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ABSTRALT

Two-dimensional analytical elastic models are developed for evaluating
dynamic characteristics, namely natural frequencies and modes of vibration
of a wide class of earth dams in a direction parallel to the dam axis. In
these models the nonhomogeneity of the dam materials is taken into account
by assuming a specific variation of the stiffness properties along the
depth (due to the continuous increase in confining pressure). In additien,
both shear and normal (axial) deformations are considered. Cases having
constant elastic moduli, linear and trapezoidal variations of elastic moduli,
and elastic moduli increasing as the one-half, one-third, two-fifths, and a
general (Q/m)th powers of the depth are studied. Dynamic properties of three
real earth dams in a seismically active area (Southern California) estimated
from their earthquake records {input ground motion and crest response in
the longitudinal direction) as well as results from full-scale dynamic
‘tests on one of these dams (including ambient and forced vibration tests)
are compared with those from the suggested models. |t was found that the
models in which the shear modulus and the modulus of elasticity of the dam
material vary along the depth are the most appropriate representations for
predicting the dynamic characteristics. The agreement between the experi-
mental and earthquake data and the theoretical results from some of the
models is reasonably good. Based on the analytical models, a rational pro-
cedure is developed to estimate dynamic stresses and strains and correspond-
ing elastic moduli and damping factors for earth dams from their hysteretic
responses to real earthquakes, utilizing the hysteresis loops from the
filtered crest and base records. This leads to a study of the nonlinear

behavior in terms of the variation of stiffness and damping properties with



the strain levels of different loops. Finally, an analysis of real earth-
quake performance of an earth dam, in the longitudinal direction, yields
data on the shear moduli, damping factors, and nonlinear constitutive rela-
tions for the dam materials; the Ramberg-0sgood nonlinear stress-strain

curves are then fitted to these data.






CHAPTER |
INTRODUCTION

Designing a dam to resist earthquake damage is probably one of the most
difficult tasks to be faced by the geotechnical and earthquake engineer.
The information available concerning the performance of earth dams in par-
ticular during earthquakes is meager and offers little assistance to engineers
planning a dam in a region of seismic activity. As relatively few earth dams
have been subjected to strong earthquakes, it is dangerous to draw any
specific conclusions regarding their performance or the likelihood of any
particular modes of damage to such dams during strong ground motion. How-
ever, the few existing recordings on and near dams may be of assistance in
giving some indication of performance characteristics in particular instances.

In the majority of earth dams shaken by severe earthquakes, two primary
types of damage have occurred (10,15,20,24,29,30): longitudinal cracks
at the top of the embankment and transverse cracks sometimes accompanied by
crest settlement. The longitudinal cracks appear to have been caused primar-
ily by the horizontal component of the earthquake motion in the upstream-
downstream direction, that is, the direction perpendicular to the longitudinal
axis of the dam. In contrast, transverse cracking of an earth dam can result
from longitudinal dynamic strains induced by earthquake motion in the
longitudinal direction {(as well as from differential settlements). Such
cracks are of concern because they present a path for water to flow through
the dam's core.

Over the last two decades, much emphasis has been placed on the dynamic
response analysis of earth dams and their safety against earthquakes. Although

some progress has been made in the development of analytical and numerical



techniques (9,11,12,13,14,17,18,19,21,22,23,24,280) for evaluating the
response of earth dams subjected to earthquake motions, these techniques

are still in a rudimentary state of development. For instance, the existing
analytical techniques for earth dams still assume uniform shear beam, elastic
behavior, with the nature of the response restricted to horizontal shear
deformation in the upstream-downstream direction. Due to these restrictive
assumptions, the dynamic response analyses have many limitations and cannot
be used to examine the nature of stress distribption within an earth dam due
to longitudinal or vertical ground motion. In addition, a three-dimensional

finite element or finite difference technique would be very costly.

Although the existing dynamic analyses of ihe upstream-downstream motion of
an earth dam {Refs. 10 to 15, 19, and 20) have the most notable importance to earth-
quake resistant design, there can be little doubt that the problem of earthquake-
induéed strains and stresses in earth dams from longitudinal vibration should
be of vital concern to earthquake and soil engineers. The importance of this
type of vibration is demonstrated by the following points:

1. Transverse cracking of an earth dam may result directly from the

large dynamic strains induced by the earthquake itsélf. Cracks that
reach the core would reduce the structural strength of the dam and
could lead to concentrated leaks resulting In eventual failure of
the dam.

2, Differential settlement of an earth dam may contribute significantly
to transverse cracking. The portions located close to the abutments
and, sometimes, the central portion of the dam are subjected to
tensile strains when the dam is deformed by differential settlement.
The levels which these strains reach are dependent upon the geometry

and relative compressibility of the foundation, abutments and embank-



ment. When the dam is then shaken by an earthquake, the additional
dynamic strains may cause cracks to develop even if the additional
strains are not large. This is explained by the fact that the initial
strains caused by differential settlement may not be apparent until
triggered or augmented by the ezrthquske. Figure 1.1 illustrates the
contribution from both the strains induced by differential settlement
and the dynamic strains induced by earthquake longitudinal excitation.

3. 1In all cases where earth dams have been seriously damaged durinj an
earthquake, the dams were constructed without the use of present
compaction control techniques. However, there is evidence to support
the contention that even a large, well-constructed, modern earth dam
can be cracked transversely by an earthquake. The San Fernando

earthquake of February 9, 1971 (M, = 6.3) caused a transverse crack on

L
the Santa Felicia Dam crest at the east abutment, Fig. 1.2, (Refs. 1,4).
This dam is comparatively large (236.5 ft high) and was constructed
with modern design details and construction methods. The depth of

the crack, approximately one-sixteenth of an inch in width, is not
known. lnvestigation has implied that this narrow crack was caused

by the dynamic strains induced by longitudinal vibration result-

ing from the earthquake and not by any settlement. Fortunately, the

crack does not seem to be structurally significant,

This report develops analytical elastic models for evaluating the dynamic
characteristics of nonhomogeneous earth dams such as natural freguencies and
mode shapes of vibration in the direction parallel to the dam axis. Both
shear and axial deformations are considered, and the variation of stiffness
properties along the depth of the dam is taken into account. Comparison of

both real earthquake observations of three earth dams and experimental results
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Fig. 1.2 The crack at the east abutment of Santa Felicia Dam as a
result of the San Fernando earthquake of February 9, 1971.



(see Refs. 1,3,4,6,7,8) with the models' theoretical results have confirmed
that these models are accurate enough to be used for estimating earthguake-
induced longitudinal strains and stresses. |In addition, the models and the
full-scale response results help to reveal differences in the dynamic proper-
ties of dams under different loading conditions. Based on the analytical
models, a rational procedure is developed to estimate dynamic stresses and
strains and corresponding elastic moduli and damping factors for earth dams
from their hysteretic responses to real earthquakes, utilizing the hysteresis
loops from the filtered crest and base records. This leads to a study of the
nonlinear behavior in terms of the variation of stiffness and damping proper-
ties with the strain levels of different loops. The report also utilizes

the standard response spectra for estimating maximum earthguake-induced
longitudinal strains and stresses. Finally, an analysis of real earthquake
performance of an earth dam, in the longitudinal direction, yvields data on
the shear moduli, damping factors, and nonlinear constitutive relations for
the dam materials; the Ramberg-Osgood nonlinear stress~strain curves are

then fitted to these data. Although the assumption of elastic behavior
during earthquakes is not strictly correct for earth dams, it provides a
basis for establishing the natural frequencies of the dam, and it gives at
least a qualitative picture of the distribution of dynamic strains and

stresses within an earth dam during an earthquake.



CHAPTER |1

FREE LONGITUDINAL VIBRAT{ON OF NONHOMOGENEOUS EARTH DAMS

I1-1. Simplifying Assumptions and Practical Considerations

In view of the fact that earth dams are large three-dimensional struc-
tures constructed from inelastic and nonhomogeneous materials, the determination
of their dynamic characteristics such as the natural frequencies and modes
of vibration is extremely difficult, As a result some simplifying assumptions
are introduced,

1. The dam is represented by an elastic wedge of finite length (with

symmetrical triangular section) in a rectangular canyon, resting on

a rigid founda&ion (Fig., 2.1). This model is similar to the one often
used to evaluate the dynamic characteristics of dams in the upstream-
downstream direction (9,11,13,18,21,23). Closed form mathematical
solutions for canyons of other shapes such as triangular, trapezoidal
or parabolic are extremely difficult. Hence, in order to make use of
the proposed solutions it is necessary to approximate a given dam's

canyon shape to an equivalent rectangle,.

2. The dam is modeled by a nonuniform elastic material that has uniform
mass density 0, a nonuniform cross section and variable stiffness
or elastic moduli (G and E: the shear and elastic moduli) along
the depth. Although the actual variation with depth (which is a
function of the soil type, the method of construction and the
geometry of the dam) has not been accurately measured in the field,

some efforts (1,%,16,139,21,23) are encountered in the literature



Tl

/

JIP PP I PP I PP RIS I I IS4,

»
7
A
G

AN ESASNNN

4 ELASTIC TRIANGULAR WEDGE
7 PR , IN A RECTANGULAR CANYON
2 - <
4 / / ,("(
A - // ~
7 ~ e \,/
YT I AT T T INTTTTT 77T

!* b b i

y.v

z dz l-&
Z.W
X, U 77 — y- resad
LINEAR AND NONHOMOGENEOUS
7] d MATERIAL ;R'GID
7 Y 27 ABUTMENT
7 {
/] LIttt s
‘y RIGID BEDROCK
L
! L

r___h~..i Fp +d(F;)

dy _ ~a
S a5 FORCES ACTING ON AN
F,z"// ¥ VZJ/. ELEMENT IN THE DAM
Fo a1
(y+dy)(2R)
h
Fig. 2.1 The model considered in the longitudinal vibration analysis.
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where the soil stiffness has been shown to vary in a continucus

manner due to the continuous increase in normal stresses (or confin-

ing pressure).

The continuous variation of soil stiffness may be

represented by the following suggested relationships {Fig. 2.2):

A.

Constant shear (or elastic) modulus {as a first order approximation):

G(y) = G = constant. (2.1}

Dams constructed of homogeneous compacted earth fill consisting
of material which is cohesive in nature can, at first approxima~-
tioh, be assumed to have a constant shear modulus (23).

Shear (or elastic) modulus increasing as the (&/m)th power of

the depth: L

m

ely) = 6,(¥) (2.2)

where GO is the shear modulus of the dam material at the base
and h is the height of the dam (Fig. 2.2). Four cases are
considered:
B.1. Linear variation of shear (or elastic) modulus (L =1
and m = 1) which may roughly account for the effect
of confining pressure.
B.2. Shear (or elastic) modulus increasing as the square
root of the depth (£ =1 and m = 2). If the low-amplitude
shear modulus is proportional to the square-root of the
confining pressure, this variation represents the case

where the confining pressure is linearly proportional

tc the depth.
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B.3. Shear (or elastic) modulus increasing as the cube root
of the depth (2 = 1 and m = 3). For earth dams consist-
ing of cohesionless material, this case is most
appropriate, because it has been shown that for such
materials the shear modulus is approximately propor-
tional to the cube root of the confining pressure
(16,17,23,31).

B.4. Shear (or elastic) modulus increasing as the two-fifth
power of the depth (£ = 2 and m = 5). This case was
found by means of wave-velocity measurements (1,4) to
be the most apbropriate representation for the Santa
Felicia earth dam (in Southern California).

C. Linear and truncated variation of shear (or elastic) modulus
(Fig. 2,2):

G
G(y) = GO[(] —e)%-+ E] , £ = } (2.3)

&y
vihere G1 is the crest shear (or elastic) modulus of the dam
material; this case is also possible from in-situ wave velocity
measurements. Based on the results of both earthquake records and
wave velocity measurements, of earth dams, reported in the U.S.
and Japan {1,16,17,19,20,21,23,25 and 26) and based, also, on
the estimated spatial distribution, within a dam, of the effective-
confining stress (through finite element or finite difference
analyses, e.g., Ref. 14), Table 2.1 presents suggestions {perti-
nent to the above-mentioned variations) for various types of

earth dams.
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Table 2.1. Suggested Stiffness Variations for
Various Types of Earth Dams

Case

Stiffness Variation

Applicability

G(y) = constant

Appropriate for low-height (up to 80 ft
high) earth dams constructed of:
1-Homogeneous compacted earth fill con-
sisting of cohesive material,
2-lmpervious soil (such as clays or clayey
sands and gravels) and semi-pervious
soil (such as silty sands and gravels).

B.1
B.,2
B.3
B.4

H]

Go(y/h)

GO(y/h)]/z

Go(y/h)

o v/ /2

L

1/30%(F)

Appropriate for zoned dams consisting of
both pervious material (such as rock gravel)
and impervious or semi-pervious soils,
Examples are:
1-Zoned with adjacent pervious, impervious
or semi-pervious sections (h = 50-200 ft)
2-Zoned with a wide or thin central im-
pervious or semi-pervious core, and
pervious or semi-pervious shells
(h = 50-350 ft).

G{y)

Appropriate for large homogeneous com-
pacted earth fill (h = 80-200 ft) con-
sisting of cohesive material, Also may
be used for rockfill homogeneous dams

(h = 50-300 ft), as well as dams founded
oh a soil stratum or soil strata.
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3. Material linearity of the dam's soil is assumed. This is an accept-
able assumption for small strains; in addition, it gives a qualita-
tive picture of the dynamic characteristics, For large strains, no
truly nonlinear solution exists. The effect of nonlinearity in
the earthquake response calculation can be approximated by repeating
the calculation and adjusting the soil moduli and damping factors
according to the level of strain (27) or by using a piecewise,
nonhomogeneous, linear representation for each hysteresis loop of

the response (1.6).

L. Longitudinal deformations are due to shear and axial forces in the
longitudinal direction, and the shear stress (or axial stress) is
assumed uniformly distributed over a given horizontal (or vertical)
plane of an element taken through the dam (Fig, 2.1-b).

5. The influence of the reservoir is assumed negligible.

6. The dam is assumed homogeneous in the sense that there is no dis-
tinction between the core and shell materials.

7. The longitudinal vibration problem is uﬁcoupled from both the up-
stream-downstream and the vertical vibration problems. [t will be
shown later that during the full-scale vibration tests of Santa
Felicia Dam (3} vibrational coupling among the three orthogonal
directions was encountered at some frequencies higher than the
fundamenta! frequency (which is usually primary in earthguake
response analyses).

Although probably adequate for computing natural frequencies of vibra-

tion, the above assumptions place severe restrictions on the use of the
models for obtaining accurate pictures of the stress distribution within

a dam during an earthguake.
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I1-2. Free Vibration Analysis

Forces acting on an element in the longitudinal direction, as shown in
Fig. (2.1-b), are:

1, Inertial force:

2 2
= ofYt Y * dv)Zb AW . oo (2b v |
F. Q( z ) — dydz 2 py( h)dydz 2 (2.4)

where 2b is the total width of the base of any cross section and w(x,z;t)

is the vibrational displacement at depth vy in the z-direction.

2. Shear force:

Sz = Tyzy(g-hb-)dz = G(y)%g-(%)ydz , (2.5)

a . .
where 1T , and 5%— are the shear stress and strain, respectively, at depth
y in the z-direction.

3. Axial (normal} force:

o (LY rANN2b g o du2b :
Fe Oz( 2 hodY E(Y)az( )ydy (2.8)

h

aw . . . .
where GZ and 32 are the longitudinal stress and strain, respectively, and

E(y) s the Young's (elastic) modulus of the dam material:
E(y) = 200 +)G(y) = nG(y) (2.7)

inwhich v is the Poisson's ratio of the dam material.

For the equilibrium of an element (Fig. 2.1-b), one obtains

(Syz)dy + -S—Z(Fz)dz . (2.8)

e
|



18

Substituting the forces from Egqs. 2.5 and 2.6 into Eq. 2.8, the equation of motion

governing free longitudinal vibration of the dam is given by

ShnEy] + Eemiy] (2.9)

The differential equations for the three categories of Table 2.1 can then be

written as:

2 2 2 .
Ty = = vi 28y ]——aw} + nv2 —8‘;' (2.10)

ot 3y vy S 3z

2 £ 2

2 v 2 —-- D ] nv 2

3w sO | &/m 8w L ‘m ow sO &/m 3w 3 112
— = =y —+t (= + 1)y — + y — (for-=l,-——,—,— (2.11)
atZ h%/n1[ By2 (m ) dy h,Q/m 822 m 2’3 5)

2 .
2 - 2 v 2
AW _ N LY 9w sOl oY w I VRS 4 w
o2 vSOl-(l e)h + s] + [2(1 g) + e] v nvso[(i el + ¢ (2.12)

where vs= VG/p is the shear wave velocity for the case where G is constant,
and v

s0
By the method of separation of variables [w = Y(y}Z(z)T(t)], the following

= vGo/p is the shear wave velocity at the base of the dam material.

equations are obtained for the time and.space variables:
. 2
T(t) +wT(E) =0, (2.13)
, A, 2
277°(z) + a“2(2) = 0 , (2.14)

. 2
V) + ) + [ - ) =0 (2.15)
v

S



g

2
s0

2 8/m (2-%/m
y2y s (I + %)yY’ + |wlh y( ) L R <£§=]’

A

2 wlh 2 2
(1-e)y“ + ehy Y™ + |2(1-€)y + eh|Y" + {==—y = na” {{T1-e)y” + ehy|lY = 0, (2.17
2

VsO

where w is the natural frequency and a is a constant (to be determined

from the boundary conditions). The boundary conditions are:

) = 500 S.e) =
TYZ(O’Z’t) = G(o)ay(opzat) =0 ’

w(h,z;t) =0 ,
wiy,0;t) =0
W(‘/’L;t) =0

In order to satisfy boundary conditions (2.18-¢) and (2.

(from Eq. 2-14)

o =— |, r=1,2,3,4,...

Therefore, the mode shapes of longitudinal vibration in

be given by

Z{z) = sin %?'z s r=1,2,3,...

The mode shapes in the y-direction can be obtained

Eqs. 2.15 through 2.17 and boundary conditions (2.18-a)

(2.18-a)

(2.18-b)

(2.18-c)

(2.18-4d)

18-d), one must have

. (2.19)

the z-direction can

. (2.20)

by the solutions of

and (2.18-b); Eq. 2.15

is the standard Bessel equation, while Eqs. 2.16 and 2.17 have no closed form

(or special functional) solutions. The general solution of Eq. 2.15 is

given by



20 .

wz 2 J//wz 2
Y(y) = C]JO / =5 - nay + CZYO :E-- noy R 12.21)
s

v
S

where C] and C2 are constants (to be determined from boundary conditions
(2.18-a) and (2.18-b) and J0 and YO are Bessel functions of zero order, of
first and second kinds, respectively. For finite displacement at the crest

YO is discarded. The frequency equation for the case where G 1is constant

is thus given by

UJZ T 2
JO h = N(T) =0 . ] (2.22)

v
s .
This frequency equation is only satisfied by particular values of the Bessel
function (Eq. 2.22) argument which in turn defines the natural frequencies of

vibration. Letting Xn, n=1,2,3,..., be the roots of the frequency equation,

then the natural frequencies of vibration, for the case where G is constant,

v 2
== /)2 rTh -
o =B P2 e (2.23)

where S is the freguency of the (n,r)th mode, and the mode shapes of
k]

are given by

vibration in the y-direction are defined by the function

= Y = !
Vn(Y) JO(Kn h) , n=1,2,3,... ] (2.2h)
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For the ordinary differential equation (Eq. 2.16) representing the case:
G(y) = GO(%)Q/m, a change of the independent variable, vy, 1is used to obtain
an equation for which solution in series by the method of Frobenius is utilized,

The transformation is in the form

(2.25)

c
1
EA@
(GIES

Then Eq. 2.16 becomes

du \

2m Zm
2 2 2/ 2
2 ‘2, e %+ [(I) w2/ m ( )_ nocz(%) :IY =0, (_.—. ;_,_;;,%) (2.26)
s0

=1,

S

where (——-- l) f{' are integers for the cases %—. Note that

11

2’3’
the point y =0 (or u=0) is a regular singular point; i.e., the general
solution of a tinear combination of convergent series exists, This solution

is of the type

y{u) = ¥ ks

a,u (2.27)
k=0 K

which satisfies the differential equation (Eg. 2.16). That is, the number s
and the coefficients SIYC L PPRRR have to be evaluated (by substituting into
Eq. 2.26 and equating to zero the coefficient of each power of u) so that the
series (Eq. 2.27) does in fact satisfy Eq. 2.16.

The coefficient of the lowest power of u, which is us, gives the

indicial equation

s{s +1) =0 or s. =0 and s, = -1 (assuming a, £ 0) . (2.28)
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For the root sI = 0 the recurrence relations (which determine successively
the coefficients IFLPRREE in terms of ao) are given by
ag # 0 (valid for all cases) \
a, = 0
Note that a, # 0, a, # 0, and
a, = 0 0 1
a, # 0 for the case of &/m =1

a (2.29)
2. A
2 R/m
a(%n-_) = _2ﬂ2_m_])(51)
( >2 R/m 5 2
= - W 2 - o
(k22 S Z ) T e
And this case (where s, = 0) vyields the solution
(1) %?1' ‘) (gfl) 2
L e et (o F) @30)
L 2
or
£ k&
(N 2-— ('_'
Y(y) =8y *a, y( m)+ 8 my2 tooeee tayy ) (k> (z.31)
7 (ZT)
or

@5
w0 V1) o) - @O ey @

(2.32)
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For the root 5, = -1 the solution is given by

{2) @ o0 k+s -
Y (u) =[ 1 (s - sz)ak(S)ukﬂil log u + kf gg[(s - sz)ak(s] u 2 (2.33)
s=g =0

2 s=s2

]

This solution provides infinite displacement at vy =0 (or u =0) and there-
fore should be discarded.
L/m
Y . .
GO(h) , is obtained

The frequency equation, for the case where G

by satisfying boundary condition (2.18-b) (Y(y=h) = 0 of Eq. 2.32); thus the

natural frequencies are defined through the roots of

2.2 222
F wzh .z r2h =0 or F([}'S,Br>= c , (2.34)
Js0 .

2
where the dimensionless frequency ﬁ equals (%h—> , and the coefficient Sr

2 sO
is defined as 1 jutail ; this coefficient depends on the Poisson's ratioc Vv

L

of the dam material, the geometric dimension ratio (%) and the order, r,
of the modal configuration along the crest (Br =~ implies a very long dam
while higher values of Br indicate a short, high dam or higher modes along
the crest). For a wide class of earth damsthe practical ranges of both Vv
and E— are 0.3 - 0.45 and 0.02 - 0.5, respectively (these give a value of
n=2,60 to 2.90), And for, say, four modal-wave forms {r = 4) along the
crest the value of Br ranges between (.01 and 100. The roots $ for
different values of Br for the various cases of G = GO<%)2/m are deter-
mined from the plots of the frequency equation (Eq. 2.34) in Figs. 2.3-a through
2.3-d; the roots are also shown in Table 2.2.

To estimate the natural frequencies and modes of longitudinal vibrations

of any earth dam (for earthguake response analysis) it is strongly recommended

that field wave-velocity measurements be carried out (using seismic techniques)
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Fig. 2.3-a Plots of the frequency equations for the case where L/m = 1.
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Fig. 2.3-b Plots of the frequency equations for the case where &/m = 1/2.
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Table 2.2 Roots of Frequency Equations
wf winl
Roots m(=%2——~—) of the Frequency Equation
B, = Mode - ] 2 1
riny? %;dig G=Con” | g=g (L) | 6=6 (1-5. =G (idgl 6=6 (l)§
n _I') ’ stant® O(h) o\h o\ h o\h
(1,r) 5.859 3.670 h.739 4,949 5.089
0 (2,r) | 30.472 12,305 20.472 22.325 23.601
(3,r) 74.887 25.875 L7.305 52.329 55.816
(4,r) 1139.039 L4, 380 35,242 94,966 101.737
{(1,r) 10.859 5,244 7.697 8.253 8.638
5 (2,r) | 35.472 13.922 23.485 25.668 27.180
(3,r) 79.887 27.553 50.313 55.668 59.391
(4,r) | 144.039 L6.05R8 88.246 98.303 105.311
(1,r) 15.859 6.642 10.571 11.495 12,141
10 (2,r) 1 Lo.472 15,708 26.524 29.030 30.773
(3,r) 84,887 29.273 53.335 59.018 62.975
(4,r) | 149,039 47.757 91.260 101.646 108.890
{(i,r) 20.859 7.39% 13.363 14.677 15.598
15 (2,r) | 45.472 17.431 29.588 32.411 34,381
(3,r) | 89.887 31,018 56.373 62.378 66.566
(4yr) | 154,039 Lg, 478 94,282 104,996 112.473
(1,r) 25,859 9,014 16,073 17.799 19,010
20 (2,r) 1 50.472 13.138 32.676 35.811 38.003
(3,r) | 94.887 32.789 59,425 65.749 70.166
{4,r) | 159.039 51,221 97.314 108.351 116.062
(1,r) | 35.859 10.973 21.268 23.869 25.698
30 {2,r) | 60.472 22,437 38.906 42,662 45,291
{3,r 104.887 36.399 65.573 72.522 77.389
(4,r) {169,039 54,771 | 103,404 115.082 123.253
(1,r) { 45.859 12.654 26.189 29.720 32.212
L0 {(z,r) 70,472 28.525 45,181 4g,568 52.629
(3,7) {114,887 Lo.o24 71.773 79.338 84,645
(h,r) 11739.039 £8.399 109.529 121,839 130.463
=]
From Eq, 2.23: N w2h2 2
w = 2 = Xn M Br
v
)
(where k] = 2.4048, AZ = §,5201, A3 = 8.6537, A, = 11.7915)
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to determine the variation of shear wave velocity at various depths below the
crest of the dam. Otherwise, the value of the shear wave velocity vSD at

the base of the dam has to be assumed and so may be inaccurate, The following table

(Table 2.3) contains a guide (based on information in Refs. 1,2,3,15,16,17,21,23)

for making such an assumption for specific types of dams.

Table 2.3
Type of Dam Description Values Of Vso
(ft/sec)
*Hydraulic fill dams 200 - 600
H “Dams constructed of compacted
omogeneous silty clays 200 - 600
Darms *Dams constructed of compacted sandy
clays 400 - 900
*Dams constructed of compacted well-
graded material 600 -1200
Dams consisting of zones of both
- pervious material such as rock gravel, _
Zoned Dams and impervious well-graded alluvial 700 -1400
material (compacted gravelly clays).

The mode shapes of vibration in the y-direction, for any value of Br are

defined by Eq. 2.32 after substituting the correspendcng frequency w. It is
2/ m
important to indicate that for the general case where G{y) = GO(%> all

the boundary conditions, Eq. 2.18, (including free shear stresses on

the crest) are satisfied by the mode shape functions of Eqs. 2.20 and 2.32.
Furthermore, the frequencies (eigenvalues) gn . are distinct, and the mode
]

shapes, Yn(y)Zr(z), satisfy the orthogonality condition

h
/S p(ﬂ’)yv (Y, ()2, (2)2,(2)dydz = mEn, g (2.35)
0 0
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Therefore, modal superposition can be used successfully to analyze the earth-
quake response of earth dams of the type defined above (B.1., B.2., B.3. and
B.4.). The mode shapes in the y-direction for different values of Br for the

various cases of G(y) are shown in Fig. 2.4 through Fig. 2.7.

Another power series solution for Eq. (2.17) can be obtained by assuming
k+
Y(y) = § ay > (2.36)

in this case the indicial equation s2 =90 (aO # 0) has the repeated roots

5) = 5, = 0, yielding only one solution, and the resulting recurrence

relations are

a1 =0
I W [0 S 31

2 sen? [\Veo 0 (2.37)
g, = - — [k(k-])(l—e)h]a + (93—)2 - neolh? - [ (1-¢) zh:]

K 22 k-1 Voo n Sp-2 T MVITE/a A 4

(for k > 2)

Like the case where G 1is constant, the solution of this trapezoidal
case (Eqs. 2.36 and 2.37) provides finite normal stress condition on the crest,
g, # 0. The roots 5 .for different values of Br for the trapezoidal
case are determined from the plots of the frequency equation in Figs. 2.8-a and
2.8-b. The mode shapes in the y-direction for this trapezoidal case are shown
in Fig. 2.9.

The frequency egquation which defines the natural frequencies of vibration

can be written as

F([’S,sr,s) -0 . (2.38)
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CHAPTER 11

COMPARISON BETWEEN THE RESULTS OF THE PROPOSED
MODELS AND REAL OBSERVATIQNS

I11-1. Earthguake Response Records

Resonant fregquencies (in the longitudinal direction) of three earth dams
(Figs. 3.1, 3.2, and 3.3) in a seismically active area (Southern California)
are estimated from their earthquake records, Amplification spectra of the
dams' earthquake records were computed (see Refs. 1, 2, and 4) by dividing
Fourier amplitudes of acceleration of the crest records by those of the abut-
ment records (input ground motion) to indicate the resonant frequencies and
to estimate the relative contribution of different modes (see Figs. 3.l-c to
3.3-¢c). Then the two-dimensional modgis presented here were used to establish
from the observed fundamental frequency a value for the shear wave velocity,

v or VSO, which was then used to calculate other frequencies higher than

S

the fundamental. Each trapezoidal canyon of the three dams is represented by
an eguivalent rectangle of 1ength L equal to the average of the crest length
and the length of the base, e.g., for Brea Dam L = 0.5 (800 + 400) = 600 frt;
for Carbon Canyon Dam L = 0.5 {1,925 + 1,000) = 1462.5 ft and for Santa
Felicia Dam L = 0.5 (1,275 + 450) = 912.5 ft. Tables 3.1, 3.2, and 3.3 show
comparisons between the observed resonant frequencies and estimated values
computed from the proposed analytical models; they also show the estimated

shear-wave velocities from the earthquake records.

From the comparison, the following observations can be made:

1. Observed resonant frequencies of Brea and Carbon Canyon Dams are in good
agreement with the symmetric modes' computed frequencies (from the models
in which the shear and elastic moduli of the dam material vary along the
depth, e.q., %-= %-or %-or %J but not as good with the antisymmetric

modes' frequencies because the crest accelerograph was located at the

crest mid-point of the two dams.
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SANTA FELICIA DAM
SANTA PAULA , CALIFORNIA

Ims OF DAM

[ORtGINAL GROUND

TOP OF DAM

CURTAIN

DEVELOPED PROFILE ON AXIS DAM LOOKING UPSTREAM

Fig. 3.3-a Structural

SPOIL MATERIAR Cope,

A R AN A
TREAM GRAVELS 5% %

RN S L)

|ﬂll5 OF D&M
.1

UPSTREAM ; !
12" OF GRAVEL & COBBE
BLANKE T

OWNSTREAM

SETTLEMENT
MONUMENTS

SELECT PERVIQUS
SHELL MATERIAL

CREST DETAIL

details of Santa Felicia Dam.



b3

SANTA FELICIA Dam . CALIFORNIA
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Fig. 3.3-c Amplification spectrum of the 1971 and 1976 earthquakes.
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Similarly, the comparison for the Santa Felicia Dam {(Table 3.3) suggests
L1 1

that the cases where o E-and % are tne most appropriate represen-
tations for predicting the dynamic characteristics. Actually, from the soil-
stiffness determination (through the low-strain field-wave velocity measure-
ments on the dam (1,4) it was found that the 2/5-power variation law is best
resembling the measurements.
Average values of the shear-wave velocity for each of the three dams
were estimated by using their upstream-downstream earthguake responses

(Refs. 1, 2, and 4) and existing shear-beam models (Refs, 9, 16, and 23) in
that direction. These values were: v, = 677.0 ft/sec, for Brea Dam (a

zoned earthfill embankment constructed with a central impervious core
composed of graded material and two shells constructed of random material).
Ve = 375.7 ft/sec, for Carbon Canyon Dam (a random earthfill resting on

100 ft of recent silt, sand and gravel), and v, = 850.0 ft/sec. for

Santa Felicia Dam (a random rolled-fill earth dam constructed from well-
graded alluvial materials consisting of clay, sands, gravel, and

boulders).

These values are consistent with those which resulted from the longi-

tudinal models (Tables 3.1, 3.2, and 3.3) in which both shear and axial
deformation were considered.

The nonuniform distribution of ground acceleration along the length of
the dam (as {llustrated by the Fourier amplitude spectra of Carbon Canyon
Dam (Fig. 3.2-c and Ref. 2)) would considerably influence the nature of
the dynamic response of an earth dam to an earthquake. For instance, an
oblique angle of approach of traveling seismic waves raises the possi-

bility of phase differences along the boundaries and the strong coupling



L9y

between longitudinal and transverse vibrations. Obviously more precise
detailed evaluation of the seismic response of earth dams (e.g., via

a three-dimensional finite element or finite difference techniques)
is needed.

111-2. Full Scale Dynamic Test Results

Results of full-scale dynamic tests on Santa Felicia Dam, involving
longitudinal forced vibration tests, Fig, 3.4-a,b,c (using only one shaker at
station E2 of Fig. 3.4-a) as well as ambient vibration tests, Fig. 3.5-a,b
(for more details see Ref. 3), were compared with those computed from the
suggested models. Table 3.4 summarizes these comparisons, while Fig.3.4-¢c shows
estimations of the measured modes along the crest (obtained during the
frequency sweeps); because only eight seismometers were used during the
longitudinal shaking, it was difficult to completely determine several modes
corresponding to the resonant frequencies of Table 3.4. The solid lines con-
necting the data points of Fig. 3.4-c are estimates of the modal configurations,
while the dashed lines represent possible extrapolations; the local magni-
fication effect of the soil surrounding the shakerblock is also shown. |t
was found that some resonant longitudinal frequencies are very close (even
identical) to some of the upstream-downstream frequencies. This proximity
may suggest a strong coupling between these two horizontal directions, or
it may suggest that due to both the eccentricity of the single shaker (it
was not located on the longitudinal axis of the dam) and the fact that the
dam is not symmetrical, the upstream-downstream modes containing significant
longitudinal motions were excited. Again, the comparison suggests that

X 2 : .
models with o= l-or.l-or %- are most appropriate to estimate the dynamic

2 3

characteristics of the dam in the longitudinal direction., Furthermore,
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UPSTREAM DOWNSTREAM
{30 TOP OF DAM EL 1075
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Fig. 3.4-a Cross-section,plan view showing the measurement stations of the
full-scale dynamic tests on Santa Felicia Earth Dam.
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Fig. 3.4-b Response curves of longitudinal shaking.
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several modes of longitudinal vibration, along the depth, resulting from the
case of %/m = 2/5 are depicted in Fig. 3.5-b; the modal configurations
estimated from the ambient vibration measurements are also shown in the same
figure. The ambient-measurement results confirm the prediction by the
analytical models that for n = 1, the lower modes along the crest (low
values of r, e.g., r =1,2) are associated with shear-type modal configur-
ation along the depth, while the higher modes {large values of r, e.g.,

r > 3) are associated with bending-type modal configurations. This agree-
ment between theory and observation may also be attributed to the fact that
relative to other earth dams in California, the Santa Felicia canyon has one
of the best-suited sections for an equivalent rectangle analysis, In the sense
that it is closer to a steepsided parallelograph than to a trapezoid. |In
general, mode shapes (particularly configuration along the crest) of other
dams can be quite different from those of models due to irregular geometry
and zones of different materials. Finally, the first and second longitudinal
modes (1,1) and (2,1} along the depth {where n =1 and 2), resulting from
all the proposed analytical models are also shown in Fig. 3.5-b; the modal
configurations estimated from the ambient vibration measurements are also
shown in the same figure. Again, the comparison suggests that model with
£/m = 2/5 is the most appropriate to estimate the dynamic properties of

the dam in the longitudinal direction.
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CHAPTER 1V

EARTHQUAKE-INDUCED LONGITUDINAL STRAINS AND STRESSES
IN NONHOMOGENEOUS EARTH DAMS

1¥~1, Earthquake Response Analysis

The two-dimensional model used in Chapter || for finding the natural
frequencies and modes of longitudinal vibration of earth dams is utilized
for this earthguake response analysis. The model which is a nonhomogeneous elastic
wedge of finite length (with symmetric triangular section) in a rectangular
canyon, resting on a rigid foundation, is subjected to uniform longitudinal
ground motion (acceleration) Ng(t) (Fig. 4.1).

To evaluate the magnitude and distribution of the modal strains and
stresses jnduced by earthquake motion, the equation of motion of the dam can

be written as

Pu w18 [oyde LA oot Ty (4.1)
PN T A T B T2 L P i ’ '

where p is the uniform mass density of the dam material, wi(y,z,t) is the
longitudinal vibrational displacement (relative to the base of the dam),
¢ is the damping coefficient, G(y) is the shear modulus (which varies along
the depth), and nl[= E(y}/G(y) = 2{1 + V)] is an elastic constant (where E(y)
is the modulus of elasticity and Vv 1is the Poisson's ratio of the dam
material).

A wide class of earth dams ranging from ones having constant elastic
‘ moduli, linear and trapezoidal variations of elastic moduli, to ones having
elastic moduli increasing as the one-half, one-third, two-fifths, and a
general (R/m)th powers of the depth are studied; i.e., the continuous variation
of soil stiffness is represented by the following suggested relationships for

both G(y) and E{y): (see Fig. 4.1 and Chapter II)

G(y) = G = constant , (4.2-a)
L/m
=6 |L r_,112 -
G(Y) GO[hJ > Im ]92,395) 2 (h'z b)
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G
G(Y) = GO EI - 5)%"' E] ’ £ = E':; L] (’4.2"(1)

where GO and G] are the shear moduli of the dam material at the base and at
the crest, respectively, and h 1is the height of the dam. Note that similar re-
lationships are assumed for the modulus of elasticity E(y) and that values of
shear moduli evaluated from in-situ wave-velocity measurements on Santa Felicia
pam (1,4) are shown on Fig. 4,1.

Using the generalized coordinates and the principle of mode superposition,

one can write

o=

¥ Y.z (a1 (1) (4.3)

wiy,z,t) = }
n=l r=I ’

where the subscripts n and r refer to the (n,r)th mode of longitudinal

vibration. The modal configuration along the crest, Zr(z), is given by

z_(2) = sin I[“-z , r=1,2,3,00.. (4.4)
while the modal configuration along the depth Yn(y) is given in Chapter |1 for
the above stiffness variations, In the above equation L is the equivalent

(average) tength of the crest,
Substituting Eq. 4.3 into 4.1 and using the orthogonality properties of

the mode shapes gives

. 2 _ .
Tn,l"(t) + 2€I’I,I'wl‘l,l' n,r(t) + wn,rTn,r(t) - Pn,rwg(t) ?
n,r =1,2,3,... , (L.5)

where A is the modal damping factor, W, is the (n,r)th natural

’ b4

frequency, and Pn - is the modal participation factor given by
E

h (L h (L
p = JO JO Yn(y)Zr(z)ydydz {0 jo Yi(y)zf(z)ydydz ,

n,r = 152,3,|.- . (&-6)



Because only the symmetrical modes can contribute to the response to
uniformly distributed ground motion, values of r are limited to odd integers.

Thus the participation factor becomes

h h
Py ;%-[fo yYn(y)d%] [Jo in(y)d%J ,

n=1,2,3,..., r=1,3,5,... , (4.7)

£

where P . is the participation factor resulting from the modal configuration
3

along the depth.

For the case where G is constant Pn r is given by

?
Pn,r B F?-K;UTTKET. n=1,2,3,... > T =1,3,5...

where An is the nth root of the Bessel function of the first kind and

zero order; J] is the Bessel function of the first kind and first order,

Values of ﬁn . of Eq.4.7 are computed for different values of the
»

2
coefficient Sr[% n{E{hJ ] for various cases of the stiffness variations (Egs. 4.2-b

and 4.2~c) and are listed in Tableh.l.

The soiutién of Eq. 4.5 is obtained as a Duhamel integral in the form

P t oo (0T 3
(t) = L j Wg(r)e na 0 M sinw W1 -1c" (v - o)d.
0

b n,r

(4.9)
Thus the problem has been reduced to that of the earthquake response of a

single-degree-of-freedom system. As the mode shapes and the modal participation

factor Pn . are known, the normal stress and normal strain as well as shear
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als
"~

Table 4.1  Participation Factors Py
* ‘ 2
e [ (] /L Bl
hin n
0
[rzh
: y y y , 6=6,[(1-e) L+ €]
G=Go[h) Go[h) G=Go(h} Go[h) e=0.5 | =0.6
2.483 .859 1.791 .752 719 .687
0 -3.332 .650 | -1.490 .398 .295 231
4,005 .539 1.340 .230 .068 006
-4.580 66 | -1.244 124 .927 .870
2.367 .006 1.907 .847 .770 .725
5 -3.999 .830 -1.623 .505 .357 276
b, 48] 598 {71.377 .256 .086 018
-4.913 .502 -1.268 142 .936 .876
3.182 46 2.018 .939 .819 .761
o -4.613 .006 | -1.755 610 | -1.417 320
4.990 660 1.416 .283 . 104 031
-5.272 .539 | -1.292 160 .946 883
3.421 .275 2.122 027
5 -5.158 A7 | -1.882 712
5,521 .726 1.456 312
-5.656 577 ~1.317 .178
3.593 .391 2,220 11
20 -5.632 .333 | -2.003 .811
6.061 .795 1.499 .34
-6.064 .615 -1.340 196
3.798 .582 2.390 .263
30 -6.390 616 | -2.227 .997
7.124 .943 1.589 Loy
-6.943 694 | -1.391 .231
3,897 721 2.526 .39
40 ~6.932 .856 -2.424 .165
8.101 .100 1.687 472
-7.885 776 -1.44] .260
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stress and shear strain modal participation factors can be computed and plotted;

in addition, the response spectrum can be used to evaluate maximum displace-

ment, strain and stress.

Using the modal solution (Eq. 4.3),the response of the dam to the earth-

quake longitudinal component can be written as

wiy,z,t) = 7§ ¥ Yn(v)sin[rZZJ n,T v (), (4.10)
n=1 r=1,3,5 2 !
w 1 -z
n,r n,r

where the function V. r(t) is equal to the quantity between the two brackets
?

in Eg. 4.9.

Vi=2. Dynamic Shear Strains and Stresses

. . \ . . . th
The magnitude and distribution of shear strains in the (n,r) mode

are given by

ow Pn r dYn(Y) rnz
Yn’r(y,z,t) el . &y Sin{ T } Vn,r(t) ,
“n,r - gn,r
n = 192,3’-00 [y r= ],3’5’000 s (h'il)
or
hﬁn r y roz)
= 3 H
yn,r(y,z,t) 5 Wn,r[hJs‘n{ L jvn,r(t) ?
rmhw I -t
» ﬂ,r
n=1,2,3,... , r=1,35..., (&.12)
dv_ ()
where Vv r[%] is defined as -—Ii;—-; it expresses the modal participation
’ d (L)
h

and distribution of shear strain.

For the case where G is constant, the shear strain is given by

v, vzt = 8 5[y Ysinlm]y 0w
L4 2 b

rmh Jl(An)wn, ] - Cn,r



2 kg
(]-Fn_) (-m—-l) }
A Y X Y 2m
R AT SR
L L
where a, = 1
a = 0 \
a, = 0
a.ﬁl-z =0
2
> (h.15)
!z-i] 2w h)?
3 | =t s m F% n,r
12m _ miem. % v
I 1J =17 1] s0
K 12 |fo h)2 )
a = - m Fﬂ RLERS a - n[ﬁﬂﬂ) ar
{k>—2ﬂ] KT | Ve [k-z—m+l} : lk-lﬂlJ
L) 3
in the above equations VsO( = VGO/p ) is the shear wave velocity at the
base of the dam material; also, F%l - 1) and [ggq are integers.
The shear strain modal participation factors Wn . or Wn (with
’
ik
n=1,2,3,4) in the y-direction for values of SrE=n(“fi} ] equal to 0, 5,
© 10, 15, 20, and 40 and for cases of %-= l,%3%3 and %- are shown in Figs, 4.2
through 4.5.1t is important to mention that the linear case L% = l] gave
reasonable results for the natural frequencies and modes of vibration (Chapter }II)

but gave erroneous results for the shear strain as indicated by the relatively

large finite values at the shear-strain-free crest and by the very low values in-
side the dam (Fig. 4.2). The occurrence of maximum values for shear strain at the
region near the crest is expected as the lower shear modulus near the top of the

dam would result in correspondingly higher shear strains for the same assumed
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shear stress. Cases of £-= %y %3 and %- gave similar results for
the distribution of shear strains within the dam, The coefficient Br depends
on the Poisson's ratio v of the dam material, the dam's depth-to-length
ratio (h/L), and the order, r, of the modal configuration along the longi-
tudinal axis of the dam (low Br(= 0,5) implies low modal order (r =1 to 3)
or a very long dam, while higher values of Br(> 5) indicate a short, high
dam or higher modes along the crést). The basic characteristics of the shear
strain modal participation functions, Wn, (i.e., the maximum values and
their locations and the relative modal contributions) can be easily extracted
for various types of dams from Figs. 4.2, 4.3, 4.4, and 4.5.

For the case where & = GO[(I - e) [-;:-J + s], the funmction ‘Pn,r(-‘ﬂ is

given by

¥ Y ) y) k1)
Wn,thJ = 252[ } + 383[ + ... F kak[h} + ..., k>3, (L.16)

h Y
where ao = 1
a] =0
2
W h
g = - fin,r e rah
2 Lie v L
s0
: (4.17)
a = - lkk - NG - e, + Pl R (5
K 2. k-1 Voo T [Pk-2

- [n(l - g) [—E{—&Jz]akq , k>3 /

This function is shown in Fig. 4.6 for the two cases ¢ = 0.5 and 0.6 and

the different values of Br= 0, 5, and 10,

In general, Figs. 4.2 through 4.6 show significant contributions from higher

modes along the depth (n > 2},
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Now, the modal shear stresses are given by

Tn,r(y,z,t) = G(y)yn’r(y,z,t). {4.18)

For the case where G is constant, multiply the numerator and denominator

of Eq. 4.13 by W which is given by (Chapter 11)

’

2

v 2
2 _Ys|.2 roh (4.19)
wn,r- hZ&h +T{ L) ] ’
and then Eq. 4.13 becomes
8hp
1 (y,z,t) = nr Jola Lisin[EEl ()
n,r %’ 2 1{"n h L jn,r *
rﬂ}\2+r£-ﬂ—‘l:ld(>\) -2
n ot L 1'"n n,r

(4.20)
in Eq. 4.19 v, = VG/p is the shear wave velocity.
It follows that the modal participation and distribution functions for
n h

the shear stress are expressed by the function Jl(k iq as in the case of the

shear strain (Eq. 4.13).

&/m
The modal shear stresses for the case where G{y) = GO{%J are given
(using Eqs. 4,11, 4,12, and 4.18) by
I ) (e
= 2 in e .2
Tn’r(y,z,t) > Qn,r(hJS'n{ 3 ]Vn,r(t) , (4.21)
rhw 1 -
n,r n,r

where ¢ [Y-] is defined by [{ﬂ .

it expresses the modal
n,rkh

participation and distribution of shear stress, and it is given by

l[%+q [%%&H%ﬂ+

%,rm - a{Zm_I){%J * a[zmﬂh] Toeeee ta

[k > qu . (4.22)
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where the a's coefficients are defined through Eq. 4.15.
The shear stress modal participation factors @n , or ¢n[%} (with
1
%— and %- are shown in Figs. 4.7 through 4.10.

For the tinear case L% = l} the shear stress distribution (Fig. 4.7) seems

£ 1
n=1,2,3,4) for = 1,-2",

physically more reasonable than the shear strain distribution shown in Fig. 54.2.

Like the shear strain case,great similarity exists among the cases of

%-= %y %- and %- of the shear stress distributions,
The function @n r[%} for the linear truncated stiffness case (Eq. 4.2-¢)
H

can be expressed, in terms of Wn . of Eq. 4.16, as
?

el = [0 -9 < e )

The shear stress modal participation function (¢n,r or ¢n) is plotted in
Fig. 4.11 for the two cases where¢ = 0.5 and 0.6; for each case four modes
(n=1,2,3,4) are shown for the values of Br = 0, 5 and 10. Again, the basic
features and differences of all the above-mentioned stiffness variations for
the shear stress case can be easily deduced from Figs. 4.7, 4.8, 4.9, 4,10, and

L1,

IV-3 Dynamic Axial (Mornal) Strains and Stresses

Analogous to the development of the previous equations expressing dynamic
shear strains and stresses, the magnitude and distribution of normal (axial)

strains and stresses in the (n,r)th mode can be given by

W

,z,t) = 2 n,r Yo |72
en‘r(Y,Z,t) = X) > Yn{ )cos{ )Vn,r(t) . (4.24)

and

. - 2
o _ly,z,t) = E(y)e (v,2,t) = nGly)z= . (4.25)

? ¥
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For the case where G is constant, the above two equations can be ex-

pressed as

3

= | rnz
e JO[An ﬁ)cos[;t—qvn’r(t) ,  (4.26)

2
LAnJ](Rn)wn’r 1 Lh, v

B[IJnhpwn r l rnz
Dn’r(y,z,t) = 5 2 Jo{ln h}cos{-T—}Vn’r(t)’ (4.27)
W SN L) I P TR VA
n|{ n T 1'"n Cn,r

where J0 is the Bessel function of first kind and zero order,
It follows from Eq. 4.24 that the modal participation and distribution
functions for the normal {axial) strain, of the general (Q/m)th case, are ex-

pressed by the modal configuration Yn[%q which is expressed by (Chapter 11}

N

) 1 1 (y}?
Yn[%}'ao* zﬁgta(z_m_f}% Wa{z_m)%) T ¥
m; £ ( £
%
1 2m
e N
5

where the a's coefficients are defined through Eq. 4.15.
The modal normal stresses are given (using Eqs. 4.24 and 4.25) by

qnGOPn,r

= Y rnz
on’r(y,z,t) = - Fn'r{h)cos[ T }Vn’r(t) . (4.29)
Lw 1 -z

N, r n,r

2/m
where the normal stress modal participation function Fn r[xq[= I}% Yn[%)]

is given by
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m 2 7?
3£(k+1)
1 m 2m
a[y-) *aeee s k>EE 0, (4.30)

where, again, the a's coefficients are defined by Eq. k.15.

Figures 4.12 through 4.15 show the normal stress modal participation factors

T or Fn[ﬁ} for the various cases mentioned previously.

The normal stress modal participation function, for the truncated linear

stiffness case (Eq. 4,2-¢), is given by
y y y 2 X.k
Tn,r[h] = [(l - E)["h-J + e] ay * az(h) + et ak[h) + . y k>3

The coefficients a and a, are defined through Eq. 4.17; the

or 397 - K

guantity in braces is equal to the mode shapes Yn(y/h) or the normal strain

modal participation function. Figure 4.16 depicts the function Fn . or

»

Fn(n = 1,2,3,4) for the two cases mentioned before (i.e., for € = 0.5 and 0.6).

It can be seen from Figs. 4.12 through 4,16 and Eqs. 4.24 and 4.25 that the maxi-

mum dynamic normal strains and stresses occur near the top region of the dam at

the end abutments (where cos{g%zﬂ ~ 1); this may explain the Santa Felicia

Dam crack mentioned previously and shown in Fig. 1.2 (Chapter ).

IV-4, Utilization of Response Spectra

Based on the above formulation,the response spectra technique can be
utilized for estimating maximum earthquake-induced longitudinal strains and

stresses. The maximum value of the quantity V_ r(t) of Eqs. 4.12, 4.13, 4.20,

1

h.21, k.24, 4,26, 4.27, and 4.29 is equal to the ordinate of the velocity spectrum

SV of the ground motion, corresponding to the natural frequency © p and
y

the damping factor . of the (n,r)th mode, i.€.,

Voo (8 fnax = Sy (o et ) - (5.32)
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For earthquake-1ike excitations where little error is involved for

; < 20%, it can be shown that
Ny T

S =m2 S, =w_ _$S s (4.33)

where Sd and Sa are the ordinates of the calculated acceleration and dis-

placement spectra, respectively. Then, finally, for the maximum value of

Eq. 10, one can get

b En r
T (t)[ = — . ) . (4.34)
n,r max rm 3 v
W 1 -z
n,r N, r
The maximum shear strains and stresses in the first mode (n=1, r=1),

which occur in the central region of the dam (z = L/2), along the y-axis (the depth

axis) of Fig. 4.1, can be written as (with the aid of Eqs. &.11, 4.20, 4.21, and

h.34) —l‘gl ]
Y],}!max - | 7ih T],llmax Sq ’ (4.35)
and ) . ‘
4G P
01,1
(S Tl R K A ]S : (4.36)
1,1 'max ﬂhwz 1,1 'max| " a

Similarly, the maximum tensile or compressive strains, and stresses in

the first mode, occurring in the top region near the crest at its ends (where

z =L or cos(rmz/L) = 1), are given (with the aid of Eqs. 4.24, k.25, 4.26, and

J-l.27) by —i{P] :

Elylwmax - L Yl max Sd ’ (4.37)
" [4ngP) |

01,1Tmax i Liw? Tl,]'max Sa ' (k.38)

1,1
It is important to note that the use of the response spectra technique
may lead to inaccuracies in ascertaining the true influence of material non-
linearity on the dam response since the technique provides only single-valued

estimates of stresses and strains induced by earthquakes. The manner in which
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the amplitudes of an earth dam's motion vary with time have a major role in
the dam’'s earthquake response characteristics. In the next chapter a rational
method is presented which takes into account this variation, also using the

elastic analytical models.
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CHAPTER V

IDENTIFICATION OF CONSTITUTIVE RELATIONS, ELASTIC MODULI,
AND DAMPING FACTORS OF EARTH DAMS FROM THEIR EARTHQUAKE RECORDS

V-1, Basis of the Analysis

The dynamic soil properties which exert the greatest influence on an
earth dam's dynamic responses are those related to the stress-strain relations.
Like all soils, materials of earth dams develop nonlinear inelastic stress=-
strain relationships when subjected to earthquake loading conditions. By
using earthquake response records of the crest and the base (structural and
input ground motions), together with the results of the analytical models
(presented here), these stress-strain relationships can be estimated for the
dam's materials. The strain-dependent elastic moduli and damping factors have
already been determined in this manner for the upstream-downstream recorded
motion of a modern earth dam (see Refs. 1, 4, and 6), using existing analytical

shear-beam models (9, 22, 23).

One of the purposes of this report is to present a similar procedure (like
the one developed by Abdel-Ghaffar and Scott, Ref. 6) to estimate longitudinal
dynamic stresses and strains and corresponding elastic moduli and damping fac-
tors for earth dams from their hysteretic responses to real earthquakes, util-
izing the hysteresis loops from crest and base records and the above-mentioned
ltongitudinal elastic analytical models.

The idea is illustrated in Fig. 5.] and can be summarized in the following
steps:

{1) By using the earthquake records, the experimental results and the

analytical models (of Chapters Il and 1V), the fundamental frequency in

Jongitudinal direction can be identified.
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(2) By using very narrow band-pass digital filtering around the funda-
mental frequency (usually the primary) of the crest and base records,
the pure fundamental mode response can be obtained.

{3) By treating the filtered modal response as that of a single-degree-
of-freedom (SDOF) hysteretic structure (with nonlinear restoring
force F(x,x) equal to -M(X + Wg(t)); X, x, and % are the
relative dispiacement, velocity, and acceleration, respectively,
and M is the mass) the hysteresis loops, which show the relation-
ship between the relative displacement of the crest with respect to
the base and the absolute acceleration of the dam, can be obtained.

(4) By using the elastic longitudinal analytical models, the shear
stresses and shear strains (Eqs. 4.35, 4.36) can be determined as

functions of the maximum absolute acceleration and maximum relative

displacement, respectively, for each hysteresis loop, and consequently,

equivalent (secant) shear moduli and damping factors can be deter-
mined from the slope and the area, respectively, of the loop. Since
it was assumed that each hysteresis loop is a response of an SDOF
oscillator, and in order to get a qualitative picture of the dynamic
shear strain and stress from the hysteretic response, the value of
Sq and of S_ in Eqs. 4.37 and 4.38 are assumed to be the maximum
relative displacement, (w(t))max, and the maximum absolute accel-
eration, (w(t) + Wg(t))max, respectively, for each hysteresis loop.

(5) Finally, the data so obtained permit development of typical stress-
strain curves which are then approximated by the Ramberg-0sgood
analytical models and/or the hyperbolic curves. The data can also
be compared with those previously available from soil-dynamic

laboratory investigations and can be combined with those obtained
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from the analysis of the upstream-downstream vibrations (Ref. 6)
to give informative materials to both earthquake and the geotechnical

engineers,

V-2. Application of the Analysis

V-2.1. Llongitudinal Dynamic Shear Stress-Strain Relations for Santa Felicia
Earth Dam

The Santa Felicia Dam (1, 3, 4, 6 is equipped with two accelerographs
{one on the central region of the crest and the.other at the base) that
yielded data on how it responded to two earthquakes (1,4).

-Amplification spectra of the dam's two earthguake records which were
{presented in Chapter I1]l) computed by dividing Fourier amplitudes of
acceleration of the crest records by those of the base records (to indicate
the resonant frequencies and to estimate the relative contribution of differ-
ent modes in the longitudinal direction) revealed that the values of the
resonant frequencies vary slightiy from one éarthquake to the other. |In
addition, amplification spectra of the upstream-downstream direction showed
that the dam responded primarily in its fundamental mode in that direction,
but the spectra of the longitudinal component are lacking pronounced single
peaks.

For Santa Felicia Dam, the first longitudinal frequency determined from
the amplification spectra of the 1971 earthquake is 1.35 Hz {1.27 Hz for
the 1976 earthquake), p = 4.02 lb-seczlftq, v = 0,45 (3), and h/L =
236.5/912.5 = 0.26; this gives Br = 1,92 r2, r=1,2,3,.... {or BI = 1.92 for
the first mode). The calculated shear stress and shear strain modal partici-
pation factors, along the depth of the dam, ¢ {or ¢, n=1and 2) and

n,r n

wn - (or ?n’ n=1,2, and 3), as well as the normal! stress modal partici~

pation factor T (or T_, n=1) for various stiffness variations are

n,r n’
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shown in Figs. 5.2a, b, ¢, and d. The first-mode maximum shear strains for the
analytical models of various stiffness variations occur at about 0.4 - 0.7

of the dam height (except for the linear case, where #/m =1, in which the
maximum occurs at the crest). The maximum shear stress occurs at about 0.7 -

0.8 of the dam height. Values of the participation factors Py s wl'max’

3lmax’ Fllmax resulting from the modal configuration along the depth and

the corresponding maximum strains and stresses {Egs. 4.35,4.36,5.37, and 4.38) are
given in Table 5.1; also shown in the tables are values of v (and GO)
estimated from the 1971 earthquake records and the various analytical ﬁodels

of Chapters I and IV.

In general, it was found that the higher modes make a considerable con-
tribution to the overall earthquake response of the dam (displacements,
stresses, etc.); this is consistent with the earthquake amplification spectra
of Fig. 3.3-c,

The average maximum shear strain (percent) for each hysteresis loop, of
the 1971 earthquake, (Eq. 4.35) can be given by

= 0.04078 w(t)| (w in cm) (5.1)

Yl,l‘max max max

and the associated average maximum shear stress (in psf) of Eq. 4,36 is given by

1 = 11.78 (w(t) + G&g(t))m : (5.2)

l,llmax ax

. . 2
(accelerations are in cm/sec”)

The maximum (average) values of axial stresses and strains (from Egs.

.37 and 4.38) are:

0.02773 w(t) | , (w _ incm) (5.3)

[
l,l[max max

and
o, .1 = 14.35 (W(t) + W (£) (5.4)

1,1 max max

. . 2
(accelerations are in cm/sec”).
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TABLE 5.1

Key Parameters of the Stress and Strain Calculations

(Santa Felicia Dam)

CASE[ % [) [ [ [
== == === | == | === lg=0.5]¢c=0.6

Py 1.818 | 2.575 [1.959 [1.891 |1.802 [1.749 |1.705
wlimax 1.35 2.50 1.20 1.23 1.25 1.32 1.35
¢1Imax 1.35 0.45 0.85 0.95 1.00 1.15 1.20
[-1of 55.35 0.01311 | 0.03466 | 0.01266 | 0.01252 | 0.01213 | 0.01243 | 0.01239
[-]of Eﬁ‘36 385.16 | 326.47 | 342.56 | 349.31 | 337.86 | 388.86 | 377.03
vso(ft/sec) 772.8 967.8 827.0 804.0 789.5 801.7 782.7
Go(x106p5f) 2.5 3.77 2.75 2.60 2.51 2.58 2.46

eru

(-DVSO)
FI’]Jmax 1.0 0.18 [ 0.42 | 0.48 0.53 | 0.58 0.65
[-Jof 53.37 0.00797 : 0.01129 | o.oo859i 0.00829 | 0.00790 | 0.00767 | 0.00747
[]of 53.38 774.9 309.1 400.,2 E b17.4 h24 .0 462.9 482.2
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In the above equations, w(t)max is the maximum relative displacement in

each hysteresis loop, and (w(t) + Wg( is the maximum absolute accel-

t))max

eration in each hysteresis loop. Figure 5.3 shows the filtered records (1971

earthquake) of both the absolute acceleration (crest record) and the relative

displacement (the crest response with respect to the base). It is important

to note that the first 3.0 - 3.5 secs of the base record were lost due to

double exposure (i,4). The time dependence of the hysteretic behavior was

determined for only the first 25 secs of the 1971 record and for only the

first 6 secs of the 1976 record. Each trajectory was plotted every 0.02 sec,

and each loop was plotted every second (about every cycle and a half).

Samples of the hysteresis loops (of the first mode of longitudinal vibration)

of Santa Felicia Dam are shown in Fig,,5,h,(Appendix A shows unfiltered records.)
it is readily apparent that the slope of the hysteresis loop and the

area inside the loop are dependent on the magnitude of the response level for

which the hysteresis loop is determined.

The estimated shear strain and stress for each hysteresis loop are shown
{as circles} in Fig. 5.5; the data show an initial slope, Gax: @t thé origin
ranging from 3.5 to b,10 (x 106 psf). The nonlinear stress-strain curves
of the Masing type, i.e., the Ramberg-Osgood (R-0) curves (31,32) are
adopted here to fit the data (shown as solid curves on Fig. 5.5), For shear-

ing stresses increasing from zero these strain-softening curves are described

by R-1

1
T = YG P +a E;?——_
max

) (5.5)

where o and R are parameters which adjust the position and shape of the

curves, and C] is a factor which relates the 'yield'" value Ty in the

original R-0 expression to T (i.e., 1 = ). For practical and

€1
ma x y 1 ‘'max
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Fig. 5.3-a The filtered records (13971 earthquake) of the crest of
Santa Felicia Dam.



DISPLACEMENT

SAN FERNANDG EARTHQURKE
SANTAR FELICIA DANM,
LONGITUDINAL COMPONENT

CALTFORNIA,
{9582K)

FEB 9 1871

QUTLET WORK

S.0U

15.00

€5.00 30.00

ME IN SEC

—8

—ot

— e e

45.00

40.00

5.0

50.00

55.00

0. b2

10.00

15.00

2u.ou 25.00 0.t

TIME IN SEC

35.00

0.00

i5.00

50.0D

55.00

b.v

$.00

10. 00

35.00

0. 00

Fig. 5.3-b The filtered records (1971 earthquake) of the
abutment of Santa Felicia Dam.

55.0U



97

SAN FERNANDO EARTHQUAKE FEB 8 1971 SANTA FELICIA DOAM, CALIFOANIA
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Fig. 5.3-c The filtered records (1971 earthquake) of the
relative motion (the crest response with respect
to the base) of Santa Felicia Dam.
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EARTHQUAKE OF APRIL 8, 1976
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EARTHQUAKE OF APRIL 8, 1976, SANTA FELICIA DAM, CALIFOANIA
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SANTA FELICIA DAM, CALIFOANIA,
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analytical purposes, the R-0 curves with R =1.8 - 2,0, a=1,7 - 1.75,

and € = 800 to 1,200 psf {(with C, = 0.8) can be chosen, from Fig. 5.5 and from

T

1 ‘max

the normalized curves of Fig. 5.6, to represent the relations for earth dam materials.
Taking Gmax and Tmax from curves 1, 2, and 3 of Fig. 5.5, continuous

hyperbolic shearing stress-shearing strain curves (dotted curves) are deter-

mined (and are also shown in Fig. 5.5); the curves are given by

_ ] y |
T= [-G-—- + T—J . (5.6)
max max

The hyperbolic fit deviates considerably after the low-strain range,

indicating the R-0 curves are a better match for the overall behavior.

¥-2.2. Shear Moduli and Damping Factors for Santa Felicia Earth Dam

The secant shear modulus, G, for each hysteresis loop, can be obtained
by dividing Eq. 4.36 by Eq. 4.35. The relationship between the estimated shear
modulus and the dynamic shear‘strain is shown by the semilog plots of Fig. 5.7
for the first 25 secs of the 1971 earthquake and the first 6 secs of the 1976
earthquake. (Note that the number at each point corresponds to the time in
seconds at which the point was computed.) Again, it is apparent that the
modulus depends on the magnitude of the strain in the hysteresis loop.

The relationship between the estimated equivalent viscous damping factor
determined from the area of each hysteresis loop and the corresponding
shear-strain amplitude are shéwn in Fig. 5.8. While there is a considerable
scatter in the data, most of the results fall within the dashed curves in
Figs. 5.7 and 5.8. The solid curve in each figure represents an estimate of
the mean behavior.

At higher strains, additional data on modulus values are needed; however,
approximate values for use in some types of response analyses are arrived at

by using the estimated values of the modulus at a very low strain level from
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the forced and ambient vibration tests (3) as well as from the in-situ geo-
physical tests (1,4), with the aid of the analytical models, as indicated

in Figs. 5.7 and 5.8. Both figures indicate that the dynamic properties of
the dam's constituent material estimated from low-strain full-scale tests

are consistent with those determined from the relatively ltarger strains induced
by the two earthquakes (if one extrapolates the data of Figs. 5.7 and 5.8 to
the low-strain range). Furthermore, the low-strain analytical models in

which the elastic moduli of the dam material vary along the depth are the most
appropriate representations for predicting the dynamic properties, as indicated
by Fig.5.7 (where an average value of the cases where == %3 %3 %3 I would be
a reasonable extension of the earthquake data, which also were based on an
average value of various models (as shown by Table 5.1)).

From the R-0 curve {Eq. 5.5) the decrease in secant modulus, G{= t/v),

with an increase in shearing stress ratio, T/Tmax’ is

[
/G ’R ‘] . (5.7)

] ‘max

G=Gmax [I+cx

Figure 5.9 shows the decrease of secant modulus, G, with strain, v,

s G, C.7T and R of curves 1, 2,

for the same special values of G ,
m 1 "max

ax
3, and h of Fig. 5.5; shown also on Fig. 5.9 are the data of Fig. 5.7. The R-0

curves match both the estimated earthquake results and the results of low-

~strain full-scale tests very well indicating both the reliabiltity of the

developed longitudinal analytical modeis in predicting earthquake induced

stresses and strains (in the first mode) and the applicability of the R-0

curves to represent the stiffness relations for earth dams. The normalized curves
of the shear modulus {with respect to Gmax) versus shear strain are shown in

Fig. 5.10.

Finally, the damping factors are evaluated, by integration, from the
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R-0 curves (where the area of the hysteresis loop formad is a mecasure of

the hysteretic damping occurring in the dam materials) for the same special
conditions of curves 1, 2, 3, and 4 of Fig. 5.5. The results are shown on Fig. 5.1
which displays the earthquake data (of Fig. 5.3) as well. The R-0 curves,

which represent the best fit of the three sets of data of Figs. 5.5, 5.7, and 5.8
represent a lower bound of the earthquake damping data. The normalized version of

Fig. 5.11 is shown in Fig. 5.12.

V-2.3. Axial Strains and Stresses of Santa Felicia Dam

Unfortunately, there were no accelerographs on the dam crest near its
ends {(where the maximum axial strains and stresses occur); only two siesmo-
scopes were located on the east and west abutments (not on the crest) of the
dam; The existence of such accelerographs would be very helpful in assessing
the amplitude dependence of axial strains and stresses and alsoc in explaining,
more accurately, the transverse crack caused by the 1971 earthquake. However,
the standard response spectra technique is utilized to quantify the order of
magnitude of these axial stresses and strains. Table 5.2 shows the values of
these strains and stresses resulting from the spectral peaks of the recorded
ground motions (at the base of the dam) during the two earthquakes, assuming

uniform input ground motions.

I't is necessary to very carefully compare the stresses given in Table 5.2
with the tensile strength of the dam material in order to assess or predict
a crack in a dam. As mentioned previously, the occurrence of cracks is in
consequence not only of the transient state of stress of the dam during an
earthquake, but also of the state of stress before an earthquake. It is
also necessary to further investigate the mechanism of cracking in earth fill

material under the action of irregular loads.
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Table 5.2

Estimated Axial Strains and Stresses in Santa Feiicia Dam
Using Response Spectra Technique

I

ASSUMED DAMPING RATIO (PERCENT)

i
PARAMETE%
‘ 2% 5% 10%

1. 1971 3San Fernando Earthquake, T, 1= 0.74 sec
Sd 1.65 ¢cm 1.27 cm 1.02 cm
Sa 58.0 cm/sec2 78.4 cm/sec2 63.7 cm/sec2

| l‘max 0.0458 (percent) | 0.0352 (percent) | 0.0282 (percent)

]’](max 1,504.7 psf 1,203.8 psf 978.1 psf
2. 1976 Earthquake T] 1= 0.79 sec
Sd 0.71 cm 0.4 cm 0.33 cm

2 2 2

Sa 39.2 cm/sec 27.4 cm/sec 19.6 cm/sec

| }[max 0.0197 (percent) { 0.0114 (percent) | 0.0092 (percent)
o],][max 601.9 psf 420.7 psf 301.0 psf
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CONCLUS I ONS
The analytical models developed here and the data presented will provide

information of practical as well as academic significance about the dynamic
characteristics of earth dams vibrating in a direction parallel to their longi-
tudinal axis. Real earthquake observations of earth dams and experimental
results have confirmed that the.models which take into account the effect
of variation with depth of both the shear modulus and the modulus of elasticity
of the dam material provide the most appropriate representation for predicting
the dynamic characteristics in the longitudinal direction. These
modeis are shown to be accurate enough so that they can be used for estimating
earthquake induced longitudinal strains and stresses (both shear and normal
or axial) on earth dams.

In addition, the formula and curves presented here will enable the determina-
tion, for many practical purposes, of the dynamic strains and stresses (both shear
and normal) induced in a wide class of earth dams by the longitudinal component

of earthquake ground motions. Reasonable estimates of the

dynamic stress-strain curves (nonlinear strain-softening type) and the strain-
dependent elastic moduli and damping for earth dam materials can be ohtained
by using the proposed dynamic analysis procedure, earthquake records {on and
in the vicinity of dams), and the adoption of the Ramberg-0Osgood-type curves.
These estimates would be useful for any study of the dam's earthquake-response
characteristics; in addition, the variation of material properties with depth
should be taken into account for any realistic dynamics study. Figures 5.5 to
5.12 should provide a good guide to the material properties in the dynamic
analysis of any earth dam composed predominantly of rolled-fill, essentially
cohesionless material, with or without a relatively thin core. Despite the
value of this study, however, further research to accurately assess and
mitigate potentially adverse effects of seismic shaking on earth dams is

needed.
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APPENDIX A

STANDARD (UNFILTERED) EARTHQUAKE

RECORDS OF SANTA FELICIA DAM
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APPENDEX B

TABLES OF SHEAR STRAINS AND STRESSES

INDUCED BY THE TWO EARTHQUAKES
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Table B-2

Estimated Longitudinal Shear Strains and Stresses
and the Corresponding Shear Moduli

Southern California Earthquake of April 6, 1976

Equiv.
Cycle| Time| Max.Accel. Max.Displ.{ Equiv.| Equiv. Shear
secs | (x + Wg)max X ax Stress gtrain Moﬁﬁlgs
(em/sec?) em 1b/fFt? (i;8§g§ }2 ];6)
1 0-1 2.4 0.025 28.27 | 0.102 2.77
2 -2 1.9 0.017 22.38 0.069 3.24
3 2-3 2.3 0.030 27.09 | 0.122 2.22
4 3-4 L.2 0.050 49 .48 0.204 2.42
5 L-5 ! 2.6 0.040 30.63 0.163 1.88







