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ABSTRACT

In this report, six methods of linearization are used to construct

various equivalent linear models to predict the nonlinear seismic

behavior of a one-story steel frame which was constructed and tested by

Sveinsson and McNiven at the Earthquake Engineering Research Center of

the University of California, Berkeley.

Four of the methods of linearization depend on the restoring force­

displacement relation of the frame ..Since explicit expressions for the

linear model parameters, based on a bilinear hysteretic model, are

readily available in the literature and it is evident from the test

results that the hysteretic behavior of the frame can be approximated

by such a model, two bilinear models are constructed; one to represent

the elastic-plastic nature of the structural steel, the other to

represent the work hardening nature. Both bilinear models reproduce

the response time histories quite accurately in the domain appropriate

to each.

The construction of all the equivalent linear models is based

on the measured nonlinear response of the frame to El Centro excitation,

and the objective for their construction is the ability to predict the

maximum response values, with precedence being given to the maximum

displacement response. The assessment of the models is made by

comparing their response predictions with the measured response for

El Centro and also three other excitations, i.e., Pacoima, Taft and

Parkfield excitations.

The results of this study indicate that the dependence of the

nonlinear response of a structure on the characteristics of the earth­

quake excitation is so complex that there is no way that the
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linearization schemes considered can have the required generality to

limit the maximum displacement response to specified value. Nonethe­

less, these methods can provide very valuable guidelines for design,

if their limitations and relationship to the overall design process is

fully recognized.





iii

ACKNOWLEDGEMENTS

The research described in this report was sponsored by the

National Science Foundation under Grant No. PFR-79-0825l. The support

is gratefully acknowledged.

The authors wish to thank Professor R. W. Clough for reviewing

the manuscript.

The computing and plotting facilities were provided by the

Computer Center at the University of California, Berkeley.

Toni Avery and Shirley Edwards typed the manuscript. Gail

Feazell and her associates are responsible for the drafting.





iv

TABLE OF CONTENTS

ABSTRACT . • . .

ACKNOWLEDG~1ENTS

TABLE OF CONTENTS.

LIST OF TABLES .

LIST OF FIGURES

1. INTRODUCTION..

2. THE EXPERIMENTAL PROGRAM . .

2.1 Test Structure4 .

2.2 Instrumentation.

2.3 Test Results...

2.3.1 El Centro, 1940 . · · ·
2.3.2 Pacoima, 1971. . . · · ·
2.3.3 Taft, 1952 . . · · · .
2.3.4 Parkfield, 1966.

2.3.5 Maximum Response Values.

3. CONSTRUCTION OF BILINEAR HYSTERETIC MODELS •

3.1 Work Hardening Model ..

3.2 Elastic-Plastic Model

3.3 Comments•.••...•.

4. METHODS OF EQUIVALENT LINEARIZATION FOR EARTHQUAKE
EXCITATION . . .

4.1 Formulation •...........

4.2 Methods of Equivalent Linearization.

4.2.1 r~thods Independent of Restoring

Force - Displacement Relation..

Method 1: System Identification (SI) ..

i

iii

iv

vi

vii

1

4

4

7

7

8

13

13

13

13

27

29

30

43

44

44

46

46

46





v

Page

Method 2: GU1kan-Sozen Procedure (GSP) . . . • •. 47

4.2.2 Methods Dependent on Restoring

Force - Displacement Relation . 48

53

Method 3: Modified Dynamic Stiffness (MDS). 48

Method 4: Average Period and Damping (APD). . 50

Method 5: Average Stiffness and Energy (ASE). . 51

Method 6: Stationary Random Equivalent
Linearization (SREL) .

5. CONSTRUCTION AND ASSESSMENT OF THE EQUIVALENT LINEAR
MATHEMATICAL MODELS . • . . . • . . . • • • . . .

5.1 Construction of the Equivalent Linear Models.

5.1.1 System Identification (SI) .••.

5. 1.2 GUl kan-Sozen Procedure (GSP).

5.1.3 Modified Dynamic Stiffness (MDS) •.

5.1.4 Average Period and Damping (APD).

5.1.5 Average Stiffness and Energy (ASE). ,- . .

55

55

55

57

57

60

60

5.1.6 Stationary Random Equivalent Linearization(SREL).. 61

5.2 Assessment of the Equivalent Linear Models. . . 61

5.2.1 Prediction of the Response Time Histories. 61

5.2.2 Prediction .of the ~1aximum Response Values. . 71

. . . . . . . . . . . . . . . . . . . .

6. CONCLUSIONS. . • . . . • • .

APPENDIX A: COMPUTER PROGRAM .

APPENDIX B: LISTING OF THE COMPUTER PROGRAM IDEN •

REFERENCES.

74

76

86

103





Table

2. 1

3.1

5.1

vi

LIST OF TABLES

Measured Maximum Response Values .

Maximum Response Values.....

Numerical Results for the Equivalent Linear Models.

Page

14

31

72





vii

LIST OF FIGURES

Figure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Test Structure on Shaking Table . . . . . .

Plan and Elevation Views of Test Structure.

Measured Table Acceleration, E1 Centro•..

Measured Relative Acceleration Response Time History,
El Centro . . . . ., . . . . . . . . . . . . . . . . . .

Measured Relative Displacement Response Time History,
El Centro . . . . . . . . . . . '. 5 • • • •

Measured Pseudo-Hysteretic Loops, E1 Centro

Measured Table Acceleration, Pacoima. • . .

Measured Relative Acceleration Response Time History,
Pacoima . . . . . ... • . . . . . . . . . . . . . . . .

Measured Relative Displacement Response Time History,
PacoilTla • . . . . . • . • • • . • • . • ••

Measured Pseudo-Hysteretic Loops, Pacoima ••

Measured Table Acceleration, Taft

Measured Relative Acceleration Response Time History
Taft. .. . . . . . . . . . . . . . . . . . . . . . . . .

Measured Relative Displacement Response Time History,
Taft. . . . . . . . . . . . . . .

Measured Pseudo-Hysteretic Loops, Taft••

Page

5

6

9

10

11

12

15

16

17

18

19

20

21

22

2.15 Measured Table Acceleration, Parkfield. 23

2.16 Measured Relative Acceleration Response Time History,
Parkfield. . . . . . . . . . . . . . . . . . . . . .. 24

2.17 Measured Relative Displacement Response Time History,
Parkfield. . . • • . . . • . • . . . . •. . . .. 25

2.18

3. 1

Measured Pseudo-Hysteretic Loops, Parkfield ..

Restoring Force - Displacement Relation for a Bilinear
Hysteretic Systern . • • • • . . • • . . . . . . • • . .

26

28





viii

Figure

3.2

3.3

Work Hardening Model; Comparison of Measured and
Computed Relative Acceleration Response Time
Histories, El Centro...•...•••.....

Work Hardening Model; Comparison of Measured and
Computed Relative Displacement Response Time
Histories, E1 Centro.•••..•..•••.•.

32

33

3.4 Work Hardening Model; Comparison of Measured and
Computed Relative Acceleration Response Time Histories,
Pacoima . . . . . . . . . . . . . . . . . . . . . . . .. 34

3.5 Work Hardening Model; Comparison of Measured and
Computed Relative Displacement Response Time Histories,
Pacoima . . . . . . . . . . . . . . . . . . . . . . . .. 35

3.6 Work Hardening Model; Comparison of Measured and Computed
Relative Acceleration Response Time Histories, Taft. .• 36

3.7 Work Hardening Model; Comparison of Measured and
Computed Relative Displacement Response Time Histories,
Taft. . . . . . . . . . . . . . . . . . . . . . . oS • •• 37

3.8 Work Hardening Model; Comparison of Measured and Computed
Relative Acceleration Response Time Histories,
Parkfield • • . . . . . . . . • • • • . . . . . • . . •. 38

3.9 Work Hardening Model; Comparison of Measured and
Computed Relative Displacement Response Time Histories,
Parkfield. . . . • • . • . . . . . . . • • . • • . . .• 39

3.10 Elastic-Plastic Model; Comparison of Measured and Computed
Relative Acceleration Response Time Histories,
El Centro . • • • . • . • . • • • . • • • . • • • • • .• 41

3.11 Elastic-Plastic Model; Comparison of Measured and Computed
Relative Displacement Response Time Histories,
E1 Centro • . • . • • • • • • • . • • . • • • • • • . •• 42

5. 1

5.2

5.3

5.4

Relative Velocity Response Time History from
Differentiated Displacements, E1 Centro ••.

Relative Velocity Response Time History from Integrated
Accelerations, E1 Centro••.•••.••••.•••

ELMSI1; Comparison of Measured and Computed Relative
Acceleration Response Time Histories, E1 Centro .••

ELMSI1; Comparison of Measured and Computed Relative
Displacement Response Time Histories, El Centro ••.

58

59

63

64





ix

Figure Page

5.5 ELMSI1; Comparison of Measured and Computed Relative
Acceleration Response Time Histories, Pacoima. · · · 65

5.6 ELMSI1; Comparison of Measured and Computed Relative
Displacement Response Time Histories, Pacoima. · · · 66

5.7 ELMSI1; Comparison of Measured and Computed Relative
Acceleration Response Time Histories, Taft. . · · · 67

5.8 ELMSI'; Comparison of Measured and Computed Relative
Displacement Response Time Histories, Taft. . · · · 68

5.9 ELMSI1; Comparison of Measured and Computed Relative
Acceleration Response Time Mistories, Parkfield. · · 69

5.10 ELMSI1; Comparison of Measured and Computed Relative
Displacement Response Time Histories, Parkfield. · · 70

* * * * * * * * * * * * * * * * * * * * * * * *
* ** NOTE *
* ** In all of the Figures in which comparison *
* is made between measured and computed *
* responses, the solid line represents the *
* measured response, the dotted line the *
* computed. *
* * * * * * * * * * * * * * * * * * * * * * * *





1

1. INTRODUCTION

Because of economic considerations, structures are usually not

designed to remain elastic during severe earthquake excitations. This

design philosophy may be acceptable if it is possible to take advantage

of a structure's ability to dissipate energy through inelastic deforma­

tions. These deformations, however, must be controlled in order to

prevent collapse due to exhaustion of the structure's energy dissipation

capacity or due to excessive lat~ral displacements. The ability to

predict the ductility demand of a future earthquake excitation for a

structure designed with a specified yield strength is therefore of

great interest in earthquake resistant design.

Representing the future earthquake excitation by a recorded

historical ground motion and knowing the hysteretic material behavior

of a structure, we can predict accurately the ductility demand. Using

the actual hysteretic behavior introduces on the other hand both

technical and practical difficulties for the computations and it would

be very helpful, if the ductility demand could be predicted by a simpler

method of approach. The most practical approach is to replace the

actual hysteretic system by an equivalent linear system and use it's

maximum deformation as a basis for approximating the ductility demand

for the structure. This kind of an approach would be very useful, if

it could give reasonably accurate predictions of the actual response.

The linearization of nonlinear systems is not new and it is not

a recent development in earthquake engineering. One of the problems of

this study was that of selecting from the large array of linearization

schemes a limited number that we could examine. Many of the schemes
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are very ingenious, and we hope that we have selected a representative

group.

Whenever a nonlinear system is replaced by a linear one, it is

critical to ascertain the limits of the linear system and to appraise

the system in the context what it is that it must predict. To our

knowledge none of the methods of linearization presented in this report

has been appraised against the only real test of its value, that of

predicting physical response to an earthquake excitation. This then

is the purpose of this work.

To construct and later assess equivalent linear models, we use

test results from an experimental program on a one-story steel frame

performed by Sveinsson and McNiven [1] presented in Chapter 2. The

frame was subjected to four historical ground motions - E1 Centro,

Pacoima, Taft and Parkfield - causing inelastic deformations of the

structure in all cases.

Some of the methods of equivalent linearization used in this

investigation depend on the restoring force-displacement relation.

Since explicit expressions for the equivalent linear parameters based

on a bilinear hysteretic model are readily available in the literature

[2,3,4,5], and it is evident from the test results of Chapter 2 that

the hysteretic behavior of the structure can be approximated by such

a model, we construct two bilinear models in Chapter 3. At this point

we must be cognizant of what it is that the linear systems are con­

structed to predict. They are not attempting to predict the complete

time histories of the acceleration and displacement response, but only

the maximum values of these, with precedence being given to the maximum

displacement response.
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Herein lies the reason that we have to construct two bilinear

models. Structural steel behaves beyond yield as if it were two

different materials. When the strain imposed forces the stress beyond

yield, the first excursion into the plastic zone is elastic-plastic,

but further hysteretic behavior reveals that the steel is work hardened.

One bilinear model is needed for each behavior. The elastic-plastic

bilinear model is appropriate when the maximum displacement response

occurs in that domain, the work hardening bilinear model when it occurs

later in the response.

Six methods of equivalent linearization for SDOF systems sub­

jected to earthquake excitation are described in Chapter 4. Two of

these methods are independent of the restoring force-displacement

relation but depend instead on the response time histories of the

system to the given excitation. The remaining four methods depend on

the restoring force-displacement relation in addition to the maximum

displacement of the system to the given excitation.

In Chapter 5 we use the methods of equivalent linearization

described in Chapter 4 and the structural response to El Centro to

construct various equivalent linear models. For the methods requiring

restoring force-displacement relation, bilinear models of Chapter 3

are used. We then make an assessment of the models by comparing their

response predictions with the measured nonlinear responses for

El Centro and the other three excitations of Chapter 2.

Concluding remarks on the applicability of the method of

equivalent linearization for SDOF systems subjected to earthquake

excitations are given in Chapter 6.
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2. THE EXPERIMENTAL PROGRAM

The tests performed on the one-story steel frame, the results

of which are used in this research, are discussed briefly in this

chapter. A more detailed description of the program is contained in

a report by Sveinsson and McNiven [1].

2. 1 Test Structure

The primary requirements for the design of the test structure

were that it have essentially a sing1e-degree-of-freedcm and that it

exhibit a very simple hysteretic energy dissipating behavior. For­

tunately such a structure had been designed, built and tested at EERC

by Rea, Clough and Bouwkamp in 1969 and Reference [6] gives a complete

description their structure.

The structure tested by Sveinsson and McNiven is shown in Figs.

2.1 and 2.2. Briefly the structure consists of a heavy steel platform

supported by four columns; two fixed to the table and pinned at the

top, and two pinned at both the top and bottom. The platform, which

is rigid compared to the columns, has overall plan dimensions of 10 ft

by 7 ft. The fixed-end columns, fabricated from WF 4 x 13 lb. mild

steel, are 66.5 in. in overall length and are installed so that they

bend about their weak axes. Parabolic straps are added to strengthen

the base of the fixed-end columns.

Two identical pairs of fixed-end columns were used. Each pair

was used twice as virgin columns by rotating them top to bottom after

the completion of a test causing a nonlinear response of the structure.

All four of these columns were fabricated from the same piece of steel.
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The generalized weight of the structure, defined as the total

weight of the platform plus 1/3 of the total weight of the columns,

is 5978 lb.

2.2 Instrumentation

Accelerometers were mounted on both sides of the platform to

record the absolute accelerations of each side. The absolute displace­

ments of each side of the structure relative to a reference frame

remote from the shaking table was measured by potentiometers. In all

subsequent computations the absolute accelerations (or displacements)

are taken as the average of the measured accelerations (or displace­

ments) of each side. The accelerations of the shaking table were

recorded by three built-in accelerometers; one in the middle of the

table and one on each side. The table accelerations are taken as the

average of the three. The table displacements were measured in the

same manner as the table accelerations.

The accuracy of the recorded data cannot, of course, be pre­

cisely determined since it depends on the accuracy of calibration for

each test, among other things. However, the overall accuracy of the

data acquisition system is thought to be within about 0.1%.

2.3 Test Results

To accomplish the objectives of this research we need records

of the nonlinear response of the structure due to a variety of

excitations. Sveinsson and McNiven subjected the structure to four

historical earthquake excitations, each severe enough to cause

significant inelastic deformations.



8

2.3.1 El Centro, 1940

The 1940 El Centro, N-S component was used, and the measured

table acceleration time history is shown in Fig. 2.3. The measured

relative acceleration and displacement time histories of the structure

are shown in Figs. 2.4 and 2.5 respectively.

The equation of motion for a SDOF system with viscous damping

and subjected to support excitation may be written as:

(2.1)

or

(2.2)

where

mo is the mass,

Co is the viscous damping coefficient,

Xab~t) is the absolute acceleration,

x(t) is the relative displacement,

h(x,t) is the restoring force.

We can therefore obtain an approximate restoring force time

history of the structure by multiplying the measured absolute accelera­

tion of the platform by the generalized mass of the structure and

changing the sign. This relation is obviously only absolutely true at

the peak values of the displacement, but plotting this force against

the displacement gives an idea of the shape of the dynamic hysteretic

loops. Fig. 2.6 shows this relation, which will be referred to as

pseudo-hysteretic behavior.

An important characteristic of the cyclic inelastic behavior of

mild steel is evident from the shape of the pseudo-hysteretic loops.



9

..
:?"

~
~

~
>

.,
c:::::; ~

~....:::=
-:::
~

~
~

~?->
""'=~

~
~~

<£..~
£. g

~F""

<:~
c::::;~

~
c:::::t""'"""-===-<
~

~...
~

.....:::
:>

c ~:>
~

--:;;;:
~

c:::::: ,
~

-:;§
;.:;;;:;=»

~
p

~
~

10

0

0
N

0

IX)

....

0

to....

0
0::

0 I-
z:
I.l.J.,...
U

...J
lI.l

'"
0 U z:

0

W -N I-
et:.... (f) 0::
I.l.J
...J
I.l.J
U

0 u
et:

0 I.l.J.... W ...J
co

L et:
I-

t--f C
0 I.l.J

~
a::
::::l

co V)

et:
I.l.J
:E:

0 M.
Ul

N.
(,!j-I.L.

0

.,..

o

N

o

o

s

LI'I o

. J J V

LI'I

3l8Vl.

o



J
h

A
~

"
A

~

~
~

I "
II

A
N

~
;

.A
~

A
A

V
\

V
~

.V
)

~V
V

VV
V

~
V

~
,V

V.
~

V
y

T
IM

E

u W
6

0
0

.0
(J

)

.....
...

U W
"
0

0
.0

(J
)

.....
...

Z I-
-
f

2
0

0
.0

u
0

u « w
-
2

0
0

.0

0
:: ::::
> I- u

-
4

0
0

.0

::::
>

0
:: I- (J
)

-
6

0
0

.0

o
2

•
0

4
.

0
6

•
0

8
.0

1
0

.
0

1
2

.
0

S
E

C
1

..
•

0
1

6
.

0
1

8
.

0
2

0
.0

..... o

FI
G

.
2.

4
ME

AS
UR

ED
RE

LA
TI

VE
AC

CE
LE

RA
TI

ON
RE

SP
ON

SE
TI

M
E

HI
ST

OR
Y,

EL
CE

NT
RO



(
/)

6
.0

W I U Z
..

.
0

.....
.

2
.

0
.

.-
J

Q
..

(
/)

0
.....

.
0 W

-
2

•
0

0
::

::
)

I- u
-

..
.

0
:
:
)

0
:: l- (
/)

-
6

.0

ft

"
1\

n
fl

\J
f\

A
"

A
v

A
~~

•
AA
~

M,
~

~
I V
~

v
V

V
V

~
J

V
V

\J

~
v

V
V

V
V

v
V

V

..... .....

T
IM

E
o

2
.

0
..

.
0

6
.

0
.
8

.
0

1
0

.
0

1
2

.
0

S
E:

C
1

..
.

0
1

6
.

0
1

8
.

0
2

0
.

0

.
FI

G
.

2.
5

ME
AS

UR
ED

RE
LA

TI
VE

DI
SP

LA
CE

M
EN

T
RE

SP
ON

SE
TI

M
E

HI
ST

OR
Y,

EL
CE

NT
RO



.... N

6
.

0
..

.
0

5
.0

-
1

0
.0

se
c.

1
5

.0
-

2
0

.0
se

c.

o
2

.0

IN
C

H
E

S
4

.0
+

6
.0

-
4

.0
-
2

.0

D
IS

P
L

A
C

E
M

E
N

T

0
.0

-
5

.0
se

c.

1
0

.0
-

1
5

.0
se

c.

2
.0

S
T

R
U

C
T

U
R

E

5
.

0

"
.

0

3
.

0

a
.

2
.

0

- ~
1

•
0 0

-
1

•
0

W
-

2
.

0
U ~

-
3

.
C

a
-

"
.

0
lL

..

+
5

.
0

0 w
"

•
(1

I-
3

.
0

« -
l

2
.

0

::::
>

1
.

0
U -
l

0

« u
-
1

.
0

-
2

.
0

-
3

.
0

-
"

•
0

-
5

.
tJ -

6
.

0
-

4
•

0
-

2
.

0
0

FI
G

.
2.

6
ME

AS
UR

ED
PS

EU
DO

-H
YS

TE
RE

TI
C

LO
OP

S,
EL

CE
NT

RO



13

The first major excursion into the inelastic region is essentially

elastic-plastic (phase I)t whereas all subsequent loops have a smooth

transition from elastic to inelastic response indicating work hardening

behavior (phase II). This two-phase character is central to the problem

of modeling the behavior of mild steel structures.

2.3.2 Pacoima t 1971

The 1971 Pacoima t S16E component was used t and the measured

table acceleration time history is shown in Fig. 2.7. The measured

relative acceleration and displacement time histories of the structure

are shown in Figs. 2.8 and 2.9 respectively. Fig. 2.10. shows the

pseudo-hysteretic loops.

2.3.3 Taft t 1952

The 1952 Taft t N69W component was used t and the measured table

acceleration time history is shown in Fig. 2.11. The measured relative

acceleration and displacement time histories of the structure are shown

in Figs. 2.12 and 2.13 respectively. Fig. 2.14 shows the pseudo­

hysteretic loops.

2.3.4 Parkfield t 1966

The 1966 Parkfie1d t N65E component was used t and the measured

- table acceleration time history is shown in Fig. 2.15. The measured

relative acceleration and displacement time histories of the structure

are shown in Figs. 2.16 and 2.17 respectively. Fig. 2.18 shows the

pseudo-hysteretic loops.

2.3.5 Maximum Response Values

Table 2.1 gives the maximum relative displacement and the maximum

absolute acceleration of the structure for each earthquake excitation.
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TABLE 2.1

MEASURED MAXIMUM RESPONSE VALUES

Earthquake xabs x
Excitation (in./sec2) (in. )

EL CENTRO 267.9 4.75

PACOIMA 261.5 4.85

TAFT 258.1 3.47

PARKFIELD 248.8 4.18



15

~
I>
~

--=i: Po
r--:.......-

-D-

'"'.: ;;=::-

~

-==::......
,.",.- -....-.

.5="
~

:;:-
.......
~

~

~

~-
~ •
~

~
~
~

o

o
N

o

o

0 e(
~......

~ 0
U
e(
a....

0 U z
0

W
......

N l-
e(

(J) 0:::
L.LI
--I
L.LI
U

0 U
e(

0 L.LI
..... W --I

a:l

L ~

"""'"""'
0

0 L.LI

I-'- 0:::
~

CD (/)
e(
L.LI
::E:

0 .......
(0

N .
c..!:l......
LL..

0

~

o

N

o

o

s

LJ1 o

°JJV

LJ1

~l8VJ..

o



~

f\

A
A

A
~

I~

A
A

f\
Ih

ll
A

II

",
,"

H
I

~

V
~

V
V

V
V

V
V

V
'v

iN
V

-

T
IM

E

u W
6

0
0

.
0

C
f) .....
..

U W
4

0
0

.
0

C
f) .....
..

Z l-
-4

2
0

0
.0

u
0

u « w
-
2

0
0

.0

0
::

::
:) I- U

-
4

0
0

.0

::
:)

0
:: I- C
f)

-
6

0
0

.0

o
2

•
0

4
.

0
6

.
0

8
.

0
1

0
.

0
1

2
.

0

S
E

C
1

4
.

0
1

6
.

0
1

8
.

0
2

0
.0

-
'

0
)

FI
G

.
2.

8
ME

AS
UR

ED
RE

LA
TI

VE
AC

CE
LE

RA
TI

ON
RE

SP
ON

SE
TI

M
E

HI
ST

OR
Y,

PA
CO

IM
A



(f
)

6
.

0
W I U Z

"
.

0
1

--
4

2
•

0
.

--
l

Q
..

(f
)

0
.....

..
0 W

-
2

.0
0:

::

::
)

~ U
-

..
.

0
::

)

0:
::

~ (
f
)

-
6

.0

~
1\

f\

A vv
~

~
n

"
~

!'
"

v
f\

A
1\

f\
A

A
~

v
\/

\f
\~

v
v

vV
V

vv
v

V
IJ

IJ
V

v

..... .....
..

T
IM

E
o

2
.

0
4

.0
6

.
0

8
.

0
1

0
.

0
1

2
.

0

S
E

C
1

4
.

0
1

6
.

0
1

8
.

0
2

0
.

0

FI
G

.
2.

9
ME

AS
UR

ED
RE

LA
TI

VE
DI

SP
LA

CE
M

EN
T

RE
SP

ON
SE

TI
M

E
HI

ST
OR

Y,
PA

CO
IM

A



-
'

(X
l

6
.0

1
.0

1
3

.5
-

1
8

.0
s
e
c
.

o
2

.0

IN
C

H
E

S
-
2

.0
-
1

.
0

te
.o

1
.

0

D
IS

P
L

A
C

E
M

E
N

T

9
.0

-
1

3
.5

s
e
c
.

-
2

.0
0

2
.0

S
T

R
U

C
T

U
R

E

5
.0

1
.0

3
.0

a.
2

.0

- ~
1

•
0 0

-
1

.0

U
J

-
2

.0
U a::

:
-
3

.0

0 u
..

-
1

.0

+
5

.0
C

l
U

J
1

.0

I-
3

.0
c
(

..
J

2
.0

:::>
1

.
0

U ..
J

0
c
(

U
-
1

.
0

-
2

.0

-
3

.0

-
1

.0

-
5

.0

-
6

.0
-
1

.0

F
IG

.2
.1

0
ME

AS
UR

ED
PS

EU
DO

-H
YS

TE
RE

TI
C

LO
OP

S,
PA

CO
IM

A



19

~
il..

~-<.-.;;;...~
a.
~

~

2
s--

--===:;2
,,-

~
~
-.....
~

<- oS

-==t
..c:::: p

-e:~
~

~

~~

P>
~
~

~

~
~

-==-
"'='=-'

-=~
~""-

~

5
~

~-~~
~

~
:>

o

o
N

o

o

0

<t" l-
lL.
c:(
I-..
Z

0 U 0-W l-
N c:(

~
(f) UJ

....J
UJ
U
U

0 c:r.
UJ

0 ....J
-< W lX:l

c:(

L
l-

e
I---l UJ

0 ~

~
:::l
V)

(X) c:(
UJ
:E:

~

0 ~.
(0

N.
<.!J-lL.

0

<t"

o

N

o

o

s

IJ'l o

"JJV

IJ'l

3l8V.i

o



~ ~

~
A

A
'A

..~
A

~

~
J

:~
~

I~
~

f
Ii

\

..,
v

I(
~
~
~

W
~

\
If~

~'
~

~
v

~
\oJ

T
IM

E

u W
6

0
0

.
0

(
/) .....

..
U W

4
0

0
.

0
(
/) .....

..
Z ..
..

.-
t

2
0

0
.

0

u
0

u « w
-
2

0
0

.0

0:
:

::::
> I- u

-
4

0
0

.0

::::
>

0:
:

l- (/
)

-
6

0
0

.0

a
2

.
0

4
.

0
6

.
0

8
.

0
1

0
.

0
1

2
.

0

S
E

C
1

..
.

0
1

6
.

0
1

8
.

0
2

0
.0

N o

FI
G

.
2.

12
ME

AS
UR

ED
RE

LA
TI

VE
AC

CE
LE

RA
TI

ON
RE

SP
ON

SE
TI

M
E

HI
ST

OR
Y!

TA
FT



21

.~
::::::>

c::::

~
<::L::>
t:::>

<:: -
:>

c:::
::::>

I:::"

?.,...

.~
c

l:>

c

-=-
~

:::>
c:

=:>
~

c::::

~
'"""----=

::::-
c

::::=:0
Ie::"

1<:::::'-
~

b
C-

Dc:
t:::>

<

o

o
N

o

0 ..
\0 >-

~

0
I-
Vl......
:z:

0
UJ
:E:..,.. ......
I-

UJ
Vl
:z:

0 U 0
0-

lLJ
Vl

N
UJ
0:::

(f)
I-:z:
UJ
:E:

0 UJ
uex::

0 ...J
0-

lLJ Vl......
L Cl

UJ
I--i :>

0 ......
~ I-ex::co ...J

UJ
0:::

Cl
UJ

0 0:::
:::>
Vll-

\0 ex:: LL.UJex::
:E:I-

M
0 ~.

C'J..,.. .
Cl'......
LL.

0

N

o

o o o

N

o o

N
I

o

~

I

o

(,0

I

S :3 HJ NI . l d S I 0



D
IS

P
L

A
C

E
M

E
N

T

N N

6
.0

4
.0

5
.0

-
1

0
.0

se
c.

1
5

.0
-

20
.0

se
c.

o
2

.0

IN
C

H
E

S
-z

.O
-
4

.0
1

:6
.0

4
.0

0
.0

-
5

.0
se

c.

10
.0

-
1

5
.0

se
c.

-
2

.0
0

2
.0

S
T

R
U

C
T

U
R

E

5
.0

4
.0

3
.0

Q
.

2
.0

.....
.
~

1
•

0 0

-
1

.0

W
-Z

.
O

U D:
::

-
3

.0
0

-
4

.0
lJ

...

~
5
.
0

0 W
..

.
0

I-
3

.0
« ...

J
2

.0

::
)

1
.0

U ...
J

0

« u
-
1

.
0

-
2

.0

-
3

.0

-
4

.0

-
5

.0

-
6

.0
-
4

.0

FI
G

.
2.

14
ME

AS
UR

ED
PS

EU
DO

-H
YS

TE
RE

TI
C

LO
OP

S,
TA

FT



23

;

'r
~~

•~

~
~

iii.
~

~ t--

li-,
...I h-,~

po
'1;

~
(

tJ-
i Il....e.
~...:
~----s.....

4:~, ~
-.:;

~1
1

~

o

o
N

o

0

to

e
...J
I.LI

0 ......
u..

<t-
~
cx::
et:
0....
:z

0 U 0......
W l-

N et:
cx::

(J) I.LI
...J
I.LI
U
U

0 et:
I.LI

0 ...J

W CO
et:

L
l-

e
........... I.LI

0 cx::

f- =>. V)

to et:
I.LI
:E:

Ll')
0 ......
to

C'J.
t::l......
u..

0

<t-

o

N

o

o

-
s

1Il o

. J J V

1Il

3l8Vl..

o

-



W 0:
:: :::> ~

-
4

0
0

.0
U :::> 0:

:: ~
-
6

0
0

.0
(
j)u W

6
0

0
.0

(
j) .....
....

U W
4

0
0

.0
(
j) ....
....

.

Z 1
--

4

2
0

0
.

0
A

I
'I

"
~

"
A

It
1\

~
.rt

f\
~

_
..

A
~

f\
~

A
A

"-
/\

I\A
r\

f\
l\

f\
f

1
\1

\.
1

\
or

..
.

\
(

v
~

v
\

V
VV

v
V

v
~

V
V

v
V

\fJ
V
~
V
V
\
)

V
V

V
v

v
V

\

~

~

T
IM

E
-

S
E

C

N .:::
.

1
8

.0
2

0
.0

1
6

.
0

1
i

.
0

1
2

.
0

1
0

.
0

B
.O

6
.

0
if

•
0

2
•

0
o

o

-
2

0
0

.0

u u «

FI
G

.
2.

16
M

EA
SU

RE
D

RE
LA

TI
V

E
AC

CE
LE

RA
TI

ON
RE

SP
ON

SE
TI

M
E

H
IS

TO
RY

,
PA

RK
FI

EL
D



(
/)

6
.

0
W I U Z

't
•

0
I-

-
l

2
•

0
.

--
1

0
-

(
/)

0
~ 0 W

-
2

.0
0

:: :::> /- u
-
4

.0
:::> 0

:: /- (
/)

-
6

.0

f\
f1

f\
1\

f\
1\

f\
11

\
A

f\
/

A
f\

"
V

\

V
V

V
I
\
~
v~

V'
wv

I
~

rV
w

M
i\

V
V

V
v

.
V

V
N <.1

1

T
IM

E
o

2
.

0
't

•
0

6
.0

8
.

0
1

0
.

0
1

2
.

0

S
E

C
1

i
.

0
1

6
.

0
1

8
.

0
2

0
.

0

FI
G

.
2.

17
ME

AS
UR

ED
RE

LA
TI

VE
DI

SP
LA

CE
M

EN
T

RE
SP

ON
SE

TI
M

E
HI

ST
OR

Y,
PA

RK
FI

EL
D



N 0
"

6
.

0
4

.0

5
.0

-
1

0
.0

se
c.

15
.Q

-
"C

cC

o
2

.0

IN
C

H
E

S
4

.0
:t

6
.0

-
4

.0
-Z

.O

D
IS

P
L

A
C

E
M

E
N

T

1
0

.0
-

1
5

.0
se

C
.

0
.0

-
5

.0
se

c.

2
.0

S
T

R
U

C
T

U
R

E

5
.0

4
.0

3
.0

a..
2

.0

- ~
1

.0

0

-
1

.0

W
-Z

.O
U a::

-
3

.0

0 I.L
.

-
4

.0

,,
5

.
0

C
l

W
4

.0

I-
3

.0
« ...

.J
2

.0

:::>
1

•
0

U ...
.J

0

« u
-
1

.
0

-
2

.0

-
3

.0

-
4

.0

-
5

•
0 -

6
.0

-
4

.0
-
2

.0
0

FI
G

.
2.

18
ME

AS
UR

ED
PS

EU
DO

-H
YS

TE
RE

TI
C

LO
OP

S,
PA

RK
FI

EL
D



27

3. CONSTRUCTION OF BILINEAR HYSTERETIC MODELS

As mentioned in Chapter 1, some of the methods of linearization

presented in this report depend on the restoring force-displacement

relation. Since explicit expressions for the linear model parameters,

based on a bilinear hysteretic model, are readily available in the

literature [2,3,4,5], and it is evident from the test results that the

hysteretic behavior of the structure can be approximated by such a

model, two bilinear models are constructed in this chapter based on

the experimental results in Chapter 2.

The equation of motion for a SDOF bilinear hysteretic system

with viscous damping and subjected to support excitation may be

written as:

mo x(t) + Co x(t) + h(x,t) = -mo xg(t); x(o) = x(O) =0 (3.1)

where

mo is the mass,

Co is the visco~s damping coefficient,

xg(t) is the support acceleration,

x(t) is the relative displacement,

h(x,t) is the restoring force.

Figure 3.1 shows the restoring force-displacement relation for a bilinear

hysteretic system. This system has initial stiffness ko' post yield

stiffness ako and yield displacement xy. The maximum response

displacement is shown as x = ~x , where ~ is the displacement ductilitym y

ratio.

To represent the measured structural behavior by differential

equation (3.1), we need to establish the appropriate values of mo'

c , k , a, x using the measured responses and some parameter adjustment
o 0 y
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h(x)

--+-------~---1----_I__-....l--~~X

FIG. 3.1 RESTORING FORCE - DISPLACEMENT RELATION FOR A
BILINEAR HYSTERETIC SYSTEM



29

algorithm. It is obvious from the pseudo-hysteretic loops in Fig. 2.6

that one bilinear model cannot completely describe the two-phase

behavior of the structural material, and therefore it is essential to

clearly define what response character we want our bilinear model to

approximate.

As described in the introduction we need two bilinear models:

a work hardening model and an elastic-plastic model. For both models

we fixed the values of mo and Co as

m = 15 47 # ~ec2
o . In.

C = 3 671 # ~eco . In.

based on results in Reference [1].

3.1 Work Hardening Model

In their work using a Ramberg-Osgood model and System Identi­

fication Sveinsson and McNiven [1] noted that a work hardening model

resulted when the full duration of the relative acceleration response

was used in the criterion function. Accordingly, here we use the full

duration of the relative acceleration response to E1 Centro and derive

the three bilinear parameters by trial and error, so that the model

matches that behavior. Accurate matching was achieved when the

bilinear parameters had the values:

#
ko = 1745.5 in.

a = 0.4196

xy = 1.375 in.
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To ascertain the predictive ability of the above model when

subjected to El Centro excitation the calculated and measured (dashed

line and solid line, respectively) relative acceleration and displace­

ment time histories are compared in Figs. 3.2 and 3.3. It is

evident that the acceleration time history is very well predicted and

the displacement time histories have the same general character, al­

though the model cannot predict the inelastic shift in the displace­

ment due to the almost elastic-plastic behavior of the structure in

the first-phase of the response.

To assess the general applicability of the model, we subject

it to other support excitations and compare the relative acceleration

and displacement time histories predicted by the model to the measured

responses; Figs. 3.4 and 3.5 show the comparison for Pacoima

excitation, Figs. 3.6 and 3.7 for Taft excitation and Figs. 3.8

and 3.9 for Parkfield excitation. From the Figs. 3.2 - 3.9 we observe

that the bilinear mathematical model, constructed using response data

from the El Centro excitation, predicts responses to the other excitations

as accurately as it does to the El Centro. Furthermore, we observe that

the responses predicted using the bilinear model are as accurate as the

ones predicted using Ramberg-Osgood model [1].

Table 3.1 gives the maximum relative displacement and maximum

absolute acceleration predicted by the model for each earthquake excitation.

3.2 Elastic-Plastic Model

To construct this bilinear model, we again borrow from Sveinsson

and McNiven [1]. From their pseudo-hysteretic loops for El Centro

(Fig. 2.6 here), we ascertain that the structural behavior is elastic­

plastic up to the maximum displacement which occurs after approximately
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3 sec. Here, therefore, we only try to match response for the first 3

sec. By matching the maximum values of acceleration and displacement

only, these first 3 sec. of both acceleration and displacement time

histories were well matched. The parameters capable of achieving this

match are:

k #= 1850 in.0

a = 0.1150

x = 1.90 in.y

To observe the performance of the above model in the first 3

sec. of the response the calculated and measured (dashed line and solid

line, respectively) relative acceleration and displacement time

histories to El Centro are compared in Figs. 3.10 and 3.11. Both

response time histories are very well matched by the model for the first

3 sec., predicting the maximum response values exactly as shown in Table

3.1. From 3 sec. on the model is not able to match the measured time

histories to an acceptable level of accuracy, which is immaterial.

It is of great interest to observe how well the elastic-plastic

model can predict maximum response values for the other excitations.

It is clear from Table 3.1, that the elastic-plastic model can predict

the maximum absolute acceleration to all excitations very accurately

and also the maximum relative displacements to El Centro and Taft,

but the relative displacements to Pacoima and Parkfield are somewhat

underestimated (26% and 13.5%, respectively). By looking at the

measured response time histories we can explain this. For all excitations

the maximum absolute acceleration occurs in the elastic-plastic phase of

the response and the same is true for the maximum relative displacements
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to El Centro and Taft t while the maximum relative displacements to

Pacoima and Parkfield occur in the work hardening phase. With these

facts in mind the general applicability of the model to represent the

elastic-plastic phase of the structural response is evident.

3.3 Comments

We could perhaps be critized for formulating these bilinear

models somewhat crudely but they do reproduce time histories quite

accurately in the domain appropriate to each. Without prejudging the

linearization schemes that depend on such a model we cannot avoid

pointing out two things. Those people that have constructed equivalent

linear systems using a bilinear model have to our knowledge not recognized

the two-phase nature of structural steel and when they choose a single

bilinear model give no rational reasoning for the model they do assume.
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4. METHODS OF EQUIVALENT LINEARIZATION FOR EARTHQUAKE EXCITATION

After appearances of a series of papers on methods of equivalent

linearization by Caughey [2,7,8] of the nonlinear dynamic equation of

motion, these methods have gained a wide application in engineering.

Based on different modeling approximations numerous equivalent lineari­

zation models were formulated by Jennings [9] for harmonic excitation

and by Lutes [10] for stationary random excitation. For harmonic and

stationary random excitations, methods of equivalent linearization and

their applications are summarized in review articles by Iwan [11] and

Spanos [12].

Since the earthquake excitation is neither harmonic nor station­

ary random, very few methods of equivalent linearization have been

proposed for systems subjected to that type of excitation [3,4].

In this chapter we present six methods of equivalent linearization

for SDOF systems subjected to earthquake excitation. The first two of

these methods do not depend on the restoring force-displacement

relation of the system but are instead dependent on the time histories

of the response of the system to the given excitation. The remaining

four methods depend on the restoring force~displacement relation in

addition to the maximum relative displacement of the system to the given

excitation. For these methods the restoring force-displacement relation

of our structure is approximated as bilinear hysteretic, as mentioned in

Chapter 3.

4.1 Formulation

The equation of motion for a general nonlinear hysteretic SDOF

system may be written as:
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mo x(t) + Co x(t) + h(x,t) = -mo xg(t); x(o) = x(o) = 0 (4.1)

where

mo is the nominal mass,

Co is the nominal viscous damping coefficient,

h(x,t) is the restoring force function,

x(t) is the displacement of the system relative to the

Xg(t) is the ground acceleration.

A system represented by Eq. (4.1) dissipates the supplied energy in

two different ways; by viscous damping and by hysteretic behavior of

the material.

The restoring force-displacement relation for a bilinear hysteretic

system, shown in Fig. 3.1, is characterized by the nominal stiffness ko'

the nominal post yield stiffness a ko and the yield displacement xy ' If

the maximum relative displacement of the system to a given excitation

is xm' the displacement ductility ratio of the response is defined as

J1 = xm/xy'

In the methods of equivalent linearization, the nonlinear hystere­

tic system, Eq. (4.1), is replaced by an lI equiva1ent ll linear system.

The peak earthquake response of the nonlinear system is then obtained

by calculating the peak response of the linear system specified by it's

equivalent linear parameters.

The equation of motion for the equivalent linear SDOF system

may be written as:

me x(t) + ce x(t) + ke x(t) = - me xg(t); x(o) = x(o) = 0 (4.2)

where
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me is the equivalent mass,

ce is the equivalent viscous damping coefficient,

ke is the equivalent stiffness.

An equivalent linear system dissipates the supplied energy only by

viscous damping.

For all the methods of equivalent linearization presented in

this chapter we take

(4.3)

In determining the values of ce and ke, Eq. (4.2) is made equivalent

in some sense to Eq. (4.1), each method using a different criterion.

4.2 Methods of Equivalent Linearization

4.2.1 Methods Independent of Restoring Force-Displacement Relation

For these methods it is assumed that the response time histories

for the full duration of a given earthquake excitation are known.

Method 1: System Identification (51)

The method of System Identification has been extensively used

by McNiven and his coworkers [1,13,14,15] to identify the system

parameters for linear as well as nonlinear systems under earthquake

excitation. Recently Beck and Jennings [16] used this method to identify

linear models from earthquake records.

The method has been very well documented in Reference [13]. The

criterion function used in this investigation is an integral squared

error function that includes error in acceleration and can be written

as:

where

T
J(S, Td) = fd [x(S, t) - y(t)]2 dt

o
(4.4)
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S is a vector of the parameters ce and ke ,

Td is the full duration of the excitation or any portion

of it,

xCs, t)

y(t)

is the relative acceleration of the equivalent linear

model using parameters S and excitation x (t),
g

is the relative acceleration of the nonlinear hystere-

tic system when it is subjected to the same excitation.

To establish the values of the equivalent linear parameters the criterion

function is minimized using modified Gauss-Newton algorithm.

Method 2: GUlkan-Sozen Procedure (GSP)

The method was proposed by Gillkan and Sozen [17] for reinforced

concrete structures subjected to earthquake excitation, but is applicable

to all types of structures for which the response time histories are

known.

In this method the equivalent stiffness is defined as

mol~~9\naXk =
e y max

(4.5)

where y(t) and y(t) are the measured response quantities of the

structure when it is subjected to the excitation Xg{t). It may be

noted that this definition of equivalent stiffness actually defines

equivalent secant stiffness, where secant stiffness is defined as the

slope of the line from the origin of the restoring force-displacement

diagram to that point on the primary curve where the displacement is

Iyl , if Iy + x I and Iyl occur at the same time. For amax g max max
nonlinear hysteretic structure, in general, they do not occur

simultaneously.



48

The equivalent viscous damping coefficient is calculated by

assuming that all the energy supplied to the structure over the full

duration, Td, of the excitation is dissipated by an equivalent viscous

dashpot. Thus,

(4.6)

where y(t) is the derived relative velocity of the structure when it

is subjected to the excitationxg(t).

4.2.2 r1ethodsDependent on Restoring Force-Oi splacement Rel ation

For these methods it is assumed that a bilinear hysteretic model

is known, i.e., the parameters ko' ex and xy are known. Furthermore,

it is assumed that the maximum relative displacement, xmax ' of the model

to a given earthquake excitation is known, i.e., ~ is known.

Method 3: Modified Dynamic Stiffness (MOS)

The method of Dynamic Stiffness or Harmonic Equivalent Lineari­

zation was modified by Tansirikongkol and Pecknold [4] for earthquake

excitation.

Using the method of Dynamic Stiffness for a bilinear hysteretic

system under harmonic excitation of amplitude A and circular frequency

we' Caughey [7] has derived the following expressions:

where

k = m w2 = C(l')e 0 e ~ ,
c = c _ S(~)
e 0 we

(4.7a)

(4.7b)
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k •
0'

(4.8a)

ko 1
~ [(l-a)e+an - ( 2a

) sine];~ > 1

{

'If;

e =
cos-l (~~2);

~ > 1

~ > 1

(4.8b)

(4.8c)

In Eq. (4.8) ~ is the displacement ductility ratio of the response

defined as ~ =A/xy.

For earthquake excitation of total duration Td, Eq. (4.7) was

modified to give

(4. 9a)

(4.9b)

where

(4.l0a)

(4.l0b)

(4.l0c)
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Method 4: Average Period and Damping (APD)

For a hysteretic system under harmonic excitation of amplitude

A and circular frequency we' in the Geometric Stiffness method (GS), the

equivalent stiffness, k~, is taken as the secant stiffness while energy

balance per cycle is used to evaluate the equivalent viscous damping

[3,9].

Thus, for a bilinear hysteretic system equivalent stiffness is

given by

(4.11)

Since

Eq. (4.11) can be written in terms of periods as

(4.12)

where T~(A) = 27f;lk~(A)i
e

= {1[(;-<1> x + ]-1/2.
A y a ,

~and To = 27ft/ t- .
o

A < x- y

A > xy

(4.13)

From Eq. (4.7b), after some manipulation, the equivalent viscous

damping ratio, ~~(A), can be written as:

A < x- y

(4. 14)

T~(A) 2 (A-xy) (T~(A»)2. >
~ T + - (l-a) _->t.- xy T ' A xyo 0 7T A2 0

Newmark and Rosenblueth [5] extended the GS method to earthquake

excitation by defining the equivalent linear system to be an average of

all the linear systems corresponding to amplitudes less than or equal to
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Xm= xmax. For a bilinear hysteretic system the average period and

damping are given by [3]

where

and

Thus,

(4. 15a)

(4. 15b)

(4.16)

(4.17a)

(4.17b)

Method 5: Average Stiffness and Energy (ASE).

For a bilinear hysteretic system under harmonic excitation of

amplitude A, the secant stiffness, k~(A), is given by Eq. (4.11), while

the energy dissipated per cycle, ~W~(A), is given by

LlW (A) = VI (A) + HI (A)
000

(4.18a)
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where

r~ ~oA'ko
V~(A)

= 27T ~oA2ko [0;.0.) x + a] .
y ,

{

o ;
HI (A) =

o 4 k (1-0.) (A-x).
o x Y ,

Y

A< x- y

A> xy

A< x- y

A > x
Y

(4. 18b)

(4. 18c)

Similarly for a linear system under harmonic excitation of

amp1itude A the energy diss i pated per cycle, LiW~ (A), is gi ven by

Li WI (A) = VI (A)e e
where

(4 .19a)

(4. 19b)

As in the APD method, in the ASE method the equivalent linear

system is defined in terms of the average values of the fundamental

parameters [9]. In this method the fundamental system parameters are

taken as the stiffness and the energy dissipated per cycle. Thus, the

equivalent stiffness, ke , is given by

Xm
k = __1 f ke'(A) dA,e xm o

thus,

11 ~ 1

+ ~n 11) + a]; 11 > 1

(4.20)

By equating

(4.21a)
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where x
/::, W =_1

m
f /::, W~(A) dA,o xm
0

/::, W =_1
xm
f /::, W~(A) dA,e xm
0

(4.21b)

(4.21c)

the equivalent viscous damping ratio is given by

where

~ ~ k 1,2.3 "'0 0 t-< ,

II 2. 1

1.1 > 1

11 2. 1

(4.22a)

(4.22b)

w ~o ko 1 2
II [ ( 1-ex ) (112 - "3) + "3 ex II 3 ] ; II > 1

(4.22c)

Method 6: Stationary Random Equivalent Linearization (SREL)

In this method the earthquake excitation is assumed to be

(4.22d)

stationary random Gaussian, and the response is assumed to be stationary,

ergodic, Gaussian and narrow band process. It should be noted that

these assumptions for the response will only be satisfied by a weakly

nonlinear system.

For a bilinear hysteretic system, Caughey [2], has derived the

following expressions for the equivalent linear parameters based on the

above assumptions,
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80-a) 00 1 1 _A 2

7f f IA-l [2A0'2 + A3] exp (20' 2) dA
1 II II

(4.23)

(4.24)

0'
and a = xX, where 0' is the root mean square value of the response,

II y x
and erfc is the complimentary error function.
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5. CONSTRUCTION AND ASSESSMENT OF THE EQUIVALENT LINEAR
~~THEMATICAL MODELS

Using the structural response to El Centro discussed in Chapter

2, we will construct in this chapter various equivalent linear models

based on the methods of equivalent linearization mentioned in Chapter 4.

For the methods requiring hysteretic model, bilinear models of Chapter

3 are used. It may be noted that since two bilinear hysteretic models

were constructed, two sets of equivalent linear parameters will be

obtained for these methods.

The assessment of the equivalent linear models is made by comparing

their response predictions with the measured response both for El Centro

and the other three excitations of Chapter 2.

It should be noted that the objective of all the equivalent

linear methods except the method of System Identification is to predict

the maximum relative displacement and not the time histories of the

response.

5.1 Construction of the Equivalent Linear Models

5.1.1 System Identification (SI)

To accommodate the iterative schemes and to solve the equations

involved in the System Identification procedure, a computer program was

developed, the details of which are given in Appendix A. Before subject­

ing the identification program to actual test data it was tested with

simulated data to ensure that the algorithms it contains are correct and

also to get a feel for the process.

As mentioned in Chapter 4, System Identification can be used to

establish the parameters of an equivalent linear model by matching a
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selected response time history either over the full duration of the

excitation or any portion of it.

First we use the method over the full duration of the measured

Parameters
for

ELMSIl- #ke - 1566.5 in

relative acceleration response. Using the computer program we obtain

the following parameter set:

ce = 23.60 #i~ec

As the response time history match does not pay any special

attention to the maximum response values, it can not be expected that

the model, ELMSI1, constructed above will be able to predict the

maximum response values very accurately. An attempt is therefore made

to match the maximum relative displacement occuring at 3.06 sec. by

only including that instant of time in the criterion functions (which

now includes error in displacement instead of acceleration). Using

various sets of initial values of the parameters the program always

converged to the same final parameter set, including a negative value

for the viscous damping coefficient. This indicates the fact that the

El Centro excitation does not have enough input energy in the first

3.06 sec. to be able to excite a physically acceptable linear system

to the relative displacement of 4.75 in. in the end of that duration.

Although we are unsuccessful in matching the maximum displacement

of the response we will try to match the maximum acceleration. Using

reasonable guess of the initial values of the parameters and the computer

program we obtain:

Parameters
for

ELMSI2
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5.1.2 GUlkan - Sozen Procedure (GSP)

As mentioned in Section 4.2.1, the establishment of the equivalent

linear parameters by this method requires the derivation of the relative

velocity time history of the structure. Using a still unpublished

computer program, DIPS, written by Marcial Blondet, a graduate student

in SESM at the University of California, Berkeley, we obtain the relative

velocity time history both by differentiating the measured displacement,

Fig. 5.1, and by integrating the measured acceleration, Fig. 5.2. This

is done to check the measured data and also to secure the correct

selection of filters in the derivation of the relative velocity.

Looking at the time histories of absolute acceleration and

relative displacement, respectively, we obtain:

IY + Xglmax =267.7 S~:2 at t =2.95 sec.

ly1max = 4.75 in. at t = 3.06 sec.

i.e., the maximum response values occur almost simultaneously.

Parameters
for

ELMGSP- #ke - 872.4 Tn

From the information derived above and with the use of Eqs. (4.5)

and (4.6) we obtain:
# sec

ce = 20.69 in

5.1.3 Modified Dynamic Stiffness (MDS)

Using the bilinear hysteretic models constructed in Chapter 3 and

Eqs. (4.9) we obtain:
# sec

ce = 24.01 in

#
ke = 1305.5 in

Parameters
for

ELMMDSl
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and

ke = 1060.5 i ~

Parameters
for

ELMMDS2

where ELMMDSl and ELMMDS2indicates an equivalent linear model constructed

with Modified Dynamic Stiffness method using work hardening model and

elastic-plastic model, respectively.

Parameters
for

ELMAPD1ke = 1404.5 i~

5.1.4 Average Period and Damping (APD)

Using the bilinear hysteretic models constructed in Chapter 3

and Eqs. (4.15) and (4.16) we obtain:

c = 25 82 #.sec
e • 1n

and

ke = 1389.4 i~

Parameters
for

ELMAPD2

Parameters
for

ELMASE1ke = 1440.4 i~

5.1.5 Average Stiffness and Energy (ASE)

Using the bilinear hysteretic models constructed in Chapter 3

and Eqs. (4.20) and (4.22) we obtain:

ce = 32.53 # ~~c

and

ke = 1467.7 i~

Parameters
for

ELMASE2
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5.1.6 Stationary Random Eguivalent Linearization (SREL).

Using the bilinear hysteretic models constructed in Chapter 3

and Eqs. {4.23} and {4.24} we obtain:

ce = 21. 24 #i~ec

}
Parameters

for
l.f = 1545.1 # ELMSRELl
"e in

and

ce = 15.23 #i~ec

}
Parameters

for
ke = # ELMSREL21746.0 in

5.2 Assessment of the Equivalent Linear Models

All the equivalent linear models were constructed directly or

indirectly from the measured nonlinear response of the structure to

E1 Centro excitation. It is therefore of main interest to observe how

accurately these models can predict the nonlinear response of the

structure to that excitation. The models are also subjected to the

Pacoima, Taft and Parkfield excitations and their response predictions

compared with the measured nonlinear response of the structure to those

same excitations to observe the general applicability of the models.

It should be noted that only the construction of ELMSIl aimed at

a model to predict the response time histories; the objective for the

construction of all the other models was the ability to predict the

maximum response values, especially the maximum relative displacement.

5.2.1 Prediction of the Response Time Histories

The construction of ELMSI1 is based on the full duration of the

measured relative acceleration to El Centro and it is therefore of great

interest to observe how well that model can predict the response time
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histories to that excitation. The calculated and measured (dashed line

and solid line, respectively) relative acceleration and displacement time

histories for El Centro are compared in Figs. 5.3 and 5.4. The relative

acceleration time history is fairly well reproduced by the model and the

relative displacement time history predicted is in phase with the

measured one, although the yielding shift is of course not predicted.

The greater contribution of the work hardening phase of the measured

response in the equivalent linear parameters is evident in the first

4 sec. of the predicted response, leading to overestimation of the

maximum absolute acceleration and underestimation of the maximum

relative displacement.

It is also a matter of interest to examine whether an equivalent

linear model constructed in this way using measured response to El

Centro can predict the response time histories to other excitations

as accurately as it does to El Centro. With the criterion for the

construction of ELMSIl in mind we would expect the same order of

prediction accuracy, if the other exci'tation causes a similiar relative

acceleration response of the structure, but using ELMSIl to predict the

response of the structure to an excitation causing very different relative

acceleration response can not be expected to be that accurate. To observe

the general appl icability of ELMSIl we therefore subject it to the

remaining three excitations of Chapter 2 and compare the relative acceler­

ation and displacement time histories predicted by the model with the

measured nonlinear responses; Figs. 5.5 and 5.6 show the comparison for

Pacoima excitation, Figs. 5.7 and 5.8 for Taft excitation and Figs. 5.9

and 5.10 for Parkfield excitation. Having just described the prediction

characteristics of ELMSIl it is not surprising that the response time
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histories to Taft are most accurately predicted and the response time

histories to Pacoima and Parkfield are not as well obtained. As in

general the nonlinear response of a structure to different earthquake

excitations can have very different characteristics, the general

applicability of an equivalent linear model to predict the response time

histories is very limited.

5.2.2 Prediction of the Maximum Response Values

The maximum response values to Fl Centro and the other three

excitations as predicted by all the equivalent linear models are

summarized in Table 5.1.

All of the methods of equivalent linearization except GSP and

SREL underestimate the maximum displacement for El Centro more than

30% but ELMGSP is able to predict it within 10% accuracy. It is

interesting to note that all methods except SREL predict the maximum

acceleration for El Centro with more accuracy than the maximum

displacement.

As the nonlinear response of a structure to an earthquake

excitation is very dependent on the overall characteristics of the

excitation and can therefore be very different for different excitations,

we would not expect that an equivalent linear model constructed from the

nonlinear response to one excitation will in general be able to predict

the nonlinear maximum response values for other excitations very

accurately. It is therefore surprising to observe that the maximum

displacements for the other three excitations of Chapter 2 are predicted

with more accuracy than the maximum displacement for El Centro by most

of the models. In fact some of the models predict those maximum displace­

ments with very high level of accuracy, e.g., ELMSIl which predicts all
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of them within 10% accuracy, EL~~PDl and ELMSREL1 all within 15% and

ELMGSP, all except Taft's, within 10%. The maximum accelerations for

the other three excitations of Chapter 2 are predicted with less accuracy

than the maximum acceleration for El Centro by all the models except

ELMGSP.

ELMGSP predicts very accurately the maximum response values for

E1 Centro and also for excitations causing simi1iar degree of inelastic

deformations of the structure as E1 Centro does but tends to heavily

overestimate the maximum displacement for excitation causing very mild

inelastic deformations.

For the methods requiring a bilinear hysteretic approximation of

the structural behavior, the equivalent linear models based on the

work hardening mechanism predict the maximum displacement in general

more accurately than the models based on the elastic-plastic model,

result a kind of unexpected. SREL gives fairly accurate predictions of

the maximum displacements while ASE is always too conservative.
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6. CONCLUSIONS

Six methods of linearization have been used to construct various

equivalent linear models to predict the nonlinear seismic behavior of

a one-story steel frame which was constructed and tested by Sveinsson

and McNiven [1] at the Earthquake Engineering Research Center of the

University of California, Berkeley.

Four of the methods of linearization depend on the restoring

force-displacement relation of the frame. We have, therefore, constructed

two bilinear models to approximate the actual hysteretic behavior, one

to represent the elastic-plastic nature of the structural steel, the

other to represent the work hardening nature. Both bi 1inear models

reproduce the response time histories quite accurately in the domain

appropriate to each. The bilinear material models were constructed

only for these four schemes, imposing on them the complications that

the dual material models introduce. The other two schemes are

independent of these material considerations.

The construction of all the equivalent linear models was based

on the measured nonlinear response of the structure to E1 Centro

excitation, and the objective for their construction was the ability

to predict the maximum response values, with precedence being given

to the maximum displacement response. This is the basis of assessment

that authors of the schemes set for themselves.

All six schemes of linearization except GUlkan-Sozen Procedure

underestimate the maximum displacement for El Centro more than 30%, but

are in general able to predict the maximum acceleration for E1 Centro

with more accuracy. An underestimation of the maximum displacement
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of 30% can be very dangerous, so when the ductility demand for a

structure is estimated using these linear models a detailing of

the critical regions in the structure that insures ductility capacities

far in excess of the values computed is recommended.

As might be expected, none of the methods of linearization has

the necessary generality to be able to predict the maximum response

values for other excitations with acceptable level of accuracy, even

though we have considered the two-phase nature of the structural steel

for the material dependent schemes. We note, without comment, that the

two methods that are independent of the restoring force-displacement

relation predict the maximum displacements for other excitations with

more accuracy than the methods dependent on the material properties.

The results of the study indicate that the dependence of the

nonlinear response of a structure on the characteristics of the earth­

quake excitation is so complex that there is no way that the lineari­

zation schemes considered can have the required generality to limit the

ductility demands to specified values. Nonetheless, these methods can

provide very valuable guidelines for design, if their limitations and

relationship to the overall design process is fully recognized.

Finally, it is worth noting that the four material dependent

schemes are modifications of schemes for harmonic or random inputs and

they are probably able to predict the maximum displacements more

accurately for those excitations than for earthquake excitation.
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APPENDIX A: COMPUTER PROGRAM

Program Description

The computer program presented in this appendix, has been

developed to establish the characteristic parameters of a linear SDOF

system subjected to earthquake excitation. Assuming the mass of the

system, m, to be known, only the viscous damping coefficient, c, and

the stiffness, k, are open for establishment.

These two parameters are established by the method of System

Identification, which is a process for constructing a mathematical

description or model of a physical system when both the input to the

system and the corresponding output are known. The resulting model,

when it is subjected to the same input should produce a response that

matches in some sense the system's output. The exactness of the match

is measured by a criterion function, which here is taken as an integral

squared error function in the relative acceleration, thus
T2

J(S,Tl'T2) = f {x(S,t) - y(t)}2 dt
Tl

where

S is a vector of the parameters c and k,

Tl is the lower limit of integration,

T2 is the upper limit of integration,

x(S,t) is the relative acceleration of the model using parameters

S and excitation Xg(t),

yet) is the relative acceleration of the physical system when

it is subjected to the same excitation.
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The response of the mathematical model to a specified ground

acceleration is computed by Wi1son-8-Method of numerical integration.

Finally, to establish the optimum value of the parameters the criterion

function is minimized by Modified Gauss-Newton algorithm. A more

detailed description of the method of System Identification as used

here can be found in References [13,14].

This process of System Identification is incorporated by the

program IDEN, listing of which is given in Appendix B. It should be

noted that the program was written as a special purpose program and

the authors are fully aware of the fact, that various refinements could

be made to increase it's clarity and generality of application. With

some modifications the program can be extended to deal with the

identification of a linear MDOF system subjected to earthquake

excitation.

The computer program is written in FORTRAN IV and was developed

on the CDC 6400 computer at the University of Ca1'ifornia, Berkeley.

Input Data

The following sequence of punched cards and data on a tape are

required for an identification run using the program IDEN.

Data Cards-----------
1st Card (211 0)

Co1s. 1-10 NP: Number of parameters

NP=2, for linear SDOF system

11-20 NDOF: Number of degrees of freedom

NDOF=l, for linear SDOF system
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2nd Card (F10.0, 110)

Cols. 1-10 R pseudostatic influence coefficient

R = 1, for rigid base translation

11-20 IR select response quantity in the criterion

function

IR = 3, for relative acceleration

3rd Card (4110, 3F10.0)

Co1s. 1-10 NES:
_ T1
- llt '

T1: lower limit in the integration of

the criterion function (sec)

llt: time interval between digitized values

of the measured response of the

physical system (sec) (llt = 0.01 sec

in our case)
T

Co1s. 11-20 NPTS: = IIi '
T2: upper limit in the integration of

the criterion function (sec)

Cols. 21-30 ITLS: ~1aximum no. of iterations allowed in each

line search

Co1s. 31-40 IT: Maximum no. of iterations allowed for

minimization of the criterion function

Co1s. 41-50 SLMIN: Line search tolerance, i.e., stop the

line search if the slope of the error

surface is less than SLMIN

Cols. 51-60 ENDTOL: Program stopping tolerance, i.e., stop

the program execution if

IERROR(I-l) - ERROR(I)I < ENDTOL
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Cols. 61-70 DDF: Finite difference control parameter

DDF = 0.0, if finite difference is not

used

4th Card (4F10.0)

Co1s . 1-10 DELTA : = O. 5

11-20 ALPHA: =1/6

21-30 THETA: > 1.37, to secure unconditional stability

in the numerical integration

31-40 DELT: Time interval between digitized values

of the measured response of the physical

system (sec)

NOTE: These four parameters are for the numerical integration

by Wilson-a-Method.

5th Card (FlO.a)

Cols. 1-10 SM: The mass of the system

6th Card (2F10.0)

Co1s. 1-10 B(l): Initial guess of the viscous damping

coefficients.

11-20 B(2): Initial guess of the stiffness

For the identification, the number of digitized points in the

measured response time histories of the physical system, along with the

ground (table) acceleration and the relative acceleration of the system,

should be available on a tape.
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Example

Using the measured nonlinear response to El Centro of the

structure tested by Sveinsson and McNiven [1] we will use the computer

program to establish an equivalent linear model of the structure based

on the first 4 sec. of the measured relative acceleration time

history.

The necessary input data from Gards is shown on page 81 . The

computer output is shown on pages 82-85.
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APPENDIX B

LISTING OF THE COMPUTER PROGRAM IDEN



Reproduced from
best available copy.

87

F'f.:CGRM IL'l;( lIYL·T, 1"P[j=11,PLIT,l,UTFUl ,TI\H.. 99=OUTPUT,l'/IPE1,
;+. ll~f·tlr,t-L!=lL"·t·)

C
C.*.***.*.*******·.·**~*~*·.*t***~.**.*.**·**.*.*****.*.***********T* •• '~

C *
C S'i~l[~ l[j(r<TIF ... (/\lIOI, jll~CGHj.:\' Fe l : A LJIIJ[Ah *
C Sll";\:iLE-Lt.(t~U:--;. -I kE: .... IJCr: S'(STEf1j SUtJ~ElTED TO *
C E/\Kldbun<t ["Cllt\/lu,J *
C *
C ...: HIT TH, E'I - .; LHKY L. It S l: f\ L ( '*
C /IIOLJIFIL./ITICI.S uY - t!LLGI llliLoxr AHSSGrl *
C - LifJI'v'n:~IT,( OF CALIFORrJII\ ,.,
C JLRKfL(Y *
C *
C***.***********·+*****.****.*****.*.*~***·*******~**********************
C

c(J l"i i"t 0 1\ ,. 1". [ '( h I 1-\ ~ , /' 1 , 1\ C , 1'13 , Aq , A"> , 1\ 6 , P. 7 , II a , 1\ 9 , UL L T1\ , Tr [ Tfl ,DEL T , RI NT
* ,R Ii·,lT, :~[JCF, 1.1-', LJ!:.L T2, ',LPr·jA

C0 ~ 1'-1 0 r-, / 1h P 1 / 'v G( 4 •\ l. IJ ) , v ( 1 , 4 .,1 kl tj ) , I R ( 1 ) ,h ( 1 ) , I'J P TS , tJ ES
COJliiVOr-, IFFU\I~/ I-U.l«~)

COt-'i1I.,Oh IFr IFF I ['F, [jDF
OIMENSIL~ b(~),k(~,2},~(2,2),C(2'd),Dt(2,~,2),OK(2,2,2),

-* '" S ( 2 , 2 ) ,(, r{ II U ( ? ) d'i j{ <::' , ;2 ) , L (f, , 2 ) , CL Cfs( 6 , 2 , 2) ,F ( 2 ) ,
* CH(2),IU:3(2),f~L(2)

r< E J\ L K, ~., , 1\ S
~EWH:C 1
R£ ..... lUC C'

C
C
C

HI

1111

H[ A0 I 1\ f Cf' r· A rIG fJ S F t\ u ;v. CMW S

H [t\[) 1 Y.' l' I:! ,Iii,', l~i~CF
t= 0 Ri-, 1\ T ( ~ 1 1 iJ )
K ( 1\ U 1;"'.1., 2. , ( (r-; ( 1 ) , 1R ( .L ) ) , I =1 , r~ D0 F )
FORkl\l (F1J.d,i10)
REI\D lr,I.L2,I~FTS,l.TL0,lT,SL"'lN,Er':DTCL,ODF

FeR llid, T ( 4 I 1 Ii , j F 1 b • L )

Ii E J\l) 1111, ULL TIi , 1\ If-' I if, , 1 H[T A, [; [L T
FGRt/;AT ( 4 F 1 .;; .l )

HE1\ lJ If, ~ /,{,

F 0 f( 14: I\'J (I 1.1.,. l )

,~ [ A(! li'. 1 , ( l: ( I ) , I =1 , I ; 1- )

F 0 H ~.\ f, 1 ( b r 1 .! , Y': I
IF(lOF,b) l]J,l~J

HE/H) (2') (!J(l)tl=ldJP)

lUSLFe=!:;
hCI\LL=2
hUf"'lT=k:.
eCUI\;[J= 21 ,t:(,
PRrLiH~:-:H 1.'
i F (I\[~ ~ ([: L F ) • (;1 • 1 • r - .l ;1) 1USE rr:=1
CF=l.I:HllJ
CI\l.L It:ll
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C
C Hr 1\ L I I.f Ghi. I; 1 H: I, S f P lJ '" T /\ P L
C

IH.. /\ [. ( 1 1111) fW T
11 '!. F {j j{ /- /; T ( ... ~ )

Hl I~ L ( 1 t ~.. ~)? ) ( Ii L ( 1 ) , j. =1 , I J I:> -, )

2 2 ~ F CH1-". 1 ( Ll 1 5 .) )
R[ A[) ( 1 , C<::;; ) ( II ( 1 , 1 ) , 1 == 1 , IJF 1 )

C
C PKll\jT H;fll,T a.FLfn. liT ILI',S
C

f H1 h T llj {Jl t

10A4 FOK~AT(lllltj~,*S)ST~~ IDrhllrICATIC~ FOR A LINEAR Sl~GL(-UEGREE-C

1 F - F k L [ L (j F '* , 1 , ~ I , :t ~ YS rd. Sl.llh. [ CT ~.r. TC [/\fHIi G: U rd, E E: XcIT tl T ION. * , III , 5
2",*1 l\ ~ U 1*)

PK 11· JT ~~ Ie f· L: , :" P , l'~ L (' f-
!S,:'Hl FOkj.f\ 1 (i lIt ~" ,l-l'p=*, ~ ~,2X, *I\OOF=*, 15)

P Rn~ T ~ f li 2 , K ( 1 ) , II ( 1 )
~ e3 2 F 0 h H\ 1 ( II , ~) x , '" F: =* . r s. ,j , 2< , * I H=,., , I 5 )

PRII~'I ~H3,liLS,LP1StJ.TLStITtSllAIf!tEf\[;"OLtODF

50~3 FOA~AT(II,5~,*f;[S==*'15,2Xt*NPTS=*,15.2X.*ITLS=*tI5,2X .*IT=*.15.11,

1 5 X• of' SL ,.. i L =- *' •F U) • -, • 2 X , *[1.0 T UL =* •FlU. 7 • (' >: • *L GF =* •F 5 • 3 )
P R I "T ;..':1 1 3 • l: U, T {\ , 1\ LI ' Ii A, '} H[ T A• DEL T

2 11 ~ FOR ,.~ f\ T ( Ilt~) >: , '" L L L " J', =* , F 1 " • ::, • 2 X • ,. 1\ L 17+ A::. * •F 1 f?- ,. 5 • I 1 , 5 X , '" HIETA =- * ,F HJ • 5
l.2x.*~[lT=~.F10.5)

PRlhT ~t~1,S!.J(1),U(2)

5H~1 FOR~Al(li.~x,·~=-•• flJ.5,2X.*C=*.F1B.5,PX.*K=*,rl~.5.111.5X.*I T E
1H A T I G N*,III)

C
C
C f'J,IIH'·:IZl··11U,~ CF T1iF. ClilTEHICN Fl.;[JCTIUI'..
C

1~~ NUMIT=NU~IT+l

LEvLL=3
C
C f.Sl/I[;L ISH·.LL T UF 1 HL SE:M{CH OlHEC r leN OY GAUSS-NEwTCN ~'lETOD

C
CALL Clk(L ,k,~.C.L[JLL,OK.~C,KS.ERlc.GRAO.AH,U.OUDG,FtNCALL

* .Ol).e.Ltf.J,S/q
IF (lUSUL.L·J~1) LEVlL=2

'111 S r 0 Hf"i A1 (3. >. • :4- S1U' ;+-, I 2 1 16 X ... ~. p* • !5 X , ;« F Ah 1\ fJ, E Tr R".. t 5 X •
* *(j Hf\ L H I J T .f< • d), • ::t [J J I <LeT I 0 IIJ * )

~ Lf 6 r- 0 I, f'i, II 1 ( b> , 1 2 • Lj ), • L. 12 • r) , LI X, [ 1 2 • (, • L~ X , [ 12 • h )
lfH:) F 0 Hr-:fd (9) t '" 1 h Tun' uUi 110Ii : .... / 12 i1 X• *FIR S T P UlfH* ,

+ 1 9); , '" sreo f;tJ POI 1" T ,., 11 4~ • 2 4 ( 1 fl- ) • 6 X • 2 4 ( 1 H- ) • 7 X • *If'IT ( R - *I
+ 74X.:tr)CL;~r[C LUUiHJld\(*/11X.2(5X.*ALPHA*'5X,*EHHCH*.5X.*SLOPE*)
+ t~)( t *AU'III\ Iii:. IICI1LU*/)

Il\Ilh=-l:l
I F ( UH< • GTo P t, L Lt~ h) GO 10 2 ~LJ 6
IF (AU S l tHI< -/'1'; lEhh ) • LL. UWTC L) GO TC 6f:f1
[Rf{f\=Ud,.
PHCfHH=tl\h

~ l) \1 (; 0 2 H1 L::' 1 , h P
:?lJ Dl3(L)=H:Il[)(L)

ell LL ::::) 1<';Cl. ( 1\ I- , L 1.1 • I·H) • 1 • f1 • 1\ CII LL )
PI< I NT <jLf ~,I\jUl': I T
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PI~ I In e;, 1+ b , ( ( I, l< l I ) , ("\" U ( I ) ,L LJ ( I ) ) ,l=1 ,hP
(

( l:.JTAEL l~H'U.T \.il- 111l ~ TEfJ S J.lL f:1 L ILL SElIf.(11
(

ALPhAf\::.i; .k)

CJA=U.l1
CU 22(' L='"l,I,P
[j 1'1 ( L ) =I (L)
UJA=D~A-~b{L)·bh~L(LJ

:'.2 '.' ( 0 In I f\ LJ l
IF(f'~LJ;Jl1.(T.IT) GL Tu 7n,~

FHII\lT 1 H;~
tlLPhM~=l. b
(/\LL CHl U (b, r i, t f;l~, ALI-! 1r'\!3, Ol\f3)
CALLeI h ( L I.; , h , ,'/ t C , L[ \i LL , UI~ , CC , 1\ S , E. HHH , Gh 1\ l.; , ;\ H , U, DUO E , F , NCf\ LL

* ,06, /I LH ;Iii:.; , L~ tJ , S j", )

:'" 2 6 I F (1'"1 L3 S ( l: ~j i ~ ) • L r •.t; L ~" I ~ 'J) GOT G 1+ 5 g
I I'll Tk =I f" 1 h -+ 1
IF (U~L) 3J~,45J,227

2. 27 ALP H/\ 1\ =Llm Ie ( I:: HR fl , LJ J II , L ium , CJ f3 , 1\ L PHMI , 1\ L PI j 1\ B )
IF « C to; L • LT. 1 • II; ) • f\ j'Jo. (1 NT I? • £ l-J • 1 » Be lJ I. [)=3 HY[S
F RHI! T 6', Ii UJ H II II , U, 1\ 1\ , U .J 1\ , ALP hAP , [HFH3 , L J ~~ , ALP H1\ N , B 0 U!,j C
eOUI'JO= 211h(J

& FOk~l\l (11X,7tlJ.3,7A,A3)
(10 2 3iC L ~ 1 , "J P

:' 3.1 B;\i ( L ) =L ( L ) - 1\ L PI'HI[\I -* DB ( L )
C/\ LL L It ~ ( E I'J , r\ , ,.., , C , LE. iI I:: L , lJ K, LC , KS, [k RN, GH/\ IJ , 1\ H , U, 0 U()8 , F , NC1\ LL

* ,OI3,i\LH'Ar~,C,H\I'Sh)

IF (J\(~S<LJr;).LT.SUHid GO lC I t 55
I F {L ~ l. J 2 ,-+ ,J , If 5 !J , 2. 4 !J

:'! 4 U C~ t{ J~=Ef; h f':
DJJ\=O ... I\
ALPHA/I =1'I.PH f\ 1'/

GO 10 41:k'
;Jli 5 £ RR8=E F hi'.

CJB=D~N

ALPHAe =JIl F' hfli,

GO T04Ul '
~ 0 i:l 1 F ( [R f-~ f:.• CT. l id~ II) GO'/" 0 2. 2 7 .

II L PHfIr\ =~ l.' ( t.1~; r~ 1\ , UJ Ii , [t~ j ~ U 1 DJ d , Al. r Ht. A , J\ L I H/\ 8 )
C1\ LL CHt Cto, ( F.. • eh • C tJ , J\ L P11/\ i'J , (j Kh )
IF (OKf•• L T .1. i1) [3GUI~u=,5HY[S

PF< HJ T E: t JI L hi II 1•• n~ rUI , UJ L\ , 1\ L P fj Ar\ , L RIW • I JB, J\ L PHMJt Po au f, 0
l::: 0 Uf~ D::. 2 H; c:
Cl\ LL [; ll\ ( 13 i'J t t< , ,~ , C , LEv l L , UI\ , CC , KS t LHHIJ t Gt-? AU, 1\ II , U, 0 UUE , F , NC1\ LL

* t lJL t AUht.(~. Ld';, ~t,·)

IF" (J\l:~([;Jfd.Lr.SU.I,.) GO Te '+5~

IF (DJ~) 3~u,4~~,24~

3 2 1-1 I F (£ HI' r. •LE • r:t·nw) G0 1 () 2 4 ::;
E.RHA=[f.,U~

JlLPHI\I\=Al.rHAiJ
CJA=()..;E
GO 1u ,'1.15

4W~ IF(Ir:lf~.LT.lrL.s) bO TU 226
GO 10 4~:>

4~.: CONllhUl
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iF (llll<L.(,T.[idijl) GO lU 2?7
[RR=EHtL
AL t' h II t\::: A L f' t1 flU

PR If\il t: t ALPtlA,'\ t f. Hid' t w.J/\ t {ILPt-Al: t EI(I«~ t !J~[;, ALPH/H,; t nouI;c
GO lu 4b0

4~5 l:.HH=E.t-<F'h
4f <~ 1.:0 4b5 L:-1 t j"fJ
4 f:: S t3 ( L ) =E I~ ( L )

dOUI',D:::2hl\O
,,0 TO 17k,

~~06 PHIl.; 2tlf'7
2~i;7 FOt-i".!,l (:* IIJCHU,S.i.1Jl; LHHOH*)

7 Ie. '"~ F H 11\ T 3 kH [ t U J l~ , t. RI\ f~

3 P t:' \-:\ F:J t< r·, f\ 1 (11 iI..' t *F J. i\ f\ L S... J P[ : * , G12 • 6 I * F r I\J f\ L £ HR0 H : * ,G1 :: • C: )
GtlJ ·... 'UTE (,,) (G(l)d:::ltl~P)

PHI""l 557::"
5 9 7 3 F aI< 1V' 1\ 1 ( / I I , :) x.·n 1 I J A L ti l S U L T S * t I I t 1 '3 X t * NP" , c; x, *P Af< M~ [ TE r~

].:4:)

p P 1I~T 9l. k·;' • ( ( I t L ( r ) ) t 1::: 1 , I'~ F )
9 (J ~ 2 F GH~. f, 1 (11 .;J , 1 t) /.. • 11 r •:J x, [ 1 5 • ~ )

PRINT 9L~3,(PEkR(1)'1=1.NOGF)

'3 6 ~ ~ F 0 HI" AT ( / I , 2 jJ )( , *lI~ h 0 R=*' t [ 1 5 • 5 )

C
STOP
E~"O
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SUb f, CU1 If L D1 r< ( l' , K , f'" , C , LEIII L , f) K , UC , KS , [H t< , Gf< J~ 0 , 1\ H , L , CUD B , F • h CAL L
* ,lib,ALtliJ\,lJJ,S:';)

c
C
C HOLTlhL 1C C.t\LCllU\1f lltt. [i'(!JOf;, tiHtiL1HIf /lIJL 11[SSIM. CF
C II1L CRllll·lul .. hJIJCllu,. USIi,\; ~;1LSUr;-l'.Err\-i'iF.TllOD

C .-: aRT l-' l r~ L j'~ t.. in C;-\ L III f LGrU\ TIC (-J
C

CO~~U~ l~lYN/ p~,~1,A2,1\3,~q,~5,f6,A7,~d,A~,L[LTI\,Tl-'ETI\,OELT,RINT

* ,R 11... T T , !\ UCf '~41;, 0 L L T2
U.WfII,ut, /1 j' f- T / II G (4,1 t ~1 ) , v ( 1 ,4 ~ l:J;~ ) , I P ( 1) ,R ( 1) ,j'IPT S, N[S
tOllffviOt\ /FFUu~1 P[fd{(2)
tU~~O~ IFUIFFi UF,GOF
co~~n~ Il~Ul~/ 111,1~1,r31,112,T?2,I32

CI ~ Ul S ll)/,-·: iJ ( 1 ) ,h ( I. CAL L , 1 ) ,il
. ( f~ U. LL , 1 ) ,C (l.) Ci~ LL , 1 ) ,OK ( t~ C/.l LL , LeA LL , 1 ) ,

.f< lj HilL ( 1 ) ,m1 ( ;, L/\ LL , i j C1\ L l. ) , 'v (;, C ( 2 ) ,
* OUDB(6,~CALL,1),U(6,1),F(1)

* ,Ll C ( r\ CJ\ Ll ,iJ CAL L , 1 ) ,1'\ S ( IK h L L , 1 )
:+ ,Dt3(U,ET(2)

REAL K, f· ,I',S
C

rFD=l}
. CI\:f\LFb/\"'[luF

CO 7 0 I=ltfY
GHAL(I)::;l~.~

co 61J L=l,..1
JO 6e l.L~l, hL)...JF

CULu(L,LL,I)=0.0
6 d cot... T I f\ IA.

DO 7V! J=1,NP
AH(I,\oJ)=~l.tJ

70 COIHlf\LJl
C GET n·E Jj;FLlJEtJCE COlFFICIU.TS
9~ CALL ~FINC (K,~,C,DK,UC.~CALL,8,SM)

lRR=i.i1
.lC:iJ
VCC(l)=\,b(l)
CO 105 \J=l,IWCF­
FrRh (..;) =f!.

C GEl TbE EfFECTIVE STIFfNESS
C0 1 0 0 1~ 1 , l~ U0 F
KS ( I , \oJ ) ='" ( I , o.J ) + iJ. l: * jill ( 1 , J ) +1\ 1 *C ( I , ~l )

Hj cJ CONl Ir\LJl
DO 111~ 1=1,::>
L(I,J)=~; •.b

1'12 LOI''1TlI\LL
:!. kl 5 CON 11 I, L L

CALL SY~~0L(KS,K.hOOF,1,1,WCALl)

C
C THE NLf'.:U<lC/\L I1Hl.GRATIUN
C

11:J 1C=IC+1
1~ (lC.GT.NPTS) GC Tu ~d5

Kl=l
K2: r'J 0 0 ( 1 C , 2 ) +1
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L , roil t C )

IF (f<2.lc.l) 1\1=;>
IlKl=jOf,(f']-ll
1 Tt\2:::j" 0(;'--1)

I 1 1=1 t .i 'I r, J
121=111+1
1.31=121+1
112:::1+1H,c.·
122=112+J
1.'j2=12?+1
V (;iC ( K2 ) ::. \i G ( H .. + 1 )
GET T~ [ U t'L (I 1 V fLO MJ F ij k (f;l CLU\ lIe IJ 0 F Tti E ERHO H
C0 J. 2 l~ 1:::] 1 I .(. li F
F ( 1 ) :: - r· ( I 1 1 ) .' t~ ( i ) >0- ( V \; C t 1'<.1 ) +1 t. E TAt. ( IJ Gel K2 ) - " GC ( K1 ) ) ) .. 3 e (, • L.

1~/.l cor'll H\l'L
CAL L Xl: l I h 1,K.: , F , lJ , r\ S , (,1 C h ll. ,
IF(lC.LT.~L~) GL 10 ~212

OJ 130 1=-:], l\uCF
lRT=H~(l)

iF (IR-f.Fc.o) Ct, 10 ... jiJ

IS=lHT+iH 1
T=u(IS'4)-VII,Il)
T2=1*1 .
t.RR=f:.fif\+l;..-

. PER R ( I ) :: r [ f: i (I) + T2
13·3 COf'JTlf\LJl

221, CCr-JT II\UL
I F (L E. " Lt.• L L ~ d) r.; L Tu 11 0
GET ThE [rfLLrIV[ LOAU FOR C~LCLLnTIONS

eFTIi [ Gh {. LJ [1\ 1 'd ,(1 111 L H[ SS 1 (It~

00 l5~ l=l ,l.~

DU 140 !=l,;.;[)cF
F(I)=0.L
uo 14£ ..'::-1, ,JLCF
F ( I ) =F ( 1 ) - LC ( I , 0 , L. ) * (u ( I 21 , ... ) +TIi ETA * (U( I 2;~ , J ) - U( I 2 1 , J ) ) ) ­

:t (j I< ( 1 , .;.1 , L ) ~, ( L ( 111 , ~J ) +TH[T Ii'" ( U ( J 12 , v ) - U ( I 11 , J) ) )

1'+ ti COI'JT IhlJt.
CI\lL X~~l (1".1,1"2,f ,LLJDb,KS,IJ.CJ\ll.

1 ~ 1'1 C0 1\1 T 11\ LH.
IF(lC.L1.l\[~) GO 1U 2112
(JU 202 ~J:-l H.;LGF-
IHT=IR(..;)
1 F (I R1 • LC • ") l~V TO .::: ~l 6
11=IHT+IH.l
12=lkl+J.Tt·2
DC 2 11 2 1P=1 , j''''''

Gf{ AC ( I~' ) ::- (',1",. L' I If; ) -t (U l i 1 , J ) - \i ( ,j, Ie) ) * 0 von ( 11 , J , 1 P )
1.;0 2ih3 lS::l, It:
AI~ ( 1 P , IS) :: ;\ Ii ( ] F ,IS ) + l, uL13 ( I 1 , ..J , I P ) *0 LLL ( I 1 • J , IS)
COfH If\L l
CUI~l HLI
CuN1II\Ll
cern II\Ll.
GO TCJ 1 H'

:"fjrJ
2£2
2k.~

21~;':

C
C

C

c
C ThE E I~ H(j tJ Vr LLL

~i:J~) U<R=EI,t->llTl T



cu 2 l! t: 1 ~ 1 • I, [, C l-
~Jt6 PEHL(I)=-hTr~(rl"iLL1

IF (LE\/LL.[u.2l U .. Tu ~)L;,)0

IF (LE'vLL.f....I"..ll H .. ltJl<l,
C HiE (, tH L It IJ Tv L ( rL I <,

L C ~ 1 k.i 1~ 1 ,I ~ r'
GRAD n) ::l~t L12*Ct;hL (I l

C f h l H[ ~ ~ I J-Ii ~ :-' j, Th 1. I-
LC ~1~ J:-ld
AH(J.l)=CELT2*AI:(1,JI
AH ( 1 • oJ ) =M~ (J, 1 )

~ 1 tj CCl~ T I 1\ L t

1F (A U till • L ~ • e•n h [ rLJ K IJ
OJ=i;.~

CC .) ie' £ L=1 , r,~)
~f~ CJ=LJ-Gb(L)~uRAC(L)

R[TtJRf\
~ ~ fJ.1 C0 NT I 1\ L L

IF (IFt.[(';.ll GO Ie :.J2i.l l1
TEHh=[f;h
IFD=l
00 51 £ ~ L =1 , f,J F
P.T(L)=E(L)
B(L)=e(L)-UA*CJ(L)

51e.~ CONTII\Ll
(,U TO 9l

52~~ OJ=lER~-TERk)/CA

[J 0 52 5 k1 L =1 , ,JF
5?:rl t:!(L..)::EllL)

ERK=TEkk
R(TURl\
EfliD
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SUPRCLJl H'L If; 1 T
c
c
C HOUTI~l TO INll1~lIZ~ lHE NLr:[H!tAL I~TlGK~TILN PAH~METERS

C
C(J)II; J'i, (j f\ / K t, t!'.1 JHJ,;. 1 ,J, <~ , J\.5 , Ii ~ , ;' ':) , :i b , f17 , /18 , 11'9 , III L T /I t 1 ~'E 1 Ii t DE L T t K I IJT

* ,HIll' ,I;L-l,r ''\If',DLLT2,AU'HA
Ti\ U=TI- l 1 II,., U[ L 'j

J\ ~=1 • 0. / ( ALP h i\ * T1\ U )
1\ t1 =I. 2 / 1 l\ l!
Al=A2;f-ClLlt.
A3=•5 / IUJ 'It l\ - 1 • i;

Ai.+ =l '[L 1 J\ / r, U" h f; - 1 • t

A5=.~*ThLJ*(A4-1.vJ

A~=DU. , '" ( 1 • k: -;::, L L T1\ )

DE.LT2=2."'*ullT
A7=L;EL h·LE L'T j)

CTT=ULL 1J1:l'[L T
J\ '3=J\L!' H/\*U TT
A3=.5*U1T-I\')
KHJ 1=TI iLl II - fLO 1\ T ( 1r I 1\ ( 1 HCf II ) )
H1 NT T=1 • {j - k I "I T

. RETUKf',
£ i-.J[)



95

c
c
C f~JlJl Ih[ 10 ~ll 1HL V,\LU[S Of THE .1.:~H.UnIC[ COLFFICHfHS
C l:~ HiE LlFFU<U;11/IL L",LJi\TIJf\S
C

o1 fI.' L NS I LJ I ~ h l f, C" L L , 1 ) , ,Jj ( I'J C1\II • 1 ) ,L ( fj C1\ L l , 1 ) , [) K II JCAL L , ['J CAL L , 1 ) ,
* LC(t;CJIf.I.,I'J(,ILLd)
* ,btl)

HEAL K, tv.
rJ(l,l)=~rJ1

C(l,l)=L(l)
K(1.1)=LJ(2)
UC(l,l,l)=l.
CC(ltl'~):;:I'i.

CK ( 1 , 1 , 1 ) :;: I~ •

CK(1tl,~)=l.

kETURh
EfW
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SUFl k CLJ 1 1 r'j l Xh T ( t\ 1 , K~ • r s , u , I~ oS • r1C I: L L • ~ L' P • r..; • (. )
c
c
C tWUTIf'L Te SGLvl lHL UTECllVL E .. U1LILfUtj,i [.,)UJITIOlj
C 1:, THE hUi"LhlCf\L HJT ... l,hflfIuh
C

c(] 1-1 ~.: iJ f'. II"· ( .YI J I II ~l , I' 1 , j, <oj , 1\ .3 , A'+ , f\ 5 • r tJ , f\ ., , f\ d , i \ (3 ,i )L L T (, , T~- f T1\ , 0 l L T , 1< 1 1\J T
* , I~ I h 11 , I ~ ,J LJ F , r! I- , 0 L L T2
CO~hO~ /l~OlXI Il1,1~1,I31,112,I?2,lJ~

oIfJ· U JS 1 L N U \ L • j IC/'. LL , .L ) ,h S ( ['I C t\ l L , 1 ) • ~:, It, C1\ LL , .i ) , C ( ,,! CAL L , 1 )
'" ,FS(l)

t<EAL IV d,S
CO 12i~ ",:"1, f~LUF
ru=U( III h.." Il;F)
I UD=U ( 1 £.1, J, 1[I' )

"I Ui) D=L ( 1 .s 1 , J , J ::.; I' )
;.; a 1 2 ~ 1. :" 1 , r, ~j{) l-
FS ( 1 ) ::: F~ ( I ) +I,' ( 1 , J ) * (1\0 *TU+1'\ ~ *TlJ C+A3 >I< TLJ 0 D ) +C ( r , J ) * (A1 '" TU+ J\ 4 *TU0 ...

* A5*1l:()[;)
~2~J COl\iTINLL

CALL S\h~UL(KS,FS,NDOF.l.2'~CALl)

GlJ 15k) 1:"1 t JHJe l-
. ul1=U(111,I,lUP)

U21=U (1,:1, I, JLP)
lJ31::U(13l,I,ICF)
1=AO*(F~(1)-Gl1)-1\2*u21-A3*L31

U32::U31+ (T -U3l) /Tt;[T f\

l; ( 122, I , I LP ) ::: U21 + J\{J *0 j 1 HI 7 *L32
L ( I 12 , 1 , 1 LP ) :: L1:' ... L[L r *' LJ 21.+ A!j '* LJ 31 -+ J\ ') *1132
U(132,ltlLP)=Lj~

150 CONT H;LJl
RETUHh
END
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SUL K CU1 1 I ~ E.. CflO: ( d , U ' J , rid , II L Hi 1\ , 'n-< , L C J'. L l )

c
c
C H';U 1 Ir\ L 1 C Ci l F d. 'Id IC 111Li~ f\ L 1\ L eLL/iT E. 0 PM~'i:';[ n_t' sE T
C 1 S w1 H: l(: I tiL: I'L r, ~") .i. l..k. ,. r< t. Glei J

C
c C/VI h 0 1\ I f\. L 'nl/ I\~;, ill • 1\;2 • 1\3 • 114 • 1\ 5 • II b • A7 .1\ B .1\ ':) • U l:.. L T1\ • T.., [ Til. 0 ELT. HI IH

* •fd I. 11 • I;::; ()t- • r;l' • D[ ... T2
oH1lfJ S 1u I) T::., ( ..: 'll ,1 (2 d ) • d ( rJc. r. Ll ) • lib ( t\ C(, LL ) • 61\1 ( ! JC/\ L L )
01'\=1.11
l]U lU() l="'l.w-l
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