacement relationship of a massless, rigid, circular

disc supported on a transversely isotropic elastic

half space. This relationship will be ·determined at

discrete values of the dimensionless frequency parameter

and for a practical range of soil properties. The second

area ;s the approximate solution to the same problem for

a linear viscoelastic soil. This simulates the losses

due to hysteresis which occur 1'n a true soil. Finally, the

effect of foundation mass will be studied over a frequency

range determined to be of practical interest.



CHAPTER II

WAVE PROPAGATION IN A CONSTRAINED
TRANSVERSELY ISOTROPIC ELASTIC MATERIAL

2.1 General

In this chapter the phenomena of body and surface

wave propagation in transversely isotropic materials will

be discussed. The results presented should provide in­

sight into the nature of the problem to be addressed in

the next chapter.

Primarily for mathematical simplification a cer­

tain constraint equation is assumed to hold between some

of the elastic constants. The practical use of such a

IIconstrainedll material is discussed.

2.2 'Basic Equations

Primarily to define notation, the stress-strain

equations for a transversely isotropic linear elastic

material are given below:

0" 11 = C
ll

E: 11 + C12 E: 22 + C13 E: 33 (2.1a)

0"22 = C12 E: 11 + C11 E: 22 + C13 E: 33 (2.1b)

0"33 = C13 E:
ll

+ C13 E: 22 + C33 E: 33 (2.1c)

1
C12 )Y12 GHY120"12 = f( C11 = (2.1d)

0"13 = GY13 (2.1e)

0"23 = GY23 (2 . 1f )

.11I.- 8
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1he 113" axis is the axis of symmetry, and the equations

are valid in cartesian or circular cylindrical coordi-

nates replacing the subscripts (1, 2, 3) with (x,y,z

or (r,8,z ) respectively.

The strains can be expressed in terms of the

stresses by the following relations

0' 11 vH vVH
sll = -- r °22 - -E-0'33

EH H V

v 0'22 vVHH
s22 = -r 0' 11 + r;-- -E- 0'33

H V

v HV v HV +
0'33

s33 = -r-cr 11 --E- 0'22 EVH H

=
0'12

Y12 GH

Y13 =
0'13
-G-

=
0'23

Y23 -G-

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

From equations (2.1) and (2.2) the following

relationships can be determined between the elastic

parameters



ell

n
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2
EH(l-n vVH)

=
2(1+vH)(l-vH-2n vVH )

2
EH(vH+n vVH)

= 2(l+vH)(l-vH-2n vVH)

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

In equation (2.3) EH is the modulus of elasticity

in the horizontal direction, Ev is the modulus of

elasticity in the vertical direction, i s

Poisson's ratio measuring the effect of horizontal

strain on complimentary horizontal strain, vHv

is Poisson's ratio measuring the effect of horizon-

tal strain on vertical strain, vvH is Poisson's ratio
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measu~ing the effect of vertical strain on horizon-

tal strain and n is by definition the degree of

anisotropy"." This notation is similar to Gerrard,

reference (40).

Substituting equations (2.1) along with the strain

displacement relations into the equations of equilib-

rium yields the equations of motion in terms of the dis-

placement components. In cartesian coordinates they are

+ (C +G)xz
(2.4a)

..
+ (Cxz+G)UZ,yz = P uy

In equations (2.4) the displacements in the

(2.4b)

(2.4c)

x, y, z directions are ux ' uy ' Uz respectively. p is

the mass density, and the convention for differenti-
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ation is

=

For future reference the equations of motion in

circular cylindrical coordinates are

(2.5a)

+ G ue,zz + ~ (Crz+G)uz,ez = P ue

1
(Crz+G)[(r ur,z)'r + ue,ez ] +lG (ruz,r)'r-r r

+ _1 G uz,ee + Gzz uz,zz = p Uzr2

(2.Sb)

(2.Sc)

2.3 Body Wave Propagation

If it is assumed that a plane harmonic wave is

propagating in some direction given by direction cosines

1, m, n with respect to the x, y, z axes, the displace-

ment components may be expressed as
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Ux =A, exp [i ~n (tx+my+nz ~ et)] (2.6a)

uy =A2 exp [i ~~ (tx+my+nz ~ et)] (2.6b)

Uz =A3 exp [i 2t (tx+my+nz :!:. et)] (2.6e)

In equations (2.6) c is the wave speed, L is the

wavelength and the Ai are amplitudes. Substituting

equations (2.6) into (2.4) yields the following

homogeneous equations given in matrix form

(B2 - A) B4

B4 (B3 - A)

=

o.

o

o

(2.7)

where

Bl = Cxx t
2 + GHm2 + G n2

B = G ~2 + C m2 + G n2
2 H xx

B3 = Gi2 + G m2 + Czz n2

B4 = (Cxz + G)mn

BS = (Cxx - GH)tm
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86 = (C xx - GH) 1m

2A = pc

In order that there be motion, the determinant of

the coefficients in equations (2.7) must vanish. This

condition gives a cubic equation in A , the solution

of which yields three real wave speeds. In fact, this

is the case even for a completely general anisotropic

material-see ref. (31). For the simple case of an iso­

tropic material solution of the cubic yields wave speeds

independent of the direction of propagation. One root

corresponds to a dilatational wave and the two repeated

roots correspond to shear waves.

The determinant resulting from equation (2.7) does

not yield roots independent of the direction of propa­

gation and in fact they cannot be expressed in a simple

form. However, if the elastic constants are constrained

to satisfy the following relation

or

(2.8a)

(2.8b)

the roots of the determinantal equation become



(2.9a)

(2. 9b)

(2. 9c)

In essence this constraint defines a subset of all

transversely isotropic materials by making the shear

modulus, G a function of the other elastic parameters.

This type of material appears first to have been investi­

gated by Carrier (32). Particular applications have been

made in refs. (33), (34), and (35). Henceforth, use of the

phrase constrained transversely isotropic medium will

mean a transversely isotropic material whose elastic

constants satisfy equation (2.8).

The motivation for using this constrained trans­

versely isotropic material is not simply that the wave

speed appears in a convenient form, but that the equations

of motions can be uncoupled in terms of potential

functions as will be shown subsequently. Payton (34)

states, lithe value of such a constraint relation lies not

in its approximation to any particular material, but

rather in the mathematical simplification of the problem

while still preserving some of the qualitative features

of wave propagation in transversely isotropic media ll
•
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A set of eigenvectors corresponding to the eigen­

values, equation (2.9) is

All A12 A13
A2l A22 A23
A3l A32 A33

=

1 -m

m 1

nil: 0

-1

-m (2.10)

l:(12+m2)/n

of an isotropic material equations

(2.11)+ G

- G
l: = Cxz

~=--~Czz
For the limiting case

where

(2.9) become

Al = (A + 2~)

A = A = ~2 3

where A and ~ are Lame's constants and l: becomes

identically one. The wave associated with Al = A+2~

is of course the dilatational wave. This is easily

shown by taking the first eigenvector from (2.10)

(with l:=l ) substituting into (2.6) and utilizing the

strain displacement relations to show that the components

of the rotation vector are identically zero. For l:

not equal to one a similar result can be obtained by

defining an artificial z- axis as
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-Z = l:z

Equations (2.6) now become

ui = Ai exp{i ~rr (lx+my+~Z ~ ct)}

(2.12)

(2.13)

Again using the first eigenvector of (2.10) in (2.13)

along with the strain displacement relations it is easily

shown that the components of the rotation vector vanish.

Thus, referred to this distorted coordinate system, the

'wave speed (2.9a) corresponds to a dilatational wave.

Following this same procedure the wave speeds (2.9b) and

(2.9c) correspond to shear waves with respect to the

distorted coordinate system,i .e. the volumetric strain

is zero.

This property of equation (2.12) hints at a method

for uncoupling the equations of motion. With isotropic

materials a standard procedure is to define the displa-

cement vector in terms of two potential functions accord­

ing to Helmholtz's Theorem as

u ='V¢ + 'VxljJ

Substitution into the equations of motion yields a

scalar wave equation in <t> and a vector wave equation
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In the analysis of the transversely

isotropic material above, the ?istortion of the z­

axis was equivalent to replacing the operator a/az

wi t h (1/ E)( a/ az) • The ref0 r e , de fi net he f 0 1low-

ing modified operators(32)

*~ = (a/ax) a + (a/ay)a + (a/az)(l/E)az'" "'x ",y '"

a
"'x

and 1et

(2.14)

Substitution of (2.14) into the equations of motion

along with the additional restriction

= a (2.15)

yields the following uncoupled equations
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Cxx ~'xx + Cxx ~'yy + Czz ~'zz - p ~ = a (2. 16a)

..
G( ljJ l,xx + 1jJ 1 ,YY + lP 1 ) - p W1 = a (2.16b)

,zz

..
G(ljJ2,xx + ljJ2,yy +ljJ 2, zz ) - p ljJ2 = 0 (2. 16c)

GH (ljJ3,xx + ljJ3,yy) + G t)J3,zz - P tJJ'3 = 0 (2.16d)

Equations 2.16a, d could be transformed to a standard

Poisson form by again distorting the z- axis. Then

2.16a becomes

·i ~ 1
~ 0-=2 =

cl

where
a2 a2 a2

·i + +=
ax2 ay2 al

- z/A lz =
1 2

Al = (Cx/Czz )

-2
Cxx/pc, =



-Note in general that cl is not the wave speed of

(2.9a). The physical relationship between the two can

be inferred from Fig. 2.1 and equation 2.9a, (where for

convenience m is taken as zero).

Dividing (2.9a) on both sides by Cxx

2
n2pC

l = t
2 + p2C- ;: -

xx 1
2

or
pC l = 1
ZCP xx

Define where in general

-2Then c l = C Ip as gi ven above and thexx
direction of propagation is defined by the unit vector

a = (tIp) a + (m/p)a + (n/pAl)a
~ ~x ~y ~z

Similarly for equation (2.16d)

2 1 ..
0'I \j!3 =r\j!3 =

c 2

'1
2 3

2
+ 3

2
+ 3

2
=

ax2 ay2 az2
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- z/).,2z =

).,2 = GH/G2

-2
GH/pc

2 =

For use in the next chapter, the preceeding results

are required in c{rcular cylindrical coordinates

= ~ a + 1 ~ a + 1 ~ a'I"r'Vr r '1"6 'VS f 'I"z 'Vz

~* x ~ = (1 $ _ 1 ~ )a
'V 'V r 3,6 E z,z 'Vr

Eqn. (2.15) becomes

~ +1$ = 0l,r r 2,6

Eqn. (2.16) becomes

Crr ~ (rcjl'r)'r + Crr ~ cjl'S6 + Czz ¢'zz - p ¢ = 0
r



.m:: - 22

Notice that the Helmholtz theorem introduces

four functions, i.e. a scalar potential and the three

components of the vector potential, whereas, there are

only three independent components of the displacement

vector. The additional equation to make this relationship

unique is given in this case by

When attempting to fit boundary conditions in terms of

potential functions, it would seemmore convenient to

work with only three independent quantities. This can be

accomplished by replacing the curl of the vector

potential with two vectors fields, each derived from a

separate scalar, such that one vector is tangential to

the surface of the boundary and the other is normal to

the surface. lhis is detailed in Chapter 13 of Morse

and Feshbach (36). This technique was used by We; (14)

in analyzing the isotropic problem. When the boundary is

a plane perpendicular to the z- axis, the decomposition

becomes



u = v* ~ + M+ N'V 'V 'V 'V

M = (v* n) x a'V 'V 'Vz

N = (v* x v* x (x a )'V 'V 'Vz

or expanding

IlI" 23

(2.17)

2where S = wp/G has been introduced for convenience.

Substitution of (2.17) into (2.5) yields

Crr[~(r~'r)'r + ~ ~'ee ] + Czz ~'zz - p ~ = 0
r

1 + 1 ] + G n,zz 0GH [r (rn'r) 'r ""2 n'se - P n =
r

G [~ (rx'r)'r + ~ x'ee + x'zz] - P x = 0
r

(2. l8a)

(2.l8b)

(2.18c)

Again, these equations can all be put in the standard

Poisson form by distorting the z- axis.
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Thus, it has been shown by a careful examination

of the wave propagation characteristics of a constrained

transversely isotropic material that the governing

equations of motion can be expressed in terms of three

independent pseudo wave equations.

2.4 Surface Wave Propagation

-The phenomena of surface waves in anisotropic media

has been addressed by numerous investigators, for instance,

see ref. (37), (38), (39). In (39), Stonely solves the

problem of surface waves in a transversely isotropic

medilm.

The difficulty in solving any elastodynamic problem

in an anisotropic medium arises in general because the

equations of motion do not uncouple in terms of potential

functions, which is the starting point for most isotropic

problems. Since for the conStrained transversely isotropic

material considered herein the uncoupling may be performed,

the surface wave problem should be solved more directly

by using potential functions. The solution using

potentialsis presented below and the result compared to

Stonley (39).

Assume without loss of generality, a plane wave

propagating in the x- direction. The potential rep­

resentation (2.14) becomes
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The

4>,x + 1
1jJ,zUx = 1:

= 1
4>,z 1jJ,xUz -

1:

pseudo wave equations (2.16)
2

pw 4> = 0
Cxx

become

(2.19a)

(2.19b)

(2.20a)

w, +;JJ, +
xx zz

2
pw 1jJ = 0
G (2.20b)

The assumption of a plane wave propagating in the

x- direction leads to

4>(x,z) = F(z) exp [i ~TI (ct-x) ]

W(x,z) = H(z) exp [i ~TI (ct-x) ]

(2.21a)

(2.21b)

Substituting (2.21) into (2.20) and solving yields

4>(x,z) = A exp [i ~TI (ct - X + Al Rl z) ] (2.22a)

1P(x,z) = B exp [i ~TI )ct-x + R2z) ]

R2 = ( cj c1)2 - 1
1

R2 2= (c j c2) - 12

(2.22b)

(2.22c)

(2.22d)
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The stress boundary conditions to be satisfied for

a half space are

= a on z = a (2.23a)

on z = a (2.23b)

Substituting (2.22) into (2.23) yields the following

homogeneous equations

C A2 R2 Cxz R2[Cxz + zz ~ 1 ]A + [ r - ezz R2 ] B = 0

Setting the determinant of the coefficients to zero yields

the following characteristic equation for the surface

wave velocities

{¢ _ q)2 _ ¢2 2 I 1 0 (2.24)Al Il-y q - q =

where ~ = r + 1 =
Cxz + Czz
ezz - G

q = (c/c 2)2

2 - 2 G/Cxxy = (C2/cl ) =
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Rationalizing equation 2.24 gives the following quartic

This equation can be factored as follows

2
l-Al 3 2 2 2 2

(q - 22) (q (l-y Al ) - q (l-Al + 2f)
l-A1Y

+ qf(f+2) = f2) = a (2.25)
2

1 Cxz
where f = -(C --1­G xx Czz

2
l-Al

The root q= 2 leads to zero displacement and
l-ATr

thus the cubic remains for determining physical surface

wave speeds.

Stonely's result is
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(Note: there are sign errors in eqn. 13 of ref. (39)

Rationalizing this equation yields the cubic of eqn.

(2.25).

Therefore, the surface wave velocity for the

constrained transversely isotropic material considered

herein is identical to that of a general transversely

isotropic material.

2.5 Range of Dimensionless Elastic Constants

It can be seen from the preceeding two sections that

the phenomena of body and surface wave propagation in a

constrained transversely isotropic medium can be expressed

in terms of the dimensionless constants Al,A2'Y'~.

It will be shown that the constraint equation (2.8) places

certain restrictionson the values these parameters may

assume. Recall

2 Crr 2
Al = -C- , A2

ZZ

C
C +C (--!3..) + 1

<P = rz zz =
ezz

C -G (§. )zz 1 -
or C

Czz
(-G) + 1

<P =
Czz (2.26)2 21 -AI Y
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From (2.8)
c c - C2

G = rr zz rz
C +2C +Crr rz zz

or

(2.27)

(2.28)~ = 1 +

Solve equation (2.26) for (Crr/C zz and substitute

into (2.27) and solve for ~ yielding

A~(l_y2)

l_y2A~

For a given set of elastic constants, satisfying

equation (2.8), the value of ~ calculated from its

definition (2.26) will automatically satisfy (2.28).

However, if we wish to choose a range of values for the

dimensionless parameters such that the constraint

equation (2.8) is satisified, A1 , and Y may be chosen

arbitrarily while ~ must be calculated from (2.28). It

was not necessary to express ~ in terms of A1 ,and Y

A1 , or Y could have been expressed in terms of the

other two. However, because of the more physically meaning­

ful definitions of A1 , and Y it would seem desirable to
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vary these independently.

> 1
A~ +2(C IC )+1rz zzor

2 2From (2.27) a bound on AiY can also be obtained.

Assume A~y2> 1 . From (2.27)
2 2

Ai - (Crz/C zz )

C
2(~) + 1 < aCzz

by contradiction.

C
(.-rr)2 +
Czz

C
((C rz ) + 1)2 < a

zz
square of a number must be positive or zero,Since the

A7y 2< 1

The elastic constant GH does not appear in the

constraint equation and so the value of A2 may be varied

independently.

To properly assess the effect of soil anisotropy

on the response of a structure, a suitable range of the

elastic parameters Ai ,A2 ,and y must be chosen.

Chapter eight of reference (40) presents static solutions

for various distributions of stress or displacement over a

circular area on a transversely isotropic elastic half

space. The different sets of elastic constants used in

their investigation along with the resulting dimensionless

constants are presented in Table 2.1 as cases one through

eight.

Saada, et al. in reference (2) have determined from

dynamic tests the values of the elastic constants for
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incompressible transversely isotropic clays. For an

incompressible material the constraint equation (2.8)

becomes
EH

G = n(4-n)

and the dimensionless constants are

(2.29a)

Results are reported in reference (2) for various

peak strain levels. Values of EH ' EV ' and G at

similar levels were used to obtain the properties shown

as cases nine and ten of Table 2.1.

The last column of Table 2.1 gives the value of G/E H

calculated from the constraint equation (2.8). It

can be seen that for most cases the comparison with the

actual value of G/EHis quite favorable, leading to the

conclusion that equation (2.8) is a reasonable

assumption for soils.

Based on Tabl e 2.1, a sui tabl e range for the

dimensionless constants was chosen for use in subsequent

parameter studies. The cases chosen are given in Table

2.2. The surface or Rayleigh wave velocity required later

is also given. This is determined by solving equation

(2.25).



CHAPTER III

SOLUTION OF THE HOMOGENEOUS ELASTIC
HALFSPACE PROBLEM

3.1 General

A key step in the ,dynamic analysis of a

structure-soil system is the determination of the

force-displacement relationship between the foundation

and the soil assuming the foundation to be massless.

Given this relationship, the equations of motion for the

structure can be written to include the stiffness of the

soil media. In the case of machine foundations, the

motion is usually harmonic. For seismic problems, the

analysis is often performed in the frequency domain (1).

Thus, the force displacement relationship of harmonically

vibrating foundations is of considerable importance.

In this chapter the harmonic force-displacement

relationship for a rigid circular disc supported on a

constrained transversely isotropic elastic halfspace will

be presented. The system considered is depicted in

Figure 3.1.

The so-called relaxed boundary conditions at the

disc-soil interface are assumed. This means that for

vertical and rotational oscillations, the shear stress

under the disc is zero, while for lateral motion the normal

stress under the disc is zero. This allows the rocking

and translational problems to be treated separately.
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Also, it has been noticed (12) (for the isotropic

problem) that the shear stress component perpendicular

to the direction of motion is very small compared to the

component parallel to the direction of motion for trans­

lational vibrations. In fact, for static loading it is

exactly zero. The assumption that this smaller component

is zero was made by Luco (16),{17) to greatly reduce the

computational effort. This further relaxation of the

boundary conditions is also made herein.

The mathematical procedure employed to find the

dynamic stiffness or impedance is similar to that

utilized by Gladwell (28). The starting point in Glad-

well's analysis was the general solution to the isotropic

equations of motion, first obtained by Sezawa (29). The

general solution for a constrained transversely isotropic

material is presented in the next section.

3.2 General Solution of the Equations of Motion

The governing equations of motion (2.5) were

uncoupled through the use of the modified Helmholtz

theorem (2.17). The result was the pseudo wave equations

(2.18), repeated here for convenience

(2.18a)

(2.18b)
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(2.18c)

If the motions are assumed to be harmonic, the solutions

of (2.18) satisfying the radiation condition at infinity

obtained via Hankel transforms are

4>(r,s,z,w)

00

00 J -A v Z
= L cos(ns) ~ An e 1 a J (~r)d~

n=O 0 c n

00
00 n -A lv Z

+ I sin(ns) rc; A e a In(~r)dc;
n=O s

0

00 Joo -A v8 Z
n(r,s,z,w) = I cos(ns) ~ 8~ e 2 H In(~r)dE

n=o 0

00 foo -A v8 Z
+ L sin(ns) o ~ 8~ e 2 H In(~r) dF;

n=O

8 (' -v zx(r,s,z,w) = I cos(ne) o ~ e~ e 8 In(~r)d~
n=O

00 f: ~
-v z

I sin(n) en e 8 In(~r)dc;
n=O s

where
2 ~2 2v = - a
a

2 2
a = pw /C rr

2 = ~2 8
2

\)8H - H

6
2 2= pw IG HH

2 = c;2 8
2

\)6 -
62 2= pw IG

(3.1a)

(3.1b)

(3. 2a)

(3.2b)

O.2c)

(3. 2d)

C3.2e)

(3.2f)
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are constants,

In(~r) is the Bessel function of the first kind of

order nand w is the frequency of vibration.

The modified Helmholtz theorem is given below

in expanded form.

~'r + 1 + 1 (3.3a)u = n'6 x'rzr r s~

1 + 1 (3.3b)Us = r 4>, 6 - n'r X'6Zrs~

1
4> , z + 1 + S (3.3c)Uz = x'zz x

~ S

Substitution of (3.2) into (3.3) yields the

general solution for the displacements. For the axially

symmetric vertical vibrations, the solution for n = 0

is required.

=

=

J
~o -A v ze;2 [A o e 1 a

C

(3.4b)

(3.4c)

Using the strain displacement relations and the stress

strain equations, the stress components of interest are

obtained
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-A1v Z
v e a

a

CO(~~2_e2L -v Z
c e e e ]Jl(~r)d~

(3.5a)

(3.5b)

2 -v Z
~ Va ~ e e OJ ( )_..:::~ C

c
J
o

~r de;
e

(3.Se)

For rocking and translational motions, the solutions

for n = 1 are required

~va I -v Z

- - Ce e aal:
d J (~r)

d~ J d~ cos(e) (3.6a)

~va I -v Z
+ Cs

e a Jl(~r)] d~ sin(e)raE

Uz = J: ~ Alva I -A v Z
[ - Ac

e 1 a Jl(;r)E

£ I -v Z
+ Cc e e Jl(~r)]de; cos (e)e

(3.6b)

(3.6c)
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The required stress components are

(3.7al

(.3.7b)Jl(~r}J d~ sinCe)

2
~ ~vs I -v Z

S . Cc e e JJll~r}d~ coste)

- J~ ~Alv~ ~ I B' e-A2vSHZ dJl(~rl
°ez - G [r E Ac Jl(~r) + ~ A2va s dr

o. H

~(~~2_e2)

(3.7c)

For vertical vibrations, equations (3.4) and (3.5)

along with the boundary conditions reduce the problem

to the solution of two dual integral equations which

may be further reduced to a single Fredholm integral

equa t ion 0 f the sec 0 nd kin d by the met hods de t ail edin

Sneddon, (27). Using equations (3.6) and (3.7) the

rocking and translational problems a~e handled similarly.

For each mode of vibration, integration of the unknown

in the Fredholm equation over the radius of the disc

yields a quantity proportional to the total force under

the disc undergoing unit harmonic displacement, i.e. the

dynamic stiffness or impedance.
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3.3 Stiffness and Flexibility Coefficients

3.3a Vertical Vibrations

Consider a transversely isotropic elastic half

space subject to the following boundary conditions

uz(r,e,O) = t1 r~r 0v

arz(r, 0) = ° r>O

azz(r, 0) = 0 r>r
0

(3.8a)

(3.8b)

( 3 . 8c )

Since the motions are symmetric about the z -axis, the

solutions to the equations of motion given in equations

(3.4) and (3.5) are used. Substitute (3.4) and (3.5)

into (3.8) evaluating at z=O. Because of the axial

symmetry, take BO=O Equation (3.8b) is satisfiedc

identically by taking

Equations (3.8a) and (3.8c) can be simplified by

defining a new parameter
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wher e f (E,;) = ( ~E,;2 - 82) - ~2 ~2 A1 'Ja 'J8 (3.9)

(3.1 Oa)

Recall that f(~) is the equation for the surface wave

velocity as derived in Chapter 2. With these definitions

(3.8 a,c) become
2 2

J
co Al'Ja(~~ (~-2)+8 )
o [ f(t;l

r > r o (3.10b)

To simplify the computations later define

Al(~-2)

~v = - ~(l-Al)
(3.11)

and E,;Al'Ja[~E,;2(~-2)+82J
-- ~vf(E,;) -1 (3.12)
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Note that

and that Hl(C;) +0 as C;+a>

Equations (3.1 0 a,b) may now be rewritten

r < r- a (3.13a)

fa> B(C;) J (c;r)dC; = 0 , r > r
a a a

(3.13b)

Equations (3.13) are a pair of dual integral equations

with Hankel weighting function as considered by Sneddon,

ref. (27). They are identical in form to the isotropic

problem.

Let

B(C;) =
ro

fa hl(x) cos(c;x)dx (3.14)

Equation (3.13b) is then automatically satisfied and

(3.13a) is equivalent to the following Fredholm integral

equation of the second kind

(3.15)

where

(3.16)
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The dynamic stiffness or impedance can now be

expressed in terms of the unknown in the Fredholm

integral equation, h1(x). The total force under the

dis cis 21T r0

p = I I azz rdrde
y 0 0

For r < ro

Using this expression and equation (3.~4) yields

= 2G~y I21TJroI~ Jro
Py ~hl(x)cos(~x)Jo(~r)dxd~rdrd8

1T ~y 0 0 0 0

Making use of a Weber-Schafheitlin type integral

(see Appendix A) reduces this to

(3.17)

The dynamic stiffness or impedance is defined as

- Py 4G
K = =

y ~y ~v

at w=0,L 1(x,u)=O
Jo
ro

hl(x)dx

and therefore h1(x)=1.

(3.18)

Thus for the static case

= 4G Iro
dx = 4Gro

Ky ~y 0 ~y

3.3.a.1 Verification of Static Solution

(3.19)

The static problem has been considered previously

by Gerrard (40) who obtained for the stiffness
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where

and

[c C - C2 +2C G + 2G(C C )1/2]rr zz rz rz rr zz

(3.2la)

(3.2lb)

Recall the constraint eqn. (2.8a) in expanded form
2CrrCzz - Crz - 2CrzG - G(Crr+Czz ) = 0

Using this expression in (3.21) leaves

Al-l 2
-4- ) (3.22)

Gerrard presents solutions for three conditions

(A. ) 2 2al > 0 , e 1 > 0

(8. ) 2 2al > 0 , e 1 < 0

(C. ) 2 a 2 = 0al > 0 ,
1
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2
The quantity ~l must be greater than zero for

positive strain energy. It can be seen from (3.22) that

the constraint used herein forces 81 to also be greater

than or equal to zero, thus eliminating case B.

Using (3.22) in (3.20) yields Gerrard's result

specialized for the constrained material
4Gro(Crz+Crr) (Crz+Czz )

Kv = (Crz+G)(1+A1)CzzA1
(3.23)

It will now be shown that (3.19) agrees with (3.23).

Substituting for '¥v from (3.11) into (3.19) yields after

some manipulation

Kv =- (C -C +2G)(C +C )
[ rz zz rz rr JC A (l+A )

(C -C ) zz 1 1zz rr

Using the constraint eqn. (2.8) the expression in the

bra c ke t sis eas i 1Y s how n tabe - (C +G)rz
yields equation (3.23).

3.3.b Rocking Vibrations

which then

Consider now the transversely isotropic elastic

ha1fspace subject to the following boundary conditions

uz(r,e,O)= 0 r cos(e) , r < r
- 0

, r > r
- 0

(3.24a)

(3.24b)
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0rz(r,e,O) =0ez(r,e,O) = 0 , r > 0 (3.24c)
I

(3.24c) may be satisfied by taking Bs =0 in eqns.

(3.6) and (3.7). Following a procedure identical to

the vertical problem 3.24 a,b become

r~o

T 'v
r < r

- 0
(3.25a)

r > r o (3.25b)

In this case let

= 40L~
1T '¥V

(3.26)

Equation (3.25b) is satisfied identically and (3.25a)

becomes
r

h2(x) + ~ I °L2(X,U)h2(U)dU = x
o

The total moment under the disc is
21T r

M = f f 0 r2 ° cos(e)drde
o 0 zz

(3.27)

(3.28)



.rrr- 45

but
<Xl

azz = ~ f
o

B(~) Jl(~r) d~ cos(e) , r < r
- 0

and B(~) is given by (3.26), thus

again using the Weber-Schafheitlin integral yields

The impedance is therefore

(3.29)

(3.30)

and thereforeIn the static case h2(x) = x

38GroKR =
3 '¥v

The factor '¥v is the same one whi ch appea rs in the

vertical solution. In Gerrard's static rocking solution

the factor multiplying 8Gr~/3 is the same factor that

mu1tip 1i ed 4Gr0 in his vertical solution, thus the

static solution is verified from Section 3.3.a.l.



.ttr- 46

3.3.c Horizontal Vibrations

Now consider a transversely isotropic elastic

halfspace subject to the following boundary conditions

ur(r,e,O) = ~H cos(e) , r < r (3.3la)
- 0

ue(r,e,O) = -~H sin(e) , r < r (3.3lb)
- 0

O're(r,e,O) = O'rz(r,e,O) = 0 r > r (3.3lc)
0

O'zz(r,e,O) = 0 , r > 0 (3.3ld)

From equations (3.7) we can make the following representa­

tion

(3.32a)

(3.32b)

r < r
- 0

Equation (3.31d) is satisified identically by taking

2
I ~~ Va I

A = ~ C
c (~~2_B2)a c

in equation (3.7c).

Equations 3.3la,b,c then become

_Ioo

~~2(~_2)+82 I d Jl(~r)
ur - ~[vB ( 2 2 ) Cc dr

o (~~ -8 )SE

I Jl(~r)
+ Bs r ] d~ = ~H '
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- t:.H , r < r
- 0

I

*
G I: ~

f(~) Cc dJ1U;r)
(Jrz = [ drBl:(~~2_B2)

I Jl(~r)
- 71. 2 vB B

S
] de; = 0 , r > r0

H r

r > r o

Using these Bessel function relationships

dJl(~r)

dr

dJ 1( ~ r ) Jl(~r)
e; J 2( r)=dr r

and defining

e;2 f (;) I

D(~) =
Bl:(~e;2-B2)

Cc

g(e;) = ~ e;2 (~-2) + 82

leads to the following
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ex>

-\)eg(~)
ur + ue = fa

[ D(~)J2(~r) + ~2B~J2(~r}Jd~ = 0f( ~}

(3.33a)
ex>

'Jeg(~)
u -u fo

[ D(~)Ja(~r) + ~2B~Ja(~r)Jd~ = 0r e f(d
(3.33b)

ex>

* *
fa

2 I

O"rz+O"ez = [-D(~)J2(E;r) - ~ A2'J e BsJ2(E;r)Jd~ = 0
H

(3.33c)

ex>

* *
fa

2 I

O'rz-O'ez = [D(E;)Ja(~r) - ~ A2'J e BsJa(~r)Jds = a (3.33d)
H

Defining

o

E( ~) = D(~)

=

(3.34a)

(3.34b)
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* * f:crrz+cr ez = F(F;) J 2(F;r)dF; = 0 (3.34c)

* * f: E(F;)cr -cr = Jo(F;r)dF; = 0 (3.34d)rz ez

Note that

2
13 9 (t;) 1 1 ~-2

1
= 1. 1f(t;) A2'J 13

t; ~(1-"1)
H w=O

Define

'l'H
1>-2 (3.35)

and

1 + H3 (t;) L [
'J s9(F;)

+ 1 ]= - f(t;}'l'H A2'J 8
H

1 + H4 (F;) =_L [
'J s9(F;) 1 ]

'l'H
-fTff + "2'J SH

thenequations (3.34) become



nr-50

J: 1
(1+H3(~))E(~)JO(~r)d~ =

4~H

~ ~H

=
+ J

o

1
(1+H4(~))F(~)Jo(~r)d~ , r < r o~

J: t (1+H3(~))F(~)J2(~r)d~ =

J: t (1+H4(~))E(~)J2(~r)d~ , r < r o

(3.36a)

(3.36b)

J= F(~)J2(~r)d~ = 0
o

(3.36c)

= o (3.36d)

Equations (3.36) constitute two coupled sets of

dual integral equations. They are identical in form to

the isotropic results. These equations can be reduced to

two coupled Fredholm integral equations following

Gladwell (28). The coupled Fredholm equations were solved

numerically by Wei (14) and by Luco and Westmann (12)

for the isotropic problem. Alternatively, the shear

stress component cr yz may be assumed zero since it has been

found to have a small effect (14), (16), (17). This is
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* *accomplished by taking crrz+cr az equal to zero, since

this quantity is proportional to cryz . From (3.34c)

then, F(~) = 0 . Thus,(3.36) reduce to

= 46H (3.37a)

I: E(~)Jo(~r)d~ = 0 r > r o (3.37b)

Equations (3.37) are similar to the vertical problem

E(~)

Equation automatically satisfied and (3.37a)

eqns.(3.13). Let

8~Lt:.H
=

1T '¥ H

(3.37b) is

becomes

I
r

o

o
h3(x)cos(~x)dx

= 1

(3.38)

(3.39 )

where

L3(x,u) = 2 I: H3(~)cos(~x)cos(~u)d~ (3.40)

The total force under the disc is

P = C(" cr xz rdrdaH

PH J:" f: O [ cos(2a) * 1 * '* 1= (crrz+cr az )+ 2(cr rz -cr ez ,rdrda2

(0 . *PH = 1T o (cr rz crez)rdr
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and E(t,;) is given in (3.38), therefore
r r

P = 8G~H I of"" I 0H ~H 0 a 0 rt,; cos(t,;x)h3(x)Jo(xr)dxdt,;dr

which leads to
8G~H

P =--
H ~H

The impedance

- PH
K =
H ~H

is therefore

8G fro= -- h (x)dx
~H 0 3

(3.41)

In the static case H3(t,;)=0, and therefore h3(x) = and so

r 8GroKH = 8G f a dx = (3.42)
~H ~H0

3.3.c.l Verification of Static Stiffness

Using equation (3.22) Gerrard1s static horizontal

solution, ref. (40), is easily shown to be

K =H
(3.43)
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By comparing the first term in the denominator with

(3.23), equation (3.43) can be rewritten

KH 8Gro
1 ]=

[ ~v 1- +. A1 A2

Thus the static solution obtained here agrees with

Gerrard's if
'¥V 1

'¥H = I1 + A2

Equation (3.44) is verified by comparing (3.35) with

(3.11).

3.4 Reduction to dimensionless form

All the equations in the previous section

can be reduced to dimensionless form by defining

the following parameters

k = f,1 a

Y2 = N
2JQ 2 = GIG

'"" j.> rr

ao = wric2 = aro

v2 k2 2= - y
a
2

k2Vs = 1

V2
= k2 - lJA~SH

F(k) 2 2 k2~2A V V= (~k -1) - 1 a a

X = r/ro
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The pertinent results can be recapped as follows:

3.4.1 Vertical Vibrations

The Fredholm equation becomes
1

hl(K) + ~ f
o

Ll(!,U)hl(U)dU = 1 ,0 < X <

where

Ll(!,u) = 2 J: ao Hl(k)cos(aok!)cos(aoku)dk

(3.45)

(3.46)

and the impedance becomes

- JlKv = K hl (!)d!
v 0

- 1 (3.47)

(3.48)

where
4GroKv =

'¥v

For a given specified harmonic vertical displacement,

the total force under the disc would be out of phase with

the displacement because of the radiation of energy to

infinity. The impedance would therefore be a complex

quantity. For later use define
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Re «( h,(X)d.[l = kv

1
1m (fo hl(~dX) = ao

c
v

(3.48) becomes

K = K (k +ia c )v v v 0 v (3.49)

Again, for later use define the flexibility or compliance

as (3.50)

where kv (3.51)f =
k 2+(a c )2v
v 0 v

-a c
= o v (3.52)gv

k2 + (a c )2v 0 v

3.4.2 Rocking Vibrations

The Fredholm integral equation becomes

+1
1

h2(K) fa L2(!,U)h2(U)dU = X C3.53}
7T

where
00

L2(!, ) = 2 f aoHl(k)sin(aok!)sin(aokU)dk
a

(3.54)

and Hl (k) is given in (3.47)

(3.55 )



where
8Gr3

K
R

= 0
3 '¥v
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Write the flexibility or compliance as

(3.56)

(3.57)

-aoCR
gR = 2 2

kR + (aoCR)

3.4.3 Horizontal Vibrations

The Fredholm integral equation becomes
1

h3(X) + ~ J0 L3("K,U)h3(U)dU = 1

where

L3(K,U) = 2 J: aoH3(k)cos(aokX)cos(aokU)dk

k Ve [~k2(~_2) + 1]
H3(k) = - '¥H F(k} + A

2
V: '¥H - 1

H

where

(3.58)

(3.59)

(3.60)

(3.61 )

(3.62)

8Gro
KH = ~

The flexibility or compliance is written again as
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FH = 1 1 = 1 (fH+i9 H) (3.63)KH kH+iaoc H KH

f H
kH (3.64)=

(k~+(aocH)2)

gH =
-aoc H (3.65)

(k~+(aocH)Z)

3.5 Numerical Solution

Any numerical scheme used to solve the Fredholm

integral equations previously derived will involve

evaluation of the kernel functions a number of times. To

reduce the computation time, the kernel functions defined

by equation 3.46, 3.54, 3.60 may be reduced to finite

integrals by contour integration. A discussion of this

integration and the resulting finite integrals is given

in the Appendix A.

The numerical procedure used to solve the integral

equations is similar to the method used by Kashio in ref.

(15) and Wei in ref. (l~). A summary of the procedure

follows.

Assume the interval [0, 1] is divided by

N + 1 equally spaced points. Replace the integral in

the integral equations with a summation yielding

where the

N+l
+ \ L(X,U.) h(U.) W. = lor X
j;l - J J J -

are weights (Simpson's Rule was used here).
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Now evaluate the equation at each X.
-1

, i. e .

N+l
h(X.) + L L(X. , U. )h(U . )W. = 1 or X. , i = 1,N+1

-1 . 1 -1 J J J -1
J=

Defining Yj = h(U.)W. this can be rewritten
J J

Y. N+l
1 + L L(X.,U.)Y. = or X.iT" -1 J J -1
1 j=l

or
N+l 8 ..

'i' (-.lJ.
W

1 + L (X.,U.))Y. =
L -1 J Jj=l i

or X.
-1

is the Kronecker delta.where 8 ..
lJ

In matrix form this is

[L] {V} = {l} or {K}

Realizing that the kernel function and the unknown are

complex, make the following definitions

{V} = {YR} + i {VI}

Equation (3.66) becomes

[LR]{YR} + i[LR]{Y r} + i [LI]{YR} - [LI]{Y I} = {l} or {X}

Equating real and imaginary parts leads to the following

2(N+1) equations
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or

{OJ

- {X}

(3.67)

thus

=

-1 -{l} or

{OJ

To compute the impedance, an integration of the function

h(Z:) must be performed.

Recall

K + i a c = J1v,H 0 v,H 0

Replacing these integrals with the same scheme as used

above yields
N+l N+l

k H + ia c H = I h1 3(!')W, = I (Y RJ· + i Y1J')v,H
v, 0 v, j=l ' J J j=l

N+l N+1
kR + ia CR = I x. h2(X.)W. = I !. (Y RJ· + i Y1J')R

o j =1 -J -J J j =1 ;)

or in matrix form

(3.68a)

(3.69a)

(3.69b)
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(3.68c)

(3.69b)

(3.69c)

It should be noted that the kernel functions

L(X.,U.) are actually only functions of Ix.-u.J
-1 J -1 J

and (X.+U.) which can be expressed as
-1 J

(X.+U.) = (i+j-2)/N
-1 J

As i and j range from one to N + 1 there are actually

only 2N + 1 different values of Ix.-U.I and (X.+U.)
-1 J -1 J

Therefore, with the proper bookkeeping the kernels only

need be evaluated (2N + 1) times instead of N(N + 1)/2

times. Since the kernel functions themselves involve

a numerical integration, this savings is considerable.

Examining the kernel functions as given in the

Appendix, it can be seen that they behave as l y 2_k 2

or II-P as k approaches y from below or one from

below. Thus there is a slope discontinuity at the end­

points of the integrals. The special Gauss quadratures

of ref. (42) were employed to evaluate them.

Also, the terms in the kernels involving
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Un+l 1
= I h(U)dU f

o
G(k)s;n(aokIU-~I)dk

Un=1
I

sin(a klx-ul) exhibit a slope discontinuity at X = Uo -
and a special integration scheme must be used to avoid

having to use a large N. The technique used is the same

as Kashio (15) and Wei (14).

Let

where G(k) represents the non-oscillatory part of any of

the kernels. Interchanging the order of integration.

1 Un
I = f G(k)dk { J h(U)sin(aok(~-U})dU

o U
n

_1

+ J
Un+1

h(U)sin(aok(U-~»dU}

Un

If a parabola is fit through the three points h(U n_1}t

h(U n) and h(U n+l ) and the integrations on U performed

the following expression results

(3.70)

Thus t certain terms in the L matrix of equation (3.66)

need to be modified according to (3.70).

In summary, replacing the integral in the Fredholm

equations by a numerical quadrature, leads to a set of

simultaneous algebraic equations of the form of equation

(3.67). Solution of (3.67) followed by the inner products

given in equations (3.68) and (3.69) yields the impedance
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coeffi ci ents.

3.6 Results

For each set of dimensionless constants in

Table 2.2 equations (3.67) were fomulated and solved for

the vertical, rocking and horizontal problems over a

wide range of the dimensionless frequency parameter, ao
It should be noted that the vertical and rocking problems

are independent of A2 Thus the vertical and rocking

results can be referred to simply as Case 1, 2, etc.

as shown in Table 2.2. However, the horizontal problem

is dependent on A2 and results must refer to Case la,

b or c to indicate whether A2= 0.5, 1.0 or 2.5.

The numerical results obtained are presented

in Appendix 8 as. Tables 3.1,3.2,3.3 for the vertical,

rocking' and horizontal problems respectively.

For comparison purposes, the results are also

presented in graphical form. Each curve is labeled

as follows. On the impedance plots, the curves are labeled

k, case no. or c, case no., the k or c indicating the real

or imaginary part of the impedance. (see eqn. 3.49 for

instance), and the case no. referring to the dimensionless

constants from Table 2.2. Note these curves are dimension­

less and must be multiplied by the static stiffness to

obtain the total impedance. On the compliance plots, the

real: part is labeled f, case no. and the imaginary part
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-g, case no. indicating that the negative of the imag­

inary part is plotted. Again, these are dimensionless

and must be multiplied by the static flexibility.

It should be noted from Table 2.2 that case no's.

one through four correspond to isotropic properties with

Poisson's ratios of 1/2, 1/3, 1/4, 0 respectively. The

effect of the anisotropy can be measured, for the vertical

and rocking problems, by holding y2 constant and vary-

ing Al The properties in Table 2.2 are thus broken

into four groups, i.e., y2=Ocases 1, 5, 9, 12, 14;

y2 = 1/4, cases 2, 6, 10, 13; y2 = 1/3, cases 3, 7,

11; y2= 1/2, cases 4, 8.

The vertical 'impedance curves are presented in

Figures 3.2, through 3.5. The compliances in Figures

3.6 and 3.9. In general, the real part of the impedance

tends to increase with increasing AI' while the imaginary

part shows much less variability. The compliance plots

are more uniform, the real and imaginary parts increasing

with increasing Al , the real part in the higher fre-

quencies and the imaginary part in the lower frequencies.

Similar sets of curves for the rocking impedances

and compliances are presented in Figures 3.10 through

3.17. As with the vertical, the group with y2=O has

the most variability.

As might be expected, the horizontal results show

little variation with Al it similar set of plots
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that were presented for the vertical and rocking

problem are shown in Figure 3.18 through 3.25 for

A2=2.5 The data for A2 = 0.5 and 1.0 are

similar. To indicate the variability with A2, cases

1, 2, 3, and 4 were each plotted for all three values

of A2 in Figures 3.26 through 3.33. Because of the re­

sults above, these curves can be taken as approximately

correct for all values of AI. For all values of y2 the

curves behave similarly. The real part of the impedance

increases with increasing frequency for A2 = 1/2, stays

fairly constant for A2 = 1.0 and decreased for A2=2.5

The imaginary part stays fairly constant, with the curves

for A2 = 1/2 and 2.5 being close together while for

A2 = 1.0 it is slightly greater. The real part of the

compliance decreases with increasing A2 as does the im­

aginary part.

It is sometimes helpful when viewing these complex

impedance plots to draw the analogy between the force­

displacement relationship of the massless disc-halfspace

system and the force-displacement relationship for a simple

Kelvin-Voigt model, that is a spring and dashpot in

parallel. The static stiffness times the real part of

the impedance is the equivalent spring and the static

stiffness times the imaginary part of the impedance is

the equivalent dashpot coefficient. However, for certain

cases, for instance, see Figure 3.2, the stiffness can
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become negative. There are ways to avoid this un­

appealing situation, however, they are introduced more

readily when considering massive footings and so will

be relegated to Chapter five.

To sumarize this chapter, the solutions have been

presented for the vertical, rocking and horizontal

impedance and compliance coefficients of a rigid, massless

disc vibrating harmonically on a transversely isotropic

elastic halfspace. For vertical and rocking vibrations,

the effect of the anisotropy can be measured by the mag­

nitude of the dimensionless parameter, Al • For horizontal

vibrations, the results are practically independent of

AI, the effect of the anisotropy being almost totally

measured by A2 •



CHAPTER IV

APPROXIMATE SOLUTION OF THE
VISCOELASTIC PROBLEM

4.1 General

In the solutions obtained to this point, the

material was assumed to be an elastic solid. It is well

known, however, that real soils exhibit an energy loss

under cyclic loading due to plastic deformation or

hysteresis. To avoid a difficult non-linear boundary

value problem, investigators have modeled this energy loss

by assuming the material to be linearly viscoelastic.

Solutions to the linear viscoelastic problem can be ob­

tained by application of the correspondence principle. (44)

In general, however, for problems of this type, the elastic

solution is not known in closed form. In ref. (17), Luco

obtained the viscoelastic solution to the isotropic

problem by replacing the elastic constants in the Fredholm

integral equations with complex moduli. The computational

effort was greatly increased because the kernel functions

can no longer be reduced to finite integrals via contour

integration. Wei (14) fit polynomials to the elastic

solutions obtained at discrete points. He then took the

polynomial to be the exact elastic solution and applied

the correspondence principle to obtain the viscoelastic

solution. This technique was simplified somewhat for

pr act i cal use by Vel e t sa sand Ve r bi c (45 ) . Luc0 (1 7)

compared his results obtained by the more theoretically
:err-66
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correct method with those of Veletsos and Verbic and

found good agreement. The simpler approach will be

adopted herein.

4.2 Viscoelastic Models

Biot (46) has shown that for a general anisotropic

viscoelastic medium, the stress strain relations may be

expressed
*er ij = Cijkl E: kl

*where Cijkl is a general operational tensor involving

material constants and time derivatives. Assuming a

Voigt type material, let

* ~
Cijkl = Cijkl + Cijkl dt

For a transversely isotropic material undergoing harmonic

motions, the stress strain relation becomes

* * *errr = Crr E: rr + Cre E: ee + Crz E: zz

* * *eree = C E: + Crr E: ee + Crz E: zzre rr

* * *er zz = Crz srr + Crz see + ezz E: zz

*er = GH Yrere

*er = G Yrzrz

*er ez = G Yez
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where ,
* , Crr

Crr = C + iwC rr = C (l+iw
Crr

)rr rr

* • C~e
C = Cre + iwC re = Cre (l+iwre Cre

* I C~z
Crz = Crz + iwC rz = Crz(l+iw Crz

* I C~z
Czz = Czz

+ iwC zz = Czz(l+iw Czz
* , G'

GH = GH + iwG H = GH (l+iw H

~
* G'G = G + iwG = G (l+iw -G-

The dimensionless constants appearing in the elastic

solution are now in general complex constants, i. e. ,
C'

* (l + iw rr)

0.7)2 =
crr

= A~ c;r
c* Czz ( 1 + iw -li)ezz

* ( 1 iw G'
G + G)

(y*)2 2=
C~r

= y
C'

( 1 + iw ~)
Crr

Gl

* ( 1 + iw _H_)

(;\,;)2
GH A~

GH= -G- =
( 1 + iw Gl

G

c' C'
Crz(l + . rz) + C ( 1 + . zz)lW-- lW--

* Crz zz Czz
<P = C

Czz (l + . zz) G(l + . G )lW-- - 1W'GCzz
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If we assume all the complex numbers in the above

expressions are equal we see that the complex dimen­

sionless constants become equal to the real dimension-

less constants from the elastic problem.

This means we assume each component of the strain

tensor lags the stress by the same amount. Further in­

sight into the meaning of this assumption can be ob­

tained by examining the stress strain relationships

in terms of the Poisson ratios and the moduli of elas-

ticity. From the relationships of Chapter 2 it is easily

shown that

2GH(CrrCzz + CreCzz - 2C 2 )

EH = rz

CrrCzz - C2
r'Z

2GH(CrrCzz + Cre Czz - 2C 2
)

EV = rz

(C :'r c2 )- r6

EH c2 - C~e 2G H(C + Cre ) 'J HVrr rrn = = = =EV CrrC zz - c2
CrrC zz - c2 'J VHrz rz

2G H Crz=
C C - c2

rr zz rz
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Substituting the complex constants yields

*
G1

EH(l . H)EH = + lW-

GH

*
GI

• H)EV = EV(l + lW-

GH
*n = n

Thus, the assumption stated above is equivalent to

assuming the Poisson ratios to be real numbers and the

moduli of elasticity to have the same phase lag, i.e.

EH/ EH = EV/ EV = GH/ GH
To show a disadvantage of this assumption, examine

a sinusoidally oscillating hydrostatic stress state,

i. e.

a xx
= ayy = a zz

= a e iwt

a xy = a = ayz = axz

The volumetric strain is then

2(1 - vH) - 4nv VH + n

EH(l + iw GH / GH)
(3a)

Thus, unless the material is incompressible there are

energy losses caused by hydrostatic stresses.

Since this assumption is required for the simplified

treatment to be employed and since we will be examining
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materials with small damping we will accept its

approximate nature.

A dimensionless measure of the energy loss is the

damping capacity defined as (47)

6W = energy lost per cycle
W max. strain energy

For shear deformations we get from 4.1e or f

6W
W

G1

= 2'ITW -

G

Thus for the Voigt type material assumed, the energy lost

is proportional to the exciting frequency. Actual tests

on soils indicate, however, that the energy loss is

independent of the frequency,(25, 27) and due primarily

to hysteresjj~~ This led to the development of the

hysteretic damping model, where Gl is taken inversely

proportional to frequency.

Define tancS wG I

= G

tancS is known as the loss coefficient. The complex

moduli now becomes, for ego

*G = G(l + i tano )

In the following sections, both types of models will be

investigated, that is, the frequency dependent Voigt model

and the frequency independent hysteretic model.
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4.3 Viscoelastic Impedance Functions

Recall the force-displacement relationship de­

rived in Chapter 3 for harmonic vertical vibrations

(4. 1 )

The equation has been written in this form to indicate

explicitly that kv and Cv are functions of the dimension­

less frequency parameter, a . Now following Wei (14)
o

use least squares curve fitting to obtain an approximate

continuous solution to the problem obtained previously

at discrete frequencies

Let

cv(a o ) =
The force displacement

only.

N

L: An anan=O

~ n
n=O Bn ao
relationship

(4.2a)

(4.2b)

for a viscoelastic

medium is, by the correspondence principal

* * * * * (4.3)Pv = KV (kV(a o ) + ia o cv(a o )) 8. V

where for the hysteretic model

*
*

4G r o 4GroKV = = ( 1 + i tano
'f V 'f V

and
* r olP

tanor 1/ 2ao = = ao ( 1 + i
IG*

* A (a )n Ana~ r n/ 2kV =L: = L: ( 1 + i tanon 0

* Bn(ao)n B an r n/ 2cv =L: = L: ( 1 + i tanon 0

After some algebraic manipulation (4.3) can be rewritten
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( 4 . 4 )

The superscript v referes to the viscoelastic case.

Similar expressions hold for the rocking and horizontal

problems. For a Voigt model replace tano in the above

wi th a I; , whereo

(4.5)I; = r o G

For values of ao close to zero k~ and c~

imately given by

are approx-

{
1 -

1 -

a~ ;Voigt (4.6a)

( t a:; <5 ) a0 ; hys t ere tic
(4.6b)

r
1

(4.6c)

;hysteretic
(4.6d)

Observe that the force displacement relationship, equation

vKV kV
dashpot.

( 4 . 4 ) , is analogous to a spring and dashpot in parallel

is the spring and KV c~ is the equivalent

We see from (4.66) that for a Voigt model,1;

adds to the equivalent dashpot coefficient, while for the

hysteretic model, the dashpot coefficient grows as

1 as a -+ aoao
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4.4 Results

The viscoelastic impedance functions, equations

(4.4), have been evaluated for the vertical, rocking and

horizontal problems. Only representative results will

be shown. The conclusions drawn also apply to the cases

not shown.

Figure 4.1 shows the vertical impedance for a

Voigt model with several values of s considered. The

elastic properties are case 2 of the Table 2.2 i.e.

isotropic with Poisson's ratio equal to 1/3 and A~=l,

y2=1/4. Figure 4.3 and 4.5 show the same plots for cases

10 and 13 that is y2=1/4 and At= 2 and 3 respectively.

The same three plots are repeated in Figures 4.2, 4.4 and

4.6 for a constant hysteretic material for several values

of tano

The predominant effects of the material damping

are a decrease in the spring stiffness, kv and and increase

in the damping coefficient, Cv . The lower frequency

approximations, equations (4.6) are seen to hold up to a

dimensionless frequency of about one.

The same six plots are pre~ented in Figures 4.7

through 4.12 for the rocking problem. The same trends are

seen to hold in general. However, the effect on the spring

stiffness is not as great in the lower frequencies. It

should be noted that the effect of the material damping on
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cR is more important because of the lower values of

the radiation damping.

Figure 4.13 shows the horizontal impedance plots

for a Voigt material, case 2b, that is A1=1,A~=1,y2=1/4

The same plots for case 2c, A1=1,A~=2.5,y2=1/4 are

shown in Figure 4.15. These two plots are repeated for

-a constant hysteretic material in Figures 4.14 and 4.16.

The effects of material damping are approximately the

same.

The fact that the effect of the material damping

is similar for varying degrees of anistropy is not sur­

prising. By virtue of the assumption made at the beginning

of this chapter, the damping enters the solution only

through the shear modulus, G just as it does in the

isotropic problem, thus we expect a similar effect.

In summary, by making the assumption that all

the complex moduli have the same loss coefficient, we

have been able to obtain approximate solutions to the

viscoelastic problem by application of the correspondence

principle.



CHAPTER 5

MASSIVE FOUNDATIONS

5.1 General

The previous two chapters considered the har­

monic force-displacement relationship of a rigid massless

disc vibrating on the surface of a transversely isotropic

elastic or viscoelastic half space. Given this relation­

ship, the equations of motion for any given structure or

machine, mounted on a circular foundation, can be written

to include the effect of the soil mass. This chapter

will study the response of a massive circular foundation

vibrating harmonically on the surface of a transversely

isotropic half space.

5.2 Equivalent Single Degree of Freedom Representation

As pointed out in Chapter 3, the harmonic force

displacement relationship for the massless disc on a half

space is analogous to the force displacement relationship

of a simple Kelvin-Voigt model. The analogy is not always

helpful because for certain values of the elastic constants

the real part of the impedance or the equivalent spring

stiffness can become negative. For use later in the

chapter, a somewhat more consistent approach due to Veletsos

and Verbic (45) will be presented below.

The force displacement relationship for a single

degree of freedom (SDOF) oscillator undergoing steady state

harmonic motion is (see figure below)

~- 76
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2
P = (K* - w M* + ; w c*) ~

(the factor e iwt is omitted)

(5. 1 )

P

Recall the force displacement relationship for the

massless disc-half space system (this expression is the

general form for vertical, rocking or horizontal vi-

bration)

P = K (k + i ao c) ~

From (5.1) and (5.2) we get

(5 . 2 )

2

K* - w M* + iwc* = Kk + i ao Kc

( 5 . 3 )

Equating imaginary terms yields

c* = c Kro

c2

Since ao = wr o/c 2 , where c2 is the shear wave velocity,

.;r;rp.

We are left with one equation to determine K*

and M*. To avoid the problem of the negative spring

stiffness define

K* = K (5 .4)

then the effective or virtual mass becomes
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(5.5)

Eliminate w2 from this equation by defining the dimension-

less virtual mass ratio

*
1 - k

B =
a 2

0

then

* B* [K:: ']M =

(5.6)

(5.7)

The effect of foundation mass can be accounted for by

simply adding the actual mass to the virtual mass (see

figure below)

M

p

It\.:J *K c

,

The "na tural frequency" of this equivalent SDOF is then

w -./ K
n - V(M+M*)

and the percentage of critical damping is

c*
8 =

2'; K (M+M*)

(5.8)

(5.9)

Equations (5.8) and (5.9) can be rewritten using the

dimensionless mass ratio,
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B = !!.sl. (5.10)
K r 2

a

then

B = c (5.11)
2~

and =.[J;' (w o )wn (5.12)

where

IIWo = ( 5 . 13)

The ratio of the amplitude of the dynamic dis­
placement to the static displacement, or the dynamic
magnification factor (DMF) is given by the familiar
formula

DMF =lp~KI =
1

In all the equations above, M and M* should
be replaced by I and I*, the mass moments of inertia
for the rocking problem.

Recalling the expressions for the static stif­
fnesses, the dimensionless mass ratio may be written
for each mode of vibration as

'¥ M
BV = ~ pr7 (vertical)

o

3'¥v I
BR = --8--~ (rocking)

o

(5.15a)

(5.15b)
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Il'H
B =H 8 ---:::-3 (hori zonta 1 )

pro
(5.15c)

Although the SDOF oscillator representation is

sometimes helpful, the DMF can certainly be expressed dir­

ectly in terms of the impedance functions as

DMF = 1 (5.16)

Both expressions will prove useful.

In what follows we wish to choose a foundation

with set dimensions and weight and compare the DMF for

soils possessing different degrees of anisotropy. In Chapters

3 and 4 we found it convenient to measure the effect of

the anisotropy by fixing yZ and varying Al or A~. It should

be pointed out that it was implicitly assumed that the

shear modulus,G, was also held constant as At (or A~) varied.

This was to make the dimensionless frequency,a o always have

the same meaning. For yZand G held constant, the static

stiffness will always be different for different At and/or

A~. Note also, from eqn.(5.15), that the dimensionless mass

ratios will also vary with A1 and/or A~.

5.3 RESULTS

Using equation (5.14) or (5.16) and the results

of Chapters 3 and 4, the DMF can be evaluated for varying

degrees of soil anisotropy and mass ratio. To provide a

baseline from which to measure, we first present results for

a massless footing, that is B=O. As expected, equation(5.16)
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yields the inverse of the amplitude of the impedance

function for the DMF.

Figure 5.1 shows DMF plots for vertical vibration

on an elastic soil for material cases 2, 6, 10, and 13,

• 2
1 • e. y = 1/4 and 11. 2 = 1, 1.5, 2.0 and 3.0.

1
Figure 5.2

repeats these plots for a constant hysteretic material

with tan 0 = 0.3, while Figure 5.3 is for a viscous

material with ~ = 0.3.

Note the small effect that the soil anistropy has,

especially when the soil is considered viscoelastic.

This can be explained by recalling the results of

Chapter 3. For vertical vibrations, the real part of

the impedance showed considerable variation with varying

degrees of anisotropy only for the higher frequencies,

while the imaginary part showed little variability and

was fairly constant over the frequency range investigated.

We see from equation (5.16) (for B = 0) that as ao in­

creases the term involving c predominates and thus the

variability of k is not so important. Recall from

Chapter 4 that as material damping is added, k decreases

and c increases and thus the soil anistropy has even less

effect.

Figures 5.4 through 5.6 show a similar set of

plots for the rocking problem, only for material cases

3,7,11, i.e. y2 = 1/3,11. 2 = 1.0, 1.5, 2.0.
1

These results are similar to the vertical and an

analogous explanation applies. The principal difference
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between the vertical and the rocking is a region of

amplification due to the small amount of radiation

damping for this mode of vibration.

Figures 5.7 through 5.9 show a similar set of

plots for the horizontal problem, material cases la,
• 2 _ 2·lb, lc, l.e. y - 0, A 0.5, 1.0,2.5. Here the aniso­

2

tropy has more of an effect; the effect again decreasing

with the addition of material damping. The reason the

anisotropy has more of an effect in this case is that

not only does the real part of the impedance vary for

different degrees of anisotropy but so does the imaginary

part.

The results presented above were typical for all

values of y2. The balance of the results will be presented

for y2 = 1/4 only.

We will now examine the vertical and rocking.modes

of vibration for material cases 2 and 13, i.e. y2 = 1/4,

A2 = 1.0 and 3.0. Let the mass ratio for material case
1

2 be 0.2, then due to the difference in the values of

~v the mass ratio for material case 13 is 0.355. This

corresponds to a foundation mass of 1.2 p r o
3 (see eqn.

(5.15a) ) for vertical vibrations and a mass moment of

inertia of 0.8 pros for rocking vibrations. Figure 5.la

is a plot of the OMF for the vertical mode for an elastic

material.

The anisotropy again has little effect and no
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amplification occurs. The effects of this foundation

mass on the results for the damped soil were similar.

Figure 5.11 shows the DMF plots for the same two

material cases for the rocking mode and an elastic soil.

Here the anistropic result is significantly different.

The result for a hysteretic material with tan 8 = .3 is

shown in Figure 5.12 and for a viscous material with

S = 0.3 is shown in Figure 5.13. From eqn. (5.16) we

see that this value of the foundation mass is large

enough to cause (k - a~ B) to be small over a frequency

range when aoc is also small, resulting in a fairly

large amplification. From the previous results for the

massless foundation, we infer that the difference between

the two curves is due principally to the difference in the

values of ~v rather than differences between the impedance

coefficients. To verify this, the DMF plots are repeated

for the same two material cases and with B = 0.355 for

both cases in Figure 5.14. Similar curves for damped soils

show even less difference.

The DMF plots for horizontal vibrations for

material cases 2B and 2C and elastic soil are shown in

Figure 5.15. For horizontal vibrations a mass ratio of

.2 for an isotropic material case 2B, means a foundation

mass of J.J5 pr 0
3 .For material case 2c a foun:ation

mass of 0.96pr~ is equivalent to a mass ratio of 1.56.

Similar to the vertical problem almost no amplification

occurs. With soil damping included the two
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curves are even closer together.

The DMF plots will now be examined for the same

material cases with a mass ratio of 2.0 for the isotropic

material,case 2. This implies a mass ratio of 3.55 for

the vertical and rocking problems,case 13, and a mass

ratio of 1.56 for the horizontal problem case 2c. The

vertical and rocking results are presented in figures

5.16 through 5.21 for elastic and viscoelastic soils.

Here the vertical problem shows a significant amount

of amplification. The important result is that with this

increased mass ratio, the difference between the isotropic

and anisotropic results is due even more to the different

values of If'v' than it ,was for the lower mass ratio.

This is exemplified by replotting Figure 5.16 using a mass

ratio of 3.55 for both material cases. This is shown in

Figure 5.22.

The DMF plots for the horizontal problem, mat­

erial cases 2b and 2c, elastic and viscoelastic,are

presented in Figures 5.23 through 5.25. Again the dif­

ference between the two curves is due almost entirely

to the difference in the values of If'H'

To recap the above results; we have shown that

the difference in the DMF between an isotropic material

and an anisotropic material, having the same y2 and

G, is due primarily to the different values of If'v(or If'H)

rather than to differences in the impedance coefficients.
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This might have been intuitively expected, but the re­

sults herein have served to quantify this. This result

is very useful particularly in the design of machine

foundations, where the forcing function is indeed harmonic.

Recall that we have only discussed the amplitude of the

response, not the phase angle. When the forcing function

is an arbitrary function of time, such as an earthquake,

the phase angles are also required for Fourier synthesis.

Since the ratio a clk does differ significantly from theo .
isotropic particularly for higher frequencies, the phasing

can be quite different.

It is standard to present the results from a study

such as this in nondimensional form. However, this some-

times makes certain things obscure. Therefore, several simple

examples are presented in Appendix C to better define some

of the quantities involved.



CHAPTER VI

SUMMARY & CONCLUSION

The response of a circular foundation resting

on a transversely isotropic half space was studied.The

results should be useful in the design of machine

foundations and in the design of structures to resist

dynamic loads. The basis df the study was the solution

of the problem of the rigid, massless, circular disc

vibrating harmonically on the surface of a transversely

isotropic elastic half space. The solution was obtained

by restricting the materials considered to those which

satisfy a certain constraint equation (see eqn. (2.8)).

The principal results from the solution were dimensionless

compliance and impedance coefficients, presented in

tabular and graphical form. It was found that the

vertical and rocking problems could be studied by

holding y2 constant and varying Ai, while the horizontal

problem could be studied by holding y2 constant and

varying A~. In general, the real part of the impedance

showed significant variation from the isotropic only

in the higher values of the dimensionless frequency.

The imaginary part of the impedance showed much less

variability throughout the frequency range investigated.

An approximate solution was also obtained for

the viscoelastic problem. Two principal assumptions

were involved in this solution. First, it was assumed

Dr-86



o1lr- 87

that each component of the strain tensor lags the

stress by the same amount. In other words the loss

coefficient or phase angle for all complex constants

was assumed equal. From the elastic solution, least

squares curve fitting was employed to obtain an approx­

imate analytical solution in polynomial form. This

approximate analytical solution was taken to be the

exact solution in order to use the viscoelastic cor­

respondence principle.Compliance and impedance plots

were presented for representative sets of material

constants. Principally because of the first assumption

above,the results of material damping were found to be

similar
o

to the isotropic problem.

The effect of foundation mass was studied

by plotting the ratio of the maximum dynamic displacement

to static displacement, for various values of a dimen­

sionless mass. It was found that the principal difference

between the response of a massive foundation resting

on an anisotropic soil and one resting on an isotropic

soil, with an equivalent "(2, was due to the difference

in the expressions for the static stiffnesses and

not due to the differences in the impedance coefficients.

This result is important for the design of machine

foundations, since it allows for an approximate analysis

by using the available isotropic impedance coefficients,

along with the proper anisotropic static stiffness ex­

pression. For very massive foundations this approximate
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technique yields very accurate results.

For transient analysis in the frequency domain

the phase angle also becomes important. Especially for

the higher values of the dimensionless frequency the

phase angle for an anisotropic soil may be significantly

different than the phase angle for an isotropic soil

with an equivalent y2. Using the results obtained

herein a future study might undertake to determine

the effect of soil anisotropy under transient loadings.

It should also be mentioned that for the special

material considered herein, most of the techniques

developed to analyze foundations on isotropic soils

could easily be extended to anisotropic soils.
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( a ) ( b )

DIRECTION OF PROPOGATION IN ORIGINAL (a)

AND DISTORTED (b) COORDINATE SYSTEMS

FIGURE 2.1
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CASE Ai y2
k,51 1.0 0.0

5 1.5 0.0

9 2.0 0.0

12 3.0 0.0
k,12

14 4.0 0.0 ,

c,5
c , 1

-:-u
~! I I I I I r I I
~.2~ 1.2~ 2.20 3.00 4.20 5.00 6.00 7.20 8.00

DIMENSIONLESS fREQUENC1,PO

FIGURE 3.2
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k,2i e,2

e,10 e,13 Je,6

CASE )d y2

2 1.0 1/4

6 1.5 1/4
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TABLE 2.1

E G 2 2 2 G
No. n=-'i vVH v H t H )\1 ),.;: y tr,( cal cEV H
1 2 .375 · 125 .223 1 .46 2.00 .109 .235

2 4 .188 .125 . 16 3.49 2.78 . 124 .164
3 4 .188 · 125 .04 3.49 11. 11 .031 . 164

4 0.5 . 167 .75 .60 1. 13 476 ?~h Q1Q

5 2 . 167 .333 .225 ? 1?'i 1 ";::'7 177 .273

6 4 .083 .333 .15 1. 094 2.5 .126 .50
7 1.5 .20 .25 .30 1.5 1. 33 .25 .323
8 3.0 0.3 · , 0 . 167 2.212 2.73 .09 . 193

9 1 .235 0.5 .383 .287 1 0 1 ?1" 0 .293

10 1. 33 0.5 .335 .272 1.0 1 11 0 .282
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TABLE 2.2

DIMENSIONLESS CONSTANTS

* 2 2 2Case No. **Al y <P A2 S

1 a,b,c 1.0 O. 2.0 0.5,?1~0 1.04678

2 a,b,c 1.0 0.25 2.0 1.07236

3 a.b C 1 0 n 11 2.0 1 OR767

4 a,b,c 1.0 0.50 2.0 1.14414

5 a,b,c 1.5 O. 2.22 1 04171

6 a.b C 1.5 0.25 ? 14 !1 n747(;

7 a.b,c 1.5 0.33 2.41 1.09855

8 a.b.c 1.5 0.50 2.73 1 .21480

9 a,b,c 2.0 O. 2.41 1.037Q4

10 a,b,c 2.0 0.25 2.73 1.07868

11 a,b,c 2.0 0.33 3.00 1 . 11535

12 a,b,c 3.0 O. 2.73 1.0325
....~

1 nQddl:;13 a,b,c 3.0 0.25 4.00

14 a,b,c 4.0 O. 3.00 0.5'2~50,1 .02872

2 2
* Case No.1 indicates 1'-1= 1., Y = 0., <P = 2, s = 1.04678,

3
the a,b, or C indic~ted whethgr A2= 0.5, 1.0 or'2.5 re-

spect;vely.

** s is the ratio of the surface wave velocity to the shear

wave velocity, IG/p
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A.l WEBER SCHAFHEITLIN TYPE INTEGRAL

From reference

W('\,u,\),a,b)

W(.\,u,\),a,b)

(43)

00

=f t.\J (at)J (bt) dt6 u \)

b\) a.\-l
= (i) (2) r ((u+\)-.\+I)/Z)

Zf(\)+I)r((u-\)+.\+l)/Z)
2Fl(c,d,e,f)

W(A,u,v,a,b) = {
o
b\)(a 2 -b 2 ) ..

Z.\aur(.\+l)

,O<a<b

,O<b<a

where r( ) is the gamma function and 2Fl is the hypergeometric

series and

c = uT\)-)..+1
Z

d = \)-11-.\+1
2

e = \)+1

f =(b/a)2
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A.2 CONTOUR INTEGRA+ION

The semi infinite integrals appearing in the kernels

of the integral equations of Chapter 3 can be reduced to

finite integrals by a contour integration around the

closed contour shown below.

iy

-s -1 -y y 1

~\

\
\
\

s x

Replace k in the semi infinite integrals with the complex

variable z=x+iy. According to the branch cuts indicated

i nte rp re tV, Van d VSH
Ct. 6

{
k:(Z2_ y 2)2 ,Z>Y

V = k:
Ct. _(z 2_Y 2) 2 ,z<-Y

{
1

(z2_1)'2 ,z>1
Vs =

-(z2-1)~ ,z<-l
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This interpretation is consistent with the radiation

condition at infinity. The kernel functions after con­

tour integration are

L CK,u) = [dx+U) + [d IK-u I)

where

}

( A• 1 )

where the residue term is

1:

R (s) = SA1(S2_y2) 2(¢s2(¢-2)+1) (A.2 )
v

dF(k) I
dk

k=s

F(k) = (¢k2-1)~+¢~k~AI(k2-y2)(1-k

and s is the real root of f(k)=O.
1 1

wh ere f( k) =: (¢ k 2 -1) 2 - ¢ 2 k 2 A1 ( 1-k 2 ) '2 ( Y2 _ k 2 ) '2

sur fa ce wa veequa t ion (seeChap t e r 2)
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[ (t)

k(1_k2)~(~k2(~_2)+1)e-iaoktdk
(~k2_1)2+~2k2Al(1_k2)~(y2_k2)~

k(~k2_1)2(1_k2)~(~k2(~_2)+1)e-iaokt dk

(~k2-1)~+~~k~At(k2-y2)(1-k2)

where

J-.:
= s(s2-1) 2(~s2(~-2)+1)

dF(k)
dk

k=s

(A.4)



APPENDIX B

TABLE 3-; 1
VERTICAL VIBRATION

COMPLIANCE & IMPEDANCE COEFFICIENTS

CASE 1
y2 =0.00

Ai =1.00
'i' =0.50y

to "'t.\lI.JI:.I'II.. f F G l( C

.:JU ."bu~-OO -.38~0-On ·q!'>Ob-On .b39!)-UO
.I..uu .:;'OOI+-UU -.b1b/-OO 'S07U-OU .1:l!Jl!J-vu
.I..:JU .~O::lU-UO -.01+0,,-00 '51'10.3-00 .8b90-00
~.UU .()~U-Ul -.51+9u-00 '2~dlJ-OO .bo7~-uO

c::.;)U -.11c::u-U1 -.I+'4IH-OO -'~b7c-Ol .9UOU-Uu
J.uu -.01U4-U1 - • .359u-OO -.I+t>04-UO .':I02~-uO

~.::IU -.0/.:li:?-01 -.29.31-00 -·9;'.3b-Uu .b<;Sl+-UU
.... uu -.llJ1';+OU -.21+0U-00 -'l!'lOu+01 .8b2b-\Ju
... ::IU -.llJOo+OU -.1'3~,+-OU -'217.)+01 .8bA'1-uU
:J.uu -.luo~+OO -.1:;'7'1-00 -'29~,,+01 .8:Jflb-uO
;).;)U - .. 1U'+b+OlJ -.1270-00 -·31144+01 .b~22-JO

o.uu -.';77~-O1 -.10.30+00 -.4600+01 .8~1l-UO

c.:JU -.'1u~u-01 -.8~47-01 -'~1:I41+01 .a~lb-OO

I. UU -.8G~0-01 -. 71l~-01 -'0940+01 .8~09-UU

1.o;,u -.7bc::7-U1 -.5"107-01 -'/:H.3it+01 .b484-U6
o.uu -.7uu~-01 -.:lll20-01 -.9421+01 .b45.3-ulJ

CASE 2
y2 =0.25

Ai =1. 00
'i'y =0.667

to kt.,."t:.:.\" T F G l( C

.::IU .!:l0'+1-UO -.301b-0" ·Qh8'1-Ofi .7930-0ul.uu .OU::IO-OO -.5b5J-OO '/:If\2!)-OU .8,,30-00.I..::>u .J~ ..H-OU -.57Uu-00 '7b4~-OO .1:l71b-UOc::.uU • .looh-UO -.41Ijlu-oO '0!:l4~-OU .92A5-UO.:.::>u .,; ...c::,:)-01 -03801-00 ·~e,10-0U .979U-UO
~.UU .:;''..I':J!:l-01 -.317b-00 ·!:l7.31~!Ju .lu1J..Ul,:).::IU .'+.)0';-01 -.27uo-00 '!)HO~-OU .1U2C,.. ul".uU ••i.).::7- 01 -.2.;)0.3-00 'oh4"-OO .1U;5,,+ul.... ::IU .~:>9.L-Ol -.20";0-00 ':;"'15-uO .1U45+01:l.uu .~u"'6-01 -.187!)-OO '~~8b-00 .1u54+01:>.;)U .17cb-U1 -.1091+-00 '016b-00 .1U61+U1o.uu .ltl"9-01 -.154C,-OO 'i:l79~-CJO .1LJ64+ulC.::>u .J.~:l7-01 -.11+.30-00 .747U-OU .1059+1.117.uu .11+46-01 -01.344-00 • 790l;-uO .1u5u+U17.::Iu .10i:91-Ul -o1,?ob-OO .7951-00 .lU41+u1o.UU .11u,+-01 -.l1<;b+OO .7b2~-OO .1U3!:l+u1
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._----------_. -------------'---------:---
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TABLE 3.1 CONJINUED

CASE 3
y2 =0.333

A~ =1. 00
Vf v =0.75

Fkl:.llIuc:.I~l.l jo G Ie. C

.:>U ./)b.Lu-OO -.~o4U-O(1 .9690-0" .~012-uO

1.uU .::1':;/),,-00 -.5b.H-OO ·i)t'lo,j-Ou .b~143-uU

l.::IU .3c:02-0U -.56f.io-OO ·777Y-OO .&/)5d-UO
,.UV .1'u4-0U -.14b7U-OO .0910-00 .~'+1+2-l)u

~.:>U .1u.Ll+OU -.370,,+-00 'bo~,+-(jO .9913-uO
.i.UU .7vl~-01 -.3.1.21-00 .0907-0U .lu1b+ul
.i.::lU .~o"u-01 -.20/),:;-ClO .7320-0U .10?U+U1
l+.uU .'+.. .1.7-01 -.2,jb1-(J0 .7:-'3~-OU .lu1~HUl

".::IU • .iOU9-01 -.2130-00 .71+73-00 .lU12+u1
::I.uU '''·'':*1-U1 - ol93j-OCJ .731b-00 .101,++u1
~.::lu .~"olo-Ol -.17~b-OO .722~-00 .101/)+u1
o.U\.I .1'1't:>-U1 -.1bub-OO .71+ U-li u .1021+01
b.::IO .17,,~-01 -.1407-00 .7b9~-00 .lU21+01
7.uu .l~~'-Ul -.138/)-00 .785"-00 .1017+01
7.::10 .1~~~-Ol -.13U,-00 ·7771-00 .1013+u1
d.UU .1l.;)::l-01 -.122~+OO .7~04-00 .1012+01

CASE 4
y2 =0.50
At =1.00
'l'y =1.00

FI'\t.IOuc:.N'-l F ~ K C

.:'U .00,,2-Uu -.389'-On .9h3~-On .flOQ8-uQ
l.uu .:''o/o-uO -.5770-00 ·064~-OO .9119-uO
1.:,u .4::7'+~-Ou -.543~-00 .739';-00 .9771-UU
2.ull • .£..;)::IO-OU -.4.330-00 ·b530-00 .lU51+u1
~.!JU • I:U::Io-O 1 -.342d-00 ·bfl71-00 .110,++01
3.Uu .buob-01 -.2830-00 .1210-00 .1124+U1
j.~u .,+'02-01 -.2457-00 -.7909-00 .1117+u1
'+.uv .'+U'+9-01 -.219j-OO ·8139-0U .1102+u1
,+.!Ju • .il73-01 -.19b,,::-00 .1/0\73-00 .1U93+u1
~.uu ,,,".;)1-U1 -.ll<j~-OO .7I+U7-00 .10Ql++01
~.:>(J .10C)~-Ol -.1027-0U ·703u-OU .1103+u1
b.UU .1~';1-01 -.1I+b3-00 ·7149-00 .1111+01
o.~U • 1.. "!:l-O 1 -.13b7-00 ·7~47-0U .111,++U1
l.uU .14::'1,+-01 -.127~-00 ·790b-00 .1111+u1
7.!Ju .11~~-Ol -.1l9.i+00 ·801b-00 .1107+01
d.lJU .1uu~-01 -.1l2~+OO • 790!;)-OO .1l0b+u1



tASE 5
y2 =0.00

;\1 =1.5

'¥v aO.54

IlI..- 172

TABLt 3.1 CONTINUED

.~U

1.uU
1.:lU
~.UU

~.tlU

3.uo
~.00

l+.UU
'+.tlu
~.uu

tl.~U

o.Uu
o.ou
I.uu
7.tlO
l).uU

F

.~~Ub-UO

.0C:...o-UO
,~"C)l.i-OU

.J,7u':f-Ou

.l:).)J.,4!-0 1

.I+... u2-U1
• .-.l otl-O 1
.CJ';J,7-U4!
.~0C)1-0'

.10~1o-0C:

.~"c:"-O'
• ':HJ'1l+-U2
.-L:lO:l-01
." ..7-01
""u:'-Ol
.~:I,o-Ol

G

-.3527-0r,
-.5blJo-OQ
-.~770-00

-.1+911-00
-.393U-OO
-.31tl,-00
-.2571-00
-.2117-00
-.17l+u-OO
-.11+10-00
-.1141+00
-. 9lC';~-01
-.73bo-01
-.599u-01
-.1+87b-01
-.397U-U1

K

'9700-00
·tl~71-00

• 765;)-OU
'0323-00
'5151-00
·l+lS!;)-OU
'3237-00
'2207-00
'118,+00
• 'HI+9-0 1
'301"-01,)
'1073+01
'2745+01
'~1+91+01

'901~+01

'1250+02

c

.7b89-00

.7<;Po7-0Q

.81+68-UO

.9U82-00

.9742-UO

.10:39+01

.1103+u1

.1l7!j+01

.1277+01

.11+12+u1

.1tl92+01

.1/:)01+u1

.1993+U1

.2091+01

.2018+01

.176U+01

CASE 6
y2 =0.25
At =1.5

'l'v =0.792 ...•••...~~........
,. K~l»ut::~~'- 1 ,.

~ I( C

.5U .dnC).. -UU -.31+3.3-01\ '9791+-0, .7~69-00
1.UU .o~'1-00 -.5.320-00 ·927j-OO .7942-UO
1.:10 • .Jo:l1-00 -.531b-OO '8771+-00 ./)521-1,)0
2.uv .d,+j-OO -.4419-00 'f:l1'8tl-OO .9162-00
'.:lU .J,looO-OO -.3535-00 ·1010+01 .9018-00
j.uU .-L~'u+OU -.2912-00 '122..+01 .973~-uO
j.OU .J.u';o+OO -.2505-00 '146b+01 .9570-00
l+.uO .1lJJ.'+Ou -.22~b-OO '1690+01 .9302-00
l+.oU .':I~j,+-Ol -.2U2u-00 ·1885+01 .9060-0U
:l.uu .C)bIJ7-01 -.1045-00 '2U70+01 .1)902-UO
tl.tlU .'';btl-U1 -.1689-00 '22813+01 .13797-00
b.UU .7~'1-U1 -.1551-UO '2541+01 .8077-00
b.oU • "'11-01 -.14.3~-00 '21:110+01 .8519-uO
1.UO .70~1O-01 -.133<;-00 '3090+01 .8331-00
7.::IU .0~u5-Ul -.12~9-00 ·3350+(11 .8143-00
tt.uU .b/U~-U1 -.118~+00 '3b03+01 .7977-00



CASE 7
y2 =0.333

At =1.5

'I'y =0.927

1IL- 173

TABLE 3.J CONTINUED

.•. ~......•..-_.~.....-........
,.. ~~ -,\.11:.,'01.. Y r- G I( C

.:;,U • d -, '10-0U -.3~~b-0,.. '97~e;,-0'l .7950-U()
1.uU .:;''107-00 -.5,+7::l-00 ·9099-00 .l:l34d-OO
~.::lU ."",+j-UU -.0,31+3-00 'l:l1410-00 .~967-0lJ

..:.I.iO .ld07-0U -.l+j7lJ-OO '(1320-00 .904,+-00

..:.ou .1c.QC\-()U -.34bc-00 ·9337-00 .1011+01
j.lIU .lU::lll+UU -.28tH-00 ·1117+01 .1021+01
3.ou .,:/,,::>';-01 -.21+0<;1,;-00 ·1.311++01 .1lJo.3+u1
".UU .81o'+0-u1 -.22'+i::-00 '11+71+01 .976'+-uU
.... :IU ./::>c.~-01 -.20'+0-00 '15~l++Ol .~560-0(j

:I.Uu .00,+7-U1 -.187'+-OU ·lhH1+01 .9479-uU
::l.::>u .::>':Iuu-U1 -.17U-00 ·1790+01 .~49U-uU

o.uu • :>,+~;;.-U1 -.1~60-0U 01';73+(11 .901U-0lJ
o.::>U .:>1':-'-U1 -.1,+3<;-uO ',19b+01 .9'+f\b-UU
7.uu .,+",..0-U1 -.133b-OlJ ·21<3b+u1 .9,+Ob-U(l
7.::>u ."buu-Ol -.1250-0U .2,.,71+01 .929!)-uO
(l.uu .,+o:>'O-U.I. - • .1177+00 ·2,;00+01 .9.18'+-00

CASE 8

y2 =0.50

A~ =1.5

'I'y 1.457

• ::>u
l.uu
~.:>v

C.uU
.::.:>u
j.uU
j.:lU
".uU
,+.:,u
::>.uu
o.ou
o.UU
b.:,O
"I.uu
7. :lv
(l.UU

.o""2-0U

.,+7j<:-Ou

.,::vuo-OO

.l:nod-01

.::>t1~b-U1

'''0'''1-U1
...o/u-Ul
''''''0-01
.jbu"-U.1
.3"S-Ul
••Ou1-01
• .::,+v-I-U1
"~o1-01

.i!~"4-01

.dl:i7-01

."::.I.'+U-O.1

-.I+c....-Or
-.:'910-00
-.:'.12u-OO
-.3d1o-0lt
-.2l:i9U-OQ
-.'31+,,-(jO
-.2u19-00
-.1dU9-0l.
-.100u-OU
- • .1::>1.i'1-00
-.1.nj-OO
-.12109+00
-.11 .. ,,+00
- • .100h+00
-.9090-01
-.9.321-01

K

'9'129-0>1
'b24,-UU
'ob3l+-0U
'!)71~-OU

'b'+80-00
'B!:lI+U-UO
·10~I:)+0.1

'.1250+01
'1;,)27+U1
.1.~5:'+(j1
'1.)79+('1
'1148<:1+0.1
'lh7,;+Ol
·1C:f1.1+01
'2131:)+01
'23~O+Ol

c

.q70<:l-U(1

.lu~1+u1

.1l29+u1

.124~+u1

.1.33'++01

.1.:363+01

.1.)ll.3+u.1

.1.307+U1

.1279+1.11
• 12f>l:)+u1
• .1~70+u1
.1287+\,).1
.129:,+u1
.1293+01
.1'::8'++u1
.1'7,++U1
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TABLE 3~1 CONTINUED

CASE 9
y2 aO.OO
q =2.0

'tv =0.581

to KE.\>IlJl;.I'I~' ~ (, I( c:

.:>u .b'1~~-OU -.3231-0, • 'i",'4Cl-O .7lJ77-(1)
1.UU .o:>c::«;-Ou -.~12b-00 '9'17~-t-U .71+40-UO
1.::IU .'4uu1-00 -.5200-00 • 'i 1I+h-(, 0 .oU2b-uU
<::.UU ."~oU-Oll -.,+,+4u-00 '937Cl-OU .0747-uO
~.::IU • .l.OIJU-UU -.3~1<::-OO '107'++01 .91+3~-ULJ

.3.UU .1<:ou-OU -.27b7-00 '13,+7+01 .~931-00

~.tlU • .l.1IJb+Ou -.220<::-OU '17,+0+u1 .1\)1~+u1

,+.UU .1uc::n+Uu -.1bb7-00 '2<::6u+01 .1\)29+u1
,+.::IU .~7011-U1 -el~'+7-00 'o:~17+01 .1u27+U1
~.UU .':I::>o::l-U1 -01271-00 ·.HHu+O 1 .1uO~+U1

tl.::>U .':10,+7-01 -.1U.3\)+00 'l+,,4h+01 .'i'+O.3-UIJ
o.UU .1uu:,+OLJ -.b2l+~-U1 ':'9~u+(l1 .b1~'+-OU

O.:::lU • .1.1.1::19+00 -.b57.3-01 'oM17+L,1 .b!;)(l'1-u(J
'(. uU .11<:~+UU -. !;)<:'4:>-0 1 ·7:Uu+01 .,+Cl7b-UI.
7.:::lU .11oe+Uu -.'+1Y,)-U1 ·7,+6::>+01 .3~21-u(J

Cl.UU .1":l1-OU -.j3!;)u-0l .7,+Sb+u1 .2l+C,o-Uli

CASE 10
y2 =0.25
Ai =2.0
'tv =0.913

.::>u
l.vu
1.::IU
<::.uu
<::.tlU
.3.uu
~.~u

... U\)

'+.:::lu
::>.uu
~.:lU

o.uu
o.:,u
7.uu
i'.::IU
Cl.UU

.do':l.~-UU

.0c:.\,)7-UU

.,)7u7-0u

.c:..>,)':I-UU
• .I.7 ... 7-0u
.1:..:",-uu
• .I. .... u-Uu
• .l.~(.:l-UO

.J.,,';7-UU

.lc:..I..3+0Q

.11ju+OO

.1uoo+00
• .l.lJC::,++OO
.~~ld-01

• ~'/':I7-01
.':Io'+1-Ul

G

-.3,)~7-U(

-.517!;)-Q{/
-.~11u-OO

-.'+1':17-00
-.3.32':t-00
-.'7j!;)-OQ
-.2jol+-UO
-.2120-00
-.19~b-00

-.1d17-0U
-.1081-00
-.1~4';-QO

-.1'+27-00
-.13"~-OO

-.1230+uo
-.l1b3+00

·'11-',+,,-0 ,
·Y'+I'I(;-\.oO
'9,3l+7-UO
'1U1~+G1

·1;,>.3b+01
·1:,!;)7-+01
·1,.8u+(;1
'21'+~"'(;1

·~.3~<:+C.1

'2~4c:-+u1

·2751++U1
'3u10+li1
';)3111+01
·,3f.3'++lJ1
'.39.37+01
''+22'++ul

c

.7't3ll-UO

.7l:l3'+-UU

.b..~2-uO

.':Iu9u-uO

.':i't21-u(J

.':t<::P,+-\JU

.bd17-uu

.l:lC:9"-UO

.7l:lP.l-UlJ
• 701.~-uO
.744~-UO

.730U-uO

.711b-UU

.0bP.~-uu

.b02~-1J0

.037U-UO
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TABLE 3.1 CONTINUED

CASE 11
y2 =0.333

A~ =2.0
'JI y =1.138

I'" "c.",ut:.I ... 1 F G K C

.:>u .d/.)!:l-OO -.~oj!:l-O;· '97~b-On .A123-Ul'
1.uU .::>ou~-OU -.5<+::»1-00 '~l:t<+-GU .l:loR'1-JlJ

1.~u .3.1.'10-0u -.!:l17~-00 'Oh:n-CO .':I322-uU
c::.uU .1b.J"'-UU -.IH20-UO 'o99/i-OO .1U1"+U1
'::'.:>11 .1.:>.::.6-UO - • .3~t.:4!-OO 'lu94!+Ol .1062+v1
j.uU • U:>7+0U -.2b30-00 '1390+01 .1060+1.11
j.:.IU .1LJ':l'lJ+OlJ -.2202-00 ·170!:l+fJ1 .lU2U+U1
ioteuU • .1.\I.J1+00 -.ci!O~b-OO ·195u+01 .9717-i,JO
'+e:.JU .':I~Q~-Ol -.lo':l~-OO ·213lJ+U1 .9~.. 7-uU
:>.u\) .07:>u-V1 -.17:>u-OU ·228~+Ol .914<!-UU
:.I.::;)U ./0,;"1-01 -.lb1u-OO .<::401++01 .9u83-Uu
0.1.11.1 .1,:>otl-V1 -.1472-00 ·2710+01 • <:IU53-UlJ
o.:J1J ./u.J<,o-U1 -.13"'7-00 ·3U"b+(11 .1;)97lJ-UU
1.I.JU .0001-01 -.12I+j+UU ·341\J+U1 .o7Qb-UU
I.:>u .0"j'1:>-U1 -.11:>~+00 •.Hn7+U 1 .o!:l63-uu
o.I.JU .oiJ.';-U1 -.lU9u+OO • ... 09':1+u1 .83U-uU

CASE 12
y2 =0.00

A~ =3.0

'l'y =0.633

~ f\t:..u\.Jt. ... "'" 1 .. G K C

.:JU .9U~b-UU -.2bo..-O( • SlQ9U-(l ,1 .,,33:>-U(;
1.uU .OOO.. -OU - ... ~OO';-OU ·lUOb+li1 .60'-'':>-UO
1.:>U ."OJ.~-OU - ....ob':l-OO ·1071+(: 1 .7227-1.10
<::.uu •.Hoo-UU -.38l)~-OU ·1251:;+01 .7733-UO
'=._:>tJ • <::::>U\)-OU - • .3Uld-DO ·lti27+Ul .7861-0U
~.uu • <::''''I-UU -.23!:l,,-00 ·212j+lJ1 .7"11-UO
':>.::lU • .::.lu.;-OU -o1d91-00 ·2621+01 .6:>l+o-UU
... uu • .::.1.)1-0U -.1~07-00 ·3(,"0+01 .0bOU-00
.... :Ju .<::1u'7-0u -.1321-UO ·340!:l+Ol .... 7.. u-UO
:;).uu .'::'IJ~~-iJU -.111:>+00 ·.)724!+L1 • .3967-uu
::I.:>U •.::.uo:>-uO -.920"/-01 ·~ull"+Ol • .32.. u-uu
o.uu .'::'J.UlJ-OU -.7~9~-O1 • ..?lU+01 .20.37-00
u. :h) .'::'1.)7-0u -.b12~-01 • ... 32 .. +01 01 ':10 tl-U 1I
l.vu ••::It)h-OU - .... 93u-01 ·~3';)u+01 .11+0U-UlJ
/ .::>u .2"'+0-UO -.399U-01 • ... 317+0.1. .lu2.3+U(j
o.UII • <::':>UIO-UU -.32b7-01 • ... 25!:)+u1 .7042-u1
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TABLE 3.1 CONTINUED

CASE 13
y2 =0.25

At =3.00
Vl y =1. 183

FKi:."U£r.I.Y l* G K C

.~u • iio~9-UlJ -.31+11+-0" .9~5~-0,• .7b19-UlJ
1.uu .0u':1~-UU -.~1bj-OO ·9~~~-OO .dlJ91-uO
.I..:,U • .,)~':1~-OU -.1+91+0-00 ·':1011-UO .btHO-UO
~.UU .Z,ol-Uu -.3939-00 .1090+01 .':1~4i:)-OlJ

~.~U .177U-Ou -.30,+7-00 ·142b+01 .903t!-OO
.,).uu .10")1-0U -.2'+b!:l-QO ·lbh7+01 .940b-00
.).ou .1:>'1':1-Uu -.2120-UO ·2267+01 .8081)-00
I+.UU .1::>7~-OU -.1919-00 ·t:..,5b+lJ1 • 77R'+-UO
I+.:>U .1:>,,7-Uu -.179t:-00 ·~7!:1~+lJl .718,+-00
!:I.uu .1'+0<::-OU -.lb'7!)-OO ·2<:11:>+U1 .0bOo-UO
:>.!:Iu .l~!)o-OO -.1090-00 ·3U9;)+U1 .bo09-UlJ
o.UU .1d <::-OU -.14i:)~-00 ·3j3~+U1 .0'+7'+-1.10
o.!)U .1'.I.1+UU -.1301-00 ·3h5u+01 .b.30o-0lJ
I. UU • .I..l.lb+UO -.124b+UO ·1+001+01 .605!:1-UO
7.:>u .1.1.o,)+lJU -.1103+00 ·1+330+01 .0733-UO
C;.uu .1.l.::I7+0u -.lU70+00 ·1+033+01 .5389-UO

CASE 14
y2 =0.00

At =4.00
Vl y =0.667

r Kt.",uC,I,1. Y I'" G K C

.:>U .':110u-OU -.2bbb-On .lnOo+01 .~tl59-UU

.I..uU .11U7-0U -.1+22U-00 ·104u+01 .b177-00

.I..:>u .'+'1'1:>-OU -.1+298-00 ·115U+01 .0599-UO

.:.UU • .3b:>b-Ou -.3547-00 0140'1+01 .b(j.3~-uO

2.:>u • .)Uou-uo -.271.3-00 ·1830+01 .b48ii-OO
.:l.uu ."ool-Uu -.208,-00 ·228!)+Ol .001+.3-\)0
.,).:>u •.:o.:-=-ou -.1657-00 ·ch.3!;)+01 .1+1+22-00
... uU .4'O,,:,-Ou -.1377-00 ·2Mb1+01 .3'+Ab-uO
... ~U ."b,o-UU -.11t;u+OO ·301j+lJ1 .2797-00
t).uu .lI!e,i.:l-OU -.102!:l+00 ·3137+01 .2281+-UO
:>.:>U .27':10-00 -.~01'+-01 ·3'52+01 .106.3-00
o.uu .-"':1~-OU -.7410-01 ·331+1++01 .1'+AU-00
o'::IU .'blu-Oll -.6117-01 ·3390+01 • 113t:1+UU
7.uu .-'0'+6-00 -.50U';-01 ·3~Ot:l+u1 .85bo-01
7.:>u • <::o'1,+-OlJ -.£H3t:1-01 ·3387+01 .b450-u1
i:).uU • ,':I4'+-OU -.31+90-01 ·.33!:10+01 .1+96,+-\)1
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TABLE 3.2
ROCKING VIBRATION

COMPLIANCE & IMPEDANCE COEFFICIENTS

CASE 1
y2 =0.00

Ai =1. 00
'¥y =0.50

G c
.:>u

.L.u,J
l.~u

.:::.uu
c:.~u

~.uu

~.::>u

'+.uu
".::>u
:>.uu
:>.::>u
o.uu
o.::>u
I. uu
7.:>u
o.uU

.luoe.U1

.ll':f...U1
• .l".I.:'+1.I1
.1u'tu+Ol
.I'+bb-OU
,"/~::>-OU

.~ou~-Ou

• .I.::>~l-OU

.o''=''-Ul
-.~'+1.:-U2

-.11u,+-Ol
- • .I.c::ur.•UU
- • .I.::>o.:>-OU
- • .1. I 7::>-UU
- • .I.01(>-Ou
- • .I.'11.=J-UO

-.2t;o~-01

-.193"-00
-.!)UUtl-OO
-.8007-00
-.'1b27-00
-.9b7b-00
-.9003-00
-.~'::U':I-OO

-.7~01-00

-.68b':/-00
-.b2~u-00

-.500':1-00
-.lj.':/~/)-OO

-.1+31+;;:-00
-.37':17-00
-.333u-00

·Cj359-0n
'IHflO-OO
.7031+-0U
'bOlu-oo
'!)03lJ-OO
• ...OtlU-OO
'.315.3-00
'219~-UO

·1111+00
-'1<;,9"'-U1
-'179~-00

-·.3h71-0U
-'5783-00
-'/)060-00
-·10I+b·U1
-·1297+01

.1+917-01

.1.32U-UO

.1933-uU

.2.32'1-UO

.2!)95-00

.2779-UO

.2d93-00

.294.3-UO

.2942-UO

.2911-UU

.2872-uO

.2~4U-OO

"b22-uO
• 2l:l19"vO
.2~2l-uO

.2b22-lJO

CASE 2
y2 =0.25
Ai =1.00
'¥ =0.667y

FRE(,jU~.r.CY f' G K C

.5U .1005+01 -.28l+7-01 .9381-00 .5014-01
1.0U .11bO+01 -.193l+-00 .8251-00 .1352-00
1.5u .1178+ 01 -.1+892-00 .7239-00 .2004-00
Z.Ou .9825-00 -.7585-00 .6377-00 .21+62-00
2.Su .693l+-0o -.865b-00 .5637-00 .2815-00
3.ov .l+l+l:\7-00 -.8285-00 .5055-00 .3111-00
3.!)u .291+8-00 -.7:356-00 .1+69l+-00 .33l+6-00
lI-.Uu .20b6-00 -.61+1+5-00 .1+51+5-00 .3511-00
lI-.5u • 15l:\3-00 -.5720-00 .1+1493-00 • .3e08-00
S.Ou .12.38·00 -.5162-00 .14393-00 .3c6l+-00
5.5u .9606-01 -.1+699-00 .1+176-00 .371l+-00
c.OU .73,:/7-01 -.l+281-00 .3920-00 .3781-00
6.5U .5853-01 -.3892-00 .3779-00 .3866-00
7.0U .5013-01 -.35140-00 .3910-00 .3950-00
7.Su .1+7u3-01 -.3261-00 .1+33.3-00 .1+005-00
8.0u .1+6Jg-Ol -.301+1-00 .1+901-00 .1+016-00



N- 178

TABLE 3.2 CONTINUED

CASE 3
y2 =0.333
,q =1.00

'I'v =0.75

~H~",..Jt.,.~, ~ G K C

.~u .11J07+01 -.298J-01 ·9366-00 .!)2:3Cl-U1
l.uu .J,lol+01 -.2013-00 ·8227-01) .1402-00
.l..:;u • .1.10'1+01 -.511~t)-OO .722U-OO .2069-UO
c:.uU .9~ob-1J0 -.704b-00 .637!)-00 .2542-00
c:.:JU .0007-0v -.8~'+j-00 '!)h7~-00 .291.3-0lJ
,).u0 ... ,':to-UU -.8U<:0-00 • 51111t-OO .3221)-00
,).oU .~boh-OU -.7u37-00 '41192-00 .347:;-00
'+.uu .Glltb-Uu -.613u-00 '~lJ91-00 .303.3-00
'+.:.lU • .1. -'ltG-Ou -.~4'+11-00 '~323-00 ••'37ou-UO
:J.UU .J,,+o:,-uu -.l+9~/-00 '~'+8-'-OU • .371U-00
o.:;u .1"0+OU -.,+07'+-OlJ '~46b-{)0 • .3709-00
o.uu .J,uj,<,:+OO -.42jo-00 ·5j,37-00 .,372<!-00
0.01.1 .d-,04-01 -.3910-00 ·5227-00 03756-00
-I. uU • 7J.o~-01 - • .3621-00 'S<!7U-OO .:379b-00
1.01.1 .b'+'+.3-01 - • .3JOb-OO .!)lt7c;-QO • .3819-00
o.uu .0'1.... -01 - •.31b~-00 .57.3,-00 .3815-00

CASE 4

y2 =0.50
At =1.00
'I' =1.00v

I'"H~"'U~I'" T ~ G K C

.~o .lu77+01 - • .37Ul-01 ·Q277-01) .6.378-01
1.uU .11':1'++01 -.21+3b-00 ·803C:t-OO .1040-00
1.;)u .11,+u+01 -.580b-OO '6964-0U .2.364-lJO
~.UU .bOn-oU -.8261-00 '004~-00 .2878-UO
~.oU .;)~.1.u-OU -.86U2-00 ·528U-00 .3297-00
,).uu • ..:lj,.. -Uo -.7b3b-00 .4790-00 • .3669-UO
-'.:>u .~~lu-OO -.b46.3-00 .lt737-00 • .3958-UO
... VU .171~-OO -.55.30-00 '510~-OO .1+121-00
,+.;)U • .1.'+ 17-00 -.1+90'1-00 '562U-00 .lt151-00
::l.uU .1-'U4-00 -.41+90-00 '5951-00 .lt103-00
~.:>u .1l1~+00 -.lt19f!-OO '591+1+-00 .4049-00
o.uu .'1~'l:l-01 -.392u-00 ·5089-00 .1+021:1-00
b.::lU .7'+ot'!-01 - • .301+5-00 '!)387-00 .4051-00
7.Uu .oJ,74-01 -.3.37J-OO '~251-00 .4091:1-00
I.::lu .~.:l'17-01 - • .3129-00 ·!)J52-00 .'+13~-UO
o.uu .'+~'~-Ol -.292~-00 '~!)81-00 .1+150-00
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TABLE 3.2 CONTINUED

a1.5
aO.54

po; G K C

.11.102+01 -.2:J~U-01 '91411-011 .457.3-U1

.l.i.I7+U1 -.177:>-OU ·lj:50Y-OU .125,j-UU

.1.1.'1.:\+01 -.~~9tl-OU • 729'::1-0U .167'+-1.10
• .l.v,'+01 -.7,j7j-OU 'b42'+-OO .230b-00
.7~')Ll-UO -.87!:l:J-OO '!lhl+O-OU .262o-UO
.'+~'1'1-0U -.8693-00 '14971-0U .28R2-uv
• .:i,o'+-UU -.7~tlc::-OO '14417-0U .3U7!:l-uO
.~.i.'14-0U -.7127-00 .j'114~-UU .32014-UO
• .I. ... '17-UU -.bl+3,+-OO ·j'+31-00 .327b-UO
,~0'+t3-U1 -,tlb7tl-OO '272~-OO .,331:J-uU
.... '10';-U1 -,~.371:l-liU '171u-Ou .3J52-.;u
.c:l'1vo-U<:: -.'+dbo-OO ·j72'::1-(,1 .3'+10-UU

-.''+u7-U1 -.1+,j70-00 -·12!:ll+-UU 03tlO~-uO

-,,+uoU-01 -,3dbtl-OO -·,3U81'l-OU .3043-uO
-,~"'(7-U.I. -.3,j07-00 -'!lO!:l1-0U • 3tH 7-uu
-.00Qv-01 -.290'+-00 -.71l7-0U .'+020-00

tASE 5
y2 =0.00
;q
VJ y

.~v

l.uu
1.:J0
~.uU

~.~u

;,).uu
';.:Ju
l+.uU
".:lV

:J.uu
:J.:JU
o • .;v
0.:>1.1
7.uu
7.:lu
d.VU

CASE 5
y2 =0.25

At =1.5
'I'y =0.792

K c
.~u

.I..vU
1.:lu
~.uu

~.ou

j.uu
j.:lU
'+oUU
,+.:JU
~.UU

::>.:Ju
o.uu
b.OU
7. UU
7.~u

!:i.uu

.1\.10;,)+01
o.I..i.l1 +0 1
.110~+Ol

.'::Ib:Jb-OO

.00'+1-0\.1

.'+~.:J7-00

.jl/u-UlJ
'.''+0"1-00
.~J.:J9-00

.1':109-0U

.101.17-00

.1b'+j-OU

.1'+c:l'4-00

.1,)0'4-00

.1<::0;')-UU

.1,uo+OU

-.27/H-0}
-.ldbC:-OO
-,l+72b-OO
-.724-~-OO

-,813tl-OO
-.7b27-00
-.002,,-00
-.!lobo-OO
-.'+'::I9j-OO
-.l+!:llJ-OO
-.417,3-00
-.3YU1-00
-.30'+0-00
- • .340":-00
- ••'3l74-00
-.2y7<;-00

'940,;-U'1
'8J23-UU
·7,38<::-00
'0627-00
'b05tl-OU
·tl76u-no
'~1181-00

'tl4~4-uO

• 729l:l-UU
• tH2U-OO
'~737-0u

'9171-uu
'9~nb-OO

'101U+01
'lU8j+Q1
'116b+01

.l+921-u1

.1338-UO

.2U01-UO

.2l+Bb-UO

.28RU-00
• .3228-UO
.3tllU-OU
• .3b90-IJO
• .3750-0U
• 372.3-uO
o.3b6~-UO

.3b2':i-UO
• .3011:i-UO
03b2~-UO

.3b2b-IJO

.3bO~-UO
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TABLE 3.2 CONTINUED

CASE 9
y 2 _ =0.00

:>..1 =2.0

'i'y =0.581

G c
.ou

1.uU
J..;,U

C::.uU
c::.:>U
..).uu
..).;,u

".uu
'+.::>U
::>.uu
::>.;,u
o.uu
c.::>u
7. uu
7.:>u
o.liU

.lu:>7+01

.1.102+01
• .Ll 70+0 1
.luo:.O+01
.701~-OlJ

.~0:."2-00

.30"':;-OU

.2/.::u-OO

.2H1-00

.110..-00

.1....o-0lJ

.11.::':1+00

.01+02-01

.bcoo-01

.,+':;u1-01

.'+'uj-01

-.238!:l-01
-.16'+0-00
-.'+21+..-00
-.680b-00
-.811b1-00
-.7920-00
-.7137-00
-.b287-00
-.b!:l~I+-OO

-.50btl-00
-.1+04!:l-OU
-.1+2~,+-00

- • .3d~~-OO
- • .31+3t>-00
-.302t>-00
-.2bl+':;-00

'945b-On
'81+30-00
.7~2'+-OO

'678b-00
'b201-011
'5A1G-00
'!:lbBo-OO
'579b-00
'b030-00
'017':;-00
'0111-00
'5827-00
·5.. l+u-OO
.5156-00
'!:l21b-00
'581+"-00

...267-u1

.1191+uO

.1!)11-uO

.226'+-00

.2622-00

.2927-00

.317'+-uO
• 331+9-UO
.31+53-00
03511-00
.3569-uO
.3660-UO
.3t110-00
.1402b-uO
.,+29t>-uO
.'+001+-00

CASE 10
y2 =0.25
A~ =2.0

'i'y =0.913

FREGUi;.i.CY F G K C

.50 .1062+01 -.279'+-01 .9'+08-00 .'+9'+9-01
1.0U .1108+01 -.1881+-00 .8346-00 .1347-00
1.511 .115~+01 -.1+701-00 .7435-00 .2020-00
2.0u .9511-00 -.7132-00 .6730-00 .2523-00
2.5u .0702-00 -.7898-00 .0246-00 .291+4-00
3.Uu .141+06-00 -.7283-00 .6119-00 .3326-00
3.5u .3198-00 -.6210-00 .0553-00 • .3636-00
I+.Ou .2023-00 -.52'+5-00 .7620-00 .3813-00
1+.5u .2402-00 -.4551-00 .9072-00 .3819-00
S.Ou .2313-00 -.4104-00 .1042+01 .3698-00
5.5u .2236-00 -.3827-00 .1138+01 .3542-00
b.OU .2126-00 -.361+3-00 .1195+01 .3413-00
6.Su .1979-00 -.,3486-00 .1232+01 .3337-00
7.0u .1821-00 -.:3320-00 .1270+01 .3308-00
7.50 .1602-00 - • .3138-00 .1327+01 .3301-00a.ou .1576-00 -.2950-00 .1,+04+01 .3292-00
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TABLE 3.2 CONTINUED

CASE 11
y2 =0.333

Ai =2.0

'v =1.138
~ . . . . .. .

FREQU~NCY F G K C

• 5U .1071+01 -.3338-01 .9:532-00 .5820-01 .
1.01.1 .110 3+ 0 1 -.2217-00 .8169-00 .1532-00
1.5U .111+2+01 -.5368-00 .7171-00 .22~7-00

2.0U .8928-00 -.7797-00 .6351+-00 .2775-00
2.50 .58~A-OO -.821+3-00 .5728-00 .3221+-00
3.00 .3651-00 -.7325-00 .5451-00 .36~5-00

3.50 .2520-00 -.6105-00 .5778-00 .3999-00
4.00 .200 A-OO -.5103-00 .6821-00 .4208-00
4.5u .19~7-00 -.41+21-00 .8284-00 .4224-00
5.01.1 .18eO-OO -.4002-00 .9619-00 .4094-00
5.51.1 .18,0-00 -.:$152-00 .101+7+01 .3923-00
6.00 .1709-0 0 -.3587-00 .1082+01 .3780-00
6.50 .15::11-00 -.3439-00 .1090+01 .3717-00
7.00 .1378-0 0 -.3267-00 .1096+01 .3712-00
7.51.1 .1229+0 0 -.3068-00 .1125+01 .3745-00
8.01.1 .11,5+00 -.2804-00 .1189+01 .3781-00

CASE 12
y2 =0.00
Ai =3.0

'l'v =0.633

FREGlUE.NCY F G K C

.50 .1051+01 -.2153-01 .9509-00 .3895-01
1.01.1 .1145+01 -.1480-00 .8588-00 .1110+00
1.50 .1156+0 1 -.3831-00 .7795-00 .1722-00
2.0U .1012+01 -.6140-00 .7224-00 .2192-00
2.50 .1728-0 0 -.7234-00 .6896-00 .2582-00
3.00 .55.35-00 -.7032-00 .6912-00 .2927-00
3.5u .4097-00 -.6203-00 .7413-00 .3207-00
4.0U .3323-00 -.5319-00 .8449-00 .3381-00
4.5u .2939-00 -.4612-00 .9825-00 .3427-00
5.01.1 .2725-00 -.4109-00 .1121+01 .3381-00
5.50 .25~2-00 -.3755-00 .1238+01 .3312-00
0.00 .2309-00 -.3476-00 .1339+01 • .3274-00
6.50 .2170-00 -.3211-00 .1445+01 .3289-00
7.0U .19b2-0 0 -.292b-00 .1587+01 .3346-00
7.51.1 .1839-0 0 -.2621-00 .1793+01 .3409-00
8.0u .17~3-00 -.2320-00 .2073+01 .3430-00



CASE 13
y2 =0.25

At =3.00
'fI v =1.183
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TABLE 3.2 CONTINUED

FREQUENCY

.5U
1.0u
1.5U
2·0u
2.5u
3.0u
3.5u
4.01.1
4.5u
5.0u
5.5u
6.0u
6.5u
7.0u
7.5u
8.01.1

CASE 14
y2 =0.00

Ai =4.00
'fI v =0.667

.~\J

1.uu
1.~u

O::.uu
"'.:;,U
~.iJU

~.:,u

".uu
'+.:,u
O.uu
:'.::>U
o.uU
o.::>u
1.uu
7.::>1.1
ti.uu

F

.1005+01

.1172+ 0 1

.111+2+ 0 1

.91~4-00

.6178-00

.3908-00

.2811-0 0

.2307-00

.227fl-OO

.2312-00

.23~4-00

.23.. 5-00

.2202-0 0

.2114-00
• 19..:lA-OO
.1777-00

.11l"~+01

• .I..I.~:;'+U1

.11'+'++U1
• .I."u7+U1
.T~l~-OU

.07~1-0u

.,+~o~-O(j

.~o'1o-00

.~l+Ub-Oo

.~~'17-0U

• .;,~c,.-OO
•.H,) 7-00
.';UuI-OO
.~o'+1-00

• .:!c':b-OO
.l~'Io-OO

G

-.3043-01
-.203~-00

-.4990-00
-.7373-00
-.7909-00
-.7056-00
-.582b-00
-.4773-00
-.4037-00
-.3582-00
-.3332-00
-.3212-00
-.3151-00
-.3087-00
-.2984-00
-.2835-00

G

-.2UU4-01
-.13713-00
-.356<;-00
-.~72,-OO

-.b72b-00
-.64'1U-00
-.564u-00
-.4B7-00
-.4u11:i-00
- • .3!:lii:";-00
- • .3204!-00
-.2907-00
-.2dU~-00

-.261'+-00
-.238~-00

-.2137-00

K

.9378-00

.8282-00

.7353-00

.6629-00

.6134-00

.6055-00

.6718-00

.8339-00

.1060+01

.1272+01

.1414+01

.1482+01

.1504+01

.1510+01

.1531+01

.1587+01

I(

'9543-0.1
'b684-0U
'7961-(;0
·7505-00
0135u-Ou
'7b4~-OO

08591-0U
'102'++01
01227+01
0141b+01
'156",+01
'167,+01
'1777+01
·190b+01
'2081+01
'229a+01

C

.5357-01

.1438-00

.2142-00

.2675-00

.3141-00

.3589-00

.3978-00

.4204-00

.4177-00

.3941-00

.3640-00

.3385-00

.3222-00

.3150-00

.3143-00

.3166-00

c

.~652-01

.1055+uO

.1657-00

.2131-UO

.2532-UO

.2886-00
• .31~7-UO
.3279-uu
.3216-uO
.302o-UO
.281b-OO
.2&53-UO
.2~57-uO

.2500-00

.245~-UO

.236.3-00
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TABLE 3.3
HORIZONTAL VIBRATION

COMPLIANCE & IMPEDANCE COEFFICIENTS

CASE la
y2 =0.00

At =1. 00
A~ =0.50

'l'H =1.914

.~u

l.ulJ
1.~1J

2·Ju
2.5u
3.vv
3.;"1.1
... uu
4o.~u

5.vv
5.::Ju
6.ulJ
h.!)u
7.01.1
7.:;>1.1
R.Ou

CAS E 2a

y2 =0.25

At =1.00

A~ =0.50

'l'H =2.081

F G K C

.9006-00 -.2599-00 .1017+01 .5821-00

.7071-00 -.385.3-00 .109U+Ol .5942-00

.5304-00 -.374,-00 .1252+01 .5802-00

.45..l-00 -.322U-UO .146(:)+01 .5245-00

.4103-00 -.285U-00 .1644+01 .4568-00

.38.:8-00 -.2647-00 .1767+01 .4073-00

.350 A-OO -.2520-00 .1870+01 .3774-00

.33u9-00 -.2389-00 .1987+01 .3586-00

.3002-00 -.2234-00 .2127+01 .3426-00

.291..1-00 -.2009-00 .2285+01 .3259-00

.27:>9-00 -.190.3-00 .2450+01 .3080-00

.2600-00 -.1742-00 .26:31+01 .2872-00

.2599-00 -01597-00 .2793+01 .2641-00

.250 3-00 -.1480-00 .2920+01 .2411+-00

.25,j4-00 -.1389-00 .3034+01 .221B-00

.25u3-00 -.131~-00 .3134+01 .2053-00

.5U
1.0u
1.5u
2.0U
2.~u

3.0U
3.5u
4.0u
4.5v
5.Uu
5.Su
6.0u
6.~v

7.Uu
7.Su
a.ou

F

.9074-00

.7011-00

.52.39-00

.4274-00

.3709-0 0
• .34~5-00
• .3154-00
.2875-00
.26~0-00

.2490-00

.2309-00

.23.39-00

.23C:2-00

.2316-00

.2304-00

.22d4-00

G

-.2685-00
-.4024-00
-.3964-00
-.3457-00
-.3056-00
-.2809-00
-.2625-00
-.24.32-00
-.2214-00
-.1991-00
-.1781-00
-.1600-00
-.1457-00
-.1354-00
-.1277-00
-01212+00

K

.101.3+01

.107,3+01

.1214+01

.1414+01

.1599+01

.1743+01

.1873+01

.2028+01

.222,3+01

.2450+01

.2690+01

.291.3+01

.3090+01

.3218+01

.3320+01
• .3416+01

c

.5998-00

.6157-00

.6123-00

.5720-00

.5159-00

.4723-00

.4454-00

.4287-00

.4126-00
•.3917-00
• .3647-00
.3320-00
.298.3-00
.2688-00
.2453-00
.2265-00



N-185

TABLE 3.3 CONTINUED

CASE 3!
y2 =0.333

A! =1.00

A~ =0.50

'1'H =2.164

FRE\lIuEr"c. Y F G K C

.5", .90~:3-00 -.2751-00 .1011+01 .6145-00
1.0", .69~7-00 -.4129-00 .1064+01 .6.335-00
1.5\1 .5104-00 -.4071-00 .1197+01 .6368-00
2.0v .4094-00 -.3540-00 .1396+01 .6042-00
;:>.5", .3503-00 -.:3102-00 .1595+01 .5525-00
3.u\J • .32~C?-00 -.2810-00 .1758+01 .5097-00
3.5", .291+3-00 -.2590-00 .1911+01 .4817-00
4.uv .2601-0 0 -.2373-00 .2091+01 .4626-00
4.~u .2478-00 -.2U5-00 .2316+01 .4434-00
:',Uv .23..6-00 -.190<:-00 .257,,+01 .4171-00
:..5v .2272-00 -.169.3-00 .2830+01 .3835-00
b.vV .22..4-00 -.152.3-00 .3052+01 • .3452-00
6.:)", .2238-0 0 -.1.390-00 • .3216+01 .3086-00
7.0u .22~5-00 -.1308-00 .33.3.3+01 .2785-00
7.Su • 22Ci:2-lJ 0 -.1243+00 • .3429+01 .2557-00
e.ou .21g7-0 U -.1184+00 .3528+01 .2376-00

CASE 4a
y2 =0.50

A! =1. 00

A~ =0.50

'I'H =2.414

FHEGUE:.NCY F G K C

.~u .8950-00 -.2984-00 • 1006+01 .6705-00 .
1.00 .6b03-00 -.4435-00 .1044+01 .7010-00
1.50 .4589-00 -.4280-00 .1165+01 .7245-00
~.oo .3515-00 -.3603-00 .1387+01 .7111-00
~. !',O .3012-00 -.3040-00 .1644+01 .6640-00·
3.00 .2716-00 -.2662-00 .1878+01 .6134-00
3.:'0 .2490-00 -.2384-00 .2095+01 .5732-00
4.GO .2.300-00 -.2138-00 .2332+01 .5421-00
4·50 .2160-00 -.1900-00 ·2610+01 .5102-00
~.OO .2080-00 -.1681-00 .2908+01 .4700-00
~.50 .2047-00 -.1501-00 • .3177+01 .4236-00c..Gu .2041-00 -.1.369-00 .3380+01 .:3776-00
0.50 .20.39-00 -.1277-00 .3523+01 .:3394-00
7.00 .2025-00 -.1212+00 .3636+01 .3109-00
7·5u .1996-00 -01154+00 .3754+01 .2896-00
0.00 .1962-00 -.1090+00 .3896+01 .2705-00



BL-186

TABLE 3.3 CONTINUED

CASE Sa
y2 =0.00

A~ =1.5
A~ =0.50

'PH =1.855

~

FREI.IIUC::NCY F G K C

.51,1 .9078-00 -.2596-00 .1018+01 .5825-00
1.01,1 .70';)4-00 -.3829-00 .1095+01 .5944-00
1.51,1 .5376-00 -.3687-00 .1265+01 .5781+-00
2.0u .1+5",A-OO -.3154-00 .1487+01 .5179-00
2..5u .41'+8-00 -.2771-00 .1667+01 .41+54-00
3.01,1 .3902-00 -.2571-00 .1787+01 .3925-00
3.5u .3607-00 -.2458-00 .1882+01 .3604-00
4.01,1 .34,5-00 -.2350-00 .1985+01 .31+04-00
4.:'1,/ .32lJ7-00 -.2221-00 .2107+01 .3244-00
5·uu .3023-00 -.2083-00 .2243+01 .3091-00
5.51,1 .2809-00 -01939-00 .2393+01 .2941-00
b.lIu .2751-00 -.1790-00 .2551++01 .2770-00
6.5u .2672-00 -.1649-00 .2710+01 .2573-00
7.0u .26<::3-00 -.1530-00 .2845+01 .2371-00
7.51,1 .25C)5-00 -011+31+-00 .2958+01 .218S-00
8.01,1 .25108-00 -01352-00 .3062+01 .2031-00

CASE 6a
y2 =0.25
;q =1.5
A~ ~.50

'PH =2.061

FREi.>lU(NCY F G K C

.5u .9009-00 -.2685-00 .1011++01 .6001+-00
1.01,1 .70l/1-00 -.401.;3-00 .1075+01 .6163-00
1.5\1 .52~3-00 -.393B-OO .1220+01 .6121-00
2.0ll .4203-00 -.31+21-00 .1425+01 .5693-00
2.5v .3815-00 -.3018-00 .1612+01 .5101-00
3.01,1 .3498-00 -.2778-00 .1753+01 .4640-00
3.51,1 .32.1.0-00 -.2609-00 .1876+01 .4357-00
I+.uu .29~4-00 -.2436-00 .2018+01 .4187-00
4.51,1 .27lJ1-00 -.2235-00 .2198+01 .4041-00
5.1,11,1 .2527-00 -.2021-00 .2413+01 .3861-00
5.51,1 .2411-00 -.1813-00 .2650+01 .3622-00
6.01,1 .2351-00 -.1626-00 .2877+01 .3317-00
6.5\1 .23,8-00 -.1477-00 .3063+01 .2988-00
7.01,1 .23",1-00 -.1366-00 .3200+01 .2092-00
7.51,1 .2310-00 -.1285-00 .3300+01 .2451-00
8.01,1 .2293-00 -.1210+00 .3404+01 .2256-00



.IIE- 187

TABLE 3.3 CONTINUED

CASE 7a
y2 =0.333
Ai =1.5
A~ =0.50

'¥H =2.171

FR::QUc.NCY F G K C

.5u .90,38-0 0 -.277g-00 .1011+01' .6211-00
1.0u .6891-0 0 -.4153-lJO .1065+01 .61415-00
1.:;u .50..3-00 -.4069-00 .1201+01 .61461-00
2.0u .40..0-00 -.3512-00 .1410+01 .6128-00
2.:11,) .35147-00 -.3060-00 .1616+01 .5578-00
3.0u .32~~-00 -.2772-00 .1783+01 .5112-00
3.5u .291+6- UQ -.2561-00 .19;33+01 .4803-00
4.01,) .2691-00 -.2.35!)-00 .2105+01 .4604-00
4.5u .2404 - 00 -.21.31-00 .2319+01 .4420-00
5.0U .23'+,3-UU -.19U.3-00 .2572+01 .4177-00
5.50 .2202-0 0 -.169.3-00 .283.3+01 • .3856-00
b.Ou .2231-00 -.1520-00 • .3061+01 .3470-00
Eo.:", .22,,5-0 0 -01391-00 .32.31+01 .3107-00
7.01.1 .22i3-00 -.1301-00 • .3351+01 .2802-00
7.5u .2210-00 -.1234+00 .3449+01 .256e-OO
p..o", .2107-00 -01171++00 .3549+01 .2381-00

CASE 8a
y2 =0.50
Ai =1.5
A~ =0.50

'¥H =2.604

FREi;lUI:.I~CY F G K C

.:;u .8811-0 0 -.3218-00 .1001+01 .7311+-00

1.UU .6206-00 -.4658-00 .1031+01 .7735-00

1.01,) .1+091-00 -.4318-00 .1156+01 .8136-00

2.01J .30bS-OO -.3500-00 .lI+lg+01 .8084-00

2.!;)u .261+7-00 -.2879-00 .1731+01 .7529-00

3.0U .2422-0 0 -.2492-00 .2005+01 .6879-00

3.~0 .22.. 3-00 -.2231-00 .2241+01 .6369-00

4.0u .2077-0 0 -.2006-00 .2491+01 .6014-00

4.50 .191+9-0 0 -.1780-00 .2797+01 .5678-00

5.\.11.1 .1802-0 0 -.1569-00 .3135+01 .5228-00

5.5u .18bl-00 -.HOC-CO .3432+01 .4695-00

6.0u .1801-00 -.1281-00 .3645+01 .4182-00

6.Su .18:,A-OO -.1201+00 .3196+01 .3776-00

7.Cou .1840-00 -.1140+00 .3928+01 .31+76-00

7.!;)U .1811-00 -.1080+00 .4074+01 .3239-00

8.00 .1704-00 -.101,3+00 .4239+01 .3009-00



:ZlL-188

TABLE 3.3 CONTINUED

CASE 9a
'(2 =0.00
;d =2.00
A~ =0.50

'I'H =1. 825

Fi<El.iUc..IJCY F G K C

.5u .9076-00 -.2583-00 .1019+01 .5802-00
1.0u .70~2-00 -.3791+-00 .1100+01 .5916-00
1.51.1 .5308-00 -.3630-00 .1277+01 .5731+-00
2.01.1 .'+500-00 -.308.3-00 .1505+01 .5088-00
2.51.1 .'+202-00 -.2693-00 .1687+01 .4324-00
3.0u .3978-00 -.21+91+-00 .1805+01 .3771-00
3.!:lu • 37t/'+-UO -.2387-00 .1895+01 .31+33-00
4.0", .35i+1-0Q -.2292-00 .1990+01 .3221-00
,+.51.1 .33,34-00 -.2182-00 .2100+01 .3054-00
5.01.1 .31~5-00 -.2063-00 .2220+01 .2904-00
5.51.1 .29~7-0(j -.192l8-DO .2353+01 .2766-00
o.Ou .2870-00 -.1801+-00 .2497+01 .2610-00
b.!:>", .2700-00 -.1670-00 .261+3+01 .2444-00
7.01.1 .27~n-oo -01553-00 .2772+01 .2262-00
7.~u .2674-00 -.1457-00 .2883+01 .2095-00
1'.01.1 .2633-00 -.1371+-00 .2985+01 .1948-00

CASE lOa
'(2 =0.25
At =2.00
A~ =0.50

'¥H =2.060

Fr<"::"J~NCY F G K C

.5u .9004- 00 -.2689-00 .1011++01 . .6017-00
1.00 .6907- 00 -.1+012-00 .107&+01 .6180-00
1.51.1 .5217-00 -.3924-00 .1221.++01 .6139-00
?-.Ou .4274-00 -.3395-00 .11.+35+01 .5698-00
2.!:l1.l .3818-00 -.2985-00 .162&+01 .5084-00
.3.01.1 .35 4 1+-00 -.271+4-00 .1768+01 .1+601-00
3.5u .32,3Q-OO -.2581-00 .1888+01 .1.+299-00
1+.0" .2971-00 -.21+19-00 .2021++01 .1+120-00
1+.51.1 .27,37-00 -.2232-00 .2195+01 .3977-00
5.0u .25!:l7-00 -.2027-00 .2402+01 .380a-oo
5.51.1 .24,33-00 -.1821-00 .2631.++01 .3584-00
/:'l.Uu .2307-00 -.1631+-00 .2862+01 .3292-00
6.!:lu .231+1-00 -.11+82-00 .3050+01 .2970-00
7.01.1 .23,31-00 -.1368-00 .3191+01 .2&76-00
7.5.1 .2320-00 -.1283-00 .3300+01 .21+31+-00
8.0'" .23U4-00 -.1212+00 .3399+01 .2235-00



11T-189

TABLE 3.3 CONTINUED

CASE lla
y2 =0.333

At =2.00
A~ =0.50

'l'H =2.219

FREQUENCY F G K C

.50 .9015-00 -.2821-00 .1010+01 .6323-00·
1.0U .bSla-OO -.~205-00 .106,3+01 .6552-00
1.50 .'+9,38-00 -.~091-00 .1201+01 .6633-00
2.0tJ .39j<'-00 -.3497-00 .1420+01 .6315-00
2.5u .34~2-00 -.3019-00 .1641+01 .5741-00
3·01) .31~1-00 -.2717-00 .lS20-tOl .5233-00
3.5u .28~4-00 -.2505-00 .1975+01 .4885-00
4.0U .2bS4-00 -.2307-00 .2140+01 .4664-00
4.5u .24:,2-0 0 -.2092-00 .2360+01 .4474-00
5.0u .2312-00 -.1868-00 .2616+01 .4228-00
5.5u .22;;4-uO -.1601-00 .288,3+01 .3898-00
6.0u .22u5-0 0 -.1491-00 .3113+01 .3507-00
6.5u .22\.10-0 0 -.136~-00 .3282+01 .3133-00
7.0u .21'.:7-00 -.1277-00 .3402+01 .2826-00
7.5u .21b4-UO -.121U+00 .3503+01 .2589-00
a.ou .2102-00 -.11l+9+00 .3600+01 .2397-00

CASE 12a
y2 =0.00
At =3.0
A~ =0.50

'l'H =1.779

FREIllUE:..CY r- G K C

.50 .90bQ-OO -.2574-00 .1020+01 . .5793-00
1.0u .70~f\-00 -.3761-00 .1105+01 .5906-00
1.50 .530 2-00 -.3565-00 .1291+01 .5702-00
2.0u .4577-00 -.299:>-00 .1530+01 .5005-00
2.5u .4246-00 -.2591-00 .1716+01 .4189-00
3.0u .40:JO-OO -.2386-00 .1833+01 .3599-00
3.5u • .3S06-0 0 -.2282-00 .1918+01 .3236-00
4.0U .360Q-00 -.2198-00 .2005+01 .300~-00

4.S0 .34tl~-00 -.2107-00 .2101+01 .2824-00
S.OU .33lQ-00 -.2013-00 .2202+01 .2672-00
5.5u .3106-00 -.1916-00 .2312+01 .25~3-00
6.0..1 • .30.:l3-0u -.1806-00 .2~34+01 .2416-00
6.5u .29,9-00 -.1689-00 .2562+01 .2273-00
7.01,) .28s5-0 0 -.1581-00 .2681+01 .2120-00
7.5... .2798-0 0 -.1489-00 .2785+01 .1976-00
8.0U .271+7-00 -01407-00 .2881++01 .1847-00

•



IIr- 190

TABLE 3.3 CONTINUED

CASE 13a
y2 =0.25

A1 =3.0

Ai =0.50

'I'H =2.097

FKEiolUf::NCY F G K C

.5u • 901+4-00 -.2731-00 .1013+01 . .6121-00

1.01.1 .69<:1-0 0 -.4064-00 .1074+01 .6308-00

1.5u .51,L7-0U -.3950-00 .1225+01 .630Z-00

2.0u .1+1 0 5-0 0 -.338b-00 .1'+46+01 .5875-00

2.5u .3719-00 -.2940-00 .1652+01 .5234-00
3.0\l .3436-0 0 -.2686-00 .1806+01 .4706-00

3.5u .31b6-0 0 -.2517-00 .1932+01 .4362-00

4.0u .29j9-00 -.2:36.3-00 .2067+01 .4154-00
4.51.1 .2715-00 -.218e-00 .22:33+01 .3999-00

5.0u .Z5j7-00 -.1993-00 .2437+01 .3829-00
5.5u .ZI+14-00 -.1793-00 .2670+01 .360b-00

o·Ou .23<+7-00 -.1610-00 .2897+01 .3313-00

6.5u .2319-0 0 -.1462-00 .3086+01 .2992-00
7.0u .23lJ7-0u -.1350-00 .3229+01 .2700-00
7.51) .2294-0Q -.1265-00 .334.3+01 .2458-00

8.0u .2278-00 -.1191+00 .3448+01 .225&+-00

CASE 14a
y2 =0.00
A1 =4.00
A~ =0.50

"'H =1.748

FREQUt.NCY F G K C

.5u .90b2-00 -.257.3-00 .1021+01. .5799-00
1.0U .70,1-00 -.371+5-00 .1109+01 .5914-00
1.50 .5308-00 -.3527-00 .1301+01 .5700-00
2.00 .'+575-00 -.29.39-00 .1547+01 .4970-00
2.5u .4200- 00 -.2523-00 .1738+01 .4117-00
3.0u .4002-00 -.2311-00 .1855+01 • .3501-00
j.5u .3917-00 -.2204-00 .1939+01 .3118-00
I+.OU .371+0-00 -.2121+-00 .2022+01 .2870-00
4.51.1 .3573-00 -.20'+2-00 .2110+01 .2679-00
5.0u .3'+2,2-00 -.1961-00 .2200+01 .2521-00
5.5u .3277-0 0 -.1881-00 .2295+01 .2395-00
o.ou .31'+5-00 -.1790-00 .2402+01 .2278-00
6.5u .30~6-00 -.1681:)-00 .2516+01 .2151-00
7.00 .2955-0 0 -.1589-00 .2625+01 .2016-00
7.5u .2891-00 -.150,3-00 .272.3+01 .1888-00
8.0u .28;)3-00 -.142b-00 .2817+01 .1772-00



11I-~ 191

TABLE 3.3 CONTINUED

CASE Ib
y2 =0.00

A~ =1.00

A~ =1.00

'I'H =1.5

rt\c."uc:.I.\o T ~ G J( C

• :.>1..1 .~,),)U-Oo -.26'+,)-0, .9c,2'-Or, .o622-uO
l.vu .7o.&.u-Ou -.1+49,+-UO .974,)-00 .!:l75'+-00
.I..~v .::Iou/:)-Uu -.5180-00 • ~b 1,)""00 .!:l920-UO
~.tJu .'+u<:::J-OU -.50<::7-00 ·97uo-OO .6061-00
<::.~u .,)u,l-uu -.'+57,)-00 01000+U1 .0090-00
,).vu • <::'+uto-UU -.'+llj.o-Oll ·10'+l:)+lJ1 .0012-00
,).:JU • .I.'='~,)-UU -.3d2.u-UO ·1071++01 .!:l~7~-UO

..... uu .1ooO-vu -.~::I7u-OU ·lU71+U1 .!:l7Sl:l-0U
-".:.JU • .I.,)o'+-ou -.~.)!'l-OO • 1 O'+c::+U 1 .!:lb~':I-UO

~.\JU 0.I.1",,)+Uo -.~U,)-OO 0100u+U1 .!:loAO-UO
:J.~U .otl~"I-Ol -.2~Uo-Oo '902l-UO .5717-uO
o.vtJ .1.J.l.u-Ol -.26'='u-00 .941u-00 .!:l771-UO
o • .)v .o.&.o.l.-U.l. -.2,+9.::-00 ,':#37,+-00 .!:l~l!:l-OO

I. uu .::I,)00-U1 -.2j~c::-OO ·~,+~7-00 .~b40-00

i.;JU .'+'.1.':1-01 -.21-/7-00 ·':I51~-OU .!:ll:l5U-OO
o.uu .,+10,+-01 -.2u5u-00 .9550-00 .5b5;)-OO

CASE 2b
y2 =0.25

A~ =1. 00

A~ =1.00

'PH =1.667

,. ~c.""vc:.;;\" T l-' e:, K C

.:lU .,;,,;\)-00 -.27'+0-Or- .91'99-0" .0l:l52-lJOl..uU .'''ou-OO -.'+043-00 '9b5u-00 .099U-UO
.... :10.1 .:J'+uo-Uu -.5317-00 .9403-0u .b172-00
c::.uu .,)111-00 -.5H:,:,-00 '932,,-OU .032;)-UO
".::Iv .<::"''+0-00 -.'+0'+4-00 '943b-00 .6.379-00
,).uu .~luo-Ou -.IH9t:,-OO .956~-OO .b340-0U
.:J.:)U • .I.o01-UO -.3C1.3U-00 '~531-0U .0278-UO
... uu • .l.,)u/-UO -.~::I27-00 .92'+1-UO .0232-00
'+.::111 • .l.u.l.;;+UU - • .32'+'+-00 ·tl17U-OU .b242-00
J.UU • "Itlu3-01 -.2~b5-00 '0.300-00 .b30tl-00
:J.:JU .0.1.,)'1-01 -.26';':11-00 .bOU-Oll .040'+-OU
o.uv .:'ul2.-Ul -.21+0,)-00 'OOlCl-OO .049U-uO
O.:JU .'+,)';~-U1 -.2~o'-00 'b2'+:'-Ou .0!:l,+2-UO
l.ulJ .,)9c:1-01 -.210b-00 .8!:l'+3-0u. .6~5!:l-uO
I.::IU .,)0.:1..-01 -.1<i7't-OO 'Cl78o-00 .b~4'+-UO
O.ulJ .,)1 N-Ul -.ldbc:-OO ·8911-00 .052;)-00



.:11.1
1.uv
.l..:lU
".uu
,.:lV
,).UU
j.:lu
".VU
... ::ll,/

::I.uu
0.01,/

o.vu
0.::11,/

',. uv
, .::IV
o.uu

CASE 3b
y'l =0.333

A! =1.00

Ai =1.00

'i'H =1. 750

..m:-1 92

TABLE 3.3 CONTINUED

.....
r; G K C

.~':I:I-OU -.2!:l~I+-Of '9~8~-UIl .b03.3-0U

./.:Io:l-Ou -.'+7,+~-00 '959~-00 .6181-UO

.::l"j-UU -.5j8,-00 ''1280-00 .637'1-uO

.j::lo,-Uu -.~13l:S-00 '9131-UU .6549-uO

."::l:l::l-OU -.'+62,-00 .916U-00 .062l:l-UO

.1'::1.l.'1-UU -.'+1'+,)-00 ·'.1200-00 .062'+-UO

.1"o,-iJU -.31!;).:I-00 ·9099-00 .b58b-UU
• .l.l,+j+UU - • .3 .. ,,,-00 'l:l78u-UU .b~7j-OO

.0·''+1-U1 -.311!;)-00 'l:S35U-OO .001j-uU

.o/oj-01 -.2l:S2:1-00 'd003-00 .6690-uU

.:I'+J,u-OJ, -.250,)-00 .7b!:l~-UU .0792-UO

...::l/e-Ol -.23'+u-OO '80,+7-UU .b05,:/-UU

.,+u,,)u-U1 -.21!;),:/-OO '035,)-OU .ocl8~-UO

.jo.l.I+-01 -.2u1j-OO ·tlh....-UO .0877-0U
• .Jc::.t+.,:-Ul -.10'::11-00 '001.:»-01) .bl:l51-iJO
.'001-01 -.17b~-00 '0827-UO .bl:l2j-UO

CASE 4b
y2 =0.50

A! =1. 00

Ai =1. 00

'i'H =2.00

FHEQIJENCY F G K C

.50 .9105-00 -.3096-00 .9845-00 .6696-00
1·00 .6904-00 -.5037-00 .9452-00 .6896-00
1.50 .458lt-OO -.5455-00 .9028-00 .7163-00
2.00 .2909-00 -.4996-00 .8792-00 .7396-00
j,!.5iJ .2038-00 -.4368-00 .8772-00 .7521-00
3.00 .1483-00 -.3836-00 .8767-00 .7561-00
.3.50 .1112+00 -.3409-00 .8651-00 .7575-00
,+.00 .8447-01 -.3047-00 .8448-00 .7619-00
1+·50 .6567-01 -.2730-00 .8328-00 .7694-00
5.00 .5337-01 -.2459-00 .8426-00 .7766-00
5.50 .4521-01 -.2238-00 .8673-00 .7806-00
0.00 .3942-01 -.2059-00 .8969-00 .7808-00
6.5U .3464-01 -.1911-00 .9181-00 .7794-00
7.00 .3049-01 -.1784-00 .9311-00 .7781-00
7.50 .2697-01 -.1672-00 .9406-00 .7774-00
b.OO .2399-01 -.1572-00 .9483-00 .7770-00



CASE Sb
y2 =0.00

;\.1 =1.50

), ~ =1. 00

'I' H =1. 441

IJI.- 193

TABLE 3.3 CONTINUED

.. r\t."'ut.' ... 1 ~ ~ K <:

.:;)1.1 .~~,~-UV -.20'+1-0r • '1Q2'+-{).i .~019-vO

.1..LJU • (ou':l-U\.l -.'+'+0'1-00 '~7~u-OO .~754::-UO

J..;:)v .:;)ou/-UO -.:>1"1,)-ou '903'+-00 .:'':I2~-UO

,.1.11.1 .,+tJ-.JU-lJU -.~ovo-OO ''170'/-00 .ou6U-UO
.::.::>1.1 .,)I;,)/,,-UU -.'+5'+7-UO ·1u10"'01 .oUfl~-uO

.,).uu '~""c:.-UU -. 'H1 '1-00 '1()6~+Ul .~~8t)-UO

~.:)u .~u""'t-uu - • .38v,-oU .1U97"'lJ1 .~~3u-uO

~.uu • .1. -',~-Uv -.3:>t>'(-00 '109""'01 .~o7~-UO

~.:.J"" ........ ,,-Uu - • .5.511.1-00 ·1u71"'C.1 .~~7lj-uO

::>.uu • .1.1(0"'1.11.1 - • .3177-00 '1u2~"'01 .~:>37-uu

:J.:JU .':I:".1.,,-U1 -.~'17,+-00 '':I7~::>-(jO .:,040-uO
o.uu ./7..':)-U1 -.277u-00 ''1jb~-OO .~~8u-uO

0.:;1.1 .o"''''-U! -."::>/'1-0U '':I10U-00 .~o10-UlJ

I. vv .:;),+..... -U! -.2,+U':l-00 .~o2~-OO .~ol+~-UO

7• ..Ju .'+ol:;,-lJ.l -.2201l-0U 'b77d-UO .~b5d-OO

o.UU .,+u'+o-U'" -.21c:~-OO 'b620-0u .~b69-uli

CASE 6b
y2 =0.25

),1 =1. 50

),~ =1.00

'l'H =1.647

-F.f ~Ut.NCY F G K C

.511 .92d7-00 -.271+7-00 .9901-00 .5857-00
1.0u .71+72-00 -.4630-00 .9661-00 .5996-00
1.51.1 .53"'5-00 -.5300-00 .91+33-00 .6178-00
2.0u .3704- 00 -.5098-00 .9387-00 .6323-00
2.01.1 .2770-00 -.4621-00 .951+5-00 .6368-00
3.(;1; .2141-00 -.4177-00 .9718-00 .6320-00
3.ou .17u3-00 -.3828-00 .9703-00 .6231-00
4.au .13~0-00 -.3540-00 .91+08-00 .6165-00
4.~U .1O~0+00 -.3271-00 .8898-00 .6158-00
5.()u .8006-01 -.3002-00 .831+6-00 .6213-00
5.~u .6208-01 -.271+0-00 .7930-00 .6306-00
b.aU .50dB-Ol -.2501-00 .7810-00 .6.399-00
6.5u .1+3;,)8-01 -.2298-00 .7932-00 .6'+61+-00
7.Uu .38j5-01 -.2131-00 .8179-00 .61+93-00
7.~u • .3l+lt Q- 01 - 0199'+-00 .81+21+-00 .61+9,3-00
8.()u • .3112-01 -.1879-00 .8581+-00 .6476-00
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TABLE 3.3 CONTINUED

CASE 7b
y2 =0.333
Al =1. so
AI =1. 00

'i'H =1.757

·RE~Uc.NCY F G K C

.!)u .92~5-00 -.2855-00 .9884-00 _ .6111-00
1.0u .7306-00 -.4771-00 .9595-00 .6266-00
1.5u .51~7-00 -.5371-00 .9301-00 .6470-00
2.0u .35~2-00 -.5095-00 .9180-00 .6640-00
2.5u .25,2-00 -.457u-00 .9257-00 .6710-00
3.00 .1906-00 -.4095-00 .9342-00 .6691-00
3.5u .1400-00 -.3715-00 .9256-00 .6637-00
4.0u .1147+00 -.339.3-00 .8938-00 .6612-00
4.5u .8794-01 -.3096-00 .8491-00 .6642-00
5.0v .6707-01 -.2812-00 .8108-00 .6720-00
5.51,) .5406-01 -.2554-00 .793.3-00 .6814-00
6.0u .45j4-01 -.2332-00 .8033-00 .6886-00
6.~u .3905-01 -.2149-00 .8300-00 .6922-00
7.0U .35:;0-01 -.2001-00 .8599-00 .6923-00
7.5u .3199-01 -.1877-00 .8820-00 .6902-00
8.00 .2809-01 -.1772-00 .8901-00 .6873-00

CASE 8b
y2 =0.50
At =1. 50
AI =1.00

'i'H =2.190
/ /

FREJUt::,NCY F G K C

.5u .8926-0 0 -.336b-00 .9808-00 . .7396-00
1.0v .6403-00 -.5249-00 .9341-00 .7658-00
1.5u .39'14-00 -.5384-00 .8887-00 .7987-00
2.0u .2511-00 -.4747-00 .8707-00 .8231-00
2.5 ... .17l6-0 0 -.4089-00 .872a-OO .8317-00
3.0u .12~7+00 -.3578-00 .8630-00 .8323-00
3.5u .90!:l2-01 -.:3167-00 .8342-00 .8340-00

. 4.00 .67uO-01 -.2811-00 .8024-00 .8416-00
4.5... .51,,8-0 1 -.2503-00 .7939-00 .8512-00
5.0U .4272-01 -.2254-00 .8119-00 .8567-00
5.5u .3613-01 -.2058-00 .8274-00 .8569-00
6.00 .30 0 9-01 -.1899-00 .8291-00 .8553-00
6.5u .2593-01 -.1760-00 .819.3-00 .8555-00
7.0u .2230-01 -.1636-00 .8184-00 .8575-00
7.5u .1979-0 1 -.1528-00 .8335-00 .8582-00
a.ou .1775-01 -.1438-00 .8455-00 .8561-00



..:nL-195

TABLE 3.3 CONTINUED

CASE 9b
y2 =0.00
A~ =2.00
A~ =1. 00

'I'H 1.411

FRE'-lluEN(.Y F G K C

.5\01 .9332-00 -.262~-00 .9930-00 .5585-00

1.0..1 .7619-00 -.4458-00 .9778-00 .5721-00

1. Sv .56<:8-00 -.5131-00 .970.3-00 .5898-00

2.01,) .1+0t.3-00 -.495~-00 .9895-00 .6031+-00

2.5\,1 • .30/:15-00 -.4489-00 .1040+01 .6052-00

3.0\,1 .2506-00 -.4059-00 .1101+01 .5946-00

3.5\,1 .21:<:7-00 -.374~-00 .1147+01 .5710-00

14.01J .1"8<:5-0 0 -.3519-00 .1161+01 .5599-00

4.~U .15:.1-0 0 -.3337-00 .1146+01 .5470-00

5·UI,) .12<:;1-00 -.3162-00 .1110+01 .5415-00

:,.51,1 .1070+00 -.2979-00 .1068+01 .5400-00

6.0\,1 .88e6-U1 -.2791-00 .1034+01 .542~-00

b.~U .7~l+1-01 -.2610-00 .1010+01 .51+51-00

7.01,1 .6.3..~-01 -.2445-00 .9938-00 .5474-00

7.5u .5~74-01 -.2298-00 .9811-00 .51.091-00

8.uu .470A-01 -.2105-00 .9699-00 .5500-00

CASE lOb
y2 =0.25
At =2.00
).~ =1. 00

'I'H =1. 646

FRE~UC:j.... y F G K C

.5u .9201-00 -.2752-00 .9904-00 .5873-00
1.0u .71+:J5-00 -.4637-00 .9672-00 .6016-00
1.51,) .5375-00 -.5282-00 .9465-00 .6200-00
2.0u .377S-0U -.5066-00 .9457-00 .6346-00
2·:Ju .2776-00 -.4583-00 .9668-00 ,':>385-00
3.0u .2100-00 -.4142-00 .9898-00 .0327-00
3.~u • 17.:J2-00 -.3799-00 .9935-00 .6227-00
4.0U .1305-00 -.3520-00 .9683-00 .6150-00
4.5u .10d1+00 -.3261-00 .9203-00 .6134-00
5.01,1 .8412-01 -.3000-00 .8663-00 .0180-00
5·~u .bSoO-Ol -.27~3-00 .8246-00 .&.269-QO
b.UU .5318-01 -.2506-00 .810,-00 .6364-00
6.~u .450;;1-01 -.2302-00 .8217-00 .61.036-0U
7.01,1 .3994-01 -.2132-00 .8491-00 .6474-00
7.:Ju .36u7- 01 -.1992-00 .8804-00 .61+82-00
8.Uu .32/:)3-01 -.1871+-00 .9066-00 .61470-00
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TABLE 3.3 CONTINUED

CASE lIb
'(7- =0.333

),~ =2.00

),~ =1. 00

'i'H =1.805

FREQUENCY F G K C

.5u .92ul-00 -.2908-00 .9881-00 .6246-00
1.0u .12uS- OO -.4819-00 .9590-00 .61+14-00
1.5u .5015-00 -.5360-00 .9308-00 .663~-00

2.00 .3410-0 0 -.50~1-00 .9230-00 .6810-00
2.50 .21+1+4-00 -.41+85-00 .9368-00 .6876-00
3.0u .18:lU-OO -.4008-00 .9510-00 .6851-00
3.5u .14..6-00 -.36~0-00 .9473-00 .6793-00
1+.00 .11,7+0u -.3311-00 .9211-00 .6767-00
4.5u .8717-01 -.3017-00 .8840-00 .6798-00
S.Ou .6816-01 -.2740-00 .8550-00 .6874-00
5.5u .55uO-01 -.249U-00 .8461-00 .6963-00
6.0u .46tll-0 1 -.2275-00 .8627-00 .7033-00
6.5u .40 0 6-01 -.2090-00 .8960-00 .7071-00
7.0u .3601-01 -.191+9-00 .9359-00 .7078-00
7.5u .3355-0 1 -.1820-00 .9729-00 .7062-00
8.0U .30~9-01 -.1723-00 .9987-00 .7033-00

CASE 12b
'(7- =0.00

>.i =3.00

>.~ =1. 00

'i'H =1.365

FREQUErlCY F G K C

.50 .93~2-00 -.2.615-00 .9936-00 .5568-00
1.0U .1619-00 -.4437-00 .9802-00 .5708-00
1.~u .50e::Q - 00 -.5095-00 .9764-00 .5892-00
2.0U .4072-00 -.4902-00 .100~+01 .6030-00
2.51.1 .31.0-00 -.4420-00 .1065+01 .6053-00
3.0iJ .2.551-00 -.391:;1-00 .1141+01 .5930-00
3.5u .2196-00 -.3663-00 .1204+01 .5738-00
I+.OU .1919-00 -.3443-00 .12.35+01 .551+0-00
U.SU .16b8-00 -.3275-00 .1235+01 .5388-00
5.0U .14~1-00 -.3122-00 .1213+01 .5295-00
5.:iu .12l2+ 00 -.2904-00 .1182+01 .5255-00
6.0U .10'=:6+00 -.2801-00 .1153+01 .5246-00
o.~u .87~8-01 -.2641-00 .1129+01 .5251-00
7.0U .75u6-01 -.2490-00 .1110+01 .5259-00
7.51.1 .6494- 01 -.2350-00 .1092+01 .5271-00
8.0u .5654-01 -.2221-00 .1076+01 .5285-00
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TABLE 3.3 CONTINUED

CASE 13b
y2 =0.25

At =3.00
A~ =1. 00

'¥H =1. 683

FHEGUE:~(.. y F G K C

.!)v .9201-0 0 -.280.3-00 .9901-00 .6000-00
1.Uu .7~02-00 -.4687-00 .9665-00 .6154-00
l.ov .52~6-0U -.5281-00 .9468-00 .6354-00
2.Llu .~6~8-00 -.5013-00 .9499-00 .6509-00
2.ov .20b9-00 -.4504-00 .9773-00 .6548-00
3.0V .21lJO-Gll -.4054-00 .1007+01 .6483-00
3.ov .1693-00 -.3710-00 .1018+01 .6374-00
4.Llu .1:5f.>3-00 -.~433-00 .9992-00 .6291-00
!4o.~u .1001+0U -.3179-00 .9586-00 .6267-00
~.Ou .8471-01 -.2928-00 .9120-00 .6304-00
5.5u .66b7-01 -.2682-00 .8754-00· .6383-00
o.Ou .54~4-01 -.2454-00 .8629-00 .6471-00
6.~u .'+637-U1 -.2255-00 .8746-00 .6545-00
7.0u .40",3-0 1 -.2087-00 .9049-00 .6591-00
7.:;0 .3710-v1 -.1947-00 .9446-00 .6609-00
8.Ju • .341J9-01 -.1829-00 .9844-00 .6603-00

CASE 14b
y2 =0.00
At =4.00
A~ =1.00

'¥H =1.333

F,.,C",Ut;.iJl. Y F G K C

.5u .93.30-0 0 -.2614-00 .9938-00 .5570-00
1.0u .7611-00 -.4432-00 .9812-00 .5714-001. !)u .5617-00 -.5081-00 .9791-00 .5905-00
2.l,)u .4000-00 -.4874-00 .1009+01 .6057-00
2.5v .31lJS-UO -.4378-00 .1078+01 .6079-00
3.0v .2509-00 -.392b-00 .1165+01 .5958-00
3.:Su .2219-00 -.3604-00 .1239+01 .5749-00
I.e.Uu .1960-00 -.3382-00 .1283+01 .5534-004.:,u .17,7-00 -.3218-00 .1295+01 .5361-00
5.uu .15\,15-00 -.3076-00 .1284+01 .5247-005.!)U .12~7-00 -.2933-00 .1261+01 .5184-006.Uu .1116+00 -.276t)-OO .12~a+01 .5153-00
6.~v .96"Q-01 -.264~-00 .1217+01 .51:5a-OO
7.0v .83lt~-01 -.250b-CO .1196+01 .5132-00
7.~1,) .7204- 0 1 -.237b-OO .1175+01 .51:52-00e.ou .&325-01 -.2254-00 .1151++01 .5141-00
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TABLE 3.3 CONTINUED

CASE Ie
y2 =0.00

Ai =1. 00

A~ =2.50

'I'H =1.132

FREIiUENCY ~ G K C

.5u .95~2-00 -.258,-00 .9771+-00. .529b-00

1.0u .82~1-00 -.4735-00 .9117-00 .5232-00

1.51.1 .65ul-00 -.6171-00 .8091-00 .5120-00

2.01.1 .46'12-00 -.688U-00 .b76b-OO .1+961-00

2.51.1 .30b5-00 -.7055-00 .5201+-00 .1+760-00

3.0u .17~4-00 -.6906-00 .3455-00 .4534-00

3.~u .69,+7-01 -.6571-00 .1591-00 .4300-00

4.0\.1 -.11 ..4-01 -.6142-00 -.303.3-01 .4069-00

Ih~U -.70':5-01 -.569~-00 -.2133-00 .3843-00

5.Uu -.11.:;3+ 0 0 -.5292-00 -.3837-00 .3617-00

5.~u -.14.. 1-00 -.4953-00 -.5414-00 .3385-00

b.OU -.17u4-0 0 -.4669-00 -.6900-00 .:3150-00

6.51.1 -.1938-00 -.4414-00 -.8338-00 .2922-00

7.01.1 -.21,+1-00 -.4172-00 -.9738-00 .2710-00
7.51.1 -.23uS-00 -.39.3b-00 -.1l0~+01 .2520-00

a.ou -.24jB-00 -.:3723-00 -.1231+01 .2350-00

CASE 2e
y2 =0.25

Ai =1. 00

A! =2.50

'I'H =1.299

FR[",UE.i,CY F G K C

.5u .94:,6-00 -.2723-00 .9760-00- .5621+-00
1.0u .80ul-00 -.L+89b-00 .9093-00 .5561+-00
1.:;1.1 .6114-00 -.6211-00 .8049-00 .5451-00
2.U\.I .42b6-00 -.6753-00 .6700-00 .5278-00
2.51.1 .2741-0 0 -.6813-00 .5082-00 .5053-00
3.0u .1473-00 -.6611-00 .3211-00 ·.4804-00
3.5u .4511-01 -.6239-00 .1153+00 .4556-00
4.01.1 -.320 0-0 1 -.5759-00 -.9799-01 .4327-00
4.~v -.8622-01 -.525~-00 -.3037-00 .4116-00
5.0u -.121:3+00 -.4818-00 -.1+913-00 .3901+-00
S.5iJ -.1401-00 -.1+468-00 -.6611-00 .367b-00
6·:,)v -.1607- 00 -.4188-00 -.820b-00 .3435-00
6.~u -.18~5-00 -.391+2-00 -.9773-00 .3195-00
7.uu -.20.1.9-00 -.3708-00 -.1133+01 .2972-00
7.5u -.2148-00 -.3481+-00 -.1282+01 .2773-00
a.ou -.2241-00 -.3281+-00 -.11+18+01 .2597-00
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TABLE 3.3 CONTINUED

CASE 3c
y2 =0.333

A~ =1.00

A~ =2.50

'l'H =1. 382

F rt E QUc.r~1. y F G K C

.5u .9401-00 -.2823-00 .9758-00 .5860-00
1.0", ,78,4-0 0 -.5010-00 .9064-00 .5805-00
1 • ;,U ,58,+3-00 -.6237-00 .7999-00 .5693-00
2.0.; .40\.17-00 -.66b3-00 .0629-00 .5511-00
2.5u .~5\.18-00 -.66405-00 .4974-00 .5270-00
3.0u .1294-00 -.6401-00 .3033-00 .5003-00
3.:-'", .314+4-\.11 -.6007-00 .8690-01 .4744-00
4.0U -.42.57-01 -.5507-00 -.1389-00 .4513-00
... 5u -.9158-0 1 -.4993-00 -.3554-00 .4306-00
~.u", -.12~2+00 -.4555-00 -.5494-00 .4096-00
"i.:Ju -,1435-00 -.4218-00 -.7229-00 .3864-00
b'U", -.10 17-00 -.3954-00 -.8860-00 .3611-00
6.5y -.17b8-00 -.3723-00 - •.1048+01 .3358-00
7.0u -.194+1-00 -.3500-00 -.1212+01 .3122-00
7,~u -.20~Cl-00 -.32B5-00 -.1370+01 .2911+-00
a.i)u -.2142-00 -.3093-00 -.1513+01 .2731-00

CASE 4c
y2 =0.50
At =1.00
A~ =2.50

'l'H =1.632

FI-.EQUt,ilCY F G K C

.~u .9195-0 0 -.3157-00 .9729-00 .0680-00
1.0u .71£,)6-0 0 -.5330-00 .8978-00 .6658-00
1.~O .4904-0 0 -.6189-00 .7883-00 .656!:l-00
2.0v .3194-0Q -.6226-QO .6523-00 .6357-00
2.5", ,19~(l-00 -.5990-00 .4843-00 .0050-00
3.UCi ,9146-01 -.5691-00 .2753-00 .5710-00
3.~lJ ,8354-02 -.5294-00 .2980-01 .5390-00
4.0u -.5433-0 1 -.479b-00 -.2332-00 .5146-00
14.5u -.9292-01 -.4292-00 -.4819-00 .4940-00
5.0", -.11,+0+00 -.3887-00 -.6947-00 .4738-00
5.5u -.120 5-00 -.3599-00 -.8801-00 .4480-00
6.uu -.1&+,7-00 -.3382-00 -.1059+01 .4184-00
6.~u -.1574-00 -.3184-00 -.1247+01 .3883-00
7.Uu -.17li4-0 0 -.2980-00 -01446+01 .3012-00
7.5u -,1793-00 -.2781-00 -.1638+01 .338b-00
B.OU -.1846-00 -.2611-00 -.1805+01 .3192-00
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TABLE 3.3 CONTINUED

CASE 5c
y2 =0.00

At =1. 50

A~ =2.50

'l'H =1.073

FRE,OJUENCY F G K C

.~u .95,+:5-00 -.257c-OO .9767-00 . .5271+-00

1.Ou .8205-0 0 -.1+71+0-00 .9093-00 .5203-00
1.5u .05~0-00 -.6210-00 .8041-00 .5082-00

2.0u .1+735-0 0 -.6955-00 .6088-00 .1+912-00

2.Su .3111-0 0 -.7156-00 .5109-00 .1+701-00
3.0u .170 4-00 -.7022-00 .3365-00 .1+1+65-00

3.50 .69.. 1-0 1 -.6700-00 .1530-00 .1+219-00
4.0u -.12... 2-01 -.6287-00 -.3141-01 .3975-00
4.Sv -.72go-0 1 -.5859-00 -.2085-00 .3730-00

':l.Ou -.1107 +00 -.5470-00 -.3730-00 .31+97-00

5.5u -.151.17-00 -.5141-00 -.5250-00 .3257-00
b.Ou -.1791-00 -.4800-00 -.6675-00 .3019-00
6.Su -.20.. 3-00 -.460~-00 -.8042-00 .2790-00
7.0u -.22b4- OO -.4365-00 -.9364-00 .2579-00

7.5u -.24448- 0 0 -.1+130-uO -.1062+01 .2389-00

a.Ou -.25;;3-0 0 -.:5909-00 -.1178+01 .2221-00

CASE 6c
y2 =0.25

At =1. 50
A~ =2.50

'l'H =1.279

FI<EuUE,.CY f' G K C

.5u .9454-00 -.2723-00 .9767-00 .5620-00
1.Ou .8000-00 -.4893-00 .9097-00 .5564-00
1.5u .6119-0 0 -.6202-00 .8061-00 .5447-00
2.0u .1+3uS-OO -.6745-00 .6724-00 .5267-00
2.5u .2772-00 -.681ti-OO .5118-00 .5034-00
3.0u .1510-00 -.6631+-00 .3261-00 .4777-00
3.51.1 .4822-01 -.6282-00· .1215+00 .4521-00
4.0U -.3079-0 1 -.5815-00 -.9081-01 .4287-00
4.~u -.8504- 01 -.5320-00 -.2956-00 .4071-00
5.0u -.12,1+00 -.4881-00 -.4822-00 .3856-00
5.5u -.1478-00 -.4530-00 -.6509-00 .3627-00
b.Ou -01692-0 0 -.4248-00 -.8092-00 .3386-00
b.5u -.leb6-00 -.4000-00 -.9644-00' .3147-00
7.(.)1.1 -.2055-00 -.3762-00 -.1118+01 .2925-00
7.5u -.21b6-00 -.353!;)-00 -.1266+01 .2728-00
8.(Ju -.22b2-00 -.3332-00 -.1399+01 .2554-00
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TABLE 3.3 CONTINUED

CASE 7e
y2 -0.333

At =1. 50

A~ =2.50

'I'H =1.389

FREQUENCY F G K C

.~u .9~75-00 -.2862-00 .9757-00 .5957-001·0U .17,+~-00 -.5042-00 .9068-00 .590:3-001.51.1 .571+2-00 -.6218-00 .801&-00 .5787-002.01.1 .:3931-00 -.6596-00 .66&8-00 .5593-00C:.Su .2475-00 -.650~-00 .5029-00 .53~5-00,3.0u .1290-00 -.6337-00 .3085-00 .5051-003.51.1 .31c6-01 -.5963-00 .8935-01 .4776-004.0U -.42.35-01 -.5473-00 -.140b-00 .4541-004.5u -.9169-01 -.4959-00 -.3&Ob-OO .4333-005.01.1 -.1219+00 -.4520-00 -.5561-00 .4125-005.51,/ -.14,7-00 -.4187-00 -.7295-00 .3891-006·01,/ -.l o U8-00 -.3928-00 -.892b-00 .3635-006.5iJ -.170 0-00 -.3700-00 -.1050+01 .3377-007.0U -.1934-00 -.3477-00 -.1221+01 .3138-007.5u -.20~1-00 -.3262-00 -.1381+01 .2930-00B.O"" -.21,31-0 0 -.3072-00 -.1525+01 .2747-00

CASE 8e
y2 =0.50

At =1.50

A~ =2.50

'I'H =1. 822

FREIOUENCY F G K C

.5u .8971-00 -.3474-00 .969:3-00 .750e-oo
1.0u .65~2-00 -.555~-00 .8880-00 .7529-00
1.50 .4200-00 -.6021-00 .7794-00 .7448-00
2.01.1 .2625-00 -.5779-00 .6516-00 .7172-00
2.51,/ .1579-0 0 -.5480-00 .485b-00 .6740-00
3.0U .721.16-01 -.5212-00 .2603-00 .6275-00
3.50 -.45'13-02 -.486.3-00 -.1942-01 .5875-00
4.0U -.0376-01 -.4375-00 -.3262-00 .5595-00
4.50 -.9679-01 -.38b9-00 -.b085-00 .5405-00
5.0u -.1119+0 0 -.3487-00 -.8341-00 .5200~00
5.~u -.1226+00 -.3237-00 -.1024+01 .4912-00
6.0U -.13~0-00 -.3053-00 -.1212+01 .4566-00
6.50 -.11+<10-00 -.2874-00 -.1422+01 .4219-00
7.01,/ -.lbl0-00 -.2b78-00 -.1649+01 .3919-00
7.51,/ ·-.lon~-OO -.2487-00 -.1865+01 .~685-00

a.ou -.1710-0 0 -.2330-00 -.2040+01 .~484-00
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TABLE 3.3 CONTINUED

CASE 9c
y2 =0.00
Ai =2.00

Ai =2.50

'I'H =1. 043

F,{E-.lUt:NC Y F G K C

.~J .95::;,3-00 -.2552-00 .9771-00 .5220-00
t.Ou .83.1.°-0 U -.470e,-00 .9107-00 .5151-00
1.!J1,) .66u6-00 -.6183-00 .8070-00 .5035-00
2.01,) .4801-00 -.694,+-00 .6736-00 .4872-00
2.5U .3177-0u -. 71~!J-00 .5183-00 .4670-00
.3.01,) .18~1-00 -.7020-00 .3474-00 .4442-00
3.~1,j .7677-01 -.6710-00 .168,3-00 .420,3-00
4.01,) -.'+497-02 -.6309-00 -.1130-01 .3962-00
14.~u -.6460 - 0 1 -.5897-00 -.1838-00 .3724-00
5.0u -.1092+ 0 0 -.5522-00 -.3447-00 .3485-00
5.~u - • .1.4 .. 0-00 -.520'+-00 -.4941-00 .3245-00
l" Ou -.17j4-00 -.4931-00 -.6345-00 .3008-00
6.::;'u -.19<;4-0iJ -.461:)~-OO -.7693-00 .2780-00
7.0u -.22<:5-00 -.4448-00 -.8997-00 .2569-00
7.5u -.2.....9-0 0 -.421b-00 -.1024+01 .2379-00
8.0u -.2575-00 -.3990-00 -.1139+01 .2211-00

CASE 10c
y2 =0.25

Ai =2.00
Ai =2.50

'I'H =1.278

F;';l:.t.Ut.r~cY F G I< C

.~O .9447-00 -.2730-00 .9770-00 .e,646-00
1.uU .7978-00 -.4892-00 .9110-00 .~586-00
1.50 .6093-00 -.6179-00 ·8091-00 .S470-00
2·00 .4294-00 -.6703-00 .6777-00 .!:l289-00
2.~0 ·2784-00 -.6771-00 .5195-00 .!:lO53-00
3.UO .1539-00 -.6596-00 .3354-00 .4793-00
3'~lJ .!:l183-01 -.6257-00 .1315-00 .4535-00
4.00 -.2724-01 -.5800-00 -.8081-01 .4301-00
4.50 -·8255-01 -.5310-00 -.2859-00 .4086-00
:'.00 -.1189+00 -.4871+-00 -.4726-00 .3873-00
;,·~u -.1448-00 -.4525-00 -.6416-00 .3644-00
0.00 -.lb64-00 -.4245-00 -.8004-00 .3403-00
6.50 -.1860-00 -.3997-00 -.9568-00 .3164-00
-'.OU -.2031-00 -.3759-00 -01112+01 .2942-00
7.50 -.2163-00 -.3531-00 -.1261+01 .2745-00
8.00 -.2258-00 -.3328-00 -.1396+01 .2!:l72-00
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TABLE 3.3 CONTINUED

CASE lle
y2 =0.333

Ai =2.00

A~ =2.50

'l'H =1.437

FREGIlJENCY F G K C

.5U .9328-00 -.2928-00 .9758-00 .6127-00
1.0U .7003-UO -.5094-00 .9078-00 .6081-00
1.~G .5~53-00 -.6173-00 ·8055-00 .~970-00

2. (,0 .:H79-UO -.6457-00 .6750-00 .~768-00

d.~lI .2392-00 -.6387-00 .5143-00 .~492-00

j.ou .1263-UO -.6163-00 .3192-00 .~191-00

,3.50 .3205-U1 -.5804-00 .9487-01 .4908-00
4.0ll -.4074-u1 -.5320-00 -01431-00 .4672-00
... 50 -.8843-01 -.4806-00 -.,3704-00 .4473-00
~.uu -01166+00 -.4371-00 -.5698-00 .4271-00
:,.5lJ -.1359-00 -.4048-00 -.7453-00 .4037-00
o.Ou -01530-UO -.3800-00 -.9118-00 .3774-00
0.5u -.1698-00 -.351>0-00 -01081+01 .3~OA-00

7.0U -.lb47-00 -.3362-00 -.1255+01 .3264-00
7.~J -.1956-00 -.3150-00 -.1423+01 .3053-00
n.llU -.2032-00 -.2964-00 -.1573+01 .2b69-00

CASE 12c
y2 =0.00

Ai =3.00
A~ =2.50
'I'H =0.998

FRt.(.UEIICY

.5l1
1.(11,)

1.~u

2..UU
2.50
,).(,0

,3·5U
... (;u
... :,u
~.OU

~.~CJ

6.UU
6.~U

7.(;0
-,.';}O
e.lIU

F

.9562-00

.8350-00

.6653-00

.4847-00

.3213-00

.1865-00

.8079-01
·~126-U3

-.5918-01
-.1040+00
-01394-00
-01696-00
-.1966-00
-·2207-00
-·241~-OO

-.2586-00

G

-.2535-00
-.4688-00
-.6182-00
-.6963-00
-.7183-00
-.7052-00
-.6737-00
-.6345-00
-.5949-00
-.5593-00
-.5289-00
-.5029-00
-.4794-00
-.4567-00
-.4344-00
-.4130-00

K

.9771-00

.9106-00

.8067-00

.6734-00

.5190-00

.3505-00
01755-00
.1273-02

-01656-00
-.3212-00
-.4660-00
-·6020-00
-.7322-00
-.8578-00
-.9776-00
-01089+01

c

.5181-00

.!:illZ-00

.4997-00

.4b37-00

.4640-00

.4418-00

.4181-00

.3940-00

.3699-00

.3457-00

.32H-00

.2975-00

.2747-00

.253&-00

.2344-00

.2174-00
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TABLE 3.3 CONTINUED

CASE 13c
y2 =0.25

AI =3.00

A~ =2.50

'l'H =1.315

FREQUENCY F G K C

.50 .9~O3-00 -.2796-00 .9771-00 .5810-00
1.00 .78..2-00 -.4950-00 .9119-00 .0755-00
1.50 .5904-00 -.6150-00 .8124-00 .5641-00
2.00 .41.31-00 -.6578-00 .6846-00 .0'+51-00
2.50 .2687-00 -.6600-00 .5291-00 .5199-00
3.00 .1499-00 -.6422-00 .3447-00 .4922-00
3.50 .5119-01 -.6097-00 .1367-00 .4653-00
4.00 -.2621-01 -.5649-00 -.8197-01 .4416-00
... 50 -.7988-01 -.5160-00 -.2930-00 .4206-00
5.00 -.1144+00 -.4729-00 -.4831-00 .3996-00
5.50 -.1387-00 -.4391-00 -.6540-00 .3765-00
0.00 -01593-00 -.4123-00 -.8156-00 .3517-00
0.50 -.1786-00 -.3884-00 -.9771-00 .3270-00
7.00 -.1954-LlO -.3651-00 -.1140+01 .3042-00
7.50 -.2081-00 -.3425-00 -.1296+01 .2843-00
8.00 -.2169-00 -.3225-00 -.1436+01 .2668-00

CASE 14c
y2 =0.00
AI =4.00
A~ =2.50
'l'H =0.996

FHEQUENCY

·50
1.00
1.50
2·00
2.50
3.00
3.50
".00
4.50
5·00
5.50
0.00
6.50
7.00
7.50
8.00

F

.9567-00

.8304-00

.6669-00

.4855-00

.320900

.1855-00

.8022-01

.7602-03
-.5829-01 .
-.1028'00
-.1384-00
-.1687-00
-.1960-00
-.2206-00
-.2420-00
-.~601-00

G

-.2532-00
-.~690-00

-.6198-00
-.6992-00
-.7213-00
-.7077-00
-.6756-00
-.6365-00
-.5977-00
-.5630-00
-.5336-00
-.5084-00
-.4858-00
-.46~0-OO

-.4426-00
-.4218-00

K

.9768-00

.9096-00

.8045-00

.6701-00

.5149-00

.3467-00

.1733-00

.1876-02
-.1616-00
-.3139-00
-.4554-00
-.5879-00
-.7143-00
-.8356-00
-.9512-00
-.1059+01

C

.5171-00

.5101-00,

.4985-00

.482S-00

.4629-00

.4407-00

.4170-00
.•3927-00

.3083-00

.3438-00

.3193-00

.2953-00

.2724-00

.2511-00

.2319-00

.2147-00



APPENDIX C

EXAMPLES OF DESIGN CALCULATIONS

The purpose of this appendix is to provide several

examples indicating the procedure to determine the amplitude

of vibration of a foundation subjected to harmonic forces.

This will include an example where the soil properties co­

incide with one of the cases from Table 2.2 and the mass

ratio with one of the values considered in Chapter 5 and

so the curves from Chapter 5 are directly applicable.

Examples will also be presented where the impedance coef­

ficients are determined by using the results of an equiva­

lent isotropic soil (having the same y2 as the anisotropic

soil) and the anisotropy is accounted for by using the

correct expression for the static stiffness, as explained

in Chapter 5.

C.1 VERTICAL VIBRATION PROBLEM

Consider a machine foundation, five feet in dia-

meter (r o = 2.5 feet) which has a total weight, W of 22500

Jbs. This includes the dead weight of the machine and the

concrete footing. Operation 6f the machine results in an

unbalanced force with an amplitude of 5000 1bs. The soil

underlying the foundation has the following properties:

Crr = 24000 psi
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G = 6000 psi (y 2. = 1/4)

CAl
2.

3.0)ezz = 8000 psi =

Ys = 120 pcf (soil unit weight)

Determine the maximum amplitude of vibration and the fre­

quency at which it occurs.

The factor ~v is first calculated from eqn. 3.11.

'¥v - -
A1(~ - 2)

=
~(1 - ),1)

-1.732(4.0 - 2) =
4.0(1 - 1.7321) 1.1831

where ~ was obtained from Table 2.2, since we note the soil

properties above correspond to material case 13. The di-

mention1ess mass ratio is now determined from eqn. 5.15a

~v ~1 1. 183
Bv = T pr-3- = 4

o
22500/386.4 = 3.549

(120/386.4)(2.5)3

Neglecting material damping, we obtain from Figure 5.16 a

maximum dynamic magnification factor of 2.54 at a dimension-

less frequency of 0.47. The circular frequency is then

found from
c 2

til = ao r o

where Cz is the shear wave velocity in the distorted coordin­

ate system,

c ­2 - G/p = 6000 x 144 x 32.2/120 = 481 ft./sec



4 x 6000 x 2.5 x 12 = 608,622 lbs/in.
1 .183
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thus w = 0.47 . ~~~ = 90.8 rad/sec (14.5 cps).

To determine the amplitude of vibration we also need the

static stiffness from eqn. 3.19

4Gr o
Kv = '¥ V =

Now from the definition of the DMF q 5 14, en. . ,

DMF = IpJKI = 2.54

where P is the unbalanced force. Thus

5000
A = 608672 x 2-.54 = 0.0209 in ..

This vibration amplitude would now be compared with the ac­

ceptable criteria to determine if the foundation design is

adequate.

C.2 VERTICAL SINGLE - CYLINDER COMPRESSOR

This example is taken with slight modification,

from page 360 of Richart et al., ref (25). A vertical

single cylinder compressor develops periodic forces which

can produce a vertical motion of the machine and its foun­

dation block. The weight of the compressor plus the motor

is 10,900 lbs. and it develops a periodic force of 11 ,400

lbs. at 450 rpm. The compressor is to be supported on a

foundation resting on a silty clay with a shear wave velocity

of 806 ft/sec. and a unit weight of 100 p-cf. Thus G is
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14000 psi. Poisson·s ratio is 1/3. The maximum acceptable

amplitude of vibration is 0.0021 in.

For initial sizing purposes, set the radius of the

footing to yield a static displacement of 0.0021 in. when

subjected to a force of 11400 1bs. Thus

A = (l - v)P =
4Gro

0.0021 = .667 x 11400
4 x 14000 x r o

or r o = 67.9 in = 5.66 ft.

Use r o = 6.0 ft.

Richart et a1. uses an equivalent SDOF representation

for the machine-foundatiori-soi1 system where the mass is

the total mass of the machine and foundation, the stiff-

ness is the static stiffness of the soil and the percent

critical damping (for vertical vibrations) is found from

t3 = 0.425
Bv

This expression can be derived from eqn. 5.11 herein, by

assuming a constant value for c of 0.85 and ignoring the

virtual mass ratio, Bv*'

Assuming a 3ft. thick foundation, the weight of

the foundation is

2
Wf = IT (6) (3)(150) = 50,893 1bs.
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The total oscillating weight is

w = 50,893 + 10,900 = 61,793 1bs.

The dimensionless mass ratio is then

By
( 1 - v) M (.667) 61793/386.4 0.4768= --3 = =4

Pro
4 (100/386.4) (6) 3

The damRing ratio is

S = .425 = .425 = 0.6155
By .4768

To determine the material frequency, we first need the

spring stiffness

4Gro 4 x 14000 x 72 6K = ---- = - 6.048(10) 1bs/in.
y 1 - v .667 -

Thus

therefore f n

6
6.048(10) (386.4) =

61793

30.95 cps

194.5

The operating frequency is

f = 450 rpm = 7.5 cps

or ()J = 21T f = 47. 12 ; w/ Wn = . 242
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The DMF is from eqn. (5. 14)

DMF = 1

or

DMF = 1
-------~------- = 1. 1197

11400
~ = = 0.0021

6.048(10)6

This is equal to the allowable value and therefore the

motion satisfies the criterion.

The problem will now be repeated for an anisotropic

soil· For comparison purposes assume the shear modulus, G
2 2

is the same and the value of Y is the same (Y = 1/4 for
2Poisson's ratio of 1/3). Take Al = 2.0 thus

2
C = G/Y = 56000 psirr

Calculate '¥v

2= C /1.. 1rr = 28000 psi

Al(~ - 2) _ -1.414(2.73 - 2~
'¥v - - ~(l - Al) - 2.73(1 - 1.414 = 0.9133

The value of ~ was taken from Table 2.2, case 10. Sizing
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the footing again by static considerations,

~ =
'I' yP

0.0021 = 0.9133 x 11400
~= 4 x 14000 x r or o

or r o = 88.53 in. = 7.38 ft.

Use ro = 7.5 ft.

Assume the footing must be 3 ft. thick for simplicity, thus

the weight of the foundation block is
2

Wf = ~(7.5) (3)(150) = 79,522 lbs.

The total oscillating weight is

W= 79,522 + 10,900 = 90,422 lbs.

The dimensionless mass ratio is then

B = !.Y. _~1_
4 3

Pro

= (.9133)
4

90422
100(7.5)3

= 0.4894

The damping ratio is

s = .425 = 0.6075
Bv

The static spring constant is found from

4 x 14000 x 7.5 x 12 = 5.518(10)6 lbs
.9133 in.
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6
5.518(10} (386.4) = 153.56 rad.

9Q422 sec.

Wntherefore f n = 2; = 24.4 cps.

Recall the operating frequency is

W = 47.12 rad/sec., therefore

W/W n = 0.307

The DMF is

Dr1F = 1---------=--------- = 1. 212
[[1 - (.307)2]2 - 4(.6075)2(.307)~

or _6_ - 1.212P/K v -

tJ. = 11400 x 1.212 = 0.0025 > 0.0021
5.518(10)6

Thus the design ;s inadequate.

Repeating the computations above using r o = 10.0 ft. yields:

Wf = 141,372 1bs .

W = 152,272 1bs.

By = 0.3477

e = 0.7208

Ky = 7.357(10)6 1bs/in.
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Wn = 136.64 rad/sec.

w/w n = 0.3449

DMF = 1.3748

~ = 0.0021 = the design allowable,

OK.

Thus for the vertical vibration problem considered

here, where the anisotropy can be measured by Al , a signi­

ficant difference is noted between the )sotropic and aniso­

tropic designs.

C.3 ROCKING OF A RADAR TOWER

This example is again taken from Richart et al.,

ref (25), page 376. The rotation of a certain radar

antenna induces transient pulses in the tower which may

cause the tower to rock a; its natural frequency because

of the flexible connection to the soil. The tower is con­

sidered rigid. The supporting soil has a shear modulus,

G = 20,000 psi, and if considered isotropic, a Poisson's

ratio of 1/3, and a unit weight, Ys of 100 pcf. The

foundation diameter is 60 ft. and the mass moment of inertia

'of the entire system about a diameter through the base is

I = 80.545(lO)61b-ft-sec~ Consider a constant moment ex­

citation of PM = 212,000 ft-lbs.

Determine the amplitude of vibration for this

system for several degrees of anisotropy (as measured
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2
again by AI)' The value of Y will be taken as 1/4 in

all cases (in the isotropic case this is equivalent to a

Poisson's ratio of 1/3).

The following formulas will be required.

r'1ass ratio:

3'¥ V I
BR = --8- pr-s anisotropic

o

= 3(1 - \I)
BR 8

I isotropic

Percent damping (from references 2 and 25):

s = 0.15

Static stiffness:
8Gr 3

o

3Gr 3
K = 0

R 3(1 - \I)

anisotropic

isotropic

Natural frequency:

= _1~KR
f n 271' I
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Frequency for max. amplitude (25);

f max = f nV1 - 2t3 2

~aximum amplitude of vibration (25):

With the given data and the above formulas the following

table is easily prepared.

TABLE C.l

Results for Sample Problem C.3

lsotroplC
A 2_ A 2 = A 2 =v = 0 1.5 2.0 3.01 - 1 1

BR .2665 .3165 .365 .4729

e .2294 .2025 . 1819 .1481

KR
ft - K 3.n(10)8 2.619 ( 10)8 2.27 (10)8 1 .75 (10)8- rad.

f 9.89 9.08 8.45 7.42
n ' cps.

f max ' cps. 9.355 8.7 8. 17 7.26

!J. , rad. 1.526(10)~ 2.041 (lOf 6 2.61(10r
6 4.135(10r 6
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As tne anisotropy increases, the mass ratio

BR increases and the radiation damping ~ decreases which

leads to a significant increase in the amplitude of the

response. The acceptable rocking amplitude for radar

towers is approximately 5(10}~5 rad. and so all the cases

shown in Table C.l would be satisfactory. However, for

certain designs the degree of anisotropy could be the

determining factor.
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