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This report is in Tine with the modified work plan Sﬁbmitted with
the supplement to the original proposal. Following the recommendations of
- the reviewers, and‘at the request of the National Science Foundation emphasis
was to be placed on the experimental aspect of the research, with some
analysis involved. All éspects have been covered, and the goajs of the
inyestigation reached.

The investigation has resulted in two doctoral dissertations and one

Master's dissertation:

Doctoral Dissertation 1: "The Effect of Anisotropy and

_ Strain on the Dynamic Properties of Clay Soi1s",zby Gary

F. Bianchini.

Master's Dissertation: "The Behavior of Clays Subjettéd

to Slow Cyclic Loadings", by Louise P. Shook.

Doctoral Dissertation 2: "Steady State Response of a

Circular Foundation on a Transverse Isotropic Medium!

by David J. Kirkner.

Part I.of this final report gives a“comprehensive summary" of the
first doctoré1 dissertation. A copy of the detailed text will be forwarded
to the National. Science Foundatioﬁ as soon as it is ready; in the very near
future.

Part II is the integral text of the Master's Dissertation.

Part III is the integral text of the second Doctoral Dissertation,

Parts I and II are mostly experimental in nature and Part III

anatytical. The experiments in Part I were all conducted on thin long



hollow cylinders in a modified Drnevich resonant column with the strains
Timited to the range attainable in this device. Those strains‘were below
1073, Within the framework of the whole study those strains are referred to
as small. Howéver, within the framework of Part I, and the use of the
resonant column, 107> is considered a large strain compared to 10™° which
the device is capable of measuring.

The experiments in Part II, i.e. in the Master's Dissératation, were
all conducted in SPAC, a pneumatic analog computer capable of applying
multidirectional states of stress in a slow cyclic way on thin long hé??ow
cy]inders:

The Doctofa1 Thesis in Part III is mathematical and solves the problem
of the.circular footing resting on a semi~infinite cross anisotropic medium
and subjected to axial, torsional and rocking excitation., In this analytical
study, some results obtained in the resonant column tests of Part I provided
ample justification for the use of a simplifying relation which led to a
closed form solution of a soil-structure interaction problem as of now
unsolved. Thus,'a1though the revised research proposé] and the mbdified
work pTan did not intend to stress theoretical analysis, that aspect of the
inyestigation has‘been very well served by this research.

A1l three parts will soon be prepared for publication in scientific

and professional journals.

Respectfully submitted,

YL dpeole

7 Adel S. Saada
Principal Investigator



PART I

THE EFFECT OF ANISOTROPY AND STRAIN ON THE

DYNAMIC PROPERTIES OF CLAY SOILS

(This is a comprehensive summary of the Thesis)
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INTRODUCTION AND PRELIMINARY INFORMATION

The mechanical behavior of saturated clay soiis has been intensively
investigated in the last 25 years within a framework valid only for isotropic
materials. It is only relatively recently that researchers have started
thinking in terms of determining the mechanical properties of clays taking
into account their natural structural and mechanical anisotropy. It is a well
established fact that deposition, followed by one dimensional consolidation,
arranges the clay particles and results in bonds such that the material
acquires the‘propefty of cross anisotropy with the axis of symetry along the

direction of consolidation.

In a linearly elastic material the behavior is described by 5 constants.

Following Lekhnitskii (8) the stress-strain relations are written (Fig. 1)

e, = w0 -vo ) - r =1
x E V%V TET % Txz = G Txz

| -1

. Yoz ~ G oz
e=l(c-vc)-v—c Y =1 .
y E VYVy "x* LE' "z yz G' ‘yz m
=_,1’_L o .'r._-l_- =]_ =2]+\J

2 T (o + oy} + g7 o, Yy~ B Txy E xy

E and E' are the Young's moduli with respect to the diréction lying in
the plane of isotropy and perpendicular to it; v is the Poisson coefficient
which characterizes the transverse reduction in the plane of isotropy for
tension in the same plane; v' is the Poisson coefficient which characterizes
the transyerse reduction in the plane of isotropy for the tension in the directional
normal to.it; G' and G are the shear moduli for the planes normal and parallel to

the plane of isotropy respectively. For a constant volume material » = 0.5 and

E ,
EY+ v ="1; 1in this case, three measurements, namely those of E, E' and G are

1

. 0.5



sufficient to describe the elastic response.

The Drnevich resonant column allows one to measure L' énd G* on
the same vertical specimen, It is of the fixed-free type and provides means
to excite the specimen to resonance in the axial mode and in the torsional
mode. This gives E' and G*, Elis'then measured on a horizontal specimen,
which, in all respects, is {dentical to the vertical except that it is
rotated 90 degrees.

Even under very small strain the response of clay involves a certain
amount of material damping. This damping can be measured in the resonant
column from the decay of the resonant strain amplitude or by the magnification
factor method.

The resonant column can also be used to establish response curves for
varioys levels of stress excitation. Such response curves are an excellent
tool to investigate the validity of presently used models.

The theory behind the use of ‘the resonant column and the various -
approximation it involves can be found in the soil dynamics Titerature. They
will also appear in detail in the Doctoral Thesis of which this part of the

report is a condensation (2).



TESTING EQUIPMENT, SAMPLES PREPARATION
AND MATERIALS PROPERTIES

The Drnevich resenant column was modified to accomodate thin, Tong,
hollow cylinders and equipped with a central piston rod through the base

plate. This rod moves along the axis of the hollow cylinder and can be

- fastened to the top cap with-a bayonet type of lock. It 1is used to apply

torsional and axial Joads prior to the shaking of the specimen and is actuated
by a pneumatic servomechanism programmed to maintain Ko consolidation
conditions when desired. Axial and torsional motions at the top of the
specimen are monitored by accelerometers.

To obtain cross anisotropic specimens clay slurries in a very fluid
condition were consolidated in a large oedometer to a pressure high enough
to allow for hollow circular cylinders to be trimmed from the fesu]ting
-blocks. The vertical specimens (Fig. 1) were placed between two membranes.
“The cell's pressure was then slowly increased while the pneumatic servomecha-
nism aytomatically applied the necessary axial force to maintain a K, consoli-
dation condition. After the final cell pressure'was reached, enough time was
allowed for complete equilibrium. The axial Toad was then released and the
specimens allowed to rebound under the cell pressure EC. This procedure, while
resulting in a small overconsolidation in the vertical direction, gives a
highly oriented-clay fabric -(9) and excellent reproducibility. Different-
final cell pressures and back pressures yielded different moisture contents.

The horizohtal specimens that were tested in the resonant column
were trimmed from clay blocks which had been subjected in the large oedometer
to an axial pressure egual to the one indicated by the servomechanism during

the one dimensional consolidations of the vertical specimens in the cell.
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They were then placed in the cell and allowed to reach equilibrium under
the effective pressure of the corresponding vertical specfmen.'

To obtain isotropic specimens the clay was hand mixed and kneaded
with that amount of water which would give it the minimum stiffness compatible
with the trimming and the placing of the hollow cy?inders in the cells. It
was stored for two weeks in a 100 percent humidity room. Trimming was followed
by consolidation under the desired hydrostatic pressure and enough backpressure
to insure saturation. In all cases the samplies had an ocuter diameter of 2.8
in., and an inner .diameter of 2 in., The Tength was approximately 5 in.

Two materials were used; a kaolinite clay known as Edgar Plastic.Kaolin
and an i1Titic clay known as Grundite. The first has a liquidilimit of 56.3%,
p]aStic Timit of 37.5% and a specific grayity Gs’of 2.62; the second has a
liquid Timit of 47.80%, a plastic Timit of 24.96 and a specific gravity GS of
2,7. A considerable amount of data on the static behavior of these clays
has been published (]0,11)1 A salient feature of Ko'consolidated clays is
that they behave totally differently in extension and compression. While
such a behavior cannot be detected at the small strains involved in the
resonant column it i1s very clearly seen at the larger strains reached in
classical triaxial cells. Fig. 2 shows results of compression, extension and
pure torsion tests on both'K0 consolidated (anisotropic) clays and isotropic
clays for two consolidation cell pressures (11). The anisotropic c}ay is

more. ductile in extension than in compression as well as much weaker.



EFFECT OF THE WATER CONTENT
ON THE MAXIMUM VALUE OF THE MODULT

~Each of the clays used gave a different water content for the same
consolidation pressure. A straight Tine relation on a semi-lTogarithmic plot

held true for all clays. This relation 1s represented by

W% = C1 + C2 log EC » (1)

where W is the water content, C] and“C2 constants and 5C'the consolidation
pressure. Each clay had its own C1'and CZ‘

Similarly, each clay gives‘a.different value of E, E' and G' depending
on the water content and the strain, Fig. 3 shows the variation of the
moduli with the water content for the smallest strains obtained in this

investigation. Such strains are in general close to 2 X 10—5

5

in the shear
mode and 0.15 X 1077 in the longitudinal mode. The re]ationsllook reasonably
1inear and, for the same water content, differences as high as 100 percent exist
between isotropic and anisotropic clays.
In Fig. 4, the value of E for the anisotropic clay is compared to that of 3G.

The two should be equai for a constant volume material where v = 1/2. The

values are practically identical. The assumptions that the volume is constant

and that the clay-water acts 1ike a single materid] are thus quite justified.
Also plotted in Fig. 4 are the values of 3G' for the two K0 conso]idatéd clays.
They lead to lines falling between those of E and E'. While for one clay the
ratio'EE- decreases as W% increases, it is the opposite for the other one.

If one wishes to ignore anoisotropy, three times the value of G' is a reason-

ably good approximation for E and E'.

A careful examination of the Hardin and Black equation (5) and an

5 B



analysis of its parameters in the Tight of the experimental data, led

to the conclusion that it can adequately be used to predict the maximum
values of the moduli for normally consolidated clays; provided its constant
H is experimentally obtained, Thys

Gméx 'HG

(2:973 « )2 (; }i0-5
= Y ¥re (2)
Emax R "e c

where H is to be determined in the shear or the axial mode. Fig. 5 shows
actual experimental data fitted with the Hardin and Black equation. The con-
stant H is 1359 for the'K0 consolidated Kaolinite and 1538 for the isotropic
Kaolinite. While these values are different from the 1230 given by Hardin
and Black, these differences are not as large as the one obtained with the
Grundite clay; its value of H being 595 (1).

In the solution of the problem of wave propagation in elastic media,
the elastic constants have often been assumed to be related to each other by

the equation
T _ _E'
e S S
’E“-(-’E) T B

for the constant volume materials (see Part III)., The motivation for using

this constraint appearé to be the resulting mathematical simplifications.

From Egs. 1 and the constant volume  conditions we have

E
E
4 - £

G =



so that the assumption reduces to

G _ E
' E

Tabulated results in the Thesis (2} show that this relation is quite

satisfactorily supported by the experimental data.



EFFECT OF OVERCONSOLIDATION

ON THE MAXIMUM VALUE OF THE MODULI

A1l anisotropic specimens were prepared by K0 consolidation. Prior

to testing, the vertical pressure in excess of the cell pressure was

removed; so that there was a slight overconsolidation in the vertical

direction compared to the lateral one. Additional overconsolidation

was obtained by allowing the specimen to reboupd under a reduced cell

pressure.

(or octahedral) normal pressures.

The overconsolidation ratio is defined in terms of mean

With its overconsolidation term included, Hardin's equation is

written

(ocr)k =

H F(e) (EC)O'S

(3)

For a constant H of ‘1359 previously obtained for K0 consolidated

Kaolinite, for a plasticity index PI = 19% (K=0.172) and with the

measured value of G%a

computed using the Hardin and Black equation.

X

one can compare the actual (OCR)K to that

A Targe number of tests -

with three overconsolidation ratios and various cell pressures were

conducted; the results of which appear in the following table:

OCR (OCR)K measured- (OCR)K~averagef (OCR)E fromH & B

1.294

2.81 1.287 1.285 1.194
1.275
1.211

5.63 1.253 1.248 1.35
1.281

11.26 1.268 1.268

1,517



While the values obtained from the Hardin and Black equation increase, the
experimental values slightly decrease or can simply be considered to be
unaffected by the overconsolidation ratio.

Fig. 6 gives the relation between Gimax and the water content for
various overconsolidation ratios. Such curves are seen to be paraliel to
each other. Therefore, if one knows the relation for a normally consclidated
clay and the value of G‘max for another overconsolidation ratio and one water

content, one can obtain the shear modulus for any other water content.



EFFECT OF LARGE DISTURBANCES
ON THE ‘MAXIMUM VALUE OF THE MODULI

The central piston rod through the base of the resonant column was

used tc apply to the top cap'of the hollow cylinder axial and torsional defor-
mations. One full cycle in either mode was usually applied with a period of
approximately 30 seconds. Immed1§te1y after, E max and G nax “ere measured
and their value recorded as a function of time.

The table below shows the properties of the specimens on which the

tests were conducted:

5. (Psi) |Compress. Strength KOCU Tensile Strength KOCU Pure Torsion KOCU

40 ' 75.4 Psi ’ 54.4 Psi ' 34.5 Psi
60 . 96.6 Psi 77.0 Psi - 48.5 Psi
90 . _ )

Various-:stress levels were applied and the moduli measured at frequent
intervals. The pore water pressure increased monotonically and never dropped to
zero even when the stress was removed. There always remained a residual pore
pressure with the residual strain.

Gl
m

Fig. 7 shows kG'max) ax

as the function of time for various values of

initial

disturbing stresses (compare to the failure stress shown in the above table). The
regain 1in G‘max is Tinear as a function of the logarithm of thé time; but this
regain did not show sighs of ever becoming complete.

10
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_ E!
Fig. 8 shows similar results for — X .
E _
max)in-"rti'a?.

It is obvious that at least the pore water pressure and the permanent strain
with the change in structure it involves are responsible for the tack of

. . . .
total regain of G X and E max” It was not possible to separate the 2
effects since opening the drainage would result in a change in the water
content. Additional information and data can be found in the body of the

thesis of which this is a condensed version.



EFFECT OF STRAIN ON THE MODULI

Hardin and Drnevich (6) collected a large amount of data and

suggested a hyperbolic relation between the shedr modulus and the shear strain:

e 1 Y (7)

where G is the secant modulus at a given strain and G is obtained from the

tangent at the origin of a stress-strain curve. G was judged to be well

max
represented by the values obtained in a resonant columm for strains of the

order of 10"5. Eg. 7 implies a finite negative slope at zero strain when the

relation between g G and ¥ is drawn on a normal scale. Such a finite negative
stope is in contrag?ztion with the results of all the tests conducted in this
‘inyestigation. -The semi logarithmic represeﬁtation which is very much in use
results in a distortion of the graphs that makes it difficult to study their .
true shape at very small stfain. On the other hand'the Ramberg-0sgood réﬁre~
sentation allows for a zero slope ai zero strain provided R:> 2. Fig 9 shows
the re1ations between the moduli E, G, E', G' for both K0 consolidation of
pressures are illustrated in semi-logarithmic fokms., Such graphs do not seem to
contradict the‘genefa? slopes published in the Titerature; but when the same data
is plotted én normal scales, the curvatures for small strains are in the opposite
direction, |

Fig. 10 shows the normalized values of E' and &' versus strain on a
normal scale for K0 consolidated anisotropic clay; Fig. 11 shows the normalized
values of E and G for isotropic elay. - Notice that in all cases the curves have
a horizontal tangent near the zero strain. This as mentioned previously is in
contradiction with much of the data accumulated by Hardin and Drnevich (6) and

~Hall (4), This point will-be-looked at in more detail in the section on

-nontinear behavior,
1?2
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It is believed that the large amount of data obtained in this inves-
tigation have reasonable weight when compared to the collection made by
Hardin and Drnevich. The differences may have been caused by the differences
in testing devices. The resonant column used in this investigation is a
true fixed-frée column and does not require assumptions or involved equipment
calibration. Further comparative studies are suggested along this Tine.

While it is quite tempting to assume that the material behaves in
the same way whether it is excited in the axjal or the torsional mode, such
an assumption would be totally unjustified. Figs. 9, 10, and 11 show that
the strains investigated in the axial mode were about one one order of magnitude
sma]]er.than'those investigated in the shear mode. Cross anisotropic c]éy
behayes totally différent1y in extension and in compression, and the
difference becomes more noticeable (since it can be more easily measured) as
the strains get Targer, This will be shown very clearly in‘Part‘II of this

report.



THE RAMBERG-0SGOOD REPRESENTATION

The relation between the modulii and the strain can be expréssed
in terms of the Ramberg-Osgood equation. While other equations have been
proposed, Rd seems to be the most popular. It can be written in various
forms depending on the_variabTes to be represented. One form is
i=—"—{1+a !LlR.']] (4)
v Ty Tp

o and R are the RO constants and-Yr and T are reference shear strain and

shear stress to be chosen in the most convenient way. T and Yr have been

-

. . . . ax

chosen by Hardin and Drnevich as shown in Fjg. 12 as T = Toax and Yr = Gm .
' max

Also the ratio é-can be replaced by G where G is the secant modulus, so that

Eq. 4 can be written:

G _ ] _ 1
6y R-1 : R =1 (5)
1+ull_ I 1+ Yl
max max r
Y will be chosen as 10-4 which means that = 10'46 G and v are
r _ ’ max max’

experimentally obtained for various levels of excitations in the resonant

column; Gma¥ corresponds to the smallest Tevel. Equation b can be written:

= loga+ (R-1) 309|GG ~—17ﬂ

max 10~

(6)

G

Jog| A% _ 4
Thus a plot on a double 1ogar1£hmic paper yields o and R. Values for o and R
will be given in the section on damping and ‘its relation to the moduli. Similar
equations can be written for Young's modulus E. If one deals with cross aniso-
tropic materials, then depending on the direction of the shear and of the axial

force on the specimen G and E are changed to G' and E'.

14



DAMPING

Two methods are available for measuring damping in the resonant
column: The logarithmic decrement method and thelmagnification factor
method, For larger strains an average logarithmic decrement would give
slightly erroneous results; the decaying amplitudes must be tooked at two
or three at a time. Both methods were used in this 1nvestigation with more
weight given to the magnification factor method. Fig. 13 shows typical decay
cyrves for small and large strain.

The strain in the Jongttudinal direction was much smaller than in the
torsional diréction because of the high axial rigidity of the specimen. Fig.
14 shows the damping ratie as a function of the strain, in the axial and the
torsional directions, for anisotropic and isotropic materials; and for various
conso]idation pressure. One notices that there is practically no difference
among the various consolidation pressures; {i.e. the various water contents
- and that no sighificant feature differentiates the isotropic from the anisotropic
~clay. ' Dobry (3) refers to more than one mechanism coming into play and influencing
the damping as the pressure varies. He refers to two private communications and
presents data showing damping to first increase and then decrease as the consoli-
dation pressure jincreases, -

Another feature common to all the curves is the existence of a minimum
damping Amin: It is not known whether this damping is affected by the equipment>
or onTy due to the material. It varies however with the type of clay. The
value for the Kaolinite varied between 1.35 and 1.6 and that for the Grundite
varied between 2.08 and 2.12. Thus the total damping seems to be due to two
components: one connected to the nonlinear force-displacement relations of the -
~clay and the other, which shall be called A ; . whose origins are not quite

c]eaf.
15
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A
"“(measured) w?

AL xwz
“min. n

One way of normalizing damping data is to plot

versus the strain. The ratio of the squares of the frequencies is equivalent
to ﬁ—g— . Fig. 15 shows graphs for both Kaolinite and illite clays; Graph (a),
for Egglinite includes both normally consolidated and overconsolidated aniso-
tropic material; Graph (b) for kaolinite involves normally consolidated
“isotropic material at various conso{idation pressures; Graph (c) for illite
involves normally consolidated:anisotropic material. An examination of those
three graphs shows that there does not seem to be much differences among
normally consolidated, overconsolidated, isotropic and anisotropic clays;

the values, however, vary from clay to clay; note the difference .in slopes

between the kaolinite and il7ite clays.



RELATION BETWEEN SHEAR MODULUS AND DAMPING RATIO

Hardin and Drnevich (7) proposed a simple relation between the

damping ratio.and the shear modulus. Their equation is written
G
A=) (} - <> (8)
max Gmax

If one takes into account Apin® 2 plot of a measure of the damping versus

(. ol G j) should therefore yield a straight 1ine. Fig. 16 shows
- max

2
w
n G o o .
(}measured F‘Tirflmié> versus ( - Gmax> ; Fig. 16 (a) is a plot for

anisotropic kaolinite, Fig. 16 (b) for isotropic kaolinite, Fig. 16 (c) for
illite and Fig. 16 (d) for overconsolidated kaolinite. Such plots can be very

adequately represented by strainght lines showing that a relation of the type

in would be quite édequate.

The slope of those lines is related to A_..» Or, as will be shown later, to the

represented by Eq. 8 corrected for the effect of Ani

coefficient R of the Ramberg-0sgood equation.

17



NONLINEAR BEHAVIOR

Ctays are nonlinear materials of the strain softening type. They
result in hysterisis loops whenever they are subjected to cyclic loading.
Such loops seem to be independent of the rate of loading within a large range
of frequencies. Tests in the resonant coiumn result in strains falling within
the nonlinear .range. The strain response is not proportional to the excitation
for ‘a given frequency. |

A model predicting the dynamic respohse "could" have in it a nonlinear
spring and a dash pot whose equivalent viscosity coefficient is inversely
proportional to the frequency; this characterises hysteritic damping. Static
stress-strain curves are often represented by the Ramberg-Osgood equation and
referred to as backbone curves. The hysteresis loops are built around those
backbone curyes with the loading and unloading parts following Masing's criteria.

An attempt to use non1inear theory was made by Hall, but his data differed
considerably from the predicted values. The curvature of the line expressing
the variation of the resonant frequency with the strain did not fit the predic-
tions.:of Pisarenko's work, Such predictions however agree reasonably well with the
results obtained in this research. However, while Pisarenko used Davidenkoy's
formuiatioﬁ'to express the stress-strain relations, Ramberg~0sgoodts was used in
this research; its flexibility has made it quite popular in recent years.

The governing differential equation is that of a‘materiai with hysteritic
damping and.nonlinear stiffness

Mx + 2cX + P(x) = F Cos wt (9)
Xy 0

18
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which is non-dimensionalized to read (FigL 17)

.. y P
.).:.(_ + 2. )—()5— +§—(—)£—)= --O—COSnT (10}

1t is solved by the method of s1ow]y-varyihg parameters by assuming

X
= ig' Cos(nt + ¢) (11)

X
X
Y Y

X
where ;9 and ¢ are the slowly varying parameters.

Y.
P(x) = stress-strain loop of the Masing type
_ W
T
n
o, = natural frequency of small oscillations
T = uwt

n
“When averaged over the cycle the solution yields(7):
Response Curve

& wz(XO) ' F0 : X ' ’ ‘
w2 e — = o(x) £\ (52 (5 -[—S(xowzxmml (12)

At Resonance

F |p
BB - [ steg) + ) 03
mz(xo)
Clx,) = —=2 (14)



In the equations above,

2n .
X X

s(x,) = ;(1 %f —P—P—(iﬂ Cos e) Sin & do
o "L Ty\%y

P R+1
_'4_u(R—1)<_0
o (R+1) Py o AW (15)
T X N o EF'T_]Z_?__"75
(—xﬂ 7 “max Yo
Yy
27
X X
=y 1 Ofec -
G(xc) Xy “J[-‘xy(pos é) Cos ede (16)
_ o _

AW is the work done in a cycle (area of the loop), K is the tangent modulus

max
at the origin (Fig. 17) and o and R are Ramberg-0Osgood constants. For a linear
system o = 0, S(xo) = 0, C(xo) = 1 and the equations reduce to those of the simple
degree of freedom system.

Whether the above theory can be applied to clays.or not can be checked
by deducing the Ramberg-Osgood coefficients from the measured values of either
the shear modulus or of the damping; both being functions of the strain
amplitude. Therefore, one set of « and R is obtained from the moduli verﬁus
strain curves at resonance and another set is obtained from the damping versus
strain at resonahce; the two sets should be identical if the theory applied to
clay soils.  Fig. 18 shows the measured and predicted values plotted as a function
of strain, As one can see the differences are quite 1arge. Additional curves

for vartous values of the water content and different clays can be found in the

thesis,



RESPONSE CURVES

In the case of this research a response curve is a plot between
the displacement and the frequency for a given excitation. It is clear from
Fig. 18 that one set of o« and R is inadequate to fit resonance data and therefore
could not predict response curves. A mixed approach was attempted and yielded
good results: S(xo) was determined using « and R obtained from damping data

fit and C(xo) (in others words; § G } was determinedAusing a and R obtained
max

from moduli data fit.
Fig. 19 shows the response for 2 low levels of excitation while Fig. 20
shows the response for levels 10 times higher. x

y
to 10'4; the natural frequency is close to 75 Hz, and the clay is kaolinite

is always chosen equal

-~ at an effective hydrostatic pressure of 10 PSI and an overconsolidation ratio of 4.
The solid Tines are the predicted ones and the dots are experiﬁentaT values.
Agreement is quite reasonable-leading to the conclusfon that there is room for the
theory above to be used in soil mechanics. Instability and jump phenomena were
very clearly seen on the.osciiToscope during the generation of the data points.

It is therefore suggested that the resonant frequency be found going down along

- the frequency axis rather than going up since the two approaches lead to different
resylts,  Fig. 21 shows the displacement versus the excitation force for various

va1ue$ of the frequency; notice the instability for a frequency of 75 herz.

21



LAYERED SYSTEMS

Soil masses are seldom homogeneous.and layering is more the rule than
the exception. Each layer may be homogeneous itself but is pften cfoss aniso-
tropic because of the sedimentation and Ko‘consolidation precesses. It is of
interest to study in the resonant column the variation of the natural frequency
of a soil system as a function of tﬁe number of Tayers, their respective thickness
and stiffness and the order in which they are with respect to the top mass..

Can a rule of mixtures be justified and used?

Yang and Hdthéway (13) tested layers of limestone and reached the con-
clusion that shear wave ve]ocitieS'determined in the Taboratory were lower
than those obtained in the field. However, the study does not seem to have
been pursuyed furthér._

Combination of kao]inite and {]1%ite clays were used to make the Tayered
system. Blocks of each were prepared in the large oedometer as explained at the
beginning of this report. Sections of the proper dimensions were cut, fused
together and hollow cylinders made, Further.Ko_consu1idation of the hollow
compesite cylinders in the resonant column cell completed the fusion between
the sections of the different materials. Changes in Tength of the elements of
kaolinite and i17ite were simple to monitor with cathetometers since one clay
is white and the other dark grey. The configurations shown in Fig. 22 were
investigated. Each configuration was iﬁvestigated at consolidation cell pressuré
of 40, 60 and 80 psi. |

It happens that under the same consolidation pressure Kd the modulus
of the kaolinite clay is about 60 percent larger than that of the illite clay.
Thus the difference in stiffness will be well expressed by the results and not
obscured by small experimental errors. The two materials have approximately
the same mass density so that an average value was considered for the computations

22
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3 4

(2 X 107" gr secelcmq), and of course the same polar moment of inertia (178 cm

).
Only very small vibrations were considered so that damping is at its minimum
value and could be ignored in determining the natural frequency. This damping
was about 2.1% for the illite and 1.65% for the kaolinite.

The ratio of the mass polar moments of inertia of the specimen Is and

the top cap It has a bearing on the determination of the resonant frequency. If

I
is small the relative position of the soil layers becomes unimportant. If

[ T
o+ v |cF

T is Targe the recorded displacements-are equal to those of a single degree of
s

freedom system. Each Tayer is equivalent to a spring and,

1L
— = L = (9)
eq §=1 i _
It‘
where Keq is the equivalent stiffness. In the present case S 11,
S

The solution for finding the natural frequency of a two layer system
with the boundary conditions of the resonant column can be found in the thesis.
The single degree of freedom system can be applied by defining and equivalent
stiffness (Eq. 9) and an equivalent moment of inertia equal to the inertia of
the top cap plus one third of the inertia of the rod specimen. The natural
frequency of the sysfem would then be given by

mn = 'T‘il . {10)

Three and multilayer systems solutions are also presented in the thesis
together with cases where there is no top mass.

The approximate equations (9) and (10) were used to calculate natural
frequencies of two and three layer systems knowling the properties of fheir

.components. Those natural frequencies were also measured experimentaily.
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-Fig. 23 shows two graphs of measured versus predicted values for torsional .
and axial modes. Three values of EC are involved, namely 40, 60 and 80 psi.
The points fall close or within the 10% Tines and the prediction appears to be

quite satisfactory.



CONCLUSIONS OF PART 1

It was experimentally established that for the same water content
the modulii of a cross anisotropic clay can vary very substantially (as much
as 100%) from thoée of isotropic clay. Each can be represented by a Hardin
and Black equation provided the constant. H is changed from clay te clay. It
is to be remembered that under the same consoiidation pressure an isotropic and
an anisotropic clay will yield totally different moisture contents.

Large diéturbances were found to decrease the value of the moduli.
While time restored some of the lost values one hundred percent recovery is not
to be expected., Both the change in structure and the generation of pore water
pressures are responsible for this permanent loss.

The variation of the moduli with strain can be well represented by a
Ramberg-0sgood model, The hyperbolic model was found to be 1n§a1id because
‘of the finite negative s]opé required for very small strains; and the fact'that
all the data points recorded resulted in a curve of shear modulus versus strain
with a cyryature in a direction opposite to that given by the hyperbola.

| There was not much difference in damping characteristics between. iso-

tropic and anisotropic clays but each clay had a minimum amount of damping which
varied from clay to clay. The relation between the damping and the shear
modu]us,gi&en by Hardfn and Drnevich can be used for ahisotropic as well as for
isotropic clays provided it is corrected for the value of the minimum damping;

An attempt was made to use a model with a nonlinear spring and hysteretic
damping to represent this clay. A backbone curve represented by a Ramberg-.
Osgood equation and a hysterises lToop of the Masing type were part of the solution.
It was shown that the shear moduli predicted using measured values of damping

differed substantially from the experimentally determined ones; and vice versa.

25
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- However, when Ramberg-Osgood coefficients were obtained from combined
measurements of modulii and damping, predicted response curves agreed quite
well with measured ones. The instability associated with nonlinear behavior
of strain softening material was very much put in evidence.
Finally eiperiments on layered systems led to the conclusion
that an equivalent stiffness of the Jayers could be defined leading to predicted

natural frequencies very close to the measured ones.
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Fig. 2 Stresses, Strains and Pore Pressures from Static Tests
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BEHAVIOR OF CLAYS
SUBJECTED TO SLOW CYCLIC LOADING

Abstract

by
LOUISE PALMER SHOOK

One of the major considerations of the design of offshore
structures is the effect of wave action on the foundation of the
structures. This involves a study of cyclic loading done at low
frequencies, and the consequence such loading has on the soil
properties. The anisotropic nature of the material plays an
important role in the dynamic as well as the static behavior of
soils.

An experimental program has been undertaken to determine the
trends in behavior of clays subjected to large strain cyclic loading.
Laboratory prepared clays, which are assumed to be isotropic, and
normally Ko-consolidated and over consolidated clays, which have
varying degrees of anisotropy and differing stress-strain charac-
teristics have been cycled at periods of 20 to 40 seconds using
different levels of stress. Damping, modulus degradation, and
increasing strain values are compared with respect to overconsoli-
dation ratio, level of applied stress, direction of applied stress,

cycle number, and consolidation pressure.

1i



The test results were fit to a mathematical model, and it
was concluded that the model was not adequate to fully describe

the soil response,
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CHAPTER I
INTRODUCTION

One of the major considerations of the design of offshore
structures is the effect of wave action on the foundation of the
structures. This involves a study of cyclic loading done at low
frequencies, and the consequence such loading has on the soil
properties. The anisotropic nature of the material plays an
important rolé in the dynamic as well as the static behavior of
soils (18,21).

Many of the proposed models deal with soils at small strains
where the soil is more or less linearly elastic. The response to
Targe strain cycling (greater than ir10%) has not been so thoroughly
researched. An experimental program has been undertaken to deter-
mine the trends in behavior of clays subjected to such Toadings.
Laboratory prepared clays, which are assumed to be isotropic, and
normally Ko-conso1idated and overconsclidated ciays, which have
varying degrees of anisotropy and differing stress-strain character-
istics, have been cycled at periods of 20 to 40 seconds using
different levels of stress. A triaxial cell using applied stress
(17) on long thin hollow circular cylinders was used. The response
was recorded as deformation and pore pressure changes. Damping,
modulus degradation, and increasing strain values are shown to vary
with overconsolidation ratio, level of applied stress, mode of

applied stress, cycle number, and consolidation pressure. An attempt
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was made to fit the test results to a mathematical model, incor-

porating the effect of increasing strain as the test progressed.



CHAPTER I
REVIEW OF THE LITERATURE

Much effort has been spent over the years to try to describe
the behavior of soils. It has been necessary to classify the
material into its constituent components to help distinguish the
obvious differences between sands, silts, and clays. This study
concerns clay scils.

A. Structure of Clays

As in all materials, the structure of the clay plays a very
important role in describing it. This structure depends on a number
of things, among which are the electrochemical properties of the
particles and pore fluid, and the method of deposit of the particles.

Yong and Warkentin (30) describe the basic structural units
of clays as examined by electron microscopy. Domains are made up
of a few platelets, which are usually stacked in a parallel
arrangement. Fabric units, or peds, are relatively large groups
of domains. The particles within a fabric unit may be randomly or
orderly arranged, and the peds themselves may be randomly or pre-
ferentially oriented. Fig. 2-1 describes four combinations of order
ranging from total isotropy (random domain positions) within
random ped positions) to total anisotropy (peds and domains all
parraliel.)

An ideal condition to study the effects of anisotropy would

be compare total fabric isotropy to total fabric anisotropy. The

23



nearest to totally isotropic that could be developed was a clay
compacted with continually changing axis of compaction. Seed and
Chan (23) suggested that clays compacted at a moisture content ~
lower than the optimum water content would have a flocculated ar-
rangement of particles, and that those compacted higher than
optimum would have a dispersed arrangement. Diamond (4) showed that
the relative positions of the groups of particles, or domains, did
not differ much between the wet or dry sides of the optimum, but
the size of the voids were larger on the dry side. He also found
only a small degree of preferential orientation normal to the axis
of compaction for both wet and dry sampiles.

The natural sedimentation process of é1ay particles in fresh
water results in a fabric whose properties are cross-anisotropic.
One dimensional consolidation further emphasizes the ordered
structure of the material. The mechanical properties of such a
material have been investigated by Saada and Ou (21} and Saada
and Bianchini (18). Stress-strain relationships were found to vary
depending on the direction of appiied stresses. Coefficients of
anisotropy were described to compare stress-strain curves for
different angles of principal stress.

B. Dynamic Properties of Clays

It has been maintained {(11,29) that cycling a sensitive nor-
mally consolidated clay breaks down the sensitivity of the material
and reorients the fabric until it acts like a remolided clay. This

has encouraged researchers to believe that their laboratory



compacted c¢lay represents that found in the field when considéring
dynamic loading. The wide range of values normally found for cyclic
ioading from various different researchers make it difficult to
compare resylts with respect to clay structure.

The wide interest in liquifaction of sand due to earthquakes
has generated a lot of research involving the dynamic response of
soil. HWhile clays have not shown the liquifaction phenomena, they
have been known to suffer loss of strength when dynamically stressed.
The analysis of pavement subgrade reaction to transient or cyclic
toading was one of the first investigations into the dynamic pro-
perties of clay. One sided compressive loading was used by a
number of investigators (3,5,9,22,24,26,29}, some using pulse
loading and others with sine or triangle waves.

Lee and Focnt (11) presented a comprehensive survey of the
research done on dynamic 10ading of clay up to 1975. They concluded
that “reversing cyclic stress is more detrimental than one-direc-’
tional cyclic stress." It was thought that the large excess pore
pressures caused the decrease in soil strength encountered after
cycling.

When applying two sided Toading, for strain-controlled tests
the stress typically decreased with cycle number, and for sStress-
controlled tests the strain increased as the test progressed. This
notion has been identified as a degradation, or decrease in cyclic
strength. There has appeared a level of loading in which this

degradation does not show up; it has been termed the "threshold



stress” (5,9,22).
Some models have been proposed to describe cyclic stress-
strain response. The two that are most commonly used are the Hardin-

Drnevich hyperbolic stress-strain model (6):

y
X

[
G hax Tmax

T = ]

and the Ramberg-Osgood model (7,15):

R-1
—
¥
Gmaxr

Y=Y —"T———-Y—'—‘ ]+0.
max r

in whicn @' = shear modulus at strains less than 1074,
Yr = a reference strain
T = maximum static shear stress
ma X

cyclic amplitudes of stress and strain

a,R Ramberg-0sgood coefficients

Shibata et al. (27) introduced a four-parameter relation to take
into account the degradation of Gmax and Trmax in the hyperbolic
equation. Idriss et al(7) did the same with the Ramberg-Osgood
mode]l.

With dynamic testing, numerous failure criteria have been

adopted. Some define failure in terms of pore pressure buildup or

effective stress criteria (19,22), while many others involve strain

amplitude or rate (13,19,28).



CHAPTER III
EQUIPMENT AND MATERIAL USED

The material used in this research project was a frequently
used commercially available clay, Edgar Plastic Kaclin from Florida.
[ts plastic and Tiquid limits are 37.5% and 56.3%, respectively, with
specific gravity G5 of 2.62. A hydrometer analysis showed 76% clay
content.

For purposes of comparison, the clay was prepared by two methods
designed to impose either a flocculated structure or a dispersed
structure to the clay.

The dispersed structure was achieved by a one-dimensional
consolidation process. A slurry was prepared at 125% water content.
using de-aired de-ionized water. It was consolidated in a 8"
diameter cedometer for 5-6 days until reaching a 40 psi axial
pressure. The final water content was approximately 50%. This
clay was called the anisotropic clay. (The anisotropy was later
emphasized through additional Ko_conso1idation in the cell prior to
shearing.)

An attempt was made to prepare the flocculated clay by compac-
tion at a water content comparable to the consolidated clay; it
proved to be too soft for the compaction rod. An average water
content of 40% was then used, and the clay was kneaded manually.
Considerable force was used to achieve a high saturation. The clay
had particles which were of a more random orientation. The material

properties were assumed equivalent in all directions. This clay was
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called the isotropic clay. (Isotropy was maintained by further
isotropic consolidation in the cell prior to shearing.)

Both types of clay were stored for at léast a week in a humid
room. They were cut into hollow cylinders with an outside diameter
of 2.8" and an inside diameter of 2.0". The lengths ranged from
5.5" to 6",

A modified triaxial cell was used for testing. The static
testing and the one-sided testing were done in a cell in which the
piston was attached to the top cap of the specimen with a bayonet
type connection. This connection allowed an axial tension or com-
pression force to be applied in combination with a torque. The
magnitudes of these forces were controlled by SPAC (17), a pneuma-
tic analog computer which applies shear and/or axial stresses in
any designated ratio.

The two-sided Toading used a triaxial cell with air bearings
in the bushings to eliminate the effects of piston friction. The
confining fluid was silicon oil with a short layer of air at the
top of the cell.

One-dimensional consolidation before testing was applied to
all anisotropic specimens. This was achieved by applying an axial
displacement proportional to the amount of water expelled, such
that lateral strain was kept at zero (16). Confining pressure was
increased at 14.4 psi/hr until the desired cell pressure was
reached. This procedure simulates field conditions for naturally

deposited clay.
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After primary consolidation was completed, the excess axial
load was Tifted and the clay was allowed to rebound hydrostatically
so that testing could start from a deviator stress of zero. The
amount of area change during this rebound phase was minimal. The
isotropic clay was consolidated hydrostatically.

One-sided Toading was controllied with pressure switches. The
two-sided Toading cycles were applied by a voltage output signal
generator. A Fairchild current-pressure transducer converted the
signal to air pressure, and SPAC was used to apply axial forces and
torque. Axial force, torque, pore pressure, and axial and rota-
tional displacements were all measured by transducers and recorded
on a Gould chart recorder and two Hewlett-Packard X-Y recorders.

Three basic types of tests were run: static, one-sided cyciic,
and two-sided cyclic. Slow monotonic Toading was done to get the

static strengths for normally K.-consolidated, isotropically consol-

0
idated, and overconsolidated clays. A total of thirty-five static
tests were run.

Normally KO-consoIidated and isotropic clays were tested using
one-sided loading, in which the stresses never changed direction
(Fig. 5-1). Twelve of these tests were carried out and evaluated
to examine the differences between the two clay structures.

Two sided cyclic loading was done on normally Ko—conso1idated,
isotropically consolidated, and overconsolidated clay. Of the nor-

mally consolidated specimens, eleven had a single stress level for

the duration of the test and four were cycled using increasingly
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greater stresses. The overconsolidated specimens were all tested

with a minimum of three stress levels.



CHAPTER IV
RESPONSE TO MONQOTONIC LOADING

Monotonic loading was done primarily to compare static be-
havior of one-dimensionally consolidated clays to the compacted,
isotropic clay. The failure strengths obtained were used as para-
meters for the subsequent cyclic loading.

A. Testing Procedure

Kaolinite clays, consolidated from a slurry, were cut into
hollow cylinders and further consolidated one-dimensionally in the
triaxial cell. The final cell pressure was reached in two to four
hours. After eight hours the axial Toad was reduced to hydrostatic
permitting the specimen to rebound axially for eight hours minimum.
This resulted in an overconsolidation ratio of 1/K0 in the
vertical direction and 1.0 in the lateral directions, or an approxi-
mate average of 1.3 overall. These specimens were called the
normally Ko—conso1idated specimens.

For tests done on overconsolidated clays the same consolida-
tion procedure was followed until rebound, when the hHydrostatic
pressure was reduced by the overconsolidation ratie. This left an
overconsolidation ratio for the vertical direction twice as high
as that for the radial direction, or an actual average oOverconsoli-
dation ratio 1.3 times higher than the overconsolidation ratio.

The isotropic clays were consolidated hydrostatically, with

the final cell pressure being reached in two to four hours. The
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specimen was left to stabilize for at least eight hours after pri-
mary consolidation.

The testing was done using SPAC, with the stresses being
applied at a constant rate, 0.2 psi/min. for axial loading and 0.1}
psi/min. for torsional loading. Failure was noted for brittle
materials with sudden deformation. Overconsclidated clays tested
in torsion were defined to reach failure condition when the axial
deformations reached a maximum. This usually occurred at shear
strains of & to 9%.

Static tests were run on normally and hydrostatically consol-
jdated clays at effective confining pressures of 40 psi and 60 psi
in the extension, compression, and torsional loading directions.
The overconsolidated clays were tested in the three directions at
effective cell pressures of 10, 15, and 20 psi with lateral over-
consolidation ratios of 2 and 4. An additional trio of tests were
run at an effective cell pressure of 10 psi with an overconsoli-
dation ratio of €.

B. Normally Consolidated Clay, Anisotropic

Examination of the stress-strain curves and pore-pressure
curves in Fig. 4-1 shows that the clay 1is always stronger in com-
pression than extension, although more brittie. The failure strain
for compression is about haif that for extension, while the
failure strength, (01—03), is about 1.4 times higher,

The pore pressure created in compression is always positive

and always increasing. It levels off only at failure. In the
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extension mode, though, the pore pressure changes such that the
ultimate decrease in pore pressure is one-fourth the pore pressure
developed in compression. The stress-strain curves in the pure
torsional loading are similar in shape to the extension mode, and
the pore pressure increases gradually, then levels off.

In the extension mode, for the tests done at confining
pressures of 40 psi, the minor principal effective stress, 83,
decreased below zero and continued into suction for a short time
until failure. The Mohr's circle at failure covered the origin of
the t-5 axes, cCreating a situation in which it was impossible to
define a friction angle. [The fact that the clay itself was in
tension has also been shown by Bishop and Garga (2)].

This strength in pure tension was further shown with small
cylindrical specimens tested in a triaxial Geonor Cell.] It was
found that for both one-dimensionally consolidated and compacted
Kaolinite the minor principal effective stress became less than
zero before failure had occured. This indicates that the Kaolinite
clay particlés themselves maintain a tensile force, possible due to
what has often been called the true cohesion of the clay.

C. Isotropic or Compacted Clay

The effect of the clay fabric becomes very evident when the
compacted clay, which has particles of more random orientation than

the one-dimensionally consolidated clay, is compared to the more

]Tests run by R. Snyder, See Appendix 1



ordered structure of the Ko-consoTidated clay. It was noticed that
the strength of the compacted clay was less than the strength of
the anisotropic clay for the respective confining pressures. This
occurred even though the compacted clays had water contents in the
range 30-35%, and the Ko-conso]idated ones 39-43%. If it had

been possible to test a Ko-consolidated saturated sample at 30%
water content, the static strength would have been greater than
either of the clays actually tested. So the strength difference
cannot be accounted for by the difference in water contents alone,
and therefore is highly influenced by differences in clay struc-
ture and bonds.

As seen in Fig. 4-2, the shapes of the monotonic loading curves
were not always similar to those curves for anisotropic material.
The compacted material in compression was much more ductile than
the anisotropic clay, with a consistently lower tangent modulus
until failure. The extension and torsion tests had the same shaped
curves for both clay fabrics; however, the extension strength was
much cleser to the compression strength for compacted clay. Due
to the increased ductility and lower strength in compression, the
failure strains were comparable for extension and compression,
while the failure strains for Ko—consolidated clay were twice as
high for extension than compression.

The pore pressures also show different behavior for the com-
pacted clay. For all three directions of loading, the pore pres-

sure development was positive until it reached a maximum value
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near one-third of the failure strain, and then it gradually de-
creased. This resulted in & change in the effective stress paths
for the extension and torsional loading, even though the shapes
of the stress-strain curves were similar.

D. OQverconsolidated Clay

Normally consolidated clay may be considered to be overconsol-
idated with an overconsolidation ratio of one. Therefore, there
should be a smooth transition in stress-strain behavior as overcon-
solidation ratio increases. A trend was observed along these Tines
in the compression and torsional directions of loading, with static
strength continuing to increase with overconsolidation ratio. The
compression curves became more brittle with higher values for the
tangent modulus as overconsolidation ratic increased. Higher
failure stresses were observed with increased overconsolidation
ratio. Typical stress-strain curves and pore pressure development
curves are presented in Fig, 4-3.

The failure stresses in the extension and torsion directions
also were greater as overconsolidation ratio rose. The torsion
stress-strain curve resembled the normally Ko-conso1idated curve,

w th a shape similar to the first part of the extension curve.

Extension behavior displayed the greatest difference between
normally consolidated and overconsolidated clay. Ductility was
increased tremendously. Many times, 18% strain was exceeded with-
out indicating a failure condition. The height limitations of the

testing cell prevented some of the tests from stressing until a
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failure condition was noted. In all cases, extension strength was
greater than compression strength for overconsolidation ratios of
two or more,

The stress-strain curves in the extension direction initially
followed curved paths very similar to those of the normally consol-
jdated extension tests. However, near 2-3% strain, the curves
became linear, and remained so. These straight line portions had
slopes ranging from 200 to 300 psi/unit strain, with no dependence
on consolidation pressure or overconsolidation ratio. During this
Tinear behavior the minor principal effective stress decreased to
zero and continued in the negative direction. In over 70% of the
cases, the minor principal total stress decreased past zero and held
a suction force without showing failure.

It was woted that the minor principal effective stress became
less than z-ro for all extension tests, This also happened for tor-
sional tests with low consolidation pressures and low overconsolida-
tion ratios. Negative pore pressure development was maintained for
extension and torsional loading. The compression loading initially
had a positive pore pressure development, eventually decreasing to

less than 15% of the peak and crossing zero in 85% of the tests.



CHAPTER V
ONE SIDED LOADING

Loading is defined as one sided when the deviator stress
is always positive or always negative. Low frequency triangle
waves were applied to both Ko-consolidated and isotropically con-
solidated clays to examine the differences in response.

A. Testing Procedure

Consolidation for the two types of clay was carried out as
exptained in the previous chapter. Both isotropic and Ko-conso1-
idated clays were tested at 40 and 60 psi effective confining pres-
sures. Three Toading directions were evaluated: axial compression,
axial extension, and pure torsion. The maximum deviator stress per
cycle was 85% of the failure stress in static 1oading] for each
direction while the minimum stress per cycle was 3 psi, as illus-
trated in Fig. 5-1.

Stress application was done by a motorized pressure requla-
tor. Electro-pneumatic switches reversed direction of the motor at
the maximum desired stress, thus producing a triangular stress input.
A1l tests were run at periods from 20 to 40 seconds. Fforce, torque,
axial deformation, rotational deformation, and pore pressure res-
ponse were measured by various transdchrs and recorded. Each
specimen was cycled for a minimum of 200 cycles or until failure.
Failure was noted as a sudden increase either in averace deformation

or in strain amplitude.

1‘For* Ko-conso1idated clay, static strengths were determined by Ou (2).
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B. Strain Behavior

Stress-strain loops were open at the beginning of each test.
As the number of cycles, N, increased, the loops closed while
migrating in the direction of positive strain. The average strain,

defined as %(c ), (Fig. 5-2}, continued to increase slowly,

max”~ min
while the strain amplitude remained fairly constant, until failure.
A comparison of the isotropic and the Ko-consolidated clay
strain behavior plotted versuc N indicated different responses. As
can be seen from Fig. 5-3, the average strain for K0~conso1idated
Kaolinite increased at a lower rate than the isotropically formed
clay for the three loading directions. Extension and torsion tests
had equivalent envelope shapes for both c¢lay structures, but iso-
tropic specimens were much less brittle in the compression mode.

This tendency parallels that noted in the monotonic lcading. Al-

cd
though an 85% stress level tﬁath§T§f§¥ic) was used for all tests,

failure was observed more often and at fewer cycles for compacted
clays than the one-dimensionally consolidated clays. The randomly
oriented clays lost their strength much more rapidly than the
orderly clays.

The differences in strain behavior which were noted in the
monotonic Toaﬁinq were also present in this cyclic, one sided
loading. Both the relative ductility of the compressive specimens
and the average strains at failure distinguished between isotropic
and Ko—conso1idated specimens. Although the Ko-conso11dated speci-
mens had achieved a substantial disturbance, they still retained

many properties of their initial structure. So while it is
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acknowledged that disturbance will greatly affect cyclic prop-
erties, the clay fabric is also an important factor in behavior.

C. Pore Pressure Development

Pore pressure was measured from the base of the specimen.
The cyclic amplitude of the pore pressure was not fully trans-
mitted to the transducér although both the outside and the inside
of the cylindrical specimen were covered with filter paper. It
was expected that the measured pore pressure fluctuations gave
a relative indication of the effect of the clay anisotropy.

The shapes of the pore pressure development curves for
monotonic compression loading compared to the cyclic pore pressure
curves presented in Fig. 5-4 indicate that the average pore pres-
sure increases for the anisotropic clay. The isotropic clay showed
a levelling off of the pore pressure development curve, and then a
decrease, as in the static case. The extension and the torsion
modes appear to have no difference in pore pressure for isotropic
or anjsotropic clay.

D. Secant Meoduli

[} t
The secant modulus, G or E,defined as the slope of the

T - T
1ine connecting the tips of the hysteresis loops, _max___min , or

Ymax = Ymin
“max %min
_fMmax_min , could only be measured when the loops finally closed.
Emax Emin
An increase in secant modulus indicates a decrease in strain amp-

litude, which is often called a strengthening effect.
As seen in Fig. 5-5, the anisotropic extension and torsion

specimens appeared to have constant secant moduli as N increased



until relatively high values of N were reached, when secant moduli
rose siightly. In the isotropic specimens the increase in G and
E occurred almost immediately. The relationship between secant
modulus and cycle number is discussed in Chapter 6.

E. Equivalent Damping Ratio

Equivalent damping ratio is defined as_l_éHT , where AW

2
is the area of the hysteresis loop (total eneﬁaygﬁogt per unit
).

volume) and y is one-half the cyclic strain difference, %{ Y

“max” 'min
To fit the definition, this had to be measured after the loops had
closed, so damping for the initial cycles was not accurately
evaluated.

The damping ratio showed no dependence on direction of loading
or on initial consolidation pressure, Fig. 5-6. For controlled
stress tests the strain increased with each cycle, yet the damping
showed very littie dependence on strain. In fact, there was a
slight decrease of damping as cycle number increased for both the
anisotropically and isotropically consolidated specimens. Overall,

the equivalent damping ratios for the Kovconso1idated clays were

20% to 30%, and for isotropically consolidated clay 25% to 357.



CHAPTER VI
TWO SIDED LOADING

The bulk of the experimental program involved two sided loading
of hydrostatically and one-dimensionally consolidated clay. Both
normally consolidated and overconsolidated cases were studied. The
main area of concern was the strain response, involving total defor-
mation as well as secant moduli and damping. A comparison was made
of these properties that showed a definite degrading behavior as the
number of cycles increased. The data was fit with a Ramberg-0sgood
model, to be discussed in Chapter 7.

A. Testing Procedure

The consolidation procedure was as described in Chapter 3.
After consolidation the clay was allowed to rebound for a minimum
of eight hours so that a hydrostatic stress condition existed at the
start of loading. Deviator stresses for some tests were applied
with the triangular loading system used for one-sided loading. A
wave generator provided sine waves for other tests. An inspection
of the response showed that strain amplitude differed 1ittle be-
tween the two wave types, and the shape of the cyclic deformation
was very similar for both triangle and sine waves. This is prob-
ably due to the high level of damping associated with the clay at
the given stresses.

Loading was always symmetrical with respect to the hydro-
static stress condition. Stress amplitude depended on the failure

stress obtained in the monotonic loading. For the torsional loading

dr-21
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the stress level was simply the ratio of single amplitude deviator
stress to static strength. Since the loading was in a direction
normal to the material's axis of symmetry (for anisotropic clay),
there was no distinction between positive and negative shear.

For the axial loading, one half of each cycle was in com-
pression and one half in extension. To determine the stress level
the Tower failure stress of the two directions was taken as the
reference. Thus for the normally consolidated specimen the stress
level was the percentage of deviator stress to extension strength,
and for overconsolidated clay it was the percentage of the com-
pression strength. This results because for overconsolidated clay
the failure stress in extension is higher. than in compression -
Fig. 4-4, |

Some specimens were tested with a constant stress level
until failure was noted by rapidly increasing strain amplitude. If
no failure had developed they were cycled at least 100 times. No
stress level was maintained for more than 1000 cycles. On other
specimens loading was incremented at increasinaly greater stresses
with each stress level being applied for 100 or more cyc]es.I An
increment began from a hydrostatic stress state after an interval
of 10 to 20 minutes. In the event local buildups occurred during
the previous loading, the drainage remained closed during this in-

terval but the pore pressure was believed to have equalized itself.

1 For a few of the extremely low stress levels when deformation was

too small to be detected, loading was stopped before 100 cycles.
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The possible change in strength and maximum shear modulus which may
have occurred during the previous loading.period was assumed negli-

gible when compared to the disturbance caused by the first few cycles

of the next larger stress level.

Changes in pore pressure, axial and rotational deformations,
and forces were recorded on strip charts. Force-deformation loops
were recorded on X-Y recorders. Damping was measured from these
loops, and secant modulus from the chart recordings.

B. Strain Behavior

Clay responds with the same strain magnitude when shear
stresses are applied in either the positive or negative directions.
Therefore, the stress-strain loops maintqin symmetric strain for
symmetrically applied stress. Fig. 6-1 shows stress-strain loops
L=y

for a torsional test in which the average strain, |

Ypos neg]’

is nearly zero for all cycles.

An examination of the static stress-strain behavior for clays
in compression and extension always indicates a strain for a given
stress which is greater in the extension direction. It follows
that the strain on the extension side of the cyclic loading is
largef than the compressive strain, and that the average strain
will be an extension strain. THe Ko—conso1idated clay maintained
an extension strain from the start of each test. Fig. 6-2 shows
typical behavior for axial loading on this clay, with the loops
completely on the extension side-of the stress axis.

A simple model to describe this behavior is the kinematic

hardening model. A typical stress-strain curve in the axial
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direction has a weaker, more ductile extension curve, while the
compression side has a higher tangent modulus. If a loop is im-
posed on the clay with equal stresses in extension and compression,
the Toop will migrate to a steady position with strains being mostly
extension strains. If the clay is subjected to equal strains in
compression and extension, the lToop will shift to show mostly com-
pressive stresses. Thus the model predicts a shift from the ori-
gin whenever a material has properties which differ in opposing
directions. (20)

The extent of this shift in average strain is significant
for the Ko-conso11dated clay when compared to the isotropic, com-
pacted clay. The isotropic clay had a more ductile static com-
pression curve, with tangent modulus being much closer to the ex-
tension curve for that material. The cyclic loading in the axial
direction produced an average strain still on the extension side,
but much closer to zero, Fig. 6-3. This average strain behavior
was changed 1ittle by the number of cylces, except at failure. So
by looking at the strains produced 1n‘the Nth cycle, it was easily
determined whether the clay was anisotropic or isotropic by no-
ticing the position of the average strain relative to the strain
amplitude, It is concluded that the distinctive behavior of iso-
tropically and anisotropically formed clays prevents them from
being substituted for each other in any testing program.

Failure was noted with a sharp increase in strain amplitude.

The isotropic clay typically failed much sooner than the
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anisotropic when cycled at the same stress level. The strain ampli-
tude consistently was greater for isotropic than anisotropic material.
As with the one-sided Toading tests in Chapter 5, the two-
sided cyclic tests displayed a steady increase in pore pressure
such that the effective stress became zero or negative on the ex-
tension side of loading. This usually occurred several cycles
betfore failure was noted, which may have been a result of the change
in sign of the effective stresses.

C. Secant Modulus

The hysteresis loop of the Kaolinite tested was such that
maximum strain occurred at the instant of maximum stress, and mini-
mum strain at the instant of minimum stress. Secant modulus is
defined as the slope of the line connecting the tips of the hyster-

esis loop. This 1ine becomes equal to the shear or elastic modulus,

G max O E max® &S strain becomes very small. The quantities

t
G max and E max were measured in the resonant column device (1) for

each of the consolidation methods and water contents used in the

testing program. Secant moduli measured in the slow cyclic load-

ing tests were usually normalized by dividing by G max °" E max

for comparison purposes.

For a controlled stress test the stress amplitude was kept
constant and the corresponding strains were recorded. Each loop
was assumed to be centered at the origin of the stress-strain axes,
even though it is acknowledged that loop migration took place. So

[¢)

[ ] 1
as strain amplitude increased, 6§ = Zor E = Eg»decreased. This
z

<
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reduction in secant modulus is called degradation, and indicates
the difference between the first cycle loop and the Nth cycle
loop, or the first cycle strain and the Nth cycle strain.

Two things must be emphasized before any further discussion:
1) The strain behavior for a constant stress amplitude may be
characterized by average strain migration and by strain amplitude,
both of which depend on N. 2) The initial cycle presents a loop
which has a large strain before the first stress reversal, and
upon return of the stress to the initial position the strain does
not come close to its original position. Loop 0-A-B-C in Fig, 6-2
is not closed, so the secant modulus is undefined in this 'loop’.
Therefore, the 'first' cycle response must.be determined from
extrapolation of subsequent cycles. This extrapolated first cycle
secant modultus in some cases coincided quite well with the measured
modulus, especially for Tow stress levels. On the other hand, when
it did not represent the measured conditions, the extrapolated
value differed as much as 30% from the measured modulus. In any
case, all analyses were made with the extrapolated value for the

first loop instead of Fhe measured data.

A plot of log %n vs log N, Fig. 6-4, shows typical degra-
max !
dation behavior. The values of %. are extended to N=1, and this
' max N ]
is taken as El_ . The secant modulus for the Nth cycle, Gn or En

E
is related to Tﬁé jnitial secant modulus by the degradation index(17)
G En
§ = =4 or —T (6-1)
G1 E]
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For small levels of stress the degradation index (which can also be

defined as ;% for a constant stress amplitude, or as ;?-for a con-
stant strain amplitude) forms a line which has a linear plot with N

on log-log scales (7). The slope of this line is defined as t,

the degradation parameter.
5=N* (6-2)

Stress levels greater than 30% usually produced a non-linear degra-
dation curve, mostly with slope increasing with N. Degradation
index is plotted versus N for several loads on anisotropic clay

in Fig. 6-5.

Other investigators (7) using constant strain ampiitude
tests and the linear relation s=N't, obtained a smooth curve re-
lating the parameter t with strain amplitude. With constant stress
amplitude tests, when degradation parameter t was obtained by a
power fit least squares method, most t's were found within a band
which increased with stress level. The range of values of t with-
in this band was too wide to be used for prediction purposes.

Fig. 6-6 shows 1ittle correlation between t and stress level for
isotropic clay, and small dependence of t on stress level for
anisottopic clay.

D. Damping

Damping energy is defined as work done during a cycle of
loading, (10,26). This is measured as the area within the force-

deformation loop divided by the specimen volume. Fig. 6-7 shows
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that as N increases, the energy lost increases for a constant stress
amplitude,

Specific damping capacity is the ratio of the energy lost
per unit volume, 6%1 , to the maximum potential energy stored during
the cycle. The maximum potential energy can be defined as the
average of the potential energy from the positive loading direc-
tion and that from the negative direction, or as %(Aa+Ab) on Fig.6-8.
These areas can be equated by moving the y=0 position to midway
between Ya and Ype Thus the maximum potential energy is %1y, in
which v is one half the double ampiitude strain response. In terms

of shear stresses and strains, P.E. . =ity or iG YZ

specific damping capacity = 554!%1 (6-3)

%G v
Equivalent damping ratio, or equivalent damping, is simply
ﬁ;% times the specific damping capacity. This is Lehr's definition
of damping ratio. Various definitions determine the amount of
potential energy used in the equivalent damping relation. Roelig(25)
damping is defined as

1 AW

DRoe]ig "% W (6-4)

where W, is the area of energy under the loading half of the loop,
shaded in Fig. 6-9. [If it is assumed that the secant modulus line

divides the loop in half, then

Wo = Lo+ 4(l G'yz) (6-5)
L 2
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From Lehr's definition of damping,

R
oW = (6 v TID gy (6-6)

Combining Eq. 6-5 and Eq. 6-6 into Roelig's definition of damping,

PLenr

4+2nD

D

Roelig = (6-7)

Lehr

Most of the measured values of DLehr were in the range of
20-30%, so Roelig damping was one-fifth to one-sixth Lehr damping.
To be consistent with the literature, the Lehr definition was used
on all damping ratio evaluations.

In most tests, damping remained relative]y constant through-
out the entire test. The isotropically consolidated clays pre-
sented a trend of slightly decreasing damping ratio as N increased.
Normally, the area of the loop grew with N as cyclic strain grew.
The stored potential energy, however, grew by at least the same
amount so the effects of increasing strain were not evident in the
damping ratio. The Ko—conso1idated clays displayed a very slight
decreasing damping behavior with N. Typical damping vs N data is
shown in Fig. 6-10. This condition has been noted by Idriss, et al
(7) using controlled strain amplitude testing,

It is interesting to note that there appeared a small de-
pendence of damping ratio on stress level. Naturally, the strain
amplitude for any given N increased as stress level increased.
Traditionally it has been indicated that damping ratio rises with

strain, so it should rise with stress level since damping shows
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Tittle dependence on N. The effect of the stress level is seen
particularly for low stress levels; for stress levels higher than
30% this effect is negligible. An envelope may be described when
damping ratio vs strain is plotted for each test, Fig. 6-11, showing
the general trend towards higher damping ratios with higher strain
amplitudes.

Overconsolidated clay reacted very similarly to the normaily
Ko-conso1idated clay. The overconsolidation ratio had no effect on
the magnitude of the damping ratio. There was a definite decrease
with N in damping ratio for all the axial loading. Most of the
torsional tests (EC = 10 and EC = 20 psi) showed a small but steady
increase in damping. As expected, there 6ccurred an increase in
damping ratio with stress level. Fig. 6-12 shows typical damping

ratios for overconsotlidated clays.



CHAPTER VII

RAMBERG~0SGOOD MODEL

In this study, we need to know three things about any
particular stress-strain loop. The first is the position of the
center of the loop. This may be determined from a relationship
between the average strain expected for a certain stress level
and a given cycle number; it depends on the amount of non-symmetry
between the two loading directions. The second is strain amplitude,
given by the amount of secant modulus degradation involved and
the estimate of the first loop's strain amplitude. The third is
the damping ratio, which can be reasonab1y>estimated within the
range of stress levels used in this testing program. The second
and third items here may be described by a mathematical model for
two sided loading. Such a model would be the Ramberg-0sgood
model (14).

A. Backbone Curve

For a material cycled under a constant stress amplitude, the
hysteresis loop defines two strain extremes. The magnitude of
strain measured between these extremes is the peak-to-peak strain,
and the strain amplitude is defined as one-half of this magnitude. k
Different stress levels result in loops with different strain
amplitudes. A plot of the stress levels versus the strain

amplitudes yields what is called the backbone curve.
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If a material has the same behavior in extension and compres-
sion and does ‘ot degrade during cycling then the backbone curve
coincides with the stress-strain curves. If a material, such as
most soils, has different behaviors : extension and compression
then the hysteresis loops will shift away from the origin of a
stress-strain diagram. The backoone curve will still des:ribe
the strain amplitude, but will have no bearing on the position of
the loop. In this case the backbone curve will not concur with
the stress-strain curves.

B. Ramberg-0Osgood Equation

Most static stress-strain curves for clay can be well repre-
sented by a Ramberg-0sgood (14) type of eqﬁation. Since in most
cases the backbone curve shows similarity to the monotonic loading
curve, it will be assumed that the Ramberg-0sgood equation adequate-
1y describes the backbone curve.

The Ramberg-0sgood equation is stated as:

1 T R-1
Y =Y, w 1 +a |zm—]| (7-1)
r Gmaer°{: Grax"r
in whizh vy = strain amplitude
t = stress amplitude
Yo © reference strain
G! = secant modulus at strains lower

max than 10~
a,R Ramberg-0sgood parameters

Y is often arbitrarily chosen as a small strain such as 10-4

and then o« will depend on this reference strain. In this study

the reference strain was a constant relating to the material
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Tmax
r = E;;;' Tmax and Gmax primarily depend

on the consolidation pressure, water content, and degree of aniso-

properties of the clay, v

tropy (6).

The backbone curve is now described by

T 1 R-1 5
WIS S £ R S (7-2)
Crax {: Tmax i}
ar
X 2w st R (7-3)

=<

For the axial loading the Ramberg-0Osgood equation becomes

=1 +a 5L |R]

One can see that as SL approaches zero, £' becomes Emax‘

The clay tested had all been previously tested in static lcac-
ing, sO T, and Smax Were known. They were also tected in thro
resonant column to get G' _ and E'__, so the only unknowns in the

miX max
model were o and R.
Since the first cycle of loading imposed total strains on the
specimen, it is incorrect to describe the backbone curve and all
subsequent behavieor with the constants obtained for the first

cycle. It is common in the literature to find the tenth cycle

used to describe the backbone curve for the purpose of predicting



earthquake responses. This is reasonable beacuse any single earth-
quake is not expected to create more than ten cycles of a certain
amplitude. As mentioned previously, the end points of the tenth
cycle loop define the strain amplitude used in constructing the
backbone curve for the cycle.

Using Eq. (7-3) and fitting the tenth cycle data from the
Ko-conso1idated clay, the axial tests for BC = 40 psi gave coeffi-
cients of 4.09 for R and 123.0 for «a.

The Masing criterion (12) is used to describe loading and
unloading. It is assumed that the loading branch of the loop
is twice the ordinates of the backbone curve, and that the unloading
branch is symmetrical about zero. Having the mathematical expression
for the loop enables one to determine the area within the loop,
and thus get a relation for damping ratio. Jennings (8) expressed
damping ratio using the Masing criterion with a Ramberg-0sgood

backbone curve as

/o R
_ 2 ( Gmaer) R-1
T v/ R+1 (7-4)
Tr

which can be simply expressed as

o

2 R-1 G'
ER (- 5. (7-5)
max

It is acrantageous to use this form of the equation pecause

A=

=
—

there is only one coefficient to find. After the R has been found

the data is put back into Eq. (7-3) to find a.
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As was seen in Chapter VI, the damping ratios were all within
the range 20-30%, while the secant moduli had large differences
between stress levels.

Using Eq. {7-5) R can be evaluated for each loop measured at
each stress level. For the tenth cycle, each stress level
predicted a different R which in all cases was lower than the R
obtained by 1inear regression of the backbone curve. The a's in
all cases were lower than the o predicted by the backbone curve.

In Table I Ramberg-0Osgood coefficients are obtained using
eqs. (7-5) and (7-3). Thus the combination of the Masing criterion
with this version of the Ramberg-Osgood backbone curve does not
represent the actual data. Masing predicté a Toop of larger area
than that which actually happens, which indicates that the loading
and unloading sides of the loop generally don't follow the back-
bone curve or its slope. The last column in Table I gives x pre-
dicted by Ea. (7-5) using the R value from the fourthcolumn. These

A's are always higher than those measureG. The calculated and the

measured A's are shown inFig.7-1, plotted with the measuredE.E or G.G
max max
C. Degradation

It has been shown that as the number of cycles increases, the
secant moduli decrease. A plot of the backbone curve for varjous
cycle numbers indicates that the curve itself degrades, Fig. 7-2.
Previous investigation (5, 9, 22) suggests a threshold stress or
strain before degradation can occur, so it is presumed that G'ma

X
itself does not degrade., Idriss, et al.(7) introduced the degradation
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idea into the Ramberg-0Osgood equation by multiplying v by 1/6, where
8§ is the degradation index. Their revised expression for the back-

bone curve is:

YWJE‘T—“{] te 'a—e'r—"R-]}
max'r max"r

or 5G!
‘ngﬁ'z 1+a }%%‘R-] (7-6)
Following this lead, Jernings' expression for damping ratio

based on Eq. (7-4) is

which becomes

2 R-1 (]_ G' (7-7)
m R+1 6Gllnax

Contending that ¢ = N~ with t depending on stress level,

GI

X Nt 4o [sLantR] (7-8)
J2RI[ 6 ¢
and YR (1 g N ) (7-9)

The o and R calculated by linear regression for the tenth cycle with
the computed t, G', and SL for the axial mode at EC = 40 psi are
a = 4.45 and R = 2.30. These are much closer to the original « and
R obtained from the first cycle compression and extension tests,

but a little lower. Table II lists the Ramberg-Osgood coefficients
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for this form of the backbone curve,

The damping expression, Eq. {7-9), when used to predict the
coefficient R, gives more consistent results when the degradation
is taken into account. The axial case presented a higher R when
evaluated by the backbone curve than from the damping curve,
while the opposite happened for the torsional mode. An examination
of the damping ratios predicted from Eq. (7-9) using the R obtained
from the backbone curve shows underestimation of the actual damping.
However, the damping ratios do not vary guite as much with stress
Tevel as when evaluated using Eq. (7-5), and this follows the
trend found in the data.

Eq. (7-8) may be very useful for predicting ET;— if the
degradation index & follows the form Nt Stress 123:15 in excess
of 20% usually do not have such a simple relationship, and there-
fore this expression is not representative of what actually
happens. For the bulk of the stress levels tested, an expression
was not found which described the degradation index in terms of N,

(
so the definition 6=gr was used. A look back at Egs. (7-6) and
]

(7-7) bring

%;r G’é‘?" =1 +a lgi sL|R] (7-10)
or G_E?A 1. ;SL]R* (7-11)
and A= %’%ﬁ%’(]' gi'ggi;')

_2R1 /6
or =2 (e _Gjr | (7-12)
max
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It is recommended to use these forms of the Ramberg-Usgood
and damping equations when the relation § = N't does not apply,
especially for large strain responses.

Using Eq. (7-12), the damping ratio becomes independent of
the cycle number if the Ramberg-0Osgood coefficient R is assumed
independent. This fits the damping data much more closely than
the other formulations of the damping ratio. However, it does
not explain the slight decrease in damping ratio with increasing
cycle number.

Eq. (7-11) may be stated

G Q!
galx =1 +a |_l Y|R"]_
1

max

If the cyclic strain remains constant then it is evident that for
all cycles the coefficients « and R remain constant. However, for
constant stress amplitude tests the strain increases with cycle
number and therefore « and/or R must be functions of N. Therefore,
the idea of Ramberg-0Osgood ‘constants' does not apply when degrada-
tion is introduced into the Rambérg—Osgood equation. Assuming a
unique backbone curve for each cycle N, and solving the backbone
curve for o« and R, the values in Table III areobtained. When
plotted on log-log scales, the o and R coefficients form smooth
curves of approximately consistent shapes, Fig. 7-3. For torsional
loading, the higher consclidation pressure had higher values of a
and R than the lower consclidation pressure. However, the opposite

is true for the axial cyclic loading. The a« and R curves seem to
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tevel out as the cycle number increases, and may reach a constant
value for non-failure behavior. It is suspected that tests run at
other consolidation pressures would result in a and R following
the same trends.

Given specific R vs and « vs N curves for a consolidation

pressure, Eq. (7-11) may be solved for secant modulus:

G G4
n__

o = G'] 1 SLl 1 (7-13)
max max j— Ghax il

C!n "'G‘.Ii—' ‘]
G
& is found using the expression for the backbone curve
max .

with ap = ay and Rn = R]. Substituting Eq. {7-3) into Eq. (7-13),
an expression involving a, R, and SL is obtained:

1
o —
g [%l-]SLﬁRl_RJ] 1-R,
n _ Un

] - (7‘]4)
Grmax 1+ a]ISL}R1']

It is imperative that the stress level be constant for this equation.
Gl
Eq. (7-14) enables one to determine GTQ— without having to
max
compute Gi. Its accuracy depends on the accuracy of the previously

determined relationship between R], s Rn’ and o Note that if

o and R are assumed to be constants (ie., @y T oo and R] = Rn) then

Sn . 1 .5
Cmax 1+ m]|SL|R]:I Cmax

and there has been no degradation.
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The dependence of Gé in Eg. (7-13) on Gi creates much room

for error because of the uncertainty in determining Gi. a, and R

1 1
may be obtained from Eg. (7-3)}, which uses an extrapolated value of
Gi, or it may be extrapolated from the o vs N and R vs N curves. 1In
either way, it is not usually obtained directly from experimental
data. The consequences of this show up when the secant modulus

is predicted from Eqgs. (7-13) or (7-14é;

n

Eq. {7-13) was used to predict using the oy and Rn from

G-
Fig. 7-3. Stress levels greater than TS% showed good agreement
with the measured secant modulus values. For stress levels
approaching zero the predicted secant moduli had very poor agree-
ment with the measured ones. As indicated in Fig. 7-4, the secant
modulus for N=1 approaches Eﬁax’ as expected. However, the

predicted modulus for small stress levels increased as N increased,

and became greater than E’

max " This has been proven otherwise in

the resonant column device. Consequently, it is concluded that
this form of the Ramberg-0sgood model does not represent well the
backbone curve for small stress levels.

Re-examining Eq. (7-12),

A=gR-1(_ Gy )
m R+1 Gmax

it is evident that as R decreases the damping ratio will decrease
also. The change in damping ratio predicted by this equation exceeds
the slight change in damping actually observed, Conversely, if this

equation is to be used to predict the Ramberg-Osgood R, then the



variation in R vs N will be quite small when compared to the
R's obtained from the backbone curve.

A comparison of the secant modulus and damping values
predicted from Eqs, (7-11) and (7-12) is illustrated in Fig. 7-5.
The solid lines represent both the measured modulus and measured
damping. The measured secant modulus is used in the backbone
curve, Eq. (7-11), to derive Ramberg-0s-ood coefficients a and R.
This R then is used in Eq. (7-12) to ca culate the damping ratio
predicted by the Masing criterion.

The dashed line in Fig, 7-5 plots the measured secant modulus
vs the calculated damping ratio. These calculated damping ratios
differ from the measured values by as much-as 40%. The predicted
damping r.tios were generally less than the measured ratios for
stress levels less than 40%, and higher for higher stress levels.

The measured damping ratios were used in Eq. {7-12) to determine
tr> Ramberg-Osgood R. This R was then used in Eq. (7-11) to predict
secant modulus. The predicted values differed by up to 60%, and
in most cases were lower than the measured moduli. The dotted line
in Fig. 7-5 shows the predicted modulus pliotted with the measured
damp:ng data.

These results show that the Ramberg-0sgood model used in
conjunction with the Masing criterion does not adequately describe
the behavior of Kaolinite when loaded with large amplitude stress

cycles.



D. Overconsolidated Clay

The secant modulus degradation for overconsolidated clay
appears to be independent of overconsolidation ratio. The damping
ratios also show no dependence on the overconsolidation ratio, so
it is assumed that the backbone curve will have the same form as
for normally consclidated clay.

The Ramberg-0sgood coefficients o and R, when determined from
the backbone curve, were found to vary in the same manner with the
cycie number N as with the normally KO consolidated clay. Smooth
curves were plotted to show that in all but one case, o and R
decreased as N increased. Fig. 7-6 shows a and R for BC = 10 psi.
There appeared no dependence on either the.con5011dation pressure
or the overconsolidation ratio.

The secant modulus and damping ratios for the fifth cycle
in the torsional mode are presented in Fig. 7-7. The sclid line
represents the measured modulus and damping. The measured moduli
were used in the backbone curve, Eq. (7-11), to find the Ramberg-
Osgood R. This R was then used in the damping equation, Eq. {7-12),
to determine a damping ratio, This damping, plotted as a dashed line
in Fig. 7-7, was in most cases greater than that measured, i.e. it
predicted more energy lost per cycle than actually happened.

Eg. (7-12) with the measured damping ratios were used to
obtain an R value. The R was then placed in the backbone curve to
predict a secant modulus, plotted as a dotted line in Fig. 7-7.

Most of the derived moduli were lower than those measured, with



greater differences at higher stress levels.
These results reinforce the conclusion that the Masing
criterion does not fit well with anisotropic clay loaded with a

constant stress amplitude.



APPENDIX 1
EXTENSION TESTS ON REDUCED AREA SPECIMENS

A series of four extension tests were carried out in a
Norwegian Triaxial Cell. Isotropically formed and anisotropically
formed samples were each tested at effective consolidation pressures
of 40 and 60 psi. The samples had reduced diameters in the center
portion of their height, as shown in Fig. A-1. Due to the reduced
area, the tension stress in the center of the specimen is greater
than the stress existing near the caps. A conventionally-shaped
specimen,Fig. A-Z,necks when the minor principal effective stress
approaches zero due to the cap's inability to apply an actual
tension force to the specimen.

A1l four tests created minor principal stresses {axial)which were
negative. The isotronic specimens showed minor principal effective
stress of zero at 58% and 78% of their failure strains, while the
two anisotropic specimens reached it at 37% and 42% of their failure
strains. This is relatively early in the test.

Fig. A-3 shows the stress-strain curves for the anisotropic
and the isotropic specimens at Ec = 60 psi. Plots of 31/53 are also
shown on these graphs.

A discontinuity exists at the point where 53 = 0. Attempts
to describe a failure criterion using this effective stress ratio

are therefore meaningless.

I -44
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APPENDIX 3
NOTATION

areas located on Fig. 6-8

Lehr damping

Roelig damping
Young's modulus for strains less than 1076

secant moduli

secant moduli for first cycle

secant moduli for nth cycle

shear modulus for strains less than 10'6

specific gravity
coefficient of lateral earth pressure at rest

cycle number
overconsclidation ratio

maximum potential energy in one cycle

Ramberg-0sgood coefficient

stress level

Saada Pneumatic Analog Computer
degradation parameter

area under loading portion of loop

Ramberg-0sgood coefficient

Ramberg-0Osgood coefficients for first cycle
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NOTATION

Ramberg-0sgood coefficients for nth cycle

shear strain; shear strain amplitude

shear strain 1imits for one sided loading
shear strain amplitude for nth cycle
reference strain

shear strain 1imits for two sided loading

degradation index
pore pressure development

energy lost per unit volume

axial strain 1imits‘for one sided loading
equivalent damping ratio

effective confining pressure at start of test
deviator stress

axial stress limits for one sided lcading

major and minor principal effective stresses
shear stress; shear stress amplitude

static shear strength

shear stress 1imits for one sided loading
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Fig. 5-1 Typical Stress Pattern for One Sided Loading

Fig, 5-2 Maximum, Minimum, and Average Strain for
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Fia. 6-1 Typical Stress-Strain Loops for Torsional Tests

0, psi.

Fig. 6-2 Typical Stress-Strain Loops for Axial Tests
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Fig. 6-8 Potential Energy for Lehr's Damping

Fig. 6-9 Potential Energy for Roelig's Damping
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Fig. A-2 Standard Triaxial Specimen Tested in Extension
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TABLE I
RAMBERG-0SGOOD COEFFICIENTS FOR

UNDEGRADED BACKBONE AND DAMPING CURVES

10th Cycle
MeaEs.ur’edG. From Eq. (7-3){From Eq.(7-5) FY‘?III’]_ESI.
SL A & R a R o A
max max
.20 1 178 .529 3.92 198.11] .182
AXTAL
40 | .283 a3 (409 ) 122,57 45 59 Va5 21) U336
G =40
bsi 42 | .268 110 2.80 {38.40| .334
79 | 214 | L0157 2.04 |80.06| .381
ToRSIONAL | -36 | 312 .335 6.60 |608.4] .315
.39 | .213 221 2.51 [14.55] 369
5 =40 6.84 | 766.42
¢ .53 ,289 .099 3.03 | 33.04| .427
psi
57 | .262 .019 2.45 §16.351 .350
.10 | .055 .742 2.01 {3.53 | .089
AXIAL .20 | 106 .48] 1.94 {4.94 | .178
s =0 |-40 | .219 176 13.35 1 61.04 [2.43 1741 .283
C
psi A1 .248 123 2.60 |29.65| .302
60 | .223 .0336 2.14 |51.41| .332
TORSIONAL| .36 | .222 .289 2.93 |17.58| .263
3.78 | 41.91
5.=60 |.53 | .283 122 3.05 |26.46| .325
psi
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TABLE II
RAMBERG-0SG00D COEFFICIENTS FOR CURVES
USING & = Nt
10th Cycle
! From Eq. (7-6) | From Eq. (7-9) rq.(7-9)
st t “ R « R T
20 | .05 383.8 | 5.18 | .104
AXIAL
40 | .293 5.93 | 3.98 | .186
% =801 4 |3 | 445 | 2.30 a.52 | 3.4z | 93
psi 79 | 526 6.15 | 2.70 | .237
-4
TorsonaL | <36 | -233 4x10°% | -14.57 | oss
39 | .169 6.14 2.97 | .140
5, = 40 2.00 | 1.96
53 | .453 0.632 | 4.43 | .149
psi
57 | .794 0.813 | 2.75 | .183
10 |.026 5.86 2.37 | .054
AXIAL 20 |.033 4.70 2.06 | .123
40 .28 | 572 ) 234 | o4 2.92 | .179
5, = 60
4 | .245 6.92 2.98 | .200
psi
60 |.379 7.33 2.23 | 235
TORSIONAL | .36 |.127 10.86 3.64 | .066
5.=60 .53 |37 | 213 | 1.4 0.977 | 4.45 | .076
psi

* Compare to measured A in Table I.
pa
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TABLE III
RAMBERG-0SGOOD COEFFICIENTS FOR

DEGRADED BACKBONE CURYE~EQ. (7-11)

AXIAL TORSIONAL
N a R o R
1 65.45 3.87 253.03 6.53
5 =40
c 5 18.34 3.22 7.60 4,20
psi
10 10.54 2.91 3.12 3.00
20 7.01 2.29 2.0 2.61
50 8.45 2.82 1.64 1.66
] 30.96 3.01 18.32 3.07
ac = 80 5 14.37 2.68 26.63 4,74
psi 10 9.85 2.49 10.15 3.91
20 6.66 2.28 5.21 2.88
50 5.56 2.21 2.64 1.99
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STEADY STATE RESPONSE QF A CIRCULAR FOUNDATION
ON A TRANSVERSELY ISOTROPIC MEDIUM

Abstract

by
DAVID JOHN KIRXNER

The steady state response of a circular foundation
vibrating harmonically on a transversely isotropic elastic
half space is investigated. The analytical solution to the
massless disc problem requires the elastic constants to
satisfy a certain constraint equation. Typical values of
the elastic constants for actual soils are shown to agree
well in many instances with this constraint equation.
Dimensionless parameters which are functions of the elastic
constants are utilized to define the degree of anisotropy
when the foundation is undergoing vertical, rocking or
translational vibrations. Impedance and compliance coef-
ficients are presented in tables and curves for a wide
range of a dimensionless frequency parameter.

Approximate impedance and compliance coefficients
are also obtained for a visco-elastic soil.

The effect of the mass of the foundation on the

amplitude of vibration is alsoc studied. A principal

Tr—iii



result is that for massive foundations undergoing harmonic
vibrations the dimensionless part of the isotropic impe-
dance function may be used with the expression for the
anisotropic static stiffness to obtain the amplitude of
vibration. A dimensionless parameter determines the
Poisson's ratio of the equivalent isotropic soil. The
resuylt is important for the design of machine foundations
since it allows for an approximate analysis by using the

available isotropic solutions.
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NOTATION

a - pu’/C,,
8 - ow?/G
- Damping ratio
2
BH pw /GH
Y = Cz/c-l = G/CXX ’ G/C'{‘Y'
ﬁ
120 Y130 Y23
Xy’ sz, sz L - shear strain
Tra> Yrz? Yez
Py
) - Prescribed angle of rotation
Eij - Strain tensor
CZQ
a - Voigt loss factor = =T
0
n - Scaldar potential
M - /Gy s Cop/Csy
AZ - GH/G

Jr-viii
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NOTATION

- 52'0.2

- Poisson's ratios
- Hankel transform parameter

- mass density

- Stress tensor

- scalar potential
- scalar potential

- circular frequency

- X



3¢

f(g)

HOTATION

Prescribed horizontal displacement

Prescribed vertical displacement
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CHAPTER 1
INTRCDUCTION

1.1 Object of Study

Recent years have seen considerable research activ-
ity in the dynamic response of structures founded on soils.
Requirements for nuclear power plant structural safety in
the event of an earthquake have given great impetus to
this activity (1). The problem also has direct applica-
tion in the design of machine foundations.

To date, this research activity has been directed
toward the response of machines or structures founded on
isotropic soils. It is the intent of this study to deter-
mine the effect that material anisotropy has on the dynamic
response of structures. _

It has been observed that the process of sedimenta-
tion folilowed by one-dimensional consolidation results in a
material possessing cross anisotropic or transversely iso-
tropic mechanical properties (2). Also, it can be shown
(3), {(4), (5) that a mass of material consisting of an alter-
nating system of individuai homogeneous layers is equivalent
to a single mass of a cross anisotropic material, provided
the thickness of the layers is small comparad to the other
dimensions of the problem. Varved clays are an example of
this type of medium. Thus the study of soil structure inter-
action effects considering soil anisotropy is of considerable

practical interest.
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There are numerous analytical techniques
available in the literature for obtaining the dynamic
response of structures including the effects of ground
interaction. Probably the most widely used in practice
today is the finite element method, (1), (6). A major
drawback to the finite element method is its inability
to mode]l infinite regions. Unless a significant amount
of material dampiﬁg is present, energy which should
radiate to infinity is reflected back into the soil
mass. This difficulty was partially overcome by the
development of the so-called transmitting boundary (7 ),
(8). This enabled the lateral boundaries of the finite
element grid to be p?aced‘a?most at the edge of the founda-
tion. However, a rigid lower boundary is still required
at some finite depth, whether one actually exists or not.
The method has some obvious advantages for this problem.

It easily handles embedded foundations, layered media and
even anisotropic materials.

There are techniques which are not entirely numer-
ical, but utilize a continuum solution along with numerical
procedures (9), (10), (11). The foundation of these tech-
niques is usally the solutjon to some basic problem such
as a uniform stress, harmonic in time, distributed over a
rectangular region on the surface of an elastic half space,
A number of these rectangular regions are then assembled

to give the desired foundation configuration. The
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amplitude of the uniform stress over each subregion is
adjusted to yield the overalf specified foundation

displacement(]o).

Techniques such as this account
properly for the radiation of energy to infinity. The
main advantage is the ability to model foundations of
arbitrary shape. Solutions have also been presented
for foundations on layered media(g).

A third method is to solve the governing differ-
ential equations of motion, usually for a simple founda-

tion geometry (12),(13),(14),(15),(16),(17),(18).
The problem is difficult, however, because it involves

mixed boundary conditions. The standard procedure is

to reduce the equations of motion and boundary conditions
to one or two integral equations. The integral equation(s)
may then be solved numerically to any desired degree of
accuracy. The results, usually presented in dimensionless
form, include the total force under a rigid, massless
footing undergoing unit harmonic vibrations,‘i.e., the
dynamic stiffness or impedance. The equations of motion
for a given structure can be written to include the dy-
namic stiffness of the soil.

Analytical soclutions offer distinct advantages
over other methods especially for half space problems.
Besides the relatively low cost, they are inherently
more accurate. |

The purpose of this study is too assess the

effect of soil anisotropy. This will obviously entail
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a large number of analyses and so an analytical solution
is economically attractive. Alsa, the effect of the anis-
otropy 1is most easily assessed if the Teast number of
parameters other than the soil anistropy are introduced.
A basic problem which is amendable to an anlytical solu-
tion and which fits this requirement is the circular
foundation supported on the surface of an eTastic half

space. This will be the problem studied herein.

1.2 Historical Review

The first attempt at the solution of the harmoni-
cally vibrating footing was made by Reissner in 1936 (19).
He solved the problem by integrating the solution to a
harmonically vibrating point load on an elastic half
space (previously determined by Lamb (20) ) over a circular
area., He thus approximated the rigid footing with a

uniform pressure distribution.

Several years later Sung (21) and Quinlan(22)
examined other assumed stress distributions and presented
results for low values of a dimensionless frequency
parameter (a0 = mro/cs) ffrst introduced by Reissner., In
this expression w is the circular frequency, r. is the

0

radius of the disc and € is the shear wave velocity of
the soil. Bycroft (23) assumed the static stress distri-
bution existed under the footing and examined all modes

of vibration. He also attempted an approximate solution
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to the coupling motions between rocking and sliding.
Again solutions were presented only for Tow values of
the dimensionless frequency. The results of Bycroft were

used in the early scil-structure analyses (24).

It will be noted that in all the above solutions,
the actual mixed boundary value problem was converted
to a first boundaty value problem by assuming a stress
distribution under the footing, Lysmer (25) attempted to
circumvent this by replacing the footing with a set of
concentric rings each with a uniform stress. By adjusting
the value of the stress on each ring he was able to get
a uniform displacement and thus approximate the behaviour .
of a rigid footing. Lysmer noted, as did Reissner, that
the equation of motion of the circular footing was
analogous to that of a single degree of freedom oscillator
with the impedance or dynamic stiffness of the soil acting
as a spring and a dashpot. Of course this "spring and
dashpot" were frequency dependent. By adjusting the
equivalent spring and dashpot to values which were indepen-
dent of a, he arrived at an approximate equation of motion
for the mass which was truly analogous to a single degree
of freedom oscillator. This has been dubbed "Lysmer's
analog" (25).

The first attack on the problem as a true mixed
boundary value problem was by Robertson(26). Since the

vertical oscillation problem is axially symmetric he was
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able to reduce the equations of motion and boundary
conditions to a pafr of dual integral equations, via
Hankel transforms. The dual integral equations were of
the type possessing a Hankel kernel and an arbitrary
weight function and were reduced to a single Fredholm equa-
tion of the second kind by methods as described in
Sneddon (27). Robertson expanded the kernel of the in-
tegral equation in a power series allowing him to present
results valid only for Tow dimensionless frequencies.

Gladwell (28), beginning with the general solution
to the isotropic equations of motion expressed in circuTak
coordinates (due to Sezawa (29) ), was able to follow
a method similar to Robertson and give results for the
rocking and translational probiem; again only valid for
low dimensionless frequencies.

Shah {30), by a different technique obtained the
same integral equation as Robertson which he solved numer-
ically yielding results over a wide range of frequencies.
At approximately this same time, Luco and Westmann(12)
using G6ladwell's technique recapped the integral equations
for all modes of vibration and presented extensive results
including contact stresses and far field surface displace-
ments.

In (14), (15), and (16) the solutions were ex-
tended to layered media, by methods similar to the half

space problem. Luco in (17) replaced the elastic constants



L7
with complex moduli and solved the viscoelastic

problem for the half space and for a single layer

overlying a half space.

1.3 Scope of Study

There are three main areas to this study. The
first is the determination of the harmonic force-
displacement relationship of a massless, rigid, circular
disc supported on a transversely isotropic elastic
half space. This relationship will be -determined at
discrete values of the dimensionless frequency parameter
and for a practical range of soil properties. The second
area is the approximate solution to the same problem for
a linear viscoelastic soil. This simulates the losses
due to hysteresis which occur in a true soil. Finally, the
effect of foundation mass will be studied over a frequency

range determined to be of practical interest.



CHAPTER TI

WAVE PROPAGATION IN A CONSTRAINED
TRANSVERSELY ISOTROPIC ELASTIC MATERIAL

2.1 General

In this chapter the phenomena of body and surface
wave propagation in transversely isotropic materials will
be discussed. The results presénted should provide in-
sight into the nature of the problem to be addressed in
the next chapter.

Primarily for mathematical simplification a cer-
tain constraint equation is assumed to hold between some
of the elastic constants. The practical use of such a

"constrained" material is discussed,

2.2 'Basic Equations

Primarily to define notation, the stress-strain
equations for a transversely isotropic linear elastic

material are given below:

911 = C11%11 * Cip®22 * Cp3eas (2.1a)

90 = Cypeyp * Cyqepp * Cyae33 (2.1b)

33 7 f13®11 * C1gf22 * C33fa3 (2.1c)
.1 i

012 = 7(Cy1 = Cyadyyp = Gyvyp (2.1d)

013 = 6¥q3 (2.1e)

Gpq = GYpg (2.1F)
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The "3" axis is the axis of symmetry, and the equations
are valid in cartesian or circular cylindrical coordi-
nates replacing the subscripts (1, 2, 3) with (x,y,z )
or {r,6,z ) respectively. 7

The strains can be expressed in terms of the

stresses by the following relations

o) AV) \Y)
2911 H VH
€11 5 T T EL %22 T E 933 (2.22)
WV g Y
H 22 VH
£ CRDRLLES, S - A LA (2.2b)
22 By 117 E, E, 33
W LAY ] g
HY HY 33
e = Yoo HV o 33 (2.2¢)
33 Ey C11 TE, %22 TE,
g
_ 912
Yyp GH (2.2d)
_ Y913 (2.2e)
Yi3 ° &
923 (2.2F)
Yo3 ° G

From equations (2.1) and (2.2) the following
relationships can be determined between the elastic

parameters



Ir-10

2

E (T-n v,,)
cn = 4 VH (2.3a)

(]+vH)(1-vH—2n vsH )

2
E, (v N vo,)
Cpp * H H_VH > (2.3b)
(T+vH)(T-vH-2n vVH)

E, v
c.. = H VH (2.3c)
13 1-v,,~2n vz
H VH
E {1-v,)
c. = HUTH (2.3d)
33 n{1-v,-2n ve.)
YH VH
4 (2.3e)
S T 20wy 3
E, v
no= AV (2.3f)
Vs VVH

In equation (2.3) EH is the modulus of elasticity
in the horizontal direction, E, is the modulus of

elasticity in the vertical direction, YH is

Poisson's ratio measuring the effect of horizontal
strain on complimentary horizontal strain, vy

is Poisson's ratio measuring the effect of horizon-

tal strain on vertical strain, VuH is Poisson's ratio
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measuring the effect of vertical strain on horizon-
tal strain and n 1is by definition the degree of
anisatropy. This notation is similar to Gerrard,
reference (40).

Substituting equations (2.1) along with the strain
displacement relations into the equations of equilib-
rium yields the equations of motion in terms of the dis-

placement components. In cartesian coordinates they are

Cxxux,xx * &y Us,yy * G Uy,zz * (Cxx'GH)uy,xy
+(C ,*8) v, oy = b U, (2.4a)
(Cxx'GH)ux,xy * Cxxuy,yy * GH uy,xx + G uy,zz
+(C 8, L, = 0 uy ~ (2.4b)
Glu, o * “z,yy) *Cpp Ys22
# (68N Uy L P Uy ) = eu, (2.4¢c)

In equations (2.4) the displacements in the

X, ¥, z directions are u u u, respectively. o s

y' "z
the mass density, and the convention for differenti-

x!



ation is
i 32 u,
Uy, xy axyy
32ux
Ux = ;;E_

For future reference the equations of motion in

circular cylindrical coordinates are

((ru) +l 6 u  +6u +-}(c 6,) u

rr r 2 H "r,08 r,zz rr H’ “8,rs

1

- (€, #6y) 7 Y, £ (C = ou (2.5a)

+
G)UZ,FZ

rz r

1 1 1 1
(Cpp*By) 2t By g * 2 Cor Yg,00 * Bu(F{rug) p)oy

] _ .
+G Ug.zz * (Crz+e)uz,ez = e Uy (2.5b)
Lot w)ru, ) +u, .o 1416 (ru, )
r rz r,Z2'’r 78,82 r zZ,r’r
'l _ ve
+ ;f G uz,ee + CZZ uz,zz =ou, (2.5¢)

2.3 Body Wave Propagation

If it is assumed that a piane harmonic wave is
propagating in some direction given by direction cosines
1, my n with respect to the x, y, z axes, the displace-

ment components may be expressed as
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ug = Ay exp [4 1?-(zx+my+nz + ct)] (2.6a)
u, = A, exp [d %?-(£x+my+nz + ct)] {2.6b)
u, = Ay exp [{ %?-(2x+my+nz + ct)] (2.6¢)

In equations (2.6} ¢ is the wave speed, L is the
wavelength and the Ai are amplitudes. Substituting
equations (2.6) into (2.4) yields the following

homogeneous equations given in matrix form

(B4 - 4) Be Bs 1 A, 0
Bg (82 - A} 34 A2 = 0 (2.7)
BS | 84 (B3 - A) A3 Q
whé:e ]
B} = Cxxzz + GH m2 + G n2
82 = Gng + Cxxm2 + G n2
By = 62° + G’ +C 0

(=)
]

4 (sz + G)mn

(e
t

= (C__ - gﬂzm

XX
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In order that there be motion, the determinant of
the coefficients ih equations (2.7) must vanish. This
condition gives a cubic¢c equation in A , the solution
of which yields three real wave speeds. In fact, this
is the case even for a completely general anisotropic
material-see ref. (31). For the simple case of an iso-
tropic material solution of the cubic yields wave speeds
independent of the direction of propagation. One root
corresponds to a dilatational wave and the two repeated
roots correspond to shear waves.

The determinant resulting from equation (2.7) does
not yield roots independent of the direction of propa-
gation and in fact they cannot be expressed in a simple
form. However, if the elastic constants are constrained

to satisfy the following relation

(Ciq + §)2 = (Ciqp = 6)(Cqq - G) (2.8a)
or
2
o o o1 fa3 - O3 (2.8b)
Cpp * el * Cag

the roots of the determinantal equation become



_ 2 _ 2 2 2
Al = pcy = Cxx(1 + m°) + sz n (2.9a)
_ 2 _ 2 2 2
A2 = pc, = GH(l +m-) + G n (2.9b)
Ao = pc2 =612 + w + nd) = 6 (2.9¢)

3 3

In essence this constraint defines a subset of all
transversely isotropic materials by making the shear
modulus, G a function of the other elastic parameters.
This type of material appears first to have been investi-
gated by Carrier (32). Particular applications have been
made in refs. (33), (34), and (35). Henceforth, use of the
phrase constrained transversely isotropic medium will
mean a transversely isotropic material whose elastic
constants satisfy equation (2.8).

The motivation for using this constrained trans-
versely isotropic material is not simply that the wave
speed appears in a convenient form, but that the equations
of motions can be uncoupled in terms of potential
functions as will be shown subsequently. Payton (34)
states, "the value of such a constraint relation lies not
in its approximation to any particular material, but
rather in the mathematical simplificatidn of the problem

while still preserving some of the qualitative features

of wave propagation in transversely isotropic media".
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A set of eidenvectors corresponding to the eigen-
values, equation (2.9) is

r - o

A1 P2 A booem -1
A21 A22 A23 = m 1 -m (2.10)
2. 2
A31 A32 A33 n/z 0 £(1%+m")/n
=3 o 3 o
where
) T o= sz t G (2.11)
C -G
rev4

For the 1imiting case of an isotropic material equations

(2.9) become

Aro= (X + 2u)

where X and W are Lame's constants and I becomes
identically one. The wave associated with Ay = X+2u

is of course the dilatational wave. This is easily

shown by taking the first eigenvector from (2.10)

(with Z=1 ) substituting into (2.6) and utilizing the
strain displacement relations to show that the cohponents
of the rotation vector are identically zero. For I

not equal to one a similar result can be cbtained by

defining an artificial z- axis as
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M|
I

iz (2.12)

Equations (2.6) now become

uy = Ay expli T (xemy+DZ 4 ct)) (2.13)
Again using the first eigenvector of (2.10) in (2.13)
along with the strain displacement relations it is easily
shown that the components of the rotation vector vanish.
Thus, referred to this distorted coordinate system, the
'wave speed {2.9a) corresponds to a dilatational wave.
Following this same procedure the wave speeds {(2.9b) and
(2.9¢c) correspond to shear waves with respect to the
distorted coordinate system,i.e. the volumetric strain

is zero.

This property of equation (2.12) hints at a method
for uncoupling the equations of motion. With isotropic
materials a standard procedure is to define the displa-
cement vector in terms of two potential functions accord-

ing to Helmholtz's Theorem as

Substitution into the equations of motion ytelds a

scalar wave equation in ¢ and a vector wave equation
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in 3 . In the analysis of the transversely
isotropic material above, the distortion of the 2z-

axis was equivalent to replacing the operator 3/52

with (1/:)(3/3z). . Therefore, define the follow-
ing modified operators(32)
T (/) g, + eyl * (2/22)(1/2)g,
Ty e (2 - R,
+ % (Z%l')- %gi) %y
* (géz ‘;;l 2
and let
A R (2.1)

Substitution of (2.14) into the equations of motion

along with the additional restriction
_'i- +  — = 0 (2-15)

yields the following uncoupled equations



Lr-19

Cxx boyx T Cxx ¢’yy * sz Pr,, - P ® T o (2.16a)
G(“’Lxx Py T T1’1,22) -p ¥y =0 (2.16b)
G(‘PZ,XX ¥ Y2, vy i 2,27_) ~o Yy = 0 (2.16c)

]
o

Gy W xx ¥ ¥a,yy) * 8032, 70 1y (2.16d)

Equations 2.16a, d could be transformed to a standard
Poisson form by again distorting the z- axis. Then

2.16a becomes

1
V2¢-—:§-¢:0
]
where ) > ) )
V=3———+§-—+.3_2.
3X2 Ay 32
z = z2/\
- 12
Mo (C/Cgy)
&2 = ¢ /o

1 XX
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Note in general that C; is not the wave speed of
(2.9a). The physical relationship between the two can
be inferred from Fig. 2.1 and equation 2.9a, (where for

convenience M is taken as zero).

Dividing (2.9a) on both sides by CXX

2
pC 2
1 . 2 n- _ 2
C——-——Z‘{'-—'—z-:p
XX M
2
or Py -1
p%C
P M xx
Define E% = c% / p2 where in general
p2 YN m2 + n2/A$
Then 5% = Cxx/p as given above and the

direction of propagation is defined by the unit vector

a = (a/p) g, *+ (m/plg, + (n/Prq)g,

Y

Similarly for eqﬁation (2.164d)

2, 1 = _
2
32

2 2
N b SR
ax 3y 3z
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z = z/x,
2 _

AZ = GH/G

-2 _

C2 - GH/D

For use in the next chapter, the preceeding results

are required in circular cylindrical coordinates

£ 07 U @t uygatu,a,
T 6T b, 2t L by 2t T 0, 2
ae r Ar r 7’8 A8 ¥ 7’z A2
* 1 1
Tl 3.0 7T Y2,20%
s ( Ly v, a
r 1.z 3,r'n8
sl vy, - a
r A 1, ‘"z

Egn. {2.15) becomes

1 -
wl,r trlae =0

Egqn. (2.16) becomes

1 ] .
Crr'F (r¢’r)’r * Crr';f 299 * ¢,z b2 ~ P &7 0

B(H(r

1,r

1 .
)’r“:é“”],ee*‘”uzz) -eby = 0



] 1 .
S Cr (rog, o+ g vy 000 + Bty 5y =0 ¥ = O

| . 1 —a . =
G (‘F (r¢2,r)’r * ;?' Y200 * LpZ,zz) o ¥y 0

Notice that the Helmholtz theorem introduces
four functions, i.e. a scalar potential and the three
components of the vector potential, whereas, there are
only three independent components of the displacement
vector., The additional equation to make this relationship

unique is given in this case by

] -
NrtTv¥ae ° 0

When attempting to fit boundary conditions in terms of
potential functions, it would seemmore convenient to

work with only three independent quantities. This can be
accomplished by replacing the curl of the vector
potential with two vectors fields, each derived from a
separate scalar, such that one vector is tangential to
the surface of the boundary and the other is normal to
the surface. This is detailed in Chapter 13 of Morse

and Feshbach (36). This technique was used by Wei (14)
in analyzing the isotropic problem, When the boundary is
a plane perpendicular to the z- axis, the decomposition

becomes
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g ogrer ey (2.17)
Moo= (y*n) xa,
No= (7= x(xa,)
or expanding
M= -nap 2y ¥ 7 ag 2,
N= — ¢ a +]— X s a
~ BL ,rZ Ar rgt 6z 8
+ A "lf’“zz'¥8 x)2,
L
where 82 = wo/G has been introduced for convenience.

Substitution of (2.17) into (2.5) yields

] 1 s
Crr[F(M’r‘) r + r_z ¢’88 ] + CZZ Cb’ZZ -0 ¢ = 0 (2.}86)
] 1 -
GH [F (rnar)’r + r—z n,ee ] + G nszz -pn= 0 (2.18[))
G [F (rx’r‘)’r‘ 2 X,ee + X’ZZ] -px= 0 (2.“8C)

Again, these equations can all be put in the standard

Poissan form by distorting the Z- axis.
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Thus, it has been shown by a careful examination
of the wave propagation characteristics of a constrained
transversely isotropic material that the governing
equations of motion can be expressed in terms of three

independent pseudo wave equations.

2.4 Surface Wave Propagation

‘The phenomena of surface waves in anisotropic media
has been addressed by numercus investigators, for instance,
see ref. (37), {(38), (39). In (39), Stonely solves the
problem of surface waves in a transversely isotropic
medium.

The difficulty in solving any elastodynamic problem
in an anisotropic medium arises in general because the
equations of motion do not uncouple in terms of potential
functions, which is the starting point for most isotropic
problems. Since for the congtrained transversely isotropic
material considered herein the uncoupling may be performed,
the surface wave problem should be solved more directly
by using potential functions. The solution using
potentialsis presented below and the result compared to
Stonley (39).

Assume without loss of generality, a plane wave
propagating in the X- direction. The potential rep-

resentation (2.14) becomes
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- 1
Uy = ®sy F g ¥y (2
- 1 -
u, = ¥ ¢, by (2
The pseudo wave equations (2.16) become
) +]_¢ +9.(_°__2. = ( (2
XX A? 2z CXX
om2 b
ok Tt TR =0 (2
The assumption of a plane wave propagating in the
X- direction leads to
#(x,2) = F(z) exp [i %3 (ct-x) ] (2.
w(x 2) © H(z) exp [i %E (ct-x) ] (2.

Substituting (2.21) into (2.20) and solving yields

bx,z) " A exp [i %1 (ct - x + Ay Rlz) ] (2.
w(x,z) = B exp [1i %l Jet—x + Rzz) ] (2.
R2 = (gEp? - (2.
R2 = (e/c)? - (2.

.19a)

.19b)

.20a)

.20b)

21a)

21b)

22a)

22b)

22¢)

22d}
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The stress boundary conditions to be satisfied for

a half space are

0, = sz Uy x + sz u, ; = 0 on z=20 | (2.23a)

g = G(u +y, ) =0 on z=20 (2.23b)

Substituting (2.22) into (2.23) yields the following

homogeneous equations

2 52
C.. A7 R C_R
zz "1 71 Xz 2 -
- [sz s A + [ = - sz R2 18 0
2
A, (1 + l-) R-A - [ EE_ -118 = 0
1 z 1 T

Setting the determinant of the coefficients to zero yields

the‘fo110wing characteristic equation for the surface

wave velocities

O A AT (2.28)
C_+C
where 8 = £ +1 = £ - éz
zZ
-2
q = (c/cy)

<
1]
—
(2]
~n
™~
o
—
o
i
[p]
~
(]
>
>



Rationalizing equation 2.24 gives the following quartic

q* - 400+ o? (6- szf o%)q°

- o (4= 08 8) g+ ot 108) =0

This equation can be factored as follows

2
. 1-A
(a - —55) (@A) - g% (128 + 29)
1-A]Y
+ gf(f+2) = fz) = 0 (2.25)
2
Cz
where f = J—(C -2
G ‘Uxx sz
2
1-)\]

The root q=}i;?;? leads to zero displacement and
thus the cubic remains for determining physical surface
wave speeds,

Stonely's result is

2
- (Q-1)1/2 Cixlzz (av7-1) + Coz 1

(qy°-1)172 6(c.c.)1/?




(Note: there are sign errors in eqn. 13 of ref. (39) )
Rationalizing this equation_yields the cubic of eqn.
(2.29).

Therefore, the surface wave velocity for the
constrained transversely isotropic material considered
herein is identical to that of a general transversely

isotropic material.

2.5 Range of Dimensionless Elastic Caonstants

It can be seen from the preceeding two sections that
;he phenomena of body and surface wave propagation in a
constrained transversely isotropic medium can be expressed
in terms of the dimensionless constants A;,Az2,v,9
It will be shown that the constraint equation (2.8) places
certain restrictionson the values these parameters may

assume. Recall

C

2 rr 2 H G
S e S IR G
' CZZ G rr
C
(%) + 1
b = Crz+czz - Crz
sz'G 1 - (E )
Csz
or s
(f——) + 1
o = —EEme (2.26)
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From (2.8)
¢ - ¢t
G rr ZZ rZ
CY‘Y'+2CY‘ +CZZ
C
or ; )\% = (CY‘Z)Z
G
.C._ = )\%Yz = CZZ (2.27)
22 Wi (L)
2z

Solve equation (2.26) for ( Crr/sz ) and substitute

into (2.27) and solve for ? yielding

2 2
s =1 +\/ AT(1-v7) (2.28)
1-Y2A§ .

For a given set of elastic constants, satisfying

equation (2.8), the value of ¢ <calculated from its
definition (2.26) will automatically satisfy (2.28).
However, if we wish to choose a range of values for the
dimensionless parameters such that the constraint
equation (2.8) is satisified, A1 , and Y may be chosen
arbitrarily while 2 must be calculated from (2.28). It
was not necessary to express ¢ in terms of Ar , and ¥
A1, or Y could have been expressed in terms of the

other two. However, because of the more physically meaning-

ful definitions of A1 , and Y it would seem desirable to
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vary these independently.

From (2.27) a bound on k%vzcan also be obtained.
2.2

Assume ATYS> 1 . From (2.27)
2 2
A; B (Crz/czz) > 1
AT +2(C__/C__)+1
or 1 rz! Vzz
C o
(CPZ)Z + 2(CVZ) +1<0
2z z2
Crz 2
(%) + 1)% <0
zz

Since the square of a number must be positive or zero,
A%Y2< 1 by contradiction,

The elastic constant GH does not appear in the
constraint equation and so the value of A; may be varied
independently.

To properly assess the effect of soil anisotropy
on the response of a structure, a suitable range of the
elastic parameters X; , x> , and vy must be chosen,
Chapter eight of reference (40) presents static solutions
for various distributions of stress or displacement over a
circular area on a transversely isotropic elastic half
space. The different sets of elastic constants used in
their investigation along with the resulting dimensionless
constants are presented in Table 2.1 as cases one through
eight.

Saada, et al. in reference (2) have determined from

dynamic tests the values of the elastic constants for
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incompressible transversely isotropic clays. For an
incompressible material the constraint equation (2.8)

becomes

g = H (2.29a)

2 2 2
and the dimensionless constants are Ai1=l,xz=n,y =0

Results aré reported in reference (2) for various
peak strain levels, Values of Ey , Ey , and G at
similar levels were used to obtain the properties shown
as cases nine and ten of Table 2.7.

The last column of Table 2.1 gives the value of G/Ey

calculated from the constraint equation (2.8). It
can be seen that for most cases the comparison with the
actual value of G/E,is quite favorable, leading to the
conclusion that equation (2.8) is a reasonable
assumption for soils.

Based on Table 2.1, a suitable range for the
dimensionless constants was chosen for use in subsequent
parameter studies. The cases chosen are given in Table
2.2. The surface or Rayleigh wave velocity required later
is also given., This is determined by solving equation

(2.25).



CHAPTER III

SOLUTION OF THE HOMOGENECUS ELASTIC
HALFSPACE PROBLEM

3.1 General

A key step in the dynamic analysis of a
Structure-soil system is the determination of the
force-displacement relationship between the foundation
and the soil assuming the foundation to be massless.
Given this relationship, the equations of motion for the
structure can be written to include the stiffness of the
soil media. In the case of machine foundations, the
motion is usually harmonic, For seismic problems, the
analysis is often performed in the frequency domain (1).
Thus, the force displacement relationship of harmonically
vibrating foundations is of considerable importance.

In this chapter the harmonic force-displacement
relationship for a rigid circular disc supported on a
constrained transversely isotropic elastic halfspace will
be presented. The system considered is depicted in
Figure 3.1,

The so-called relaxed boundary conditions at the
disc-soil interface are assumed. This means that for
vertical and rotational oscillations, the shear stress
under the disc is zero, while for lateral motion the normal
stress under the disc i1s zero. This allows the rocking

and translational problems to be treated separately.

r- 32
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Also, it has been noticed (12) (for the isotropic
problem) that the shear stress component perpendicular
to the direction of motion is very small compared to the
component parallel to the direction of motion for trans-
Tational vibrations. In fact, for static loading it is
exactly zero. The assumption that this smaller component
is zero was made by Luco (16),(17) to greatly reduce the
computational effort. This further relaxation of the
boundary conditions is also made herein.

The mathematical procedure employed to find the
dynamic stiffness or impedance is similar tc that
utilized by Gladwell (28). The starting point in Glad-
well's analysis was the general solution to the isotropic
equations of motion, first obtained by Sezawa (29). The
general solution for a constrained transversely isotropic

material is presented in the next section.

3.2 General Solution of the Equations of Motion

The governing equations of motion (2.5) were
uncoupled through the use of the modified Helmholtz
theorem (2.17). The result was the pseudo wave equations
(2.18), repeated here for convenience

6, _-p4 =0 (2.18a)

1 1
¢ [“(r¢’r)’r+Fz¢’ee ] *C,s 22

rre-r

1 1 . -
G Lr{rn, ) #ans 1460, "-on = 0 (2.18b)
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] .
G [;irx,r),r + z Xsgg ¥ X357 1 = x= 0 (2.18¢)

If the motions are assumed to be harmonic, the solutions
of (2.18) satisfying the radiation condition at infinity

obtained via Hankel transforms are

-]

© =Aiv 2
#{r,8,z,w) = ZO cos(ne) f 2 Ag e Ta Jn(gr)dg
n= 0
w e ~Aiv Z
+ zo sin(ns) f £ AQ e Ta Jn(gr)dg (3.1a)
n= 0
=) o “AAaV 2
n(r,8,z,w) = § cos{ne) J £ Bg e 27FH Jn(gr)de
n=o0 0
o -] -2 v 4
+ } sin(ns) f £ Bg e 27BH Jn(gr) dg (3.1B)
n=0 o
B w n ?vsz
x(rs8,z,0) = ) cos(ne) f gC.e Jn(gr)da
n=0 0
% @ -v_Z
. n B
nZO sin(n) JO §C e J(gr)ds
where
v2 = 52 - az (3 2a)
N T (3.2b)
2 _ .2 .2
vBH = £ - By (3.2¢)
82 = pul/G, (3.2d)
vg = g% - % (3.2e)

82 = 5u%/G (3.2¢)
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n ,n ,n .n .n
Ac’As’Bs’Cc’Cs are constants,
J (er) is the Bessel function of the first kind of
order n and « is the frequency of vibration.
The modified Helmholtz theorem is given below

in expanded form.

ur = ¢’T + r n:e BT X:rz (3.3&)
u =1 ¢ - n + 1l (3.3b)
8 r "’p r rgz *’pz .
U = l— & l + B (3 3C)
z g Pz T g Xozz X ‘

Substitution of (3.2) into (3.3) yields the
general solution for the displacements. For the axially
symmetric vertiéa? vibrations, the solution for n =20

is required.

® =Ayv 2 v -v_Z
_ 2 0 17 a g Vg 8
u, = - Jo £ [Ac e - CC a7 © ] J](gr)dg(3.4a)
= ~A_v, Z
- 2 L0 z By
u, = jo £ BC e J1(gr)dg (3.4b)
© Ayv -Ayv 2 2 -VBZ
- 6 1a 17 0 E e J1d (&gr)de
u, JO ;[AC —~— ¢ - 05 0
(3.4¢)

Using the strain displacement relations and the stress
strain equations, the stress components of interest are

obtained
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0,..2 2
=V, 2 ) CC(¢g -8%) wv z

G [T .2 .,0 B
o0y T % JO eS[A e ry v & z e 7 1J,(gr)de
{3.5a)
o =AAV z
- 2 0, "2°BH . (zr)ds (3.5b)
Toq G Jo £ AZ vBH Bc e 1
2 -vBZ
«l v Z Ev, de 0
_ G 2_;2y,0 Wa 8 €.19_(gr)de
azz-gjatcbzs) -3 co
0 (3.5¢)

For rocking and translational motions, the solutions

for n=1 are reguired

@ “A.v z dd.{gr) v =AaVayZ
= ' 1a 1 1 2"BH
u, = Jo [t AC e &t 7¢ Bs e J1(€P)
ivB , -vBZ d J1(EF) (3.6a)
- BT C e —ar ] dg cos(8) .ba

v Aev . Z v =Avguz d J4(gr)
u, = J [AC e |8 Jo(er) - g B, e A i
0

8 dr
£v 1 -v_2Z
_._B B 3 ‘6b
+ FET C e J1(gr)] dg sin(s) (3.6b)
a S AqV 1 -\ v Z
u_ = f [ - 1a 40 10 J](gr)
4 o z

+ %— C; e B J1(gr)]dg cos (8) (3.6c)
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The required stress components are

' : Y]
0 @EA]VG ] _;\ v Z dJ](EY‘) 2 SH 1 -);2\)5 Z
= - —_—_—G : - H
orz G fo [ - AC - Ir & BS e J](gr)
R C)
+ —TE— CC e —&?‘—_] dg COS(_G) (_3.7&)_
o EJ\-I\’G o} 1 ] ‘)\2\)5 z dJ] (EY‘)
= S T H o
g, = 8 Jo [ A dler) + ¢ AZ“sH Bs e dr
elost-8%) oz _
W ¢ e '8 J-I(EY')] dg S'l!'l(_e) (_3.7b)
o, = 3 [0 gl(eg"-8") A_ e - =5 C. e © 19,(er)ds cos(e)

(3.7¢)

For vertical vibrations, equations (3.4) and (3.5)
along with the boundary conditions reduce the problem
to the solution of two dual integral equations which
may be further reduced toc a single Fredhoim integral
equation of the second kind by the methods detailed in
Sneddon, (27). Using equations (3.6) and (3.7) the
rocking and translational problems are handled similarly.
For each mode of vibration, integration of the unknown
in the Fredholm equation over the radius of the disc
yields a quantity proportional to the total force under

the disc undergoing unit harmonic displacement, i.e. the

dynamic stiffnesS or impedance,
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3.3 Stiffness and Flexibility Coefficients

3.3a Vertical Vibrations
Consider a transversely isotropic elastic half

space subject to the following boundary conditions

uz(r,e,O) =4, , rery (3.8a)
Grz(r’ 0) =0 , r>0 (3.8b)
czz(r, 0) =0 , ror (3.8¢)

Since the motions are symmetric about the z -axis, the
solutions to the equations of motion given in equations
(3.4) and (3.5) are used. Substitute (3.4) and (3.5)
into (3.8) evaluating at z=0 . Because of the axial
symmetry, take Bg=0 . Equation (3.8b) is satisfied

identically by taking

2 _n2
o L REEET)

= —_—
¢ ®A1va8 c

Equations (3.8a) and (3.8c¢c) can be simplified by

defining a new parameter

B(E) = Foi&l o

®l1va5
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where f(g) = (@Ez- 82) -£ 9

Recall that f(g)

velocity as derived in Chapter 2.

(3.8 a,c) become

i Ao, (0e%(a-2)+8%)

, )

H
o
-3
v

[ ste) agter) ae
o

Notice that
[ Aiva(¢€2(¢‘2)+82)]

It

ol

w=0

To simplify the computations

Yy = - @i]-k]f

and
Hy(g) =

2 2 A

€l1vaf¢€2(®-2)+62]

v, fle)

1 Y s (3.9)

is the equation for the surface wave

With these definitions

18(g) J (gr)dg =z 4, r<r, (3.10a)
o (3.10b)
A1(¢-2)
Eoil-A]I
later define
(3.11)
-1 (3.12)



Note that H1(E) =0
w=0

and that H1(g) +~0 aS £ + =

Equations {3.10 a,b) may now be rewritten

L4

J: %— [V + H(e)1B(g) J (er)ds = ;;! » T 2Ty (3.13a)

J B(g) d (gr)de =0 , ro>r . (3.13b)
0 0 o]

Equations (3.13) are a pair of dual integral equations
with Hankel weighting function as considered by Sneddon,
ref. (27). They are identical in form to the isotropic
problem.

Let ZE;EA ro

B(g) = v f h1(x) cos{gx)dx (3.14)
o

Equation (3.13b) is then automatically satisfied and
(3.13a) is equivalent to the following Fredholm integral

equation of the second kind

r

1 0
ny(x) + 1 L Ly(xudh (u)du = 1 (3.15)

where

-]

L](X,u) 2 J H](E) cos{tex) cos(tu)dg (3.16)
0
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The dynamic stiffness or impedance can now be

expressed in terms of the unknown in the Fredholm

integral equation, hl(x). The total force under the

disc is Zr r,
P = J [ g__ rdrds
v o Jo 22

ey )

f B(g) J,(er)dg
o]

Using this expression and equation (3.14) yields

2GA 2r /0 o 0
Py T T J J J J ghy (x)cos(gx)d (gr)dxderdrds
K v 0-‘0°0°0

Making use of a Weber-Schafheitlin type integra1

(see Appendix A) reduces this to

4GA r
J 0 hy (x)dx (3.17)
o}

The dynamic stiffness or impedance is defined as

- p ro
K, = z%— = %%‘ fo hy (x)dx (3.18)

at w=O,L1(x,u)=O and therefore hl(x)=1.

Thus for the static case

o 4Gr

¢ = 46 [ dx = —2O (3.19)
o .

3.3.a.1 Verification of Static Solution
The static problem has been considered previously

by Gerrard (40) who obtained for the stiffness
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2
4Gro(crz zz° )(Crz zz 1)
‘31"1(:22(C rz+G)(°1+¢1)
where
P1EM T A 1 Bl B
and
2 |:‘:‘r'v'czz'cg - 2,6t ZG(Crrsz)]/z]
@y = G C (3.21a)
2z

2 1/2
[c..c C +2C G + 2G(C..C_.) "]

2
B =
1 4G sz

Recall the constraint eqn. (2.8a) in expanded form

C_C._-cé - 2¢_G - G(C ) = 0

rr zzZ rz Y‘Y‘ ZZ

Using this expression in (3.21) leaves

A+l Ay-1
2 2
o = (4—) 2= (4—)F (3.22)
Gerrard presents sclutions for three conditions
(A.) a§>0 , B$>0
(B.) a%)O , 3$<0

(c.) ofs0 , s %=0
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The quantity u$ must be greater than zero for
positive strain energy. It can be seen from (3.22) that
the constraint used herein forces B7 to alsoc be greater
than or equal to zero, thus eliminating case B.

Using (3.22) in (3.20) yields Gerrard's result
specialized for the constrained material

K 46r (CT'Z+CI"Y')(CT'Z ZZ) (3.23)

(Crz+G)(1+A )CZZA

It will now be shown that {3.19) agrees with (3.23).
Substituting for ¥, from (3.11) into (3.19) yfelds after
some manipulation

4Gr (C rz zz)( rz rr)

Ky =~ c-c 26
' [ ( ( z ;( Crr’ I¢, A (1)

ZZY'

Using the constraint egn. (2.8) the expression in the
brackets is easily shown to be -U%7+G) which then

yields equation (3.23).

3.3.5 Rocking Vibrations
Consider now the transversely isotropic elastic
halfspace subject to the following boundary conditions

uz(r,8,0)= s r cos(e) s T T, (3.24a)

czz(r,e,O) =0 s T (3.24b)
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orz(raeso) = Uaz(r’e’O) =0 » ro> 0 (3-24C)
(3.24c) may be satisfied by taking By =0 in eqgns.
(3.6) and (3.7). Following a procedure identical to

the vertical problem 3.24 a,b become
A

Jm B(£) J1(£r)dg =0, ro>ry (3.25b)
o

[1 + H,(£)18(g) 3y(er)dg = %—j , rery (3.25a)

gny |—

In this case let

r

483 E ° )
B = h }d (3.26)
(¢) =y Jo 2(x) sin(gx)dx

Equation (3.25b) is satisfied identically and (3.25a)

becomes
o
n(x) + 1 fo L (x.u)hyfu)dy = x (3.27)
where Lz(x,u) =2 J H1(5) sin(gx)sin{zu)dg (3.28)
0

The total moment under the disc is
2m 0 )

M = J f r“ o, cos(e)drde
o ‘o
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but

x

[ 80) 9(er) de cos(e) L rcr
0

922

1@

0

and B(2) s given by (3.26), thus

2n ry [® s 2 ‘ 2
M= e [ f J f Er J](sr)hz(x)sin(gx)cos {6)dxdgdrde
0O o0 o o©

again using the Weber-Schafheitlin integral yields

The impedance is therefore

- Y’o
ke = % %5 [ x hy(x)dx (3.29)
Q

v

In the static case h2(x)= X and therefore

KR = 37y (3.30)

The factor ¥, is the same one which appears in the
vertical solution. In Gerrard's static rocking solution
the factor multiplying 8Grg/3 is the same factor that
multiplied 46r, in his vertical solution, thus the

static solution is verified from Section 3.3.a.1.
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3.3.¢c Horizontal Vibrations
Now consider a transversely isotropic elastic

halfspace subject to the following boundary conditions

ur(r,e,o) = by cos(e) s T ST, (3.31a)
ue(r,s,O) = -by sin(e) s T 2T, (3.31b)
cre(r,e,O) = orz(r,e,O) =0 » 7> Ty (3.31c)
o,,(r.8,0) = 0 , r>0 (3.31d)

From equations (3.7) we can make the following representa-
tion

0., (r,8,0) = o_(r) cos(s) (3.32a)

(r,8,0) o;Z(r) sin(9) (3.32b)

9oz

Equation (3.31d} is satisified identically by taking

1 CDEZ v '

8
A = b ¢
¢ (s £2-8%)g ©

in equation (3.7c¢c).

Equations 3.31a,b,c then become

o

2 A , ddi(er
o]y ety
rode T B (eg%-g%)es c

| J](E?‘)

+
BS r

] dg = By r



=]

2 2
-2)+ '
Ug = J g [- v, (% éQ g) —) €,
0 (eg°-8")BE
. qu(Er)
- B dr Tde = - by
* ® f(g) C dd, (zr)
g = G [ ¢ 2C 2 lr
0 B(9g°-8")
o Ji(gr)
1 -
- AZ\’BH BS ]dg"
. . - flg)e, Iy (er)
° =GJ€[—_2—2— F
92 0 8z{ac%-8%)
' dJ](EF)
t VBH BS Ir Jdg = 0
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v Jq(er)

0

Using these Bessel function relationships

dd](gr)

dr

dJ](gr)

dr

and defining

D(g) =

Teads to the

2 ]
£2f(¢) c

sr(e£f-g%) ©

& 52 (¢e-2) + 8

following

1]

oy
[«
—

-
—

H
Ty
Cs
[p%
—
-
—

2
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_ ® -vsg(g) 2 1 _
a +ouy s fo [ —Erey 0(£)3,(5r) + £28,3,(er) 1dz = 0
(3.33a)
u_-u [ VBQ(E) D(g)d (zr) + 284 (er)lde = 0
r '8 fg) 0 $° 0
0 (3.33b)
% * 2 1 .
Cpa*0y, = Io [-D(g)Jz(ar) - £ AZvBH Bsdz(sr)]dg 0
(3.33c)
* _ 2 | ] a
oo = jo [0(£)35(er) - 6%aym, B3, (ex)1es = 0 (3.330)
Defining
2(2) = 0le) - 8y vy B
F(e) = D{g) + gzxz Vs, B

equations (3.33) can be rewritten

J” va9(e) ]

] F(E) Jz(ir)dg =

f Y
0 (g) ZvBH
” ng(a) :
i fo [ eyt e, 1 E(g)d,(er)ds (3.34a)
- v 9(g) 1 o
JO f{g) - xzuBH 1 E(e)d, (er)de = 4ay

T v,ale) :
) Io L~y * X2V, ] F(e)d (er)de (3.34b)
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%* +* *
oF oy = [0 F(s) dy(er)ds = 0 (3.34¢)
* * ®
oo = [0 E(5) J (er)de = 0 (3.34d)
Note that
1
v og(e) 1 1| e-2 L i
—8 - = — — A
f(ﬁ) AZvBH 3 @l] A]S 1
w=0
Define
1 d-2
¥ = — . (3.358)
H Az @Z]-A]S
and
v g(g)
g g8 1
T+ H{g) = >=—[ - + ]
3 ¥y flzg) szBH
v 9(5) i
1+ H,(g) =<2 -£& + ]
7 4 Yy f(g) szBH

thenequations (3.34) become
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= 44,
[ F OeglenE(eds (eryae = gt
# [ e eFe e ey (3.362)
o]
[} omgtenr@,tende -
J: % (]+H4(€))E(E)J2(Er)d£ s TS T (3.36b)
Jw F(g)d,(er)de = 0, ro>r, (3.36c)
0
fm E(g)g (erjde = 0, r>ry (3.364)
0

Equations {3.36) constitute two coupled sets of
dual integral equations. They are identical in form to
the isotropic results. These equations can be reduced to
two coupled Fredholm integral equations following
Gladwell (28). The coupled Fredholm equations were solved
numerically by Wei (14) and by Luco and Westmann (12)

for the isotropic problem. Alternatively, the shear

stress component o may be assumed zero since it has been

yz
found to have a small effect (14), (16), (17). This is
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* * :
accomplished by taking °rz+cez equal to zero, since

this quantity is proportional to o From (3.34c¢)

yz
then, F(£) = 0 . Thus,(3.36) reduce to

[ F O EEEI g = dyy L rerg (3.37a)

Jm E(E)Jo(gr)dg = 0 , r sr (3.37b)
0

Equations (3.37) are similar to the vertical probiem

0

eqns.{3.13). Let
r

8£ZAH )

E(g) = - 7y fo hs(x)cos(gx)dx (3.38)
Equation (3.37b) is automatically satisfied and (3.37a)
becomes r

] ° -

h3(x) * = [0 L3(x,u)h3(u)du = ] (3.39)
where

L3(x,u) = 2 J H3(g)cos(§x)cos(gu)dg (3.40)

)

The total force under the disc is

J*ZT!' Jro
g rdrds
H o ° Xz

P

Iz *og,)* (o,

2 ,p .
Py = J J ° SE%LQQL (o _+or )+ +(on -og ]rdrde
o ‘o Z:
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Recall o,., - ©

vz " ez Jo E(g) Jo(ar)ds

and E(£) is given in (3.38), therefore

BGAH 0 » 0
Py = 5 f f J re cos(gx)h3(x)do(xr)dxdgdr
H 0’07’0
which lteads to
8Ga, "

%
P 5 — J h,(x)dx
H ol 3

The impedance is therefore

P

- o
Ky = = - %5- [ ha(x)dx (3.41)
H H /o

In the static case H3(€)=0, and therefore h3(x) =1 and so
0 8Gr
K = 8_G J‘ dx = —9 (3.42)
)

3.3.¢c.1 Verification of Static Stiffness
Using equation (3.22) Gerrard's static horizontal

solution, ref. (40), is easily shown to be

1
K,, = 8Gr
H 0 (Crz+G)(1+A]7tzz ]

o o——
FTCrz+Crr)(Crz+sz) A2

(3.43)
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By comparing the first term in the denominator with

(3.23), equation (3.43) can be rewritten

KH = SGro

1

¥

oL
1 2

Thus the static solution obtained here agrees with

Gerrard's if

v o= X 4 L (3.44)
A2

Equation (3.44) is verified by comparing (3.35) with
(3.11).

3.4 Reduction to dimensionless form
A1l the equations in the previous section
can be reduced to dimensionless form by defining

the following parameters

Kk = £/8

o= dFet = e,
a, = mr‘o/c2 LN
v - T~

vi = ko

VEH SRRt

- 2 142 2 2
F(k) = (¢k™-1)" - k"¢ A]VGVB

X = r/r,
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The pertinent results can be recapped as follows:

3.4.1 Vertical Vibrations

The Fredholm equation becomes

1
n(B) + + j Ly (KU)hy (U)dU = T, 0 <X <1 (3.45)
Drr ] LE
where
LK) = 2 fo a, H (k)cos(a_kT)cos(a_ku)dk (3.46)

kA]Vk[®k2(¢-2)+1]

and the impedance becomes
. 1 _
R, = X, {0 h, (DdX (3.48)
AGr
where K = —
v ¥y,

For a given specified harmonic vertical displacement,
the total force under the disc would be out of‘phase with
the displacement because of the radiation of energy to
infinity. The impedance would therefore be a complex

quantity. For later use define
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1 .
Re (J n(DdE) = &,
0
1 _
In ( Jo hy(XdX ) = ac,
(3.48) becomes
Kv = Kv (kv +1aocv) (3.49)

Again, for later use define the flexibility or compliance

as £ _ 1 _ 1 1 R .
FV = }2— = K m K (fv + 1gv) (3-50)
v v v v ]
where k
f = ~-----————--—-—-v (3'5])

g, - o ¥ (3.52)

2 2
kv * (aocv)

3.4.2 Rocking Vibrations

The Fredholm integrail equation becomes

5 |—

1
(%) + [0 LG, (L) = X (3.53)

where

-]

2 [0 aOH](k)sin(aokZ}sin(aokU)dk | (3.54)

It

Lo(Xs )

and H](k) is given in (3.47)
The impedance becomes

- 1 B .
Kp = Kp Jo E_hz(z)dg_ = KR(KR + 1a0cR) (3.558)



where
8Gr

Fa
[}
< 'o w

Write the fliexibility or compliance as

i 1

- 1 .
Ffo = o mae - o (fp*igg)

R KR KR+1a0CR KR R R
fR = =2 L ?

R .

kR * (aOCR)
-3 C
R

g R = 0

Z 2
3.4.3 Horizontal Vibrations

The Fredholm integral equation becomes
1

] 2 —
hy(R) + 1 JO Ly(KU)hy(U)ay = 1
where
L3(5;U) =2 Jo aoH3(k)cos(aokz}cos(aoku)dk
" kv, [ok(0-2) + 1] : ]
H.{k}) = - + -
3 ¥y F(k) AZVBHWH
and the impedance becomes
- 7 o
Ky = Ky jo hy(R)dX = K, (Ky + 1a,5)
where
o - 8Gr'o
H ¥y

The flexibility or compliance is written again as

(3.

(3.

(3

(3.

56)

.57)

58)

.59)

.60)

61)

.62)



3 1 1 1 .
F = = = = = (f +'|g ) (3.63)
H KH EH+1aocH KH H H
ky
= TR (a7 (3.84)
-a_c
0"H
Iy = J ) (3.65)
H (kH+(aocH) )

3.5 Numerical Solution

Any numerical scheme used to solve the Fredholm
integral equations previously derived will involve
evaluation of the kernel functions a number of times. To
reduce the computation time, the kernel functions defined
by equation 3.46, 3.54, 3.60 may be reduced to finite
integrals by contour integration. A discussion of this
integration and the resulting finite integrals is given
in the Appendix A,

The numerical procedure used to solve the integral
equations is similar to the method used by Kashio in ref.
(15) and Wei in ref. (13). A summary of the procedure
follows.

Assume the interval [0, 1]  is divided by
N + 1 equally spaced points. Replace the integral in

the integral equations with a summation yielding

N+1 -

h(X) +j£1 L(K,Ug) h(u;) Wy = 1or X

where the wj are weights (Simpson's Rule was used here).
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Now evaluate the equation at each X; , i.e.

N+1
X. X.,U. W, = X. . 1= 1,N+
h(X) +j£1 L(X_I,UJ)h(UJ)WJ 1 or X, 1= 1,N+1
Defining Yj = hhﬁ)wj this can be rewritten
Y, N§1 _— _
o + LX., U.)Y, = 1 or X,
W, 321 = 73] i
AT ¥
or _; ( i + L (E_T,UJ.))Yj =1 or 54
j=1 i
where Sij is the Kronecker delta,

In matrix form this is

L] tYr = {1t or (X}

Realizing that the kernel function and the unknown are

complex, make the following definitions

]

(L] = [l + i [y

{Y} Yo + 1 (Y3
Equation (3.66) becomes

[LltYpy + A[LJ0Y ) + 4 [L JOYRY - [LJ0Y = (13 or (X}

Equating real and imaginary parts leads to the following

2{N+1) equations
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SIS (W g} -1 or - (X
- (3.67)
[L;] [Lgd ¥} {03
thus 4 ogyey Tl ] (- e @
o) (L] Lyl ©

To compute the impedance, an integration of the function

h(X) must be performed.

Recall
K

]
‘——hl
p—

=

—

-

w
—

| >=<
o
1>

+ i c
v,H T8, v,H

Replacing these integrals with the same scheme as used

above yields

N+1 _ N+1 .
ST RSN R NIl OLT R R ST (3.68a)
] N+1 B N+T ‘
kg + fa,Cp = jz] Eﬁ hz(gd)wj = jZ1 Ed (YRj + YIj)R (3.693)
or in matrix form
G = O (3.69b)
VsH R V,H .
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agSy y = 1LY L, (3.68¢)
T

FR = (X} (Yol (3.69b)

agcg = (X1 {Y, 2, (3.69¢)

It should be noted that the kernel functions

i'7]
and (Xi+uj) which can be expressed as

L(X,,U,) are actually only functions of [zi'ujl

><
1

e
[}

fi-3| /N

(X;+U) = (i+j-2)/N

As i and j range from one to N + 1 there are actually
only 2N + 1 different values of lXi-UJI and (Xi+uj)
Therefore, with the proper bookkeeping the kernels only
need be evaluated (2N + 1) times instead of N(N + 1)}/2

times. Since the kernel functions themselves involve

a numerical integration, this savings is considerable.

Examining the kernel functions as given in the
Appendix, it can be seen that they behave as /¥%=k?%
or YI-k% as k approaches y from below or one from
below. Thus there is a slope discontinuity at the end-
points of the integra]sﬂ The special Gauss quadratures
of ref. (42) were employed to evaluate them.

Also, the terms in the kernels involving
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sin'(aok@-UI) exhibit a slope discontinuity at X = U R
and a special integration scheme must be used to avoid
having to use a large N. The technigue used is the same
as Kashio (15) and Wei (14).

Let U

n+] 1 _ _
[ o= JU h(U)du f 6(k)sin(a k|U-K | )dk
n=) 0

where G(k) represents the non-oscillatory part of any of
the kernels. Interchanging the order of integration.

1 Yy _
= f 6(k)dk { Ju n(U)sin{a k(T 0))au

0 n-1

Un+1 ] _
+ f h(U)sin(a_k(U-X,))du}

u

n

If a parabola is fFit through the three points h(U ) s

h(Un) and h(Un+1) and the integrations on U performed

n-1

the following expression results

. }
1 = %ﬂ'{h(un-1)+h(un+1)} Jo G(k)sin(a k/N)dk (3.70)

Thus, certain terms in the L matrix of equation (3.66)
need to be modified according to {3.70).

In summary, replacing the integral in the Fredholm
equations by a numerical quadrature, leads to a set of
simultaneous algebraic equations of the form of equation
(3.67). Solution of (3.67) followed by the inner products

given in equations (3.68) and (3.69) yields the impedance
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coefficients.

3.6 Results

For each set of dimensionless constants in
Table 2.2 equatibns (3.67) were fomulated and solved for
the vertical, rocking and horizontal problems over a
wide range of the dimensionless frequency parameter, a,
It should be noted that the vertical and rocking prob]em§
are independent of A2 . Thus the vertical and rocking
results can be referred to simply as Case 1, 2, etc.
as shown in Table 2.2. However, the horizontal problem
is dependent on Az and results must refer to Case la,
b or ¢ to indicate whether X,= 0.5, 1.0 or 2,5.

The numerical results obtained are presented
in Appendix B as, Tables 3.1,3.2,3.3 for the vertical,
rocking and horizontal problems respectively,

For comparison purposes, the results are also
presented in graphical form. Each curve is labeled
as follows. On the impedance plots, the curves are labeied
k, case no. or ¢, case no., the k or ¢ indicating the real
or imaginary part of the impedance. (see egn. 3.49 for
instance), and the case no. referring to the dimensionless
constants from Table 2.2. Note these curves are dimension-
less and must be multiplied by the static stiffness to
obtain the total impedance. On the compliance plots, the

real: part is labeled f, case no. and the imaginary part
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-g, case no, indicating that the negative of the imag-
inary part is plotted. Again, these are dimensionless
and must be multiplied by the static flexibility.

It should be noted from Table 2.2 that case no's.
one through four correspond to isctropic properties with
Poisson's ratios of 1/2, 1/3, 1/4, 0 respectively. The
effect of the anisotropy can be measured, for the vertical
and rocking problems, by holding y2 constant and vary-
ing Ay . The properties in Table 2.2 are thus broken
into four groups, i.e., y?=0cases 1, 5, 9, 12, 14;

y? = 1/4, cases 2, 6, 10, 133 2 = 1/3, cases 3, 7,
11; v2%= 1/2, cases 4, 8.

The vertical impedance curves are presented in
Figures 3.2, through 3.5. The compliances in Figures
3.6 and 3.9. In general, the real part of the impedance
tends to increase with increasing 1, , while the imaginary
part shows much less variability. The compliance plots
are more uniform, the real and imaginary parts increasing
with increasing A, , the real part in the higher fre-
quencies and the imaginary part in the lower frequencies,

Similar sets of curves for the rocking impedances
and compliances are presented in Figures 3.10 through
3.17. As with the vertical, the group withy2=0 has
the most variability.

As might be expected, the horizontal results show

little variation with A, . X similar set of plots
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that were presented for the vertical and rocking
problem are shown in Figure 3.18 through 3.25 for

X2=2.5 . The data for X2 = 0.5 and 1.0 are
similar. To indicate the variability with A2, cases
1, 2, 3, and 4 were each plotted for all three values
of A2 in Figures 3.26 through 3.33. Because of the re-
sults above, these curves can be taken as approximately
correct for all values of Ai. For all values of Y’ the
curves behave similarly. The real part of the impedance
increases with increasing frequency for Az = 1/2, stays
fairly constant for A2 = 1,0 and decreased for A2=2.5
The imaginary part stays fairly constant, with the curves
for A2 = 1/2 and 2.5 being close together while for

Az = 1,0 it is slightly greater.The real part of the
compliance decreases with increasing X, as does the im-
aginary part.

It is sometimes helpful when viewing these complex
impedance plots to draw the anology between the force-
displacement relationship of the massless disc-halfspace
system and the force-displacement relationship for a simple
Kelvin-Voigt model, that is a spring and dashpot in
parallel. The static stiffness times the real part of
the impedance is the equivalent spring and the static
stiffness times the imaginary part of the impedance is
the equivalent dashpot coefficient., However, for certain

cases, for instance, see Figure 3.2, the stiffness can
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become negative. There are ways to avoid this un-
appealing situation, however, they are introduced more
readily when considering massive footings and so will
be relegated to Chapter five.

To sumarize this chapter, the so1u£ions have been
presented for the vertical, rocking and horizontal
impedance and compliance coefficients of a rigid, massless
disc vibrating harmonically on a transversely isotropic
elastic halfspace. For vertical and rocking vibrations,
the effect of the anisotropy can be measured by the mag-
nitude of the dimensionless parameter, A1 . For horizontal
vibrations, the results are practically independent of

A1, the effect of the anisotropy being almost totally

measured by Az



CHAPTER 1V
APPROXIMATE SOLUTION OF THE
VISCOELASTIC PROBLEM

4.1 General

In the solutions obtained to this point, the
material was assumed to be an elastic solid. It is well
known, however, that real soils exhibit an energy loss
under cyclic loading due to plastic deformation or
hysteresis. To avoid a difficult non-linear boundary
value problem, investigators have modeled this energy loss
by assuming the material to be linearly viscoelastic.
Solutions to the linear viscoelastic problem can be ob-
tained by application of the correspondence principle.(44)
Inlgenera], however, for probiems of.this type, the elastic
solution is not known in closed form. In ref. (17), Luco
~obtained the viscoelastic solution to the isotropic
problem by replacing the elastic constants in the Fredholm
integral equations with complex moduli. The computationai
effort was greatly increased because the kernel functions
can no longer be reduced to finite integrals via contour
integration. Wei (14) fit polynomials to the elastic
solutions obtained at discrete points. He then took the
polynomial to be the exact elastic solution and applied
the correspondence principle to obtain the viscoelastic
solution. This technique was simplified somewhat for
practical use by Veletsas and Verbic(45). Luco (17)

compared his results obtained by the more theoretically

TI- 66
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correct method with those of Veletsos and Verbic and
found good agreement. The simpler approach will be

adopted herein.

4.2 Viscoelastic Models

Biot (46) has shown that for a general anisotropic
viscoelastic medium, the stress strain relations may be

expressed -
*

%45 7 Sz Sk
h %*
wnere Cijk]
material constants and time derivatives. Assuming a

is a general operational tensor involving

Voigt type material, let

* A

ij1 = C * L

¢ iK1 13k1 dt

For a transversely isotropic material undergoing harmonic

motions, the stress strain relation becomes

* +*
Opp = Cpp €pp T Crg ggg * Gy £y
- C* + C* + C*
98 = “rs Err rr o8 rz Szz
¢ ¢ C
= + +
Y2z rz Srr rz “68 2z %22
*
Yvreg GH Yrg
Spvz © Yrz
*
g = G

62 Yoz
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where C‘
¢F =+ dwC. = €. (1+iw L0 )
rr rr pp rpt IO T
rr
Cl
¢¥ = C L+ il = € (1+in L2
re ro “ro re w Crg )
* ot ) C;z
Cpzg = Cpp * Tulyy = 0 (140 =)
rz
+* I Céz
C,, =C,, + il = CZZ(1+1w T )
rara
Gl
* =G, o+ iwB, = G, (1+iw <o)
Gy = Gy + Tl H 5,
* . ) . Gl
G = G + iwG = G (1+1w—G—-)

The dimensionless constants appearing in the elastic
solution are now in general compliex constants, j.e.,

CI
* (1 + fw =)
c C
TR LI o
2z (1 + 1w 25
ZZ
¢ (1+ iw &)
()% = =y
rr c!
(1 + iw ELL)
ry
Gl
oX (1 + 1w ﬁﬂ—)
()2 = g = ad o
(1 + i T )
Cl CI
C {1+ iwuxt2) + C__(1 + iuxll)
¢* _ rz ETZ 22 CZZ

: . G
C,, (1 + fwg™=) - 6(1 + iwg )
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If we assume all the complex numbers in the above
expressions are equal we see that the complex dimen-
sionless constants become equal to the real dimension-
less constants from the elastic problem.

This means we assume each component of the strain
tensor Tags the stress by the same amount. Further in-
sight into the meaning of this assumption can be ob-
tained by examining the stress strain relationships
in terms of the Poisson ratios and the moduli of elas-
ticity. From the relationships of Chapter 2 it is easily

shown that

. 2
£ = ZGH(Crrczz * Cr'eczz 2Crz)
H - . 2
crrczz Crz
_ 2
£ = 2GH(Crr‘sz *Crg sz zcrz)
v 2 2
(Crr - Cre)
2 2
. Eﬂ _ Crr - Cre _ ZGH(Crr + Cre ) ] Viy
— Z _ Z
EV Crrsz Crz Crrczz Crz VVH
i 2GH CrZ
\)HV B 2
Crrlzz = Crg
- 2GHsz
vy = 1 - "
Crrczz - G2
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Substituting the complex constants yields

Gl
£ = E (1 + 1a—))
n= Ey .

H
Gl
£ = E (1 + ju)
v = By -
H
L 3
n = n
+*

Thus, the assumption stated above is equivalent to
assuming the Poisson ratios to be real numbers and the
moduli of elasticity to have the same phase lag, i.e.
EQ / EH = E& / EV = Gﬁ / GH
To show a disadvantage of this assumption, examine
a sinusoidally oscillating hydrostatic sfress state,

i.e.

X X vy z22

ny =g, cyz = 0

The volumetric strain is then

2(1 -~ v,) - 4nv +n
e = H vH (30)

v : 1
. EH(l + iw GH / GH)

Thus, unless the material is incompressible there are
energy losses caused by hydrostatic stresses.
Since this assumption is required far the simplified

treatment to be employed and since we will be examining
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materials with small damping we will accept its
approximate nature.

A dimensionless measure of the energy loss is the

damping capacity defined as (47)
AN _ energy lost per cycle
W max. strain energy

For shear deformations we get from 4,7e or f

Thus for the Voigt type material assumed, the energy lost
is proportional to the exciting frequency. Actual tests
on soils indicate, however, that the energy loss is

independent of the frequency,(25’ 27)

and due primarily
to hysteresis. This led to the development of the
hysteretic‘damping model, where G' is taken inversely

proportional to frequency.
Define tan§ = Q%L

tans is known as the loss coefficient. The complex
moduli now becomes, for eg.
6" = G(1 + i tans )
In the following sections, both types of models will be
investigated, that is, the frequency dependent Voigt model

and the frequency independent hysteretic model.
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4.3 Viscoelastic Impedance Functiagns

Recall the force-displacement relationship de-

rived in Chapter 3 for harmonic vertical vibrations

Py = Ky (kv(ao) + iaocv(ao)) Ay (4.1)

The equation has been written in this form to indicate

explicitly that kV and ¢, are functions of the dimension-

v
less frequency parameter, a, - Now following Wei (14)
use Teast squares curve fitting to obtain an approximate
continuous solution to the probiem obtained previously

at discrete frequencies oniy.

N
Let
. L n (4,2a)
kylag) = (2o Ay 3,
_ 8 n
cylag) = (2o By 3, (4.2b)

The force displacement relationship for a viscoelastic

medium is, by the correspondence principal

* * %

Py = Ky (kyla) + ia: cv(a;)) b, (4.3)

where for the hysteretic model

*
« 4Gr  4Gr

Ky = = —2 (1 + 1 tans )
v v y
v v
and r Vo

a. = =21 =, (1 + i tanﬁfl/z

JGF
* no_ n . -n/?2
ky =Z An(ao) = I Ana0 (1 + i tané }
* n _ n . -n/2
cy =I Bn(ao) = I Ba (1 + i tans )

After some algebraic manipulation (4.3) can be rewritten
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_ '} . v
PV = Kv(kv(ao) + 1aocv(ac)) Ay (4.4)
The superscript v referes to the viscoelastic case.
Similar expressions hold for the rocking and horizontal
problems. For a Voigt model replace tand in the above

with aoc s Where
Co G!
C = r—' g— - (4-5)

For values of a0 close to zero k¥ and cz are approx-

imately given by

c,(a.)

1 - o ag ;Voigt (4.6a)
kV - 2 .
v Cy ao) _

1 - — (tané)ao;hysteret1c

2 (4.6b)
, [ cv(ao) + 7z ; Voigt (4.6¢)
cy = 1
tand | ,
cv(ao) + ———— shysteretic

0 (4.6d)

Observe that the force displacement relationship, equation
(4.4), is analogous to a spring and dashpot in parallel;

Vv . . v s .
v kV is the spring and KV cy s the equivalent

K
dashpot. We see from (4.66) that for a Voigt model,z
adds to the equivalent dashpot coefficient, while for the

hysteretic model, the dashpot coefficient grows as

1 a - 0
: s a,
0
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4.4 Results

The viscoelastic impedance functions, equations
(4.4), have been evaluated for the vertical, rocking and
horizontal problems. Only representative results will
be shown. The conclusions drawn also apply to the cases

not shown.

Figure 4.7 shows the vertical impedance for a
Voigt model with several values of & considered. The
elastic properties are case 2 of the Table 2.2 i.e.
isotropic with Peisson's ratio equal to 1/3 and ii=1,
y2=1/4. Figure 4.3 and 4.5 show the same plots for cases
10 and 13 that is y?=1/4 and »%= 2 and 3 respectively.
The same three plots are repeated in Figures 4.2, 4.4 and
4.6 for a constant hysteretic material for several values

of tansg

The predominant effects of the material damping
are a decrease in the spring stiffness, kV and and increase

in the damping coefficient The lower frequency

y C
)
approximations, equations (4.6) are seen to hold up to a

dimensionless frequency of about one.

The same six plots are pre-ented in Figures 4.7
through 4.12 for the rocking problem. Tha same trends are
seén to hold in general. However, the effect on the spring
stiffness is not as great in the iower frequencies. It

should be noted that the effect of the material damping on
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Cp is more important because of the lower values of

the radiation damping.

Figure 4.13 shows the horizontal impedance plots
for a Voigt material, case 2b, that is Ai=1,Ai=1,y*=1/4
The same plots for case 2c¢, x%=1,1%=2.5,v2%=1/4 are
shown in Figure 4.15. These two plots are repeated for
-a constant hysteretic material in Figures 4.14 and 4.16.
The effects of material damping are approximately the

same.

The fact that the effect of the material damping
"is similar for varying degrees of anistropy is not sur-
prising. By virtue of the assumption made at the beginning
of this chapter, the damping enters the solution only
through the shear modulus, G just as it does in the

isotropic problem, thus we expect a similar effect.

In summary, by making the assumption that ail
the complex moduli have the same Toss coefficient, we
have been able to obtainapproximate solutions to the
viscoelastic problem by application of the correspondence

principle.



CHAPTER 5
MASSIVE FOUNDATIONS

5.1 General

The previous two chapters considered the har-
monic force-displacement relationship of a rigid massless
disc vibrating on the surface of a transversely isotropic
elastic or viscoelastic half space. Given this relation-
ship, the equations of motion for any given structure or
machine, mounted on a circular foundation, can be written
to include the effect of the soil mass. This chapter
will study the response of a massive circular foundation
vibrating harmonically on the surface of a transversely
isotropic half space,

5.2 Eguivalent Single Degree of Freedom Representation

As pointed out in Chapter 3, the harmonic force
displacement relationship for the massless disc on a half
space is analogous to the force displacement relationship
of a simple Kelvin-Voigt model. The analogy is not always
helpful because for certain values of the elastic constants
the real part of the impedance or the equivalent spring
stiffness can become negative. For use later in the
chapter, a somewhat more consistent approach due tc Veletsos
and Verbic (45) will be presented below.

The force displacement relationship for a single
deqgree of freedom (SDOF) oscillator undergoing steady state

harmonic motion is (see figure below)

TL- 76
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2
P = (K*¥ = wM* + i wc*)a (5.1)

(the factor e %% is omitted)

Recall the force displacement relationship for the
massless disc-half space system {(this expression is the
general form for vertical, rocking or horizontal vi-

bration)

P =K (k + 1 a, c) A (5.2)
From (5.1) and (5.2} we get

2
K* = w M* + juc* = Kk + i a, K¢

Equating imaginary terms yields

cx=c Mo
(5.3)
€2
Since a, = wro/cz, where Cy is the shear wave velocity,

VG5 .

We are left with one equation to determine K*
and M*, To avoid the problem of the negative spring
stiffness define

K* = K (5.4)

then the effective or virtual mass becomes
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* K
Moo= (1-k)(—2) (5.5)

L W

Eliminate »? from this equation by defining the dimension-

less virtual mass ratio

B* 1 -k
= ) (5.6)
a9
then
Kr 2
* * 0
M =B
¢ (5.7)

The effect of foundation mass can be accounted for by
simply adding the actual mass to the virtual mass (see

figure below) lp

*
M A

IRy EEE RS

The "natural frequency” of this equivalent SDOF is then

- K (5.8)
“n \/T—j—mm*

and the percentage of critical damping is

C*

B = (5.9)
27 K (M+M*)

Equations (5.8) and (5.9) can be rewritten using the

dimensionless mass ratio,



2
g - Mea (5.10)
K r2
0
then
g =2 — (5.11)
2 /ETG*
and B ’
®n TV TEFEF (wo) (5.12)
where
w. = K (5.13)
0 M '

The ratio of the amplitude of the dynamic dis-
placement to the static displacement, or the dynamic
magnification factor (DMF) is given by the familiar
formula

1

DMF = = — =
J-Gra g tass_y (014

b

In. all the equations above, M and M* should
be replaced by I and 1*, the mass moments of inertia
for the rocking probiem.

Recalling the expressions for the static stif-
fnesses, the dimensionless mass ratio may be written
for each mode of vibration as

¥ M

B, = 4% E;g {(vertical) (5.15a)
3WV [

BR = -8— —B-FE (r‘ocking) (5.15b)

0



7 (horizontal) (5.15¢)

Although the SDOF oscillator representation is
sometimes helpful, the DMF can certainly be expressed dir-

ectly in terms of the impedance functions as

DMF = 1 (5.16)

V(k-agB)2 + (a_c)?

0
Both expressions will prove useful.

In what follows we wish to chcose a foundation
with set dimensions and weight and compare the DMF for
soils possessing different degrees of anisotropy. In Chaptersl
3 and 4 we found it convenient tc measure the effect of
the anisotropy by fixing y? and varying A3 or A3. It should
be pointed out that it was implicitly assumed that the
shear modulus,G, was also held constant as A3} (or A}) varied.
This was to make the dimensionless frequency,a0 always have
the same meaning. For y%and G held constant, the static
stiffness will always be different for different A} and/or
A3, Note also, from egn,(5.15), that the dimensionless mass
ratios will also vary with A% and/or A3.
5.3 RESULTS

Using equation (5.14) or (5.16) and the results
of Chapters 3 and 4, the DMF can be evaluated for varying
degrees of soil anisotropy and mass ratio. To provide a
baseline from which to measure, we first present results for

a massless footing, that is B=0., As expected, equation(5.16)
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yields the inverse of the amplitude of the impedance
function for the DMF.

Figure 5.1 shows OMF plots for vertical vibration
on an elastic soil for material cases 2, 6, 10, and 13,
i.e. v2 = 1/4 and Ai =1, 1.5, 2.0 and 3.0. Figure 5.2
repeats these plots for a constant hysteretic material
with tan 8 = 0.3, while Figure 5.3 is for a viscous
material with £z = 0,3,

Note the small effect that the soil anistropy has,
especially when the soil is considered viscoelastic.
This can be explained by recalling the results of
Chapter 3. For vertical vibrations, the real part of
the impedance showed considerable variation with varying
degrees of anisotropy only for the higher ffequencies,
while the imaginary part showed little variability and
was fairly constant over the frequency range investigated.
We see from equation (5.16) (for B = 0) that as a, in-
creases the term involving ¢ predominates and thus the
variability of k is not so important. Recall from
Chapter 4 that as material damping is added, k decreases
and ¢ increases and thus the so0il anistropy has even less
effect.

Figures 5.4 through 5.6 show a similar set of
plots for the rocking problem, only for material cases
3, 7, 11, i.e. v¥% = 1/3, ki = 1.0, 1.5, 2.0.

These results are similar to the vertical and an

analogous explanation applies. The principal difference
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between the vertical and the rocking is a region of
amplification due to the small amount of radiation
damping for this mode of vibration.

Figures 5.7 through 5.9 show a similar set of
plots for the horizontal problem, material cases la,

b, l¢c, i.e. y* = 0, Az 0.5, 1.0, 2.5. Here the aniso-
tropy has more of an effect; the effect again decreasing
with the addition of material damping. The reason the
anisotropy has more of an effect in this case is that

not only does the real part of the impedance vary for
different degrees of anisotropy but so does the imaginary
part.

The results presented above were typical for all
values of yv%. The balance of the results will be presented
for v2 = 1/4 anly.

We will now examine the vertical and rocking modes
of vibration for material cases 2 and 13, i.e. v2 = 1/4,
Ai = 1.0 and 3.0, Let the mass ratio for material case
2 be 0.2, then due to the difference in the values of
Y the mass ratio for material case 13 is 0.355. This

¥

corresponds to a foundation mass of 1.2 p r03 (see eqn.

(5.15a) ) for vertical vibrations and a mass moment of
inertia of 0.8 p ros for rocking vibrations. Figure 5.10
is a plot of the ODMF for the vertical mode for an elastic
material.

The anisotropy again has little effect and no
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amplification occurs. The effects of this foundation
mass on the results for the damped soil were similar.

Figure 5.11 shows the DMF plots for the same two
material cases for the rocking mode and an elastic soil.
Here the anistropic result is significantly different.

The result for a hysteretic material with tan § = .3 is
shown in Figure 5.12 and for a viscous material with

z = 0.3 is shown in Figure 5.13. From egn. (5.16) we

see that this value of the foundation mass is Targe

enough to cause (k - ag B) to be small over a frequency
range when aj e is also small, resylting in a fairly

large amplification. From the previous results for the
-massless foundation, we infer that the difference between
the two curves is due principaily to the difference in the
values of ?V rather than differences between the impedance
coefficients. To verify this, the DMF plots are repeated
for the same two material cases and with B = 0.355 for
both cases in Figure 5.14, Similar curves for damped soils
show even less difference.

The DMF plots for horizontal vibrations for
material cases 2B and 2C and elastic soil are shown in
Figure 5.15. For horizontal vibrations a mass ratio of
.2 for an isotropic material case 2B, means a foundation
mass of 2.25 or ®.For material case 2c a founcation
mass of 0.969r; is equivalent to a mass ratio of 1.56.
Similar to the vertical problem almost no amplification

occurs. With soil damping included the two
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curves are even closer together.

The DMF plots will now be examined for the same
material cases with a mass ratio of 2.0 for the isotropic
material,case 2. This implies a mass ratio of 3.55 for’
the vertical and rocking problems,case 13, and a mass
ratio of 1.56 for the Horizonta] problem case 2c¢. The
vertical and rocking results are presented in figqures
5.16 through 5.21 for elastic and viscoelastic soils.
Here the vertical problem shows a significant amount
of ampiification., The important result is that with this
increased mass ratio, the difference between the isotropic
and anisotropic results is due even more to the different
values of WV, than it was for the lower mass ratio.

This is exemplified by replotting Figure 5.16 using a mass
ratio of 3.55 for both material cases. This is shown in
Figure 5.22.

The DMF plots for the horizontal problem, mat-
erial cases 2b and 2c¢, elastic and viscoelastic,are
presented in Figures 5.23 through 5.25. Again the dif-
ference between the two curves is due almost entirely
to the difference in the values of WH'

To recap the above results; we have shown that
the difference in the DMF between an isotropic material
and an anisotropic material, having the same y? and
G, is due primarily to the different values of wv(or WH)

rather than to differences in the impedance coefficients,
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This might have been intuitively expected, but the re-
sults herein have served to quantify this. This result
is very useful particularly in the design of machine
foundations, where the forcing function is indeed harmonic.
Recall that we have only discussed the amplitude of the
response, not the phase angle. When the forcing function
is an arbitrary function of time, such as an earthquake,
the phase angles are also required for Fourier synthesis.
Since the ratio aoc/k does differ significantly from the
isotropic particularly for higher frequencies, the phasing
can be quite different.

It is standard to present the results from a study
such as this in nondimensional form. However, this some-
times makes certain things obscure.Therefore, several simple
examples are presented in Appendix C to better define some

of the quantities involved.



CHAPTER VI
SUMMARY & CONCLUSION

The response of a circular foundation resting
on a transversely isotropic half space was studied.The
results should be useful in the design of machine
foundations and in the design of structures to resist
dynamic loads, The basis of the study was the solution
of the problem of the rigid, massiess, circular disc
vibrating harmonically on the surface of a transversely
isotropic elastic half space. The solution was obtained
by restricting the materials considered to those which
satisfy a certain constraint equation {(see eqn. (2.8)).
The principal results from the solution were dimensionless
compliance and impedance coefficients, presented in
tabular and graphical form. It was found that the
vertical and rocking problems could be studied by
holding v2 constant and varying A%, while the horizontal
problem could be studied by holding Y2 constant and
varying A3. In general, the real part of the impedance
showed significant variation from the isotropic only
in the higher values of the dimensionliess frequency.
The imaginary part of the impedance showed much less
variability throughout the frequency range investigated.

An approximate solution was also obtained for
the viscoelastic problem. Two principal assumptions
were involved in this solution. First, it was assumed

- 86
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that each component of the strain tensor lags the
stress by the same amount. In other words the loss
coefficient or phase angle for all complex constants
was assumed equal. From the elastic solution, least
squares curve fitting was employed to obtain an approx-
imate analytical solution in polynomial form. This
approximate analytical solution was taken to be the
exact solution in order to use the viscoelastic cor-
respondence principle.Compliance and impedance plots
were presented for representative sets of material
constants. Principally because of the first assumption
above, the results of material damping were found to be
similar to the isotropic problem.

The effect of foundation mass was studied
by plotting the ratio of the maximum dynamic displacement
to static displacement, for various values of a dimen-
sionless mass. It was found that the principal difference
between the response of a massive foundation resting
on an anisotropic soil and one resting on an isotropic
soil, with an equivalent y?, was due to the difference
in the expressions for the static stiffnesses and
not due to the differences in the impedance coefficients,
This result is important for the design of machine
foundations, since it allows for an approximate analysis
by using the available isotropic impedance coefficients,
along with the proper anisotropic static stiffness ex-

pression. For very massive foundations this approximate



LIT-88
technique yields very accurate results.

For transient analysis in the frequency domain
the phase angle also becomes important. Especially for
the higher values of the dimensionless frequency the
phase angle for an anisotropic soil may be significantly
different than the phase angle for an isotropic so0il
with an equivalent y?. Using the results obtained
herein a future study might undertake to determine
the effect of soil anisotropy under transient loadings.

It should also be mentioned that for the special
material considered herein, most of the techniques
developed to analyze foundations on isotropic soils

could easily be extended to anisotropic soils.
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TABLE 2.1
No. "é% YV | VH gH \ ; v’ EG'}SC“CJ

1 2 |.375 | .125] 223 | 1.46 |2.00 | .109 | .235

4 .188 | .125] .16 | 3.4912.78 | .124 | .164

4 .188 | .125] .04 [3.49 {11.114{ .031{.164
4 0.5 |.167 | .75 | .60 |1.13].476 | 236} 818
5 2 167 | .333] .225} 2,125/ 1.6621 1771-273
6 4 .083 | .333] .15 ]1.094] 2.5 126 | .50
7 1.5 |.20 .25 ] .30 1.5 |{1.33 | .25 |.323
8 3.0 |0.3 10 | L1671 2.212]12.73 1 .09 |.193
9 1.235/0.5 .3831 .28711.0 l1.,2381 0 -293
10 1.33}0.5 3354 .27211.0 171,33 0 282
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TABLE 2.2

DIMENSIONLESS CONSTANTS

Case No. Ai Yz o Az ¢ **

1 a,b,c | 1.0 0. 2.0 0-5,,1:0l 04678
2 a,b,c | 1.0 0.25 2.0 1.07236
3a,b,e | 1.0 0.33 2.0 1,08767
4 a,b,c | 1.0 0.50 2.0 1.14414
5 a,b,e | 1.5 0. 2.22 1.04173
6 a,b,c 1.5 0.25 2.34 1.07478
7 a,b,c_| 1.5 0.33 2.41 1.09855
8 a,b,c | 1.5 0.50 2.73 1.21480
9 a,b,c | 2.0 0. 2.41 1.03794
10 a,b,c | 2.0 0.25 2.73 1.07868
11 a,b,c | 2.0 0.33 3.00 1.11535
12 a,b,c | 3.0 0. 2.73 1.0325

13 a,b,c | 3.0 0.25 4.00 ~  h.09445
14 a,b,c | 4.0 0. 3.00 0‘5’1350’1-02872

2

2
* Case No. 1 indicates xi= 1., v 0., ¢ =2, s = 1.04678,

3
the a,b, or c indicated whether X2= 0.5, 1.0 or 2.5 re-

spectively.

** s is the ratio of the surface wave velocity to the shear

wave velocity, vG/p



APPENDIX A

A.1 WEBER SCHAFHEITLIN TYPE INTEGRAL

From reference (43)

o]

W(A,u,v,a,b) =I tAJu(at)Jv(bt) dt

A-1
(§§ (5) 1 ((utv-a+1)/2) 2Fi{c,d,e,f)
HAsusv,250) = ST F 1)72)

If A=p-v-1
0 ,0<a<b
N(A:U:V;a'b) = AY 2_n2 A
bT(a—b_l ’0<b<a
2%aMr(a+1)

where T( ) is the gamma function and ,F; is the hypergeometric

series and

= uFu-A+1l
¢ 7
d = \)-E—)\.+1
2
e = vu+tl
f =(b/a)?
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A.2 CONTOUR INTEGRATION
The semi infinite integrals appearing in the kernels
of the integral equations of Chapter 3 can be reduced to

finite integrals by a contour integration around the

closed contour shown below.

iy P

Replace k in the semi infinite integrals with the complex
variable z=x+iy. According to the branch cuts indicated

interpret Vu’vg and Vay

(zZ-mf 2>y
Yo 71 -(22-y2)% ,Z<=Y
(22-1);i ,z>1
V =
B —(22-1)% ,z<-1
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(zz-llix%);i »Z 1/X2

-{z%-1/23%) s =1/X;

This interpretation is consistent with the radiation
condition at infinity. The kernel functions after con-
tour integration are

L (X,U) = rl(z+u) + —L-I(IX'U])

where

Y 5 .
b klrtek®)Eag(ok? (0-2)+1)e " 20KE g
1
b (k2-1)2402K2A, (1-K2)F(y2-Kk2)E

}

1 .
+ J K(0k2-1)2(¥2-Kk?) %A, (0k2 (8-2)+1)e 130kt 4k
v (0k2-1)%+o*k*A3(k2-v2)(1-k?)

(A.1)

where the residue term is

R (s) = SA(2y)R(es7(0-2)+1) (4 ,)

v dF (k)
dk
k=$

(ek2-1)%+e kA% (k2-v2)(1-k )

-n
_—
=~
—
]

and s is tne real root of f(k)=0.

where f(k) = (@kz-l)z_q)lkZ)\l(l_kZ)l/l(YZ_kZ)li

surface wave equation {see Chapter 2)



Ly(X,U) = r3(£+U)+L3(}X-U[)
where
a_i ,
T - 0 -1agst
L (t) = - -QE { HRH(S)E
. IY k(1-k2)%(ok2(8-2)+1)e” 30kt 44
1.
(®k2_1)2+®2k2>\1(1_k2)%(YZ_kZ) ]
1 1 4
+ J k(¢k2-1)2(1-k2)5(¢k2(¢-2)+1)e tagkt dk
; (0kZ-1)*+o*k*A3(k2-v2)(1-k?)
Mhe  _ja kt
+ 1 ke o} dkl/ } (A.3)
A2 (1/)03-k%)*
where

s{s2-1)%(9s2(9-2)+1)

dF (k)
dk

s) = (A.4)

k=s
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TABLE 3-:1
VERTICAL VIBRATION
COMPLIANCE & IMPEDANCE COEFFICIENTS
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+1320=u0
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«2595=00
«2779=00
.2693-00
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«2911=4u
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«2004=00
+2462=-00
+.2815=00
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«3781=-00
+3866=00
«3950-00
«4005=-00
«4016=00



FPrewubieG T

[Re1V
l.Ju
la.0uU
LUy
Zs2U
SeUU
J.2U
L V]
LA R*LY]
L.U
D+ U
Osuy
o. 2y
7.0U
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[-FRVEY]

CASE 3
¥y? =0.33
A% =1.00
¥, =0.75
CASE 4
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3% =1.00
¥, =1.00
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TABLE 3.2 CONTINUED
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=.5020=00
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=+391p=00

=+ 3621=00
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=+24306=00
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“.H4BI=00
=«5936=00
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-, 3045=00
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=,2929~00
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+5732+00
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e 9277=0n
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«6364=0U
«p045=00
«528u~00
s4790=00
«4737=00
*5105=00
+5620=00
¢5951=00
e 5344=00
+5689=00
«5387=00
«5251=00
e5352=00
+5581-040

C

L] 523&‘-0 1
*1402=00
. 2059-0 0
-25“2'00
+2913-00
«3228-00
« 3875«00
. 5033-0 0
0370U‘U0
+3710=00
+3709=00
«3722=00
«3756=~00
-3795‘00
+3819=00
«3815-00

c

+6378=-01
+1540=00
«2364=40
«2878=00
«3297=00
» 3669=00
+ 3958=-40
«%121-00
+4151=U0
+4103=-00
«4049=00
W4028-00
+4051=00
+4uS8=-ul
s 4138=00
+4150=00
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A} =1.5
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cHoy=Uy
s D=y
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s LY 7=Ly
¢« Yo4n=ul
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LaYuD=UY
-, z4u7=U]1
- 4unii=0]
-, D9 (T=U}
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CASE &
y? =0,25

A

¥
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i =1.5
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I3
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+llod+01
-anb-DU
+ob4i=0u
«45a7=00
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cakMo7=Uy
e 2109=00
«1909=0y
.1507-00
.l64s=00
dlau=00
-lcb“—ob
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=e17725=00
-3“595-00
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=.8695=00
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LE-T/E-1-Tud 031]
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18 T74=ul
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«2001=-00
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«3510=00
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« 3003=u0
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FREWuELY

[R=1F]
laUu
l.D0
ceUl
=1
Jeuy
Je2V
LYY
Wt
QeUU
D2y
Qs UV
b«2u
Tanu
740U
[- XN IT)

FREGQUENCY

<50
1.0u
1.50
200
2+5v
300
3450
L.0u
450
9«0u
SeSu
a+0u
6«50
7«0y
7+50
8+0v

M- 181

TABLE 3.2 CONTINUED

CASE 9
vyi =0.00
i =2.0
‘?v fO.SBl
F 6
«iun7+0} =,2385=01
sbio2+01 --16“0-00
«4170+01 - H244=00
»lugl+0} “+6805-00
+ 7515=00 =+8051=00
<Scu42=00 =, 792u=00
» IDWY=0( =, 7137=00
«272U=~0u ., 0287=00
02111-00 -.5,‘)9“-00
liou=0Q =-.506u=00
o luie=00 sdohb=00
« 1129400 = 4254=00
Jdkol=yu] =, 3852=00
+beoo=01 -,3435=00
JHYul=0] =,3025=00
MHeus=-01 =+ 2049=00
CASE 10
y? =0.25
31 =2.0
?v =0.913
F G
+1062+01 279401
«1ip8+0} -y 1884~00
11153401 = 4701=00
+9511=00 =.7132=00
6702~00 -+7898=00
W HUoh~=0y -e7283-00
«319a~00 =-+6210-00
«2623~00 -, 5245=00
'2402-00 -0“551-00
»2313~00 =.4104=00
223600 -, 3827=00
«2126~00 -e3643=-00
«1979+00 - 3486=-00
»1821-00 -e 332000
«1652-00 -+3138-00
«1576~00 =,2956~00

K

21945600
+8u3s=00
e 752400
s6TRS~00
«B201"0U
*S5812=00
eDa30=00
*5795=00
sB03U=00
+6179=00
+6311-00
«5827-00
+Squ4u=00
+5156=00
¢5216=00
¢ 3844=00

K

«9408=00 .

+8346=00
«T435=00
«6730-00
«6246=00
«6119=00C
+6553~-00
«7626=00
«5072=-00
l0u2+01
«1138+01
«1195+01
»1232+01
«1270+01
+ 1327401
+1u04+0)

C

w267«ul
+«1121+00
+1b1lleu0
+2264=00
«2622-00
+2927=00
03174-00
«3349=y0
«3569=-00
« 3660=U0
«S810-00
«4025=u8
s 4290=yl
RB04=00

c

+ 4949=01
«1347-00
+2020=~00
+2523+00
«2984=00
«3326~00
«3636=00
+3813~00
«3815=-00
¢ 3698«00
e 354201
+3413~00
» 333700
«3308=00
+3301-00
»3292~00



FREQUENCY

Sy
1«00
150
z.ou
250
3.00
3.50
4.00
4.5y
S.0u
5«50
6.00
6+50
7.00
T+5u
8,0u

FREGQUENCY

«50
1.0u
150
2.00
250
3.00
3.5y
40U
450
S.0U
S50
6+00
6¢50
7.90
TS5V
8.0y

CASE 11

TABLE 3.2 CONTINUED

v? =0.333

xt =2.0

CASE 12
v? =0.00
23 =3.0

¥, =0.633

«1071+01
W1153401
s11y2+01
«8928=00
+5858-00
«3651~00
+2520=00
-2068-00
«1927=00
-1850-00
«18.0=00
+1709~800
01531-00
«1378=00
01229*00
«1125+00

F

«1051+01
+1145+0%
«1l156+01
a1012+01
+«7728=00
«5535-00
+3323-00
»2939~-00
+2725=00
02552-00
-2309-00
.2170'00
. 19&2-00
+1839-00
v1753=00

- 182

G

-.3338=-01
=+2217=00
=.5368-00
=«7797=00
~.8243~00
-47325-00
-+6105-00
=+5103=00
- 4421=00
~-e4002-00
- 3752=00
-+3587=-00
=+3439=00
-+3267-00
-,3068~00
=.2864=00

G

=.2153=01
-.1480-00
=,3331=~00
~e6140=00
=-,7234~=00
=.7032=00
=+6203=00
=+5319-00
=:4812«00
=+4109-00
=+3755-00
=+ 3476=00
-.3211=-00
=+2926=00
-+2621-00

- =e2320=00

K

«9332=00
+8169=00
«7171-00
+6354=00
+5728=-00
+«5451~-00
«5778=00
«6821-00
+.8284~00
19619=00
»1047+01
«1082+01
+1090+01
»1096+01
«1125+03
+1189+01

K

«9509=~Q0
+8588=00
«7795=00
1722“-00
.6&96-00
+6912=00
#7413«00
28449-00
»9825=00Q
«1121+01
«1238+01
»1339+01
+1345+01
«1587+01
+1793+01
+2073+401

o

+5820=01 -
«1532=00
«2247=00
«2775=00
«3224=00
«3645-00
*3999=00
«4208=-00
+4224=-00
+4094=00
+ 3923~00
» 3786=00
«3717=-00
+3712=00
« 3745=00
+3781-00

=

»3895-01
«1110+00
«1722=00
»2192=00
»2582-00
«2927=00
«3207=00
+3381=00
«S427=00
¢ 3381=00
«3312~0C0
«3274=00
«3289-00
e 3346=00
«3409-00
«a430=00



CASE 13
y? =0.25
A% =3.00
?v =1.183
FREQUENCY
.50

100

1.50

24040

2+5u

2200

3+54

400

4eSu

S»0u

S5y

604

&6s5uU

T.00

-1

8:00
CASE 14
v? =0.00
ri =4.00
?v =0.667

FREwUEiw !

-1t
leuv
leSu
Z'UU
Fg-11]
Se U
SebV
“weil
LY-1V]
Del
S.oU
Ol
[-FRe1T]
Teud
7.00
Belv

TABLE 3.2 CONTINUED

F

+1005+01
1172401
o1l1y2+0L
«3134~00
06178-00
+3968=00
-2811-00
02307-00
227600
n2312-00
$2354~00
¢ 2345=-00
|22b2-00
»2114=00
-19&8-00
+1777=00

I

vdU%s+0]
slion+U)
SlleGell
fdUU7eU]
s JTole=00
-:701-00
s H205=0(
«00%i=00
«2%Us=00
e T=0y
e Jee9=00
«3137=00
«eJUUl=QU
L2041=0y
L209o=U04
-deo-DU

Ji7-183

G

«+3043-01
=+ 203500
-0“990-00
-+ 7373=00
=27909=00
-+7056=00
=.5826=00
- 477300
~+4037=-00
=-.3582=00
-.3332-00
-23212=00
-03151-00
-.3087-00
-+2984=00
-.2835-00

G

= 2004=01
=+1378=00
=, 3569=0(
=eH722=00
=:b725=00
= 649U=00
=.564u=00
- 4737=00
= Hul9=0Q
=e3923=00
=+ 3202=00
=+ 2907~00
= 28UH=0Q
=e261u~0(0
-, 2385=00
~e2137=00

K

+3378=00
.8282=00
«7353=00
«6629=-00
«6134=00
«6055=00
-6718=00
»8339=00
«1060+01
«1272+01
S1414+01
»1482+01
«1504+01
+1510+01
«1531+01
+1587401

K

$QS43=Cn
“HEAR=0U
s 796 7=00
+7905%00
2735000
»Toab=00
*B8591=00
slp24+0)
s3227+01
si4iet0l
s156¢¥0l
+le72+01
¢ 1777401
«190p*Q1
*2081+01
12290+01

c

+5387=01
+1438-00
«2142-00
+2675=00
«3141=-00
+3589-00
«3978=00
«4204=00
«4177=00
+3941=00
«3640-00
+3385=00
«3222-00
+3150=00
«3543=00
+3166-00

c

.3&52-01
«1055+u0
ulbﬁ?‘ﬂb
o2131-UU
+2532=00
«2686=00
«3157=40
«3279=0uU
e3216=y0
+3020=-U0
«2816=00
+2653=40
+2557=00
«2506-00
«2455=-ul
+2363=-00



FrEwUenGY

=19}
1.0v
1e2y
Dol
2.5y
LRI
3|5U
4edy
4eDu
Seidu
S5e0u
Gedu
heSu
Telu
713U
8.0u

FREQULNCY

° 30
1.0u
1.5u
2.0u
11
3.00
3+5u
Geilu
GeSu
SeuUu
S+5u
60U
£+50
T+0uU
-V
8.00

Jir-184
TABLE 3.3
HORIZONTAL VIBRATION

COMPLIANCE & IMPEDANCE COEFFICIENTS

CASE la
vy? =0.00
At =1.00
A2 =0.50
v, =1.914
CASE 2a
v? =0.25
A =1.00
23 =0.50
¥, =2.081

F G K
+3006=00 -.2599-00 «3017+01
27071=00 -,3853=00 .1090+01
+33p4=00 -2 3742=00 «1252+01
L45,1=00 -.3228=00 Jlu66+01
L4103=00 =, 285U-00 Lle44+0l
n35¢8’00 -l2647‘00 .1767+01
«3508=00 -.2520=00 . 1870+01
»33u9-00 -e2389=00 .1987+01
13032-00 =-.2234=00 02127+01
«.29L1=00 -.2009=00 .228%+01
+2739-00 -4 190300 .2455+01
‘2600‘00 =.1742=00 02631+01
+2599=00 =+1597=00 .2793+01
«253-00 -.1480=-00 2926401
+2554=00 =-.1389-00 2 3034+01
+25u3-00 =s1312=00 » 3134401

F G K
«5074=00 -.2685-00 .1013+01
«7011=00 - 4024=00 «1073+01
+5239-00 -+3964=00 «1214+01
‘“27“‘00 w,3457=00 .1“14*01
:37b9'00 -+3056-00 «1599+01
03455‘00 -+2809=00 «1743+01
«3154=00 -, 2625=00 .1873+01
+2875=00 -2432=090 «2028+01
+2650-00 =.2214=00 «2223401%
+2490=00 ~+1991=-00 ,2450+01
02309-00 =,1781-00 «2690+01
«2335-060 -s1600-00 22913+01
»2322=00 ~+1457=00 «3090+01
-2316-00 -0135“-00 53218+01
«2304=00 -e1277=00 «3320+01
+12254~-00 -.1212+00 «34l1l6+02

c

«5821-00
«S942=00
«5802-00
+3245-09
~43568=00
«4073=00
« 37T74=00
+3586=00
03“26-00
+3259=00
«30806=00
«2872=00
«2641-00
2H14=00
«2218=00
+2053-00

c

«5358~00
«6137=00
.6123=00
«5720-00
«5156=00
«4723=-00
«H450=00
+4287=00
«4126=00
«3917=00
+3647~00
+3320-00
+2983=00
«2685=-00
+2453-00
+2265«00



FREWUENCY

+Su
1«00
1.5
20U
2+5u
JeUy
3454
“-UQ
4.00
5«0y
Y¢S
Bely
-1 3-11]
7+0u
7430
E.0u

FREGUENCY

=50
100
1.50
200
250
3+00
350
L4000
LeS5Q
5.00
5450
oelU
550
700
7150
a+00

CASE &

¥? =0.333
A3 =1.00
A3 =0.50
¥y, =2.164
CASE 4a

v? =0.50
x? =1.00
A3 =0.50
WH =2.414

IIr-185

TABLE 3.3 CONTINUED

F

«9053=00
«6937~00
«S15u4=00
«40gu=00
.35:3-00
.3239=00
n2943‘00
12601’00
.2“78-00
02396-00
o2272'00
.22%“'00
.2238-00
2 2255=00
.222?-00
«2157=0y

F

«8950-00
«6603=00
.4589—00
+3515~00
«3012=00
«2716-00
«2490-00
+2300=00
+2160-00
«2080-00
«2047=00
'20“1-00
+2039-00
«2025=00
+1996-00
«1962=00

G

«.2751=00
- 4071-00
-.3540=00
~.3102-00
«,28l6-00
-+2596=00
=e2373-00
~-e2135=~00
=s190c~00
=.1693=00
~.1523-00
--139b‘00
-+1308=00
-+1243+4G0
=.1184+00

G

=+:2984=00
=44 35=-00
=-.4280-=00
‘-3603-00
=2 3040=-00
=-+2662-00
=+2384~00
-+2138=00
~.1800-00
=s1681=00
=.1501=-00
=+1369=00
-, 1277=00
=+1212+00
=+1154+0(Q
“+1090+00

K

«1011+01
Jd064+01
«1197+01
«1398+01
«1595+01
«1758+01
«1911+08
2091401
2316401
.2572+01
«2830+01
«3052+01
«3215+01
2 3333+01
.3429+01
«3528+01

K

+1006+01
+1044+01
«1165+01
«1387+01
«1644+01
+1878+01
42095+01
e2332+01
«2610+01
«2908+01
«3177+01
3380401
«3523+01
+3636+01
« 3754401
+3896+01

<

«6145=-00
«6335=-00
«6368=00
«6042=00
«5525-00
+5097-00
«4817=00
+4628=-00
«4434=00
«4171-00
«3835~-00
$3452=00
«3086=00
+2785-00
«2557=00
+2376=00

C

+6705=00 -
+7010~-00
+7245=00
«7111=00
«6640=00 .
«6134=-00
«5732=00
+5521=00
+5102-00
«4700=00
«4235=00
03776-00
«3394=00
+3109-00
+2896~-00
«2705=00



FREWUENCY

«Su
1.0y
1.5u
2+0u
245v
3+0u
3¢50
S.0u
4oy
SQOU
5.5u
b-Uu
6e5u
7elu
75U
5‘0U

FREGWUENCY

5y
1.0u
1'5“
2.00
2;50
3+Gv
3.5u
4oy
45y
56Uy
S5+50
6.0“
650
700
7450
a.ou

TABLE 3.3 CONTINUED

CASE 5a
¥? =0.00
Al =1.5
23 =0.50

¥y =1.855

F

«9078=00
.7054-00
+5376=00
«4528«00
«41u8=-00
c3902-00
03607-00
03445‘00
+3207=00
r3023_00
+2809=00
12751-00
12672-00
.26(3‘00
'2505-00
+12548=00

CASE 6a
v? =0.25
2f o=1.5
A3 0.50

¥y =2.061

F

+9059-00
+7001=00
+5233~00
u“Z&B'OO
+3815~00
03“98‘00
+3210=00
«2934=00
v27U1-00
«2527=00
02411-00
-2351-00
+23.8=00
'stl-co
+2310=00
+2293=00

JIr- 186

G

=,2596-00
=-,3829~00
‘.3687-00
'0315“-00
«,2771=00
=-+2571=00
-+2458-00
-.2350-00
-e2221=00
=,2083=00
=+1939-00
=.1790=00
-+1649=-00
=.1530=-00
=, 1434=00
=+1352-00

6

-.2685=00
-, 4013=-00
=e 3936=00
-.3421-00
-.3018~-00
-+2778=00
-02609-00
=.2436=00
-.2235-00
-.2021=-00
=e1813=00
=41626-00
- 1477=00
--1566‘00
«+1285-00
=.1216+00

K

«1018+01
«1065+01
«1265+01
1487401
«1667+01
«1787+01
,1882+01
«1985+01
s2107+01
« 2243401
«2393+01
2554401
«2710+01
2845401
+2958+01
+3062+01

K

«1014+01
«1075+01
+»1220+01
«1425+01
.1612+01
«1753+01
«.1876+01
2018401
+2198+01
+2413+01
12650+01
2 2877+01
35063401
¢e320Q+01
«3306+01
e J404+01

i3

C

»5825=00
«9944~00
1 5784=00
+5179=00
«445L=-00
«3925=00
+» 3604=00
13“0“-00
032QH-00
«3091-00
«2941=00
«2770-00
+2573=00
+2371=00
«2188-00
«2031~00

<

+6004=00
»6163=00
«6121-00
+5693=00
25101=090
s 4640=00
.4357-00
24187-00
»4041-00
«3861=00
«3622=-00
«3317=00
«2988~-00
«2692~C00
+2451=00
«2256=-00



CASE 7a

FREGQUENCY

«Su
100
1e5y
2.0u
2450
2.0
3+.50
GeQu
4.5u
5.0Qu
5¢54
6.0u
F+Su
7«00
rg3-v
&0y

FREQUENCY

* U
1edu
12U
2.00
24599
3.0v
.50
4+0u
4Dy
Bedu
53U
6«0y
HeSu
TGy
kg 3-1Y
800

e
[ YT I )

<

=1.5

CASE 8a

-
[S LS 5 )

x

=0.50
=1.5
=0.50
=2.604

20,333

=0.50
=2.171

TABLE 3.3 CONTINUED

F

+9038-00
.6841=00
050‘03"00
0“040-00
03547-00
+3224=00
+2946=00
+2691=-90
«23u3=00
«2262=-00
«2231=00
12225-00
+22£3-00
02210-00
+2107-00

F

.6811-0¢C
.6206-00
+4091=00
«3065-00
2 264 7=00
-2“22-00
02243-00
«2077=00
01949-00
.1852'00
«1861=00
-18o1—00
.1858=00
.1840=00
.1811-00
.17bu-00
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]

-02?76-00
w,4153=00
-, 4069=00
~¢3512=00
=+ 3060«00
-e,2772-00
-¢2561=-00
~.2131-00
=+ 19U3=00
=+1693-00
-+1520=00
-.1391=00
=41301~00
-,1234+00
~s1179+00

G

-.3218-00
-0“656'00
'0“318-00
-.3500~00
-e2879-00
-+2492-00
-.2231=00
-,2006=00
-+1780=00
~+1569=00
-.1400=-00
-.1281=00
- 12314‘00
=:1140+00
=.1080+00
=y 1013400

K

.1011+01:

«1065+01
«1201+01
1410401
v16le+0l
+1783+01
«1933+01
+2105+01
«2319+01
2572+01
«2833+01
+3061+01
«3231+01
«3351+01
J3845+01
«354G+01

K

«1001+01
+1031+01
«1156+01}
+lu4le+03
+1731+01
.2005+01
2261401
+2491¢01
2797401
«3135+01
. 3832+01
3545401
+3796+01
«3928+01
W40T4+01
+4239+01

o

+6211=00
«6415=-00
«6461-00
+6128=00
+5578=00
+5112-00
-4803=-00
460400
J4420=-00
. “177-00
+3856-00
+ 3470=00
«3107-00
«2802=00
«2568=00
«e2381-00

c

0731“'00
+ 7735=00
+8136=00
+8084=00
«7529=00
«6879=00
«6369-00
«6014=00
05678‘00
«5228-00
+4695+00
«41582=-00
+«3776=00
«3476=00
«3239-00
+3009=00



FREQUEICY

[3-17]
1.0u
1.5y
2.0V
250
3|0U
dev
U-Ou
4eSu
Se0u
5+5u
oedu
HebDu
Telu
TeSu
AsOu

FrREWJENCY

[3-1"]
1.00
1.5%u
2.0u
2eou
300
3.5v
4eQu
4.5y
S5.0u
5¢5u
b0y
Heby
700
745¢
B40u

CASE Sa

v? =0.00
Af =2.00
x3 =0.50

¥y

CASE 10a
v? =0,25
=2.00
=0,50
=2.060

_© D >
[T

x
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TABLE 3.3 CONTINUED

=1.82%

F

«9076=00
07052-00
«5308-00
0“500'00
«4252=0Y
.3978-00
'37uu-00
.35“1-00
 3334=00
05155-00
«2997=00
«2870~00
«2760-00
«2720=-00
!2674-00
+2633-00

F

«90pu=00
05957-00
«5217-00
4274=00
.3818=00
|35;Q-00
+3259=00
+2971=00
+2737-00
.2557+«00
«2433-00
«2357-00
02341-00
-2351-00
+2320=00
$2354=00

G

-.2583=-00
-e 3794~-00C
=+ 3630=-00
-+3083=00
-+2693-00
=,2494=-00
-.2387-00
-.2292~00
-+2182=-00
=.2063-00
=, 1938=~00
=+1804=00
- 1670=-00
«e1553=00
-+ 1457=00
- 1374=00

G

-02689'00
=,4012=00
=a3924=00
=-¢3395=00
=.2985=00
=.2744=00
—-2581'00
=, 2419=00
~+2232=-00
-.2027=00
--1821-00
=2 1634=00
=+1482=00
-e1368-00
~e1283-00
~.1212+400

K

.1019+01
+1100+01
«1277+01
«1505+01
»1687+01
«1805+01
+1895+01
21990401
«2100+01
22220401
+2353+01
.2487+01
2643401
+2772+01
+2883+01
+2985+01

K

.1014+01 -

+1076+01
1224401
21435+01
« 1626401
+1768+01
«1888+01
+202u4+01
°2195+01
2402+01
«2634+01
2862101
«3050+01
+3191+01
+3300+01
+3399+01

c

+5802=00
+5916-00
«5734=00
+5088=00
«4324=00
«3771=00
+3433=00
»3221-00
+3054~00
-290“-00
+2766-00
02616-00
.2“““—00
«2262=00
«2095=00
«19486-00

<

16017-00
«+6180-00
+6139=00
+5698=00
+5084=00
«4601-00
+%299=00
«4120-00
«3577=00
+3808-00
+3584=00
«3292=-00
«2970-00
«2676-00
+2434=00
«2235~-00



FREQUENCY

«33a
1.00
1.50
2+0U
2.50
SOUU
.50
400
4450
S.00
Se5SU
640UV
[ X3-17]
70U
T3V
8.0u

FREWUENCY

«50
1.00
150
200
2.5
3.0u
3'50
40U
450
S«0u
S+5v
&0V
6e¢34
T0u
734
8.00

CASE 11a
y? =0,333
At =2,00
A% 20,50
¥, =2.219

CASE 12a
v: =0.00
At =3.0
13 =0.50

¥y =1.779
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TABLE 3,3 CONTINUED

F

+2015-00
.5g81a=00
L4938=04
«3942=-00
.3“52-00
.3151=U0
«2894-00
.255&-00
02“52'00
+2332-00
2223u~00
122U5'00
«22u0=00
.2197‘00
«21p4=40
-2102-00

r

+9069=00
»7058=00
05352'00
|u577-00
4206=00
0“030-00
+38c6=00
+3659=00
o}“bu-oo
.3319-00
!3106-00
+ 30,53=00
+29.9-00
02855-00
02798“00
027“7‘00

G

-.2821-00
~-,4205=-00
=.,4091=00
-»3497=00
-,3019~00
-.2717-00
-+250%5=00
=, 230700
-.2092=00
-.18568~00
=+ 1661=00
=-,1491-00
~+1365=00
-.1277=00
=~.121u+00
-¢114G+00

G

- 2574-00
-»3761-00
=+3565-00C
-+2999-00
-.2591=00
-.2386~00
~:2282=00
~.21%8-00
=.2107=00
~:2013=00
=e1916=00
-.1806=00
=+1689-00
-.1581-00
=+14859=00
=+1407-00

K

+1010+014
«1063+01
.1201+01
1u420+01
«1641+01
«1820+01
«1975+01
W2146+01
«2360+01
2616+01
+.2883+01
+3113+01
.3282+01
3402401
«3503+01
«3606+01

K

«1020+01 -

«1105+01
«1291+01
«1530+01
«1716+01
«1833+01
»1918+01
«2005+01
+2101+01
2202401
+2312+01
«2434+01
+2562+01
+2681+01
«2785+01
+2884+01

c

«6323-00-
«6552=00
+6633-00
«6315-00
«574 1«00
+5233=00
+4885=-00
JH4664=00
«4474=-00
«4228-00
«3898=00
«3507=00
+3133-00
«+2826=00
+2589=00
+2397=00

c

05793-00
«5906-00
«3702=00
«5005-00
«4183=00
«3599=00
+3236=00
«3004-00
«2824=00
«2672=00
«2543«00
«2416-00
«2273=00
«2120-00
«197e-00
«1847=00



FREGUENCY

«5U
1.0u
1.59
2.0u
2+5u
3«09
3.50
4.Qu
4eSy
50U
5.59
beQU
65U
7'00
T.50
8.04

FREQUENCY

-1
1.0u
156G
2+00
250
3.0u
3.59
4. 0U
4.5y
Se0u
543U
6.0V
X
T7.00
75y
8.0u

CASE 13a
y? =0.25
2} =3.0

2 =0.50

- 190

TABLE 3.3 CONTINUED

¥, =2.097

H

CASE 14a
v? =0.00
A1 =4.00
123 =0.50

¥, =1.748

F

.904&‘00
+6921=00
051*7-00
.“195’00
-3719-00
03456_00
$3156=00
.29&9-00
n2715'00
2537=-00
.ZHLQ-OO
2347=00
02319‘00
«23u7=0u
J2294=00
«2278~00

F

.9002-00
07041‘00
+5308=00
W 4575=-00
AQZQD-OO
+4052-00
03917-00
«3740=00
«3573-00
13“22-00
e3277=00
«3145=00
« 3056=00
02955-00
02891'00
.2&33-00

G

-.2731-00
-, 4064=00
=+3950=00
=y 3386-00
=-29406=00
=+2517-00
- 2363‘00
~.2188-00
-+1993-00
-+1793=00
~+1610-00
-+ 18462+00
-01350’00
=,1265=00
-.1191+00

G

-.2573=00
=-.3745«00
-.3527=00
-:+2939=00
=-+2523=00
-.2311-00
~«2204+00
-.2124=00
= 2042=-00
-+1961=00
-.1881-00
=:1790=00
~+1688-00
=-+1589=00
-,1503~00
=-+1426=00

K

«1013+01 -

«1074+01
+1225+0G1
Jluld6+0l
1652401
+1806+01
«1932+01
+2067+01
«2233+01
22437401
L267T0+01
.2897+01
«3086+01
.3229+01
« 3343401
«3448+01

K

«1021+01 .

,1109+01
.1301+01
$1547+01
«1738+01
+»1855+01
.1939+01
v2ga22+01
«2110+01
«2200+01
«2295+01
2402+01
v25l6+01
«2625+01
«2723+01
2817401

o

+6121-00
+6308-00
«6302=00
«5875-00
+5234=00
+4706=00
+4362-00
«41564-00
»3999=00
+3825-00
«3606=00
+3313=-00
«2992-00
«2706=00
«2458-00
+ 225400

c

+3799=00
05914'00
v5700'00
24970=00
+4117=00
«3501=00
«3118=00
+2870=00
+2679-00
«2521=00
»2395=00
«2278=00
02151‘00
+2016-00
+1888=-00
«1772-00



Frcautivel

* 2V
l.uy
Loy
Zs0
Lol
o FAT
= 3JU
“ayu
*e U
e Uy
Jeou
Seuw
Oe oy
feud
Feav
Qelu

FRowueivl T

» OU
leuu
Le Qv
ZelUU
-¥y=1Y]
Qe
(SR RV
SeUyd
DU
Qedw
3.0V
[=XRVIV]
OV
{euy
-1
Qeuld

y? =0.00
A =1.00
A% =1.00
WH =1.5
CASE 2b
v? =0.25
A% =1.00
13 =1.00
¥y =1.667
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TABLE 3.3 CONTINUED

E

JHOSU=0U
s Toat=0u
s Joub=Uuy
shugn=iy
sdUel=uu
cGRuL=Uy
ed920=UyY
«lbal=uy
doouws=Uy
sldudrui
- YEITY
Toru=01
+Diol=Ul
e2o00=U)
W ILI=UL
Hlouw=01

r

.5‘?0-UU
o Toou=00
s DB UU=UY
ST IT=00
.‘7%5-00
2lub=Uy
eivcol=UQ
sdou/=Uy
«dULI¥UY
s fOUI=U)
«0daY=0]1
Suiz=Ul
sHOYL=U]
s 99cl=U1
s0234=0}
« 3l f9=U]

6

s 2BU4 =0/
= BYy9u=y0
=+ 3180=00
=,5027=00
=~ 4573=00
“,414p=00
= 382u=00
=e337u=00
=-.335}1-00
=+ 3135=00
=e290n=00
-02690-00
=s2492=00
’nZéZ"UU
=s2177=00
-.2050-00

G

“.2740=01
=obpl3=00
-v5317-00
=e51l23=00
=aboRi4=00
=sWlYz2=00
= 303y=00
~e3327=00
=v3244=00
=+ 2965=00
-'2593—00
~24689=00
=+2207=00
-'2105-00
=s1974=(0
=e186g=00

S

+9622=0n .

e 9744500
961500
+5700=00
»1lU0e*0l
flGUbtul
vl074*0Ul
«l071+01
*lQ4etGl
s10Q0utul
+9p21=00
«S4iy=0i
¢ 9379=00
e 943700
«951i2=00
+9556=00

K

*3899=0n
*+565u—00

*9403=00 -

+G32e=0U
+9436~00
+9559=00
»9531=00
*HB241=0Q
BT7T70=00
830000
s8011=04
sHUls=0y
eb245=00

«8545=00.

«8780=00
+8911-00

c

«5622=0U
05754-00
+5920=00
«BU6Ll=0U
+6U9U=UD
10012=00
«S879=-00
e 5758=00
s 50RY=UV
+5580-00
v5717'00
«5771=00
«S01d=Ul
+ SB40=UU
PS8SU=UU
05653-00

C

¢ 5852400
-59%uU=yu
«6172=-00
00323'UU
537940
s63458=yU
«b278=U0
c0232=00
sb2ld=ul
e 5308=00
«B409=Uu
+BHSU=YU
16542=00
+6555=90
.bﬁu“-uﬂ
+b523=-40



rrowucingt

x-1%
Leuy
Ls2U
cy U
Dy
FRYVY]
eV
4sUy
L1V
eyl
Ss 0V
S WU
Ce IV
Teuv
eV
DeUU

FREQUENCY

50
1.00
150
200
2450
I.00
3.50
400
we50
500
Se«5u
6+00
S50
700
750
5.00

CASE 3b

v =0.333
A3 =1.00
A3 =1.00
=1.750

¥y

CASE 4b

v? =0.50
A =1.00
2% =1.00

¥, =2.00
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TABLE 3.3 CONTINUED

r

«Fcoo=0Y
o« foDD=UY
evecd=UU
3S0e=Uu
2205 =0U
fd9iv=iy
Wloe=UU
sdde3+UY
Oi%l=Ul
L0i23=0]
s lu=Uy
4D To=Ul
JUIUmUL
edos=01
e dEHI=UL
b f=Ul

F

‘9105'00
+6904~00
«4584=00
«2969=00
02038-00
+1483-00
«1112+400
«8447=-01
+6567=01
«5337=01
2052101
s 3942=01
+3464=01
+3049-01
v 2697=01
+2399-01

c]

=, 2824%=01
-+ 4Tun=00
=+23be=00
-e5138-~00
= 4odc=00
= 4145=00
=ed7ba~00
-, 3uge=00
=e3115-00
=+28225=00
~.2509=00
=+ 23540u=00
=.2159=00
- 201 3«00
=.13%1-00
=+1765=00

G

-+3056-00
=+5037-00
=+5455-00
=+4996=00
=+4368=00
-.3836-00
-«3409~00
-+.3047=00
=+2730-00
=:2459~00
=+2238-00
=-.2059-00
-.1911-00
-.1784=00
=«1672=00
-¢1572-00

K

*Fu8u=Un

* 959500
s9280=00
91310V
+916u=040
*9200~00
e 9099=00
H78U~UU
*5350=00
2+ 3303=00
e7585=UY
s8047=0u
v3355=0U
[EY Y L L f]0]
*Bnla=yu
s3527=00

K

+9845-00
+9452-00
+3028=00
+8792-00
+8772-00C
+8767«00
+8651=00
+8448«00
+8328-00
+8426=00
+8673=00
-8969-00
+3181-00
«9311=00
+9406~00
'9483-00

¢

+6033=00
16181=ul
16379=u0
Qﬁb“"‘UU
«0628=ul
06624‘00
.bseb-uﬂ
05575-00
el d=ul
+6690=0U
«0762=00
s0CH5=UD
+0877=00
1685100
cb823=U0

¢

«5895=00
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-,2165~00

G

-s2792=00
-, 4637-00
-,5282=00
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+5946=00
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+S406-00
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=+1949=00
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«1129+01
«1110+01
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«611u=00
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«4534=00
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~,6007=00
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-.3500=00
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_~3599-OD
=-+.3382-00
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-+.2980-00
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-.4819=-00
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=.7022~00
~.6700=080
~e6287=00
-+5859=00
-+ 5470=00
-.5141-00
-0“860‘00
- 4608-00
- 4365=00
-0“130'00
-.3909-00

G

=-.2723=-00
=o4893-00
=.6202=-00
-.6745=00
-.6815~00
-+ £634=-00
=.6282=00
=.5815~00
=.5320=00
=.4881-00
- 4530=00
-.4248~00
=+4000-00
=,3762~00
-.3535'00
=e3332=-00

K

+9767-00 -

»9093=00
080“1'00
+6688-00
+5109=00
« 3365=00
.1530-00
-.31“1-01
-.2085'00
—03730-00
'05250'00
-, 6675-00
-,8042=00
-,9364~00
-,1062+01
-.1178+0%

K

«9767=00
«9097=-00
«8061=-00
c672“-00
«5118=00
«3261-00
«1215+00
=-,3081-01
-,2956-00
-.4822=00
-,6509-00
-.8092=00

- 9644=00"

-.1118+01
-.1266+01
=-.1399+01

c

'527“‘00
+5203-00
+5082=00
+4912=00
«4701=00
«4465=00
+4219=00
+3975-00
«3736=00
« 3497=00
+3257=-00
«3015=00
+2790-00
«2579=00
+2389=00
+2221=00

c

+5564=00
«S447-00
+5267-00
«5034=00
W4777=00
.QS?].-OO
+4287-00
+4071=00
+3856=00
«3627-00
+3386=00
L] 31“7-00
«2925=-00
12728-00
02554=00



CASE 7¢

Y
A

A
¥

FREGUENCY

PE-11]
100
1.5v
2+0U
z+5V
3.0u
JeSU
400
4¢5u
S5¢0u
SeSy
Belu
650
T+0d
7450
8.0u

FREGUENCY

«SU
10U
1.50
2-0v
2+5u
3.DU
3.59
4o0U
4450
S.0u
545U
b.ou
6+50
7.0y
759
8.00

2
2
1
2
2

H

=(.333
=1.50

22,50 -

=1.389
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TABLE 3.3 CONTINUED

F

09375=00
+774¢-00
'5742-00
03931-00
2475-00
+1290-00
,3156-01
=, 4235-01
-2 9169~01
- 121,9-?00
-tl4a7-00
- 1608‘00
=e1750-00
--195“'00
- 2051-00
-'2151-00

+8671«00
+6552-00
0“200-00
.2625'00
+1579-00
572U6'01
-, 459y3«02
-,5376~0}
~e3579-01
=.1119+00
-.1226+00
- 1350"00
'.IQQO‘UO
-01610-03

"01675'00

=.1710-00

6

=+2862=00
=¢5042=00
‘06213-00
=.86596=00
=+6565~-00
=+6337=00
=¢5963-00
=+ 5473=00
-+ 4959=00
=s4520=00
-c“187-00
=¢3328=-00
=+3700-~00
=+ 3477=00
-+3262-00
-03072-00

6

- J4TH4=00
-.5555-00
=+.6021=-00
-05779’00
-.5480~00
-,5212=00
=+4863-00
=+4375=00
=:3869~Q00
=-.3487-00
=,3237=00
-.3053-00
=+2874=00
=,2678-00
=.2487=00
~e2336~00

K

+9757=-00
+90648-00
+8016=00
+6668=-00
+5029=00
+3085=00
«8935-01
“, 1406=00
-,3600=-00
=-,.5561=00
-,7295=00
-.8926=00
=,1056+01
-+1221+01
=.1381+01
-.1525+01

K

+9693=00
+8880-00
+«7794=00
«6516=00
. 3856-00
+2603=00
-.1942=01
-,6085=n0
-.8341-00
=,1024+01
=.1212+01
=+1422+01
~.1649+01
-,1865+01
-, 2040+01

c

«5903=00
«ST787=00
«5593=90
«5335=00
+5051-00
«4778=00
24541-00
«4333~00
21 4125=-00
+«3891=00
+3635=-00
« 337700
«3138=00
+2930=00
«2747=00

c

«7508-00
+7529-00
s 7448-00
«7172=00
«6THU=00
«56275=00
+5875-00
+5595-00
+5405=00
+5200-00
+ 4566-00
24219=00
«3919=00
»3685=00
.3464-00



CASE 9c

€ > >
€T [ STNREOTE]

FrEGUCNCY

Dy
1.0u
1.5
2+0u
250
3.00
3+5u
4«0y
deDy
SeGU
S+
telQu
(=X 3=1"]
T+0u
TeSu
a.Du

=0.00
=2.00
=2.50
=1.043

CASE 10¢

YZ

2%
b
Yy

FREGUENCY

1t
1-.00
1.50
2+0U
250
300
JeS0
400
4.50
500
S+HU
0+00
6150
T«00
750
.00

=0.25
=z2.00
=2.50
=1.278
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TABLE 3.3 CONTINUED

F

+9553=-00
+8319=0y
+66u6=00
+4801=-00
+3177-0u
«1851-00
07677-01
-.44g7=02
-oé“ﬁa-ol
=-+1052+00
-+ 1440=00
=2 1754=00
=, 1944=0u
“02225-00
-02“19-00
«,2575=00

£

« U4 T7=00
-7978-00
+6093-00
«4234=00
+2784=00
+1539=-00
+0183=01
=e2724-01
=+8255=01
=+1189+00
e l448=~00
=+lob64=00
=+1860=-00
=+2031=00
=e2163-00
=+2258-00

G

-.2552=00
-.4705-00
-.6183-00
= &65944-00
-+ 7155=00
-.7026=00
=e6710=00
--6509-00
-+¢5897=00
=.5322=00
=-«5204~0U
- 4931 =00
=+ 4685-00
- 4448=-00
- 4216=00
=«3990-00

G

=+27306=00
=+ 4892-=049
=e5179=00
=.6703=00
-e8771=00
=+6596=00
=+£257=00
--5800-00
=¢5310=00
-.4874=00
=« 4525=00
=+4245=-D0
-,3997=00
=+3759=00
=+3531-00
=+3328=00

K

+3771-00
«9107=00
«8070=00
+6736=00
»5183=00
«3474=00
+1683=00
-.1130'01
-,1838=-00
- 3447=-00C
= 4541=-00
=.6345=00
-,7693=00
-,8997=00
=,102u4+01
-.1139+01

K

+9770=00
«3110=-00
«8091~00
*6777=00
«5195=-00
+3354=00
«1315=00
=-+8081~01
=.2859~00
-4 726=00
-+6416-00
-QSOOQ-OO
=+9568~00
~.1112+01%
-2 1261401
=+1396+01

c

«5220-00
«5151«00
«5035=00
«4872=00
+H4BT70=00
LUU42=00
«4203=00
«3962=00
+3724=00
+3485=00
+3245=00
«300&8=-00
.2750-00
+2569=-00
«2379=00
«2211=00

c

«5646-00
«5586=00
«5470=00
«9289-00
«5053=00
«4793-00
-u535-00
«4301=00
. 4086=00
+3873=00
«+3644=00
«3403-00
«31l64=00
»2942-00
«2745-00
02572‘00



CASE 1lc

YZ

A
Af

Yy

FREGQUENCY

50
1.00
150
2«00
215U
3«00
3«50
4«00
4+54
S5elu
Se 5y
oe{y
oSy
Ta00
Tebd
ae 0

=0.333
=2.00
=2.50
=1.437

CASE 12¢

Y2

=0.00

13 =3.00
23 =2.50

¥y

FReCQUENRCY

-]
16y
l.%u
00
2350
3«00
.50
46U
GebHy
S.00
Seb
e LU
[SXR-11)
TeL0
T+50
s U

=0.998

1203

TABLE 3.3 CONTINUED

F

+9328=-00
« Toud=40
«5553=-00
+«3779=00
0 2392-00
«1263=00
+3205=01
= U074=01
-1 8843=-01
=+1166+400
=+1359-00
=+153G-00
=+1698=00
=2 1647=00
=+1956=00
=.2032=-00

&

+9562=00
+8350=00
1 6653=-00
P4347-00
+3213-00
«1865=00
+8079=01
+5126=-03
=+5918=01
=.1040400
=e1394=00
=-»1696=(0
=.1566=00
=-s2207~00
=e2415=00
=:25886=~00

G

-.2928=00
=+5094=-00
=.6173=-00
“.6457=00
_16387-00
=.6163=00
=+5804+=00
=+5320=00
=4806=00
=+ 4371=00
=-+4048=00
=.3800-00
-.3560=00
=,3362=00
«.3150=00
-+2964~00

G

=:2535-00
=-.4688-00
=+6182~00
~+6963-00
~+7183-00
=+7052~00
-06737-00
=+6345=00
=+3949-~00
=.5593=00
=.5289=-00
=+5029-00
- 4 794=09
=+4567=00
= 4344=00
=+4130-00

K

+ 975800
«9078-00
+8055-00
+6750=00
+5143=00
«3192=00
«9487=01
~+1431=00
-+ 3704=00
-+5698-00
«e7453=00
-+9118=-00
-+1081+01
=+1285+01
-s14234+01
=+1573+01

K

«9771-00
+9106=00
06067'00
+5190=00
«3505=00
+1755=00
«1273=02
-+ 1656=00
-+3212-00
= 4660-00
~+5020=00
=+7322=00
=+8578=00
-¢9776=00
=-,1089+01

c

+6127=00
.5081=00
«5970-=00
+5768-00
+HH92=00
«5191=00
+4908-00
+4672=00
S4473=-00
«4271-00
+4037=00
. 377“‘00
+3508=-00
¢ 3264=00
2 3053-00
+2669=00

c

.5181=00
+5112-00
. “997-00
+4537=00
+4640-00
+4418=00
+4181=-00
+ 3940-00
«3699=00
L] 3“57-00
+3214=00
+2975=00
127“7—00
+2536=00
»2344=00
«2174=00



CASE 13¢

YZ

A
%

Y4

FREQUENCY

«50
1.00
150
2400
2.50
3.00
330
4+00
4«50
5.00
5450
500
9050
700
750
B8+0G

=0.25
=3.00
=2.50
=1.315

CASE ldc

Y2

PR 0N

A
by
¥y
FREGQUENCY

«50
1.00
150
2400
250
300
3450
400
4450
5«00
550
6+00
5+50
7.00
T+50
8400

=0.00
=4.00
=2.50
=0.996
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TABLE 3.3 CONTINUED

14
v

+9403-00
+7842=00
+5904=00
14131-00
+2687=00
+1899=00
05119=01
=+2621=01
-+ 7988=01
=« li44+00
~s 138700
=»1593=00
=.1786=00
-+ 1954=30
=-+.2081-00
=e2169-00

=

+9567-00
'836“-00
«66569-00
«4855«00
«320¢ 00
«1855=00
+8022=01
«7602-03
=+2329~G1
=-«1528-G0
-+1384=Q0
=+1557=00
«+1360-00
=-+2206-00
=, 2420«00
-+ 250100

<]

=-.2796=00
=.4950=00
=+6150=-00
=.6578=00
=.6600=00
-.6422=00
~.6097=00
-.5649=00
=+5160=00
-OQ729-00
~.4391-00
- 4123=00
-.3884=00
=.3651=00
-+ 3425-00
~«3225-0C

G

=+2532=00
-+ 4690-00
=.£198-00
=.6992=00
-+7213-00
=.7077=00
-«6756=00
=+6365=00
=.5977=00
-+5830=-00
~+3336=00
=.5084~00
=+4858-00
=«4640-00
-ou“26-00
= 4218-00

K

977100 .

»9119-00
¢8124=00
«6846=00
+5291=00
.34“7-00
«1367=00
-+.8197=-01
-+2930=00
-+4831=00
e £540=-00
~+8156=00
~«3771=00
-+1140+01
-«1296+01
“e1436+01

K

09765'00

+9096=00

+8045-00
«6701=00
05149-00
+3467=00
+1733=00
+1876~02
-+1616=00
-+ 3139-00
- 4554-00
=+5879=00
-+ 7143=00
~¢8356-00
=+9512=00
=+1059+01

c

«5810-00
+5H755=00
«5641-00
«54%51=-00
+5199=00
«4922-00
+4653-00
+a4hk16-00
«4206=00
+3996=00
03765-00
«3517=00
«3270=00
+3042-00
«2853-00
«2668=~00

C

«5171-00
05101-00,
«4985~00
4825-00
«4629=-00
«4407=00
+4170-00

C+3927-00

»3683=00
«3438-00
«3193=00
+2953=00
+ 272400
«2511=00
22319-00
214700



APPENDIX C
EXAMPLES OF DESIGN CALCULATIONS

The purpose of this appendix is to provide several
examples indicating the procedure to determine the amplitude
of vibration of a foundation subjected to harmonic forces.
This will include an examplie where the so0il properties co-
incide with one of the cases from Table 2.2 and the mass
ratio with one of the values considered in Chapter 5 and
so the curves from Chapter 5 are directly applicable.
Examples will also be presented where the impedance coef-
ficients are determined by using the results of an equiva-
lent isotropic soil (having the same YZ as the anisotropic
soil) and the anisotropy is accounted for by using the
correct expression for the static stiffness, as explained
in Chapter 5.

C.1 VERTICAL VIBRATION PROBLEM

Consider a machine foundation, five feet in dia-
meter (ro = 2.5 feet) which has a total weight, W of 22500
ibs. This includes the dead weight of the machine and the
concrete footing. Operation of the machine results in an
unbalanced force with an amplitude of 5000 1bs. The soil
underiying the foundation has the following properties:

Crr = 24000 psi

JIT-205
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[p]
n

6600 psi (v = 1/4)

(]
[{]

2
8000 psi (3, = 3.0)

Yo = 120 pef (soil unit weight)

Determine the maximum amplitude of yibration and the fre-
quency at which it occurs.
The factor ¥, is first calculated from egn. 3.11.

g - o2y gs940 - 2) L ey
v (T =3y - &0 - sty < T

where ¢ was obtained from Table 2.2, since we note the soil
properties above correspond to material case 13. The di-
mentionless mass ratio is now determined from egn. 5.15a

3 = Sy _M _1.183  22500/386.4 _ _ 5 c4q
v 4 or 3 4 3 - v
0 (120/386.4)(2.5)

Neglecting material damping, we obtain from Figure 5.16 a
maximum dynamic magnification factor of 2.54 at a dimension-
less frequency of 0.47. The circular frequency is then
found from

€2

r
° 0

w = a
where Czis the shear wave velocity in the distortad coordin-

ate systenm,

Cz = G/p = 6000 x 144 x 32.2/120 = 481 ft./sec
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4

0]

1

thus w = 0.47 - g = 90.8 rad/sec (14.5 cps).

[a]

To determine the amplitude of vibration we also need the
static stiffness from egn., 3.19

4Gr
4
K, = 2= 228000 2.5 x 12 . 405,622 1bs/1n.

v 1.183

Now from the definition of the DMF, eqn. 5.14,

DMF = = 2.54

| &
P/K
where P is the unbalanced force. Thus

_ 5000 , '
5 = goe7e * 2-%4

0.0209 in. -

This vibration amplitude would now be compared with the ac-
ceptable criteria to determine if the foundation design is

adequate.

C.2 VERTICAL SINGLE - CYLINDER COMPRESSOR

This example is taken with slight modification,
from page 360 of Richart et al., ref (25). A vertical
single cylinder compressor develops periodic forces which
can produce a vertical motion of the machine and its foun-

dation block. The weight of the compressor plus the motor

is 10,900 1bs. and it develops a periodic force of 11,400
1bs. at 450 rpm. The compressor is to be supported On a
foundation resting on a silty ¢lay with a shear wave velocity

of 806 ft/sec. and a unit weight of 100 pcf, Thus G is
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14000 psi. Poisson's ratio is 1/3. The maximum acceptable
amplitude of vibration is 0.0021 in.

For initial sizing purposes, set the radius of the
footing to yield a static displacement of 0.0021 in. when
subjected to a force of 11400 1bs. Thus

1 - vw)P

A = .667 x 11400
4Gro

= 0.0021 = 7577500 % r

or re = 67.9 in = 5,66 ft.
Use s = 6.0 ft.

Richart et al. uses an equivalent SDOF representation
for the machine-foundation-soil system where the mass is
the total mass of the machine and foundation, the stiff-
ness is the static stiffness of the soil and the percent

critical damping {for vertical vibrations) is found from

This expression can be derived from eqn. 5.11 herein, by
assuming a constant value for ¢ of 0.85 and ignoring the
virtual mass ratio, Bv*.

Assuming a 3ft. thick foundation, the weight of

the foundation is

2
We = n (6) (3)(150) = 50,893 1bs.
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The total oscillating weight is
W= 50,893 + 10,900 = 61,793 1bs.

The dimensionless mass ratio is then

B = (1 - v) M _ (.667) 61793/386.4
v 4 3
0

The damping ratio is

g = <425 . 425 _ 4 655

B .4768

Pr 4 (100/386.4)(6)°

= (0.4768

To determine the material frequency, we first need the

spring stiffness

" 46ro 4 x 14000 x 72

v T-v™ .667

Thus

K 6
1% A fe.0a8(10)°(386.4) _
“p Y :\/[— 61703 = 194.3

w
‘—‘—0—'—'
therefore fn 7 30.95 cps

The operating frequency is

f = 450 rpm = 7.5 ¢ps

or w = 2nf = 47,12 w/wn = ,2472

6
= 6.048(10) 1bs/in.



- 210

The DMF is from eqn. (5.14)

1
[1 - (w/mn)ijz - 462(m/mn)2

DMF =

OMF = ! = 1.1197

[0V - (2e2)?1® - 4(.6155)%(.242)7

p = —11800 . 4 gp27

6.048(10)°

This is equal to the allowable value and therefore the
motion satisfies the critericn.

The problem will now be repeated for an anisotropic
soil. For comparison purposes assume the shear modulus, G
is the same and the value of Y~ is the same (Y2 = 1/4 for

Poisson's ratio of 1/3). Take A]2= 2.0 thus

2 .
Crr = G/Y = 56000 psi
C._=C /x.,% = 28000 psi
zz  re’?1 7 Ps
Calculate wv
Mle - 2) Ly aya2.73 - 2)

2 Y A R v N 0 11§ R A TS M 0.9133

The value of ¢ was taken from Table 2.2, case 10, Sizing
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the footing again by static considerations,

¥ P
NP _ 0.9133 x 11400
7 ggr, T 0-0021 2 5TR000 X v

ar 88.53 in. = 7,38 ft,

-3
]

1

Use r 7.5 ft.

0

Assume the footing must be 3 ft. thick for simplicity, thus

the weight of the foundation block is

2
Nf = 7(7.5) (3)(150) = 79,522 1bs.

The total oscillating weight is
W=179,522 + 10,900 = 90,422 1bs.

The dimensionless mass ratio is then

¥v M _ (.9133) _ 90422
4 Pr,° 4 100(7.5)

B = = 0.4894

3

The damping ratio is

0.6075

™w
I
n

The static spring constant is found from

4Gr
K o _ 4 x 14000 x 7.5 x 12 _ 5.518(10)6 1bs

v Yy .9133 !
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Then K G g
=f_1 ~ [5.518(10) (386.4) _ rad.
“n jv/— 90422 = 133.56 e,

w
. oon _
therefore fn = 5 24.4 cps.

Recall the operating frequency is

w = 47.12 rad/sec., therefore

wlo = 0.307
The DMF 1is
DMF = 1 = 1.212
[[1 - (.307)%7% - 4(.6075)2(.307)ﬂ
A
or B/~ 1.212

s = 11400 x 1.212 _ 4 4425 5 0.0021

5.518(10)°

Thus the design is inadequate.

Repeating the computations above using re = 10.0 ft. yields:

We = 141,372 1bs.

W = 152,272 1bs.

B, = 0.3477

B = 0.7208

K = 7.357(10)° 1bs/in,.
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w, = 136.64 rad/sec.
m/mn = ().3449
DMF = 1.3748
A = 0.0021 = the design allowable,

oK.

Thus for the vertical vibration problem considered
here, where the anisotropy can be measured by l1, a signi-
ficant difference is noted between the isotropic and aniso-

tropic designs.

€C.3 ROCKING OF A RADAR TOWER

This example is again taken from Richart et al.,
ref (25), page 376. The rotation of a certain radar
antenna induces transient pulses in the tower which may
cause the tower to rock at its natural frequency because
of the flexible connection to the soil. The tower is con-

sidered rigid. The supporting soil has a shear modulus,

G 20,000 psi, and if considered isotropic, a Poisson's
ratio of 1/3, and a unit weight, s of 100 pcf. The
foundation diameter is 60 ft. and the mass moment of inertia
‘of the entire system about a diameter through the base is

I = 80.545(10)61b-ft-sec? Consider a constant moment ex-
citation of PM = 212,000 ft-1bs.

Determine the amplitude of vibration for this

system for several degrees of anisotropy (as measured
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2
again by Al). The value of ¥ will be taken as 1/4%4 in
all cases (in the isotropic case this is equivalent to a

Poisson's ratio of 1/3).

The following formulas will be required.

Mass ratio:
3vv I

B = 5
R 8 pry

anisotropic

By = 300 - v) 1 isotropic
3 5
Oro

Percent damping (from references 2 and 25):

0.15

B =
(1 + BRL/BR

Static stiffness:

8Gr03
Ko = anisotropic
R 3Wv
3
K. = 8Gro isotropic
R 3(1 - v
Natural frequency:
f =—1— EB
n 2n ¥ 1
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Frequency for max, amplitude (25);:

-u
=

ZBJi - 8

With the given data and the above formulas the following

=

table is easily prepared.

TABLE C.1

Results for Sample Problem C.3

j isotropic |
v =0 A2= 1.5 A.2= 2.0 x2= 3.0
1 1 1
Ba .2665 .3165 .365 4729
8 .2294 .2025 .1819 .1481

k. . Tt - K 3.11(10)% ) 2.619(10)° |2.27(10) 1.75(10)®
R rad.

f s CPS. 9.89 9.08 8.45 7.42

fax® CPS- 9.355 8.7 8.17 7.26

s, rad. |1.526(107°]2.041(10)°% |2.6110)° | 4.135(10)°
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As the anisotropy increases, the mass ratio
Bp increases and the radiation damping 8 decreases which
leads to a significant inc¢rease in the amplitude of the
response. The acceptable rocking amplitude for radar
towers is approximately 5(10)'5 rad. and so all the cases
shown in Table C.1 would be satisfactory. However, for
certain designs the degree of anisotropy could be the

determining factor,
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