REPORT NO. UCB/EERC-81/14 SEPTEMBER 1981

EARTHQUAKE ENGINEERING RESEARCH CENTER

TLUSH:

A COMPUTER PROGRAM FOR THE THREE-DIMENSIONAL DYNAMIC ANALYSIS OF EARTH DAMS

by

TAKAAKI KAGAWA LELIO H. MEJIA H. BOLTON SEED JOHN LYSMER

A report on research sponsored by the National Science Foundation

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA · Berkeley, California

.

.

EARTHQUAKE ENGINEERING RESEARCH CENTER

TLUSH: A COMPUTER PROGRAM FOR THE

THREE-DIMENSIONAL DYNAMIC ANALYSIS OF EARTH DAMS

by

Takaaki Kagawa

Lelio H. Mejia

H. Bolton Seed

John Lysmer

Report No. UCB/EERC-81/14

September 1981

A report on research sponsored by the National Science Foundation

College of Engineering University of California Berkeley, California

ł L ł L

1

TABLE OF CONTENTS

			Page No.
l.	INTRODUCT	l	
2.	ANALYTICAL PROCEDURE		
	2.1	Equation of Motion	. 3
	2.2	The Method of Complex Response	5
	2.3	Interpolation in the Frequency Domain	8
	2.4	The Equivalent Linear Method	9
	2.5	Effective Shear Strain	11
_			10
3.	PROGRAM D	13	
	3.1	Program Structure	13
	3,2	Description of Routines	16
	3.3	Tape Usage	24
	3.4	Error Messages	26
	3.5	Core Memory	28
4.	COMMENTS	ON INPUT	29
	4.1	Mesh Size Requirements	29
	4.2	Identification of Nodes and Elements	30
	4.3	Element Matrices	31
	4.4	Material Curves	34
	4.5	Shear Strain Computation	34
	4.6	Frequency Controls	36
	4.7	Interpolation	36

				Page No.	
4.	COMMENTS ON INPUT (Contd.)				
	2	4.8	Printer Plots	38	
	2	4.9	Punched Output	39	
	4	4.10	Execution Time	39	
5.	LISTI	NG OF	MAIN PROGRAM	41	
6.	EXAMP	EXAMPLE PROBLEM			
	(6.1	Problem Description	48	
	i	6.2	Input Data Cards	52	
	4	6.3	Computer Output	55	
7.	ACKNOWLEDGEMENTS				

8. REFERENCES

L. INTRODUCTION

Significant progress has been made over the past two decades in the development of analytical procedures for evaluating the response and stability of earth dams subjected to seismic loads. Current methods of stability analysis involve procedures such as that proposed by Seed et al., (1973) which consists of the following steps:

- Determination of the initial stresses existing throughout the dam and the foundation before the earthquake.
- Determination of the characteristics of the earthquake motions that are likely to affect the dam.
- Computation of the response of the embankment and foundation to the selected earthquake motions.
- Determination in the laboratory or by means of empirical correlations of the response to the induced dynamic stresses of representative samples of the embankment and foundation materials.
- Evaluation of the overall deformations and stability of the embankment dam.

Due to the fact that the finite element method can easily handle geometrical irregularities, complex material behavior and arbitrary boundary conditions it is perhaps the most flexible tool currently available to perform the dynamic response analysis of an earth dam.

Limitations of computer speed and storage capacity have restricted until recently the use of the finite element method to two-dimensional problems. Although many earth dams fall within this category, there are also many cases in which the assumption of plane strain behavior gives

.

·

_ _

only approximate results and therefore a full three-dimensional analysis is warranted. Thus, the availability of a numerical procedure for the dynamic analysis of earth dams in three-dimensions seems desirable.

Two-dimensional finite element techniques which use the complex response method and therefore permit variations in modulus and damping in different elements of a soil structure, were developed by Lysmer et al., (1974,1975). These procedures were extended to three dimensions, with a constraint on the possible deformations of the finite element model, by Kagawa (1977). The present version of the computer program TLUSH constitutes a further development of these procedures (Mejia, 1981) and incorporates additional features among which are the following: 1) Complete freedom for the selection of the direction of the earthquake motions, 2) Complete freedom in the deformational modes of the model, 3) A new interpolation scheme, 4) A nodal point and element data generation routine, 5) More efficient element stiffness generation routines and 6) A more efficient program structure that has lower memory requirements.

The program TLUSH can take into account the strong nonlinear effects characteristic of soil masses subjected to strong earthquake motions. This is achieved by a combination of the equivalent linear method (Seed and Idriss, 1969) and the complex response method. Typical relationships between stiffness, damping and effective shear strains for sand and clay are provided within the program. Special options that permit creation of a permanent record of both input and basic information on the complete solution, and recovery of this information for iteration and output purposes are available within the program.

- -

2. ANALYTICAL PROCEDURE

Within the framework of the finite element techniques employed by the computer program TLUSH a typical earth dam will be modeled by an assemblage of elements as shown in Fig. 1. Eight node isoparametric brick elements with three degrees of freedom per node and linear interpolation on the displacement field are used in the model. Nodal points are defined only at the intersection of three of the planes defining an element. It is assumed that the walls of the valley in which the dam is located are rigid and therefore all points on these boundaries move in phase and with the same displacement amplitudes. Interaction between the dam and its abutments and between the dam and the reservoir is neglected. Material behavior is assumed to be characterized by an equivalent linear elastic shear modulus and an equivalent fraction of damping.

2.1 Equation of Motion

Considerations of dynamic equilibrium of the model shown in Fig. 1 lead to the following equations of motion:

$$[M]{\ddot{u}} + [K]{u} = -[M]{r}\ddot{y}(t)$$
(1)

where: $\{u\}$ = the nodal point displacements relative to the rigid

boundary,

- $\{\mathbf{\ddot{u}}\}$ = the corresponding accelerations
- [K] = the complex stiffness matrix
- [M] = the mass matrix
- $\ddot{y}(t)$ = the input rigid boundary acceleration
- {r} = the load vector that gives the direction of the input motion.

- - -

FIG. 1 TYPICAL 3-D FINITE ELEMENT MODEL OF AN EARTH DAM

۷,

The load vector $\{r\}$ is given by:

where C_x , C_y and C_z are scalar constants that determine the magnitude of the components of the input motion in the x, y and z directions respectively.

The global mass and stiffness matrices are assembled from the corresponding element matrices following standard finite element procedures and the direct stiffness method (Zienkiewicz, 1977). Viscous damping is introduced by the use of complex shear moduli in forming the element stiffness matrices:

$$G^{*} = G(1 - 2\beta^{2} + 2i\beta\sqrt{1 - \beta^{2}})$$
(3)

where: G = the element shear modulus

 β = the element fraction of damping

and therefore, the stiffness matrix for the system will have complex coefficients.

2.2 The Method of Complex Response

Use of the complex response method is made in order to solve the equations of motion for the system (equation (1)). In this method it is assumed that the system is linear and that the input motion is periodic.

, , .

.

As a consequence the principle of superposition is applicable and the input accelerations can be expressed as a sum of harmonics:

$$\ddot{y}(t) = R_{e} \sum_{s=0}^{N/2} \ddot{y}_{s} \exp(i\omega_{s}t)$$
(4)

where: N = the number of digitized points in the input motion.

$$\omega_{\rm s} = \frac{2\pi s}{N\Delta t} \tag{5}$$

 Δt = the time step of digitization \ddot{Y}_s = the complex Fourier amplitudes which are given by:

$$\ddot{Y}_{s} = \frac{1}{N} \sum_{K=0}^{N-1} \ddot{y}_{k} \exp(-i\omega_{s}k\Delta t) \quad \text{for } s = 0, \ s = N/2$$

$$\ddot{Y}_{s} = \frac{2}{N} \sum_{K=0}^{N-1} \ddot{y}_{k} \exp(-i\omega_{s}k\Delta t) \quad \text{for } 1 \le s \le N/2$$

$$(6)$$

The complex Fourier amplitudes, $\ddot{\mathbf{x}}_{s}$, can be computed efficiently using the Fast Fourier Transform algorithm developed by Cooley and Tukey (1965) which requires that N be a power of 2. This requirement is generally not a drawback since trailing zeroes usually need to be added at the end of the earthquake excitation to provide for an adequate quiet zone that allows the decay of free vibrations of the model.

Substitution of equation (4) into equation (1) leads to:

$$[M]{\ddot{u}} + [K]{u} = -[M]{r}_{R_{e}}\left(\sum_{s=0}^{N/2} \ddot{Y}_{s} \exp(i\omega_{s}t)\right)$$
(7)

The steady-state solution of this equation can also be expressed as a sum of harmonics. That is:

- - -

- - - -

$$\{u\} = R_e \sum_{s=0}^{N/2} \{U_s\} \exp(i\omega_s t)$$
(8)

The complex displacement amplitudes $\{U_s\}$ can be obtained by substituting equation (8) into equation (7). Since the principle of superposition is applicable this leads to the following matrix equation for each frequency ω_s :

$$([K] \cdot \omega_{s}^{2}[M]) \{ U_{s} \} = -[M] \{ r \} \ddot{Y}_{s}$$
 (9)

This is a system of linear algebraic equations with complex coefficients that can be solved by gauss elimination. Solution of equation (9) for each frequency ω_{s} constitutes a formidable task since it is not uncommon for an input record to have 2048 digitized points and therefore 1025 frequency points in its Fourier spectrum. In order to simplify the computational effort a cut-off frequency is usually selected. This frequency is chosen at a value such that the response of the dam to higher frequencies is small and does not need to be computed. Additionally, the following equation:

$$([K] - \omega_{s}^{2}[M]) \{A_{s}\} = -[M] \{r\}$$
 (10)

is solved instead of equation (9). A limited number of frequencies is selected for solution of equation (10) and a special interpolation technique is used to compute intermediate values of $\{A_s\}$. The complex displacement amplitudes can then be obtained from the following expression:

$$\{\mathbf{U}_{\mathbf{S}}\} = \{\mathbf{A}_{\mathbf{S}}\}^{\mathbf{Y}}_{\mathbf{S}} \tag{11}$$

-

2.3 Interpolation in the Frequency Domain

Linear interpolation on the inverse of the amplification functions has been used in the past as the technique to obtain intermediate values of $\{A_s\}$ (Lysmer et al., 1974,1975). However, this interpolation scheme does not perform well when there is a close spacing between natural frequencies which seems to be the case of three-dimensional systems.

A sophisticated technique that makes use of the transfer function for a two-degree-of-freedom system to interpolate between the amplification function values $\{A_s\}$ has been developed by Tajirian (1981) and has been incorporated to the computer program TLUSH. The transfer function for a two-degree-of-freedom system has typically two frequency peaks and is given by an expression of the form:

$$A(\omega) = \frac{C_1 \omega^4 + C_2 \omega^2 + C_3}{\omega^4 + C_4 \omega^2 + C_5}$$
(12)

where: ω

= angular frequency

 $C_1, C_2, C_3, C_4, C_5 = complex constants.$

The values of the amplification function $\{A_{s}\}$ at five particular frequencies spanning the range where interpolation is to be performed are necessary to determine the five constants that define the transfer function (equation 12), which is then used to compute the intermediate values of $\{A_{s}\}$.

The nodal displacements {u}, which completely define the response of the dam, can be computed from equations (11) and (8). Velocities, accelerations and strains can be directly computed in the frequency domain from the displacement amplitudes {U_s} and can then be transformed into the time domain.

2.4 The Equivalent Linear Method

Due to the extensive use of superposition, the procedures previously outlined are only applicable to linear systems. However, the response of soils to dynamic loading is highly non-linear in nature and must be accounted for in order to obtain meaningful results from the dynamic analysis of soil structures.

The approximate method proposed by Seed and Idriss (1969) to take into account the non-linear behavior of soils is used in TLUSH. According to this method the non-linear response of a soil structure can be approximated by a linear analysis for which the stiffness and damping are compatible with the induced strains at every point of the system.

An extensive summary of data on strain compatible moduli and damping for clays and sands was presented by Seed and Idriss (1970) from which the curves shown in Fig. 2 were developed. Starting from selected initial moduli and damping values for each element in the model, these curves can be used iteratively to reach compatibility between the properties used in the analysis and the computed strains.

The relationships between stiffness, damping and effective shear strains for sands and clays proposed by Seed and Idriss (1970) have been provided within the program but other modulus attenuation curves can readily be read into the program. The following procedure is employed to obtain an approximate non-linear solution:

- Read in initial assumed values of shear modulus and damping for all elements.
- Solve equation (1) and use equation (11) to obtain the complex displacement amplitudes.
- 3. Compute strain amplitudes for all elements.

-

(After Seed and Idriss, 1970)

·

- - · · · ·

- 4. Compute the effective shear strains for all elements.
- 5. Determine new strain compatible values of shear modulus and damping by using the built in relationships of Fig. 2 or others supplied externally.
- Repeat steps 2 through 5 until compatibility between the material properties used in the analysis and the computed shear strains is reached.

2.5 Effective Shear Strain

The three-dimensional strain state at a point can be described by a second order strain tensor with 6 independent terms which in a Cartesian coordinate system can be written as:

During the seismic response of a dam the strain state varies with time at each point and therefore the selection of a single value to represent both the directional and time variation of strain level is difficult.

Soils are materials with a complex constitutive behavior which, strictly speaking, depends on all terms in expression (13). However, the state of present knowledge on constitutive laws for soils does not permit a complete characterization of material behavior. The method proposed by Seed and Idriss (1970) which consists of using the maximum shear strain as the parameter indicative of strain level is used in the computer program TLUSH. As a consequence the strain level will be given by an effective shear strain defined as:

$$\gamma_{\text{eff}} = 0.65 \cdot \max_{\text{max}} |\gamma_{\text{max}}| \tag{14}$$

Time variation in the strain level is taken into account by the factor 0.65 which is purely empirical but is assumed to be representative of an average time value of the maximum shear strain. The value of this factor is not critical in view of the fact that the computed motions are not very sensitive to moderate variations in the magnitude of the effective shear strain.

The peak maximum shear strain used in equation (14) can be computed by either of two methods available as two options of the computer program TLUSH. The first method consists of obtaining the maximum and minimum principal strains from a solution to the following equation for each time step.

$$\begin{vmatrix} \varepsilon_{xx} - \varepsilon & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} - \varepsilon & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} - \varepsilon \end{vmatrix} = 0$$
(15)

Once the principal strains have been determined at each time step the peak maximum shear strain can easily be found. The second method makes use of the fact that the peak maximum shear strain can be estimated from the root-mean-square value of the maximum shear strain as follows:

$$\max_{t} |\gamma_{max}| \simeq C \cdot RMS \ (\gamma_{max}) \tag{16}$$

where C is a constant approximately given by:

$$C = \max |\ddot{y}| / RMS(\ddot{y})$$
(17)

The root-mean-square values of γ_{max} and \ddot{y} can be conveniently evaluated by making use of Parseval's identity which for an arbitrary function f(t) is given by:

- - - -

RMS²(f) =
$$\frac{1}{2} \sum_{s=0}^{N/2} |F_s|^2$$
 (18)

where F , s=0,1,2, N/2 are the complex Fourier amplitudes of the function f(t), that is

$$f(t) = R_{e} \sum_{s=0}^{N/2} F_{s} \exp(i\omega_{s}t)$$
(19)

This method is substantially faster than the first one since equation (15) can be solved in terms of the strain amplitudes for each frequency and all computations can be performed in the frequency domain without the need for numerous Fourier transforms.

3. PROGRAM DESCRIPTION

3.1 Program Structure

The computer program TLUSH is written in standard FORTRAN IV language and the CDC 7600 version consists of a main program TLUSH and 42 subroutines which will be described under the next subheading. The program is easily convertible to most modern computer systems that have more than 100K words of high speed storage. It has been designed so that it can operate in any of three modes all of which produce a listing of the relevant input data. The type of mode to be used in a particular run can be specified by the value of the variable NOPT on the first input data card.

MODEl - The Initiation Mode

MODEL is the mode to be specified when running the program for the first time on a particular problem. In this mode all input comes from cards; the program will set up the equations of motion and solve them for
a specified number of iterations using in each iteration after the first, material properties compatible with the strains computed in the previous iteration. After the last iteration any output desired will be generated. A special option permits the creation of a permanent record on a magnetic tape, TAPE1, of all input data and of the complete solution. This information can subsequently be easily recovered in MODE2 or MODE3 runs. An additional option permits the storage of the element mass matrices, the normalized element stiffness matrices and the load vector on a magnetic tape, TAPE5, in this way making it possible to avoid their generation in subsequent MODE1 or MODE2 runs.

MODE2 - The Iteration Mode

In order to monitor the convergence of strain compatible properties in real size jobs it is convenient to perform the iterations on soil properties one at a time. In this way it is possible to speed up the rate of convergence of the solution and to make more efficient use of the program. MODE2 provides the re-start capability required to perform further iterations if necessary. In this mode the contents of TAPE1 are read and copied onto TAPE2, the equations of motion are set up and solved using the improved soil properties computed in the previous iteration, additional iterations can be performed, and any desired output can be generated. Just as in MODE1 a permanent record of the complete solution can be stored on TAPE1 for further reference. TAPE2 serves as a back-up in case the contents of the original TAPE1 need to be preserved.

MODE3 - The Extraction Mode

This mode is useful for the extraction of additional information on the solution to a certain problem which has been stored on TAPEL. In this

mode, the program will read the TAPEl generated in previous MODEl or MODE2 runs and produce the additional output specified, without performing any finite element computations. Hence, the contents of TAPEL are unaltered in this mode.

Data Check Run

An additional mode is provided to permit the revision of the input data for MODEL. All input data is read from cards, just as in MODEL, and this information is printed out.

From the previous discussion it follows that the main difference between MODEL and MODE2 is the form in which the input data is read in. Both modes follow approximately the same numerical procedure which can be summarized in the following steps:

- 1. Read in control data and set up dynamic storage allocation.
- Read in finite element model data and generate missing information.
 - a. Element data.
 - b. Nodal point data.
- 3. Read in earthquake motion, transform to frequency domain and apply base line correction.
- 4. Print out all input data.
- Form element mass matrices, normalized element stiffness matrices and load vector.
- 6. Compute element stiffness matrices.
- 7. Set up blocks and profile for equation solution.
- 8. Form total mass and stiffness matrices by blocks.
- 9. Solve equation of motion (Eq. 10) for selected frequencies and store amplification functions.

_ -

- 10. Compute strain amplification functions for all elements.
- Determine effective shear strains and strain compatible soil properties for all elements.
- 12. Repeat from step 6, using the improved soil properties, for the number of iterations specified.
- 13. Generate all nodal point and stress output.
- 14. Stop.

The above numerical procedure is schematically illustrated in Fig. 3 which shows a simplified flowchart of the program.

3.2 Description of Routines

The CDC 7600 version of TLUSH consists of a main program and 42 subroutines which carry out the numerical procedure previously described. Additionally there are three CDC system routines, LOCF, SECOND and SETFLS, which are called by the program subroutines, LOC, TIME and MCORE respectively. The calling sequence for the program subroutines along with the tapes referenced by each routine is given in Table 1. A brief description of each routine follows:

- TLUSH This is the main program. It consists mostly of comment cards that describe the input data and it calls the initiation subroutine INPT.
- ADJUST This subroutine applies base line correction in the frequency domain to the input acceleration time history.
- ARRNG It establishes the order in which the element mass and stiffness matrices will be generated.

FIG. 3 SIMPLIFIED FLOWCHART FOR TLUSH

Program	Calls	Called by	Tapes Referenced
TLUSH	INPT, SECOND	This is the main program	
ADJUST		VEDDA	
ARRNG		VEDDA	
BLOCK	RDSTF	GSTIF	6,7,8
CALBN	RDSTF	FRMSTF	5
CMPMAX		DRCTSP	······································
CNSTNTS	CSOLVE	INSET	
CSOLVE		CNSTNTS	
CURV52	· · · · · · · · · · · · · · · · · · ·	STRAIN	
DRCTSP	CMPMAX, PLOT	MOTION	
ELSTRN		STRNAP	
EXPND		'INSET	
FCONTL		INPT	
FFT	· · · · · · · · · · · · · · · · · · ·	RFFT, RFSN	
FORM	LUMP	FRMSTF	
FRMSTF	CALBN, FORM, RDSTF	SOLVEB	5,6,10
FSET		MOTION	
GSTIF	BLOCK, TOTSTF	SOLVEB	
INPT	FCONTL, MCORE, VEDDA	TLUSH	1,2
INSET	CNSTNTS, EXPND	INTPL	
INTPL	INSET	MOTION, STRAIN	
LOC	LOCF	MCORE	
LUMP	VOLUME	FORM	

Table 1. Calling Sequence for Subroutines and Tapes

	······································		
Program	Calls	Called by	Tapes Referenced
MCORE	LOC,SETFLS	INPT, SOLVEB, VEDDA	
MOTION	DRCTSP,FSET,INTPL PLOT,PROUT,RFSN TIME	VEDDA	3
PLOT		DRCTSP, MOTION, STRESS	
PRINT		VEDDA	
PROUT		MOTION	
RDSTF		BLOCK, CALBN, FRMSTF TOTSTF	
RFFT	FFT	VEDDA	
RFSN	FFT	MOTION, STRAIN, VEDDA	
ROOTME		STRNAP	
RŴ		SLOWR, SOLVEB, STRNAP TOTSTF, VEDDA	
SHMAX		STRAIN	
SLOWR	RW	SOLVEB	7,9,11,13,14 15,19,20,21,22
SOLVEB	FRMSTF,GSTIF,MCORE RW,SLOWR,TIME	VEDDA	1,12,9
STRAIN	CURV52, INTPL, RFSN SHMAX, TIME	VEDDA	4,17,18
STRESS	PLOT, TIME	VEDDA	17
STRNAP	ELSTRN, ROOTME, RW	VEDDA	1,3,4,18,19
TIME	SECOND	MOTION, SOLVEB, STRAIN STRESS, VEDDA	

Table 1. (continued)

· - _

2

_ _

Program	Calls	Called by	Tapes Referenced
TOTSTF	RDSTF, RW	GSTIF	6,7,8,9 10,11
VEDDA	ADJUST, ARRNG, MCORE MOTION, PRINT, RFFT RFSN, RW, SOLVEB STRAIN, STRESS, STRNAP, TIME	INPT	1,2,3 12,16
VOLUME		LUMP	

Table 1. (continued)

Ķ

·

\$

-- -

- BLOCK Sets up the equation profile and the blocking of the global mass and stiffness matrices for the out-of-core solver.
- CALBN Reorders the rows and columns in the element mass and stiffness matrices.
- CMPMAX Determines the maximum values in the computation of response spectra.
- CNSTNTS Sets up the five equations necessary for the determination of the constants in the interpolation function.
- CSOLVE Determines the five constants in the interpolation function by solving a system of simultaneous equations.
- CURV52 Computes updated strain-compatible soil properties from material curves.
- DRCTSP Computes and plots acceleration and velocity response spectra.
- ELSTRN Computes strain application functions at the centroid of an element.
- EXPND Determines intermediate values in the amplification functions by interpolation.
- FCONTL Determines the frequencies for which the equations of motion are to be solved.
- FFT This is a standard routine for complex Fast Fourier Transform.
- FORM Forms the mass and normalized stiffness matrices for an element.

- FRMSTF Generates the element mass and stiffness matrices and the load vector.
- FSET Determines the frequencies at which response spectral values are to be computed and sets the time array for plotting.
- GSTIF Drives the routines that set up the equation profile, calculate blocking information and assemble the global mass and stiffness matrices.
- INPT Reads control data from cards or TAPE1, writes this information on TAPE1 or TAPE2 and sets up field lengths and dynamic storage allocation.
- INSET Drives the interpolation routines which compute the interpolation function and expand the amplification function.
- INTPL Prepares amplification functions for interpolation and controls interpolation procedure.
- LOC Calls the system routine LOCF to find out the address of a certain variable.

LUMP Computes the lumped mass matrix for an element.

- MCORE Calls the system routine SETFLS which sets the core memory field length.
- MOTION Controls the output at specified nodal points. Computes and plots amplification functions, response spectra and acceleration time histories.

. . . .

_-

PLOT Performs printer plotting of amplification functions, response spectra, acceleration time histories and stress time histories.

PRINT Prints out all input data.

- PROUT Prints out the peak accelerations at specified nodal points.
- RDSTF Controls reading and writing of element mass and stiffness matrices.
- RFFT This is a standard routine for Fast Fourier Transform from the time domain into the frequency domain.
- RFSN This is a standard routine for Fast Fourier Transform from the frequency domain into the time domain.
- ROOTME Computes the square of the root-mean-square of the maximum shear strain for an element in the frequency domain.
- RW Controls the reading, writing, rewinding and back-spacing of tapes.
- SHMAX Computes the maximum shear strain at the centroid on an element in the time domain.
- SLOWR This is an out-of-core equation solver for symmetric linear algebraic equations in complex variables. It uses the active column method of gaussian elimination.
- SOLVEB Drives the routines that set up the equations of motion and solve them.

- -

- STRAIN Determines effective shear strains and updated strain-compatible soil properties for all elements and computes stress time histories at specified points.
- STRESS Controls the output of element stress time histories.
- STRNAP Computes and writes strain amplification functions on tape and sets up amplification functions for subroutine MOTION.
- TIME Calls the system routine SECOND which gives the time since the start of execution.
- TOTSTF Assembles in blocks the global mass and stiffness matrices.
- VEDDA This is the main subroutine which controls the flow of the program. It reads the finite element input data, reads and modifies the control motion, generates most of TAPE1 and TAPE2, controls the solution of the equations of motion and the iteration on soil properties, and controls output from the program.

VOLUME Computes the volume of a tetrahedron.

3.3 Tape Usage

The computer program TLUSH uses a total of 22 tapes of which, three may need to be specified as physical tapes depending on the options used in the program. TAPE1 should be specified as a physical tape in MODE1 and MODE3. TAPE1 and TAPE2 should be specified as physical tapes in MODE2. TAPE5 needs to be specified as a physical tape if permanent storage of the element matrices is required. All other tapes are usually simulated on

•

—

magnetic discs or drums. The following is a description of the contents of the tapes as used by the program.

- TAPE1 This is the principal input tape for MODE2 and MODE3. It contains all input data, estimated and current soil properties, and the computed amplification functions.
- TAPE2 This is a copy of TAPE1 produced in the initial stages of MODE2.
- TAPE3 Stores the computed amplification functions for nodal points where output is required.
- TAPE4 Stores the computed strain amplification functions for all elements.
- TAPE5 Is used to store element mass and normalized stiffness matrices and the load vector.
- TAPE6 Stores element mass and stiffness matrices and boundary conditions.
- TAPE7 Is used to store information necessary for block generation.

TAPE8 Is used to store information on equation blocking.

- TAPE9 Is used to store information on equation blocking.
- TAPE10 Stores the load vector.
- TAPE11 Is used to store global mass and stiffness matrices in blocks.

2:5

- TAPE12 Is used as temporary storage of the permanent data of the blank common.
- TAPE13 Is used as a scratch file by the out-of-core equation solver.
- TAPE14 Is used as a scratch file by the out-of-core equation solver.
- TAPE15 Is used as a scratch file by the out-of-core equation solver.
- TAPE16 Stores the updated material properties and the root-mean-square values of the maximum shear strain for all elements.
- TAPE17 Is used to store element stress time histories to be output.
- TAPE18 Stores strain amplification functions for elements where stress time histories are required.
- TAPE19 Is used to store the displacement amplification functions for the frequencies used in the solution of the equations of motion.
- TAPE20 Is used as a scratch file by the out-of-core equation solver.
- TAPE21 Is used as a scratch file by the out-of-core equation solver.
- TAPE22 Is used as a scratch file by the out-of-core equation solver.

3.4 Error Messages

TLUSH has the capability of detecting some errors in the input data. Once an error is detected the program will stop execution and issue an error message. A description of the errors which can be detected by TLUSH follows:

- ERROR NO. 1 The number of points in the input acceleration time history, N3, exceeds the number of points specified for the Fast Fourier Transform, KGMAX.
- ERROR NO. 2 The specified small core length, NSCM, is too short for the blank common required in the initial stages of the program.
- ERROR NO. 3 The specified small core length, NSCM, is too short for the blank common required by subroutine STRAIN.
- ERROR NO. 4 The specified small core length, NSCM, is too short for the buffer used in subroutine STRAIN.
- ERROR NO. 5 The specified small core length, NSCM, is too short for the blank common required by subroutine MOTION.
- ERROR NO. 6 The specified small core length, NSCM, is too short for the buffer used in subroutine MOTION.
- ERROR NO. 7 The number of additional displacement boundary conditions, NBP, does not agree with the total number of boundary conditions specified on the nodal point cards.
- ERROR NO. 8 The computed volume of a finite element is less than or equal to zero.
- ERROR NO. 9 There is an equation number for which all the corresponding matrix coefficients are zeroes.
- ERROR NO. 10 There is an equation number for which the diagonal element of the global stiffness matrix is zero.

3.5 Core Memory

TLUSH requires about 110000 (octal) words of memory to load and about 76000 (octal) words plus the length of blank common in words to execute on a CDC 7600 computer using the FTN4 compiler. The program uses dynamic storage allocation and therefore it automatically assigns the required dimension or length for each variable used. Three lengths of blank common which are used by the three main subroutines, VEDDA, STRAIN and MOTION, are computed internally and printed out by the program. The largest of these three, determines the minimum field length required to run the program. As mentioned above, the minimum field length for execution is obtained by adding the blank common length to the core memory occupied by the program (76000 octal words on a CDC 7600 system). This length should be shorter than the maximum field length available on the system, which in the case of the BKY CDC 7600 computer is 170000 (octal) words.

The user must specify in the first control card, the maximum length of blank common to be used by the program, NSCM. This number should be greater than the minimum blank common requirements printed at the beginning of execution of the program. However, it is usually convenient to specify the largest blank common length compatible with the maximum field length available on the system. In this way, the out-of-core solver has the largest possible high-speed storage space to work with. The largest small core length that can be specified on a CDC 7600 computer using the FTN4 compiler, is 30500 (decimal) words. The program adjusts the field length to fit its need at each stage of execution and therefore no idle space is wasted.

_ _ _

Problems may be encountered in satisfying the blank common requirements of large jobs in medium sized computers (CDC 6400). In these cases the following suggestions might prove helpful in reducing the core memory requirements:

- Select the largest mesh size compatible with accuracy requirements.
- 2. Keep the maximum frequency of the analysis as low as possible.
- 3. Do not specify extensive output in MODE1 or MODE2 runs.
- Use the lowest possible number of points in the Fast Fourier Transform.

4. COMMENTS ON INPUT

4.1 Mesh Size Requirements

Use of the finite element method for the dynamic response analysis of an earth dam requires discretization of the dam by a finite element model. The definition of the model boundaries and the selection of a general mesh layout are the two main ingredients in the design of a model.

Difficulties are encountered in the definition of the model boundaries and in the characterization of the earthquake motions at the boundaries of open systems such as earth dams. The simplifying assumptions that the boundary of the finite element model of an earth dam is rigid, and that the earthquake excitation acts on this rigid boundary, are implicit in the analytical approach used by TLUSH (see Fig. 1). Therefore, it is appropriate to select the boundary for the model of a dam at the physical boundary that best resembles this condition. In many cases this boundary is provided by a rock interface in the valley where the dam is located.

Another aspect of importance in the design of a model for the dynamic analysis of an earth dam is the selection of an adequate mesh layout. Two criteria, which in essence are equivalent, are available to determine an appropriate mesh layout for the dynamic analysis of earth dams. The first criterion requires that the mesh layout be such, that a good approximation of the predominant mode shapes of vibration of the dam can be obtained. The second criterion requires that the element size should not be larger than a certain fraction of the shortest wavelengths to be transmitted through the finite element mesh (Lysmer et al., 1974). The following expression is generally accepted:

$$h_{\max} = \frac{1}{5} \frac{V_s}{V_{\max}}$$
(20)

where h_{max} is the vertical element dimension, V_s is the shear wave velocity in the element, and v_{max} is the highest frequency of the analysis, TOTFR. Recent studies by Mejia (1981) have shown that, in general, 10 to 15 elements in the cross valley direction of a dam give a good representation, in this direction, of the predominant mode shapes of vibration of dams in triangular canyons subjected to strong shaking.

4.2 Identification of Nodes and Elements

Once the mesh layout for the finite element model of a dam is selected, identification of the nodal points and elements is required. The nodal points of the model should be numbered in such a way that the average bandwidth of the global stiffness matrix is minimized. Additionally nodal points on the rigid boundary have to be numbered last (see Figs. 5 and 6). The user specifies the first nodal point on the rigid boundary,

Зσ

-- --

NB1, and all points with higher numbers are considered by the program to be on this boundary.

The program is designed to work with eight node brick isoparametric elements. Therefore elements may have any shape with a maximum of 8 nodal points and straight edges between these points. Elements are also numbered and identification of the nodal points defining an element must follow the rules shown in Fig. 4. This figure additionally shows two examples which illustrate element identification. The order of nodal point numbers which define an element should be such that NP1,NP2....NP8 on an element card correspond to the numbers 1,2....8 in Fig. 4(a).

The program has the capability of generating data for nodal points and elements not included in the input data. Nodal point coordinates are generated by interpolation along a straight line connecting the nodes on two successive input data cards. Element data is generated by using the same material properties and incrementing the nodes on the previous element card a specified number, LX.

4.3 Element Matrices

The computer program TLUSH generates the element stiffness and mass matrices in two steps. The first step consists of computing normalized matrices. In the second step these matrices are multiplied by the element complex shear moduli and density in order to obtain the element stiffness and mass matrices respectively.

The normalized stiffness matrix for an element is computed following standard finite element procedures and corresponds to the element stiffness matrix for a shear modulus with a value of 1. It depends only on the geometry of the element and the value of Poisson's ratio. The

(a) Element Normalized Coordinate System

(b) Elements in Global Coordinate System

FIG. 4 ELEMENT IDENTIFICATION IN TLUSH

normalized mass matrix also depends only on the geometry of the element since it corresponds to the element mass matrix for a density with a value of 1. This matrix is computed as a combination of the consistent mass matrix and the lumped mass matrices for the element, according to the following expression:

$$[M] = RATIA*[M]^{C} + (1-RATIA)[M]^{\perp}$$
(21)

where the parameter RATIA may range between 0 and 1.0 and is specified by the user. Values of RATIA between 0.5 and 0.75 optimize the ability of the element to transmit high frequencies.

It follows that elements which have the same geometry and value of Poisson's ratio will have identical normalized element matrices. To take advantage of this fact, an option in TLUSH permits normalized matrices to be duplicated for elements that have the same identification number, IDEL(N), different than zero.

The normalized element matrices are multiplied by the complex shear modulus:

$$G^* = G(1 - 2\beta^2 + 2i\beta \sqrt{1 - \beta^2})$$
(22)

and the density, ρ , in order to obtain the element stiffness and mass matrices respectively. The parameter β corresponds to the element fraction of damping.

There are options in TLUSH which permit the storage of element mass and normalized stiffness matrices on TAPE5 and the recovery of these matrices in future runs. Use of these options are likely to be helpful in saving computer time and costs in some systems.

4.4 Material Curves

As mentioned before TLUSH uses the equivalent linear method to arrive at an approximate non-linear solution. In order to perform the successive iterations on soil properties the program uses material curves that describe the relationships between normalized shear modulus and damping, and cyclic maximum shear strain for the types of soil composing the dam. Two options are available in the program for defining the material property curves for a certain problem and any of these options can be selected by appropriately specifying the parameter KMATYP.

One option permits the use of built-in material curves. These curves correspond to those proposed by Seed and Idriss (1970) for clays and sands (see Fig. 2). In the other option any number, MATYP, of such relationships may be read from input data cards. Each set of relationships for modulus and damping must have a sequence number. This material identification number is referenced as element data in the parameter MTYPE(N) for those elements composed of a particular material. Strain independent properties can be assigned to any element by specifying a value of 0 for MTYPE(N).

4.5 Shear Strain Computation

As mentioned before two methods are available within TLUSH for the computation of the peak maximum shear strain. The first method uses a time domain approach. The time histories of the 6 components of strain at the centroid of each element are obtained from the inverse Fast Fourier Transform of the Fourier amplitudes of the strain components. A cubic equation in terms of the 6 components of strain at each time step is solved for the principal strains. From these, the maximum shear

- - -

strain is obtained for each time step and the peak value can be determined by direct comparison. The second method uses a frequency domain approach. Using the Fourier complex amplitudes of the 6 strain components at the centroid of each element, a cubic equation is set up for each frequency in the spectrum. From these equations the complex amplitudes of principal strains are obtained from which the amplitudes of the maximum shear strain can be determined. These amplitudes are used to compute the root-mean square value of the maximum shear strain function from which an approximation to the peak value of the function can be obtained.

Although the first method yields the theoretically exact value for the peak maximum shear strain it is much more lengthy than the second method since it involves numerous Fast Fourier Transorms. In addition to using a statistical procedure for determining the peak value, the second method uses a technique which assumes linearity to determine a nonlinear parameter such as the maximum shear strain. For these reasons the peak maximum shear strains computed by this method are different than the exact values. However, the final differences in the strain compatible soil properties computed by the two methods are not likely to be greater than 20%.

By specifying the input parameter KSTRN the user can select any of the following three options: a) No strain computation, b) Strain computation in the time domain and, c) Strain computation in the frequency domain. Additionally, the user must supply the value of the ratio between effective shear strain and peak maximum shear strain, FCT. It must be noted that in order to obtain output for stress time histories, any of the two strain computation options must be specified.

- - -

4.6 Frequency Controls

The computer program TLUSH has several frequency controls which permit the user to select the highest frequencies for which the equations of motion are solved. One of these parameters is the cut-off frequency or maximum frequency of the analysis, TOTFR. No computations are performed by the program for frequencies above this value. That is, the displacement amplification functions are assigned a zero value and the complex Fourier amplitudes of displacement, acceleration and strain are assumed to be zero for frequencies above the cut-off frequency.

It follows that the maximum frequency of the analysis, TOTFR, should be higher than the natural frequencies corresponding to the predominant modes of vibration of the structure. That is, the response of the dam to motions at frequencies higher than the cut-off frequency should be negligible. An estimate of an appropriate value for the maximum frequency to be used in the dynamic analysis of an earth dam is given by a number 4 or 5 times higher than the fundamental frequency of vibration of the dam. Typical values for medium sized dams range between 8 and 10 Hz.

In view of the fact that a high degree of accuracy is not required during the first iterations on material properties the use of lower cutoff frequencies in these iterations is justified. TLUSH allows the user to specify a cut-off frequency for each iteration, STEP(I), and this permits the use of low cut-off frequencies in the initial stages of the solution.

4.7 Interpolation

It was mentioned earlier that in order to reduce computational effort

.

and cost the equations of motion are solved only for a small number of selected frequencies, and a special interpolation scheme is used by the program to obtain intermediate values of the complex amplitudes of the displacement and strain amplification functions. The interpolation technique used by TLUSH has been previously described.

The frequencies for which the equations of motion are solved must be specified by the user. It is desirable to select the minimum number of frequencies that will yield an adequate picture of the displacement and strain amplification functions at all points in the dam. This number of frequencies will depend on the shape of the amplification functions and the distribution or spacing of the frequencies selected. A close spacing betwen solution frequencies should be selected in the frequency ranges where a high degree of accuracy is required and where the amplification functions have a complex shape; that is, a great number of frequency peaks. It is useful to remember that the transfer function for a twodegree-of-freedom system is used to interpolate on the amplification functions and that 5 frequency points are needed to define such function. Thus, normally 5 frequency points are needed in the vicinity of two single frequency peaks to get accurate interpolation of the amplification function values. A greater number of frequency points is needed if there are nearby frequency peaks (Tajirian, 1981). In general, a closer spacing between solution frequencies is needed in the vicinity of the predominant frequencies of vibration of a dam while a lower density may be used in the high frequency range. Also, 30 to 40 points usually suffice to adequately define the amplification functions at most points in a dam. However, the best way to determine an appropriate distribution of solution

frequencies is to carry out the iterations on soil properties one at a time and to have the amplification functions for several points printed out after each iteration.

TLUSH allows the user to specify a maximum number of 5 interpolation ranges. For each range the maximum frequency in that range, FPKINT(I), and the interpolation gap, KINT(I), must be specified. Typical values for KINT(I) vary between 4 and 16.

4.8 Printer Plots

The following printer plots may be obtained from TLUSH:

- 1. Time histories of nodal point accelerations.
- Acceleration and velocity response spectra for specified nodal point acceleration time histories.
- Fourier spectra of acceleration time histories at specified nodal points.
- 4. Acceleration amplification functions for specified nodal points.
- 5. Time histories of the 6 components of the stress tensor at the centroid of specified elements.

The user may control the length and degree of refinement of these plots by specifying a value for the parameter NSKIP. The plotting routine will skip the specified number of points in between displayed points. It is important to mention that all accelerations output by the program are absolute accelerations and that the program has the capability of performing baseline correction on the input motions. The effect of baseline correction is small on the computed accelerations; however, it is rather significant on the corresponding velocities and displacements. The use of this option is recommended since it frees the computed motions of

integrated errors in the input motions and does not involve costly calculations.

4.9 Punched Output

The following punched output can be generated by TLUSH:

- Element data cards with improved strain-compatible soil properties.
- 2. Acceleration time histories at specified nodal points.
- Time histories of the stress components at the centroid of specified elements.

It is useful to have the program punch element cards when it is desired to perform a new analysis with a slightly different finite element model. All data on the element cards is punched in the same format as that required for input to the program. The material properties punched are those computed in the last iteration.

Acceleration time histories are punched for the entire duration of the analysis, and at the time interval and with the same format used for the input motions (8F9.6). Stress time histories are punched in psf and with a format (8E9.3).

4.10 Execution Time

It is difficult to estimate a priori the execution time of TLUSH for a given job since this time is a function of many parameters including the speed of the computer used, the available high speed storage capacity, the geometry of the finite element mesh, and the number of output options requested. It is convenient, therefore, to perform a trial run for one or two gaussian eliminations in order to estimate the execution time for a

real size job. This can easily be done since execution time for each gauss elimination is printed out by the program and the total number of eliminations can be estimated a priori. In general, three fifths to four fifths of the total execution time are spent in the solution of the equations of motion.

The following suggestions will prove to be helpful in reducing the execution time of the program:

- 1. Keep the maximum frequency of the analysis as low as possible.
- Use interpolation control parameters, KINT(I), as large as possible.
- Select the largest possible mesh size compatible with accuracy requirements.
- Use the minimum possible number of points, KGMAX, for the Fast Fourier Transform.
- 5. Compute maximum shear strains by the RMS procedure.
- 6. Use option to duplicate element matrices.
- 7. Compute as few response spectra as possible in MODE1 or MODE2 runs.

5. LISTING OF MAIN PROGRAM

- ---

-

PROGRAM TLUSH (INPUT, OUTPUT, PUNCH, TAPE1, TAPE2, TAPE3, TAPE4, TAPE5, TLUS 1 1 TAPE6, TAPE7, TAPE8, TAPE9, TAPE10, TAPE11, TAPE12, TAPE13, TAPE14, TLUS 2 2 TAPE15, TAPE16, TAPE17, TAPE18, TAPE19, TAPE20, TAPE21, TAPE221 TLUS 3 ---- TL US Γ------4 A COMPUTER PROGRAM FOR THE COMPLEX RESPONSE ANALYSIS OF C TLUS 5 С THREE DIMENSIONAL EARTH DAMS BY THE FINITE ELEMENT METHOD. TLUS TLUS STRAIN-COMPATIBLE SOIL PROPERTIES BY THE EQUIVALENT LINEAR METHOD. ſ. 7 ANY COMBINATION OF LUMPED AND CONSISTENT MASS MATRIX. C TLUS 8 INPUT ACCELERATION AT RIGID BOUNDARY OF FINITE ELEMENT MODEL. ſ. TL US Q _____ ---TLUS 10 OPERATION MODES - THE PROGRAM CAN OPERATE IN THREE MODES TLUS 11 C MODEL - IN THIS MODE, ALL INPUT DATA IS FROM CARDS. THE PROGRAM TLUS 12 WILL COMPUTE THE COMPLETE RESPONSE. IT WILL ITERATE A TLUS 13 5 C SPECIFIED NUMBER OF TIMES TO OBTAIN STRAIN-COMPATIBLE TLUS 14 C SOIL PROPERTIES. ANY OUTPUT CAN BE SPECIFIED IN THIS MODE. DURING EXECUTION, ALL INPUT DATA AND THE FINAL TLUS С 15 Ċ 16 RESPONSE IN THE FREQUENCY DOMAIN OF ALL NODAL POINTS IS TLUS 17 C С WRITTEN ON TAPE 1 WHICH IS THEREFORE A COMPLETE PERMANENT TLUS 18 RECORD OF PROBLEM AND SOLUTION. TLUS 19 С TLUS MODE2 - IN THIS MODE, THE CONTENT OF TAPE 1 WILL BE COPIED ONTO 20 C TAPE 2 AND THE ADDITIONAL ITERATIONS ON SOIL PROPERTIES THUS CAN BE PERFORMED. THE CONTENT OF TAPE 1 WILL BE UPDATED THUS €. 21 22 C FOR THE FOLLOWING ITERATIONS. C TEUS 23 HODE3 - IN THIS HODE THE INFORMATION ON TAPE 1 CAN BE RECOVERED TLUS C 24 TO GENERATE ADDITIONAL CUTPUT WITHOUT REPEATING THE COSTLYTLUS 25 C C FINITE ELEMENT PROCEDURE USED IN MODEL OR MODE2. TIUS 26 С -- TL US 27 INPUT DATA TLUS r 28 €. TLUS 29 TLUS O. DPERATION MODE CARD (15,110) C 30 **C** . 1- 5 NOPT IF O STOP (LAST DATA CARD) TLUS 31 IF 1 MODE1 TLUS 32 ٤ . IF 2 MODE2 IF 3 MODE3 TLUS 33 С TLUS 34 ſ IF 3 MODES IF 4 DATA CHECK RUN Available small core length in decimal TEUS 35 C 6-15 NSCM TLUS 36 C ----TLUS 37 C-------------C INPUT DATA FOR MODEL TLUS 38 ______ C.--TLUS 39 1. JOB IDENTIFICATION CARD (1246, 18) С. TLUS 40 С 1-72 TITLE (12) JOB IDENTIFICATION TLUS 41 73-80 ITER RUN NUMBER - IDENTIFICATION ONLY С TLUS 42 C TLUS 43 2. CONTROL CARD FOR JOB SIZE OF SYSTEM (815) 44 С D FOR JUB SILL OF ELEMENTS TOTAL NUMBER OF ELEMENTS TOTAL NUMBER OF NODAL POINTS FIRST NODAL POINTS WITH HIGHER NUMBERS ARE TLUS 48 TLUS 48 TLUS 49 TLUS 49 TLUS 49 TLUS 49 TLUS 1- 5 NELM TOTAL NUMBER OF ELEMENTS 6-10 NDPT TOTAL NUMBER OF NODAL POINTS C C C 11-15 NB1 C C TLUS 16-20 NBP NUMBER OF ADDITIONAL DISPLACEMENT BOUNDARY 50 C TLUS C CONDITIONS. 51 NOTE***EVERY "DEGREE OF" FREEDOM SUPRESSED" TEUS 52 C. TLUS 53 TLUS 54 TLUS 55 COUNTS ONE £ 21-25 NUMBER NUMBER OF ITERATIONS ON SOIL PROPERTIES С 21-23 MATYP 26-30 MATYP 31-35 KMATYP =0 READ MATERIAL CURVES FROM CARDS =1 USE STANDARD BUILT IN MATERIAL CURVES FORM MATRICES AND LOAD VECTOR C TOTAL NUMBER OF STRAIN-DEPENDENT MATERIALS TLUS 56 C 31-35 KMATYP TLUS 57 TLUS 58 E C TLUS 59 TLUS 60 TLUS 61 €. С C WRITE ON TAPE 5

с с с		2 READ MATRICES AND LOAD VECTOR FROM TAPE 5 WHEN NFORM¥1 OR 2, TAPE5 SHOULD BE A PHYSICAL TAPE	TLUS TLUS TLUS	62 63 64
c			TLUS	65
с С	1- 5 KGMAX	TOTAL NUMBER OF POINTS USED IN FAST FOURIER	TLUS	55 67
č		TRANSFORMS, MUST BE A POWER OF TWO.	TLUS	68
ç	6-10 N3	LAST POINT OF EARTHQUAKE RECORD USED IN ANALYSI	STLUS	69
ں م	11-20 DT 21-30 EQMIN	TIME STEP OF DIGITIZED EARTHQUAKE RECORDSEC. FARTHQUAKE MULTIPUTCATION FACTOR. IF RECORD IS	TLUS	70
~ č		CONTROLED BY UGMAX, LEAVE BLANK.	TLUS	72 -
C	31-40 UGHAX	MAX. INPUT ACCELERATION USED IN ANALYSISG	TLUS	73
C	41-45 KBI INE	IF EQMUL IS NOT ZERD, LEAVE BLANK.	TLUS	74
c	41-45 KBEINC	=0 DG NOT APPLY BASELINE CORRECTION	TLUS	76
C			TLUS	77_
С С	4. CENTROL CARD FOR	DIRECTION OF INPUT MOTION (3F10.4)	TLUS	78
c		CAN BE SPECIFIED TO ACT IN ANY DIRECTION	TLUS	80
C	,	ACCORDING TO THE RULE	TL US	81
C		X COMPONENT = HORX * ABOVE MOTION	TLUS	82
		Z COMPONENT = HORZ * ABOVE MOTION	TEUS	
č		HORX, VERT AND HORZ ARE ENTERED AS FOLLOWS	TLUS	85
ç	1-10 HORX	FACTOR FER X MCTION	TLUS	86
r	21-30 H687	FACTOR FOR 7 NOTION	TLUS	87
ũ			TLUS	89
, c	5 - CONTROL CARDS FOI	R FREQUENCY OF ANALYSIS.	TLUS	90
	A. MASIER CONIRU.	L (F10,4, 15) Highest erequency to be considered in Analysis.		91
č		-HZ (USED FOR DIMENSIONING ONLY, THE ACTUAL	TLUS	93
2	•	FREQUENCIES USED ARE SET BY THE VARIABLE	TL US	94
	11-15 KINTS	NUMBER OF VARIABLE INTERPOLATION RANGESLAAXEST	TLUS	95
č	58. (KINTS) CARDS	(F10.4,15)	TLUS	97
Č	1-10 FRK INT(I)	MAX, FREQ. IN INT. RANGE I	TLUS	98
r r	11-15 KIND(1)	INF. CUNIACE IN INF. RANGE I	TLUS	100
č	6. CONTROL CARD FOR	OUTPUT (715)	TLUS	101
C	1-5 KDISP	IF 1, SAVE INPUT DATA AND THE COMPUTED AMPLIFIC	TLUS	102
C C	A-10 KSTRN	ATTUN FUNCT. UN TAPE I. = 0. NO STRAIN COMPLITATION	TLUS	103
č	0-10 K3 (M3	=1, CEMPUTE NAX. SHEAR STRAIN IN TIME DOMAIN TO	TLUS	105
C		I TERATE CN SOIL PROPERTIES	TLUS	106
- C		=2; CCMPUTE MAX. SHEAR STRAIN IN FREQ. DOMAIN TH	UTLUS TTIŪS	107
č	11-15 KPNCH	IF 1, PUNCH ELEMENT CARDS WITH NEW SOLL PROPERT	TLUS	109
C		FOR THE FOLLOWING ITERATION.	TLUS	110
د ح	16-20 NUU1	IDTAL NUMBER OF NUDAL POINTS WHERE OUTPUT IS		111
c	21-25 ND	NUMBER OF DAMPING VALUES FOR RESPONSE SPECTRA	TLUS	113
2	26-30 NSK1P	EVERY NSKIP-TH PCINT OF TIME HISTORY IS PLOTTED	TLUS	114
C r	31-35 NELS	NU. UF ELEMENTS AT WHICH STRESS TIME HISTORIES	TLUS	115 116
č		entres internalistat	TLUS	117
C	7. CENTROL CARD FOR	MASS MATRIX AND EFFECT IVE SHEAR STRAIN (2F10.4)	TL US	118
C C	1-10 RATIA	KAILU OF CONSISTENT MASS MATRIX TO FORM MASS THE MASS MATRIX LISED YS COTTRATING TO MORD MAR	TLUS STI DC	119.
c		MATRIX + RATIA * CONSISTENT MASS MATRIX + A	TLUS	121
c		LUMPED MASS MATRIX FORMED FROM THE CONCENTRATED	TLUS	122
C		MASSES SPECIFIED ON THE NODAL POINT CARDS (SEE	TLUS	123

-

- - -

	-					
	3			PT.15 BELCH). TYPICAL VALUES ARE 0.5-0.75	TLUS	124
	r	11-20	ECT.	DATID OF FREETIVE CHEAD STRAIN TO MAY CHEAD	T 1 1 15	175
	C .	11-20	FUI	RATIO OF EFFECTIVE SHEAR STRATE TO MAR, SHEAR	1 603	120
	C			STRAIN. (TYPICAL VALUES ARE 0.6 TO 0.7)	TLUS	126
	r			USED FOR DETERMINING STRAIN COMPATIBLE SOLL	71.115	127
	2					<u>.</u>
	ن			PRUPERTIES.	1502	128
	C				TI US	129
	č o	C 04170	01 0100 (500	NAMBING CHARACTERIETICE ICIN //	T1 11C	120
	L 8.	LUNIK	UL LARD FUR	DAMPING CMARACIERISTICS (FIU.41	1602	120
	C	1-10 S	DAMP	IF UNIFORM DAMPING IS USED IN ALL ELEMENTS.	TLUS	131
	r			CHNCH THE INTECTION DANDING WATHE, OTHERWICE	TILLE	125
				FURCE THE UNIFURN DAMPING TALDES GIRENNISE	12.03	152
	C			LEAVE BLANK. (SIMULATION OF MODAL ANALYSIS)	TLUS	133
	r			DAND ING VALUE MUST BE PUNCHED ON ELEMENT CARDS	TLUS	134
	ž				7000	175
	L				1502	132
	C 9.	CONTR	OL CARD FOR	FREQUENCY OF ANALYSIS IN EACH ITERATION(8F10.4)	TLUS	136
	÷	1-10	(TED/1)	HECHERY EDECNENCY THE ANALYCES DUD INC ETDET	TILLE	127
	6	1-10	3127111	RIGHEST FREQUENCI OF ANALTSIS OUKING FIRST	ILUS	131
	C			ITERATIONHZ	TLUS	138
	С		4		ZULIT	130
-			CTCD / MUNDED	LITAURET PRODUCIES OF INTERED FOR THE LART		
			SICPINUMBERI	FRIGHEST FREQUENCE OF ANALTSIS FUR THE LAST	IL US	140
	C			ITERATION HZ(SHOULD BE EQUAL TO TOTER)	TLUS	141
	r				TINC	142
	č				1000	1.46
	L 10.	CENTR	CL CARDS FUR	R RESPUNSE SPECIRA.	TLUS	143
	С			NOTE *** SKIP THESE CARDS IF ND=0	TLUS	144
	Č 13		CHENCY CONT		TEHE	145
	<u> </u>	A. FRE	QUENCT CUNIT	RUL (2710,44,5)	1002	145
	C			IF THIS CARD IS BLANK THE STANDARD VALUES	TLUS	146
	C			ESTRIA, 4.FIAST#40. NINT#40 ARE ASSUMED	ZILLT	147
	ž				1203	4 T 1
	L			THIS WILL LEAD ID A PLUT WHICH FILLS ONE PAGE.	ILUS	148 .
	С	1-10	FSTRT	FIRST FREQUENCY LSED IN RESPONSE SPECTRUM	TLUS	149
	r'				TINC	150
	с -			ANAL 1333. TH	1245	190
	C	11-20	FLAST	LAST FREQUENCY USED IN RESPONSE SPECTRUM	TLUS	151
	C	· · · ·		ANALYSIS -H7	TEUS	152
	ř	21-25	N T M T	TOTAL ANIMARD OF EDEDUCACY STER EDD DESDONSE	T1 110	1 6 7
	C .	21-25	N 7 N 1	TOTAL NUMBER OF TREQUENCE SIEF FUR RESPUNSE	1005	1.75
	C			SPECTRA.	TLUS	154
×	C 10	B. DAM	PINGS (8F10.	- 4 }	TLUS	155
	~ ~	1-10	NAUD(11)	· · · · · · · · · · · · · · · · · · ·	TINC	164
,			DWULLT			1 111
•	C i			ALMATIA SALTIAR CON ACCOUNT CARCENS	1205	
•	c		*	DAMPING RATIOS FOR RESPONSE SPECTRA	TLUS	157
•	C C		* CAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA	TLUS	157 158
•			* GAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA		157 158 159
• • •			* GAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA	TLUS TLUS TLUS	157 158 159
	C C C C C 11.	NODAL	* GAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS	TLUS TLUS TLUS TLUS	157 158 159 163
•	C C C C C 11. C	NODAL	* GAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0.	TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161
•	C C C C 11. C	NODAL	* GAMP(ND)	DAMPING RATIOS FOR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NOTE***SK IP THESE CARDS IF NOUT=0. NODAL POINT NUMBER WHERE OUTPUTS ARE REQUIRED.	TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161
•	C C C C C 11. C	NODAL	* GAMP(ND) POINT OUTP(M	DAMPING RATIOS FOR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NOTE***SK IP THESE CARDS IF NOUT=0. NODAL POINT NUMBER WHERE OUTPUTS ARE REQUIRED.	TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 161 162
• • • • •	C C C C C 11. C C	NODAL 1- 5	* CAMP(ND) POINT OUTPO M	DAMPING RATIOS FOR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NOTE***SKIP THESE CARDS IF NOUT=0. NODAL POINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1	TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163
•	C C C C C 11. C C C C C	NODAL 1- 5 6-10	* CAMP (ND) POINT OUTPO M KEYS PC (3 M-2	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164
	C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10	* GAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE DUTPUTS ARE REQUIRED. M MUST BE LESS THAN NBL) OUTPUT CONTROL IN X DIRECTION A DUTPUT CONTROL IN X DIRECTION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164
• • •	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE DUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165
· · · · · ·	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 161 162 163 164 165 166
• • •	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165
	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-1) KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN X DIRECTION DUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSEC - VALUES	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 166 166 166 166 166 166
• • • •		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE DUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION CDDES FOR KEYSFC - VALUES DMAYIMUM ACCELERATION DNLY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165
	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES DMAXIMUM ACCELERATION ONLY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169
· · ·	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 164 162 163 164 165 166 167 168 169 170
· · ·	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECT BIM	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NBL) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1PLOT ACC. TIME HISTORY 10PLOT ACC. TIME HISTORY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171
· · ·		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Y DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PUNCH ACC. TIME HISTORY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 161 162 163 164 165 166 167 168 169 170 171 172
	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE DUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 100PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLCT FOURIER AMP. OF ACCELERATION	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
· · ·		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY IFLCT ACC. TIME HISTORY 100PLOT ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 1000PLCT ACC.TIME HISTORY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 170 171 172 173 174
· · ·		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 100 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 1000 PLCT FOURIER AMP. OF ACCELERATION 10000 PLOT AMPLIFICATION FUNCT.	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
•		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 1000PLOT AMPLIFICATION FUNCT.	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175
· · · · · · · · · · · · · · · · · · ·		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTP(M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION) OUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 100PLCT FOURIER AMP. OF ACCELERATION 1000PLCT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176
· · ·		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NBL) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 100 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100 PLOT ACC. TIME HISTORY 1000 PLCT FOURIER AMP. OF ACCELERATION 10000 PLOT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175 176 177
-		NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1) KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Y DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ADDS FOR STRESSES -NELS CARDS (215)	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 163 164 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
· · ·	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C.	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215)	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
· · ·	C 11. C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 100 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT APLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175 176 177 178
· · · · · · · · · · · · · · · · · · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M) STCONTROL C. NSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSPC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 100 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100 PLOT ACC. TIME HISTORY 1000 PLCT FOURIER AMP. OF ACCELERATION 10000 PLOT APPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 168 169 170 171 173 174 175 176 177 178 179 180
· · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE DUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLOT ACC. TIME HISTORY 1000PLOT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 162 163 164 165 166 165 166 167 168 169 171 172 173 174 175 176 177 178 179 180
· · · · · · · · · · · · · · · · · · ·	C 11. C 11. C C 11. C C C C C C C C C C C C C C C C C C C	NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N) KEYSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SKIP THESE CARDS IF NOUT=0. NDDAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION CDDES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 10 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100 PLOT ACC. TIME HISTORY 1000 PLCT FOURIER AMP. OF ACCELERATION 1000 PLCT AUTION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED OUTPUT CONTROL OF STRESS TIME HISTORY	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
· · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KEYSPC(3M) KEYSPC(3M-2 KEYSPC(3M) KEYSPC(3M)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NOTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NBL OUTPUT CONTROL IN X DIRECTION OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY I FLCT ACC. TIME HISTORY 100 PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT ACC. TIME HISTORY 1000 PLOT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSESNELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED OUTPUT CCNTROL OF STRESS TIME HISTORY CODES FOR KEYSTR	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182
· · · · · · · · · · · · · · · · · · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) PDINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N) KEYSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION OUTPUT CONTROL IN Z DIRECTION CODES FDR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY IPLOT ACC. TIME HISTORY 100PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLOT ACC. TIME HISTORY 1000PLOT ACC. TIME HISTORY 1000PLOT ACC. TO FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS ARDS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED OUTPUT CONTROL OF STRESS TIME HISTORY 10PLOT TIME HISTORIES OF STRESSES	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 162 163 164 165 166 165 166 168 169 171 172 173 174 175 177 178 179 180 182 183
· · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) POINT DUTPO M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N) KEYSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN Y DIRECTION DUTPUT CONTROL IN Y DIRECTION CODES FDR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1-FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PLOT ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT AUPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS AROS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED OUTPUT CCNTRCL OF STRESS TIME HISTORY CODES FOR KEYSTR 1PLOT TIME HISTORIES OF STRESSES	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 174 175 176 177 178 179 180 181 182
· · · · · · · · · · · · · · · · · · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) POINT OUTPO M KEYSPC(3M-2 KE	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NOTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN X DIRECTION DUTPUT CONTROL IN Z DIRECTION CODES FOR KEYSFC - VALUES 0MAXIMUM ACCELERATION ONLY 1	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 159 160 161 162 163 164 165 166 165 166 167 168 169 170 171 172 173 174 175 177 179 180 181 182 183
· · · · · · · · · · · · · · · · · · ·		NODAL 1- 5 6-10 11-15 16-20 CUT PU 1- 5 6-10	* CAMP(ND) PDINT DUTP(M KEYSPC(3M-2 KEYSPC(3M-1 KEYSPC(3M-1 KEYSPC(3M) ST CONTROL C. NSTR(N) KEYSTR(N)	DAMPING RATIOS FCR RESPONSE SPECTRA UT CONTROL CARDS (415) - NOUT CARDS NDTE***SK IP THESE CARDS IF NOUT=0. NODAL PCINT NUMBER WHERE OUTPUTS ARE REQUIRED. M MUST BE LESS THAN NB1) OUTPUT CONTROL IN X DIRECTION) OUTPUT CONTROL IN X DIRECTION OUTPUT CONTROL IN X DIRECTION CODES FOR KEYSPC - VALUES 0MAXIMUM ACCELERATION ONLY 1FLCT ACC. TIME HISTORY 10PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100PUNCH ACC. TIME HISTORY 1000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT FOURIER AMP. OF ACCELERATION 10000PLCT AMPLIFICATION FUNCT. SUM THESE VALUES FCR SEVERAL OPTIONS AROS FOR STRESSES -NELS CARDS (215) ELEMENT NUMBER AT WHICH STRESS TIME HISTORY IS ASKED OUTPUT CONTROL OF STRESS TIME HISTORY 10PLOT TIME HISTORIES OF STRESSES 10PRINT TIME HISTORIES OF STRESSES 10PRINT TIME HISTORIES OF STRESSES	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	157 158 160 161 162 164 165 166 165 166 166 166 166 171 172 173 175 176 177 178 181 182 181 182 185

-

٠

.

.

·

••

2		TLUS	186
С	SUM THESE VALUES FOR COMBINED OPTIONS	TLUS	187
C		TLUS	188
C	13. ELEMENT CARDS (914,312,F4.3,3F10.4,F4.3)	TLUS	189
C	1 – 4 N ELEMENI NUMBER	ILUS	190
C	5- 8 NPI(N) SEQUENCE ND. OF NODAL POINT I	ILUS	191
L C	9-12 NP2(N) SEQUENCE NO. OF NUCAL PUINI 2	TLUS	192
ل م	13-16 NP3(N) SEQUENCE NO. OF NODAL POINT 3	TLUS	104
с г	1/720 NATINI SEQUENCE ND CE NODAL POINT A 21-24 NDS(N) SEQUENCE ND CE NCDAL POINT S	TILLOS	194
r	21-24 NF3NI SEQUENCE NO. OF NOAL FOINT A	TIUS	196
r.	29-32 $PT(N)$ SEQUENCE NO. DE NORME POINT 7	TEUS	197
č	33-36 NP8(N) SEQUENCE NO. OF NODAL POINT 8	TLUS	198
č	37-38 MTYPE(N) MATERIAL TYPE NUMBER. O MEANS MATERIAL WITH	TLUS	199
č	STRAIN-INDEPENDENT PROPERTIES.	TLUS	200
C	IF KMATYP=1, 1 HEANS CLAY AND 2 MEANS SAND.	TLUS	201
C	39-40 LX GENERATION INCREMENT	TLUS	202
C	41-42 IDEL(N) IDENTIFICATION NO. OF THE ELEMENT	TL US	203
С	43-46 PO(N) POISSON S RATIC. MUST BE LESS THAN .5	TLUS	204
С	47-56 CENS(N) UNIT WEIGHT -PCF	TLUS	2 0 5
C	57-66 S3(N) MAX. SHEAR MCDULUS -KSF	TLUS	206
C	67-76 G(N) INITIAL ESTIMATE OF SHEAR MODULUS -KSF	TLUS	207
5	(7-80 XL(N) INITIAL ESTIMATE OF FRACTION OF CRITICAL DAMPING	ILUS	208
L c		TLUS	209
L c	ELEMENI LARUS MUSI DE IN NUMERICAL SEQUENCE. IF	TINE	210
ç	CANDS ARE UNITED THE CLEMENT DATA HILL DE	TING	212
r r	UTH ATTEC ALTER ATTENDED BY LEVERATE FROM THE DECYTORS	TLUS	213
ř	FILMENT, LAST FLENENT CARD MUST BE PROVIDED.	TEUS	-214-
Ċ	ELEMENTS WITH THE SAME ID NO. (DIFFERENT THAN O)	TLUS	215
č	SHOULD HAVE THE SAME GEDMETRY. NORMALIZED STIF.	TLUS	216
č	AND MASS MATRICES WILL THEN BE DUPLICATED.	TLUS	217
С		TLUS	218
С	14. MATERIAL CURVES - MATYP GROUPS OF THREE CARDS	TL US	219
С	NOTE ***SKIP IF MATYP=0 OR KMATYP=1	TLUS	220
С	14A. IDENT IF ICAT ION (15, 12A6)	TLUS	221
C	1- 5 N MATERIAL TYPE NUMBER		
C		TLUS	222
	6-77 TTL MATERIAL IDENTIFICATION	TLUS TLUS	222 223
ž	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F5.3)	TLUS TLUS TLUS	222 223 224
č	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) REP CENT STRAIN	TLUS TLUS TLUS TLUS	222 223 224 225 224
c c c	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.01 PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228
000000	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229
0000000	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230
000000000	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 46-50 REDUCTION FACTOR AT 10**(-5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(1.0) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(0.5) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT (11F5.3)	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 235
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(1.0) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT (11F5.3) 1- 5 DAMPING AT 10**(-4.0) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 235 236
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(1.0) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT (11F5.3) 1- 5 DAMPING AT 10**(-4.0) PER CENT STRAIN 6-10 DAMPING AT 10**(-3.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 236 237
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 46-50 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14-55 DAMPING AT 10**(-4.0) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 15 DAMPING AT 10**(-3.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 235 235 235 237 238 237 238 237
	6-77 TIL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-50 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-55 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTICAL DAMPING AT 10**(-2.5) PER CENT STRAIN 15. DAMPING AT 10**(-2.5) PER CEN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 240 241 232 234 234 234 234 234 234 234 234 234
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F5.3) 1-5 REDUCTIEN FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTIEN FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTIEN FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTIEN FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTIEN FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTIEN FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTIEN FACTOR AT 10**(-1.5) PER CENT STRAIN 36-40 REDUCTIEN FACTOR AT 10**(-0.5) PER CENT STRAIN 41-45 REDUCTIEN FACTOR AT 10**(-0.0) PER CENT STRAIN 41-45 REDUCTIEN FACTOR AT 10**(-0.0) PER CENT STRAIN 46-50 REDUCTIEN FACTOR AT 10**(-0.0) PER CENT STRAIN 51-55 REDUCTIEN FACTOR AT 10**(0.5) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 6-10 DAMPING AT 10**(-3.5) PER CENT STRAIN 11-15 DAMPING AT 10**(-3.5) PER CENT STRAIN 11-25 DAMPING AT 10**(-3.5) PER CENT STRAIN 12-25 DAMPING AT 10**(-2.5) PER CENT STRAIN 12-25 DAMPING AT 10**(-2.5) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.5) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.5) PER CENT STRAIN 26-30 DAMPING AT 10**(-2.5) PER CENT STRAIN 26-30 DAMPING AT 10**(-2.5) PER CENT STRAIN 26-30 DAMPING AT 10**(-1.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCT ION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.6) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-1.6) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.6) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.7) PER CENT STRAIN 41-50 REDUCTION FACTOR AT 10**(-1.6) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPING AT 10**(-1.5) PER CENT STRAIN 15. 30 DAMPING AT 10**(-1.5) PER CENT STRAIN 31-35 DAMPING AT 10**(-1.6) PER CENT STRAI	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1-5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5) PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-1.0) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 41-50 REDUCTION FACTOR AT 10**(-0.0) PER CENT STRAIN 14-5 DAMPING AT 10**(-2.0) PER CENT STRAIN 11-15 DAMPING AT 10**(-2.0) PER CENT STRAIN 12-25 DAMPING AT 10**(-2.0) PER CENT STRAIN 26-30 DAMPING AT 10**(-2.0) PER CENT STRAIN 21-25 DAMPING AT 10**(-1.0) PER CENT STRAIN 26-30 DAMPING AT 10**(-1.0) PER CENT STRAIN 31-35 DAMPING AT 10**(-0.5) PER CENT STRAIN 31-35 DAMPING AT 10**(-0.5) PER CENT STRAIN 31-35 DAMPING AT 10**(-0.5) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	6-77 TIL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCTION FACTORS (11F 5.3) 1- 5 REDUCTION FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTION FACTOR AT 10**(-3.5] PER CENT STRAIN 11-15 REDUCTION FACTOR AT 10**(-3.0] PER CENT STRAIN 16-20 REDUCTION FACTOR AT 10**(-2.5] PER CENT STRAIN 21-25 REDUCTION FACTOR AT 10**(-2.0] PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5] PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-1.6] PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.6] PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.6] PER CENT STRAIN 46-50 REDUCTION FACTOR AT 10**(-0.6] PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(1.6) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14-15 DAMPING AT 10**(-3.6) PER CENT STRAIN 11-15 DAMPING AT 10**(-3.6) PER CENT STRAIN 12-25 DAMPING AT 10**(-2.5) PER CENT STRAIN 12-55 REDUCTION FACTOR AT 10**(-3.6) PER CENT STRAIN 14-55 REDUCTION FACTOR AT 10**(-3.6) PER CENT STRAIN 14-55 REDUCTION FACTOR AT 10**(-3.6) PER CENT STRAIN 14-56 DAMPING AT 10**(-2.6) PER CENT STRAIN 14-57 DAMPING AT 10**(-3.6) PER CENT STRAIN 15-57 DAMPING AT 10**(-2.6) PER CENT STRAIN 16-20 DAMPING AT 10**(-6.6) PER CENT STRAIN 16-20 DAMPING AT 10**(-6.6) PER CENT STRAIN 16-30 DAMPING AT 10**(-6.6) PER CENT STRAIN 16-40 DAMPING AT 10**(-0.6) PER CENT STRAIN 16-45 DAMPING AT 10**(-0.6) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 244 245
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6-77 TTL MATERIAL IDENTIFICATION 14B. SHEAR MODULUS REDUCT ION FACTORS (11F 5.3) 1- 5 REDUCTICN FACTOR AT 10**(-4.0) PER CENT STRAIN 6-10 REDUCTICN FACTOR AT 10**(-3.5) PER CENT STRAIN 11-15 REDUCTICN FACTOR AT 10**(-3.0) PER CENT STRAIN 16-20 REDUCTICN FACTOR AT 10**(-2.0) PER CENT STRAIN 21-25 REDUCTICN FACTOR AT 10**(-2.0) PER CENT STRAIN 26-30 REDUCTION FACTOR AT 10**(-1.5) PER CENT STRAIN 31-35 REDUCTION FACTOR AT 10**(-0.5) PER CENT STRAIN 36-40 REDUCTION FACTOR AT 10**(-0.6) PER CENT STRAIN 41-45 REDUCTION FACTOR AT 10**(-0.6) PER CENT STRAIN 46-50 REDUCTION FACTOR AT 10**(-0.6) PER CENT STRAIN 51-55 REDUCTION FACTOR AT 10**(-1.6) PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14C. FRACTIONS OF CRITICAL DAMPINGS IN PER CENT STRAIN 14-5 DAMPING AT 10**(-4.0) PER CENT STRAIN 11-15 DAMPING AT 10**(-2.5) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 16-20 DAMPING AT 10**(-2.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-1.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 21-25 DAMPING AT 10**(-2.6) PER CENT STRAIN 31-35 DAMPING AT 10**(-1.6) PER CENT STRAIN 31-35 DAMPING AT 10**(-1.6) PER CENT STRAIN 31-35 DAMPING AT 10**(-0.6) PER CENT STRAIN 31-35 DAMPING AT 10**(-0.6) PER CENT STRAIN 31-45 DAMPING AT 10**(-0.6) PER CENT STRAIN 31-45 DAMPING AT 10**(-0.6) PER CENT STRAIN 36-40 DAMPING AT 10**(-0.6) PER CENT STRAIN	TLUS TLUS TLUS TLUS TLUS TLUS TLUS TLUS	222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 244 245 246

•

,

- -

r			T1115 248
č	15. NODAL POINT CARD	S (15.3F10.4.15.F10.4.15)	TLUS 249
õ	I- 5 M	NGDAL POINT NUMBER	TI US 250
ř	6-15 X080(M)	X-COORDINATE -ET	TI 115 251
č	16-25 YORD(M)	Y+COORDINATE -FT	Ti iis 252
ř	26-35 70P0/M		71 115 752
2	24-40 KEND(H)	KEN ERR DISRIGERENT ROUNDIRN CONDITIONS	TLUS 255
Č	30-40 KEIDU(H)	RET FOR DISPLACEMENT DOUNDART CONDITIONS	1103 204
r r		KELAIIVE IU MUVING KIGID DASE	ILUS 255
ل م		U - FREE PULNI AND PULNIS UN RIGID BUUNDARY	1LUS 256
Ċ		1 - CANNUT HOVE IN X-DIRECTION	1LUS 257
C		2 - CANNOT MOVE IN Y-DIRECTION	TLUS 258
C		3 - CANNOT MOVE IN Z DIRECTION	TLUS 259
Ç		4 - CANNOT MOVE IN X DR Y DIRECTION	TLUS 260
C		5 - CANNOT MOVE IN Y OR Z DIRECTION	TLUS 261
C		6 - CANNOT MOVE IN Z OR X DIRECTION	TLUS 262
C		7 - FIXED	TLUS 263
С	41-50 SHAS[M]	WEIGHT OF MASS ACTING AT NODAL POINT M -KIPS	TLUS 264
¢	51-55 NG	GENERATOR INCREMENT	TLUS 265
С			TLUS 266
C		NODES NEED NOT BE IN ORDER. NODAL COORDINATES	TLUS 267
С		CAN BE GENERATED ALGNG & STRAIGHT LINE CONNECT	-TLUS 268
С		ING THE NODES ON TWO SUCCESSIVE CARDS. NODE	TLUS 269
C	•	NUMBERS ARE COMPUTED AS MANG, MAZNG ETC. USING	TLUS 270
C	t	'N AND NG ON THE FIRST CARD. MASS IS INTERPOLATED	DTLUS 271
С		FRCM THE TWO END VALUES AND THE BOUNDARY	TLUS 272
С		CONDITIONS ARE SET EQUAL TO THOSE ON THE FIRST	TLUS 273
С		CARD IF INPUT POSITIVE OR SET TO ZERO OTHERWISE.	TLUS 274
С	,		TLUS 275
C	16. EARTHQUAKE RECCR	D CARDS	TLUS 276
C	16 A. EARTHQUAKE NAM	E CARD (12A6)	TLUS 277
С	1-72 EQN(12)	IDENTIFICATION OF EARTHQUAKE RECORD	TL US 278
Ċ	168. EARTHQUAKE REC	ORD (8F9.6) - (N3+71/8 CARDS	TLUS 279
Ċ	U2G[1]	INPUT ACCELETATIONS-G	TLUS 280
c		DIGITIZED AT THE SPECIFIED TIME INTERVAL DT.	TL US 281
Ċ-	ے ہے۔ ایک میں اور	an a	-TLUS 282
С	INPUT DATA FOR MODE2		TLUS 283
C -	· · · · · · · · · · · · · · · · · · ·		-TLUS 284
С	0. OPERATION MODE C.	ARD (15,110) SEE PT.O ABOVE	TLUS 285
C			TLUS 286
С	1. CENTROL DATA 110	151	TL US 287
ΞC.	1- 5 KDISP	SEE PT.6 ABOVE	TLUS 288
С	6-10 KSTRN	SEE PT.6 ABOVE	TLUS 289
С	11-15 KPNCH	SEE PT.6 ABOVE	TLUS 290
С	16-20 NOUT	SEE PT.6 ABOVE	TLUS 291
С	21-25 ND	SEE PT.6 ABOVE	TLUS 292
Ċ	26-30 NSKIP	SEE PT.6 ABOVE	TLUS 293
Ć	31-35 NELS	SEE PT.6 ABOVE	TLUS 294
Ē	36-40 NUMBER	SEE PT-2 ABOVE	TL US 295
č	41-45 KBIINE	SEE PT. 3 ABOVE	TLUS 296
č	46-50 NEGRM	SEE PT.2 ABOVE	TLUS 297
Ē			TLUS 298
č	2. EREQUENCY OF ANA	I YSTS CARD	TLUS 299
č	24 NASTER CONTRO	(F10.4.15)	TLUS 300
ř	1-10 TOTERN	NEW TOTER. SEE PT.5A AROVE	TI US 301
ř	11-15 K INTSN	NEW KINTS. SEE PT. 54 ABOVE	TUIS 312
ř	22 22 N 6111 OIL	TE RIANK, PREVIOUS INTERPOLATION RANGES WILL RE	TI US 302
ř		HSED. IN THIS CASE, SKIP 28.	TLUS 304
r	28. INTELCADOR	(F10.4. 15)	TI 115 205
ř	- 1-10 CDAINT(1) -	SEE PT. S.R. AROVE	TLUS 204
U.		and the state of the second	1203 300
- r	11-15 ¥ INT/ 11	SEE PT. 58 ABOVE	TEHS 217
С г	11-15 K INT(I)	SEE PT.5B ABOVE	TLUS 307
C	11-15 K INT(1)	SEE PT.58 ABOVE	TLUS 307 TLUS 308

. .

- c	SEE PT_9 ABOVE	THIS 310
Ē		TE US 311
č	4. CONTROL CARD FOR RESPONSE SPECTRA (2810.4.15) AND (RELO.4)	TEUS 312
č	SEE PT LOA AND TOR ARVE	TLUS 313
-č		TLUS 314
č	5. OUTPUT CONTROL CARDS (415) - NOUT CARDS	TL 115 315
Ē	SEE PT-12 ABDVE	TI US 316
č	6. OUTPUT FOR STRESSES (215) -NELS CARDS	TE US 317
č	SEE PT-12 ABOVE	TI IIS 31 8
č		TEUS 319
		TLUS 320
č	INPUT DATA FOR MODES	TLUS 321
ċ		
Ē	0. OPERATION MODE CARD (15). SEE PILD ABOVE	TEUS 323
Ē		TI 115 324
Ē	1. CONTROL DATA (715)	TLUS 325
	1-5 KANCH SEE PT.6 ABOVE	TI US 326
č	6-10 NOUT SEE PT.6 ABOVE	TLUS 327
č	11-15 ND SEE PT.6 ABOVE	TI US 328
ō		TLUS 329
- 2		TI US 330
č		TEUS 331
	31-35 KSTRN SEE PT-6 ABOVE	TI US 332
Ē		TI 115 333
- ē	2. CONTROL CARDS FOR RESPONSE SPECTRA (2E10.4.15) AND (BE10.4)	TL US 334
č	SEE PT. 104 AND 108 ABOVE	TLUS 335
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		THUS 336
č	3. OUTPUT CONTROL CARDS (415) - NOUT CARDS	TLUS 337
	SEE PT.11 ABOVE	TUIS 338
č		TIUS 339
- ĉ	4. OUTPUT FOR STRESSES 12151 -NELS CARDS	TLUS 340
č	SEE PT. 12 ABOVE	TEUS 341
ē		TI US 342
c		TI US 343
	COMMON XX(1)	TLUS 344
C		TLUS 345
•••	CALL SECONDITINII	TLUS 346
	PRINT 6100, TIM1	TLUS 347
· 1	CALL INPT (XX, TIM1)	TLUS 348
	GO TO 1	TL US 349
	6100 FORMAT TIDX, 32HTINE REQUIRED FOR COMPILATION = .FI0.3,6H SE	C ITLUS 350
	END	TLUS 351
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
	-	
		· · · · · · · · · · · · · · · · · · ·

1 . L

.

• `

#### 6. EXAMPLE PROBLEM

#### 6.1 Problem Description

A fictitious earth dam founded in a V-shaped valley will be used as an example problem for TLUSH. The geometry of the dam along with the finite element model used in the analysis are shown in Figs. 5, 6 and 7. It can be seen that the dam is geometrically symmetrical with respect to the A-A and E-E planes. Since the analysis will be performed for earthquake motions in the x-direction the deformation pattern of the dam will be symmetrical with respect to the A-A plane and anti-symmetrical with respect to the E-E plane. Accordingly, only one quarter of the model needs to be considered in the analysis, and symmetry and anti-symmetry boundary conditions have to be provided on the A-A and E-E planes respectively.

The response of the dam will be evaluated for an earthquake motion digitized in 64 points at a time interval of 0.04 seconds. A quiet zone consisting of 64 zeroes will be added at the end of the record to give a total analysis duration of 5.12 seconds. The original motion has a peak acceleration of 0.05g but will be scaled to a peak value of 0.10g and will be baseline corrected. The highest frequency in the Fourier spectrum of this motion is 12.5 Hz. However, a cut-off frequency of 10 Hz will be used in the first two iterations and one of 12.0 Hz will be used in the third iteration.

The shells and core of the dam are assumed to be composed of sands and clays respectively. These materials are assumed to have strain compatible properties defined by the relationships built in the program,






FIG. 6 NODAL POINT NUMBERING SYSTEM AND MATERIAL PROPERTIES



FIG. 7 ELEMENT NUMBERING SYSTEM

and to have a shear modulus at low strains of 1500 ksf. Unit weights of 120 and 110 pcf have been assigned to the shell sands and the core clays respectively.

Although convergence of the strain-compatible soil properties might be achieved in two iterations, three iterations will be performed to illustrate operation of the program in MODE1 and MODE2. Two iterations will be performed using MODE1 and one iteration will be done in MODE2. The acceleration amplification functions, the Fourier spectra and the acceleration time histories for nodal points 1, 3 and 19 will be computed and plotted. The RMS procedure will be used for computing maximum shear strains in MODE1 and the time domain approach will be used in MODE2. Additionally MODE3 will be used to generate the Fourier spectrum and the response spectra for the acceleration time history at nodal point 1 and the stress time histories for element number 14.

## 6.2 Input Data Cards

Images of the data cards required for the example run are shown in the following pages. The data is shown exactly as it appears on the data cards and should be compared with the detailed description of the data format given in section 5.

1 Exampi	15 LE PROB	000 1158 FO	R TL	лsн						INI	PUT DAT	A CARDS	FOR	MODEL	,
25	44 64 0	26	18	2	2	<u>1</u> .	. <u>0</u>	1	-						
	0.	0	0.0	5				•							
3 •0		4 5													۰
5.C 3.D		3													
້ວ້ວ	-	8	•	~	·					—					
0.5	<u></u> 0.	5 65	3	0	2	U									
10.0	10	. 0													
3	10001	0	0			··· -···							. <del></del>		
19	10001	ŏ	0	• • • •											
1	10 14	· 5	1 2 1	LI 19 L3 41	6 6 42	2	1 1 10	• 45	110.0	1	500.0	900.0 900.0		0.05	
4	13 41	. 42	4 4	43 43	44	44	1 20	.45	110.0	1	500.0	900.0		3.35	
6	15 16	3 9	6	6 38	39	7	í io	.45	110.0	i	500.0	900.0		0.05	
8	16 38	39	8	41 4) 18 34	. 42 35	42 9	1 20	•45	110.0	1	500.0	900.0 900.0		0.05 0.05	
9	18 34	35	9 1	38 38	39	39	1 20	.45	110.0	1	500.0	900.0		0.05	
12	21 21	16	12 4	40 40	41	13	2 30	.35	120.0	1	500.0	900.0		0.05	
13 14	40 40	41	13 4	43 43 20 20	5 43 3 18	43 15	2 40 2 50	•35	120.0	1	500.0 500.0	900.0 900.0		0.05	
15	20 23	18	15 J	21 3	38	16	2 50	-35	120.0	1	500.0	900.0		0.05	
17	22 28	29	17 2	23 3	34	18	2 50	.35	120.0	1	500.0	900-0	l	0.05	
18 19	23 33	34	18 1	37 31 25 2	38 5 23	38 20	2 60 2 30	35	120.0	$-\frac{1}{1}$	500.0	900.0	· <b>-</b> ····	0.05	
20	25 25	23	20	36 36	37	21	2 30	.35	120.0	1	500.0	900.0		0.05	
22	24 27	1 28	22	25 3	2 33	23	2 50	• 35	120.0	1	500.0	900.0		0.05	
23 24	25 32	33 5 27	23 : 24	36 36 31 3	37	37 25	2 60 2 30	•35 •35	120.0	1	500.0	900.0 900.0	i	0.05	
25	31 31	. 32	25 :	36 30 40	36	36	2 40	.35	120.0	1	500.0	900.0		0.05	
2	46.0	30.	õ	30.	0		2			1					
4	46.0 46.0	30.	0	40,	.0 0		2								•
6 7	46.0	20 -	0	30	0		- 2								
8	46.0	10.	ů.	40.	0		5								
9 10	46.0 36.0	10. 30.	0	40	.0		-3			1					
13 14	36.0	30. 20.	0	10. 40	0.0		- 3			1					
16	36.0	20.	0	20	0	• • •				Ξ					
18	36.0	10.	.0	30	.0		3								
19	24.0	20.	0.0	40. 20.	0		-3			1					
22	24.0	10.	.0	40	0		3								
24 24	12.0	10,	,0	40.	0		3								
25 24	12.0	10.	0	30 40	.0					1					
29	36.0	00.	0	40	.0					-					
30 31	00.00	00.	.0	30.	.0					1					
- 34 - 35	36.0 46.0	00. 00-	0	30 30	0				·····				<u> </u>		
36	12.0	10.	.0	20.	0					1					
28 39	50.U 46.0	10.	0	20.	0										
40 41	24.0 36.0	20. 20.	0	10	0										
42	46.0	20.	0	10.	0									· · ·	
43	20.0 46.0	30. 30.	0	00 00	.0										
** _00	EXAMPL 0 20 4	E EAR	THOU	4XE **	- 00'	0.04	SEC	64 11	POINTS	o .	009534	00349	ł	1	
.01	3073	009455	• 0	00374	.01	3791	0223	05 -	.01897	6 -	011557	04813	9	2	
.01	<del>- ۲</del> ۵۶ <del>-</del>	629759 .000068	.c. 0.	11100	02	5240 5808	.0155	00 - 66	.01341	7. 2.	023272	01339	7 2	3	
+05					- 004	60.33	- 0175	61	00306	- ·	A1 AA1 B	00011	,		
•05 •00	8954 8450	020445	Di Al	13087 01441		0952	.0000	68 -	. 0.71 00	з <b>— .</b> Я	UI UNNA OTOALE		۱ ۲	2	

.

53

-----

_ -

INPUT DATA CARDS FOR MODE2 2 15000 1 1 0 3 0 2 0 1 1 0 12.0 3 ----------5.0 5 . . 10.0 3 . 12.0 5 12.0 . 111001 311001 1911001 ٥ 0 0 0 0 0 . . . . . . . . . . . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . _____ a a particular and an and an an and a second -----. . . . .

3 15000 1 1 2 1 1 2 0.05 1 1010 0 0 14 1 INPUT DATA CARDS FOR MODES INPUT DATA CARDS FOR MODES

54

i i

____

## 6.3 Computer Output

The printed output corresponding to the example problem is shown in the following pages, exactly as produced by a CDC 7600 computer, except for some blank space in between tables. It is once again noted that a complete record of the input data and solution remains stored on TAPE1. This additional output of the program is disposed onto a magnetic tape or disc.

********* * MODE1 * ********

*** BLANK COM4CN REGUIREMENTS ***

863 1 5003 1068 940 1757 1499 6621 72 12 LENGTH UF BLANK COMMCN = BLANK COMMEN REQUIRED FUR VEDDA = 44X. WDPDS REQUIRED FOR BBBC = BLANK COMMCN FOR PERMANENT CATA = BLANK COMMEN FOR BEBC = RLANK CUMMON REQUIRED FOR MCTICN = MAX. WORDS REDUIRED FOR AAAC = BLANK COMMON REQUIRED FOF STRAIN = BLANK CUMMUN FOR AAAC = ----1

EXAMPLE PROBLEM FOR TLUSH

---

RUN NUMBER =

*** INPUT DAIA *** TITAL NUMBER JE LEMENTS = 10TAL NUMBER OF NODAL POINTS = 15T NODAL POINT 0: R161D bASE = 76GFE5 UF FREEDCM = NUMBER OF DOUNDARY CONDITIONS = NUMBER OF ATERIAL TYPES = NUMBER OF ATERIAL TYPES =

ţ

TIMES LVPJT MOTION TIMES LVPJT MOTION TIMES LVPJT MOTION .040 SEC. 2.560 SEC. 2.560 SEC. 5.120 SEC. 5.120 SEC. 2.0000 11MES 0. 11MES 0. 11MES 128 64 *** INPUT MOTION ***
TOTAL NO. OF POINTS USED IN.FFT = 1
LAST POINT TO BE REEQNE =
 TINE STEP DIR TTD BE REEQNE =
 UURATION DF RECORD =
 OURATION DF RECORD =
 CUIET ZUNE UF RECORD =
 TOTAL DURATION OF ANALYSIS =
 AAX. ACCEL. AFFER SCALING = 0
 MOTION IN Y-DIRECTION = 0.
 MOT

BASE LING CORRECTION WILL BE APPLIED

HΖ

2. -- 3.001 HZ(KINT= 5) 3.000 -- 0.000 HZ(KINT= 3) 6.000 -- 0.000 HZ(KINT= 5) 8.000 -- 10.000 HZ(KINT= 3) 8.000 -- 10.000 HZ(KINT= 3) FREQUENCY USED FUE TERATION 1.=

10.000 10.000

74 74

.6500

128

*** OUTPUT CONTPOL *** *** OUTPUT CONTPOL *** COMPUTING NEW SOIL PROPERTIES = YE COMPUTING NEW SOIL PROPERTIES = YE PUNCHING YEW SOIL PROPERTIES = NO STEPS TO FINN MAX. KESPINSE = 1 STEP POINTS FOR PLOTTING = FACTOR FOR FOR FOR PLOTTING =

YES. 0N . 500 J

n n

*** MASS MATRIX *** Fraction of Consistent Mass Fraction of Luyped Mass

0N

8

*** DAMPING CHARACTERISTICS *** UNIFERM DAMPING USED

*** DUTPUT REQUIREMENTS *** CODES FOR REVEAU U--MAXIMUM ACCELERATION UNLY I--MOTACC. TIME HISTORY LD--PLOT ACC. AND VELICITY RESPONSE SPECTRUM LDD--PLOT ACC. TIME HISTORY LDD--PLOT FOURTER MAY. OF ACCELERATION LODD-PLOT AMPLIFICATION FUNCTION

.....

VALUES OF KEYSPC

N.P.10.	X-CUTPUT	TUGIU0-Y	2-001201
1	10001	0	0
3	1001	U U	0
19	10001	G	0
		· · · · ·	

*** SHEAP MODULUS AND DAMPING CURVES FOR MATERIALS WITH STRAIN-DEPENDENT PROPERTIES ***

.

_ STANDARD FUILT IN CURVES ARE USED ....

. . . . . . . .

MAT. FYPE -- IDENTIFICATION

SHEAP MEDULUS CURVES

----

4 A T					SHEAF	STRAIN IN	PERCENT				
TYPE	10**(-4,0)	10**(-3.5)	102#(-3,0)	10**{-2.5}	10**(-2.0)	10**(-1.5)	10**(-1.0)	10**(-0.5)	10++1 0.01	10**( 0.5)	10**( 1.0)
1	.13€+01 .13€+01	.912+0. .985+0⊃	,782+00 ,938+00	. 378+00 .835+00	,435+30 ,556+00	.25E+00 .44E+00	-15E+30 -25E+00	.765-01 .125+00	.375-01 .492-01	.13E-01 .49E-01	.40E-02 .49E-01

DAMPING CURVES (PERCENT)

<b>MAT</b>					SHEAF	STRAIN IN	PERCENT	·			
TYP⊆	10**1-4_01	10**(-3.5)	10**(-3.0)	10**(-2.5)	1-)**(-2.01	10**[-1.5]	10**(-1.0)	10**(-0.5)	10**( 0.01	10**1 0.51	10**( 1.0)
1 2	•251+r1 •5v∃+00	•258+01 •80 <u>5</u> +00	.25€+01 _17E+J1	.35E+J1 .32E+01	, ≒8€+J1 •56€+O1	.55E+01 .10E+02	.435+31 .188+32	•14E+02 •21E+02	-208+02 -258+02	.26E+02 .25E+02	.29E+02 .25E+02

,

ł ł l ł ł ł ł 1 Ł ł. ł ł ł ł l ł. ł l L ł ł . ł ł Ł Ł l Ł L

***	5L 6 46)	ኮፐ ካልገ.	A 988													
ν3.	4P1	1.37	NP3	4P+	NP 5	чр¥	NP 7	N2 3	4 T <b>Y</b> PE	10.61	Pu	UNIT WT. (PCF)	G-MAX (KSF)	G-USE [KSF]	OMP-USE (FRACTION)	VS-USE (FPS)
1	10	24	5	1	11	15	ь	2	1	1	.450	110.000	1500.000	936.003	• 150	513.278
2	11	15	۴	2	12	16	7	3	1	1	450	110.000	1500.000	400.000	.050	513.278
3	12	10	7	2	13	41	42	4	1	1	.450	110,000	1500.000	900.000	.050	513.278
4	1.	41	42	4	43	43	44	44	¥	2	. 450	110.000	1500.000	900.000	. 050	513.278
5	1 -	17	9	5	15	18	9	5	1	ı	.450	110.000	1500.000	900.000	.150	513 278
٥	15	13	Q	6	16	35	39	7	1	1	. 45)	110.000	1503.000	9:00.000	. 5 5 3	513.278
7	16	13	34	7	41	41	42	42	1	2	. 450	110.000	1500.000	900.000	. 350	513.278
8	17	2 4	30	5	18	34	35	9	1	1	. 950	110.000	1500.000	400.000	.050	513.278
4	1.3	34	35	9	38	33	39	39	1	2	. 450	113.303	1500.010	203.333	.350	513.278
10	19	19	14	LJ	2 Ú	23	15	11	2	3	.350	120.000	1500.030	900.000	.050	491.426
11	20	20	15	11	21	21	16	12	2	3	. 350	120.000	1500.000	900.000	.050	491.426
12	21	21	16	12	40	40	41	13	2	Э	.350	120.300	1500.000	900.001	.050	491.426
13	40	40	41	13	43	43	43	43	2	4	.350	120.000	1500.000	900.000	.050	491.426
14	19	22	17	14	20	23	18	15	2	5	.350	120.000	1500.000	900.000	.350	491.426
15	20	23	18	15	51	37	38	15	2	5	+ 350	120.000	1500.000	900.000		491.426
16	2.1	37	38	15	40	40	41	41	2	6	.350	120.000	1500.000	900.000	.050	491.426
17	22	23	29	17	23	33	34	18	2	5	.350	120.000	1500.000	900.000	. 350	491.426
18	23	32	34	14	37	37	38	33	2	6	.353	120.000	1503.000	903.033	. 3 5 3	491.426
19	24	24	22	19	25	25	23	20	2	3	.350	120.000	1500.000	930.000	.050	491.424
20	25	25	23	20	30	30	37	21	2	٦	.350	120.000	1500.000	900.000	. 150	491.424
21	36	36	37	21	40	4:3	43	43	Z	4	.353	123.303	1500.000	900.000	-350	491.426
22	2.4	27	29	22	25	32	33	23	2	5	.350	120.000	1500.030	900.000	.050	491.426
5.3	2.5	32	33	2.3	30	36	37	37	2	6	. 353	120.000	1500.000	900.000	-050	491.426
24	2.6	26	27	24	31	31	32	25	2	3	. 350	120.000	1530.300	900.000	-050	491.426
25	31	31	32	25	36	36	36	35	2	4	.350	120.000	1500.000	900.000	.050	491.426

	AL FOLLI DATA						
					800	NDARY CONDITIC	INS
N+P+	¥090(FI)	YORD(FT)	ZƏRULFTI	MASS (KIPS)	K-DIRECTION	Y-DIRECTION	2-DIRECTION
1	46.000	30.000	44.000	-).		EIXED	61 × 60
2	46.000	30.000	30.000	-0.		ETYED	
Э	44.000	30.030	29.000	0.		EIVED	
+	46.000	30.000	10.000	-0-		FIXED	
5	+6.300	20.000	40.000	-0-		FIXED	FIVED
5	46.000	20.000	30.000	-0.		FIXED	
7	46,000	23.000	20.033	-3.		FIXED	
4	46.200	10.000	40.000	-0.		FIXED	FIXED
a .	46,000	10.000	30.000	-0.		FIXED	
13	35,000	30.000	40.333	-0-			FIXED
11	3.5.000	30,000	30.000	0.			
12	30+000	30.000	20.000	з.			
13	3.9* 050	30.060	10,000	-0.			
14	36.000	20.000	40.000	-0.			FIXED
15	26.000	20.000	30.000	ο.			
16	20100	20.040	20.000	-0.			
17	36.000	10.000	40 <b>.0</b> 00	-0.			FIXED
19	36.010	10.000	30.300	-0.			
19	24. 360	≷ວວ	40.000	-0.			FIXED
20	24.000	20.000	30.000	0.			
21	24,000	53.070	20.000	-).	•		
. 22	24.000	10.000	40.000	-0.			FIXED
Z 3	24.000	10.000	30.000	-0.			
24	12+0:0	13.000	40.000	-0 <b>.</b>			FIXED
5.	12,000	10.000	30.000	-0.			
26	).	ა.	40.000	-0.	FIXED	FIXED	FIXEO
27	12.000	0.	40.000	٥.	FIXED	- F1xED	FIXED
28	24.000	٥.	40.000	0.	FIXED	FIXED	FIXED
2.9	34+000	с.	40.333	-).	FIXED	FIXED	FIXED
3.7	45.00	٥.	43.300	-0.	FIXED	FIXED	6 I X E D
31	J.	<b>ں.</b>	30.000	-0.	FIXED	FlxED	FIXED
32	12. 100	е.	30.000	٥	FIXED	FIXED	FIXEO
33	24,000	<b>ن.</b>	30.000	ປ.	FIXED	FIXED	FIXED
34	: >. 300	٥.	30.000	-0.	FIXEO	FIXED	FIXED
17	45.000	¢.	30.000	- 3.	FIXED	F1XE0	F 1 XED
76	12.700	13.000	20.000	~U.	FIXED	FIXED	FIXED
31	24.000	10.000	20.000	٥.	FIXED	FIXED	FIXED
3.0	3 5. 20 7	10.000	20.000	-·).	FIXED	FIXED	FIXED
39	46.000	10.000	20.000	-0.	FIXED	FIXED	FIXED
40	24.000	20.000	10.000	-0	FIXED	FIKED	FIXED
41	55+ 000	20.000	10.003	-0.	FIXED	FIXED	FIXED
4.2	45.000	20.000	10,000	-0.	FIXED	FIKED	FIXED
43	35.300	30.030	ç.	-0.	FIXED	FIXED	FIXED
44	45.J9C	30.C00	0.	-3.	FIXED	FIXED	FIXED

,

*** HODAL POINT DATA ***

.

.

*** EXKINQUAKE RECORD ***

**	EXAMPLE	FARTHQUAKE	**	0.04 SI	EC 64	POINTS

INPUT ACCEL. PRIOR TO SCALING

MAX. ACC.	= <b>.</b> 0500	(G) AT T	IME ≃	.9600 SEC			
•00	0204000191	.000058	.00146U	.004111	.004390	.009534	J03.81
.01	3073 .009455	.000374	.018791	122315	-, 318976	011557	348139
	3707 029759	. 311100	025240		013417	.023272	013397
. 05	0000 .000058	,012727	.006808	.010065	.010332	006599	001122
.00	8954020449	. 115687	005663	317551	203863	010918	008641
	8450 110743	.001941	003952	.000968	001998	.013888	•JJ8215
.00	9841 .003844	005115	001176	003725	006514	.001117	000+50
. 00	0281 000221	.033197	06 0188	.000135	033188	.000193	000200
3.	2	J	J.	0.	0.	٥.	0.
ο.	ð.	0.	υ.	0.	0.	υ.	0.
o.	Ĵ.	э.	J.	ò.	3.	э.	1.
э.	3.	0.	σ.	e.	υ.	ũ.	0.
υ.	0.	<u>ن</u> .	o.	<b>c.</b>	ů.	0.	0.
3.	0.	2.0	J.	J.	0.	٦.	3.
0.	υ.	ي ا	Ĵ.	<u>0</u> .	υ.	J.	a.
ō,	0.	э.	0.	0.	0.	0.	٥.

TIME REDUIRED FOR INPUT AND INITIALIZATION = .1.13 SEC

in a management of the second s

*** "ATRICES AND LOAD VECTUR ARE FORMED IN THIS BUN ***

ITERATION 1		
CORE SIZE AVAILABLE FOR EQUATION SECUTION	=	14957
TOTAL NUMBER OF FOUATIENS	=	75
MAXIMUM NUMBER OF TERMS IN A BLUCK	#	3731
MAXIMUM NUMBER OF COLUMNS IN A BLUCK	2	75
NUMHER OF BLOCKS	÷	1
BANONIDTH .	=	45
NUMBER OF TERMS IN STIFFNESS HATRIX	=	1701

.303 SEC

*** TIME FOR GAUSSIAN ELIMINATION ***

FRQ	NU NB ER	2	1	FRQ	5	0.	нZ	CUNJLATIVE	TIME		. 3542	SEC.
F 8 Q	NUMBER	=	2	FXQ	Ξ	.9765	ΝZ	CUNULATIVE	T1 4E		.1078	SEC.
FRQ	NUMBER	Ŧ	3.	FRQ	ę	1.9531	нZ	CUNULATIVE	TÍMÉ		.1615	SEC.
FRQ	NUNBER	=	4	FRQ	\$	2.9257	ΗZ	CUMULATIVE	TIME	=	+2152	SEC.
FRO	NUMBER	s	5	FRQ	=	3,5156	нZ	CUNULATIVE	TIMË	=	.2689	SEC.
FRQ	NUMBER	-	6	EF Q	#	4.1010	EZ .	CUNULATIVE	TINE	=	.3220	SEC.
FRQ	NUMBER	-	7	FRQ	Ξ	4.6375	нZ	CUMULATIVE	TIME	2	.3757	SEC.
F 8 Q	NU HR FR	=	6	FRQ	=	5-2734	ΗZ	CUMULATIVE	TIME	×	.4294	SEC.
FRQ	NU 19 EP	e	3	FEQ.	7	5.8594	ΗZ	CUMULATIVE	LINE	*	• 4831	SEC.
FRQ	434 4Eb	=	10	F P Q	۹	6.9355	ΗZ	CUMULATIVE	TIME	*	•5363	SEC.
FkQ	40 48 ER	2	11	FRQ	x	7.8125	ΗŻ	CUMULATIVE	TIME	z	.5904	SEC.
480	NU MB ER	z	12	FR Q	=	9.3750	НZ	CUMULATIVE	TIME		.6441	SEC.

NO. J: FREQ. STEPS +9 LINCLUCING INTERPOLATED POINTS)

.

VS-NE# DIF-VS MAX. 5. ST FPSI (PERCENT) (PERCENT)	453. 13.3 .00960	456. 10.3 .00801	452. 13.6 .00980	483. 6.3 .00617	419. 22.4 .01533	414. 24.1 .01674	417. 23.1 .01590	427. 20.2 .01393	418 <b>. 22.7 .01558</b>	5398.7 .00994	5236.1 .J1308	524	55411.2 .00753	5175.0 .31446	5113.8 .01608	5164.8 .01475	5225.9 .01324	5154.6 .01504	5174.9 .01464	5144.4 <b>0</b> 1532	5154.6 .01507	5337.8 .01101	5266.5 .01247	5398.9 .00982	1105 0 T - 1105
VS-USED (FPS) (	513.	513.	513.	513.	513.	513.	513.	513.	513.	491.	491.	491.	491.	.191	•165	.164	.191	491.	-165	491.	491.	491.	491.	491.	
DIF-DA4P (Percent)	(.18.)	23.7	17.4	33.0	5.3	2.5	4.2	7.9	4• B	<b>6.</b> 6	- 5.0	-4.1	21.6	-8.6	-13.3	- 9.3	- 5.4	-13.0	- 9.0	-10.6	-10.0	2.0	-3.1	7.2	•
DAMP-NEW (FRACTION)	.042	.040	.043	.038	.047	-049	.048	.046	048	.047	.053	.052	.041	.055	.058	.055	.053	•056	.055	.056	•055	• 0 • 6	•052	. 1+0.	
DAMP-JSED (FRACTION)	. 353	.050	. 350	.050	.050	.050.	.050	.050	0,5%	. 050	.050	. 150	.050	.050	.050	.050	. 050	. 35.	050.	.050	. 050	.050	. 050	. 050	
DIF-G (PERCENT)	26,3	21.6	29.1	13. J	6 ° 6 4	53.9	51.5	44.0	50. 0	-16.7	-11-8	-12-2	-21.2	-9.3	-7.4	4.6-	-11-5		-9.6	-8-6	-9 <b>.</b> J	-14.9	-12.7	-16.5	
G-NEN (KSF)	701.	7+0	- 25 9	796.	001.	585	594.	623.	558.	10.81.	1020.	1025.	1142.	998.	972.	593 <b>.</b>	1017.	985	995.	582°	989.	1058.	1031.	1083.	
G-USFN (KSF)	•00°	900	006	-0 U G	900	-006	900	900	9C0.	-C06	-006	900	900.	9.00.	50:0 <b>-</b>	900	.006	900°	.006	900.	900	900	90 <b>0</b> .	.000	
ELM	1	. ~		t - t	ŝ	ç	1	6	ي .	cı		12	13	14	15		17	18	19	20	21	22	23	24	the second s

NAME AND ADDRESS OF AD

------

*** MAX. SHEAR STRAIN COMPUTATION IN FREQ DOMAIN

TIME REQUIRED FOR COMPUTING STRESS AND STRAIN = .956 SEC

!

and all the second process and a second process of the second second

ITERATION 2

•

-----

*** TIME FDF GAUSSIAN ELIMINATION ***

•	3		<b>ئ</b>	<b>ئ</b>	:	<u>ئ</u>	3	3				
SE	ŝ	SE	S	S m	S	Sü	SE	ŝ	s	SE	SE	
•0463	1690.	.1389	.1968	•2532	.3092	.3652	.4211		.5327	.5874	.6413	
		:				и		1				
"		"	"		14	14	n	<b>9</b>		"	11	
TIME	TIME	TIME	TIME	11 ME	11 YE	TIME	1 1 ME	TIME	1146	3M I T	TIME	151
<b>CUMULATIVE</b>	CUMULATI VE	. CUMULATIVE	CUMJL AT I VE	CUMULATI VE	CUMUL ATI VE	CUMJLATIVE	CUMULATIVE	CUMULATIVE	CUMULATIVE	CUMULATI VE	C UMUL AT I VE	POLATED POIN
HZ	75	HZ.	7	. 71	71	H2	2H	12	2 H	7H	42	INTER
• •	.9766	1.9531	2.5297	3.5156	4.1016	4.6875	5.2734	- 4594	6.8359	7.9125	9.3750	( I NCL UD ING
												49
FRO =	F P Q =	EKQ =	FR0 =	FRQ =	FRC =	F. 0 =	FRQ =	E80 =	FRQ =	FRO =	FK0 ≂	
7	2	"	4	ŝ	¢.	2	80	Ⴐ	Ę	11	12	STEPS
4	Ņ		11	8	a	u	11	11	n	łi,	11	•
NUMBER	NUM BER	NUMBER	NJ MBER	NUMBER	NUMB ER	NUMB 5P	NUM 9 ER	NUMBER	NUMBER	NUMBER	NUMBER	OF FRE
FRO	FRO	FRD	F K O	FRO	FRO	FPO	FRQ	FRO	F R O	FRO	FRO	•0N

į

-

.

<b>F</b> 13	(KSF)	C-NOM (XSF)	DIF-3 (PERCENT)	UAMP-JSED (FRACTION)	LAMP-NEW	UIT-UA4P (PERCENT)	VS-USED (FPS)	(FPS)	DIF-VS (PERCENT)	MAX. S. SIRAIN (PERCENT)
	- 101	571-	4.5	270-	044	5	451.	-677	2.2	-01106
	740-	716.		(70	042	0.01	466.	458	1.1	.00895
Ē	697.	692		.043	.043	5	452	450.		.01001
t	796.	800.	5°-	• 038	.037	5	483.	484.	- 2	7 000.
5	601.	577.	4.1	. 047	• 0 + 0	-3.9	419.	411.	2.0	.01745
4	585.	570.	2.5	. 049	.050	-2.4	414.	409.	I.3	.01812
٢	594.	584.	1.7	• 048	.049	-1.7	417.	414.	8.	• 31678
භ	623.	610.	2.1	• 0+6	.047	-1-4	427.	423.	1.0	.01466
σ	598.	590.	1.3	• 048	.048	-1.3	418.	416.	.6	.01624
13	1081.	1125.	-3.9	• 047	•043	9.8	539.	549.	-2.0	.20813
11	1020.	1055.	- 3. 4	.053	•040	6.3	523.	532.	-1.7	.01115
12	1025.	1050.	-2.4	•052	• 050	4.7	524.	531.	-1.2	.01142
13,	1142.	1161.	-1.6	.041	•039	4.6	554.	558.	- 8	.00691
14	998.	1021.	-2.3	.055	.053	4.1	517-	523.	-1.1	ECEIC.
15	972.	•965	- 2 • 5	.058	• 055	5.2	511.	517.	-1.2	.01457
16	993.	1007.	-1-4	.055	• 054	2.5	516.	520.	r	.01384
17	1 01 7.	1043.	-2.5	.053	• 050	4.8	522.	529.	-1.2	.01179
18	989.	1008.	- 1. S.	• 056	.054	3.4	515.	520°	-1-0	.0137B
19	995.	1001.	•••	.055	•054	1.1	517.	518.	£•-	.01422
50	.985.	1000.	+1•5	• 050	•054	2.7	514.	518.	- 8	.01428
21	<b>98</b> 9.	1402.	-1.4	.056	• 054	2.4	515.	519.	L	.01416
22	1058.	1096.	-3.5	670"	•045	7.9	533.	542.	-1.7	.00928
23	1031.	1063.	-3.1	.052	•0+0	6.3	526.	534.	-1.5	.01077
24	1083.	1122.		- 047	043	8.6	539.	549.	-1.8	.00824
25	1059.	1096。	н <b>З.</b> 3	• 0 4 9	•045	7.5	533.	542.	-1.7	.00929

ς

*** MAX. SHEAR STRAIN COMPUTATION IN FREQ JOMAIN

TIME REQJIRED FOR COMPUTING STRESS AND STRAIN = .950 SEC

,

ł

ł

----

*** TAPE I HAS REEN COMPLETED ***

ł

.

*** PLOT OF ACCELERATION AMPLIFICATION FUNCT.

.1013E+03 .1090E+00 .1188E+00 .1288E+00 .1576E+00 .1576E+03 .1576E+03 .2345E+03 .2345E+00 .3377E+00 .75561E+00 .7531E+00 .9764E+00 .6318E+00 .42592E+70 .4254400 .3316E+00 .3316E+00 .2315E+00 .2555E+00 .2555E+00 .2555E+00 .2555E+00 .25356+00 .25356+00 \$566E-01 \$574E-01 \$5574E-01 \$5632E-01 \$5632E-01 \$5752E-01 \$5752E-01 \$5939E-01 \$5939E-01 \$6367E-01 \$6367E-01 \$6367E-01 \$6367E-01 \$6367E-01 10-11 .8425E-01 .8913E-01 .9478E-01 CO. 10-7306E .8114E .76295 . 8000E 100 PER CENT + ---**0**6 + <del>9</del>0+ 17.9646 2+ 100 PER CENT CORRESPONDS TO ç; + <u>3</u> + ************* ; + ; + 1, \$ X-ACC. AMPLIFICATION AT NODAL POINT 5 c t ++++ +++++ [++++ • 10 с ÷ 3906 5859 3.3203 5156 2266 4219 6172 8125 8125 . 5937 .7891 98-9844 5-1797 9-3752 7344 2569 6406 8359 3.2031 953 •9531 4922 4687 013 1484 8643 6.2500 4453 .0312 765 575 5391 .1016 8828 0781 2734 .6641 8594 0547 5 ŝ £.8.2 å ļ

63

FREQ. IN HZ.

*****

****

T. L ł. I. ł. ł 

1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -

## *** PLCT OF ACCELERATION. (BASE ACC.+REL. ACC.)

2	1. 6.11	NIS A	RE PLOT	TED.										
	-100		-80	-€0 •	-40		-20	0 +	20	43	. 60	1	80	100
							•			•			,	•
٦	• • •	* * * * *	******	*****	********	*****	*******	+++++++	**********	******	*******	******	******	****
U U							•	+	1					
7	+							+	- 1					+
a a	*			•		1		* •	• *					<u>.</u>
ñ	+								1					:
2	+				1			٠	-					•
7	+				1			*						+
	÷						1	+	1					:
0	+						-	*	1					
o a	:						1	•						+
ś								•	1	1				*
j	+					1		*		•				÷.
)	•							+			1			+
'n			-					+						+
3	+				1			•					1	+
)	٠					1		+						+
3	+							*	. 1					+
)	, ,							*	- <b>1</b>					*
2	+						1	÷ 1				1		+
	+							•	1				,	+
5	-						1	1 *						1
)	+						•	i						
	•					•		+ 1						+
, }	:							+1						•
5	•						ı	+						*
)	•							•	1					+
5 }	*							1,						+
5	+						1	+						;
2	•							+ 1						+
ט ז	•							+ 1						•
Ξ.	. ÷ .						•	1 +						+
3	*							+1						+
2	*							+ 1						*
2	+							1 +						*
2	+							1						+
ŗ.								+ 1						<u>†</u>
)	+							1 +						:
2	+							i +						•
) \	•							+ 1						+
5	*							+L 1 +						:
)	٠							- 1÷					• •	+
2	•							+ 1						+
) }	•						1	+ 1						+
)	+							1 +						
}	•							+ .	1					ŧ
	•						1	+ 1						
•							i	+						*
	+								1					

* *** ****

ç,

. .

* ****** TIME IN SECONDS

_ _ .

*** PLOT OF ACCELERATION AMPLIFICATION FUNCT.

X-ACC. AMPLIFICATION AT NUDAL PUINT 3, IOU PER CENT CORRESPONDS TO 9.6676

5

65

•

_<u>.</u>

*

.

*** PLOT OF ACCELERATION. (BASE ACC. +REL. ACC.)

ŝ

X-COMP. OF ACCELERATION AT NODAL POINT 3, 100 PER CENT CORRESPONDS TO .1163 G EVERY 2 TH POINTS ARE PLOTTED

		~100 +	-50 +	-60 +	-40	-20	0		20 [°] +	40 +	60 +	30 +	100	PER CENT
	э.	++++	*+ ** ** ** * * * * * *	** * * * * * * *	*******	******	+++++1	*****	* * * * * * * * * *	*******	*******	*******	******	.40848-02
	∎ե₿00	٠					1.							5702E-01
	.1000	+					+	1					+	.5568E-01
	. 24.31	•					+		1				+	.2274E+00
		<b>t</b>					1*						÷	-,2029E-01
	.4000	*					. *		1				•	+1681E+03
	■43JJJ 5400	*		,			1+						*	-,2211E-01
	• 5000			1	,		•						•	5226E+00
	. 7200				ł		+						*	+.3040E+00
	. 8000	•					*	1						- 34345+00
-	.890.0	+				•			1					- 28966+00
	.9600	+					+		1				÷	-2457E+00
	1,04.00	+					+		1				+	1368E+03
	1.1200	+					+			1			+	.3490E+00
	1.2000	+				I	+						٠	~.2065E+00
	1.2300	. •					+			1			+	.4477E+00
	1.3660	+		1			+						+	~.6007E+00
	1.4400	+					+			1			+	.3838£+00
	1.22.00	+			1		+						+	~.3342E+00
	1.6300	•				1	- +						+	2023E+00
	1.2600	*						E.					*	.2746E-01
-	1.8400						1 +						1	-32842-01
	1.920.3						1	,	1					a 20096 + 08
	2.0000	+						۰,						86175-01
	2.44800	+						•						- 99085-01
	2.1500	· •												40105-01
	2.241.2	+					1						÷	9248E-02
	2.3200	+					ĩ							97348-02
	2.4000	+					1+						+	- 1160E-01
	2.4803	+					•	1					*	.3555E-01
	2.5600	+					1 +						+	-,5907E-01
	2.6400	+					*	1					+	.4638E-01
	2.7200	+					1+						+	2929E-01
	2.8000	+					•	1					•	.3883E-01
	2.8800	•					1 *						+	4438E-01
	2.9600	*					:	1					+	2095E-01
	3.170.1						1	,						40566-02
	3.2000						1.	+						+ 1405E-01
	3.2800	+					1							43655-02
	3.76.12	+						1						_1314E-01
	3.4400	•					1	•					+	3149E-02
	3.5200	•					1						+	72038-02
	3.6300	+					1+						+	1366E-01
	3.6802.	<b>•</b>	- <b>-</b>				+	1					+	1556E-01
	3.760)	+					1						+	45396-02
	3.8400	*					1						+	66838-02
	9200	•					1+						*	14928-01
	4.0000	•					+	1					*	.1152E-01
	4.0900	+					•	1					+	.1048E-01
	4. 1600						1						•	82866+02
	4.2200						1.						*	1589E-01
	4-4000						1						•	./JL92~02
	4.4900	•					,						*	- 103/E-01
	4.5600	•			•		1.						•	- 1060E DI
	4.6400	•		4			1						*	-119096-01
	4.7200	+					+	1					1	. 72835-01
	4.8000	+					i	-					÷	51408-02
	4.8801	+					1+						+	- 28706-01
	4.9600	+					1						+	- 2364E-03
	5.0400	****	**** *****	* ** * * * * * * *	** * * * * * * * *	* * * * * * *	* * * ? + * * *	*1***	*******	*********		++++++++++	*****	.3565E-01
		•	- *	+ .	+	+	+		+	+	+ .	+ .	+	

***

****

****** TIME IN SECONDS

-

_

.13944+00 .14926+00 .16076+00 .1617460 .19136+00 .19136+00 .23196+00 .27136+00 .31576+00 .31576+00 .31576+00 .4666+00 .59586+00 27776+00
224455+00
221885+00
19846+00
19846+00
188186+00
188186+00
15685+00
15685+00
15685+00 .7980E-01 .8117E-31 .1000E+01 00 E+00 1075E+00 CO 00 00 20 8 80145-01 E-01 10-31 .8554E-01 00 11236+03 .1177E+00 12396+00 .8295E-01 8907E-01 9124E-01 87176-01 5991E+ .1311E+ .7905E+ .1034E .7894E 3823E 96541 .9372 .9975 8057 8413 .3217 100 PER CENT + °, 80 + 12.5318 2 + 19. 100 PER CENT CURRESPONDS TO + \$ ÷0 0.† 4 *** PLOT OF ACCELERATION AMPLIFICATION SUNCT. 30 X-ACC. AMPLIFICATION AT NODAL POINT 50 + 20 FREG . IN HZ Ĵ + 0 **** 7.4219 7.6172 7.8125 8.0678 1953 9.1797 5859 4453 .0312 5937 99 1 1 438 -1250 156 1.39 212 4**.**2969 6875 828 0781 6.2500 5.6400 6.8359 984 672 . 7344 .3203 +687 991 3°9844 1539 4 84 1955 1000 3.9063 8594 3.2031 4.4923 6641 • 054 **** 0
## *** PLOT OF ACCELERATION. ISASE ACC. FREL. ACC. 1

	+	- 33	-61J +	-40	-20	0 †	2.0 *	40 +	6J •	80 +	103	PER CEN
۰.	****	******	******	*****	*******	* * * ] + * * *	******	****	********	· · · · · · · · · · · · · · · · · · ·	*****	45
•0400	•					1 +					•	93
1600	+					*	1				•	. 11
.2463	+					*	-	1				. 25
.3200	*				1							- 14
4010					-		,					
4 2 10												•13
. 4000						•	1				+	•11
12000	•			T		•					+	48
+6400	+			1		•					+	- 38
•72-33	*					+	1				+	.15
.8000	*				1	*					+	22
.3930	+					*		1			•	. 29
.9600	+							*		,		
1.6402	+						· ,					10
. 1233							Ŧ	,			:	•10
2000					,			1				• • • • •
2800					1	•					•	- • 24
• 4 9! 0						,			1		+	- 46
. 3600	•		1			+					•	68
+4400	÷					*			1		+	.56
. 5201	*			1		+					+	-+38
. 6003	•				1	+					•	23
-6800	+					*	1				•	. 82
. 7600	+					+ 1	-				÷ .	. 30
.8400	+						1					12
. 92.00	+					1 1	•				÷	- 60
0.000						1						
00000							1					.10
1400						1					•	/3
.1607						1 *					+	84
• 2 4 U I	+					1					+	•23
• 3 Z Q Q	+					+ L					+	
2:4007	+					1					+	.27
4800	+					+1					+	.16
.5500	+					1 *						80
2.6400						· • 1						84
7700	+					1.						- 17
6000	-					- <u> </u>						13
00000						*1					•	+20
0000						1 <b>*</b> .					•	01
	•					• 1					+	• 3 5
3.040 F	*					+1					+	•15
.1201	•					1					+	• 55
.2002	<u>*</u>					1 1					*	41
3.2800	+					1					+	.41
3.3600	+					+ 1			1		*	.36
s.4400	+					1					+	28
3.5200	+					1.					+	- 30
0003.6	•					1.						
. 6800	+											
7500	•										7	• * * *
1.8400											•	• 4 1
0101						1 .					+	31
0.7290	•					1+					+	~+15
+ 0-000	+					+ 1					•	+37
-0800	•					+1					+	.13
+16JJ	+					1 +					+	35
.2400	+					1+					+	21
.3200	+					+ 1					•	. 35
.4000	+					•1						
4800						1.4						- 23
5600						1.						37
	-				•	1.*					•	31
10443	*	· · · ·				+ 1					+	.36
• 7200	+					. + 1					+	• 39
• 8023	+					1. •					+	40
60P8.4	+					1 +					•	50
. 9600	+					+ 1					+	.39
1.0400	*+++	********	*******		*********	* * * * * * * * *	*******	********	********	* + + * * * * * * *	******	. 64
	+		+	+		+	+	+	+	+	•	
									-			

٠

X-CUMP. OF ALCELFRATION AT HOUSE POINT 19, 100 PER CENT CORRESPONDS TO .1422 G EVERY 2 TH POINTS ARE PLUTTED

*

****** TIME IN SECUNDS

68

------

• 1 .9600 1.0800 AT TIME .161 SEC 0. 0492 Z-ACC 5 DEG. OF FOM. * .9600 .9600 1.4400 AT TIME . VC12581 (2) N.X DIRECTION . (2) NI (2) NI (2) . (3) NI (2) NI (2) . (4) NI (2) . (5) . (5) . (6) NI (2) NI (2) . (7) NI D. 0. .0132 Y-ACC • 1.0000 1.0000 AT TIME TIME REQUIRED FOR COMPUTATION AND OUTPUT OF ACCELERATIONS AT MAX. INPUT BASE ACC. = 4ax. INPUT BASE ACC. = MAX. INPUT BASE ACC. = X-ACC .1875 .1163 .1422 20Rn 40.00 20.00 MAXIMUM ABSOLUTE ACCELERATIONS(G) ; YGRD 36. 30 33.00 23.00 46.00 46.00 24.00 XORD ITERALION NO. 2 N. P. 19 19 , i

. .

·

. .

Í

*** BLANK COMMCN REGULAEMENTS ***

LENGTH OF ALANK CUMMEN =	156.00
BLAPY COMMON REQUIRED FOR VEDCA =	1441
BLANK CCHMON FOR PERMANENT DATA =	922
BLANK COMMON REQUIRED FOR STRAIN -	1740
BLANK COMMEN FOR BBBC *	6630
MAX. WORDS REQUIRED FOR BBCC =	96
BLANK TY THEN REQUIRED FOR MUTICN =	10 <del>,</del>
BLANK COMMON FOR AAAC =	7046
MAX. WORDS REQUIRED FOR AAAC =	16 Lo
and a statement of the	

*** CONTENT OF TAPE 1 TRANSFERLU 1. TAPE 2 ***

the second contract

1

1

i

-

-

.

ļ

----

i

Taxable to the second s

ļ

- ____

EXAMPLE PROBLEM FOR TLUSH RUN NOMBER = 1*** INPUT DATA *** TOTAL NUMBER OF ELEMENTS = TOTAL NUMBER OF NUDAL POINTS = IST NUDAL POINT UN RIGID BASE = DEGREES OF FREEDOM = NUMBER OF DUNDARY CONDITIONS = NUMBER OF MATERIAL TYPES = 25 44 26 75 18 ___1 *** INPUT HOTICN ***
TOTAL NO. DF POINTS USED IN FFT = 128
LAST POINT TO BE READ = 64
TIME STEP OF RECORD = 2.560 SEC.
OURATION OF RECORD = 2.560 SEC.
TOTAL DURATION OF ANALYSIS = 5.120 SEC.
...EQ. MULTPLICATION FACTOR = 2.0000
MAX. ACCEL. AFTER SCALING = 0.728 (G)
MOTION IN X-DIRECTION = 1.0000 TIMES INPUT HOTION
MOTION IN X-DIRECTION = 0. TIMES INPUT HOTION
MOTION IN Z-DIRECTION = 0. TIMES INPUT MOTION BASE LINE CORRECTION WILL BE APPLIED -----------*** FREQUENCY CONTENT OF ANALYSIS *** HIGHEST FREQUENCY OF ANALYSIS = 12.000 HZ NO. OF INTERPOLATION RANGES = 3 0. -- 5.000 HZ(KINT= 51 5.000 -- 10.000 HZ(KINT= 31 10.000 -- 12.000 HZ(KINT= 5) FREQUENCY USED FOR ITERATION 1 = 12.000 HZ *** OUTPUT CONTROL *** SAVING AMP. FUNCIION ON TAPE = YES COMPUTING NEW SOIL PROPERTIES = YES PUNCHING NEW SOIL PROPERTIES = NO STEPS TO FIND MAX. RESPONSE = 128 SKIP PCINTS FOR PLOITING = 2 FACTOR FOR EFF. SHEAR STRAIN = .650 2 •6500 *** MASS MATRIX *** FRACTION OF CONSISTENT MASS = FRACTION OF LUMPED MASS = .5000 .5000 *** DAMPING CHARACTERISTICS *** UNIFORM DAMPING USED = NG *** OUTPUT REQUIREMENTS *** CODES FOR KEYSPC 0--HANINUM ACCELERATION ONLY 1--PLOT ACC. THE HISTORY 10--PLOT ACC. AND VELOCITY RESPONSE SPECTRUM 100--PLOT ACC. THE HISTORY 1000--PLOT FOURIER AMP. OF ACCELEKATION 10000--PLOT AMPLIFICATION FUNCTION -----VALUES OF KEYSPC X-00TPJT Y-00TPUT 4+00TPJT 11001 0 0 11001 0 0 11001 0 0 N-P-NQ. 1 3 19

ويوريون مايه ومسير ويوارد المراري المراري المسيرية والمسيرية المسيرية المسيرية محمد سيست محمس مسيرة المحري والمراري محمر المحرين المراري المحري

*** SHEAR MODULUS AND DAMPING CURVES FUR MATERIALS WITH STRAIN-DEPENDENT PROPERTIES ***

STANDARD BUILT IN CURVES ARE USED

MAT. TYPE --- IDENTIFICATION

1 SEED AND LORISS (1970) -- CLAY 2 SEED AND TORISS (1970) -- SAND

SHEAR MODULUS CURVES

-----

...

SHEAR STRAIN IN PERCENT

_____

MAT.											
TYPE	10++1-4.03	10**(-3+5)	10**1-3.01	10**(-2.5)	10##{-2.0}	10#*(-1.5)	10**(-1.0)	L0##{~0,5}	ໄປ≄ຂ€ ປະປໄ	10##{ 0.5}	10**{ 1.0}
1 2	.10E+01 .10E+01	.91E+03 .78E+00	.76E+Cd .93E+00	.576+60 .83E+00	. 40E+00 .05E+00	.26E+00 .44E+00	.15E+00 .25E+00	.762-01 .12E+00	.37E-01 .495-01	.13E-01 .49E-01	.402-02 .492-01

DAMPING GURVES (PERCENT)

MAT.					SHEAF	STRAIN IN	PERCENT				
 TYPE	10++(-4.0)	10**(-3.5)	10++(-3.0)	10**(-2.5)	10**(-2.0)	10**(-1.5)	10**(-1.0)	10**1-0.51	10**( 0.0)	10##1 0.51	10**1 1.0)
1 2	.2 SE +01 .5 GE+ 00	+25E+01 +80E+00	.25E+JI .17E+01	+35E+01 +32E+01	.48E+U1 .56E⊦U1	.65E+01 .10E+02	.43E+u1 .162+u2	.1÷E+02 .21E+02	• 202 + 02 • 25E + 02	-26E+02 -25E+02	- 29E+02 -25E+02
	• • • • •		· · · · · · · · · · · · · · · · · · ·	·					• • • • •		·,

*** ELEMENT DATA ***

NO.	NP1	NPZ	NP3	NP4	NP5	NP 6	NP7	NPd	мтуре	IU.EL	P0	UNLI NT. LPCF1	G-HAX [KSF]	G-USE (KSF)	UHP-USE (FRACTIUN)	VS-USE (FPS)
1	10	14	5	1	11	15	6	2	1	1	۰ ۲5 م	110.000	1500.000	570,837	•J44	443.156
2	11	15	. 6	2	12	16	2		1	1	450	110.000	1500.000	710.+09	• 3 + 2	457,944
3	12	16	7	2	13	41	42	4	1	1	+ 450	110.000	1500.000	a92.458	.3-3	450.224
4	13	41	42	4	43	43	44	44	1	2	.450	110.000	1200.000	799.029	.337	483,872
5	14	17	8	5	15	18	9	5	1	1	.453	110.000	1503.000	577.2.5	• 149	411.063
6	15	19	9	6	16	38 -	39	7	1	1	.450	110.000	1500.000	570.316	.050	408.591
7	16	38	39	7	41	41	42	42	1	2	-45J	113.000	1503.300	584.308	.049	413.573
ê.	17	29	. 30	. 8	18	34	35	9	1	1	. 453	110+230	1500.000	. ວ່ໄພູ່, 3ວ2	.047	422.693
3	18	34	35	9	38	38	39	39	1	2	.450	110.000	1503.000	590.178	.0+8	415.646
10	19	19	14	10	20	20	15	11	2	3	.350	120,000	1500.000	1125.159	• 3 4 3	549.473
11	20	20	15	11	21	21	16	12	2	ذ	.350	123.000	1500.000	1355.349	9+0.	532.164
12	21	21	16	12	40	40	41	13	2	3	.350	120.000	1500.000	1050.006	.050	530.818
13	40	40	41	13	43	43	43	43	2	4	.350	120.000	1500-000	1161.362	. 339	558.240
14	.19	22	17	14	20	23	18	15	. 2	5	.350	120.000	1500.000	1320.732	.353	523.364
- 15	20	23	18	15	21	37	38	16	2	5	.350	123.000	1500.000	996.117	.055	517.002
16	21	37	38	16	40	40	41	41	2	• 6	.350	120.000	1500.000	1337.374	<b>J</b> 54	519,915
17	22	28	. 29	17	23	33	34	18	2	5	.350	120.000	1503.000	1043.016	.050	529.033
18	23	33	34	18	37	37	38	38	2	· 6	.350	120.000	1500.040	1008.343	. 354	520.165
19	24	24	22	19	25	25	23	20	2	3	+ 350	123.000	1500.000	1001.466	.054	518.394
20	25	25	23	20	36	36	37	21	2	3	.350	120.000	1500.000	1030-438	.054	518,123
21	36	36	37	21	40	40	40	43	2		.353	120.000	1500.000	1032.356	.054	518.619
22	24	27	28	22	25	32	33	23	2	ŝ	350	120.000	1500.000	1396.019	.045	542.308
23	25	32	33	23	36	36	37	37	2	5	350	120.000	1500.000	1362.967	.049	534.069
24	26	26	27	24	31	31	32	25	2	3	.350	120.000	1500.000	1122.342	.043	548.792
25	31	31	32	25	36	36	36	36	2	4	.350	120.000	1500.000	1355.690	• J <del>•</del> 5	542.229

_

*** NUDAL POINT DATA ***

....

.

.

.....

1 $44.000$ $36.007$ $2000717$ $2000717$ $2000717$ $20007170$ $7000721700$ 1 $44.000$ $36.000$ $30.000$ $-0.$ $F1xEJ$ 2 $46.000$ $30.000$ $20.000$ $0.000$ $-0.$ $F1xEJ$ 3 $46.000$ $20.000$ $40.000$ $-0.$ $F1xEJ$ 5 $46.000$ $20.000$ $40.000$ $-0.$ $F1xEJ$ 6 $46.000$ $20.000$ $40.000$ $-0.$ $F1xEJ$ 7 $44.000$ $20.000$ $30.000$ $-0.$ $F1xEJ$ 8 $46.000$ $10.000$ $30.000$ $-0.$ $F1xEJ$ 9 $46.000$ $10.000$ $30.000$ $-0.$ $F1xEJ$ 10 $36.000$ $30.000$ $40.000$ $-0.$ $F1xEJ$ 11 $36.000$ $30.000$ $40.000$ $-0.$ $F1xEJ$ 12 $36.000$ $30.000$ $40.000$ $-0.$ $F1xEJ$ 13 $36.000$ $20.000$ $40.00J$ $-0.$ $11.$ 14 $36.000$ $20.000$ $40.00J$ $-0.$ 15 $36.000$ $20.000$ $40.00J$ $-0.$ 16 $36.000$ $20.000$ $40.00J$ $-0.$ 17 $36.000$ $20.000$ $40.00J$ $-0.$ 18 $36.000$ $20.000$ $40.00J$ $-0.$ 19 $24.000$ $20.000$ $30.000$ $-0.$ 20 $24.000$ $20.000$ $30.000$ $-0.$ 21 $24.000$ $10.000$ $30.000$ $-0.$	FlxED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIXED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3       46.000 $20,000$ $20,000$ $14,000$ $14,000$ $14,000$ $11,110$ 5       46.000 $20,000$ $40,000$ $-0,$ $11110$ 6       46.000 $20,000$ $40,000$ $-0,$ $11110$ 7       46.000 $20,000$ $40,000$ $-0,$ $11110$ 7       46.000 $10,000$ $30,000$ $-1,$ $1120$ 8       46.000 $10,000$ $30,000$ $-1,$ $1120$ 9       46.000 $10,000$ $30,000$ $-1,$ $1120$ 10 $36,000$ $30,000$ $0,$ $11200$ $60,000$ 11 $36,000$ $30,000$ $0,$ $112000$ $30,000$ $0,$ 12 $36,000$ $20,000$ $40,000$ $-0,$ $1111000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ $10,000$ <t< td=""><td></td></t<>	
4       46.000       30.0C3 $-10.000$ $-0.000$ $-10.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ $-110.000$ -110.000       -110.000       -10.000       -10.000       -10.000       -10.000       -10.000       -10.000       -10.000       -10.0000       -10.0000       -10.0000       -10.0000       -10.0000       -10.0000       -10.0000       -10.0000       -10.0000       -10.00000       -10.00000 </td <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6         46.000         20.000 $30.000$ $-0.$ $+1xij$ 7         46.000         10.000         40.000 $-0.$ $+1xij$ 8         46.000         10.000         30.000 $-0.$ $+1xij$ 9         46.000         10.000         30.000 $-0.$ $+1xij$ 10         16.000         30.000 $-0.$ $+1xij$ 11         36.000         30.000 $0.$ $-1.$ 12         36.000         30.000 $0.$ $-1.$ 13         36.000         30.000 $0.$ $-1.$ 14         36.000         20.000 $40.000$ $-0.$ 15         36.000         20.000 $40.000$ $-0.$ 16         36.000         20.000 $40.000$ $-0.$ 17         36.000         20.000 $40.000$ $-0.$ 20         24.000         20.000 $30.000$ $0.$ 21         24.000         20.000 $30.000$ $-0.$ 22         24.000 <t< td=""><td>t i xe O</td></t<>	t i xe O
7       44.000 $20,000$ $-0,$ $F1kE3$ 8       46.000 $10,000$ $30,000$ $-0,$ $F1kE3$ 9       46.000 $10,000$ $30,000$ $-1,$ $F1kE3$ 10 $36,000$ $30,000$ $-1,$ $F1kE3$ 11 $36,000$ $30,000$ $0,$ $-1,$ 12 $36,000$ $30,000$ $20,000$ $0,$ 13 $36,000$ $30,000$ $0,$ $-0,$ 14 $36,000$ $20,000$ $40,003$ $-0,$ 15 $36,000$ $20,000$ $40,003$ $-0,$ 16 $36,000$ $20,000$ $30,000$ $-0,$ 17 $36,000$ $20,000$ $30,000$ $-0,$ 18 $36,000$ $20,000$ $30,000$ $-0,$ 20 $24,000$ $20,000$ $30,000$ $-0,$ 21 $24,000$ $20,000$ $30,000$ $-0,$ 22 $24,000$ $10,000$ $30,000$ $-0,$ 23 $24,000$	
8       46.000 $10.000$ $40.000$ $-3.$ $FixE3$ 9 $46.000$ $30.000$ $40.000$ $-3.$ $FixE3$ 10 $36.000$ $30.000$ $40.000$ $-3.$ $FixE3$ 11 $36.000$ $30.000$ $40.000$ $-3.$ $FixE3$ 11 $36.000$ $30.000$ $40.000$ $-3.$ $FixE3$ 12 $36.000$ $30.000$ $40.000$ $-3.$ $FixE3$ 13 $36.000$ $20.000$ $40.000$ $-3.$ $-3.$ $-3.$ 14 $36.000$ $20.000$ $40.000$ $-3.$ $-3.$ $-3.$ 15 $36.000$ $20.000$ $40.000$ $-3.$ $-3.$ $-3.$ 17 $36.000$ $20.000$ $40.000$ $-0.$ $-3.$ $-3.$ $-3.$ $-3.$ 20 $24.000$ $20.000$ $30.000$ $-0.$ $-3.$ $-3.$ $-3.$ $-3.$ $-3.$ 21 $24.000$ $20.000$ $-3.000$ $-3.$ $-3.$ $-3$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FIXED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 $36,000$ $30,000$ $20,000$ $0.$ 12 $36,000$ $30,000$ $20,000$ $0.$ 13 $36,000$ $20,000$ $-0.$ 14 $36,000$ $20,000$ $-0.$ 15 $36,000$ $20,000$ $-0.$ 16 $36,000$ $20,000$ $-0.$ 17 $36,000$ $20,000$ $-0.$ 18 $36,000$ $20,000$ $30,000$ $-0.$ 20 $24,000$ $20,000$ $30,000$ $-0.$ 21 $24,000$ $20,000$ $30,000$ $-0.$ 22 $24,000$ $10,000$ $30,000$ $-0.$ 23 $24,000$ $10,000$ $30,000$ $-0.$ 24 $12,000$ $10,000$ $30,000$ $-0.$ 25 $12,000$ $10,000$ $30,000$ $-0.$ 26 $0.$ $0.$ $40,000$ $-0.$ 27 $12,000$ $0.$ $40,000$ $-0.$ 27 $12,000$ $0.$ $40,00$	FIXED
12       36.000       30.000       20.000       -0.         13       36.000       20.000       +0.000       -0.         14       36.000       20.000       +0.000       -0.         15       36.000       20.000       30.000       0.         16       36.000       20.000       30.000       0.         17       36.000       20.000       40.000       -0.         18       36.000       20.000       40.000       -0.         19       24.000       20.000       40.000       0.         20       24.000       20.000       30.000       0.         21       24.000       20.000       30.000       -0.         22       24.000       10.000       30.000       -0.         23       24.000       10.000       30.000       -0.         25       12.000       10.000       30.000       -0.         26       0.       0.       40.000       -0.         25       12.000       0.       40.000       -0.         26       0.       0.       40.000       -0.         27       12.000       0.       40.000       -0. <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
14       36.000       20.000 $40.003$ $-0.$ 15       36.000       20.000       30.000 $0.$ 16       36.000       20.000 $20.001$ $-0.$ 17       36.000       10.000 $30.000$ $-0.$ 18       36.000       10.000 $30.000$ $-0.$ 19       24.000       20.000 $40.000$ $0.$ 20       24.000       20.000 $-0.$ $22.22.24.000$ $20.000$ 21       24.000       10.000 $30.000$ $-0.$ $23.22.24.000$ $10.000$ 23       24.000       10.000 $30.000$ $-0.$ $24.24.000$ $10.000$ $30.000$ $-0.$ 25       12.000       10.000 $30.000$ $-0.$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1.22.000$ $-1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FLKED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIXED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
20       24,000       20,000       30,000       0.         21       24,000       20,000       20,000       -0.         22       24,000       10,000       30,000       -0.         23       24,000       10,000       30,000       -0.         24       12,300       10,000       40,000       -0.         25       12,000       10,000       30,000       -0.         26       0.       -0.       -0.       F1xE0       F1xE0         27       12,000       0.       40,000       -0.       F1xE0       F1xE0         27       12,000       0.       40,000       -0.       F1xE0       F1xE0         29       36,000       0.       40,000       -0.       F1xE0       F1xE0         29       36,000       0.       40,000       -0.       F1xE0       F1xE0         30       46,000       0.       40,000       -0.       F1xE0       F1xE0         31       0.       0.       40,000       -0.       F1xE0       F1xE0         32       12.000       0.       30,000       -0.       F1xE0       F1xE0         32       12.000	FIXED
21       24.000       20.000       -0.         22       24.000       10.000       40.000       -0.         23       24.000       10.000       30.000       -0.         24       12.300       10.000       30.000       -0.         25       12.000       10.000       30.000       -0.         26       0.       0.       40.000       -0.         27       12.000       0.       40.000       -0.         27       12.000       0.       40.000       -0.         27       12.000       0.       40.000       -0.         24       24.000       0.       11.000       51.000         27       12.000       0.       40.000       -0.         28       24.000       0.       11.000       9.         29       36.000       0.       40.000       0.       FixED         29       36.000       0.       40.000       -0.       FixED       FixED         30       46.000       0.       40.000       -0.       FixED       FixED         31       0.       0.       30.000       -0.       FixED       FixED	
22 $24,000$ $10,003$ $40,000$ $-0.$ 23 $24,000$ $10,000$ $30,000$ $-0.$ 24 $12,000$ $10,000$ $40,000$ $-0.$ 25 $12,000$ $10,000$ $30,000$ $-0.$ 26 $0.$ $0.$ $40,000$ $-0.$ 27 $12,000$ $0.$ $40,000$ $0.$ $FIXED$ $FIXEJ$ 24 $24,000$ $0.$ $40,000$ $0.$ $FIXED$ $FIXEJ$ 27 $12,000$ $0.$ $40,000$ $0.$ $FIXED$ $FIXEJ$ 29 $36,000$ $0.$ $40,000$ $-0.$ $FIXED$ $FIXEJ$ 30 $46,000$ $0.$ $40,000$ $-0.$ $FIXED$ $FIXEJ$ 31 $0.$ $0.$ $30,000$ $-0.$ $FIXED$ $FIXEJ$ 32 $12.000$ $0.$ $30,000$ $0.$ $FIXED$ $FIXEJ$	
23       24,000       10,000       30,000       -0,         24       12,000       10,000       40,000       -0,         25       12,000       10,000       30,000       -0,         26       0.       0.       40,000       -0.         27       12,000       0.       40,000       -0.         27       12,000       0.       40,000       0.         24       24,000       0.       40,000       0.         29       36,000       0.       40,000       -0.         29       36,000       0.       40,000       -0.         30       46,000       0.       40,000       -0.         31       0.       04       30,000       -0.         32       12,000       0.       30,000       0.         32       12,000       0.       30,000       0.	FIXED
24       12.300       10.000       40.000       -0.         25       12.000       10.000       30.000       -0.         26       0.       0.       40.000       -0.         27       12.000       0.       40.000       0.       F1XED       F1XED         27       12.000       0.       40.000       0.       F1XED       F1XED         24       24.000       0.       40.000       0.       F1XED       F1XED         29       36.003       0.       40.000       -0.       F1XED       F1XED         30       46.000       0.       40.000       -0.       F1XED       F1XED         31       0.       0.000       -0.       F1XED       F1XED         32       12.000       0.       30.000       0.       F1XED       F1XED         32       12.000       0.       30.000       0.       F1XED       F1XED	
25       12.000       10.000       30.000       -0.         26       0.       0.       40.000       -0.       F1xED       F1xEJ         27       12.000       0.       40.000       -0.       F1xED       F1xEJ         27       12.000       0.       40.000       0.       F1xED       F1xEJ         24       24.000       0.       -0.       F1xED       F1xED       F1xED         29       36.000       0.       40.000       -0.       F1xED       F1xED         30       46.000       0.       40.000       -0.       F1xED       F1xED         31       0.       0.       40.000       -0.       F1xED       F1xED         32       12.000       0.       30.000       0.       F1xED       F1xED         32       12.000       0.       30.000       0.       F1xED       F1xED	FIXED
26     0.     0.     40.000     -J.     FIXED     FIXED       27     12.000     0.     40.000     0.     FIXED     FIXED       28     24.000     0.     40.000     0.     FIXED     FIXED       29     36.000     0.     40.000     -0.     FIXED     FIXED       30     46.000     0.     40.000     -0.     FIXED     FIXED       31     0.     0.     40.000     -0.     FIXED     FIXED       32     12.000     0.     30.000     0.     FIXED     FIXED	
27         12,000         0.         40,000         0.         FixED         FixED           24         24.000         0.	FIXED
ZA         Z4+000         0.         10.000         0.         fixED         FixED<	FIXED
29         36.000         0.         40.000         -0.         FIXED         FIXED           30         46.000         0.         40.000         -0.         FIXED         FIXED           31         9.         04.000         0.         40.000         -0.         FIXED         FIXED           32         12.000         0.         30.000         0.         FIXED         FIXED	FLXED
30 46.000 0. 40.000 −0. FixED FixEJ 31 0. 04 30.000 −3. FixED FixEJ 32 12.000 0. 30.000 0. FixED fixEJ 32 12.000 0. 30.000 0. FixED fixEJ	FIXED
31 0. 04 30,000 -0. FIXED FIXED FIXED 32 12,000 0. 30,000 0. FIXED FIXED	FIXED
32 12.000 0. 30.000 0. FIXED FIXED	FIXED
	FIXED
53 24×000 0. FIXED FIXED FIXED	FIXED
34 36,000 0, 30,000 -0, FixED FixED FixED	FIXED
35 46.000 0. 30.000 -0. FIXED FIXED	FIXED
36 12+000 10+000 20,000 -0. FIXED FIXED	FIXED
37 24-000 10.000 20.000 0. Fixed Fixed	FIXED
38 36.000 10.000 20.000 +0. FIXED FIXED	FIXED
39 46-000 10-0C0 20-000 -0. FIXED FIXED FIXED	FIXED
40 24.000 29.000 10.000	FIXED
41 36.000 20.000 10.000 -0. FIXED FIXED	FIXED
42 46.000 20.000 10.000 -3. FIXED FIXED	FIXED
43 36.000 30.000 0J. FIXED FIXED	FIXED
44 46.000 30.000 03. FIXED FIXED	FIXED

_____ Υ.

a a su a companya a companya a companya a comp

*** EARTHQUAKE RECORD ***

## ** EXAMPLE EARTHQUAKE ** 0.04 SEC 64 POINTS INPUT ACCEL. PRIDE TO SCALING

MAX. ACC. = .0500 (G) AT TINE = .9600 SEL.

· · · ·	.000204	000191	.000058	.001460	.004111	. 404394	.009534	033481	1
	.013073	.009455	.000374	.018791	022305	318976	011557	- U4al39	2
	.013707	029759	.011100	-, 625250		913417		=.013397	3
	,050000	.000068	.012727	.006808	.010060	.010332	. JUC 599	031122	 4
	.008954	020449	. 015687	005003	0175.1	.003863	010418	608041	5
	008450	010743	.001941	000952	. 300968	001998	.010885	.008075	6
	.039841	.003844	005115	.001176	- JU3725	006514	.301117	000450	7
	.000281	000221	.000157	00188	.000185	000188	.000193	000200	8
	0.	9.	D	g.	4.	Na	0.	Q	9
	0.	0.	Q.	3.	α.	0.	0.	0.	10
	g.	0.	G.	4.	0.	υ.	٥.	Ú.,	11
	<b>G.</b>	0.	۵.	0.	0.	0.	θ.	ο.	12
	٥.	0.	ο,	0.	Q.	0.	з.	0.	13
	٥.	0.	٥.	۵.	α.	0.	ú.	0.	14
	<b>0</b> ,	Ç	Q	9	Q	0.	Q	Q	15
	û.	0.	٥.	ú.	d.	0.	G.	J.	16

٠

,

TIME REQUIRED FOR INPUT AND INITIALIZATION = .136 SEC

*** MATRICES AND LOAD VECTUR ARE FORMED IN THIS RUN ***

ITERATION 1

------

**.**...

-----

CORE SIZE AVAILABLE FOR EQUATION SULUTILS	N =	14949	
TOTAL NUMBER OF EQUATIONS	-	75	
MAXINUM NUMBER OF TERMS IN A BLUCK		3699	
MAXIMUM NUNBER OF COLUMNS IN A BLOCK	×	75	
NUMBER OF BLCCKS	÷	1	
BANDWIDTH		45	
NUMBER OF TERMS IN STIFFNESS MATRIX	*	1701	

-----

*** TIME FOR GAUSSIAN ELIMINATION ***

.

_

FRC.	NUMBER		1	FRQ	₽	0.	ΗZ	CUMULATIVE	TLMÉ		. 35+7	SEC.
FRQ	NUH 8 ER		2	FRG	2	.9766	ΗZ	CUMULATIVE	T I ME		.1384	SEC.
FRQ	NUMBER	π	3	FRG	±	1.9531	ΗŽ	CUMULATIVE	TIME		1622	SÊC.
FRQ	NUMBER	Ŧ	÷,	FRC	*	2.9297	нZ	CUMULATIVE	TIME	a	<b>216</b> 0	SEC.
FRQ	NUM 8 ER		5	FRQ	=	3.9063	нZ	CUMULATIVE	Γ <b>E</b> ME		.2695	Sec.
FRQ	NUMBER	z	6	FRQ	7	4.8828	нz	CUMULATIVE	TEME	-	.3230	\$EC.
FRQ	NUMBER		7	F8.0	x	5.4688	HZ	CUMULATIVE	TIME	×	.3774	SEC.
FRQ	NUM 8 ER	3	8	FRO	z	6.0547	ΗZ	CUMULATIVE	TIME	π.	.431I	SEC.
FRG	NUMBER	÷.	9	F8.9	÷	6.6406	ΗZ	CURULATIVE	IIME .	·		SEC.
FRQ	NUMBER	*	10	FRQ		7.2260	нz	CUMULATIVE	TIME	¥	•5387	SEC.
FRQ	NUMBER	*	11	FRQ	2	7.8125	HΖ	CUMULATIVE	TIME	*	.5425	SEC.
FRQ	NUMBER	z	12	FRQ	x	8.3984	нz	CUNULATIVE	3M L T	*	+6462	SEC.
FRQ	NUM 8 ER	π	13	FRQ	*	8.9344	ΗZ	CUMJLATIVE	TEHE	×	. 995	SEC .
FRG	NUMBER	3	14	FRQ	Ξ	9.5703	нž	CUMULATIVE	TIME	z	.7533	SEC.
ERQ	NUMB ER	×	15	FRQ	=		_ HZ	CUMULATIVE	IIME	<u>.</u>	. 5071	SEC.
FRQ	NUMB ER		15	FRQ		11.5234	НZ	CUNULATIVE	TIME	*	.8639	SEC.

NO. OF FREQ. STEPS . 60 (INCLUDING INTERPOLATED POINTS)

EL M	G-USED 1KSF1	G-Nêx (KSF)	DIF-G (percent)	DAMP-USED (FRACTION)	DAMP-NER (FRACTION)	DIF-DAMP (PERCENT)	VS-USED (FPS1	VS-NEW (FPS)	DIF+-VS (PERCENT)
	··;								
1	0/1.	635.	2.1	.044	.046	-4.0	443.	431+	2.8
2	116.	718.	-+2	.042	.042	• 2	458.	458.	-+1
3	692.	617.	2.3	.043	.044	-1.d	450+	445.	1.1
4	800.	775.	3.3	. 037	.039	-3.3	434.	476.	1.6
5	577.	574.	• 5	.049	.050	5	411.	410.	• 3
6	570.	560.	1.9				409.		1.0
7	584.	561.	4.1	.049	.051	-3.8	÷14.	435.	2.0
8	610.	584.	4.5	.047	.049	-3.9	423.	413.	2.3
9	590.	565.	4.4	.ú4a	.050	-4.2	416.	407.	2.2
10	1125.	1097.	2.6	.043	.045	-5.4	549.	542	1.3
11	1055.	1064.	-•9	+ 349	.043	1.8	532.	534.	4
 12	1050.	1031	1.8		.052		.531.	526.	,9
 13	1161.	1136.	2.2	.039	.042	-5.7	558	552.	1.1
14	1021.	1032.	-1.0	.053	.052	2.0	523.	526.	5
15	996.	986.	1.0	.055	.056	-1.7	517.	514.	. 5
16	1007.	982	2.6	. 354	J50	-4.3	57.4	513.	1.3
17	1043.	1017.	2.5	- 350	.053	-4.6	52 4	522.	1.3
18	1008.	933.	2.6	. 054	.056	-4.4	520.	513.	1.3
 19	1001.	1037.	6	.054	.354	1.0	518-	520-	- 1
2.5	1000-	994.	. 7	- 054	.055	-1.2	510-	510.	
21	1002.	992.	2.1	-054	- 055	+3.7	519.	513.	1.1
22	1056	1081	1 4	045	.047	- 4 - 1	547.	510.	
27	1043	1045	1 7	149	050	-3 4	534-	529	
24	1122.	1104	1.6	.143	045	- 3 . 9	649.	544	
 26	1004	1079	1 43 9			_ 2 . 0	AT74 543	534	••
22	1076.	1014	1.0	• U 4 7	• v * r	- 2 + 2	342.	220*	• •

·

MAX. ELEMENT STRESSES IN PSF AND MAXIMUM SHEAR STRAIN IN PERCENT

ELM.	S16-X	S16-Y	S16-2	IAU-XY	TAU-YZ	T AU-ZX	MAX.SHEAR SIRN
T	24-0	51.8	82.9	70-0	5. ê	48-3	-01309
10	15.5	6,9	10.8	53.9	20.3	38.2	58800
m	190.0	177.4	191.7	37.2	5°C	64.3	.01076
4	27.7	34.6	37.8	43.5	5.1	34.4	.00683
ŝ	53.4	35.9	6.10	. 2*56	6 A D	24.3	£111C.
÷	17.4	6.6	6.4	84.9	15.3	67.5	.01924
-	77.2	85.4	104.0	19.9	12.0	75.5	.01900
8	8.1	9.5	7.5	101.3	2.8	14.8	- 01684
6	42.4	54.4	53.1	19.2	7.2	75.9	.01805
10	9.49	34.5	31.5	57.0	17.0	61.7	<b>.</b> UJ926
11	85.2	42.3	51.9	55.5	ETE	97.3	01010-
12	72.4	36.1	89.5	67.9	24.1	109.8	.012+2
13	52.9	1.44	106.3	57.5	22.6	57.5	+17UQ.
14	78.2	31.6	11.3	115.6	8.7	41.2	.01241
15	61.6	29.9	34.6	111.0	16.8	102.2	.01523
16	62.9	53.1	87.7	112.9	17.7	105.3	. 01548
12	36.2	19.4	11.9	2=91	2.3	24.4	1324
18	21.8	19.9	23.7	108.9	5.9	1.111	.01546
19	101.7	87.4	18.1	0.461	. 25.8	40.5	• J13d5
20	84.4	70.3	73.3	114.8	51.3	0.09	. 31473
21	105.3	115.0	185.8	102.3	45.2	102.3	.01552
22	83.0	78.2	41.5	106.9	7.5	23.7	+6603 -
23	72.1	76.6	71.6	87.1	18.6	61.9	20ilu.
24	39.6	80.2	32.9	97.5	5 <b>•</b> 6	10.1	, ûJ894
5	65.O	94.5	91.1	15.4	27.9	75.4	-31036

*** MAX. SHEAR STRAIN COMPUTATION IN TIME DOMAIN

TIME REQUIRED FOR COMPUTING STRESS AND STRAIN = 2.648 SEC

*** TAPE 1 HAS BEEN COMPLETED ***

÷ .



X-ACC. AMPLIFICATION AT NUCAL PUINT 1, 100 PEK CENT CURKESPUNDS TO 10.5812



,

·

,

-



*** PLOT OF FOURIER AMPLITUDE OF ACCELERATION

/

*** PLOT OF ACCELERATION. (BASE ACC.+REL. AUC.)

.

.....

. .....

X-COMP. OF ACCELERATION AT NODAL POINT 1, 100 PER CENT CORRESPONDS TO .2884 G EVERY 2 TH POINTS ARE PLOITED

	-100	-80	-60 *	-40 t	-20	C 	) •	20 	4J ±	<b>ن</b> ه +	сь †	103	PER CENT
J.	*++++	*******	*******	*******	** * * * * * * * * * *	+ + + + + +	** * * * * * * *	******	* * * * * *	*********		******	
.0800	+					1 +	•					+	50996-0
.1600	+					1	+1					+	·2484E-0
.2400	*					•	• 1					•	.7000E-0
 .2200	:	·· • ·	s				<u>.</u>					*	.14838-0
.4800	÷						•			,1		*	+6087E+(
.5600	+			1						ł			=.4205E+0
.6400	+	1		-			•					•	73668+0
.7200	+				1	•	•					•	1954E+0
 .8000	*						<b>t</b> a an in			· · · ·		<u>+</u>	-,28515+0
.8803	• •					4	+ 1					+	+ 5290E-0
1-0600					1		•					*	1761E+(
1.1200	+								1	,			- 3233E+: 4780E+;
1.2000	+						1			1		*	+0/07E+U
1.2800	+							1				•	.2056E+0
1.3600	•	1					+					+	7499E+(
1.4400	+					•	•			1		+	.5648E+0
1.5200	+					1 0	•					+	3907E-0
1.68000					1,	1						•	-,20058+0
1.7600	*				,*		- -		~			:	-,17655+(
1.8400	+				· ·		na seuren er sj. L	• ••• ••	~				-+24026+4
1.9200	+					1.						•	2838E-0
2.0000	+						•	1				+	+2477E+0
2.0800	+						<b>▶</b> 1					+	.15618-0
2.1600	•					1	1					+	.2126E-C
2.3200			· · · · · · · · · · · ·					-				•	.7647E-(
2,5200												*	.62548-0
2.4800													• 3800E=0
2.5600	+					1 1	•					· •	5328-1
2.6400	+					14	•					+	1763E-0
2.7200	<u>+</u>					1						+	9282E-0
2.8000	+					1 1	F .					+	-,33058-0
2.8800	2					1 1	•					+	6645E- (
3.0400						4	L					•	7176E-(
3.1200	÷				-						•		
3.2000	+						1						.45436-0
3.2800	+					1	1					+	.5738E-0
3.3600	•					4	► 1					+	.5815E-(
3.4400	•						• 1					+	.3977E-0
3.5200	*						1					+	.2657E-0
3.6800						1	L.					*	727-38-(
3.7600	•						∎			• •			51605-0
3.8400	+ .					ī.						•	56126-0
3.9200	+ '					i +	•						60756-0
4.0000	+					۲ ا	• .					+	4496E-(
4.0800	*					1 4						+	25848-0
4.2400						1						+	- 3073E-C
4.3200	÷											*	.30808-0
4.4000	•						• 1					- -	+ 24 345 F= (
4.4800	+						1					•	.6942E-0
4.5600	+						• 1					+	5755E-
4.6400	· • .						£.1.					+	.3091E~.
4.7200	+					. 1	1					+	24156-0
4.8000	:					1	•					+	40288-0
4-9600	-					1 1						+	/228E-0
5.0400	*****	*******	*******		*********	1 + + + + + +			******	********		*	9411t-( - 00105-0
	•		t.	+	*		•	*	*	*	*	••••••	-**0102-(
									•	7	• -	•	
***													
*****					. *								
*		TH SECONDE											
	1440	DI SECUNUS											
					the second second	Comment of the second							



-----

.

·



~

*** PLOT OF FOURIER AMPLITUDE OF ACCELERATION

ERY 2	TH POINT	S ARE PLOTT	£0							., .			
	-100	-80	-60 . t	-40 t	-20		נ ±	20 *	43 †	د ب +	40 +	+ 100 bE	K CENT
0.	*****	*****	********	+ * * * * * * * * * *	******	******	***]****	* * * * * *	*****		******	* * * * * *	.500
.1600	+						1					*	082
.2400	*						ī					+	. 550
3200	+				1		t					•	279
.4800	+					1	+					•	479
.5633	+			1			•					+	339
.7200	+					1	+ +		1			+	117
48000	1						<u>+ 1</u>		2.55			+	.310
.9600	+						• • L		1			*	.352
1.0400						1	÷ .					+	910
1.2000	•			. 1			- 1					*	.135
1.2800	+		•,				ta ana.		.1			+	311
1. 4400	•		1				*		1			*	-,599
1.5200	•				1		•		-			÷	- 200
1.6800	+					1	• • 1					+	- 367
1.7600	•				· · · · ·					1		+	.572
1.8430	*						+ 1	1			-	•	.255
z.0000	+						+1					÷	.2 40
2.0800	+				1	,	•					+	~.200
2.2400	•											*	~.705
2.3200	*					. 1	r •					+	- 482
2.4800	•					÷	+ 1					*	~.489
2.5600	*						+1					+	.107
2.7200	t						1					*	.107
2.8000	+						• 1					+	968
2.9600	+						F 1					+	.319
3.1200	*					1	•					+	- 298
3,2000	+											÷	- 677
3.2800	*					1, -						÷.	~.733
3.4400	+					1	r F						430
3.5200	•						L,					+	- 522
3.6800	÷											•	.187
3.7600	*						F 1,					•	.621
3.9200	+					•						*	.735
4.0000	•						+ 1					+	.3961
4.1600	+					1	k †					*	- 258
4.2400	+					1	F.					+	-,555
4.4000	+					1 .	•					:	745
4.4800	+					- 1 - ·	•					+	6730
4.5400	+					1	•					+	397
4.7200	+						+ 1					*	.373
4.8000	*											•	.7225
4.9600	+						+ i					•	.101
5.0400	*****	*********	********** *	*********	*******	******	** **1**** *	*****	*****	*******	*********	+++++	.352
	-									<b></b>		•	
***													

-----

.



_____

- · · · · · · · · · · ·

*** PLOT OF ACCELERATION AMPLIFICATION FUNCT.

 $t = \tau_{i}$ 

. .. ......

ł.

T ł



*** PLOT OF FOURIER AMPLITUDE OF ACCELERATION

83

. . .

·

ι,

*** PLDT OF ACCELERATION. (BASE ACC.+REL. ACC.)

X-COMP. OF ACCELERATION AT NODAL PCINT 19, 100 PER CENT CORRESPONDS TO .1553 G

· .

EVERY 2 TH POINTS ARE PLUTTED

*****

TINE IN SECUNDS

		-100	- 80	-60	-40	-20	0 20	40	έŨ	du	100 PE	ER CENT
		*	<b>t</b>	<b>t</b>	······ • • ····	t		···· + .	<b>†</b>	٠	•	
	0.	+++++	*******	********	********	************	* * * * * * * * * * * * * *	*****	********	********	*****	3007E-0
	.0800	*				1	•				+	3446E-0
	•1600	:					+ 1				+	.3962E-01
	.3200	•				1	* 1		*			1112E+01
	.4003	•					+	1			•	+0906+0
	•4800	+					+	1			+	.3867E+0
	.5600	•			1		+				+	-+45856+0
	.7200			i			*				+	5648E+0
	. 8000	÷				L	1 *				•	24038+.10
	.8800	÷					* L				+	.1774E+0
	.9600	•				1	+				+	7161E-0
	1.0400	•					+ 1				+	.1881E+0
	1.2000	:				•	*		1		+	•5608E+0
	1.2800					*	*	1				
-	1.3600	•	1				★	· · ··· • ·	•••••		+	7910F+0
	1.4400	•					+		1		+	.5630E+3
	1.5200	•				L	•				+	1951E+0
	1.6000	•				1	+				+	1939E+J
	2.0000	:				, 1	*				*	66278-0
	1.8400	÷	• •				+ 1		· ·			-11196+0
	1.9200	٠				1	+ -				•	3286E-0
	2+0000	+					+ 1				+	.1781E+00
	2.0800	•				1	, <del>†</del>				+	~.7944E-0
	2.2400						14 1				*	11888-0
	2.3200	•					- <u>1</u> . <u>1</u>				:	. 45396-01
	2.4000	+					1				+	5963E-02
	2.4800						+ 1				+	.4304E-31
	2.5600	+				1	+				+	51962-0
	2. 2200	:				,	+1				•	.23285-01
	2.8000	;				···· · · · · · · ·	1				:	6369E-J
	2.8800	•				1	÷					5308F-0
	2.9600	•					1 .				٠	.4025E-0
	3.0400						1+				+	1773E-0
	3.2003						*1				<u>.</u>	-1653E→J
	3.2800	•		·· · · ·-·			- 14					+1970E-0
	3.3600	•					+1				+	.2959F-0
	3-4400	+					+1.				•	.1813E-0
	3.5200	•					+1				+	.1979E-0
	3-6800										<u> </u>	1935E-02
	3.7600	+					. •				•	22276-01
	3.8400	•					1+				•	2046E-01
	3.9200	+					1+				+	28895-01
	4.0000	•					1+				•	20858-01
	4.0800	•					1				•	1653E-01
	4.2400	•					1				:	39072-07
	4.3200	+					+1				•	.18075-01
	4+4000	+					+1			de la	•	2669E-01
	4.4800	•					+1				+	.2882E-01
	9+5600	•					+1				•	.2790E-01
	4.7200	*		· · ·····			#4				•	.1d90E-01
	4.8000	•					i				*	76426-02
	4.8800	÷					1.				•	2133E-0
	4.9600	+				1	+				+	3375E-01
	2.0400	*****	*****	*********	*********	************	+********	*********	** * * * * * * * * * *	*********	*****	39+4E-01
		•	<b>T</b>	····	·- · · • • • • • • • • • • • • • • • • •	t	.*t	. *	. +	+	•	
	***											,
	****											

-----

84

----

.....

.

.960J 1.0800 AT TIME SEC 2-ACC 0. .111. 0. •234 ٠ 0090.1 AT TIME DEG. UF FDM. = HAX. INPUT BASE ACC. = .0228 IULIN X DIRECTION HAX. INPUT BASE ACC. = J. (G) IN Y DIRECTION MAX. INPUT BASE ACC. = J. (G) IN Z DIRECTION 0. U. 0374 Y-ACC ŝ AT TIME 1.0000 1.0000 1.0000 TIME REQUIRED FOR COMPUTATION AND OUTPUT OF ACCELERATIONS AT X-ACC .2884 .1384 .1553 ZCRD 40.00 20.00 40.00 MAXIMUM ABSOLUTE ACCELERATIONS(G) YORD 30.00 30.00 20.00 XORD 46.00 46.00 24.00 ITERATION NO. N. P.
********** * 630M *********

.

*** BLANK CO4MON REDUIREMENTS ***

1

-----

15000	1497	936	1767	6616	96	1168	6916	16
LENGTH DF BLANK COMMON *	BLANK COMMON REQUIRED FOR VEDDA *	BLANK CCMMON FOR PERMANENT DATA =	BLANK COMMEN REQUIRED FOR STRAIN -	BLANK COMMON FOR BBBC =	MAX. WORDS REQUIRED FOR BBBC -	BLANK COMMON REQUIRED FOR MOTION *	BLANK COMMCN FCR AAAC =	MAX. WCRDS REQUIRED FOR AAAC =

86

R = 1									
RUN NUMBER				r 1 on No 1 1 No 1 1 O 1					
	25 25 26 75 18 1	128	640 SEC 2560 SEC 2.560 SEC 2.560 SEC 2.5120 SEC 2.0000	- 0728 (G) 1.0000 TIMES INPUT MC 1.0000 TIMES INPUT MC 0. TIMES INPUT MO 1.160	*** * 12.000 HZ	- 12,000 HZ	r ND r Yes	• NG • 128 • 6500	5000
LE PROBLEM FOR TLUSH	INPUT DATA *** TOTAL NUMBER OF ELEMENTS - TOTAL NUMBER CF NODAL PCINTS - ST NODAL POINT ON RIGIO BASE DEGREES CF FREEDCM - JMBER OF BOUDTIONS - NUMBER OF ITERATIONS - NUMBER OF MATERIAL TYPES -	LINDUT MCTION ***	LASI POINT ID BE READ TIME STEP OF RECORD DURATION OF RECORD OUET ZONE OF RECORD OUTET DURATION OF RECORD TOTAL DURATION OF ANALYSIS EQ. MULTPH.IGATION FACTOR	MAX, ACCEL, AFTER SCALING MOTION IN X-DIRECTION 3 HOTION IN Y-DIRECTION 3 HOTION IN Z-DIRECTION 3 HOTION IN Z-DIRECTION 3 E LINE CORRECTION MILL BE APPL	FREQUENCY CONTENT CF ANALYSIS IJGHEST FREQUENCY OF ANALYSIS - NC. CF INTERPOLATICN RANGES =	0 5.000 HZ (K INT* 5. 5.000 10.000 HZ (K INT* 31 10.000 12.000 HZ (K INT* 51 10.000 12.000 HZ (K INT* 51 REQ. USED IN THE LAST ITERATION =	OUTPUT CONTROL *** SAVING AMP. FUNCTION ON TAPE * OMPUTING NEW SOIL PRCPERTIES *	PUNCHING NEW SOIL PROPERTIES : STEPS TO FIND MAX, RESPONSE = SKIP POINIS FOR PLOTING : Factor For EFF, Shear Strain =	HASS MATRIX *** FRACTION OF CCNSISTENT MASS * FRACTION OF LUMPED MASS *

*** RESPENSE SPECTRUM *** NUMBER OF CAMPING VALUES * 1 FRACTION OF CRITICAL DAMPING * .0500 FIRST FREQUENCY OF SPECTRUM * 100000 HZ LAST FREQUENCY CF SPECTRUM * 40.0000 HZ NO. OF FREQUENCY STEPS * 41 *** DAMPING CHARACTERISTICS *** UNIFORM DAMPING USED * NO *** OUTPUT REQUIREMENTS *** CODES FOR KEYSPC O--MAXIMUM ACCELERATION ENLY 1--PLOT ACC. THE HISTORY 10--PLOT ACC. AND VELCCITY RESPONSE SPECTRUM 100--PUCT FOURTER AMP. OF ACCELERATION 1000--PLOT FOURTER AMP. OF ACCELERATION 1000--PLOT AMPLIFICATION FUNCTION . VALUES OF KEYSPE N.P.NO. X-OUTPUT Y-OUTPUT Z-OUTPUT 1 1010 g 0 CODES FCR KEYSTR L--PLOT TIME HISTORIES CF STRESSES 10--PRINT TIME HISTORIES OF STRESSES 100--PUNCH FIME HISTORIES OF STRESSES ..... VALUES OF KEYSTR EL .ND. KEYSTR 14 1 *** SHEAR MODULUS AND DAMPING CURVES FOR MATERIALS WITH STRAIN-DEPENDENT PROPERTIES *** STANDARD BULLT IN CURVES ARE USED MAT. TYPE ---IDENT (FICAT ION SEED AND IDRISS (1970) -- CLAY SEED AND IDRISS (1970) -- SAND 1 2 SHEAR MODULUS CURVES SHEAR STRAIN IN PERCENT HAT. TYPE 10##(-4.0) 10##(-3.5) 10##(-3.0) 10##(-2.5) 10##(-2.0) 10##(-1.5) 10##(-1.0) 10##(-0.5) 10##( 0.0) 10##( 0.5) 10##( 1.0) 1 .10E+01 .91E+00 .76E+00 .57E+00 .40E+00 .26E+00 .15E+00 .76E-01 .37E-01 .13E-01 .40E-02 2 .10E+01 .98E+00 .93E+00 .83E+00 .66E+00 .44E+00 .25E+00 .12E+00 .49E-01 .49E-01 .49E-01 .49E-01 DAMPING CURVES (PERCENT) SHEAR STRAIN IN PERCENT MAT. TYPE 10**(-4.01 10**1-3.5) 10**(-3.6) 10**(-2.5) 10**(-2.0) 10**(-1.5) 10**(-1.0) 10**(-0.5) 10**( 0.0) 10**( 0.5) 10**( 1.0) .25E+01 .25E+01 .35E+01 .80E+00 .17E+01 .32E+01 .48E+01 .56E+01 .20E+02 .25E+02 . 93E+01 .16E+02 .25E+01 .50E+00 .65E+01 .10E+02 .14E+02 .2IE+02 .26 E+02 .29 E+02 .25 E+02 .25 E+02 1 2

. . . .

88

•	NPL	NP2	NP3	<b>NP</b> 4	NP5	ከዖቴ	N97	NP8	HTYPE	ID.EL	PQ	UNIT WT. {PCF}	3- MA X { K S F }	G-USE (KSF)	OMP-USE (FRACTION)	VS-US (FPS
	10	14	5	1	11	15	6	2	1	ı	.450	110.000	1500.000	670+887	.044	443.15
	11	15	5	2	15	16	7	3	1	<u> </u>	.450	110.000	1503.033	716.109	.342	457.94
	12	16	1	2	13	41	42	4	1	1	• • 50	110.000	1500.000	692.458	.043	450.22
	13	41	42	4	43	43	44	44	1	2	.\$50	110.000	1500.000	799.829	.037	483.87
	14	17	8	5	15	18	9	6	1	ı	450	110.000	1500.000	577.235	.049	411.06
	15	18	9	5	16	38	39	7	1	L.	.450	110.000	1500.000	570-316	.050	408.59
	16	38	39	7	41	÷1	42	42	1	2	++50	110.000	1500.000	584.308	.049	413.57
	17	29	30	8	18	34	35	9	1		.450	110.000	1500.000	510-362	.047	422.69
	18	34	35	9	38	38	39	39	1	2	.450	110,000	1500.000	540.178	.048	415.64
	19	19	14	10	26	20	15	11	2	-	.353	120.000	1503.333	1125.169	.043	549.4
	20	20	15	[1	21	21	10	12	2	د	. 350	120,000	1500.000	1055.399	.049	532.10
	21	21	16	12	40	40	+1 ())	13	Z	3	.350	120.000	1500.000	1050.066	.050	530.81
	40	40	41 17	13	43	4.5	43	43	2	2	.350	120.000	1200-203	1101+362	.039	>>8.24
	19		17	1.	- 30	- 44	- 50 -					120.000	1500.000	1020.782	.053	523.35
	20	23	18	15	21	31	38	1.5	2	2	-350	120.000	1500.000	998-117	.055	517.00
	21	31	58	10	10	40		*1	2	2	.350	120.000	1503.000	1307-374	.054	213.31
	22	28	29	10	23	2.2	20	18		2	.150	120.000	1500.000	1043-018	.050	524.01
	23	3.5	34	10	20	31	30	30	5	2	1000	120.000	1500.000	1008-343	4004	5204 10
	29	24	22	20	22	20	23	20	2	3	350	120,000	1500.000	1001-400	1057	510 11
	20	27	23	- 41 -	20	- 20	1 Zh	51				120.000	1500-000	1000.438		518-14
	30	30	20	21	26	10	22		<u></u>	1		120.000	1503.333	1002.000	.054	218.01
	25	21	20	22	2.5	34	27	23	-	5	- 350	120.000	1500-000	1042 047		534 04
	24	32	17	2.4	31	21	32	26	÷.	2	360	120.000	1500.000	1122 122	043	5/0 70
	31	21	12	26	34	24	34	34	2	1	360	120.000	1500.000	1105.404	045	541 72
			<i>.</i>		·· · ··										 	

----

-----

-----

• • • • •

. .

. . . . . .

•

	N. P.	XORD (FT )	YORD (FT )	ZORO(FT)	MASS (KIPS)	X-OFRECTION	Y-DIRECTION	2-DIR ECT ION
	1	46.000	30.000	40,000	-0.		FIXED	FIXED
	2	46.000	30.000	30,000	-0.		FIXED	
	3	46.000	30.000	20.000	ο.		FIXED	
	4	46.000	30.000	10.000	-0.		FIXED	
	5	46.000	20.000	40.000	-0.		FIXED	FIXED
	6	46.000	20.000	30.000	-0.		FIXED	
	7	46.000	20.000	20.000	-0.		FIXED	-
	8	46.000	10.000	40.000	-0.		FIXED	FIXED
	9	40.000	10.000	30,000	-0.		FIXED	
	10	36.000	30.000	40.000	-0.			FIXED
	11	36.000	30.000	30.000	0.			
	12	36.000	30.000	20.000	0.			
	13	36.000	30.000	10.000	- 0.			
	14	36.000	20,000	40.000	-0.			FIXED
	15	36.000	20.000	30.000	0.			
	16	35.000	20.000	20.000	-0.			
	17	36.000	10.000	40,000	-0.			FIXED
	18	36.000	10.000	30.000	-0.			
	19	24.000	20.000	. 40.000	-0.			FIXED
	20	24.000	20.000	30.000	ο.			
	21	24.000	20.000	20,000	-0.			
	22	24.000	10,000	40.000	-0.			FIXED
	23	24.000	10.000	30.000	-0.			
	24	12.000	10.000	40,000	- 0.			FIXED
	25	12.000	10.000	30.000	-0.			
	26	0.	٥.	40,000	-0.	FIXED	FIXED	FIXED
	27	12.000	٥.	40.000	0.	FIXED	FIXED	FIXED
	28	24.000	٥.	40.000	ο.	FIXED	F1XED	F1 XED
	29	36.000	0.	40.000	-0.	FIXED	F IX ED	FIXED
	30	46.000	٥.	40.000	-9.	FIXED	FIXED	FIXED
	31	٥.	٥.	30,000	-0.	FIXED	FIXED	FIXED
	32	12.000	٥.	30.000	0.	FIXED	F 1X ED	FIXED
	33	24.000	٥.	30.000	٥.	FIXED	F1XED	FIXED
	34	36.000	٥.	30,000	-0.	FIXEO	FIXED	FIXED
* -	35	46.000	<b>.</b> .	30,000	-0,	FIXED	F IX ED	FIXED
	36	12.000	10.000	20.000	-0.	FIXED	FIXED	FIXED
	37	24.000	10.000	20.000	J.	FIXED	FIXED	FIXED
	38	36.000	10.000	20,000	- 0.	FIXED	FIXED	FIXED
	39	46.000	10.000	20.000	-0.	FIXED	E L XED	GEXIA
	40	24-000	20,000	10.000	-0.	FIXED	FIXED	FIXED
A second fragments of the	° 41	36.000	20.000	10.000	-0.	FIXED	FIXED	FIXED
	42	46.000	20.000	10.000	-0.	FIXED	FIXED	FIXED
	43	36.000	30.000	٥.	-0.	FIXED	FIXED	FIXED
	44	46.000	30.000	à.	- 0.	FIXED	FIXED	FIXED

89

*** EARTHQUAKE RECORD ***

** EXAMPLE EARTHQUAKE ** 0.04 SEC 64 POINTS . INPUT ACCEL. PRIOR TO SCALING

.

. . .

MAX. ACC. * 34567 39 °15 11 12 13 14 15

#### TIME REQUIRED FOR INPUT AND INITIALIZATION = .088 SEC

and the second second

ELM	G-USED (KSFI	G-NEW (KSF)	DIF-G (percent)	DAMP-USED (FRACTION)	DAMP-NEW (FRACTION)	DEF-DAMP (PERCENT)	VS-USED (FPS1	VS-NEH (FPS)	DIF-VS (PERCENT)	MAX. S. STRAIN (PERCENT)	
						· · · · · · · · · · · · · · · · · · ·	· · · ·				
1 I	671.	611.	9.8	.044	•047	-6.4	443.	423.	4.8	.01461	
2	716.	682.	5.0	.042	.043	-4.3	458.	447.	2.5	.01049	
3	692.	677.	2.3	.043	.044	-1.8	450.	445.+	1.1	.01075	
4	800.	763.	4.8	.037	.039	~ 4 + 7	484.	473.	2. +	.00721	
5	577.	546.	5.7	. 04 9	. 05 2	-5.3	411.	400.	2.8	.02070	
6	570.	555.	2.7	.050	.051	-2.5	409.	403	1.4	.01972	
7	584.	573.	1.9	.049	•050	-1.9	414.	410.	1.0	.01784	
8	610.	598.	2.1	. 347	.048	-1.5	423.	418.	1.0	.01557	
9	590.	580.	1.7	.048	.049	-1.7	410.	412,	+ 8	.01715	
10	1125.	1075.	4.6	.043	.047	-9.9	549.	537.	2.3	.01019	
11	1055.	1030.	2.5	.049	.052	-4.7	<b>332.</b>	525 .	1.2	.01251	
12	1050.	1039.	1.1	050	051	-2.0	531.	528.	.5	-01200	
13	1161.	1129.	2.9	.039	.042	-7.2	558.	550.	1.4	.00800	
14	1021.	998 .	2.3	.053	.055	-3.9	523.	518.	1.1	.01443	
15	996.	985.	1.1	.055	.056	-1.8	517.	514.	. 5	.01529	
15	1037.	996.	1.1	.054	.055	-2.0	520.	517.	.6	.01458	
17	1043.	1035.	.8	.050	.051	-1.5	529.	527.	.4	.01224	
18	1008.	999.	. 9	.054	• 055	-1.5	520.	518.	.4	.01435	
19	1001.	969.	3.4	.954	.058	-6.5	518.	513.	1.7	.01627	
20	1000.	986	1.5	.054	.056	-2.5	518.	514.	. 8	.0152B	
21	1002	989	1.3	.054	+355	-2.2	519.	515.	.7	.01501	
22	1096 .	1089.	. 5	.045	+046	-1.4	542.	541.	.3	.00957	
23	1063.	1056.	.7	.049	.049	-1.4	534.	532.	. 3	.01113	
Z4	1122.	1116.	.6	.043	.044	-1.5	549.	547 .	.3	+00849	
25	1096 -	1089.	.6	.045	.0+6	-1.4	542.	541.	.3	.00958	

*** MAX. SHEAR STRAIN COMPUTATION IN FREQ DOMAIN

TIME REQUIRED FOR COMPUTING STRESS AND STRAIN * SEC . 452

. . .

- ·



## *** PLOT OF FOURIER AMPLITUDE OF ACCELERATION

.

.

.

						A CONTRACTOR OF A CONTRACTOR O										-																			
							:																												
																					And and a summarian														
		-	9600	96.00	9600	4400	4400	4400	8400	6000 6800	0071	1200	0400	0000	04400	6400	6400	04 00	0000	5600	2000	2400	5600	1200	1200	7200	2800	7600	64 00	0800	0400	0400	0040	0000	0400
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* * 1	TA = .	۲۵ = ۲	IA = 1.	TA = 1.	ΓA * Ι.	TA = 1.				IA = 1.	ТА н	 	TA #	. * * V	IA * 1.	[A # 1.	TA * .	[A = ].	I A × I.		[A = 1.	ra = 1.				TA * •	IA = l.	ι	TA "		TA * 1.	TA * 1.
			1600 1	5800	2800	1600	1600 .	0099	0049		0000	0000	2400	0800	7200	7200	0000	0000	0800	5400	2400	26.00	6000 J	1600	5600	0009		6400	0800	5200	0400	0400	00000	0010	0800
			" " >	V = 1.	 - + + 	- I	V = 1.	V = 1.4	* *				- I - N				<pre>&lt; = 1.</pre>	* *			V = 1.				۷ × ۰	• • •	* *	* *	<pre></pre>	v = 1.		* ; > ;		ר: 	V = 1.
î I Î			1 0096	1 CO36	9600 T	5600 1	4400 T	1 0011	8400 T			1200 T	1 0040	1 0070	1 00+9	6400 T	I 0C 99	1 0040	1 0000	5600 1	1 0002	1 0002	1 0070	1200 T	1200 T	5800 T		1 0002	1 0049	0800 T	00400	1 0000	1 0040	1 0050	1 0050
<del></del> ;		æ		· •	**	D = 1.	0 = 1.	0 * l.					• • •	, , , , , , , , , , , , , , , , , , ,	* *		• • •				0 = 1			0 * 1.	0 × 1.	* 0	* *		*	D = 1.(			* *		0 = 1.(
1		ES OCCU DISP. Vel.	1	1			1	۲.	 				-	, بر ا			:								+	, -,			1	1	- 1	1		 	-
POINT		AL VALU LAT IVE LATI VE SOL UTE	MAXIMA	MAXIMA	MAX IMA	MAX INA	MAX INA	HA XI HA	MAX INA			AMIXAM MAXIMA	MAXIMA	MAX INA	MAXIMA Maxima	MAX I MA	MA XI MA	MAX IMA	MAX 1 MA	PAX IMA	MAXIMA	MA XI MA		MA XI HA	MAX IMA	MAXIMA	A MIXAM	MAXIMA	MAX IMA	MAX [MA	HA XI HA	A MI X MA	A TI XAM	A VI VA	MAX IMA
ISH IT NODAL 2884		SPECTR MAX. RE MAX. RE MAX. AB	MES FOR	MES FOR	INES FOR	MES FOR	MES FOR	IMES FOR	INES FOR			HES FOR	IMES FOR	INES FOR	NES FUR	IMES FOR	INES FOR	IMES FOR	MES FUR	INES FOR	MES FOR	INES FOR	MES FUR	MES FOR	IMES FOR	MES FOR	INES FUR	MES FOR	INES FOR	INES FOR	HES FOR	INES FUR	IMES FUR	MES FOR	IMES FOR
FOR TLU Otidn A 1 10n = • 04 00	•05	ICH MAX. Me For Me For Me For	IL (	1			11	1		= =			11		= -	IL	Ĩ	T		=	11		= =	: =	1	E,			II .	11 1	F		==	;	11
RCBLEN NT OF M CCELERA RVAL *	AT 10 =	AT #HI T0 = T1 TV = T1 TA = T1	2.5000	2.2281	1.74958	1 5774	1.4059	1.2530	1.1167			.7046	-6280	5597	4986	3962	1636.	3147	2805	. 2228	.1986	.1776	1101.	.1253	.1117	5650 .	1990.	010	.0628	0560	5670 .	6440°	, U3YC	.0315	. 0281
PLE P MPDNE MUM A INTE	ING R	T IMES	PER ≖	PER ×	4 90.00 9 10 0 9 10 0	6 9 2	PER *	PER =	PER ≡			н ж К ж	PER =	PER *	PEX =	PER 📰	PER ×	PER *	н н 25.0 25.0	PER *	PER 🛓	1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- # 	PER *	PER =	PER #	N U U U U U U U U U U U U U U U U U U U	1 × 1	PER =	PER =	PER -	PER =	* * * ~	PER =	PER =

_ .

SPECTRAL VALUES

	REL. DI SP.	KEL. VEL.	PSU.KEL.VEL.	ABS . ACC .	PSU.ABS.ALL.	FKEQ.
		10100		10.01		1000
<b>.</b>	01740.	94546	19307		01145	4488
	0.49.37	27277	.15621	.01570	.01535	.5036
-	.05104	.30166	.18118	.02012	86610.	.5650
	.05447	97465.	. 21697	. 02764	02684	.6340
_	.06244	.37859	-27905	.04020	.03873	.7113
_	• 06689	42458	.33541	.05225	05223	.7981
	-07125	.48912	• 40090	. 071 06	.07005	.8955
~	•07244	.48134	.45733	.08952	. 08966	1.0048
0	16690.	. 54892	£606 <b>5</b> °.	718C1.	.13800	1.1274
	.05588	. 50806	.44410	.10997	•10961	1.2649
Ŷ	.04445	• 43642	.39640	.11010	.10978	I. 4193
0	.04121	. 38724	.41233	.12881	.12812	1.5924
~	•03068	.30630	96446.	.11723	.12007	1.7867
	.02106	.30086	.26527	.10688	.10377	2.0047
	16210-	. 19697	.25311	.11212	01111.	2.2494
	.01436	.19366	.22774	.11107	.11216	2.5238
	.01105	.22465	.19062	.10549	.10865	2.8318
-	.01248	. 24778	.24911	.15118	***51*	3.1773
~	86600*	.30136	.22353	. 15463	.15549	3.5650
õ	. 00968	• 24915	.22816	.17642	.17809	4.0003
8	.00652	.20412	. 18372	.15554	.15089	4.4881
9	.00666	• 24195	.21072	.19281	.20706	5.0357
0	. 00905	.36878	.32120	.37902	.35412	5.6502
1	.01350	.56752	. 53783	. 64 01 1	.65531	6.3396
ç	•01444	-64357	.64552	. 91197	.89596	7.1131
5	• 00888	• 38144	.44512	.73423	.69320	7.9810
-	5 <b>*</b> L00*	.31623	. 42151	. 73 998	.73654	8.9549
25	.00578	.35238	.36498	.72526	.71556	10.0475
17	.00386	.29290	.27341	•59121	-63 I46	11.2735
	-00132	.23861	. 10478	.25257	• 25862	12.6491
5	12100.	.17589	.15278	.43702	. 42309	14.1925
8	.00141	61650 *	.14153	-45446	.43978	15.9243
0	.00 104	.05693	. 11656	.41955	. 40 639	17.8673
6	.0004	.01727	.09336	.37196	.36520	20.0475
2	.00052	.00552	• 1670 •	.32346	.32103	22.4937
	.00036	•00299	.05777	.28597	.28450	25.2383
_	.00026	. 00450	•34554	.25415	.25166	28.3178
.0	.00020	- 01177	. 04030	.25715	.24985	31.7731
	•000 <b>1</b> 6	.01705	-04190	. 29727	. 29147	35.6500
	.00014	.01301	.03564	.28350	.27820	40.0000

1

,

ł

ļ

1

1

х. Х

RESPONSE SPECTRUM AMALYSIS FOR EXAMPLE FRCBLEM FOR TLUSH X-COMPONENT OF MOTION AT NODAL POINT ABSOLUTE SPECTRAL ACCELERATIONS (G)

CURVE 1 IS FOR .050 DAMPING AMAX= .912 AT FRQ= 7.113

-

i

10.00

		00 1++++++ 188 +1 140 +1 140 +1 140 +1 140 +1 141 +1 155 +1 181 +1 174 +1 174 +1 174 +1 234 +1 224 +1	•		•			•	•	•	•	+	
		00 +++++++ 136 +1 150 +1 140 +1 140 +1 140 +1 151 + 1 155 +				And the second							-
		136 +1 50 +1 1400 +1 1401 + 1 1881 + 1 1555 + 1 1748 + 1 1748 + 1 1748 + 1 1748 + 1 1748 + 1 1748 + 1	*****	*****	*****		****	******	****	* * * * * * * *	********	• •	
		50 +1 140 +1 181 + 1 1555 + 1 174 + 1 174 + 1 174 + 1 234 + 1 224 + 1										•	
		140 +1 13 +1 13 +1 181 + 1 165 + 1 174 + 1 174 + 1 146 + 1 124 + 1 124 + 1										•	
		113 + 1 161 + 1 1655 + 1 174 + 1 174 + 1 93 + 1 124 + 1 124 + 1										•	
		861 + 1 1555 + 1 1468 + 1 174 + 1 174 + 1 93 + 1 224 + 1		:								+	
		155     +     1       468     +     1       74     +     1       949     +     1       924     +     1										*	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$										•	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$										•	
		49 + 1 93 + 1 24 + 1										•	
	5/13       1         5/24       1         7/867       1         7/867       1         7/867       1         7/867       1         7/867       1         7/867       1         7/867       1         7/867       1         7/867       1         6000       1         6111       1         6121       1         6131       1         6131       1         7810       1         7811       1         7812       1         7813       1         6303       1         7314       1         7315       1         7315       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1         7313       1	93 + 1 124 + 1										•	
	7833       1         7831       1         7831       1         5536       1         5546       1         5550       1         5550       1         5550       1         5551       1         5550       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5551       1         5552       1 <td< td=""><td>1 + 571</td><td>and the second second</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A CONTRACTOR OF A CONTRACTOR AND A CONTRACT</td><td></td><td></td></td<>	1 + 571	and the second								A CONTRACTOR OF A CONTRACTOR AND A CONTRACT		
												•	
		101 + 1										• •	
												• .	
37,248       1         1173       1         1173       1         131       1         1331       1         1331       1         141       1         1531       1         141       1         1531       1         141       1         1532       1         1533       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         111       1         1255       1         1255       1         1255       1         1255       1         1255       1         1255       1         1255       1         1255       1         1255       1         1255		1 + 56										• •	
1731       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	1733       1         5550       1         5650       1         63357       1         1111       1         63357       1         53357       1         53357       1         53357       1         53357       1         53357       1         53357       1         53357       1         53358       1         53359       1         5430       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1         5451       1 <tr< td=""><td>138 + L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></tr<>	138 + L										•	
		1 + 81			and the second se			a - ang pang ang ang ang ang ang ang ang ang ang				• • • • • • • • • • • • • • • • • • •	
	0000       1         0010       1         0011       1         0011       1         0011       1         0011       1         0011       1         0011       1         0011       1         0011       1         0011       1         0011       1         0012       1         0013       1         0014       1         0015       1         0147       1         0147       1         0147       1         0148       1         0149       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1         0141       1 <td< td=""><td>+ 51</td><td>~.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></td<>	+ 51	~.									•	
0000       1         4881       1         0357       1         0358       1         0359       1         0351       1         0351       1         0351       1         0351       1         0351       1         03810       1         03810       1         03810       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         0475       1         13178       1         13178       1         13178       1         13178       1         13178       1         14       1         1500       1         1600       1 <td>480       1         481       1         481       1         3550       1         4810       1         4541       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         45</td> <td>+ 06</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	480       1         481       1         481       1         3550       1         4810       1         4541       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4545       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         4541       1         45	+ 06	,									•	
	0357       1       1       1       1       1        0357       6502       1       1       1       1         1316       1       1       1       1       1       1       1         9810       9549       1       1       1       1       1       1       1         9549       941       1       1       1       1       1       1       1         9549       941       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <	+ 000										÷ ·	
0.0331       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>6500 6500 6500 6500 6411 6411 6411 6411 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>+ 100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td></td>	6500 6500 6500 6500 6411 6411 6411 6411 1 1 1 1 1 1 1 1 1 1 1 1	+ 100										• •	
3396         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1132         1132         1132         1132         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131         1131 <t< td=""><td>3396         1131         1131         9549         9545         9545         9545         9545         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1265         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         13178         13178         149         159         1600         1711      <t< td=""><td>+</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• •</td><td></td></t<></td></t<>	3396         1131         1131         9549         9545         9545         9545         9545         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1255         1265         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         1218         13178         13178         149         159         1600         1711 <t< td=""><td>+</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• •</td><td></td></t<>	+	-	-								• •	
1131       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	$ \begin{bmatrix} 1 & 1 \\ - & 6491 \\ - & 6491 \\ - & 6491 \\ - & 6491 \\ - & 6491 \\ - & 6491 \\ - & 1 \\ - & 1 \\ - & 2735 \\ - & 6491 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & - & - \\ - & - & - \\ - & - & - & -$	46	•			and any many state of the state			And a second second second second second second			· · · · · · · ·	
9810       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •	9810       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	• •			-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 011			-1							+	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6+				1						•	
$ \begin{bmatrix} 2735 & \bullet & & & \\ 6491 & \bullet & & & \\ 1252 & \bullet & & & \\ 9243 & \bullet & & & \\ 9243 & \bullet & & \\ 1252 & \bullet & & \\ 1285 & \bullet & & \\ 6437 & \bullet & & \\ 1281 & \bullet & \\ 1212 & \bullet & & \\ 1212 & & & \\ 1212 & \bullet & \\$	2735       1       1       1       1         1425       1       1       1       1         1425       1       1       1       1         1425       1       1       1       1         1425       1       1       1       1         1457       1       1       1       1         1457       1       1       1       1         1451       1       1       1       1         158       1       1       1       1         1718       1       1       1       1         1731       1       1       1       1         16500       1       1       1       1         1731       1       1       1       1         16500       1       1       1       1         1731       1       1       1       1         1731       1       1       1       1         1731       1       1       1       1       1         1731       1       1       1       1       1       1         1731       1	+ 57.				-						•	
$ \begin{bmatrix} 6691 & \bullet & 1 \\ 1225 & \bullet & 1 \\ 2125 & \bullet & 1 \\ 8673 & \bullet & 1 \\ 8673 & \bullet & 1 \\ 6573 & \bullet & 1 \\ 1178 & \bullet & 1 \\ 1178 & \bullet & 1 \\ 650 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & $	$ \begin{bmatrix} 6491 & \bullet & 1 \\ 1925 & \bullet & 1 \\ 5243 & \bullet & 1 \\ 8673 & \bullet & 1 \\ 8673 & \bullet & 1 \\ 8673 & \bullet & 1 \\ 18673 & \bullet & 1 \\ 2383 & \bullet & 1 \\ 2383 & \bullet & 1 \\ 1731 & \bullet & 1 \\ 1731 & \bullet & 1 \\ 6500 & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet & \bullet & \bullet & \bullet \\ 0000 & \bullet \\ 0000 & \bullet & \bullet \\ 0000 & \bullet \\ 000 & \bullet \\ 0000 & \bullet \\ 000 & \bullet$	• 35 •		an said an	1						and another them the states	+	
	1925 • 1 9243 • 1 18673 • 1 1927 • 1 1937 • 1 1937 • 1 1938 • 1 19	+ 16	7									•	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 67		1								• ·	•
	00175 • 1 4937 • 1 1983 • 1 1713 • 1 1713 • 1 1713 • 1 1713 • 1 1713 • 1 1713 • 1 1714 • 1 0000 • • • • • • • • • • • • • • • • •	+		, , ,								• •	
4937       +       1       1       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +	(937 + 1 2183 + 1 2184 + 1 2185 + 1 6500 + 1 0000 + + + + + + + + + + + + + + + + +			1								•	
	2383 • 1 3178 • 1 7731 • 1 6500 • • • • • • • • • • • • • • • • • •	+ 137 +		1								÷	
		183 +	1.	And a second sec	and the second se	a contra a contra de contratere			to come to the set of a set of a second second second second	-		· · · · · · · · · · · · · · · · · · ·	;
		• • • • •										<b>4</b> 1	
		51 + 100 +	1									• •	
		******* 00	+ [ + + + + + + + + +	*********	********	********	*******	**********	********	*******	*********	+++	
		٠	+	+	٠	٠	٠	٠	٠	•	+	•	
										•	-		

.

. .



N.P. XORD YORD 2080 X-ACC AT TINE Y-ACC AT TINE Z-ACC AF TIME · · · 0. -30.00 40.00 .2884 1.0800 .9600 ٥. 1 46.00 .9600

TIME REQUIRED FOR COMPUTATION AND OUTPUT OF ACCELERATIONS AT 1 DEG. OF FDM. # .134 SEC



*** PLOT OF STRESS TIME HISTORY AT ELEMENT NO. 14 ***

. .

96

# 7. ACKNOWLEDGEMENTS

The computer program TLUSH is one of the results of a research program conducted at the Geotechnical Engineering division of the University of California, Berkeley by a group of faculty and graduate students for many years. The list of those who have contributed in some way to the development of the program is too long to mention herein. Special thanks are due to Freddie Tajirian for providing most of the interpolation routines and to J. C. Chen for helping in the initial stages of development. The financial support of the National Science Foundation through Grant No. PFR-7918267 and of the Department of Water Resources is greatly appreciated.

# 8. REFERENCES

- Cooley, J. W. and Tukey, J. W. (1965) "An Algorithm for the Machine Calculation of Complex Fourier Series," Mathematics of Computation, Vol. 19, No. 90, pp. 297-301.
- Kagawa, T. (1977) "Shaking Table Tests and Analysis of Soil-Structure Systems," Thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, University of California, Berkeley.
- Lysmer, J., Udaka, T., Seed, H. B., and Hwang, R. N. (1974) "LUSH: A Computer Program for Complex Response Analysis of Soil-Structure Systems," Report No. EERC 74-4, Earthquake Engineering Research Center, University of California, Berkeley, April.
- Lysmer, J., Udaka, T., Tsai, C. F., and Seed, H. B. (1975) "FLUSH: A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," Report No. EERC 75-30, Earthquake Engineering Research Center, University of California, Berkeley, November.
- Mejia, L. H. (1981) "Three Dimensional Dynamic Response Analysis of Earth Dams," Thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, University of California, Berkeley.
- Seed, H. B. and Idriss, I. M. (1969) "Influence of Soil Conditions on Ground Motion During Earthquakes," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM1, January.
- Seed, H. B. and Idriss, I. M. (1970) "Soil Moduli and Damping Factors for Dynamic Response Analysis," Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, December.
- Seed, H. B., Lee, K. L., Idriss, I. M. and Makdisi, F. (1973) "Analysis of the Slides in the San Fernando Dams During the Earthquake of February 9, 1971," Report No. EERC 73-2, Earthquake Engineering Research Center, University of California, Berkeley.
- Tajirian, F. (1981) "Impedance Matrices and Interpolation Techniques for 3-D Interaction Analysis by the Flexible Volume Method," Thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, University of California, Berkeley.
- Zienkiewicz, O. C. (1977) "The Finite Element Method," ed. McGraw Hill, London.

• ł. Ł ł. ٨ ł. Ł Ł 1 I.

### EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB -----) and remittance must accompany each order. Reports without this information were not available at time of printing. Upon request, EERC will mail inquirers this information when it becomes available.

- EERC 67-1 "Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J.G. Bouwkamp, R.W. Clough and D. Rea - 1967 (PB 187 905)A07
- EERC 68-1 Unassigned
- EERC 68-2 "Inelastic Behavior of Beam-to-Column Subassemblages Under Repeated Loading," by V.V. Bertero 1968 (PB 184 888)A05
- EERC 68-3 "A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H.D. McNiven and Y. Mengi-1968 (PB 187 943)A03
- EERC 68-4 "Dynamic Properties of McKinley School Buildings," by D. Rea, J.G. Bouwkamp and R.W. Clough 1968 (PB 187 902)A07
- EERC 68-5 "Characteristics of Rock Motions During Earthquakes," by H.B. Seed, I.M. Idriss and F.W. Kiefer 1968 (PB 188 338)A03
- EERC 69-1 "Earthquake Engineering Research at Berkeley," 1969 (PB 187 906)All
- EERC 69-2 "Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien 1969 (PB 187 904)A08
- EERC 69-3 "Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien 1969 (PB 187 886)A06
- EERC 69-4 "Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman - 1969 (PB 187 942)A02
- EERC 69-5 "Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano 1969 (PB 187 941)A03
- EERC 69-6 "Stochastic Analysis of Offshore Tower Structures," by A.K. Malhotra and J. Penzien 1969 (PB 187 903) A09
- EERC 69-7 "Rock Motion Accelerograms for High Magnitude Earthquakes," by H.B. Seed and I.M. Idriss 1969 (PB 187 940) A02
- EERC 69-8 "Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen, J.G. Bouwkamp, R.W. Clough and J. Penzien - 1969 (PB 189 111)A04
- EERC 69-9 "Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H.B. Seed 1969 (PB 189 114)A03
- EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary Loading," by S. Chosh and E.L. Wilson 1969 (PB 189 026)Al0
- EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and V. V. Bertero 1969 (PB 190 662)A10
- EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by V.V. Bertero, B. Bresler and H. Ming Liao 1969 (PB 202 942)A07
- EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfulian and H.B. Seed 1969 (PB 191 023)A03
- EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J.G. Bouwkamp 1969 (PB 190 663) A06
- EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H.B. Seed and I.M. Idriss 1969 (PB 191 036)A03
- EERC 69-16 "The Behavior of Sands Under Seismic Loading Conditions," by M.L. Silver and H.B. Seed 1969 (AD 714 982) A07
- EERC 70-1 "Earthquake Response of Gravity Dams," by A.K. Chopra 1970 (AD 709 640)A03
- EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by H.B. Seed, I.M. Idriss and H. Dezfulian 1970 (PB 195 762)A05
- EERC 70-3 "Cyclic Loading of Full Size Steel Connections," by E.F. Popov and R.M. Stephen 1970 (PB 213 545)A04
- EERC 70-4 "Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie, H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)A06

ł . I. ł. Ł Ł 1 ł.

EERC 70-5 "A Computer Program for Earthquake Analysis of Dams," by A.K. Chopra and P. Chakrabarti - 1970 (AD 723 994) A05

100

- EERC 70-6 "The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L.A. Drake 1970 (P3 197 896)A03
- EERC 70-7 "Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H.B. Seed and P.B. Schnabel 1970 (PB 197 897)A03
- EERC 70-8 "Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic Loading," by H.B. Seed and W.H. Peacock - 1970 (PB 198 016)A03
- EERC 70-9 "A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H.B. Seed and I.M. Idriss 1970 (PB 198 009)A03
- EERC 70-10 "Soil Moduli and Damping Factors for Dynamic Response Analysis," by H.B. Seed and I.M. Idriss 1970 (PB 197 869)A03
- EEPC 71-1 "Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A.K. Chopra and P. Chakrabarti 1971 (AD 731 496)A06
- EERC 71-2 "Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator," by R.D. Borcherdt and P.W. Rodgers - 1971 (PB 201 454)A03
- EERC 71-3 "Static and Dynamic Analysis of Inelastic Frame Structures," by F.L. Porter and G.H. Powell 1971 (PB 210 135)A06
- EERC 71-4 "Research Needs in Limit Design of Reinforced Concrete Structures," by V.V. Bertero 1971 (PB 202 943)A04
- EERC 71-5 "Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A.A. Shah and J.G. Bouwkamp 1971 (PB 203 584)A06
- EERC 71-6 "Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson - 1971 (PB 211 396)A06
- EERC 71-7 "Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V.V. Bertero and E.P. Popev 1971 (PB 211 335)A14
- EERC 71-8 "Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H.B. Seed and J. Lysmer 1971 (PB 214 450)A03
- EERC 72-1 "Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and H.H. Dovey 1972 (PB 212 904)A05
- EERC 72-2 "Accelerations in Rock for Earthquakes in the Western United States," by P.B. Schnabel and H.B. Seed-1972 (PB 213 100)A03
- EERC 72-3 "Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami 1972 (PB 214 868)A08
- EERC 72-4 "Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M.K. Kaul ~ 1972 (PB 215 713) A05
- EERC 72-5 "Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero and H. Krawinkler - 1972 (PB 214 555)A05
- EERC 72-6 "Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and A.K. Chopra 1972 (AD 762 330)A08
- EERC 72-7 "Dynamic Properties of Pine Flat Dam," by D. Rea, C.Y. Liaw and A.K. Chopra-1972 (AD 763 928)A05
- EERC 72-8 "Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.H. Dovey 1972 (PB 222 438) A06
- EERC 72-9 "Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V.V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520) A08
- EERC 72-10 "Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by E.L. Wilson, K.-J. Bathe, J.E. Peterson and H.H.Dovey-1972 (PB 220 437)A04
- EERC 72-11 "Literature Survey Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R.W. Clough 1972 (PB 215 613)A19
- EERC 72-12 "SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P.B. Schnabel and J. Lysmer - 1972 (PB 220 207)A06
- EERC 73-1 "Optimal Seismic Design of Multistory Frames," by V.V. Bertero and H. Kamil-1973

4

EERC 73-2 "Analysis of the Slides in the San Pernando Dams During the Earthquake of February 9, 1971," by H.B. Seed, K.L. Lee, I.M. Idriss and F. Makdisi - 1973 (PB 223 402)Al4 ł ł ł ł ł ł 1 ł ł ł ł ł 1 ł ł ł ł ł ł ł ł 1 ł ł ł ł

- EERC 73-3 "Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Powell 1973 (PB 248 315)A09
- EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien 1973 (PB 215 884)A09
- EERC 73-5 "Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien 1973 (PB 239 568)A03
- EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G.H. Powell 1973 (PB 221 260)A08
- EERC 73-7 "A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A.K. Chopra ~ 1973 (AD 766 271)A04
- EERC 73-8 "Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads," by O. Küstü and J.G. Bouwkamp 1973 (PB 246 117)A12
- EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems," by A.K. Vaish and A.K. Chopra 1973 (AD 766 272)A07
- EERC 73-10 "Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer 1973 (PB 227 179)A08
- EERC 73-11 "SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J. Bathe, E.L. Wilson and F.E. Peterson - 1973 (PB 221 967)A09
- EERC 73-12 "Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W.S. Tseng and J. Penzien - 1973 (PB 227 816)Al0
- EERC 73-13 "Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and J.A. Gutierrez 1973 (PB 222 970)A03
- EERC 73-14 "ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R.W. Clough, J.M. Raphael and S. Mojtahedi 1973 (PB 223 763)A09
- EERC 73-15 "Cyclic Plastic Analysis of Structural Steel Joints," by R.B. Pinkney and R.W. Clough 1973 (PB 226 843) A08
- EERC 73-16 "QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I.M. Idriss, J. Lysmer, R. Hwang and H.B. Seed ~ 1973 (PB 229 424)A05
- EERC 73-17 "Dynamic Schavior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and J.G. Bouwkamp 1973 (PB 240 718)A06
- EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Bertero, J. Hollings, O. Küstü, R.M. Stephen and J.G. Bouwkamp - 1973
- EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V.V. Bertero 1973 (PB 235 986)A06
- EERC 73-20 "Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W.S. Tseng and J. Penzien - 1973
- EERC 73-21 "Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P.P. Gillis 1973 (PB 226 024)A03
- EERC 73-22 "DRAIN 2D User's Guide," by G.H. Powell 1973 (PB 227 016)A05
- EERC 73-23 "Earthquake Engineering at Berkeley 1973," (PB 226 033)All
- EERC 73-24 Unassigned
- EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra 1973 (AD 773 052)A09
- EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.G. Collins - 1973 (PB 235 106)A13
- EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages." by V.V. Bertero, H. Krawinkler and E.P. Popov - 1973 (PB 234 172)A06
- EERC 74-1 "Seismic Risk Analysis," by C.S. Oliveira 1974 (PB 235 920)A06
- EERC 74-2 "Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H.B. Seed 1974
- EERC 74-3 "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K.S. Pister and A.K. Chopra 1974 (PB 231 172)A06
- EERC 74-4 "LUSH A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka, H.B. Seed and R. Hwang - 1974 (PB 236 796)A05

÷ 1 ł L ł Ł

- EERC 74-5 "Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray 1974 (PB 233 213)A06
- EERC 74-6 "Soil Structure Interaction Analyses for Evaluating Seismic Response," by H.B. Seed, J. Lysmer and R. Hwang 1974 (PB 236 519)A04
- EERC 74-7 Unassigned
- EERC 74-8 "Shaking Table Tests of a Steel Frame A Progress Report," by R.W. Clough and D. Tang-1974 (PB 240 869) A03
- EERC 74-9 "Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V.V. Bertero, E.P. Popov and T.Y. Wang 1974 (PB 236 797)A07
- EERC 74-10 "Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K.S. Pister ~ 1974 (PB 237 231)A06
- EERC 74-11 "Liquefaction of Gravelly Soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan 1974 (PB 242 042)A03
- EERC 74-12 "Site-Dependent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer 1974 (PB 240 953)A03
- EERC 74-13 "Earthquake Simulator Study of a Reinforced Concrete Frame," by F. Hidalgo and R.W. Clough ~ 1974 (PB 241 944)Al3
- EERC 74-14 "Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal 1974 (AD/A 006 583)A06
- EERC 74-15 "Modeling and Identification in Nonlinear Structural Dynamics I. One Degree of Freedom Models," by N. Distefano and A. Rath 1974 (PB 241 548)A06
- EERC 75-1 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang - 1975 (PB 259 407)Al5
- EERC 75-2 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang - 1975 (PB 259 408)All (For set of EERC 75-1 and 75-2 (PB 259 406))
- EERC 75-3 "Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira 1975 (PB 248 134)A09
- EERC 75-4 "Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by M.-C. Chen and J. Penzien 1975 (PB 241 454)A09
- EERC 75-5 "An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S.A. Mahin and V.V. Bertero - 1975 (PB 246 306)Al6
- EERC 75-6 "Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough and D.T. Tang-1975 (PB 243 981)A13
- EERC 75-7 "Dynamic Properties of San Bernardino Intake Tower," by D. Rea, C.-Y. Liaw and A.K. Chopra-1975 (AD/A008 406) A05
- EERC 75-8 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R.E. Hamati - 1975 (PB 251 539)A07
- EERC 75-9 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Kamati - 1975 (FB 251 540)Al0
- EERC 75-10 "Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G.H. Powell 1975 (PB 242 434)A08
- EERC 75-11 "Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and S. Chandramouli 1975 (PB 252 365) All
- EERC 75-12 "Earthquake Engineering Research Center Library Printed Catalog," 1975 (PB 243 711)A26
- EERC 75-13 "Three Dimensional Analysis of Building Systems (Extended Version)," by E.L. Wilson, J.P. Hollings and H.H. Dovey 1975 (PB 243 989)A07
- EERC 75-14 "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C.K. Chan and H.B. Seed - 1975 (NUREG 0027)A08
- EERC 75-15 "A Literature Survey Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R.W. Clough 1975 (PB 246 292)Al0
- EERC 75-16 "Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and E.P. Popov - 1975 (PB 246 388)A05
- EERC 75-17 "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248 172)A03
- EERC 75-18 "The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis, C.K. Chan and H.B. Seed-1975 (Summarized in EERC 75-28)

- EERC 75-19 "The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by M.B. Atalay and J. Penzien ~ 1975 (PB 258 842)All
- EERC 75-20 "Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and D. Jurukovski 1975 (PB 246 945)A04
- EERC 75-21 "State-of-the-Art in Seismic Strength of Masonry An Evaluation and Review," by R.L. Mayes and R.W. Clough 1975 (PB 249 040)A07
- EERC 75-22 "Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by A.K. Chopra, P. Chakrabarti and G. Dasgupta 1975 (PB 248 121)A07
- EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov-1975
- EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V.V. Bertero, E.P. Popov and T. Endo - 1975
- EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and C.K. Chan ~ 1975 (Summarized in EERC 75-28)
- EERC 75-26 "The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P.P. Martin and J. Lysmer - 1975 (PB 252 648)A03
- EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero 1975 (PB 248 136)A05
- EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.K. Chan-1975 (NUREG 0026)A13
- EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H.B. Seed, I.M. Idriss, F. Makdisi and N. Banerjee - 1975 (PB 252 635)A03
- EERC 75-30 "FLUSH A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C.-F. Tsai and H.B. Seed 1975 (PB 259 332)A07
- EERC 75-31 "ALUSH A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer and H.B. Seed 1975
- EERC 75-32 "TRIP and TRAVEL Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer and H.B. Seed - 1975
- EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien 1975 (PB 248 130)A03
- EERC 75-34 "Efficient Finite Element Analysis of Seismic Structure Soil Direction," by J. Lysmer, H.B. Seed, T. Udaka, R.N. Hwang and C.-F. Tsai - 1975 (PB 253 570)A03
- EERC 75-35 "The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading," by R.W. Clough and L.-Y. Li - 1975 (PB 248 841)A05
- EERC 75-36 "Earthquake Simulator Study of a Steel Frame Structure, Volume II Analytical Results," by D.T. Tang 1975 (PB 252 926)Al0
- EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D.P. Mondkar and G.H. Powell - 1975 (PB 252 386)A08
- EERC 75-38 "Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," by M. Murakami and J. Penzien ~ 1975 (PB 259 530)A05
- EERC 75-39 "Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earthquake Loading," by N.D. Walker and K.S. Pister - 1975 (PB 257 781)A06
- EERC 75-40 "An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasgupta and J.L. Sackman 1975 (PB 252 173)A03
- EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin 1975 (PB 258 781)A03
- EERC 76-1 "Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings Screening Method," by T. Okada and B. Bresler 1976 (PB 257 906)All
- EERC 76-2 "Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams," by S.-Y.M. Ma, E.P. Popov and V.V. Bertero 1976 (PB 260 843)Al2
- EERC 76-3 "Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum and J.G. Bouwkamp - 1976 (PB 273 279)A07
- EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi & C.-Y. Chang 1976 (PB 292 065)A08
- EERC 76-5 "Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell 1976 (PB 252 220) Alo
- EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo and J. Penzien (PB 260 556)All
- EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, S.W. Chen and R.W. Clough - 1976 (PE 270 098)A05
- EERC 76-8 "Cyclic Shear Tests of Masonry Piers, Volume 1 Test Results," by R.L. Mayes, Y. Omote, R.W. Clough 1976 (PB 264 424)A06
- EERC 76-9 "A Substructure Method for Earthquake Analysis of Structure Soil Interaction," by J.A. Gutierrez and A.K. Chopra 1976 (PB 257 783)A08
- EERC 76-10 "Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and J.R. Booker-1976 (PB 258 820)A04
- EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by G.H. Powell and D.G. Row 1976 (PB 271 409)A06
- EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Fister and E. Polak 1976 (PB 262 859)A04
- EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra 1976 (PB 257 907)A09
- EERC 76-14 "Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings 1976
- EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and J. Gidwani 1976 (PB 261 323)A08
- EERC 76-16 "Cyclic Shear Tests of Masonry Piers, Volume 2 Analysis of Test Results," by R.L. Mayes, Y. Omote and R.W. Clough - 1976
- EERC 76-17 "Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and C.W. Roeder - 1976 (PB 260 715)A05
- EERC 76-18 "Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and W.G. Godden 1976 (PB 269 548)A08
- EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by F. Baron and R.E. Hamati 1976 (PB 282 981)A16
- EERC 76-20 "Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258 453)A07
- EERC 76-21 "Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick 1976 (PB 260 378)A04
- EERC 76-22 "Response of the Olive View Hospital Main Building during the San Fernando Earthquake," by S. A. Mahin, V.V. Bertero, A.K. Chopra and R. Collins - 1976 (PB 271 425)Al4
- EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel, R.L. Mayes, R. W. Clough and S.W. Chen - 1976 (Not published)
- EERC 76-24 "GADFLEA A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during Cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)A04
- EERC 76-25 "Seismic Safety Evaluation of a R/C School Building," by B. Bresler and J. Axley ~ 1976
- EERC 76-26 "Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge Structure," by K. Kawashima and J. Penzien 1976 (PB 263 388)All
- EERC 76-27 "Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk 1976 (PB 265 157)A07
- EERC 76-28 "Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen 1976 (PB 262 899)A03
- EERC 76-29 "Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber 1976 (PB 264 410)A06
- EERC 76-30 "Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by L.E. Malik and V.V. Bertero 1976 (PB 272 247)Al3
- EERC 76-31 "The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R.E. Hamati 1976 (PB 272 279)A09
- EERC 76-32 "Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and V.V. Bertero 1976 (PB 265 892)Al3

ł.

- 105
- UCB/EERC-77/01 "PLUSH A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977
- UCB/EERC-77/02 "Soil-Structure Interaction Effects at the Numboldt Bay Power Plant in the Ferndale Earthquake of June 7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer 1977 (PB 265 795) A04
- UCB/EERC-77/03 "Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.K. Chan - 1977 (PB 267 352)A04
- UCB/EERC-77/04 "Seismological Studies of Strong Motion Records," by J. Shoja-Taheri 1977 (PB 269 655)Al0
- UCB/EERC-77/05 "Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov 1977
- UCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No. 1 -B. Bresler; No. 2 - B. Bresler, T. Okada and D. Zisling; No. 3 - T. Okada and B. Bresler; No. 4 - V.V. Bertero and B. Bresler - 1977 (PB 267 354)A08
- UCB/EERC-77/07 "A Literature Survey Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and R.W. Clough - 1977 (PB 277 933)A07
- UCB/EERC-77/08 "DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by R. Guendelman-Israel and G.H. Powell 1977 (PB 270 693)A07
- UCB/EERC-77/09 "SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1977 (PB 270 567)A05
- UCB/EERC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough (PB 272 280)Al3
- UCB/EERC-77/11 "Earthquake Engineering Research at Berkeley 1976," 1977 (PB 273 507)A09
- UCB/EERC-77/12 "Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. 1977 (PB 276 526)AD9
- UCB/EERC-77/13 "Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and E.P. Popov - 1977 (PB 275 165)A06
- UCB/EERC-77/14 "Seismic Strain Induced in the Ground During Earthquakes," by Y. Sucimura 1977 (PB 284 201)A04
- UCB/EERC-77/15 "Bond Deterioration under Generalized Loading," by V.V. Bertero, E.P. Popov and S. Viwathanatepa 1977
- UCB/EERC-77/16 "Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W. Zagajeski and V.V. Bertero - 1977 (PB 280 137)A07
- UCB/EERC-77/17 "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and D.F. Tsztoo 1977 (PB 273 506)A04
- UCB/EERC-77/18 "Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and E.P. Popov - 1977 (PB 275 526)A15
- UCB/EERC-77/19 "A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.I. Makdisi and H.B. Seed - 1977 (PB 276 820)A04
- UCB/EERC-77/20 "The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de Alba 1977 (PB 276 821)A04
- UCB/EERC-77/21 "Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation," by P. Lukkunapvasit and J.M. Kelly - 1977 (PB 275 453)A04
- UCB/EERC-77/22 "Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge 1977 (PB 278 769)A08
- UCB/EERC-77/23 "Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A. Huckelbridge - 1977 (PB 277 944)A09
- UCB/EERC-77/24 "Nonlinear Soil-Structure Interaction of Skew Highway Bridges," by M.-C. Chen and J. Penzien 1977 (PB 276 176)A07
- UCB/EERC-77/25 "Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.-N. Liou and J. Penzien 1977 (PB 283 180)A06
- UCB/EERC-77/26 "Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K. Chopra 1977 (PB 279 654)A06
- UCB/EERC-77/27 "A Practical Soft Story Earthquake Isolation System," by J.M. Kelly, J.M. Eidinger and C.J. Derham 1977 (PB 276 814)A07
- UCB/EERC-77/28 "Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An Exploratory Study," by A.J. Meltsner 1977 (PB 281 970)A05
- UCB/EERC-77/29 "Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi 1977 (PB 282 569)A04
- UCB/EERC-77/30 "An Approach for Improving Seismic Resistant Behavior of Reinforced Concrete Interior Joints," by B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870) A06

UCB/EERC-78/01	"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and D.F. Tsztoo - 1978 (PB 284 978)A04
UCB/EERC-78/02	"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp and A. Mukhopadhyay - 1978
UCB/EERC-78/03	"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M. Eidinger and J.M. Kelly - 1978 (PB 281 686)A04
UCB/EERC-78/04	"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 017)Al4
UCB/EERC-78/05	"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces," by S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978 (PB 283 858)Al3
UCB/EERC-78/06	"Inelastic Beam-Column Elements for the ANSR-I Program," by A. Riahi, D.G. Row and G.H. Powell - 1978
UCB/EERC-78/07	"Studies of Structural Response to Earthquake Ground Motion," by O.A. Lopez and A.K. Chopra - 1978 (PE 282 790)A05
UCB/EERC-78/08	"A Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Earthquakes," by R.C. Byrd - 1978 (PB 284 957)A08
UCB/EERC-78/09	"Model for Evaluating Damageability of Structures," by I. Sakamoto and B. Bresler - 1978
UCB/EERC-78/10	"Seismic Performance of Nonstructural and Secondary Structural Elements," by I. Sakamoto - 1978
UCB/EERC-78/11	"Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by S. Nakata, T. Sproul and J. Penzien - 1978
UCB/EERC-78/12	"Damageability in Existing Buildings," by T. Blejwas and B. Bresler ~ 1978
UCB/EERC-78/13	"Dynamic Behavior of a Pedestal Base Multistory Building," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp and M. Button - 1978 (PB 286 650)A08
UCB/EERC-78/14	"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978 (PB 286 503)AlO
UCB/EERC-78/15	"A Substructure Technique for Nonlinear Static and Dynamic Analysis," by D.G. Row and G.H. Powell - 1978 (PB 288 077)Al0
UCB/EERC-78/16	"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveíra - 1978
UCB/EERC-78/17	"Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gülkan, R.L. Mayes and R.W. Clough - 1978
UCB/EERC-78/19	"Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and E.P. Popov - 1978
UCB/EERC-78/19	"Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by J.L. Sackman and J.M. Kelly - 1978 (PB 292 357)A04
UCB/EERC-78/20	"Testing of a Wind Restraint for Aseismic Base Isolation," by J.M. Kelly and D.E. Chitty - 1978 (PB 292 833)A03
UCB/EERC-78/21	"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal Sand Layers During Cyclic or Earthquake Loading," by P.P. Martin and H.B. Seed - 1978 (PB 292 835)A04
UCB/EERC-78/22	"Optimal Design of an Earthquake Isolation System," by M.A. Bhatti, K.S. Pister and E. Polak ~ 1978 (PB 294 735)A06
UCB/EERC-78/23	"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits," by P.P. Martin and H.B. Seed - 1978 (PB 293 101)AO5
UCB/EERC-78/24	"Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification," by I. Kaya and H.D. McNiven - 1978
UCB/EERC-78/25	"Investigation of the Nonlinear Characteristics of a Three-Story Steel Frame Using System Identification," by I. Kaya and H.D. McNiven - 1978
UCB/EERC-78/26	"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
UCB/EERC-78/27	"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A, Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - 1978
UCB/EERC-78/28	"Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of 1," by SW.J. Chen, P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978

UCB/EERC-78/29 "Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978

•

UCB/EERC-79/01	"Hysteretic Behavior of Lightweight Seinforced Concrete Seam-Column Subassemblages," by B. Forzani, E.P. Popov and V.V. Bertero - April 1979(79 298 267)A06
UCB/EERC-79/02	"The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams to Cyclic Loads, Using System Identification," by J. Stanton & H. McNiven - Jan. 1979(FS 295 875)Al0
UCB/EERC-79/03	"Linear and Wonlinear Earthquake Response of Simple Torsionally Coupled Systems," by C.L. Kan and A.K. Chopra - Feb. 1979(98 298 262) AC6
UCB/EERC-79/04	"A Mathematical Model of Masonry for Predicting its Linear Seismic Response Characteristics," by Y. Mengi and H.D. McNiven - Feb. 1979(PS 298 266)A06
OCB/EERC-79/05	"Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement," by M.A. Manrique, V.V. Bertero and E.P. Bopov - May 1979(78 301 114)A06
UCB/EERC-79/06	"Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank," by R.W. Clough and A. Niwa - Feb. 1979 (FB 301 167)A06
UC3/E2RC-79/07	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety: Volume 1 - Summary Report," by P.N. Spencer, V.F. Zackay, and E.R. Parker - Feb. 1979(UCB/EERC-79/07)A09
UCB/EERC-79/08	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety: Volume 2 - The Development of Analyses for Reactor System Piping,"" <u>Simple Systems</u> " by M.C. Lee, J. Penzien, A.K. Chogra and X. Suzuki " <u>Complex Systems</u> " by G.H. Powell, E.L. Wilson, R.W. Clough and D.G. Row - Feb. 1979(DCB/ZERC-79/08)Al0
UCB/EERC-79/09	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety: Volume 3 - Evaluation of Commercial Steels," by W.S. Owen, R.M.N. Pelloux, R.O. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, S.J. Hartman, V.F. Zackay and E.R. Parker - Feb. 1979(DCB/EERC-79/09)A04
UCB/EERC-79/10	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety: Volume 4 - A Review of Energy-Absorbing Devices," by J.M. Kelly and M.S. Skinner - Feb. 1979(UCB/EERC-79/10)204
UC3/EERC-79/11	"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - May 1979(PB 301 328)A03
UCB/EERC-79/12	"Cyclic Loading Tests of Masonry Single Piers; Volume 3 - Height to Width Ratio of 0.5," by P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - May 1979(PB 301 321)A08
UCB/EERC-79/13	"Cyclic Behavior of Dense Course-Grained Materials in Relation to the Seismic Stability of Dams," by N.G. Banerjee, H.B. Seed and C.K. Chan - June 1979(PB 301 373)Al3
UCB/EERC-79/14	"Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages," by S. Viwathanatepa, E.P. Popov and V.V. Bertero - June 1979(79 301 326)AlO
UCB/25PC-79/15	"Optimal Design of Localized Nonlinear Systems with Dual Performence Criteria Under Earthquake Excitations," by M.A. Shatti - July 1979(53 80 167 109)AD6
UCB/EERC-79/16	"OPTDYN - A General Purpose Optimization Program for Problems with or without Dynamic Constraints," by M.A. Bhatti, E. Polak and K.S. Pister - July 1979(PB 80 167 091)A05
UCB/EERC-79/17	"ANSR-II, Analysis of Wonlinear Structural Response, Users Manual," by D.P. Mondkar and G.H. Powell- July 1979(PB 80 113 301)A05
UCB/EZRC-79/18	"Soil Structure Interaction in Different Seismic Environments," A. Gomez-Masso, J. Lysmer, JC. Chen and H.B. Seed - August 1979(PB 80 101 520) A04
UCB/EERC-79/19	"ARMA Models for Earthquake Ground Motions," by M.K. Chang, J.W. Kwiatkowski, R.F. Nau, R.M. Oliver and K.S. Pister - July 1979(PB 301 165)A05
UCB/EERC-79/20	"Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Bertero and E.P. Popov - August 1979(PB 80 165 903)Al2
UCB/EERC-79/21	"Studies on High-Frequency Vibrations of Buildings - 1: The Column Effect," by J. Lubliner - August 1979 (PB 80 158 553)A03
UCB/EERC-79/22	"Effects of Generalized Loadings on Bond Jeinforcing Bars Embedded in Confined Concrete Blocks," by S. Viwathanatepa, E.P. Popov and V.V. Berraro - August 1979
UCE/EERC-79/23	"Shaking Table Study of Single-Story Masonry Houses, Volume 1: Test Structures 1 and 2," by P. Gülkan, R.L. Mayes and R.W. Clough - Sept. 1979
UCB/EERC-79/24	"Shaking Table Study of Single-Story Mescary Houses, Volume 2: Test Structures 3 and 4," by P. Gülkan, R.L. Mayes and R.W. Clough ~ Sept. 1979
UCB/EERC-79/25	"Shaking Table Study of Single-Story Masonry Houses, Volume 3: Summary, Conclusions and Recommendations," by R.W. Clough, R.L. Mayes and P. Gülkan - Sept. 1979
UCB/EERC-79/26	"Recommendations for a U.SJapan Cooperative Research Program Utilizing Large-Scale Testing Facilities," by U.SJapan Planning Group - Sept. 1979(PB 301 407)A06
UCB/EERC-79/27	"Earthquake-Induced Liquefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. Arango, C.K. Chan, A. Gomez-Masso and R. Grant de Ascoli - Sept. 1979(NUREG-CR1341)AD3
UCB/EERC-79/23	"Infill Panels: Their Influence on Seismic Response of Buildings," by J.W. Axley and V.V. Bertero - Sept. 1979(PB 80 163 371)AlO
UC3/EERC-79/29	"3D Truss Bar Element (Type 1) for the ANGR-II Program," by D.P. Mondkar and G.H. Powell - Nov. 1979 (PB 80 169 709)AD2
UCB/EERC-79/30	"2D Beam-Column Element (Type 5 - Parallel Element Theory) for the ANSR-II Program," by D.G. Row, G.H. Powell and D.F. Mondkar - Dec. 1979(FB 60 167 224)203
UCB/EERC-79/31	"3D Beam-Column Element (Type 2 - Parallel Element Theory) for the ANSR-II Program," by A. Riahi, G.H. Zowell and D.Z. Mondkar - Dec. 1979(75 30 167 216)AD3
UCB/EERC-79/32	"On Response of Structures to Stationary Excitation," by A. Der Kiureghian - Dec. 1979(PB 80166 929) A03
UCB/EERC-79/33	"Undisturbed Sampling and Cyclic Load Testing of Sands," by 5. Singh, H.B. Seed and C.K. Chan - Dec. 1979(
UCB/EERC-79/34	"Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand," by P.M. Griffin and W.N. Houston - Dec. 1379
· · · · · ·	

{ ł 1 ł ł ł ł 1 ł I ł ł ł ł ł ł 1 ł ł

UCB/EERC-80/0	Effects," by A.K. Chopra, P. Chakrabarti and S. Gupta - Jan. 1980(AD-A087297)Alo
UCB/EERC-80/C	2 "Rocking Response of Rigid Blocks to Earthquakes," by C.S. Yim, A.K. Chopra and J. Penzien - Jan. 1980 (PB80 166 002) A04
UCB/EERC-80/C	3 "Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by S.W. Zagajeski and V.V. Bertero - Jan. 1980(PB80 164 635)A06
UCB/EERC-80/0	4 "Effects of Amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinforced Concrete Walls," by R. Iliya and V.V. Bertero - Feb. 1980(PB81 122 525)A09
UCB/EERC~80/0	5 "Shaking Table Research on Concrete Dam Models," by A. Niwa and R.W. Clough - Sept. 1980(PB81122 368)A06
UCB/EERC-80/C	6 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 1A): Piping with Energy Absorbing Restrainers: Parameter Study on Small Systems," by G.H. Powell, C. Oughourlian and J. Simons - June 1980
UCB/EERC-80/0	7 "Inelastic Torsional Response of Structures Subjected to Earthquake Ground Motions," by Y. Yamazaki April 1980(P381 122 327)A08
UCB/EERC-80/0	8 "Study of X-Braced Steel Frame Structures Under Earthquake Simulation," by Y. Ghanaat - April 1980 (PB81 122 335)All
UCB/EERC-80/0	19 "Hybrid Modelling of Soil-Structure Interaction," by S. Gupta, T.W. Lin, J. Penzien and C.S. Yeh May 1980(PB81 122 319)A07
UCB/EERC-80/1	.0 "General Applicability of a Nonlinear Model of a One Story Steel Frame," by B.I. Sveinsson and H.D. McNiven - May 1980(PB81 124 877)A06
UCB/EERC-80/1	1 "A Green-Function Method for Wave Interaction with a Submerged Body," by W. Kioka - April 1980 (PB81 122 269)A07
UCB/EERC-80/1	2 "Hydrodynamic Pressure and Added Mass for Axisymmetric Bodies," by F. Nilrat - May 1980(PB81 122 343)AO8
UCB/EERC-80/1	.3 "Treatment of Non-Linear Drag Forces Acting on Offshore Platforms," by B.V. Dao and J. Penzien May 1980(PB81 153 413)A07
UCB/EERC-80/1	.4 "2D Plane/Axisymmetric Solid Element (Type 3 - Elastic or Elastic-Perfectly Plastic) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980(PB81 122 350)A03
UCB/EERC-80/	5 "A Response Spectrum Method for Random Vibrations," by A. Der Kiureghian - June 1980(2881122 301)A03
UCB/EERC-80/	.6 "Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin June 1980(PB81 124 885)AlO
UCB/EERC-80/1	.7 "Dynamic Response of Simple Arch Dams Including Hydrodynamic Interaction," by C.S. Porter and A.K. Chopra - July 1980(PB81 124 000)A13
UCB/EERC-80/1	.8 "Experimental Testing of a Friction Damped Aseismic Base Isolation System with Fail-Safe Characteristics," by J.M. Kelly, K.E. Beucke and M.S. Skinner - July 1980(PB81 148 595)A04
UCB/EERC-80/	.9 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 1B): Stochastic Seismic Analyses of Nuclear Power Plant Structures and Piping Systems Subjected to Multiple Support Excitations," by M.C. Lee and J. Penzien ~ June 1980
UCB/EERC-80/2	0 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 1C): Numerical Method for Dynamic Substructure Analysis," by J.M. Dickens and E.L. Wilson - June 1980
UCB/EERC-80/2	1 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 2): Development and Testing of Restraints for Nuclear Piping Systems," by J.M. Kelly and M.S. Skinner - June 1980
UCB/EERC-80/2	2 "3D Solid Element (Type 4-Elastic or Elastic-Perfectly-Plastic) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980(PB81 123 242)A03
UCB/EERC-80/2	3 "Gap-Friction Element (Type 5) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980 (PB81 122 285)A03
UCB/EERC-80/2	4 "U-Bar Restraint Element (Type 11) for the ANSR-II Program," by C. Oughourlian and G.H. Powell July 1980(PB81 122 293)A03
UCB/EERC-80/2	5 "Testing of a Natural Rubber Base Isolation System by an Explosively Simulated Earthquake," by J.M. Kelly - August 1980
UCB/EERC-80/2	6 "Input Identification from Structural Vibrational Response," by Y. Hu - August 1980(PB81 152 308)A05
UCB/EERC-80/2	7 "Cyclic Inelastic Behavior of Steel Offshore Structures," by V.A. Zayas, S.A. Mahin and E.P. Popov August 1980
UCB/EERC-80/3	S "Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response," by M.G. Oliva October 1980(PB81 154 304)Al0
UCB/EERC-80/2	9 "Dynamic Properties of a Twelve-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger and R.M. Stephen - October 1980
UCB/EERC-80/3	10 "Dynamic Properties of an Eight-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger and R.M. Stephen - October 1980
UCB/EERC-80/1	Predictive Dynamic Response of Panel Type Structures Under Earthquakes," by J.P. Kollegger and J.G. Bouwkamp - October 1980(PB81 152 316)A04
UCB/EERC-80/3	12 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 3): Testing of Commercial Steels in Low-Cycle Torsional Fatigue," by P. Spencer, E.R. Parker, E. Jongewaard and M. Drory

i. 1

UCB/2ERC-80/33	"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 4): Shaking Table Tests of Piping Systems with Energy-Absorbing Restrainers," by S.P. Stiemer and W.G. Godden - Sept. 1980
UCB/EERC-80/34	"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety (Vol 5): Summary Report," by P. Spencer
UCB/EERC-80/35	"Experimental Testing of an Energy-Absorbing Sase Isolation System," by J.M. Kelly, M.S. Skinner and K.E. Beucke - October 1980(P381 154 072)A04
UCB/EERC-80/36	"Simulating and Analyzing Artificial Non-Stationary Earthquake Ground Motions," by R.F. Nau, R.M. Oliver and K.S. Pister - October 1980(PB81 153 397)A04
UCB/EERC-80/37	"Earthquake Engineering at Serkeley - 1980," - Sept. 1980
UC9/EERC-80/38	"Inelastic Seismic Analysis of Large Panel Buildings," by V. Schricker and G.H. Powell - Sept. 1980 (PB81 154 338)Al3
UCB/EERC-80/39	"Dynamic Response of Embankment, Concrete-Gravity and Arch Dams Including Hydrodynamic Interaction," by J.F. Hall and A.K. Chopra - October 1980(PB31 152 324)All
UCB/EERC-80/40	"Inelastic Buckling of Steel Struts Under Cyclic Load Reversal," by R.G. Black, W.A. Wenger and E.P. Popov - October 1980(PB81 154 312)A08
UCB/EERC-80/41	"Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Earthquake," by P. Repetto, I. Arango and H.B. Seed - Sept. 1930(PS81 161 739)A05
UCB/EERC-80/42	"Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete Frame," by J.M. Blondet, R.W. Clough and S.A. Mahin
UCB/EERC-80/43	"Modelling of Soil-Structure Interaction by Finite and Infinite Elements," by F. Medina

UCB/EERC-81/01 "Control of Seismic Response of Piping Systems and Other Structures by Base Isolation," edited by J. M. Kelly - January 1981 (PB81 200 735)A05

- UCB/EERC-81/02 "OPTNSR An Interactive Software System for Optimal Design of Statically and Dynamically Loaded Structures with Nonlinear Response," by M. A. Bhatti, V. Ciampi and K. S. Pister - January 1981 (PB81 218 851)A09
- UCB/EERC-81/03 "Analysis of Local Variations in Free Field Seismic Ground Motion," by J.-C. Chen, J. Lysmer and H. B. Seed -January 1981 (AD-A099508)A13
- UCB/EERC-81/04 "Inelastic Structural Modeling of Braced Offshore Platforms for Seismic Loading," by V. A. Zayas, P.-S. B. Shing, S. A. Mahin and E. P. Popov - January 1981
- UCB/EERC-81/05 "Dynamic Response of Light Equipment in Structures," by A. Der Kiureghian, J. L. Sackman and B. Nour-Omid -April 1981 (PB81 218 497)A04
- UCB/EERC-81/06 "Preliminary Experimental Investigation of a Broad Base Liquid Storage Tank," by J. G. Bouwkamp, J. P. Kollegger and R. M. Stephen - May 1981

UCB/EERC-81/07 "The Seismic Resistant Design of Reinforced Concrete Coupled Structural Walls," by A. E. Aktan and V. V. Bertero -June 1981

UCB/EERC-81/08 "The Undrained Shearing Resistance of Cohesive Soils at Large Deformation," by M. R. Piles and H. B. Seed -August 1981

·

.

.

UCB/EERC-81/09 "Experimental Behavior of a Spatial Piping System with Steel Energy Absorbers Subjected to a Simulated Differential Seismic Input," by S. F. Stiemer, W. G. Godden and J. M. Kelly - July 1981

UCB/EERC-81/10 "Evaluation of Seismic Design Provisions for Masonry in the United States," by B. I. Sveinsson, R. L. Mayes and H. D. McNiven - August 1981

UCB/EERC-81/11 "Two-Dimensional Hybrid Modelling of Soil-Structure Interaction," by T.-J. Tzong, S. Gupta and J. Penzien -August 1981

UCB/EERC-81/12 "Studies on Effects of Infills in Seismic Resistant R/C Construction," by S. Brokker and V. V. Bertero -September 1981

UCB/EERC-81/13 "Linear Models to Predict the Nonlinear Seismic Behavior of a One-Story Steel Frame," by H. Valdimarsson, A. H. Shah and H. D. McNiven - September 1981

UCB/EERC-81/14 "TLUSH: A Computer Program for the Three-Dimensional Dynamic Analysis of Earth Dams," by Takaaki Kagawa, Lelio H. Mejia, H. Bolton Seed and John Lysmer -September 1981. . ,