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ABSTRACT

A hybrid model formed by partitioning a soil~structure system

into a near-field and a far-field has been successfully exploited in

the analysis of three dimensional soil-structure interaction problems.

The near field which consists of the structure and a finite region of

soil around it is modelled by the finite element method. The far-field

which accounts for the loss of energy due to stress waves travelling

away from the foundation is modelled through continuous impedance

functions. The main purpose of this investigation is to complement the

previous research on three-dimensional hybrid modelling by employing the

same tecp~ique to the two-dimensional case.

To determine the two-dimensional frequency dependent impedance

functions, a method of system identification is used to insure that the

resulting hybrid model reproduces the known compliances of an infinite

rigid strip on an elastic halfspace. These impedance functions have

been employed to calculate the compliances of the strip for different

Ria ratios. Good agreement between the computed and known compliances

is shown.
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1. INTRODUCTION

Soil-structure interaction has considerable influence on the

dynamic response of deeply embedded or massive structures such as

nuclear power plant buildings, offshore gravity towers, and dams. A

concerted research effort in recent years, primarily motivated by the

concern for safety and reliability of nuclear power plants during

earthquakes, has considerably improved the state of the art of soil-

structure interaction analysis. However, conceptual and computational

difficulties still remain, primarily due to the three-dimensional semi-

infinite nature of the soil medium and the complexities caused by the

embedment of structures. Non-homogeneity and strain dependency of

soil properties, and uncertainties associated with seismic input motions

are factors which further complicate the modelling process.

The two basic methods currently in use for the analysis of soil-

structure interaction are the finite element method and the substructure

or continuum method(l). In the finite element method both the structure

and the soil are modelled as a single system using finite elements.

This method has been used extensively because of its ability to model

embedded structures and the natural layering of the soil deposits. Non-

linear soil properties can also be treated in an approximate fashion.

However, a major disadvantage of this method is that the soil, essentially

semi-infinite in nature, is normally modelled by a two-dimensional,

finite-sized system with a rigid lower boundary. Thus, radiation

damping which accounts for the loss of energy due to waves traveling

away from the foundation can not be modelled accurately, although the use

f · (2) t Ott" (3) be d' "1 h 1 1o V1SCOUS or ransm1 1ng un ar1es to S1mu ate t e atera

extent of the soil region may somewhat mitigate these errors.
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In the substructure method, the foundation is usually idealized

by a rigid, massless, circular plate bonded to the surface of a semi-

infinite halfspace. Frequency dependent impedance functions for the

plate are developed and incorporated into the Fourier transformed

equations of motion for the structure by imposing the conditions of

compatibility and equilibrium between the structure and the plate.

This method accounts for radiation damping in the semi-infinite soil

medium and provides a realistic, simple, and economical three-dimensional

model for a restricted class of structures satisfying the rigid plate

foundation conditions mentioned above. Theoretically, the substructure

method is also applicable to structures having more complex foundation

(4)
conditions; e.g., embedded structures • Difficulties arise, however,

in using the method due to lack of realistic solutions for the

required impedances representing the semi-infinite soil medium.

Although both methods, when used carefully and skillfully, may

provide realistic estimates of the soil-structure interaction effects,

it is apparent that they have certain inherent limitations. In an

earlier investigation (5) , noting that generally the advantages of one

approach are the disadvantages of the other, a hybrid model was

introduced in which the whole system is modelled through a combination

of finite elements and impedance functions resulting in a realistic,

practical, and economical method for the three-dimensional analysis of

soil-structure interaction.

In the present investigation, the previously reported hybrid

modelling approach is applied to the analysis of plane problems, e.g.,

long concrete gravity or earth dams where it is reasonable to assume

two-dimensional behavior. Although most of the concepts are the same

as presented before, they are repeated here for the sake of completeness.
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The hybrid model is developed in Chapter 2 of this report by partitioning

the total soil-structure system into a near-field and a far-field.

The near-field may be modelled by finite elements. Modelling of the

far-field by continuous impedance functions and the determination of

these impedance functions by the methods of system identification is

explained in Chapter 3. In Chapter 4, numerical results for the

identified far-field impedance functions are presented and the responses

of some simple systems using these impedance functions are compared

with other analytical solutions. Significant conclusions and remarks

for further developments are presented in Chapter 5.
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2. HYBRID MODELLING APPROACH

2.1 Hybrid Model

The hybrid model is obtained by partitioning the total soil­

structure system into two substructures, termed the near-field and the

far-field. The approach is, therefore, similar in concept to the

general substructure method in that the total system is considered

to be composed of two subsystems. However, a major difference is that

in the present case the near-field consists not only of the structure

but also a portion of the foundation soil within the smooth interface

shown in Fig. 2.1. The far-field contains the remaining soil region

outside this interface. For three-dimensional problems the interface

was appropriately chosen to be hemispherical. For plane problems,

with which the present investigation is concerned, this interface is

taken to be a semi-cylinder.

Both the structure and the soil in the near-field may be modelled

in discrete form using the finite element method, thus taking

advantage of its ability to accommodate irregular geometries such as

those encountered with embedded foundations. Non-homogeneous and non­

linear soil properties in the immediate vicinity of the foundation can

also be modelled by assigning appropriate properties to the affected

finite elements.

The far-field, which in the present investigation is a uniform

elastic half-space with a semi-cylindrical cavity, shares a common

interface with the near-field along which the nodal points are common

to both. It accounts for the loss of energy due to waves travelling

away from the foundation. An accurate representation of this behavior

requires the development of a far-field impedance matrix which relates



6

the far-field forces to the far-field displacements corresponding to the

interface degrees of freedom. Since rigorous solutions to this problem

appear mathematically intractable at present, the far-field is modelled

in this investigation by continuous impedance functions distributed over

the interface. The far-field impedance matrix may then be obtained by

discretizing these impedance functions at the boundary nodes. This

matrix when combined with the near-field equations of motion effectively

and efficiently simulates the total soil-structure system. The

determination of the far-field impedance functions using the method of

system identification will be discussed in Chapter 3.

The term "hybrid" adopted herein reflects the fact that by this

approach the soil region is modelled by both finite elements and

impedance functions allowing realistic modelling of both the near- and

far-fields which has been difficult to accomplish in the past by the

existing methods for the analysis of soil-structure interaction.

2.2 Equations of Motion

The equation of motion for the isolated near-field subjected to

uniform ground motion along the interface can be written as

MU + eu + Ku = £(t) + !(t) (2.1)

in which u(t) is the vector of nodal point displacements in the near-

field (including interface nodes) relative to the motion of the boundary,

•
and u and u are the corresponding velocity and acceleration vectors,

respectively. Mass matrix M is, in general, a full matrix but it can be

diagonalized using a lumping procedure that gives sufficient accuracy

and saves substantial computer storage. The near-field stiffness matrix

!. is positive semi-definite. Viscous damping matrix C accounts for

energy dissipation in the near-field due to material damping. Vector £(t)
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contains the components of effective inertia loading on the system due

to earthquake ground motion, and vector !(t) contains the far-field

interaction forces corresponding to the interface degrees of freedom.

For steady state response, Eq. 2.1 can be transformed into

frequency domain, giving

(-(jlM + iwC + !9 £(w) = p (w) + !.(w)

or

~(w) £(w) = ~(w) + F(W)

where

is the frequency dependent impedance matrix which characterizes the

(2.2)

(2.3)

mass, damping and stiffness properties of the near field. U(w), ~(W)

and !.(W) are the Fourier transforms of the displacement. loading, and

interaction force vectors, respectively, and W is the excitation

frequency.

The vector £ of nodal point displacements can be partitioned

into two parts: ~ corresponding to the nodal displacements at the

boundary common to the near- and far-fields, and U corresponding to
-os

the remaining nodal displacements of the near-field. Thus, Eq. 2.3

can then be written in the partitioned form

Sb]
~b

(2.4)

Because there are no interaction forces in the interior of the near-field,

only vector !b corresponding to the interface degrees of freedom exists

in vector F (w) •
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For the isolated far-field, the interface dynamic force-deflection

relationship is

~(w) ~(w) = ~(w) (2.5)

where ~(w) is the far-field impedance matrix which has to be determined

by a separate analysis. In rigorous form, it is a full matrix the

elements of which characterize the mass, radiation damping, and stiffness

characteristics of the far-field. It is complex valued and frequency

dependent.

The equations of motion for the far-field are incorporated into

the frequency domain near-field equations by invoking the conditions

of compatibility and equilibrium at the interface, i.e.,

(2.6)

and

(2.7)

Substitution of Eqs. 2.5, 2.6 and 2.7 into Eq. 2.4, leads to the follow-

ing equations of motion for the hybrid model of the entire soil-

structure system in the frequency domain:

SbJ
~~ = (2.8)

or,

A

S(w) U(w) = pew) (2.9)

A

where ~(w) is the impedance matrix of the total hybrid system including

near- and far-fields.
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2.3 Dynamic Response

For a prescribed earthquake input motion, the Fourier amplitude,

£(w), of the resulting load vector, ~(t), can be obtained from

pew) (2.10)

where T
d

is the time duration of excitation. The solution ~(w) of

Eq. 2.9 for discrete values of the excitation frequency completely

characterizes the response in the frequency domain. The time histories

of response can then be obtained by the inverse Fourier transformation

of the complex frequency response into the time domain using

~(t) =
1
2~

(2.11)

The transform pairs of Eqs. 2.10 and 2.11 can be evaluated in a very

efficient and economical way by using Fast Fourier Transform (FFT)

techniques.

The definition of a realistic input motion to the soil-structure

systems is still a debatable issue. The seismic energy arriving at a

particular site depends upon so many factors, such as fault rupture

mechanism, travel path of the seismic waves, and local soil conditions,

that a complete characterization of the earthquake ground motion

unique to a particular site appears impossible and impractical within

the present state of the art. Analytical studies to predict the motion

(6)
on the surface of a layered halfspace or along cavities of various

h (7,8,9). of h f d II's apes 1n a un1 orm al space ue to a system of trave 1ng

waves provide an insight into this complex phenomonen, but have limited

use because of lack of knowledge about the angle of incidence of in-

coming seismic waves and their composition which vary from earthquake
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to earthquake. Therefore, at the present time it seems reasonable and

prudent to specify a site-dependent response spectrum from which time

histories of motion can be generated to be used as input to the soil­

structure system.

The equations of motion in this report have been developed for

uniform earthquake excitation at the interface. Spatially varying

ground motions along the interface, if known, can be incorporated by

solving a modified set of dynamic equilibrium equations and combining

the resulting nodal displacements with the corresponding quasi-static

displacements produced by the prescribed interface displacements (10) •
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3. FAR-FIELD IMPEDANCE FUNCTIONS

3.1 Mathematical Model

An accurate representation of the far-field which accounts for

radiation damping in the semi-infinite soil medium is central to the

concept of hybrid modelling. The development of a far-field impedance

matrix, ~(w), as needed by the hybrid model, requires the solution of a

set of partial differential equations with prescribed boundary conditions

at the interface. Since such analytical solutions are difficult to

obtain except for very simple systems (5) , a semi-analytical approach is

adopted here in which, physically, the far-field may be thought of as

being composed of infinitesimally thin soil elements, extending to

infinity in the direction normal to the semi-cylindrical cavity, and

which act independently of each other. This is a realistic assumption if

the deformations are smooth and slowly varying functions over the

interface. This can be assured by placing the interface at a reasonable

distance from the structure since the influence of foundation irregular­

ities on stresses and displacements along the semi-cylindrical boundary

diminish with distance from the foundation.

The dynamic load-deflection relationship of each of these infinite­

simal soil elements can be characterized by impedance elements, the real

part representing stiffness and the imaginary part representing

radiation damping. Since there is an innumerable number of such closely

spaced infinitesimal soil elements, the far-field, in the limit, may be

replaced by continuous impedance functions placed in the two coordinate

directions on the interface between the near- and far-fields. Conceptually,

this is the dynamic equivalent of the Winkler assumption made for the

case of static loading of beams on an elastic foundation.
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In general, the far-field impedances can be expressed in terms

of a Fourier series involving the angle~. Since for uniform or

horizontally layered halfspaces the far-field possesses material and

geometric symmetry about the vertical axis, the impedance functions

must be symmetric in ~; thus giving

r
n=O

S (R,b) cosn~
~ 0

(3.1)

r S~ (R,b ) cosn~
~O ~ 0

in which SR and s~ are the complex valued far-field impedances per unit

area in the normal and tangential directions to the semi-cylindrical

interface as shown in Fig. 3.1.a. Coefficients s~ and S~n are

functions of the interface radius R, the shear modulus G, and the non-

dimensional frequency parameter b defined by b = wR/C where w is the
o 0 S

excitation frequency, Cs = IG/p is the shear wave velocity, and p is the

mass density of the far-field material.

The number of terms required in Eq. 3.1 to properly represent the

far-field depends upon the complexity of layering. In the present

investigation the far-field is considered to be a homogeneous, isotropic,

and elastic halfspace for which the infinitesimal soil elements around

the interface will have the same properties. This gives rise to uniformly

distributed impedance functions. Therefore, only the constant terms in

Eq. 3.1 need be retained, giving

n + .~R 1 R
(3.2)

s~ (R,b )
~o 0
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where the n's and ~'s are the real and imaginary parts, respectively, of

the unknown far-field impedance functions.

These continuous far-field impedance functions can be discretized

at the boundary nodes to obtain the far-field impedance matrix. This

can be achieved by using the principle of virtual work expressed as

oW T
f o~ P ds (3.3)

where o~ is the 2-component vector of kinematically admissible virtual

displacements on the interface, and p is the corresponding 2-component

vector of real interface forces in equilibrium, and s is distance along

the interface.

From the assumed model of the far-field, the interface forces

and displacements are related by

(3.4)

where SR and S~ are the continuous far-field impedance functions defined

earlier.

In addition, the far-field displacements expressed in the cy1indri-

cal coordinate system will be transformed into the Cartesian coordinate

system used for the near-field finite element model by the relation

{

u J [Sin~ cos~l {u }

u: cos~ -Sin~J u:
Substitution of Eqs. 3.4 and 3.5 into 3.3 gives

(3.5)



15w.= 115<u u >x z
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[
SRsin2~+s~cOS2~

(SR-S~) s in~cos~

(SR-S~)Sin~cos~]

SRcos2~+s~sin2~

(3.6)

Now, the displacements on the interface may be expressed in terms

of the same interpolation functions as used for the near-field finit:e

element discretization to ensure compatibility of displacements

along the interface. Thus, for a quadratic element 'p' on the intel'face

uxl
ux2
ux3
uzl
uz2
uz3

p

(3.7)

where u
xl

' u
zl

' etc. are the nodal point displacements at the interface,

and Nl , N
2

, N
3

are the interpolation functions given by

t
N = - (t-l)1 2

N = l-t2
2

tN = - (t+l)
3 2

-1 < t < 1

Therefore, the contribution of element 'p I to the total virtulal

work can be obtained by substituting Eq. 3.7 into Eq. 3.6, giving

(3.8)

in which,

(3.9)
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is the 6 x 6, consistent far-field impedance matrix in Cartesian

coordinates for an element p on the interface. Because of the

complexity of the terms in Eq. 3.9, six Gaussian quadrature points

along an element interface are needed to avoid incomplete integration.

The far-field impedance matrix for the entire interface may be

obtained by standard assembly procedure giving

=

Sl
.:::..E

S2
-f

I

I """

(3.10)

in which, the element impedance matrix given by Eq. 3.9 is used for

assembly.

The overall far-field impedance matrix so obtained may be

employed in the hybrid system as represented by Eq. 2.8 to solve two

dimensional problems.

3.2 Parameter Identification

The unknown far-field impedance functions SR and S~ are

determined by the method of system identification. System identification

is an iterative process in which the unknown parameters of the post-

ulated analytical model are determined by systematically adjusting them

in such a way that the resulting model provides a best fit to the actual

observed behavior of the system. In the present investigation, which

is concerned with two-dimensional problems, the "observed behavior" is

taken as that given by the theoretical solutions for the dynamic

response of an infinitely long, rigid, massless strip footing on a

uniform elastic halfspace in the vertical and coupled translation-
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rocking modes of vibration. These solutions have been determined by

. (11) (12)
01en and Luco and Westmann and can be defined by the following

matrix equation.

~ Cw V

.1H = CHH CHM H (3.11)

.1
M CMH CMM M

In the above equation, the coupling compliance C
HM

equals C
MH

owing to

the reciprocity condition. Since the solutions obtained by Luco and

Westmann for Poisson's ratio other than 1/2 are valid only for non-

dimensional frequency ao below 1.5 due to the numerical difficulties

involved, the compliances used here are those generated by Oien. The

corresponding hybrid model of the rigid strip, with the near-field

modeled by finite elements and far-field by impedance functions, must

reproduce these known solutions within some prescribed tolerance level.

For a prescribed value of the excitation frequency and for

assumed values of far-field impedance functions, the equation of

motion for the hybrid system, Eq. 2.9, can be solved to yield the

complex displacement amplitudes (compliances) of the rigid massless

strip footing. These compliances depend upon the assumed far-field.

impedance and will, in general, be in error with the known complian.ces.

To systematically minimize these errors using the methods of systeilil

identification, an error function containing the sum of squared errors

of all the strip compliances is formed giving.

NCI 1
2

L [u. (t3,w) -c.]
. 1 1 - 11=

J(j!,W) =

=
NC
L

i=l
{[Re(U.)-Re(C.)]2 + [Im(U.)-Im(C.)]2}

1 1 1 1

(3.12)
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in which, ~ is an n-dimensional vector containing all of the far-field

T
impedance coefficients (in the present case ~ = < nR ~R n~ ~~ > as

given by Eq. 3.2), U. = U. (f3,w) are the strip compliances from the
1 1 -

hybrid model, c.= C. (w) are the known strip compliances, w is the
1 1

excitation frequency, and Ne is the total number of strip compliances

considered in the solution.

The error function J(~,w) which can be visualized as an n-

dimensional space surface corresponding to the n parameters in the far-

field impedance vector ~ is minimized for discrete values of w to give

the corresponding ~ over the desired range of frequencies. Methods of

system identification are used to systematically adjust the originally

assumed values of the far-field impedance coefficients. Most of these

methods use the so-called gradient techniques in which new values for

the components in vector ~ are obtained by following in the direction

of the negative gradient of the error function in the n-dimensional

parameter spaces. However, the convergence by employing the gradient

techniques is always slow. To overcome this difficulty the modified

Gauss-Newton method which makes use of the information on second

derivatives has been selected for the present study, thus resulting

t
(13)

in an improved convergence ra e • The procedure is to expand the

error function J(~,w) into a Taylor's series, neglecting the terms of

order higher than two, and then equating the gradient to zero which

leads to the equation

(3.13)

where ~i-l and ~i are the parameter vectors at iterative steps i-I and

i, respectively,
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T a aJ aJ aJ
~ C,w) = < aS

1
aS

2
---- aan >

is the gradient vector, and

(3.14)

h{~,w) =

a2J a2J
asi. - - - - - - aS

1
aS

n
I I
I I
I I
I I

a2J 32J
aa 3fS

1
- - - - --- W

n n

(3.1S)

is the n x n Hessian matrix.

If the Hessian matrix is inversible, S. can be expressed as
"""'1

-1
~ = ~-1 -A!!. (~-1 ,w) ~ (~-1 ,w)

The equation in which the inverse Hessian matrix modifies both the

magnitude and the direction of the steepest descent given by the

negative gradient defines the Gauss-Newton method. Scalar A is a

(3.16)

positive parameter selected to ensure a decrease in error within e,ach

iteration cycle. Eq. 3.16 may also be written as

where

S. = S. 1 - A d. 1-J."""'1- -J.-
(3.17)

d. 1-:1.-

-1
= h (~-1 ,w) ~ (~-1 ,w)

is the search direction vector as defined by the modified Gauss-Newton

method.

The components of the gradient vector in Eq. 3.14 are obtained

by taking the partial derivatives of the error function at S. l' i.e.,
-:1.-
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dJ NC aRe (U.)
2 L [Re (U. ) -Re (C. )] 1.

+as. i=l
1. 1. as.

J J
(3.18)

NC a Im(U.)
2 L [Im(U. ) -Im(C.)]

1.

i=l
1. 1. as.

J

Similarly, the coefficients of the Hessian matrix are

a2 J
NC { aRe (Ui ) aRe (U.) a

2
Re(ui) }

2 L
1.

+ [Re(U.)-Re(c.>]
oSjaSk

= as. oSk asjaSk
+

i=l
1. 1.

J

(3.19)
NC { aIln(Ui' arm(u. ) a

2
1fn(Ui ) }

2 L as 1. + [Im(U.)-Im(C.)]
i=l oS. k 1. 1. oSj aSk

J

Since the effort required to calculate the second derivatives in

Eq. 3.19 is prohibitive, the modified Gauss-Newton method approximates

the coefficients of the Hessian matrix by

NC
L

i=l [

ORe(U
i

)

dS.
J

aImCU. )
1.

~f3.
J

(3.20)

A justification for neglecting the two higher order terms in Eq. 3.19

is that near the minimum these terms are small compared to the first

order terms. The approximation given by Eq.3.20 makes the Hessian

matrix positive semi-definite, a property that the original matrix

based on Eq. 3.19 does not posses. To ensure that the inverse of the

Hessian matrix in Eq. 3.16, does exist, it is necessary only to add a

small positive constant to the diagonal elements. The added term can

be considered as an approximation to the higher order terms ignored

in Eq. 3.20, and it improves the search direction. Although, this

modification usually damps the rate of convergence (16) , its use is

advantageous when approaching the minimum where convergence is not

always stable. Also, since the response quantity U. (8,w) is not an
1. -
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involving the solution of Eq. 2.9, the partial derivatives
f:!,u.

Eqs. 3.18 and 3.20 are replaced by finite differences f:!,a~.

J
The error function J(~,w) defines an n-dimensional surface

explicit function of ~, but is obtained through a numerical procesl,
au.

1 .
aa. 1n

J

which in two dimensions is easy to visualize as shown in Fig. 3.2. The

modified Gauss-Newton method is an iterative process in which the error

is minimized by obtaining successively better estimates of the far··

field impedance vector ~ until a point ~* is located where the slope

of the error surface approaches zero. The slope of the error profi.le

at a point a. along the search direction d. 1 is obtained by
-]. -""'l.-

differentiating the error function with respect to the step size A,

giving

T
a.. 1(13.) = - g (a.,Ul) d. 1
1- ~ - -]. ~-

(3.21)

At any step i-I, a typical iteration cycle proceeds as follows -- 'J'he

far-field impedance matrices corresponding to the parameter vector a. 1
-].-

are formed as explained earlier and then they are combined with thE~

near-field finite element equations to give the equations of motion,

Eq. 2.9, for the hybrid model. These equations are solved to obtai.n

the response U. of the rigid strip and the error is evaluated acco:rding
1

to Eq. 3.12. The slope of the error surface, a.. 1 (a. 1) is obtaine~d
1- -""'l.-

by substituting a. 1 for a. in Eq. 3.21 which is then compared agai.nst
-""'l.- ~

a specified tolerance on slope taken sufficiently close to zero. If

the slope is less than the specified tolerance, the error surface i.s

considered flat (or nearly flat) and the error J is assumed to be

minimized. The parameter vector ~i-l in that case is the desired far­

field impedance vector 13*. If the slope is greater than the specified

tolerance, a line search along the direction d. I is made as shown in
-].-
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Fig. 3.2. According to Eq. 3.17 each value of the step size para-

meter A defines a different point S. along this direction. Within a
--.L

line search, the step size A is systematically adjusted in such a way

that a point S. is obtained where the slope of the error profile is
-~

sUfficiently small and the error is minimized in that direction. The

parameter vector S. so obtained is then used as the next point in the
-~

iteration process. The tolerance on slope within a line search affects

the number of steps required to determine the step size for which the

error profile reaches a minimum in the search direction. If a crude

"line stopping" tolerance is specified the process may take fewer steps

within each line search but may require a large number of iterations to

reach the true minimum indicated by the dashed lines in Fig. 3.2. It has,

therefore, been recommended that a moderate amount of effort be spent in

the step length determination. How accurately the true minimum is

determined depends upon the specified criteria for overall convergence.

If a strict tolerance on slope is specified, the process may take longer

to converge, but the minimum will be determined more accurately.

To start the iterative process one must have an initial estimate

~ of the far-field impedance function. The success of the method

depends upon the accuracy of this estimate. If the starting vector ~

is far from the true minimum, the convergence may be very slow. It is

possible that, although the iterative process converges to a minimum,

the error at that point is still large. This implies one of two

possibilities -- either it is a local minimum, or it is a global minimum

but the model chosen for the far-field impedances is not adequate. In

the first eventuality, one may start from a different set of starting

values S until the true minimum is achieved. In the second case, one
-0

may try including additional terms in the Fourier expansion of Eq. 3.1.
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If that does not work either, then it implies that the chosen model

is not realistic. If, however, at the minimum the error approaches

zero, it signifies that the chosen mathematical model for the far­

field impedances is adequate and that the iterative process has

converged to the true minimum.
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4. NUMERICAL RESULTS

4.1 Near-Field Finite Element Model

Discretization of the near-field by finite elements causes a

filtering effect on waves in the high frequency range. The ability of

the finite element near-field to transmit waves will depend upon the

assumed displacement field within and the size of each element. It is,

therefore, important that having selected the type of finite element to

be used, the finite element mesh is fine enough to ensure transmission

of waves over the entire frequency range of interest.

The element selected in this study is a quadratic 9-node planar

element. The accuracy and stability characteristics of this element

h b d ' d '1 (14) h' t d h t h dd"'ave een stu 1e prev10us y were 1t was no eta tea 1t1on

of the ninth node to the center of the more conventional 8-node iso-

parametric element increases its reliability under geometric distortion.

The effectiveness of this element in transmitting waves was studied by

analyzing the problem of one-dimensional wave propagation through a

semi-infinite rod constrained to undergo motion only in the longitudinal

direction (5) • It was observed that the analytical solutions to this

problem are reproduced with an excellent degree of accuracy if the size

of these 9-node elements is 1/4th of the wave length. Although this

observation pertains to one-dimensional wave propagation, it serves as

a useful guideline in selecting the size of the finite element for two-

and three-dimensional problems also.

The near-field finite element mesh used in the present investigation

to model the rigid strip footing on a uniform elastic halfspace is shown

in Fig. 4.1. Since any arbitrary loading on the strip can be decomposed

into symmetrical and antisymmetrical components, only one-half of the



anticipated that the errors in the displacement

corresponding to a non-dimensional frequency bo
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total region need to be considered and appropriate boundary

conditions imposed on the nodes lying on the vertical axis. The

radius of the far-field, R, has been initially chosen to be three times

the half-width, a, of the rigid strip to ensure slowly varying dis-

placements and stresses at the interface. The largest dimension of the

elements anywhere in the mesh is approximately l/4th of the wave length

WR
= c- of 9.0. It is

s
field, for frequencies

below this value, will be on the order of 5%. Such a refined mesh was

deemed necessary to ensure that the far-field impedances, identified

using this mesh, will not be unduly influenced by the near-field

discretization.

4.2 Computational Details

The stiffness and lumped mass matrices of the near-field are

obtained using a specifically developed FORTRAN Computer program. The

stiffness matrix is stored using an active column scheme to minimize

the computer storage. Since no material damping has been used in

generating the compliance functions for the infinite rigid strip,

the near-field damping matrix is set equal to zero for purposes of

generating the far-field impedance functions.

The modified Gauss-Newton algorithum for parameter adjustment is

an iterative process requiring repeated solutions of the equations of

motion, Eq. 2.9, of the hybrid system. In order to minimize the

computational effort the degrees of freedom of the rigid strip are

numbered last in the overall equations which can then be partition€!d

as shown below



25

2N
S

S ~b ~t u p
-ss -s -s

2N
b

ST
~b+~(~'W) ~t !4, = ~ (4.1)-sb

ST T
Nt -st ~t .§.tt ~ !:t

2NS 2N
b

N
t

where, ~ now represents the interior nodes, ~ the boundary nodes, and

~ the rigid strip degrees of freedom.

Since within any interaction only the elements of the far-field

impedance matrix, ~(£,W), are modified, it is not necessary to reduce

the entire set of equations every time the far-field impedance vector

~ is changed. Instead, the overall impedance matrix in Eq. 4.1 is

forwardly reduced only up to the first 2N
S

equations, at which stage the

coefficient matrix appears as shown below.

T:
+1I I

I I-LL ..................""'-Q

joe »>r )0\
2N

S
2N

b
+N

t

The (2N
b

+ Nt) x (2N
b

+ Nt) submatrix is kept in lower speed storage

and read in as new estimates of the parqmeter vector ~ are introduced

during the iterations. The advantage of numbering the rigid strip

degrees of freedom at the end is that within each iteration the solution

procedure requires the repeated forward reduction of the (2N
b

+ Nt) x

(2N
b

+ Nt) submatrix, but only the last Nt equations need to be back­

substituted to obtain the response of the rigid strip. Therefore, since

the number of nodes on the interface, N
b

, is significantly smaller than

the number of interior nodes, N
S

' and the number of degrees of freedom
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of the rigid strip, Nt' is not greater than 2, a great saving in

computational effort is achieved.

4.3 Numerical Results

The parameter vector ~ includes the coefficients < nR, ~R' n~,

~~ > corresponding to the far-field impedance functions nR + i~R in

the normal direction and n~ + i~~ in the tangential direction as

discussed in Chapter 3. These impedance functions are determined by

minimizing the error function which is formed by considering the

response of the strip in the vertical and the coupled translation-rocking

modes of vibration.

The identified far-field impedance functions have been plotted in

a non-dimensional form in Figures 4.2 and 4.3 as a function of the

non-dimensional frequency b. These impedances have been generated fo:r
o

a R/a ratio of 3.0 and a Poisson's ratio of 1/3 which is a fairly

representative value for soils. For any particular frequency, these

uniformly distributed far-field impedance functions are directly

proportional to the shear modulus G, and inversely proportional to the

interface radius R. Therefore, knowing these two sets of curves, the

far-field impedances for any size of far-field, with any shear modulus

and mass density can be readily obtained.

The compliances of the rigid strip footing using these far-field

impedances are compared with the analytical solutions in Fig. 4.4. In

these figures, the abscissa is a non-dimensional frequency defined by

For non-dimensional frequencies, a , between 0.4 and 2.0
o

the agreement between the calculated and the exact values is excellent.

For high frequencies, a > 2.0, the agreement is not as good.
o

This may

be due to the relatively small values of the real parts of the vertical



and horizontal compliances.
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Also, for very small frequencies, a < 0.4,
o

because of the singularities in the analytical solutions, the agreement

between the analytical and calculated results is less satisfactory, but

is still in the acceptable range. Although slight errors are observed

in these figures, the proposed hybrid model, in general, is quite

effective in reproducing the theoretical solutions over the entire

frequency range considered.

In Fig. 4.4, there are some discrepancies observed in the

solutions for the coupling compliance, CHM• These may be due to the

sensitivity of coupling compliances to the approximate nature of the

proposed far-field model. However, these discrepancies can be ignored

because the coupling compliance is small compared to the direct

I , hI·' 1 l' (ll) . l' . hcomp ~ances. In t e anayt~ca . so ut~ons , a s~ngu ar~ty ~n t e

stresses exists at the edges of the strip. To incorporate this

singularity, a finer mesh in the vicinity of the strip edges was used.

However, no significant improvement in the solutions was observed.

Therefore, the singularity of stresses under the rigid strip has little

effect on the far-field impedance functions.

To investigate the range of applicability of this model, the

impedances have been employed to calculate the compliances of the rigid

strip for three other Ria ratios of 4.0, 2.4, 1.935 as shown in Figs.

4.5, 4.6 and 4.7. The agreement in solutions for Ria ratios of 4.0

and 2.4 is still very good. Even though a somewhat larger error appears

in the real part of the rocking compliance, it does not exceed 5%.

Solutions for Ria ratio of 1.935 also look reasonable. The largest

error in this case is only 10% in the real part of the rocking compliance.

For all the results presented the errors in the imaginary parts are

generally much smaller than in the real parts.
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5. CONCLUSIONS

A hybrid model for the analysis of soil-structure interaction

has been presented in which the near-field is modelled by finite

elements and far-field by continuously distributed impedance functions

which have been determined by system identification methods. The

validity of this model has been demonstrated by comparing the theoretical

and numerical compliances of a rigid strip for several Ria ratios.

For three-dimensional problems, the effectiveness of the hybrid modelling

technique for surface(5) and embedded foundations(15) has been

demonstrated earlier. The hybrid modelling approach, therefore, offers

an efficient, simple, and flexible method for the analysis of complex

soil-structure interaction problems for which the direct finite element

and continuum methods have been found to be deficient.

Further developments are required to extend the method to

situations involving layered foundations for which it may be necessary

to include more than the first term in the Fourier series expansion

of the impedance functions (Eq. 3.1), or it may be more appropriate

to choose a cylindrical interface. Efforts are currently underway in

this direction.
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