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Abstract

This report presents an explicit, closed-form solution for the
Green functions (displacements due to unit loads) corresponding to
dynamic loads acting on (or within) layered strata. These functions
embody all the essential mechanical properties of the medium, and can
be used to derive solutions to problems of elastodynamics, such as
scattering of waves by rigid inclusions, soil-structure interaction,
seismic sources, etc. The solution is based on a discretization of
the medium in the direction of layering, which results in a formula­
tion yielding algebraic expressions whose integral transforms can
readily be evaluated. The advantages of the procedure are: a) the
speed and accuracy with which the functions can be evaluated (no numer­
ical integration necessary); b) the potential application to problems
of elastodynamics solved by the Boundary Integral Method, and c) the
possibility of comparing and verifying numerical integral solutions
implemented in computer codes.

The technique presented in this report is based on an Inversion
of the Descent of Dimensions: that is, on a formulation of the solution
to loads in the three-dimensional space using the solutions to the two­
dimensional problems of horizontal, vertical and antiplane line loads.
Some of the resulting expressions are similar to recent solutions re­
ported by Taj imi (1980) and by Waas (1980), whose contri butions came
to the author's attention at the time this work was being completed.

Section 2 of this report presents the theory in detail, while sec­
tion 3 is devoted to examples of application and comparison.
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1 - INTRODUCTION

Interest in the solution to e1astodynamic problems of continua
subjected to static and dynamic loads is not new. as evidenced by the
well-known works of Ke1vtn (1848), Boussinesq (1878), Cerruti (1882),
Lamb (1904), Mindlin (1936); and others. While these solutions have
some theoretical appeal in themselves, they are really more important
as tools in the solution of the involved boundary value problems aris­
ing in seismology and geomechanics. Despite the considerable work that
has been done up to this date, however, the solutions available so far
are restricted to solids of relatively simple geometry, such as full
spaces, ha1fspaces, and homogeneous strata. The complexities intro­
duced by layering are so formidable that only integral formulations
that need to be evaluated numerically (Harkreider, 1964) are currently
available. These complexities are obviated in this work by resorting
to a discrete formulation, which is based on a linearization of the
displacement field in the direction of layering. This technique has
the advantage that the Green functions in the wave-number domain are
algebraic rather than transcendental. Thus, the Hankel transforms re­
quired for an evaluation of the Green functions in the spatial domain
can readily be computed in closed form.

2. THEORETICAL DERIVATION

2.1 Displacements and Stresses: Spatial vs. Wave-number Domain

The determination of the response of a soil deposit to dynamic
loads, caused either by a seismic excitation or by prescribed forces at
some location in the soil mass, falls mathematically into the area of
wave-propagation theory. The formalism to study the propagation of
waves in layered media was presented by Thomson (1959) and Haskell (1953)
more than 25 years ago, and it is based on the use of transfer matrices
in the frequency - wave-number domain. The solution technique for arbi­
trary loadings necessitates resolving the loads in terms of their tempor­
al and spatial Fourier transforms, assuming them to be harmonic in time
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and space. This corresponds formally to the use of the method of separa­
tion of variables to find solutions to the wave equation. Closed-form
solutions are then found for simple cases by contour integration, while
numerical solutions are needed for arbitrarily layered soils. The de­
tails of the procedures are well known, and need not be repeated here.

The first step in the computation for dynamic loads is then to find
the harmonic displacements at the layer interfaces due to unit harmonic
loads. In the transfer matrix approach, the (harmonic) displacements
and internal stresses at a given interface define the state vector, which
in turn is related through the transfer matrix to the state vectors at
neighboring interfaces.

An alternative method of analysis for layered soils is the stiffness
matrix approach presented by Kausel and Roesset (1981). In this proced­
ure, the external loads applied at the layer interfaces are related to
the displacements at these locations through stiffness matrices which
are fUnctions of both frequency and wavenumber. These stiffness matrices
can be used and understood very much like those in structural analysis;
in fact, standard techniques, such as substructuring, condensation, simul­
taneous solutions for multiple loadings, etc. are also applicable in this
situation.

While the stiffness matrices presented in the above reference are
valid for arbitrary layer thicknesses, frequency of excitation and wave­
number, their application is restricted either to the closed form solu­
tion of problems involving only simple geometries, or to numerical solu­
tions for multilayered soils.

The formulation is intrinsically inefficient, because the transcen­
dental functions which appear as arguments of the matrices makes the
closed form evaluation of the integral transforms required for the analy­
3isintractable in the general case.

If the layer thicknesses are small as compared to the wavelengths
of interest (or if a finite layer is subdivided into several thin layers),
it is possible to linearize the transcendental functions which govern
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the displacements in the direction of layering. This procedure was
first proposed by Lysmer and Waas (1972) and later generalized by Waas
(1972) and Kausel (1974), although not in the context considered here.
The method was also used by Drake (1972), to study alluvial valleys,
while an extension to strata of finite width was given by Schlue (1979).
Tassoulas (1981), on the other hand, employed this formulation to devel­
op special macroelements (finite elements of large size) to study prob­
lems of geomechanics in layered soils. In principle, the technique is
restricted to layered soils over rigid rock, although analyses of soils
over elastic halfspaces could be accomplished with a hybrid formulation
(i.e., taking the exact solution for the halfspace only). The principal
advantage of the method is the substitution of algebraic expressions in
place of the more involved transcendental functions. This concept will
be applied in the following to study layered soils subjected to arbi­
trary dynamic loads.

Consider a layered soil system as shown in Fig. 1. The interfaces
are dictated by discontinuities in material properties in the vertical
direction, by the presence of external loads at a given elevation, or
by restrictions on the thickness of layers as required by this discrete
formulation. We define then the following stress and displacement vec­
tors:

a) Cartesian coordinates:

(1)

in which U, T, crare the displacement, shearing stress and normal stress
components at a given elevation, in the direction identified by the sub­
index. The factor i = ~ in front of 0z ' Uz has the advantage that
the stiffness matrices relating stresses and displacements thus defined
are symmetric; for the static case~ they are in addition real. The
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superscript bar, on the other hand, is a reminder that the components
are functions of z only: that is, they are expressed in the transformed
frequency - wave-number domain. The actual displacements and stresses
at a point are obtained from the Fourier transform

{
U} eu},~ 1 3 Iff ~ _. exp i( wt - kx - ~y ) dk
S (2rr) l S

d~ dw , (2 )

in which w = frequency of excitation, and k, ~ are the wavenumbers. Since
in the following developments only the solution for line loads are re­
quired to formulate the solution to point loads, we can set the second
wavenumber equal to zero (~=O). Also, the transformation in w may be
omitted, as we are interested only in harmonic solutions. Thus

and

{
U

S

}·= 1
2rr

(00 {U}J- .e- ikx dk
-co S

(3a)

provid2j that the transformations exist.

b) Cylindrical coordinates:

The stress and displacement vectors are now:

(3b)

u= (4)
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with u, 'T, cr being again the displacement, tangential and normal stress
components as identified by the subindices. Also, the superscript bar
refers to the frequency - wave-number domain in cylindrical coordinates.
Note the absence of the i = 1-1 factor in front of oz, uz' in contrast to
the Cartesian case. The interrelationship with the spatial domain is now
given by

and

co fco
U = LT

]l=o]l a
k C IT dk]l (5a)

and similar expressions for S, S. In these equations,

TV = diag (cos ]la, -sin ]la, cos ]l~ .

(5b)

(6a)

(6b)

if the displacements (stresses) are symmetric with respect to the x axis,
or

T]l = diag (sin ]la, cos ]la, sin ]la)

if they are anti symmetric (nonsymmetric cases are combinations of these
two situations). Also,

d ]l
J -J 0d(kp) v kp ]l

C
]l

J ll
d J 0 (7)= kp d( kp)]l ]l

0 0 -J]l

in which J = J (kp) are Bessel functions of the first kind and vth
]l ]l

order. The orthogonalization factor a is given by]l
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1 if ~=O

}
a~ = 21T

(8 )

=1 if w~O
1T

This corresponds to the well-known decomposition of the displacements
and stresses in a Fourier series in the azimuthal direction, and cylin­
drical functions in the radial direction. The variation with time is
given again by the factor exp iwt.

2.2 Stiffness Matri~ Approach

Referring to Fig. 2, we isolate a specific layer and preserve equi­
librium by application of external loads Pl = 51 at the upper interface,
and 1'2 = - 52 at the lower interface. The relationship between forces
(tractions) and displacements.is then:

[:1 ]=rll K12 t {:1}
P2 K21 K22 J U2

with

= r::;
K12

}K m
K22

(9)

(10)

being the (symmetric) stiffness matrix of the (mth ) layer under considera­
tion. Explicit expressions for this matrix are given in Kausel and
Roesset (1981).

In the case of a soil which consists of several layers, the global
stiffness matrix K = {Km}is constructed by overlapping the contribution
of the layer matrices at each "node" (interface) of the system (Fig. 3).
The global load vector corresponds in this case to the prescribed external
tractions at the interfaces. Thus, the assemblage and solution of the

equations is formally analogous to the solution of structural dynamic
problems in the frequency domain.
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It is interesting to note that the stiffness matrix for cylin­
drical coordinates is identical to that of the plane strain (Cartesian)
case, and is independent of the Fourier index~. This implies, among
other things, that the solution for point loads can be derived, in prin­
ciple, from the solution for the three line load cases of the plane
strain case; this is referred to as the inversion of the descent of
dimensions, and forms the basis of the technique considered here. Thus,
the load and displacement vectors P, IT in equation (9) may follow either
from the cylindrical or the Cartesian formulation.

2.3 Thin Layer Formulation

In the case of thin layers, the layer stiffness matrix can be ob­
tained as (Waas (1972), Kausel (1974), Kausel and Roesset (1981)).

(11 )

where k = wave number, w = frequency of excitation; and Am' 8m, Gm, Mm
are the matrices given in Table 1 (which involve only material proper­
ties of the layers). In contrast to the continuum formulation, however,
this discrete approach results in stiffness matrices that are algebraic
rather than transcendental. Also, in this alternative, the displacements
within the layer are obtained by linear interpolation between interfaces:

(12)

As in the continuum approach, the global stiffness matrix K = {K m}

is obtained by overlapping the matrices for each layer (Fig. 3). In
fact, the assemblage may be understood in the finite element sense, with
each thin layer constituting a "linear" element. The global load and
displacement vectors P= {p}, u= {IT} are then assembled with the
"nodal" (interface) load and displacement vectors P, IT. For prescribed
loadings, p, the displacements U are obtained by formal inversion of the
stiffness matrix:

p = K U

11 -1-= K P.

(13a)

(l3b)
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In practice, this invers.ion is not necessary, sJnce either a Gaus..stan
reduction would be employed, or the spectral decomposition described
below could be used.

2.4 Spectral Decomposition of the Stiffness Matrix

The natural modes of wave propagation in the stratum are obtained
from the eigenvalue problem that follows from setting the load vector
equal to zero:

(A kj + B kj + C) <Pj = 0 (14)

with C = G - (}M. The notation for the displacement vector has been
changed from ff to ¢j to emphasize the identification as eigenvector.
(The subindex j refers to the various possible solutions). Waas (1972)
studied this problem in detail, although his notation and coordinate
system were slightly different; his work was concerned with the develop­
ment of a transmitting boundary (silent or absorbing boundary) for finite
element models. Equation (14) constitutes a quadratic eigenvalue problem,
with eigenvalues kj and modal shapes <P j .

This problem yields 6N eigenvalues kj and eigenvectors, ¢j' with
N being the total number of layers. 3N of these correspond to eigenvalues- -
kj , <P j , while the other half correspond to eigenvalues - kj , ¢j (with <Pj

being obtained trivially from <Pj by reversing the sign of the vertical
components). Following Waas, we choose the 3N modes that have eigenvalues
kj , whose imaginary part is negative if kj is complex, or whose real part
is positive if kj is real. This implies selecting only the propagation
modes that decay with distance to the source, or that propagate away from
it.

While a quadratic eigenvalue problem can always be solved as a linear
eigenvalue problem of double dimension, this is not necessary here because
of the special structure of the matrices involved. To show this, we begin
rearranging rows and columns by degrees of freedom rather than by inter­
face (i.e., grouping first all horizontal, then all vertical, and finally
all antip1ane degrees of freedom). The resulting eigenvalue problem is
then of the form
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k~ A + e kj Bxz <P xj 0 1
J x x

k. T k~ A + e <P zj 0 (15 )
J

Bxz J z z =

k~ A + C <P yj a
J y y

with uncoupled anti plane mode <Py . The matrices Ax' Cx' etc. are tri­
diagonal and, except for Bxz ' are symmetric. This eigenvalue problem

may then ~e transformed into

k~ Ax + ex Bxz <PXj 01
k~ BT k~ A + e k.<p . =

.:J
(16)

J xz J z Z J ZJ

k2 A + e <Pyjj Y Y

2which is a linear (although non-symmetric) eigenvalue problem in k . An

alternative linear eigenvalue problem is also

k~ A + e 2
kj <Pxj 0

)

J x x kj Bxz

T k~ A + C = 0 (17)Bxz J z Z <Pzj

k2 A + e <Pyj 0j y y

having a characteristic matrix which is the transpose of that in Eq. (16).

Both of these eigenvalue problems yield the same eigenvalues and
have associated "l eft" and "r ight" eigenvectors.

r" . <PxjJ XJ

y. = ¢zj and z. = k. <P • (18 )
J J J ZJ

l <Pyj <P .
YJ
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which are mutually orthogonal with respect to the characteristic equa­
tion (see below). Defining

Ax

1
Cx Bxz

A= T Az C = Cz (18 )Bxz

AyJ Cy

j = 1, 2, ... 3N

{

"RaYleighl modes }
= (1 9 )

"Love" modes

the eigenvalue problem may be written as

and

2- -k. A Z. + C Z. = 0
J J J

k~ AT V. + CT v. = 0
J J J

or

or

A Z K2 + C Z = 0 (20a)

(20b)

which satisfy the orthogonality conditions

to ifi=j

TY.AZ.=O
1 J

if i t j

(21)

and a similar condition for vT C Zj' We choose here a normalization of
the eigenvectors Y, Z which can be proved to be the same as the one used
by Waas (see appendix):

YT A Z = {KR } = N (22a)
\. I

and by substitution into the eigenvalue problem,

vT C Z = _NK2 (22b)
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Consider now the equilibrium equation in the wave-number domain

(eq. 13a) (after rearranging columns and rows by d.o.f. 's).

with

,

(A k2 + C) U = p*

-'Ir
P =

Premultiplication by yT, and introducing ZZ-l = I yields

(23 )

(24a)

(24b)

and in view of eqs. (22) above

-*from which we can solve for U :

u* = ZN- 1 (I k2 _ K2) -1 yTp*

(26)

(27)

Since the in-plane eigenvalue problem is uncoupled from the antiplane
problem, we can consider the two cases separately.

(28a)
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(28b)

in which the spectral matrix KR has 2N elements corresponding to the
in-plane modes (the subscript R stands for Rayleigh).

From eqs. 27 we obtain, then

yielding

_ K~ ) -
1 {K T .. T}

'l{ R ¢x $z (29)

(30)

with

(I being the

-1
o = (k2I -" K? )RR

identity matrix).

(31)

The matrix in front of the load vector in eq. (30) is the inverse
of the global stiffness matrix, with rows and columns transposed so as
to have first all horizontal and then all vertical degrees of freedom.
Since this matrix is symmetric, so must its inverse be. Hence

(32)

Multiplying by k and combining the two sides,

but

(33)

hence

(34)
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(Observe that the. matrices <lix' <liz are rectangular, not square). This
relations,hip could also have been proved starting with an alternate form

of equation (22), namely,

T 2 T) ** -**(A k + C'· YJ . =p (35)

with

{
::- k}-** _ Ux .

U - _ '
Uz

**
p = (36)

and using again the orthogonality condition.
forms into

Thus,equation (30) trans-
,/

{:: } (37)

and we have an explicit expression (in terms of k) for the in-plane flexibil­
ity matrix (inverse of the stiffness matrix, with rows/columns transposed to
accommodate the new order of deqrees of freedom).

b) Antiplane case:

Following a procedure which is entirely analogous to the in-plane case,
one obtains

with

u. = <li DL<li T py y y Y
2 -1

o - (k2I K)L- - L

(38)

(39)

in which KL = diag (k j ) has only N elements, corresponding to the antiplane
modes. The subscript L refers to the Love modes.
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2.5 Green Functions for Line Loads

A unit line load is described in the spatial domain by an expres­
sion of the form

which is prescribed at a given elevation zo' with abscissa x
o

. T is

either a normal or shearing traction, and 5 is the Dirac Delta function.
The Fourier transform for a load applied in the verti'cal plane passing
through the origin (xo = 0) is

T = f_~ o(x)e
ikx

dx = 1 (41)

which is independent of the wavenumber k. Thus, the load vectors in
Eqs. (37) or (38) have a single non-zero unit element in the row that
corresponds to the elevation and direction of the applied line load. To
consider the general case of loads applied at any elevation and direc­
tion, we replace the load vectors in these equations by identity matri­
ces; determination of the Green functions requires then a Fourier trans­
formation of the flexibility matrices. This necessitates evaluation
of the following integrals:

_1[D e- ikx dk and _1[k D e- ikx dk (42)211' 211'
-00 -00

with o = diag (k2 k~,-l . Each of the diagonal terms is then of the
J

form

_ 1 [e-ikX
11 - 211' -<Xlk2 _ k~ dk

J

1 -ik.x
- e J- 2fl(":"

J

1 i k.x
- e J- 2ik.

J

x > 0

x < 0 (43)
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I =__1 f 00 k e-
ikx

dk
2 2TI -00 k2 _ k~

J

1 -i k oX
- e J- 2i

x > 0

= 0 (Po V0 ) x = 0

1 ; k oX

= - 2; e J X < 0 (44)

Defining

{
-ikoX} {E: }Ex = d;ag e J = L

EX

the integrals in (42) can then be expressed as

l. fooD e- i kx dk = -l.. E K-1
2TI -00 21 Ix I

(45)

(46a)

__1 fro k D e- ikx dk = 1 x > 02TI 2i Ex
_00

0 x = 0 (46b)

,
x < 0- 2'"" E1 -x

a) In-plane line loads

For the in-plane case, the Green functions are then obtained from
Eqs. (37), (46) as

R K- l <pT R K- 1
.~ 1u { 'x EIX ! ±<px Elxlx _ 1 R x R

{uJ -2; .:':"z
(47)

-1 R
<pT R -1 <p~ JKR Elx ! <pz [Ixl KRx

in which the positive sign is chosen for x > 0, and the negative sign
for x < O. The special case x = 0 is included in the above equation
because when E~=O = I, the off-diagonal submatrix reduces to Eq. (34"),



-23-

(which is zero). The superscript R in E~ refers again to the submatrix
of Ex that corresponds to the in-plane (Rayleigh) modes.

It is important to note that the components of the vertical (unit)
load vector and the vertical displacement vector carry an implicit fac­
tor i = 1-1 (see Eq. (1)). Consideration of this factor affects the
coupling terms only; the true horizontal displacements due to vertical
loads are ~ -21 q, ER

1
I KR

l q, T, while the vertical displacements due to
x x . z -1 R T

hori zonta1 loads are +! q,z KR E x q, x .

For x = 0, the right-hand side of Eq. (47) represents the inverse
of the stiffness matrix of two Waas-Lysmer transmitting boundaries joined
at the origin of coordinates (one transmitting boundary for the right
layers, the other for the left layers.)

b) Antiplane case

Using Eqs. (38) and (46a), one obtains

(48)

in which E~ is the submatrix of Ex corresponding to the antiplane (Love)
modes. Again, the right-hand side is the inverse of two antiplane trans­
mitting boundaries when x = o.

2.6 Green'Functions in Cylindrical Coordinates

2.6.1 Preliminary definitions

Consider once more the flexibility matrices in Eqs. (37) and (38),
obtained for the plane strain cases. We define then the N x Nmatrices

{fXX}
T

Fxx = = q,x DR q,x

{fxz}
-1 T

Fxz = = k q,x KR DR q,z

{fzx}
-1 q, T = T

Fzx = = k q,z DR KR F xzx
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{fZZ }
T

Fzz = = <Pz DR <Pz

{fyy}
T (49)Fyy = = <Py DL <Py

Also
,

<Px = {¢~t} m = 1, N; t = 1, 2N

<Pz = {~~t} m = 1, N; t = 1, 2N

<Py = {~~t} m = 1, N; t = 1, N • (50) 0

The elements of the flexibility matrix are then

2N 2N
f = \' ,j,mt ,j,nt bR = \' c- ~mt ,j,nt
xz t~l 't'x 't'z t tL=l -x, x 't'z

2N mt nt R
f zz = I ~z ~z an

t=l N

(51a)

(51 b)

(51c)

(51d)

(51e)

in which

(The superscripts R, L in at' bt
wavenumbers kt = k~ or kt = k~).

due to Eqs. (32) and (34).

indicate the use of the Rayleigh/Love

The equivalence in (51b), (51c) is
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The flexibility coefficients (displacements) at the mt~ elevation
due to loads at the nth elevation are then

{

f xx

F = fO

zx

(53 )

which shall be used in the following sections.

2.6.2 Green functions for disk loads

a) Horizontal disk load:

Referring to fig. 4a, the components in cylindrical coordinates
of a uniform load q distributed over a disk of radius R is

P = q
{

COS e }
-s i: S , (54)

Using Eq. (5b)(replacing U by p) to express these functions in the
wavenumber domain, we obtain first

2n 2n {COS lle
f TllP de = q f sin lle
o 0 0

if 11 = 1

(55)

= 0 if P :j 1.

(C l = Cll=l' see Eq. (7))

n;l dp

-J1 J l0

so that (with II = 1, and J~ = dJl/dkP):

p=~ nqf>c] mdp
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q

q ~

~
R

Fig. 4

a) horizo~tal disk load
? '

(Px = 1TR-q)

b) vertical disk load
(P = 1TR2q)z

c) torsional disk load
3

(Mt = 1T~ q)

d) rocking disk load
3

(M = 1TR q). r 4
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p= q JR p Jo(kp)dp J ~ ~
o l 0 J

= q {i} f J] (kR)

If the disk load is applied at the nth elevation, the resulting displace­

ments at the mth elevation in the wavenumber domain are

IT = F P ( 57)

with F being given by Eq. (53). The displacements in the spatial domain

follow then from Eq. (5a):

U = T1 ( k Cl IT dk

Substituting (53), (56), and (57), we obtain

(58)

U = q R T] J: C1 {;:: } J](kR)dk (C1 " C""l' see Eq. (7))

zx

1 (00 1
+ ~J 0 k

(59)

Evaluation of the above expression requires the following integrals (be­

cause of the factors a~, b~ in Eqs. (51))



-28-

I = ro 1 Jo(kp) Jl(kR) dk
h J0 k2 - k~,

(60a)

(6Gb)

(60c)

These integrals are given in Table 2.

Substituting Eqs (51) into (Eq. 59), and considering the above
integrals, we obtain for the displacements at the mth interface due to
a disk load at the nth interface: (Tl is defined by Eq. (6a))

Up = qR [IN </Jmt</J n)/, ..i. JR + 1 I <pm)/, ~n)/, 1L } (cos e) (61a)
)/, =1 x x dp 32 P )/,=1 YY 3)/,

1 2N n n R N n () d L
Us :: qR [- L q>m,v </In,v 13n + L <jlm,v<jlnx_ I ] (-sin e) (61b)

p )/,=1 x x N )/,=1 Y Y dp 3)/,

(61c)

in which again the superscript R, L in the functions I
jt

refer to the
in-plane and antiplane wavenumbers k~, k~ used as arguments. Also,

dd 13 = 11 _1 I3. Note that lim I3i p exists, since lim Jl(z)/z = 1/2.
p p p~ z~

The average horizontal displacement under the disk load can also be
derived from the above expression. Since

~ 2 ~ 2
= u cos e + v sin e (62)

in which U, vare the amplitudes of u~~ Uein Eq. (61) above (i.e., omit­
ting the factors cos e, - sin e), it follows that
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= -L2 fR r.·.

2rr
uxp dp deux(average) rrR 0 J 0

(63)

. d1 3 1
S,nce ~ = 11 - P13, evaluation of the above equation requires the
integral

R 00

r ~p f
"0 0

_ 1

- R2 [
Jl(kR) fR
2 2 p J (kp) dp dk

o k - k 0 0
Sl,

f
oo Ji (kR)

--=---,.,..- dk
o k(k2 _ k2)

Sl,

(64)

We notice also that addition of (61a) and (61b) (without the factors
cos 6, -sin e) cancels the terms in 1

3
Sl," Hence

2N N
[\' ¢mQ, ¢nQ, 1R + \' ¢mQ, et>nQ, 1L ]\ (65)

ux(average) = q Q,~l x x 3Sl, Sl,~l y y 3Sl,

p=R
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b) Vertical disk load

The load vector in the spatial domain is (Fig. 4b)

O~p~R (66)

Using Eq. (5b) to express this vector in the wavenumber domain, we
obtain

f
OO f2'IT

P = a pC . T P de dp
]loo ]1]1

for ]1 = a ( 67)

The displacements at the mth elevation due to a vertical disk load
at the nth el evation are then

U = ToJ: k Co U dk , U= FP (68)

Substituting (53) and (67), we obtain

U = qR T [C r:xztJl (kR) dk
000

-f Jzz

= qR T Joo
{fxZ J

b
(kp ) J1(kR)t

dk (69)
0

0 f zz Jo (kP) Jo(kR)J
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Substituting Eqs. (51) into Eq. (69) and considering Eqs,. (60)~ we

obtain

u = 0e
2N

u = qR \' ,./,m9" ,./,n9" rR
z L 'l'z 'l'z 1 0

9,,=1 N

The average vertical displacement under the disk load is

(70a)

(lOb)

(70c)

_ 1
uz(average) - rrR2 f

R f27f
o 0 Uzp dp de

2 JR= :z u pdp
R 0 z

and in view of Eqs. (64, 70c)

(71)

2N
uz(average) = 2~ L

9,,=1

c) Torsional disk load

(72)

The steps are the same as for the previous two cases; it suffices
then to give the essential results only.

Load vector in spatial domain (Fig. 4c ):

p=qQ{~t
R 0 J

Load vector in wavenumber domain (~ = 0):

(73)

(74 )
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Displacement integral;

Displacements:

u = 0
p

(75)

(76a)

(76b)

(76c)

*in which Il~ is the same as Il~' but interchanging p by R (see Table 2).

d) Rocking (moment) disk load:

Following the same steps as before, we obtain the following results:

Load vector in spatial domain (Fig. 4d );

p " { ~} q ~ cos e

Load vector in wavenumber domain: (~= 1)

Displacement integral

(77)

(78)

U" q R T1 J: C1 {~:~z} [~R J1(kR) - JD(kR)] dk (79)

zz
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Displacements:

U = R [2~ ¢om~ <j50n.g,(_ .£ rR _ 1 r*R + 1..- rR + rR )}k J (cos e)
p q ~£l x z R H p 1~ pR 3~ 4~ 9,

2N
= qR [I ¢m~ ¢n~ .!L (I*R - .£ IR )/k] (cos e)

~=l x z dp· 1t R 3~ ~

(20)

2.6.3 Green functions for ring loads

These functions can be obtained from the previous results for
disk loads by simple algebraic manipulations. If G(p"r) represents
the Green function at a circle having radius p due to a unit ring load
with radius r, then the Green functions for disk loads having radius R
follow from the convolution integral

R
g{p ,R) = f0 G(p ,r) q(r)dr (81)

in which q(r) is the intensity of the ring load. Taking derivative
with respect to R. we obtain

Hence

a = G(p.R) q(R)

(
_ 1 ag(Pt R)

G p.R) - CiTRT aR

(82)

(83)

The Green functions for ring loads are then simply the deriva­
tive with respect to R of the Green functions for disk loads. Since
this operation is straightforward. only the final results will be
given below.



I
-R
I

-35-

1

x
R

Fi g. 5

a) horizontal ring load
(Px = 21TR)

b) vertical ring load
(P = 21TR)z

c) torsional ring load
2(Mt = 21TR )

d) rocking ring load
(M r = 1TR2)
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a) Hori zonta1 ri ng load. (Fi g. Sa) :

b) Vertical ring load (Fig. Sb ):

(85a)

(85b)

(85c)

c) Torsional ring load (Fig. 5c ) :

u = 0 (86a)p

N
~m~ ~n~(R IL _ £ IL + I*L)u = I (86b)e

~=l
y y 2~ R 3~ 1~

u = 0z (86c)
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d) Rocking (moment) ring load (Fig. 5d ) :

2N
,¢mQ, ¢n.Q. d (£ IR _ *R

R I~~)/kQ,]u = [ L I l Q, - (cos e) (8la)p
9.= 1 Xt crp .R 3,(1,

2N
¢m,Q, ¢n,Q, 1 2 R *R Rue= [ L (R I3 ,Q, - Il,Q, - R I 2,Q,)/k,Q,] (-sin e) (87b)

9.=1 x z P

2N
¢mJ/, ¢n,Q, (R rR _.£ rR + rR ) ]u = [ I (cos e) (87c)z z z 2,Q, R 3,Q, l,Q,,Q,=l

2.6.4 Green functions for point loads

The Green functions for point loads can be obtained from those

for disk loads by considering the limit when R tends to zero.

In the case of loads with intensity p, the corresponding trac­

tions are
(horizontal, vertical)

The limiting expressions for the displacements when R + a are
given below.

a) Horizontal point load:

p
u = --z 4i

(cos e) (88a,b,c)

in which H~2)(kP) are second Hankel functions of jth order.
J
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b) Vertical point load:

Up = If 2N
¢m~ ¢n~ H(2)(kR )I (89a)

t=l
x z 1 .Q. P

ue= o. (8gb)

0 2N
¢m.Q. ¢~.Q. H(2) (k~ p)uz = -'. l (8gc)

41 .Q.=l z 0

2.7 Green Functions for Internal Stresses

In applications of the Green function formalism to boundary value
problems, particularly when using the Boundary Integral Method, it may
be necessary to have expressions for the internal stresses induced by
the loadings considered at arbitrary points in the soil mass.

Since the Green functions presented in this work have been derived
using a discrete formulation, the internal stresses balance the external
loads only in a finite element sense. Within the layers, there are body
forces resulting from the linearization of the displacement field and from
inertia forces that are balanced by consistent stresses applied at the
layer interfaces. By comparison, in a finite element solution, there are
body forces acting over the surface (volume) of the elements that are equil­
ibrated by consistent nodal loads. The following sections present then
expressions for these consistent loads and stresses.

2.7.1 Plane strain cases

a) Stresses due to antiplane line loads

We begin with the antiplane case, since it is the simplest,
for it involves only one displacement component. In this case, two stress
components are of interest, i.e., the shearing stresses Yxy' Yyz in ver­
tical and horizontal planes.
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Vertical·planes:

With reference to Fig. 6, the
with abscissa x is

strain y in a vertical planexy

(90)

and in particular, the shearing strains at the elevation of the interfaces,
arranged as a matrix, are

r = fy } = - a.. CL li> E
L

K-1 li>yT]
xy l xy interfaces ax L2i y IXI L

(91)

which is obtained from the Green matrix for antiplane line loads, eq. (48).

But

dE Ix I
i [L KL ifx > 0dX - -

Ix 1

i L KL if x < 0 (92)= E,xl

Hence
(93)

with the negative sign being associated with positive values of x and
viceversa. We notice that the strains (and stresses) are discontinuous
at x = O. If the soil to the right of the section x considered is re­
moved, it becomes then necessary to apply consistent antiplane line loads
to the section to the left in order to preserve equilibrium with the in­
ternal stresses. The consistent nodal loads applied at the nodes defined
by the intersection of the interfaces and the vertical plane considered
can be obtained as follows:

Let y = Yxy be the strain within the mth layers, and Ym' Ym+l be the
strains at the top and bottom of this layer. The shear modulus and thick­
ness of the layer are Gm and hm respectively. Since the strains ~xy vary
linearly within the layer (u and dU laz vary linearly with z), theny y
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= (~ 1-~ )~~lJ (94)

The consistent nodal loads in equi1 ibrium with the stresses L = Gmy are then

(95)

which constitutes the contribution of the mth layer to the consistent nodal
loads. Notice that Am is the submatrix of the matrix ~ shown in table 1
that corresponds to the antiplane degrees of freedom. If all layers to the
right of section x are removed, then the consistent nodal loads are obtained
overlapping the contributions of all layers. This implies overlapping Am
(i.e., Ay = {Am}). The result is

- 1. L T
Qy = Ayf = + "2 Ay iPy EIxI iPy

(96)

since K
L
- l E'L - EL K- l

Ix I - Ix I L
Waas-Lysmer antiplane transmitting
the soil removed).

Observe that at x=O, E
JxJ

=
also the orthonormality condltlon

The matrix R = i Ay iPy KL iP~l is the

boundary (the dynamic stiffness matrix of

I (the identity matriX). Considering
T

iPy Ay iPy = I, we woul d have

if

if

(97a)

(97b)
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mt'--~-------......,I

h

m+l '-----If---------
~YZ

Stresses, antiplane case

Fig. 6

externa1
lo'ad

1
"""2

Internal consistent loads at x = 0

Fig. 7
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Thus~ the stresses are discontinuous~ and the difference ~ I - (- t I) = I
balances the external loads applied (Fig. 7).

Horizontal planes

With reference to Fig. 6 and equation (9)~ the stresses T = T z (in
- - y

the wavenumber domain1) induced by antiplane displacements v = uyare

(98)

with 1)n given by equation (,11)~ considering only the antiplane degrees
of freedom (i.e., 1)n is a 4 x 4 matrix). From equation (38)~ the displace­
ments at the interfaces m~ m+l due to a load at n can be written as (kj/, =k~)

Hence

in which

C:J =
(99)

(100)

(101)
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Taking an inverse Fourier transformation, we obtain then

f
Tm

~ =
N f~mt } ·kL Ixl

l\nt~~+l,t ( 1
-1

I _1_ epn,q,)e ,q, +
l-Tm+1J ,q,=l 2T kf y

~ y

rt

}
N

o(x)~ ~;+l,t ~~t+ I
,q,=l

N {~~t } a e-ik~lxl N rt

}

y n,q,
= I ~,q, <jJm+l,,q, n,q,

+ cS(x)A I ep~+l,,q, epy
(102)

,q,=l m ,q,=l
y

in which
1 epn,q,a =-- (103 )n,q, 2i kL Y

J)"

is the participation factor of the J)"th mode for an antiplane line load
applied at the nth interface. These stresses are IIcontinuous ll at the inter­
faces in the sense that they may be computed either with the layer above,
or the layer below the interface of interest. This can be verified by over­
lapping the stress components for all layers, using for this purpose equa­
tion (102). The first summation would then cancel, since each term in ,q, is
of the form Kepy = 0, which is zero, because the modes satisfy the quadratic
eigenvalue problem referred to earlier in this report. The second term

would be 8(X)Ay~y~~ = 8(x)I, since ~~Ay~y = I. Thus, the only singularity
occurs at the location of the line loads.

b) Stresses duetoin~plane line loads

Although the developments are somewhat more complicated than for the
antiplane case because of the increase in the number of stress components,
the generalization is straightforward, so that only the essential details
need be presented. (Compare also with previous section.)
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Vertical plane (£~..:-_..?.J,:
au

(J = (A + 2G)~ +x· oX

au au
TXZ = G(3; + ax

Z
)

or in matrix form

(1 04a)

(104b)

{::J{[A+2G G] -:x + [G. 1,q {:: }
Since both ux , Uz vary linearly across the mth layer,

(105)

EX} 2 U ' sUm + (1 - s rum+1
O<;~<l (106)
~

z}
or ,r l-s

1rm tu
s l-s J Um+l J (107)

and

r -1

-1}{ ~:+1 }1- u = 1 (108)az hm

The consistent nodla1 loads in equilibrium with these stresses are then

l-s
1-t.:

(109 )

or using (105, 107, 108) with A = Am' G = Gm (moduli for mth layer, and

integrati ng eq. (l 09):

J ~ } = (A 1- + 0 ) {Um
}

l
Q m ax m

m+1 ~+1

(11 0)
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in which Am is again given in Table 1, with the antiplane degrees of free­
dom deleted (i.e., considering only rows/columns 1,3,4, 6) and Urn are
the actual displacements at the mth interface. Also, the matrix Dm is

1D =m "2

o

G

o

G

A

o

A

o

o

-G

o

-G

-A

o

-A

o (111 )

Now, from equation (47), and considering the comment concerning the
implicit factor i = yCT on page 21, the actual displacements Urn at a given
interface m due to line loads applied at the nth interface are

(112)

in which the choice of signs depends on whether x > 0 or x < O. Also,the
participation factor ani (for horizontal loads) and Sni (for vertical
loads) are given by

(113a)

(1l3b)

Equations (112) and (113) may be substituted into eq. (110) to evaluate the
contribution of the mth layer to the consistent internal loads. Considering
now the special case in which all layers to the right of section x have
been removed, we can write the consistent nodal load vector for the complete
section as

(114 )
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in which Ax' Az have the same meaning as in section 2.4. It should be
noted that Qz ' Uz in the above expression are the actual vertical loads
and displacements, i.e., the i-factor has been removed. Also~ Dxz and Dzx
corresponds to an overlapping of the Dm - matrices (eq. (111)) for each
layer, and a rearrangement of columns/rows by degrees of freedom rather than
by interface. (Note that Dxx f D~z)' On the other hand, equation (47)
transforms, after removal of the implicit factor i =I~ referred to
above, into

{
4x 1 {~x}
Uz t ir :;:- i oz

or briefly,

(115)

u - 1 ~ R -1 ~T

- 2i E1xl KR ~

1 ~ R -1 ~TU = 2T <P Elxl KR

x > 0

x < 0

(116a)

(l16b)

in which

(117)

Combining (114) and (116), one obtains for x > 0

Q :: ii { -i A <P E1xl;T + 0 ~ EjxIKR1 ;T}

:: - R U

}
-1 R ~T

- 0 ~KR Elxl~

R = i A ~ K ~-1
R - 0 (118)

and for x < 0,

Q :: ii {i A ; KR ;-1

:: L U + D (119)
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h
"0x

Stresses, in plane case

Fig. 8
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x=o 1

t external
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t
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Internal consistent loads at x=O
(horizontal load)

Fig. 9
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In equations (118, 119) the expressions for R, L give the stiffness
matrices for the Waas-Lysmer transmitting boundaries corresponding to the
right and left layered regions that stretch from x > 0 to 00, or from
x < 0 to - 00, respectively. The matrix L follows trivially from the matrix
R by changing the sign of the terms coupling the horizontal and vertical
degrees of freedom. (See also Waas, 1972).

Horizontal planes (Fig. 8 )

The stresses are obtained again by a Fourier transformation of the
stress components in the wavenumber domain, which in turn are given by the
product of the layer stiffness matrix times the layer displacements that
follow from equation (37}. The only difference with the antiplane case is
the presence of the factor k in the coupl ing terms, that may be changed into
a factor 11k ~ia equation (32). The result of the Fourier transformation
is (compare with eq. (102))

Tm c/>~R,

i om
mR,

-ik~ x2N C/>Z
(?9-) x > 0 (120)= I ~9-

m+1J e + S
"Tm+l 9-=1 C/>X n9- n

-i O"m+1
m+ll

C/>Z '

(121 a)
2N

Sn = o(x) Am I
9-=1

with xm9- = ~(k~) given by equation (11), with antiplane degrees of free­
dom deleted. Also, the choice of participation factors an9- or Sn9-' which
are given by eqution (113)" depends on whether a horizontal or vertical load
is considered. The additional singulatit~ter.m Sn is given by

o
epm,9- .
x

o
for horizontal loads, and

2N
S = 80<} A I
n . m 9-=1

for vertical loads.

(121 b)
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To obtain the stresses for x <; 0, one simply reverses the sign of (5

for horizontal loads, or the sign of T for vertical loads.

Again, these stresses are II continuous ll at the interfaces, since over­
lapping cancels the first summation in eq. (120); (satisfies eigenvalue
problem). The singularity terms become

is = 0

T = 0

is = o(x) Az ~z ~~ = o(x) I

for horizontal loads

} for vertical loads

(122a)

(122b)

The above relatio~ships can be proven via the orthogonality condition
specified by Eq. (22a): CAlso s,ee Appendix)

(123 )

or K TA +T A K+TB =K
R ~x x ~x ~z z ~z R ~z xz ~x R (124 )

-1Multiplying from the left by ~x KR ' we obtain

(125)

But in view of equation (34), the second term cancels. Hence

(126 )

implying that ~x ~T A = Ix x

Also, the relationship

A ,r..T :::: I
z ~z '¥z

or

(127)

(128)
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can be proven by multiplying eq. (124) by KR' ~~ from the right, and pro­
ceding as above. It follows that the only singularities occur under the
line 10ads.(Fig. 9).

2.7.2 Cylindrical case

While the formulation of the stresses in cylindrical coordinates gen­
erally parallels that of the two plane-strain cases, the resulting expres=
sions are more involved, both formally as well as computationally. However,
since the concept remains the same, only a sketch of the developments is
necessary.

Vertical (cylindrical) plane (Fi~9-.l

-G

(129)

Both the stress and displacement vectors must be multiplied by T (eqs.
]l

(6 a, 6b)) in order to incorporate the variation with the azimuth.

Considering again a linear variation of the displacements across a
1ayer, that is,

(130)

one obtains for the consistent nodal loads

{
Qm t= (A .l... + D + 1 E ) [U

m
]

Q J m dP m p m U
m+l m+l

in which Am is again given in table 1 and Dm, Em are the matrices

(131 )
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Stresses, Cylindrical coordinates
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G

21.. -2lJA

2].lG -2G

hE =-m 6
A -].lA

].lC1 -G ,"

-h

G -G

(133)

(134)

Note that eq. (132) differs from eq. (111) only in that two rows/columns
of zeroes have been added.

Equation (131) may then be used to compute the stresses with Urn (and
Um+l ) given by the equations for the Green functions presented in section
2.6)' but omitting the factors cos 1-18 ) -sin 1-18 etc.

Again) in the particular case in which all the soil beyond the section
p has been removed, the consistent nodal load vector will be given by an
expression of the form (compare with eq. (131)

Q = (A JL + 0 + 1 E) U
C3p p

with A, 0, E being the overlapped matrices for the whole soil profile.
Hence if U is a Green matrix,

)

(135)

(136)with

which relates

Q = (A Uf U-l + 0 + 1 E) U
p

U
I

= l U
C3p

consistent nodal loads (per unit circle length) to displace-
ments, It follows that
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I -1 1R = - p(A U U + 0 + - E)p
(137)

is the stiffness matrix of the transmitting boundary with radius p relat­
ing nodal loads/radian applied on the boundary (having the variation with
azimuth implied by T ) with corresponding displacements there. While in

i.l
principle any (linearly independent) combination of solutions having common
Fourier index i.l could be used to form the Green matrix (p > R!), it is
best to use the solutions for point loads and moments. These ideas will
not, however, be pursued here.

Horizontal planes

While in the plane strain cases the stre~~es are obtained by Fourier­
transformation of the corresponding expressions in the wave-number domain,
in the cylindrical case they follow from Hankel transformations, which are
inherently more involved. Nevertheless, the integrations can still be con­
carried out in closed form.

With reference to equations (4) through (11), the stresses at elevation
m, m+l are

{ s Jm 00

= I
.-Sm+ i.l=O

(138)

in which Urn' Um+l are the displacement vectors in the wave-number domain at
these elevations. The actual displacements (e.g., 5a repeated) are

U =m

00

L
i.l=O k C U dki.l m (139)

and a similar expression for Um+1.

On the other hand, with reference to equations (51), (52) and (53), U
m

(and Um+,) can be written as: (The equivalent forms are due to equations
(51b,c)
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. 3N
anQ, = f(k,R) I aJI,

JI,=l

(140)

for radial-tangential loads, and

3N 1~~JI, ) 3N
U = f(k,R) I at <p'~,Q, a JI, = f(k,R) I,

m JI,=l tn.Q, n JI,-=.
¢z

for vertical-torsional loads.

(141 )

In these equations, f(k,R) accounts for the variation of the load with
the wavenumber k, and anJl, is the "participation factor" of the JI,th mode for
a load applied at the nth interface. The modes ¢~.Q" ¢~JI" ¢~JI, used above
correspond to a generalization of equation (50) in the following sense:

a) for 1 ~ JI, ~ 2N

m.Q, = 0
¢y

R
kJl, = k.Q,

b) for 2N+1 ~ JI, ~ 3N

¢mJl, = ¢mJ/, = 0
x z

kJl, = ki

("Rayleigh modes")

(U Love modes")
(142)

)

All that has been done then in (140), (141) is to combine Rayleigh and
Love modes into a single summation, shifting the index of the latter by 2N.
These equations can also be expressed more compactly as

3N
Urn = f(k,R) I aJl, QJI, ~mn ann

JI,=l N N

3N
= f(k,R) .Q,~1 a.Q, Q~l ~m.Q, an.Q,

(143a)

(143b)
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in which

(144 )

corresponds to equation (140), and

(145)

is used for equation (141). Also

(146)

Substituting equation (143a) into (139), interchanging summation over ~

with integration over k, we obtain

(147 )

in which

(148)

For example, equations (60), giving the Green functions for a horizontal
disk load can be written in the compact form (147), with J1=1 being the only
non-zero term in the summation over the Fourier index, and



= t ~~~ .. ·
lqR <p~.Q, ,

H =.Q,

d
dp 13.Q,

1
P 13,Q,
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1
P 13.Q,

d
d:p 13,Q,

1 < ~ < 2N

2N+l < .Q, < 3N

Alternatively, when substituting equation (143b) into (139), we obtain

00 3N

~~ {fa k C~ Q~l a.Q, f(k,R)dk}U = L T L <Pm)/,
m ~=O ~ .Q,=l

C0 3N
:: I T I an~ H.Q, iPm.Q,

]1=0 ).l Q.=l

in which

(149)

(150)

Note that while H.Q, F H.Q,' the net summation is the same.

Returning now to the problem of determining the stresses in horizontal
planes, let us consider once more equation (11):

2 ?
K = A k + B k + G - w'""M
-~ m m m m (151)

Because of the special structure of the matrices involved (table 1),
the following can be established:
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A ft QJ=t QJ Amm

8m r t~ k r }BmkQ,-1 JQQ, QQ,

.,

"2 IQQ,
Qt}= r~ Q~}

2(Gm - W Mm)

t
(Gm - W Mm)

Hence

aQ, Km r Q} a r 1{k2 A +~ B + G - b }
Q m kQ, m m m

Q,).

t t{k2 A + k B + G - w2M }-" aQ, +-. J Q,1ll Q,m m m
QQ,

+ r Q~} {Am + ~~ Bm}

(l52a)

(152b)

(152c)

(l53)

The sign =: indicates not an equality, but an equivalence (because of
(152b); however, it becomes an equality after summation over Q" for the
same reason that (143a,b) are equal.

Substituting then equations (143a,b) into equation (138), and considering
equations (148), (153), we obtain

{

S "m I 00

r - I
-5 j ]1=0

m+l

C }f(k,R)dk1
]1 QQ, J
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in which Km~ = ~(k~) = Am ki + Bmk~ + Gm - w
2Mmo Defining the modal stres­

ses

The interface stresses are then
00 3N ~

S = I T I CI.. ~ (H~ Sm~ + L1 Sm~)
m 11=0 ]1 Q=l n

with the shorthand

L = __1 foo k C Qn f(k,R)dk
JI, k2 0 11 !V

~

(156)

(157 )

(158)

Example·

Consider again the case of a horizontal disk load; we would have then

11 = 1 f(k,R) = Jl (kR)/k

J l (kR)dk

with Jl = Jl(k~P). Integration gives
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1 . 1 r -JL =- 2R 19- k2
9-

r
1

t_ 1
R 1 -1- k2
2p2

-kf J9-

o ~ p < R

It remains to show that when the above expressions are introduced into
(154), (157) the correct expressions for the stresses are obtained. For
this purpose, we overlap the stresses at each interface to obtain the ex­
ternal forces. From equation (154), the overlapped stress vector will con­
tain terms of the form K~9-' which will cancel because they satisfy t~e eigen­
value equation. The only terms that will survive are those in {I"t Sm9-} ;
of these, we see from equation (154) that only the term - (G - <.}M)~9- will
contribute, since the one in K~~ cancels for the same reason as above. The
load vector will then be given by

3N
P = - I

9-=1 •
•

2
- w M)~~

As before, we can rearrange the components by degree of freedom rather
than by interface. This would give, after consideration of the structure
of the matrices G, M, L:

!
(cOS e)

P = -q f(p) (-sine)

(cos e)

in which f(p) = ~

_ R
-27

p

use (+) sign

use (-) sign
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(The factor K- 2 comes from the term l/kI in front of L~s and ~~, ~; are
from the participation factors).

But from equation (34), the third row cancels. Also, we shall prove that
the first two rows are equal to -21 (twice the identity matrix) if p ~ R,
and zero if ~ > R. (because of the sign change). Hence

{

(cos e) I}
P = q (-s~ne) I

which is the correct result (compare with equation (54).

To prove the relationships used above, consider once more the orthogon­
ality condition expressed by equation (22b): (Also see Appendix)

(159 )

2 2in which Cx = Gx - w Mx' Cz = Gz - w Mz. Expanding this equation, we obtain:

(160)

r~ultiplying by K-~ .~~ frontheright and by KR
l from the left, we obtain

~~ CxtPx KR2tP;+tP~ Bxz ~z KRltP~ + KRltP~ Cz tPz K
R
- l ,,,T = _ n,T'J!x 'J!x (161)

But from equation (34) the second and third terms cancel, Thus, (161)
reduces to

T -1
Multiplying by ~x from the left, and then by (tPx ~x) (barring
a singular square matrix ~ ~T), we obtainx x

-2 T - Iex ~x KR ~x =
and

K-2 T c~l!Px R tPx - -

(162)

the case of

(163 )

(164 )
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In a similar way, the expression

1> K-2 1>T = _ C-1
z R z z (165 )

can be demonstrated from equation (160) with a factor 1>z KR
2 from the left,

a factor KR
l from the right, and proceding as before. Finally, from equa­

tion (22b) we can also find for the antip1ane case

1>T C 1> = - K2 (166)y y y L

In this case, 1>y is a square, non-singular matrix. Hence

and

C = - 1>-T K2 1>-1
Y Y L y

1> K-2 ¢ T = _ C- 1
Y L Y Y

(167)

(168)

In order to apply equation (157) (or (154)) to the computation of the
stresses, it is necessary to express the displacements (Green functions)
as in equation (147). For the various cases considered before, the matrices

H2,' L2, (eqs. (148), (158)) have the structure: (However, see note below.)

H =J!,

dap fJi,

1!.. f 9,
p

(169)

(170)

dap9
llg
p

L = I
9, k2

9" -k gJ!,

in which f = f (k p), g =g(p R) (Compare with equation (7)). TheseJ!, J!, Q, )

functions are listed in table 3, together with other relevant data.

(Note: The matrices H9,' LJ!, are not symmetric if QJ!, is defined by eq. (145)
(vertical loads). However, in this case the participation factor of the
antiplane modes (J!, > 2N) is zero; hence, no error arises from using a sym-
metric form, provided it is properly defined.)
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3 - EXAMPLE: HORIZONTAL AND VERTICAL DISK LOADS

The discrete method described in the preceding section has been
implemented in a computer program that may be used to evaluate the Green
functions for an arbitrarily layered stratum. In order to verify the
theory as well as the program, comparisons were performed for some par­
ticular cases with the results obtained with the lIexactli solution (i.e.,
formulating the functions with the continuum theory in the wavenumber
domain, and integrating numerically). This section presents the results
of some of these comparisons.

Consider the case of a homogeneous stratum, subjected to a horizon­
tal or vertical disk load at its free surface. The stratum is then dis­
cretized with N sub1ayers, following criteria similar to those applica­
ble to finite elements. For the case at hand, the calculations were
repeated for three discretization schemes: N = 4, N = 6, and N = 12
(Fig. 11), and covering in each case a range of frequencies.

Figure 12 presents the average horizontal displacement under the
load as a function of liN. Fig. 13 depicts the corresponding data for
a vertical load. These average displacements approximate closely the
lateral or vertical compliance of a rigid disk having the same radius
and location as the load. The three data points denoted by an (x) cor­
respond ~o the results obtained with the discrete algorithm, while the
point (0) on the vertical axis was obtained with the lIexactli solution
scheme. It may be observed that the error introduced as a result of
discretizing the displacement field is small, particularly in the case
of 12 layers. Notice also that the discretization increases the stiff­
ness (and reduces the compliance) of the system, because of the con­
straints on the displacement field.

Figures 14 through 19 show the Green functions tn term~ of
the dimensionless frequency fo = fH/Cs ' in which f is the circular fre­
quency (in HZ), H is the depth of the stratum, and Cs is the shear wave
velocity). Again, there is a good agreement between the discrete and

"exactll solutions, particularly for the imaginary part, as well as at
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Re (CHH ) , f = O.

1.

_. x_.
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some distance from the load. It can also be observed that the dis­
crete solution begins diverging when the frequency exceeds the limit
at which waves with wavelengths shorter than approximately 4h (four
times the sublayer thickness) become dominant. In the particular case
considered here, this frequency may be estimated as follows.

Considering plane shear waves with frequency f and wavelength A,
we have

fA = Cs
in which

Thus

and from here

A 2:. 4h = 4 ~

4H Cs
N~T

For N=4, this gives a limiting dimensionless frequencyfo =1.

While the execution times of the programs implementing the dis­
crete and Uexact" solutions are comparable in the simple case of a
homogeneous stratum that was considered in the above examples, the
advantage becomes clearly evident in the case of a layered soil, and
when the Green functions are required at many different points. The
effort associated with evaluating the Green functions with the discrete
algorithms is only a function of the number of discrete layers, whether
or not they have identical properties; in the "exact" scheme, on the
other hand, the effort increases significantly, and difficulties arise
in the numerical evaluation of the transforms, because of. the greater
waviness of the kernels. Thus, the discrete scheme is particularly
attractive in the multilayered situation and/or when loads are speci­
fied at multiple elevations.
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APPENDIX

Current vs. Waas'quadratic eigenvalue problem:

In the original work of Waas (1972), the displacement vector in
Cartesian coordinates did not include the factor i =I~ in front of
the vertical component, which was in addition taken positive downward.
Thus, the quadratic eigenvalue problem corresponding to Eq. (14) had
in Waas l work the form

(A k2 + i B k + C) V = a
~ ~ ~

(171)

with symmetric matrices A =A, C =C, and an anti symmetric (skew sym-
~ ~

metric) matrix B with the structure

B = J
-Bxz }

T
l Bxz

Also

V = rx
} = J ·x }

Vz ( i¢z

(172)

(173 )

The modal shapes V were shown by Waas to satisfy the orthogonality
relationship

(174)

which was also used to normalize the eigenvectors. The diagonal matrix
K is identical to KR in the main text. The su~script will be dropped
for notation simplicity. The adjoined vector V above is defined as

V = (175)
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Substituting (173), (175) into (174), we obtain

that is,

K VT A V K + VT e V - (K VT A V K + VT e V) = 2K2
x x x z z z z z z x x x

or using (173) ,

K l1T A 11 K-l1T e T T 2K2
z l1z + (K l1z Az l1z K - l1x ex l1x) =x x x z

(176)

(177)

(178 )

which is Waas' orthogonality condition in the current notation. On the
other hand, the orthogonality condition expressed by Eg. (22) (consid­
ering the in-plane problem only, since the antiplane is trivial) is

(179)

or in full

l1T) rx
t rx

} =Kz
BT AzJ'· l1zKxz

rx Bxztfx 1=_K311~)
Cz.J ~zK J

(l80a)

(180b)

That is,

Kl1 e 11 +Kl1T B l1K+l1T e l1K=-K3
x x x x xz z z z z

(18la)

(18lb)
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Multiplying the first equation by Kfrom the right, followed by a
transposition, and the second by K-1 from the right, we obtain

(182a)

(182b)

Alternatively, if (18la) is multiplied by K from the left and trans­
posed, and (18lb) is multiplied by K- l from the left, we obtain

~T C ~ + ~T B ~ K+ K-1 ~T C ~ K= _K2
x x x x xz z z z z

On the other hand, the eigenvalue Eqo (20a) implies

A ~ K2 + C ~ + B ~ K = ax x x x xz z

(183a)

(l83b)

(l84a)

(184b)

Multiplying (184a) by ~~ from the left and subtracting from (183a), we
obtain

(185 )

Alternatively, multiplying (184b) by K- l from the right, by ~~ from the
left, transposing and subtracting from (182a)

K~T A ~ K _ ~T C ~ = K2
x x x x z z (186 )

Addition of (185) and (186) yields then Eq. (177); this proves the equiv­
alence of Waas' orthonormality condition with the one employed in this

report.
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It remains to prove the other useful relationships that have been used
throughout this report.

Consider the first orthogonality condition in Eq. (179):

yT AZ = K (187)

If the soil has damping, then all wavenumbers are non-zero, and the in­
verse of Kexists. Thus

Z-l A-1 y-T = K-l

and
A-1 = Z K-l y-T

But
JAx 'lA-. -
l B

T
AzJxz

and r
1 \

A -1 =
.:-1 gT A-1 A-1tz xz x z )

Also, the right-hand side of Eq. (189) is in expanded form:

(188 )

(189)

(190)

(191)

{

~x ~~
~T}

Z ·T
K~<Il z x

(192)

Comparison of (191) and (192) yields then

A- l = ~ ~Tx x x

A-1 = ~ ~Tz z z

A- l BT A- l = -~ K ~T

J

z xz x z x

0 = ~ K-1 ~T
x z

(193)
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An analogous operation with the second orthogonality condition

yT C z = _K3

results in the following expression:

(194 )

J
-1C .
x

l
\J? K-

3
<I>T )x z

<I> K-2 q,T
z z

This implies

C~l = - <p K-2 <pT
x x

C-1 = - <p K-2 <pT
z z z

-1 -1 K-3 <pTCx Bxz C z= <Px z

0 = <Pz
K-1 \J?T

x

1
(195)

Equations (193) and (195) give then the relationships:

A q, <I>T = Ix x x
A q, q,T = Iz Z I

Ax <I>X K <I>T A = ~ BxzZ z

(196 )
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