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Abétréct‘

This report presents an explicit, closed-form solution for the
Green functions (displacements due to unit Toads) corresponding to
dynamic Toads acting on (or within) layered strata. These functions
embody all the essential mechanical properties of the medium, and can
be used to derive solutions to problems of elastodynamics, such as
scattering of waves by rigid inclusions, soil-structure interaction,
seismic sources, etc. The solution is based on a discretization of
the medium in the direction of layering, which results in a formula-
tion yielding algebraic expressions whose integral transforms can
readily be evaluated. The advantages of the procedure are: a) the
speed and accuracy with which the functions can be evaluated (no numer-
ical integration necessary); b) the potential application to problems
of elastodynamics solved by the Boundary Integral Method, and c) the
possibility of comparing and verifying numerical integral solutions
implemented in computer codes.

The technique presented in this report is based on an Inversion
of the Descent of Dimensions: that is, on a formulation of the solution
to Toads in the three-dimensional space using the solutions to the two-
dimensional problems of horizontal, vertical and antiplane 1ine loads.
Some of the resulting expressions are similar to recent solutions re-
ported by Tajimi (1980) and by Waas (1980), whose contributions came
to the author's attention at the time this work was being completed.

Section 2 of this report presents the theory in detail, while sec-
tion 3 is devoted to examples of application and comparison.
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1 - INTRODUCTION

Interest in the solution to elastodynamic problems of continua
subjected to static and dynamic Toads is not new. as evidenced by the
well-known works of Kelvin (1848), Boussinesq (1878), Cerruti (1882),
Lamb (1904), Mindlin (1936); and others. While these solutions have
some theoretical appeal in themselves, they are really more important
as tools in the solution of the involved boundary value problems aris-
ing in seismology and geomechanics. Despite the considerable work that
has been done up to this date, however, the solutions available so far
are restricted to solids of relatively simple geometry, such as full
spaces, halfspaces, and homogeneous strata. The complexities intro-
duced by Tayering are so formidable that only integral formulations
that need to be evaluated numericaliy (Harkreider, 1964) are currently
available. These complexities are cbviated in this work by resorting
to a discrete formulation, which is based on a linearization of the
displacement field in the direction of layering. This technique has
the advantage that the Green functions in the wave-number domain are
algebraic rather than transcendental. Thus, the Hankel transforms re-
quired for an evaluation of the Green functions in the spatial domain
can readily be computed in closed form.

2. THEORETICAL DERIVATION

2.1 Displacements and Stresses: Spatial vs. Wave-number Domain

The determination of the response of a soil deposit to dynamic
loads, caused either by a seismic excitation or by prescribed forces at
some Tocation in the soil mass, falls mathematically into the area of
wave-propagation theory. The formalism to study the propagation of
waves in layered media was presented by Thomson (1959) and Haskell (1953)
more than 25 years ago, and it is based on the use of transfer matrices
in the frequency - wave-number domain. The solution technique for arbi-
trary loadings necessitates resolving the loads in terms of their tempor-
al and spatial Fourier transforms, assuming them to be harmonic in time '
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and space. This corresponds formally to the use of the method of separa-
tion of variables to find solutions to the wave equation. Closed-form
solutions are then found for simple cases by contour integration, while
numerical solutions are needed for arbitrarily layered soils. The de-
tails of the procedures are well known, and need not be repeated here.

The first step in the computation for dynamic locads is then to find
the harmonic displacements at the layer interfaces due to unit harmonic
loads. In the transfer matrix approach, the (harmonic) displacements
and internal stresses at a given interface define the state vector, which
in turn is related through the transfer matrix to the state vectors at
neighboring interfaces. '

An alternative method of analysis for layered soils is the stiffness
matrix approach presented by Kausel and Roesset (1981). In this proced-
ure, the external loads applied at the Tayer interfaces are related to
the displacements at these locations through stiffness matrices which
are functions of both frequency and wavenumber. These stiffness matrices
can be used and understood very much like those in structural analysis:
in fact, standard techniques, such as substructuring, condensation, simul-
taneous solutions for multiple loadings, etc. are also applicable in this
situation.

While the stiffness matrices presented in the above reference are
valid for arbitrary layer thicknesses, freguency of excitation and wave-
number, their application is restricted either to the closed form solu-
tion of problems involving only simple geometries, or to numerical solu-
tions for multilayered soils.

The formulation is intrinsically inefficient, because the transcen-
dental functions which appear as arguments of the matrices makes the
closed form evaluation of the integral transforms required for the analy-
sisintractable in the general case.

If the layer thicknesses are small as compared to the wavelengths
of interest (or if a finite layer is subdivided into several thin layers),
it is possible to linearize the transcendental functions which govern
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the displacements in the direction of layering. This procedure was
first proposed by Lysmer and Waas (1972) and later generalized by Waas
(1972) and Kausel (1974), although not in the context considered here,
The method was also used by Drake (1972), to study alluvial valleys,
while an extension to strata of finite width was Jiven by Schlue (1979).
Tassoulas (1981), on the other hand, employed this formulation to devel-
op special macroelements (finite elements of large size) to study prob-
lems of geomechanics in layered soils. In principle, the technique is
restricted to layered soils over rigid rock, although analyses of soils
over elastic halfspaces could be accomplished with a hybrid formulation
(i.e., taking the exact solution for the halfspace only). The principal
advantage of the method is the substitution of algebraic expressions in
place of the more invelved transcendental functions. This concept will
be applied in the following to study layered soils subjected to arbi-
trary dynamic loads.

Consider a layered soil system as shown in Fig. 1. The interfaces
are dictated by discontinuities in material properties in the vertical
direction, by the presence of external Toads at a given elevation, or
by restrictions on the thickness of Iayeré as required by this discrete
formulation. We define then the following stress and displacement vec-
tors:

a) Cartesian coordinates:

)
=

%
I
~

yz ’ U=

(1)

al
21<F|

in which u, T, Tare the displacement, shearing stress and normal stress
components at a given elevation, in the direction identified by the sub-
index. The factor i = v~1 in front of 52, u, has the advantage that
the stiffness matrices relating stresses and displacements thqs defined
are symmetric; for the static case, they are in addition real. The



T
|
|
i
|

N A
TTT7T 7777777777777

rigid rock

z-l‘

1§

Figure 1



-9-

superscript bar, on the other hand, is a reminder that the components
are functions of z only: that is, they are expressed in the transformed
frequency - wave-number domain. The actual displacements and stresses
at a point are obtained from the Fourier transform

g HJ

in which w = frequency of excitation, and k, £ are the wavenumbers. Since
in the following developments only the solution for Tine loads are re-
quired to formulate the solution to point loads, we can set the second
wavenumber equal to zero (2=0). Also, the transformation in w may be
omitted, as we are interested only in harmonic solutions. Thus

' ™

exp iluwt - kx - gy) dk do dw (2)

U _ reo (U
- 5%4 J 3 e—1kx dk (3a)
S = -} S
and __
U w [ U
_ ikx
_ ‘h, ¢, (3b)
S - S

provided that the transformations exist.

b) Cylindrical coordinates:

The stress and displacement vectors are now:

pz Y
S = Tez ] U = ue (4)
&Z UZ
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with I, T, & being again the displacement, tangential and normal stress
components as identified by the subindices. Also, the superscript bar
refers to the frequency - wave-number domain in cylindrical coordinates.
Note the absence of the i = /=T factor in front of 52, Eé, in contrast to
the Cartesian case. The interrelationship with the spatial domain is now
givenlby

U= 1T j ke T dk (5a)
and
_ 2
= C T U ds ' Bh
U a, J:D liJ; LU dp (5b)

and similar expressions for S, S. In these eguations,
T_u = diag (cos ug, ~sin uo, cos po) {6a}

if the displacements (stresses) are symmetric with respect to the x axis,
or

Tu = diag (sin o, cos ud, sin uo) (6b)

if they are antisymmetric (nonsymmetric cases are combinations of these
two situations). Also,

d H
oy u % 0
_ H d
CU "] ko Ju d{kpo) Ju 0 > (7)
0 0 mJu

in which 3 = J (ko) are Bessel functions of the first kind and e

order. The orthogonalization factor aU is given by
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13

=

u#0

This corresponds to the well-known decomposition of the displacements
and stresses in a Fourier series in the azimuthal direction, and cylin-
drical functions in the radial direction. The variation with time is

given again by the factor exp iwt.

2.2 Stiffness Matrix Approach

Referring to Fig. 2, we isolate a specific layer and preserve equi-
Tibrium by application of external loads ?} = §i at the upper interface,
and P, = - 5, at the Tower interface. The relationship between forces

(tractions) and displacements.is then:

Py K19 Ko 1 Us
_ j= _ (9}
P2 K21 Koo | | Y2
with
K1 K12
Km'= (10}
K1 Koz

being the (symmetric) stiffness matrix of the (mth)1ayer under considera-
tion. Explicit expressions for this matrix are given in Kausel and
Roesset (1981).

In the case of a soil which consists of several layers, the global
stiffness matrix £ = {E%}is constructed by overlapping the contribution
of the layer matrices at each "node" (interface) of the system (Fig. 3).
The global load vector corresponds in this case to the prescribed external

interfaces. Thus, the assemblage and solution of the

‘tractions at the
equations is formally analogous to the solution of structural dynamic

problems in the frequency domain.
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It is interesting to note that the stiffness matrix for cylin-
drical coordinates is identical to that of the plane strain (Cartesian)
case, and is independent of the Fourier index u. This implies, among
other things, that the solution for point Toads can be derived, in prin-
ciple, from the solution for the three line load cases of the plane
strain case; this is referred to as the inversion of the descent of
dimensions, and forms the basis of the technique considered here. Thus,
the Toad and displacement vectors P, U in equation (9) may follow either
from the cylindrical or the Cartesian formulation.

2.3 Thin Layer Formulation

In the case of thin Tayers, the layer stiffness matrix can be ob-
tained as (Waas (1972), Kausel (1974), Kausel and Roesset (1981)).

2 2

=AkE+Bk+6 - M . 1
Km = % me T om0 (am)
where k = wave number, = frequency of excitation; and Am, Bm, Gm’ Mm

are the matrices given in Table 1 (which involve only material proper-
tiaes of the layers}. In contrast to the continuum formulation, however,
this discrete approach results in stiffness matrices that are algebraic
rather than transcendental. Also, in this alternative, the displacements
within the layer are obtained by linear interpolation between interfaces:

U= &, +(1-8)0,, 0<gql (12)

As in the continuum approach, the global stiffness matrix X = £Km}
is obtained by cverlapping the matrices for each layer (Fig. 3). In
fact, the assemblage may be understood in the finite element sense, with
each thin Tayer constituting a "Tinear" element. The global load and
displacement vectors 7 = {P} , u = {U} are then assembled with the
"nodal" {interface) load and displacement vectors P, U. For prescribed
loadings, p, the displacements ¥ are obtained by formal inversion of the
stiffness matrix:

g
fl

KU (13a)

7 o= K'5 (13b)

(B
L]
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In practice, this inversion is not necessary, since either a Gaussian
reduction would be employed, or the spectral decomposition described

below could be used,

2.4 Spectral Decomposition of ﬁhe Stfffﬁésé.Méfrix

The natural modes of wave propagation in the stratum are obtained
from the eigenvalue problem that follows from setting the Toad vector
equal to zero:

(Ak§+Bkj+C)¢j=0 (14)

with C =G - sz. The notation for the displacement vector has been

changed from U to éj to emphasize the identification as eigenvectors

(The subindex j refers to the various possible solutions). Waas (1972)
studied this problem in detail, although his notation and coordinate
system were slightly different; his work was concerned with the develop-
ment of a transmitting boundary (silent or absorbing boundary) for finite
element models. Equation (14) constitutes a quadratic eigenvalue problem,
with eigenvalues kj and modal shapes ¢j‘

This problem yields 6N eigenvalues kj and eigenvectors, ¢j’ with
N being the total number of layers. 3N of these correspond tn eigenvalues
kj, ¢j, while the other half correspond to eigenvalues - kj, $j (with $j
being obtained trivially from ¢j by reversing the sign of the vertical
components). Following Waas, we choose the 3N modes that have eigenvalues
kj, whose imaginary part is negative if kj is complex, or whose real part
is positive if kj is real. This implies selecting only the propagation
modes that decay with distance to the source, or that propagate away from
it.

While a quadratic eigenvalue problem can always be solved as a linear
eigenvalue problem of double dimension, this is not necessary here because
of the special structure of the matrices involved. To show this, we begin
rearranging rows and columns by degrees of freedom rather than by inter-
face (i.e., grouping first all horizontal, then all vertical, and finally
all antiplane degrees of freedom). The resulting eigenvalue problem is
then of the form
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Z2 .
. +C
kJ A)’ Y

\ ¢ij

ro]

with uncoupled antiplane mode ¢y' The matrices AX, Cx’ etc, are tri-
diagonal and, except for sz’ are symmetric. This eigenvalue problem

may then be transformed into

2

ki Ax ¥ Cx Byz - bx3 0
2 .7 2 {
ﬂ G Bl KA, *C, 30y (= or (16)
2 :
+ ) 0
kj y T by % -
which is a Tinear (although non-symmetric) eigenvalde problem in k2. An
alternative Tinear eigenvalue problem is also
2 2 1 Y A
T 2 >'=4
% Byz kj Az L 3 ¢zj 0 (17)
XA +¢ o s 0
L ity Ty vi bt

having a characteristic matrix which is the transpose of that in Eg. {16).

Both of these eigenvalue problems yield the same eigenvalues and
have associated "left" and "right" eigenvectors.

kj¢xj ¢XJ
Yy = <£>ZJ. and Z; = kdeZj (18)
U 9y Vi
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which are mutually orthogonal with respect to the characteristic egqua-
tion (see below). Defining

s Y
AX rCX BXZ
T o_ 3 T F o= 1 C
F=1B, A J T 7 f (18)
A c
\ Y Y
Y = {YJ} i = {zj} §=1,2, ... 3N
Kp "Rayleigh" modes

(19)

-~
[
(=]
Pl
{2 2]
[ia]
—F——
A
Sl
——
[}
1]

KL ' "L ove" modes

kiA‘zj+Ezj=o or FKIK+TZ=0 (20a)
and
k?KTYj+“c‘TvJ.=o or R YK+T y=o0 (20b)

which satisfy the orthogonality conditions

YVIKzZ. =0 ifi#j
(21)
£0  ifi=j
and a similar condition for YI E’Zj. We choose here a normalization of

the eigenvectors Y, Z which can be proved to be the same as the one used
by Waas (see appendix ):

K :
YTKz=$kR I}'=N (22a)
and by substitution into the eigenva]ue‘problem,

=

_ 2
V' TzZ=-0K . (22b)
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Consider now the equilibrium equation in the wave-number domain
(eq. 13a} (after rearranging columns and rows by d.o.f.'s),

(% k2

+T) 7 = B (23)

with f ﬁ;.“
U*= k—'Z'f»-

. ) (24a)

7= kP J‘ . (24b)

Premultiplication by YT, and introducing ZZ"] = 1 yields

¥*

YR+ zz et =y (25)

and in view of egs. (22) above

wk? - w2y 771 7 o= T B (26)
—k
from which we can solve for ¥ : _
-~ - -
7 o=zw ! (1 - k)T T
(27)

Since the in-plane eigenvalue problem is uncoupled from the antiplane
problem, we can consider the two cases separately.

&) In-plane case
The reduced eivenvector is

(28a)



- O KR ,
Y= (28b)

in which the spectral matrix KR has 2N elements corresponding to the
in-plane modes (the subscript R stands for Rayleigh).

From eqs; 27 we obtain, then

Bkl o 1 By L
_ 2 3T T .T
B [KRk - KR} {KR o @Z} ) (29)
@) ek kE, |
yielding
- T 1T
Uy I 2 Droy  kay Kp Dpoy j Py
B 30)
- 1 o lT T ) (
Uz l E'@ZKR DR®x 2, DR®2 L z
2 2] (31)
with DR= (k°I - K?{)

(I being the identity matrix).

The matrix in front of the Toad vector in eq. (30) is the inverse
of the global stiffness matrix, with rows and columns transpcsed so as
to have first all horizontal and then all vertical degrees of freedom.
Since this matrix is symmetric, so must its inverse be. Hence
T.T 1

)

_ 1 _ T
Koy DR@Z B E'( 2 %r Droy =% 9% DrKp 2, (32)

Multiplying by k and combining the two sides,

2,-1 _ K2 -
@x(k Ky’ Dp- KRD o KR )DR@ = 0 (33)
but

hence
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(Observe that the matrices @X,_@Z are rectangutar, not square). This
relationship could also have been proved starting with an alternate form

of equation (22), namely,

AT =5 (35)
with -
7k k
k% “x - ke Py
A ’ Po= - (36)

Uy Pz

and using again the orthogonality condition. Thus equation (30) trans-

forms into
T -1 Ty =
Tx CI>x DR®X k <I)x KR DR¢2 Px
= B (37)
T o DokCla! 5. Dodl 2,
z " Tz "R™R “x z R"Z

and we have an exp?{cit expression (in terms of k) for the in-plane flexibil-
ity matrix {inverse of the stiffness matrix, with rows/columns transposed to
accommodate the new order of degrees of freedom).

b) Antiplane case:

Following a procedure which is entirely analogous to the in-plane case,
one obtains

— T = (38)
=& ol =
Uy =ty D%y Py
. 2 2 -1

in which KL = diag (kj) has only N elements, corresponding to the antiplane
modes. The subscript L refers to the Love modes.
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2.5 Green Functions for Line Loads

A unit line Toad is described in the spatial domain by an expres-
sion of the form

T = S(x-xo) (40)

which is prescribed at a given elevation Z.s with abscissa Xge T is
either a normal or shearing traction, and § is the Dirac Delta function.

The Fourier transform for a load applied in the vertical plane passing
through the origin (x0 = 0) is

I= [ s5(x)e ¥ dx = 1 (41)

which is independent of the wavenumber k. Thus, the load vectors in
Egs. {37) or (38) have a single non-zero unit element in the row that
corresponds to the elevation and direction of the applied line load. To
consider the general case of Toads applied at any elevation and direc-
tion, we replace the load vectors in these equations by identity matri-
ces; determination of the Green functions requires then a Fourier trans-
formation of the flTexibility matrices. This necessitates evaluation

of the following integrals:

] -ikx 1 -ikx
-f;Ii;D e dk and §;Jj;k De dk (42)
with D = diag (k2 - k?)-T. Each of the diagonal terms is then of the
form
J
] -iij x>0
N ??F} &
- R x <0 (43)
3




1 oy ~ikx
I, = 5 J_m S (kg < 0
J
=?l,e_1ij x>0
i
=0 (P.V.) x =0
1 ik.x
=-5yre ! x <0 (44)
Defining Sik.x EE '
E. = diag {e J } = L (45)
X Ex

the integrals in (42) can then be expressed as

1 Sikx a1 e -l
ﬁjm D e dk = grE K (36a)
T -ikx _ 1
Z—T.Jmkne k= o E X > 0
0 X =0 (46b)
1
~ 57 By x <0

a} In-plane line loads

For the in-plane case, the Green functions are then obtained from
Egs. (37), (46) as

R -1 .7 R -1 T
U 1 o Eixp K RO O E[x] Kp' 2, 1
X1
= oy (47)
_ -T R T R -1 T
Y2 19, K Elxl O % E]x[ R4

in which the positive sign is chosen for x > 0, and the negative sign
for x < 0, The special case x = 0 is included in the above equation

because when E5=O = I, the off-diagonal submatrix reduces to Eq. (3%),
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(which is zero). The superscript R in EE refers again to the submatrix
of EX that corresponds to the in-plane (Rayleigh) modes.

It is important to note that the components of the vertical (unit)
Toad vector and the vertical displacement vector carry an implicit fac-
tor i = /1 (see Eg. (1)). Consideration of this factor affects the
coupling terms only; the true horizontal displacements due to vertical

Toads are + l'@x ETX} K§T<pl, while the vertical displacements due to

... Tz 21 R T
horizontal loads are ¥ §'®z KR E x Oy

For x = 0, the right-hand side of Eq. (47) represents the inverse
of the stiffness matrix of two Waas-Lysmer transmitting boundaries joined
at the origin of coordinates {one transmitting boundary for the right
layers, the other for the left layers.)

b) Antiplane case

Using Eqs. (38) and (46a), one obtains

1 L -1 T
7., o= 5 0 E KL &

Y Yy Xt Y (48)

in which Ei is the submatrix of Ex corresponding to the antiplane (Love)
modes. Again, the right-hand side is the inverse of two antiplane trans-

mitting boundaries when x = 0.

2.6 QGreen Functions in Cylindrical Coordinates

2.6.1 Preliminary definitions

Consider once more the flexibility matrices in Egs. (37) and (38),
obtained for the plane strain cases. We define then the N x N matrices

- a T
Fax = {fxx} = 0 Dr by

_ _ -1 T
Fyz © {fxz} =k Oy KR DR o,

= L -1 T_ T
Fox = {fzxr - k@z DR K R q)x = Fyz



_ _ T
Fpy * fzz} =9 Br ¢,
7= {e£. b =4 D o (49)
yy Yy y L%y

Also
. T, ... Ny g=1, ... 2N

xe
il
-
x 3
=
N =,
3
il

T, ... Ny 2=1, ... 2N

=y
N

H

-
N =3
oS
e

3

i

oy = {¢$£} m=1, ... N; ¢=171, ... N. (50)"

The elements of the flexibility matrix are then

’ mg n R
fax = L Gy b 3y (51a)
2=1
2N 2N
_ R _ ng .ng
foo= T gt oltp= 5 ¢ oMy (51b)
Xz 221 X T2 8 7y 9 % ¢
2N 2N
- mg ng R 2 .nk
fox = 1 @5 & by= 1 cp o of (51c)
221 2=1 _
2N '
_ mg ng R
22 = Z b, 477 2y (51d)
2=1
£ = ? ¢m2 ¢n£ aL (51e)
Yoo 5y Y %
in which
1 K ko1
3, = 5, b, e, ¢, = s (52)

(The superscripts R, L 1in a,s bg indicate the use of the Rayleigh/Love
wavenumbers k2 = ki or kz = kt)- The equivalence in (51b), {(51c) is

due to Egs. (32) and (34).



-25-

The flexibility coefficients (displacements) at the mth elevation
due to loads at the nth elevation are then
ka 0 fxz ,
=10 F 0
F vy (53)
1:’zx 0 fzz

which shall be used in the following sections.

2.6.2 Green functions for disk Toads

a) Horizontal disk Toad:

Referring to fig. 4a, the components in cylindrical coordinates
of a uniform load q distributed over a disk of radius R is
cos ©
P=gq }-sin 8 [, 0<p <R (54)
0

Using Eq. (5b)(replacing U by P) to express these functions in the
wavenumber domain, we obtain first

on o cos U8 cos8 | {1 _
J TP de =q I sin W9 sinfOrde=mg 11 if u=
° 0 0 0 (55)
= 0 ifu#1.

1

so that (with u =1, and JT = dJ]/de):

R
-
p=TT,nq[ oC; {1} do (C; = Cope see Eq. (7))
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Fig. 4

a} horizontal disk load

b4
(PX = 1R7q)

b} vertical disk Toad

- 2
(P, = m®q)

c¢) torsional disk Toad

d) rocking disk load



(kR) (56)

If the disk Toad is applied at the nth

th

elevation, the resulting displace-

ments at the m elevation in the wavenumber domain are

U=FFP (57)

with F being given by Eq. (53). The displacements in the spatial domain
follow then from Eq. (5a):

U= T] Jm k C] U dk (58)
0
Substituting (53), (56), and (57), we obtain

” fXX
qR T] JO C] fyy J}(kR)dk (CT =C

f
ZX

<
1}

L4=1° See Eq. (7))

fo Jo(ko) dq(kR)

QR T, [O fo (ko) 3y (kR) [ dk +

Yy
-f JT (ko) Jy (kR)

{ fyy ) fxx
1T (% 1

' 5 } 0 k fxx ) fyy J](kp)d](kR) dk (59)
‘ 0

Evaluation of the above expression requires the following integrals (be-

b, in Eqs. (51))

cause of the factors ag, 0
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1
I, = 3 (ko) J-(KR) dk (60
1 f: Z g el 2)
I, = Jw.—?¥£~—§-'J1(kp)'J1(kR) dk (60b)
1
! =r~——TJ(ko)J(kR)dk (60¢)

These integrals are given in Table 2.

Substituting Eqs (51) into (Eq. 59), and considering the above
integrals, we obtain for the displacements at the mth interface due to
a disk Toad at the n"" interface: (T, is defined by Eq. (62))

[

B mR nt d .R 1 mé. nﬂ L
u, = grR [ Z ¢ x & 13£ +-5 £§1 ¢y v ] (cos @) (61a)
12N e ng R me ntd ,
ug= R [1 7 o™ o™ 1}« z MM T (sine)  (61b)
QQJ:] y
U =-gR [2§ me %R R 9 (eos p) (61c)
z q 051 ¢z ¢x 32 £

in which again the superscrlpt R, L in the functions I refer to the
in-plane and antiplane wavenumbers kR kL used as arguments Also,

d

8.513:1- I

1 Note that 1im 132/9 exists, since 1im J1(z)/z = 1/2.

p~+0 z-0
The average horizontal displacement under the disk load can also be

1
p 3

derived from the above expression. Since

=
[

X UQCOS g - uesm 3]

u c0326 +y sinze (62)

in which u, v are the amplitudes ofqm,uein Eq. (61) above (i.e., omit-
ting the factors cos g, - sin g), it follows that
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. J_u dp Q.
S L N B S R O - = %1 oy
e A p 1 T,
Y. 0., ¥..0. Lz |
d>y AQV_:NVI (4) e S 0> AQVCEH
Y- °
T
Ty, O ()% L2 = ap(n) % ()% S5 | = O
4y>09> (y V_VANV 1 o
[ Lz
> 19 ¥y Ly be 20t
d> y 5 V_:SI (41) %y 0 VAQV:E
oyuz "z TN va._lmv_vv_ o
Sd3 , ¢ i = N T
43950 & - E,ﬁ:,@_: (ylp & Ap(wd) e (O) L
3 ¥ ¥ te
9% y (M) 5y1 (ainte =2 o > (Byur
Ty Ly iy le H L oo by 272 J b
4>9>0 () (o0 (9) "0 =P (M) e 5= ) =
(]
AL
I, % e —= gen¥le = (yeay¥L
03 y (%) (H ()"0 — (99)°M1 = (¥°9)° 1
0> (")
¢ v R 0
o A A2 . 3 -
¥> 950 G- ﬁ_:wv: ()% = wn'e (¢0° S | = Th

¢ °lqeL



Uy (average) ~

it

R
B[ o a0 (63)
R 0

dI .
Since 7£?-= I1 - %-13, evaluation of the above equation requires the

integral

] R
T2 Jo g p de

R
Y J[‘ “p[ —'Z'L_g Jo(kp) JT.(kR) dk dp
o k- kz

R 0

1 91 (kR) JR (ko) do dk
= - p J (ko) do

RC K2 - ki o °

o J° (kR)

=1 J R T

R o k(k? - k%)
=1 (64)
"R "3

=R

We notice also that addition of (67a) and (61b) (without the factors
cos 6, ~sin 6) cancels the terms in 132. Hence

=q[ Z ¢mz nz R + g ¢mg ng L ] (65)

Ux(average) 51 by !
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b) Vertical disk load

The load vector in the spatial domain is (Fig. 4b)

0
P=qi0} 0<px<R (66)

Using Eq. (5b) to express this vector in the wavenumber domain, we
obtain

o 2T
F=3{J oC T P dpdp
0 Jo HoH
R 21 0 ‘
= a ' C 0 de d
uqJOOu o [eee
COS 1
R 0

0 |
q f 0C | o Ldo =R L0} fory=0  (67)
0
= -1

0 W#0

th

The displacements at the m~ elevation due to a vertical disk load

at the nt" elevation are then
U= TOJO k CO U dk , U=FP (68)
Substituting (53) and (67), we obtain
b le
u_qRTOf:co 0 by () dk
'fzz
" fxz J] (ko) J1(kR) |
- R T, J 0 dk (69)

o \f,, 3, (k) J (k)]
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Substituting Egs. {51} into Eq. {69) and considering Eqs. (60), we
obtain

- mg ng LR
up qR 21 by by IZQ,/kQ (70a)
ug = 0 {(70b)
2N
- meg ng LR
u, gR z b, by 112 (70c)
=1
The average vertical displacement under the disk Toad is
u = — u,p dp do
z{average) R Jo Jo 2
2 jR (71)
= Yy_pdp 71
RZ Jg 2
and in view of Egs. (64, 70c)
ZN
u._; _ mi ng LR
z{average ) = 24 221 by by I3, (72)
=R

c) Torsional disk load

The steps are the same as for the previous two cases; it suffices
then to give the essential results only.

Load vector in spatial domain (Fig. 4c ):

g
P=qfr% 1 (73)

Load vector in wavenumber domain (V¥ = 0):
0
=R -2
P = 3 [0,(kR) -~ & 37 (KR)T { 1 (74)
0l
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Displacement integral:

[ Q
- : -2 Ry T
U= qR_f:.Co j fyy [JO(kR) Eﬁ-d1(kR)]dk

L 0

Displacements:
u =20
P

N
mg ng 2 Lo FL
g = R 2§ by ¢y (R 13, - Ty

=
[}

u. =20

(76a)

(76b)

(76¢)

*
in which 112 is the same as 112’ but interchanging 5 by R (see Table 2).

d) Rocking (moment) disk Toad:

Following the same steps as before, we obtain the following results:

Load vector in spatial domain (Fig. 4d ):
0
= jo}
P 0 q R Cos B
1
Load vector in wavenumber domain: (1 = 1)
0

5 = 2 - R
P 0 [kR J](kR) JO(kR)]%Z
-1

Displacement integral

2 .
[Eﬁ-J](kR) - JO(kR)] dk

(77)

(78)

(79)
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Displacements:

2N ‘ , .
mﬁ ng, 2 .R 1 . *R 2 R R .. .

.
It

me n2 d (R _2 R
qR[Z dy @ (Tyy - & T3/k] (cos @)

D
il

* .
QR [ Z gt Ly - 21K (osin g

; =R z M oM & 15, - 1T (cos ) (20)

2.6.3 Green functions for ring loads

These functions can be obtained from the previous results for
disk loads by simple algebraic manipulations. If G(p»r) represents
the Green function at a circle having radius , due to a unit ring Toad
with radius r, then the Green functions for disk loads having radius R
follow from the convolution integral

R
g6 R) = j Gl .r) glr)dr (81)
[0]

in which g(r) is the intensity of the ring load. Taking derivative
with respect to R, we obtain

22 = 6(o.R) q(R) (82)
39(p, R)
Hence G{p,R) = qu) :R (83)

The Green functions for ring loads are then simply the deriva-
tive with respect to R of the Green functions for disk loads. Since
this operation is straightforward, only the final results will be
given below.



-35-

| %

Fig. 5

a) horizontal ring load
(PX = 27R)

b) vertical ring load
(Pz = 21R)

c) torsional ring load

. 2
(Mt = 27R")

d) rocking ring load
(Mr = “Rz)



a)

c)
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Horizontal ring Toad, (Fig. 5a ):

2N | \ |
= mt ntd R 1 me AL . *L
uP R [221 AN dp Iiz p£§1 ¢y ¢y ITQJ (cos 8)
® =1 ¢X % W o %" T 'I,Q
2N .
= RET ™M (-1, k)] (cos o)

Vertical ring load (Fig. 5b ):

2N
- ml n& d R,
Up = - R 351 % % @ lay'*y

2N
miZ  n&.R
R E ¢z ¢ 142

=
n

Torsional ring load (Fig. 5c }:

Up: 0
U. = Pil: (bmSL d)ﬂ,Q..(R IL B g IL + I*L)
87 L 0y &Rz mgilg Ty
u, =90

(84a)

(84b)

(84c)

(85a}

(85b)

(85¢)

{86a)

(86b)

(86c)
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d) Rocking (moment) ring load (Fig. 5d ):

2 d 2 'R *R R
U= L Z 0oy ds (m 13, - Ty - R Ip k] (cos o) (87a)
_ mz ng 1 ,2 R *R R .
ug = [ Z 5 (§'132 - L, -R 122)/ké] (-sin o) (87b)
2N mg ng R 2 R R
Q:

2.6.4 Green functions for point loads

The Green functions for point loads can be obtained from those
for disk Toads by considering the Timit when R tends to zero.

In the case of loads with intensity p, the corresponding trac-
tions are

q = —§§ (horizontal, vertical)
™

The Timiting expressions for the displacements when R - 0 are
given below.

a) Horizontal point load:

N
. mz nz d ,(2) 1 mg ng ( Y2yl
4T 7l Z 9% dp H (k )/k Yy P Qz by ¢y (kﬁp)/kxj cos o

ST L, z ¢x Oy g ) (k p)/k + Z ¢ ng Hy )(kzp)/kg (=sin g)

_ ; "
U, = -2 RZ ¢22 ¢2£ 1(2) (kge) 1 (cos o) (88a,b,c)

in which ng)(kp) are second Hankel functions of jth order.
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b} Vertical point Toad:

2N

g Lt PG o) (85a)

Ug = 0. (89b)
p 2N e ong L (2) (R

“z=~;2=1 o, 0, Wl (kgp) . (89c)

2.7 Green Functions for Internal Stresses

In applications of the Green function formalism to boundary value
problems, particularly when using the Boundary Integral Method, it may
he necessary to have expressions for the internal stresses induced by
the Toadings considered at arbitrary points in the soil mass.

Since the Green functions presented in this work have been derived
using a discrete formulation, the internal stresses balance the external
loads only in a finite element sense. Within the layers, there are body
forces resulting from the linearization of the dispiacement field and from
inertia forces that are balanced by consistent stresses applied at the
layer interfaces. By comparison, in a finite element solution, there are
body forces acting over the surface (volume) of the elements that are equil-
ibrated by consistent nodal loads. The following sections present then
expressions for these consistent loads and stresses.

2.7.1 Plane strain cases

a) Stresses due to antiplane 1ine loads

We begin with the antiplane case, since it is the simplest,
for it involves only one displacement component. In this case, two stress
components are of interest, i.e., the shearing stresses in ver-

tical and horizontal planes.
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Vertical planes:.

With reference to Fig. 6, the strain Ty in a vertical plane
with abscissa x is

=L (90)

and in particular, the shearing strains at the elevation of the interfaces,
arranged as a matrix, are

. L L1 T
r ={Y } :-8_[___,£I>E K @}
Xy XY [interfaces % [T ¥ TiXIL Y

2 2l 1ol

v Si‘E]x] Y (91)

=L
21

which is obtained from the Green matrix for antiplane Tine Toads, eq. (48).

But
BE] ,
Xl _ _ L . .
X = - i Elxl KL if x>0
_ . L .
= i E[x] KL ifx <O (92)
Hence
I oog Ly b T
Xy t o5 cby E]x]q)y (93)

with the negative sign being associated with positive values of x and
viceversa. We notice that the strains (and stresses) are discontinuous

at x = 0. If the soil to the right of the section x considered is re-
moved, it becomes then necessary to apply consistent antiplane line loads
t0 the section to the 1eft in order to preserve equi]ibrium with the in-
ternal stresses. The consistent nodal loads applied at the nodes defined
by the intersection of the interfaces and the vertical plane considered
can be obtained as follows:

- . . L] th
Let v = ny be the strain within the m~ layers, and Yi© Ym+] be the
strains at the top and bottom of this layer. The shear modulus and thick-
ness of the layer are Gm and hm respectively. Since the strains ¥Xy vary
Tinearly within the layer (uy and auy/az vary linearly with z), then
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'Y = ‘(:Ym + (]_E)'YmH_"I’ 0 i E _i 1

(Ym
= (E 1-§& )g } (94)
Hm

The consistent nodal ‘1oads in equilibrium with the stresses T = Gy are then

Q
: " ﬂ (12] (g ’"€3€$+1] ¢t

sn 2 T (Yn | m

S
Y1 Ym+1 (95)

which constitutes the contribution of the mth Tayer to the consistent nodal

loads. Notice that Am is the submatrix of the matrix Am shown in table 1
that corresponds to the antiplane degrees of freedom. If all layers to the
right of section x are removed, then the consistent nodal loads are obtained
overlapping the contributions of all layers. This implies overlapping Am
(i.e., Ay = {Am}), The result is

Qy Ayr +2qu’yE[x[‘I’y
_ . 1)1 LT
= + K s
Thy o Koo gy 9 K B 9y
i Ty ooF
=+ q Ay ?y KL @y Uy + R qy (96)
since K1 gE =gl ] The matrix R = i A o K o ! is the
L " [x| x| Lot y Oy LYy

Waas-Lysmer antiplane transmitting boundary (the dynamic stiffness matrix of
the soil removed).

Observe that at x=0, ELX = I (the identity matrix). Considering

also the orthonormality condition @; A o, =1, we would have

y Y
= _ 1 T __1 i =gt
qy g A, o 2 5 1 if x=0 (97a)
Q= A o 6 = 51 if  x=0 {(97b)
Y 27y Ty Yy 2
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m+1 t

/
yz

Stresses, antiplane case

Fig. 6
x=0" N e x=0*
externatl
load
/'1 }
1 1
2 2
PP S

Internal consistent Toads at x = 0

Fig. 7
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Thus, the stresses are discontinuous, and the difference %-I - (= %—I) =1

balances the external loads applied (Fig. 7).

Horizontal planes

With reference to Fig. 6 and equation (9), the stresses t = E&z (in
the wavenumber domain!) induced by antiplane displacements v = G} are
Tm l Vin ‘
=g (98)

- ?ﬁ+1J vm+1

with K, given by equation (11), considering only the antiplane degrees

-1

of freedom (i.e., k is a 4 x 4 matrix). From equation (38), the displace-
ments at the interfaces m, m+l due to a Toad at n can be written as (kzzrki)

mL
vm N 1 ¢y ng,
R Sy ey ¢ (99)
‘ =1 k- -k m+l, g y
Vit % ¢y
Hence

_ mg
m 1 2 2 ¢y

- _ ng

= 9,;1 T2 (AK" + 6 - oM ) gL by
m+1 & Y
¢m1
N X y
- 1 2 2 ‘ ne
" G O S P ]
mL
- %l { . +A } y on¥ (100)
221 k?_ k2 m4 m m+1, ¢ Y
% ¢y
in which
L

g = kplky). (101)
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Taking an inverse Fourier transformation, we obtain then

T mi
T E A
|-+ : 9,_21 & Laet,e| (T Pl Je *
-TITH'] i g \¢y 0,
mL
N %y L
n
¥ le 5(X)Am ¢§+],2 ¢y
me m2
N dy -1k |x] N[y "
- 221 Kne 1 Gy © + 8(x)A RZ] T by (102)
¢y ’ Y
in which
o . = 1 ¢nz
na Zikg y (103)
th

is the participation factor of the % mode for an antiplane line load
applied at the nth interface. These stresses are "continuous" at the inter-
faces in the sense that they may be computed either with the layer above,
or the layer below the interface of interest. This can be verified by over-
Tapping the stress components for all Tayers, using for this purpose equa-
tion {102). The first summation would then cancel, since each term in 2 is
of the farm K¢y = 0, which is zero, because the modes satisfy the quadratic
eigenvalue problem referred to earlier in this report. The second term
would be S(X)AyQYQ; = §(x)I, since ¢;Ay®y = I. Thus, the only singularity

occurs at the location of the line loads.

b) Stresses due to ‘in-plane line loads

Although the developments are somewhat more complicated than for the
antiplane case because of the iﬂcréase'in the number of stress components,
the generalization is straightforward, so that only the essential details
need be presented. (Compare also with previous section.)



~44-

Vertical plane (Fig. 8 ):

Ay o,
O'X = (X + ZG)W +_ )\ “—82‘* (104&)
au Buz
Tz © G(Tﬁ§' ) (104b)

or in matrix form

O‘ . .
= Sk : =
T G G, ‘
Xz JLUIZ
Since both uy uZ vary linearly across the mth layer,
Uy
\ < E < 1
}=U= gUm‘l-(T-EfUm_l_.l O;_?‘E_.l (106)
u_j
or £ 1-& } u,
U =
3 7"?‘5[ Ul (107)
and
1 -1 U
Lus i 1 18 um (108)
m - m+1

The consistent nodal Toads in equilibrium with these stresses are then

£
* Lo -
= p [ 1-¢ de 109
Q49 M Jg 1o Txz
or using (105, 107, 108) with A = A , 6 = & (noduli for n™" layer, and
integrating eq. (109):
Qm Um ‘
= (A é?-;+ D) (110)
[ et U

mt1
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in which Am is again given in Table 1, with the antiplane degrees of free-

dom de1eted (i.e., considering only rows/columns 1, 3, 4, 6) and Um are

th

the actual displacements at the m~ interface. Also, the matrix Dm is

0 X 0 -A

G 0 -G 0
o = 1 f
m 2 0 A 0 -A

G

0 -G 0 (111)

Now, from equation (47), and considering the comment concerning the
implicit factor i = AT on page 21, the actual displacements Um at a given

interface m due to line loads applied at the nth interface are
Jmg,
u: mi + o)
MmN o =% B (112)
(% B L W 2 E L. g
m z z

in which the choice of signs depends on whether x » 0 or x « 0. Also,the
participation factor o, (for horizontal ioads) and Bus, (for vertical
Toads) are given by

6 o ¢”Q7k£ (113a)

1 g% R

Bas™ 27 4,75y, (113b)

Equations (112) and (113) may be substituted into eq. (110) to evaluate the
contribution of the mth layer to the consistent internal loads. Considering
now the special case in which all layers to the right of section x have

been removed, we can write the consistent nodal load vector for the complete

section as
Qx 5 Az Ux sz : Ux ‘
" * (114)
Qz Az Uz sz Uz
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in which'Ax, AZ have the same meaning as in.section 2.4. It should be

noted that Q, > U, in the above expression are the actual vertical loads

and displacements, i.e., the i-factor has been removed. Also, sz and sz
corresponds to an overlapping of the Dm - matrices (eq. (111)) for each
Tayer, and a rearrangement of columns/rows by degrees of freedom rather than
by interface. (Note that sz # Dlz)' On the other hand, equation (47)
transforms, after removal of the implicit factor i = /=T referred to
above, into

Uy } y
_ T R -1 (T . T
AN E[x|KR {@X t1¢z} {115)
Uz + i©z
_ or briefly,
_ 1 R -1 ~T
U= 57 @ Elxl KR & x>0 (116a)
_ 1 7 R =1 T
Y = i E[XI KR ) x <0 (116b)
in which
o %
s - R 3 = (117}
_']®Z; 1@2

Combining (114) and (116), one obtains for x 5 0
')
- ?11-{ 1A K o - D}q> K ETX@T

=-R1U . R=1Ao KR &

] ; R 7T R -1
Q—Z—Tr{—'lA@Elxl '@ +D®EIXIKR

o2

T_p (118)

and for x < 0,
I T P S TG v B S
Q=gr {inakgs w0l el

L=1AgK

1
-
[om
o

7-1
R & +D (119)
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Stresses, in plane case
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Internal consistent Toads at x=0

(horizontal load)

Fig. 9
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In equations (118, 119) the expressions for R, L give the stiffness
matrices for the Waas-Lysmer transmitting boundaries corresponding to the
right and left layered regions that stretch from x > 0 to =, or from
X <0 to - w, respectively. The matrix L follows trivially from the matrix
R by changing the sign of the terms couplihg the horizontal and vertical
degrees of freedom. (See also Waas, 1972).

Horizontal planes (Fig. 8 )

The stresses are obtained again by a Fourier transformation of the
stress components in the wavenumber domain, which in turn are given by the
product of the layer stiffness matrix times the layer displacements that
follow from equation (37). The only difference with the antiplane case is
the presence of the factor kK in the coupling terms, that may be changed into
a factor 1/k via equation (32). The result of the Fourier transformation
is (compare with eq. (102))

. m

T ¢x£ 7

P mﬁ,

oy 2N ¢; ik} x

oL K Rl e s 5 x 20 (120)
m L =1 My ik , n n

. m+1;
_10m+1 L¢Z ’-)

with Kng = &n(ki) given by equation (11), with antiplane degrees of free-
dom deleted. Also, the choice of participation factors Oy g OF an, which
are given by eqution (113), depends an whether a horizontal or vertical load
is considered. The additional singularityterm Sn is given by

PD A
m,2
(b’
" 2N X ot
S. = 8lx) A {0 (121a)
n m 221 ¢m+1,g X
X
{ 0
for horizontal loads, andr 0
m,%
¢!
in, 3 lo L
S, = Gt} A 10 ¢ (121b)
n M o<1 m+1, 2| z
%
for vertical loads, -
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To obtain the stresses for x < 0, one simply reverses the. sign of ¢

for horizontal loads, or the sign of T for vertical loads.

Again, these stresses are "continuous" at the interfaces, since cover-
lapping cancels the first summation in eq. {120); (satisfies eigenvalue
problem). The singularity terms become

T

T=a(X)Ax@x@x=5(><)I} - -
for horizontal loads (122a)
iS= 0 ¥
T= 0

for vertical loads (122b)
1S = 5(x) A 0, o) = 8(x) I

The above relaticnships can be proven via the orthogonality condition
specified by Eq. (22a): (Also see Appendix)

' ;
T Ty " ek (123
(KR(I)X@Z —R )
[sz Az CI’z KR
T T T ~
or Kp ox Ax o ¥ 9, A, 2, Kp + 5, Byy 3, = Kp (124)

1

Multiplying from the Tleft by ¢ K& , we obtain

T -1 T _
Oy O Ax &y * (®x KR ®z)(Az oy KR * sz ®x) = O (125)
But in view of equation (34), the second term cancels. Hence
o o0 Ao =g (126)
X *x TXTx X
, . T, _
implying that 3y By Ax =1 , or
T _
AX 2, & = I : (127)
Also, the relationship
T _
AZ 3, o, = I (128)
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1 @i from the right, and pro-

can be proven by multiplying eq. (124) by Kﬁ
ceding as above., It follows that the only singuiarities occur under the

Tine loads.Fig. 9).

2.7.2 Cylindrical case -

While the formulation of the stresses in cylindrical coordinates gen-
erally parallels that of the two plane-strain cases, the resulting expres-
sions are more involved, both formally as well as computationally. However,
since the concept remains the same, only a sketch of the developments is
necessary.

Vertical (cylindrical) plane (Fig.10)

‘. \
% e A A -1 [
T = G 3 u
Qe é'p_ + ‘aﬁi + |15 -G l { Ue
‘oz G , Lz
(129)

Both the stress and displacement vectors must be multipiied by Ty (egs.
(6 a, 6b)) in order to incorporate the variation with the azimuth.

Considering again a linear variation of the displacements across a
layer, that is,

U=gu + (1 - g)Um+1 0 <k <1 (130)

one obtains for the consistent nodal loads

Q Y
. l.-; (%aip+nm+-]55m){ § ] (131)
Qm+IJ T

in which Am is again given in table 1 and‘Dm, Em are the matrices



-51-
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| T;§ zp
-
Tpe TOZ
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m+1
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i T2
%

Stresses, Cylindrical coordinates

Fig. 10
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A =X
e < | |
-1 :

"=z A - (132)

G -G

i J

( )

ZX =2uN A ~uX

2ué  -2G . G -G
E =0
m- 6 ST .2 -2m (133)

uh -G . 2uG  -2G J

L.

Note that eq. (132) differs from eq. (111) only in that two rows/columns
of zeroes have been added.

Equation (131) may then be used to compute the stresses with U, {and
Um+1) given by the equations for the Green functions presented in section
2.6, but omitting the factors cosyug, ~sinpyg etc.

Again, in the particular case in which all the soil beyond the section
o has been removed, the consistent nodal load vector will be given by an

expression of the form (compare with eq. {(131)

Q=(A§5+D+%E)U ' (134)

with A, D, E being the overlapped matrices for the whole soil profile.
Hencelif U is a Green matrix,

Q=(AU‘U‘1+D+%E)U (135)
with U = 5% U (136)

which relates consistent nodal loads (per unit circle length) to displace-
ments. It follows that
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R=-p(auyT +D+;—E) (137)

is the stiffness matrix of the transmitting boundary with radius o relat-
ing nodal loads /radian applied on the boundary (having the variation with
azimuth implied by Tu) with corresponding displacements there. While in
principle any (linearly independent) combination of solutions having common
Fourier index u could be used to form the Green matrix {p > R!), it is

best to use the solutions for point loads and moments. These ideas will
not, however, be pursued here,

Horizontal planes

While in the plane strain cases the stresses are obtained by Fourier-
transformation of the corresponding expressiohs in the wave-number domain,
in the cylindrical case they follow from Hankel transformations, which are
inherently more involved. Nevertheless, the integrations can still be con-
carried out in closed form.

With reference to equations (4) through (11), the stresses at elevation
m, m+i are

S T 1 % C U 1
m e U u m
=7 [ ’ K dk (138)
S 4y 190 T c, 0,0

in which Uﬁ, Uh+1 are the displacement vectors in the wave-number domain at
these elevations. The actual displacements (e.g., 5a repeated) are

. TUJO k¢ U dk (139)

and a similar expression for Um+].

On the other hand, with reference\to equations (51), (52) and (53}, Uﬁ
(and Uﬁ+1) can be written as: (The equivalent forms are due to equations
(51b,c}
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w |5
i S o ome | 3N
Um = f(ksR) QET-ag . ¢y &nx - f(k,R) Zl
k, =

Semg
%2

for radial-tangential loads, and

for vertical-torsional loads.

{140}

a, { oy jo, (141)

In these equations, f(k,R) accounts for the variation of the Toad with

the wavenumber k, and %y

a load applied at the nth interface.

is the "participation factor" of the g
The modes ¢

th mode for

me

« ¢$29 ¢22 used above

correspond to a generalization of equation (50) in the following sense:

a} for 1 <4< 2N
mg =0
by .
kg = kz
b) for 2N+1 < g < 3N
m m
By’ = oy =0
L
ky =Ky

("Rayleigh modes") )

("Love modes")

| (142)

S

A11 that has been done then in (140), (141) is to combine Rayleigh and
Love modes into a single summation, shifting the index of the latter by 2N.
These equations can also be expressed more compactly as

L]

Um

3N
f(k:R) a Q ¢ o
£Z1 L 22 ¥mg Yng

-1
QQ sz Ang

(.R) 3N
f(k,R a
G M

(143a)

(143b)
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in which 1

Q, = 1

corresponds to equation (140), and

is used for equation (141). Also

me

( ¢x
me

me Py

m
¢Z

(144)

Ky

K
(145)

]
(146)

Substituting equation {143a) into (139), interchanging summation over £

with integration over k, we obtain

o 3 ©
U, = UZO Tu !
o 3N
= ugo Tu gZ] ong Hy 900
in which
H =

. JO €T, 0, a, F(GR) dk

N
L g { ch kC 0 a, f(k,R)dk} S

(147)

(148)

For example, equations (60), giving the Green functions for a horizontal
disk load can be written in the compact form (147), with u=1 being the only
non-zero term in the summation over the Fourier index, and



, d 1
Tl sln |
R d \
o= 1ol &
\ “ky I3y
R 60Y 1< 8 <N
Gy =

[qR oyt . 2 <2 <o
Alternatively, when substituting equation (143b) into (139), we obtain

o 3N

e -1
u =37 T 7 a f kC Q, a f(k,R)dk} o
mo g gl Tnk { o TR A} mg.
76} 3N
- T (149)
uzo " QE] %g My Tmg
in which

—_—— -1
Hz = J: k Cu Qi a, f(k,R)dk (150)

Note that while Hy # ﬁ@, the net summation is the same.

Returning now to the problem of determining the stresses in horizontal
planes, let us consider once more equation {11):

- 2 2
K, = Am k™ + Bm k + Gm - w“Mm (151)

Because of the special structure of the matrices involved (tahle 1),
the following can be established:
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A K 1 A (152a)
= 152
{ J

Q, k jQQ
B, = B (152b)
'] * Q
3 2/
2 fq ) Q0 ) 2
(6, - wM) "2 - [ (6, - w™) (152¢)
, )
Hence
Q ”
’ b 2 K> 2
aQ,Km =t a ] {kA + — B +G'U)M}
Q 9 m k2 m m m
9 . IR
fQQ’
= a KA +k B +6 - oMb +
9 2 “m 2 °m m- ¢ m
L0y
,QQI
o { + g } (153)
Am K. “m
Q, :

The sign =: indicates not an equality, but an equivalence (because of
(152b); however, it becomes an equality after summation over g, for the
same reason that {143a,b) are equal.

Substituting then equations (143a,b) into equation (138), and considering
equations (148), {153}, we obtain

- =0 =0
1) TuJ H 1 ,!&J
Cu Qz : g
+ r k f{k,R)dk A +k—B
0 ¢ q ' g M
) j L)
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- _ 2 i
in which g = Rﬁ(kl) = Am kg + Bmkg *G - W

ses _
Sme | e,
* By, 5
W1, L m+l . e
and the "truncated" modal stresses
e b
Sm.2 ) - 2 - me
= .{., B
~ m & m % lém‘ﬂ 5'Q'J
m+.‘ ’JQ)' ’(’I)
, 9 mL
"{Khz SC L™ } 4@
L mil .

The interface stresses are then

w 3N
S = )y T3 a,(H S, +L,S )
m =0 ”gﬁ; ng V'8 “ml £ "me

with the shorthand

{e4]

21 j
L, =45 | kC 0, f(k.R)dk
3 k, 7o H .

Example:

f(ksR) = 3y (kR)/K

p=1 .,
o d 1
] o 91 R
] =_f : d
Yl et @
| R R N —
\

with J, = Jl(kgp)- Integration gives

2Mm‘ Defining the modal stres-

(155)

(156)

(157)

{158)

Consider again the case of a horizontal disk lcad; we would have then

J](kR)dk
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4 k2 2R 1 1 0<p <R
9
| -kgp
(-1 1
=L R R<p<ow
k2 202
\ —kg'p

It remains to show that when the above expressions are introduced into
(154), (157) the correct expressions for the stresses are obtained. For
this purpose, we overlap the stresses at each interface to obtain the ex-
ternal forces. From equation (154), the overlapped stress vector will con-
tain terms of the form K®> which will cancel because they satisfy tEe eigen-
value equation. The only terms that will survive are those in {}..,L Smg} ;
of these, we see from equation (154) that only the term - (G - NZM)QR will
contribute, since the one in g3, cancels for the same reason as above. The

2
Toad vector will then be given by

As before, we can rearrange the components by degree of freedom rather
than by interface. This would give, after consideration of the structure
of the matrices G, M, L:

2 -2 T 2 -2 T
(cos 8) [+ (G -o™ Jo K™ & + (Gy- w M )@ K ]
. 2
P = -q fp) {(-sine) [ (6, - )oK @Ii(ey-wm)cp 2 @T]
2 -1 T
(cos g) [-o(6, - ™M )oKy o ]
in which f{p) = %- 0<p=<R , use (+) sign
=R R (=) si
5 < p Lo, use s1gn
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T T

N @y are

(The factor k2 comes from the term 1/k§ in front of Lg; and ¢
from the participation factors).

But from equation (34), the third row cancels. Also, we shall prove that
the first two rows are equal to -2I (twice the identity matrix) if p < R,
and zero if g > R. (because of the sign change). Hence

(cos 8) I
P=gq {{(-sin®) I 0<p <R
0

which is the correct result (compare with equation (54).

To prove the relationships used above, consider once more the orthogon-
ality condition expressed by equation (22b): (Also see Appendix)

R RIES

T T X 3
(Ky o, @) = - K (159)
R *x z CZ J @ZKR R
in which Cx = Gx - mZMX, CZ = GZ - Mz“ Expanding this equation, we obtain:
T T T - 3
Kp oy Cy o ¥ Kp oy Byy o, K * o Cp 2, Kg = - K5 (160)

1

MuTtiplying by K'p @ fron theright and by K3 from the Teft, we obtain

T,.T -1.7 -1.T
x "oy sz %z KR.@x * KR bz Cz 2y KET @i = - @I (161)

T ~2
oy Cx®x KR o
But from equation {34) the second and third terms cancel, Thus, (161)

reduces to
T 2T _ T
o, Cp0, KpTe, = - 2 (162)
-1
Multiplying by N from the left, and then by (@x @I) (barring the case of
a singular square matrix 8, @I), we obtain

-2717 _
CX CI)X KR CI)X = -1 (163)
and
-2 .T _ -1
o Kg© 8y = - Ly (164)
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In a similar way, the expression

-2 T _ -1
@Z KR @z = - CZ (165)
can be demonstrated from equation (160} with a factor 2, K&Z from the left,
a factaor KﬁT from the right, and proceding as before. Finally, from equa-
tijon (22b) we can also find for the antiplane case

T o2
o, Cy 8y = - K (166)

In this case, &, is a square, non-singular matrix. Hence

Y
-T ,2 -1
= .0 K
c, o, Ko (167)
-1
and 2y K[z ¢;'= - Cy (168)

In order to apply equation (157) {or (154)) to the computation of the
stresses, it is necessary to express the displacements (Green functions)
as in equation (147). For the various cases considered before, the matrices

Hos Lg (eqs. (148), (158)) have the structure: (However, see note below.)
d B
Hg‘fi 5 fq
= Ju d
K T
d it
|
= i%y —
L, g 5 9 3 9 (170)
1 _kzg

in which fg = fg(kﬁp), g = g{p,R) (Compare with equation (7)). These
functions are listed in table 3, together with other relevant data .

(Note: The matrices HQ,.LQ are not symmetric if QQ is defined by eq. (145)
(vertical loads). However, in this case the participation factor of the
antiplane modes (2 > 2N) is zero; hence, N0 error arises from using a sym-
metric form ,  provided it is properly defined.)
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3 - EXAMPLE: HORIZONTAL AND VERTICAL DISK LDADS

The discrete method described in the preceding section has been
implemented in a computer program that may be used to evaluate the Green
functions for an arbitrarily layered stratum. In order to verify the
theory as well as the program, comparisons were performed for some par-
ticular cases with the results obtained with the "exact” solution (i.e.,
formulating the functions with the continuum theory in the wavenumber
domain, and integrating numerically). This section presents the results
of some of these comparisons.

Consider the case of a homogeneous stratum, subjected to a horizon-
tal or vertical disk load at its free surface. The stratum is then dis-
cretized with N sublayers, following criteria similar to those applica-
ble to finite elements. For the case at hand, the calculations were
repeated for three discretization schemes: N =4, N =6, and N = 12
(Fig. 11), and covering in each case a range of frequencies.

Figure 12 presents the average horizontal displacement under the
Toad as a function of 1/N. Fig. 13 depicts the corresponding data for
a vertical Toad. These average displacements approximate closely the
lateral or vertical compliance of a rigid disk having the same radius
and Tocation as the load. The three data points denoted by an (x) cor-
respond to the results obtained with the discrete algorithm, while the
point (0) on the vertical axis was obtained with the "exact" solution
scheme. It may be observed that the error introduced as a result of
discretizing the displacement field is small, particularly in the case
of 12 layers. MNotice also that the discretization increases the stiff-
ness (and reduces the comp1iance) of the system, because of thé con-
straints on the displacement field.

Figures 14 through 19 show the Green functions in terms of
the dimensionless frequency fo = fH/CS, in which f is the circular fre-
quency (in Hz), H is the depth of the stratum, and CS is the shear wave
velocity). Again, there is a good agreement between the discrete and
"exact" solutions, particularly for the imaginary part, as well as at
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, Relty) L f=0
E)\‘
e
S
S
|
61
P
= T : " 'I
1712 1/6 174 W
" A _
e (Cyy)» f=0.8 - In(Cy) . f=0.8
0.8 :E\ 0,7.1-
- R D - - —
k- = X x —
-— x\
0.7 1 0.6] X
= f
1712 176 18 112 176 174

Fig. 12
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A
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0\
0.77 Toxo_
Tt -kl
0.67
=3 ‘
1/12 1/6 1/4
) Re(Cc,) f=0.8 4 m(c,,) £ =0.8
D
K~
0.50 1 - x
T\ 0.5
\\ <
= ~
0.4 1 ~ K 0.4 1
~
- -
™ x
47
1/12 1/6 1/4 1/12 1/6 1/4

Fig. 13
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some distance from the load. It can also be observed that the dis-
crete solution begins diverging when the frequency exceeds the Timit
at which waves with wavelengths shorter than approximately 4h (four
times the sublayer thickness) become dominant. In the particular case
considered here, this frequency may be estimated as follows.

Considering plane shear waves with frequency f and wavelength A,

we have
fa = CS
in which H
C
4H 5
Thus N iF
and from here
_fH _ N
fo = E;*i'z

For N = 4, this gives a 1imiting dimensioniess frequency fo = 1.

While the execution times of the programs implementing the dis-
crete and "exact" solutions are comparable in the simple case of a
homogeneous stratum that was considered in the above examples, the
advantage becomes clearly evident in the case of a layered soil, and
when the Green functions are required at many different points. The
effort associated with evaluating the Green functions with the discrete
algorithms is only a function of the number of discrete layers, whether
or not they have identical properties; in the "exact" scheme, on the
other hand, the effort increases significantly, and difficulties arise
in the numerical evaluation of the transforms, because of the greater
waviness of the kernels. Thus, the discrete scheme is particularly
attractive in the multilayered situation and/or when loads are speci-
fied at multiplie elevations.



-67-

*32044NS Y3 38 GZ°0 = Y shiped jo
PeOL ¥SLp LRIUOZLUOH 0 = Z ‘0 = A °Q = X Je Juawade|dsiLp |ejuozidoy Jo juaed [edy | *Bi4

JAHA SCFATINDLISNGWITT
D80 0G0
SRR |

]

ne

IR 0e 1
, | L




e ik

"9084uns 3yl 1e GzZ°0 = Y Shiped JO peo| YSLp |BJUOZLUOH
0 =2 ‘0 =4/ ‘0 = x e juswade|dsip [ejuoziJoy jo jded Aaeuibewy-y Gi 614

LINANOIY S SSPINOISNIWTT
o U@ .M ' e ,, 0 09 ,_G

Dh-E FERA

ne ' MEMYS

U e e

-68-

Nﬂ,@
5y

SRS NS A




-§9-

30e44NS 33U4Y JB)  GZ°0 = Y SNLPEA y3im peo|
0 = X e juswedejdsip |eoLi48A jo ju4ed (eay 9| ‘b4

ASLP |BOL34BA ‘0 =2 ‘g = A M

o LOWNANTIH S SSTTIND LSNIW T
Oh' 1 0e - i gt RECI 09 \,_o YRS oo ._ 5 00 "0,

[

€™

f

oy

e
=
OL‘/




-70-

azﬁﬁ 0e "1 @QHH

(@ovjuns sa4j 3e) GzZ°Q = Y sniped YILM peoj jsLp [ R NET
0=2 0 =4 °0 = x 30 jusuwede|dSLp |eDLJUBA J0 Jaed Aueupbew] (-) 11614

SITINDISNIANTD

08-0 RIS b VAR
o . 1 SN R ST

AONANDAY A

=]

28

bR

i

™

eSS )



-71-

aht T 0l di ¥ 08 "0
. 1

*90BlANS Byl 1B GZ2'0 = Y ShLped JO peo| ySLp [RIUCZLuaoy Jiun e
0} anp 0°L = d ‘0 = 9 *(9deguns) g = z 3@ JuswWAOR|dSLp [eLped 8yl JO JJed [edYy g1 °bt4

LININDFY

SOATINDISNAWTO
@ma@

e b i b

oe o




(|orjuns 384} 3e) GZ2°Q = Y SNLped JO peo| YSLp [ejuoziJoy
‘L =d 0 =96 °0 =z 3e “juswade|dsip [etpes Jo jued Adeurbewy (-) 6L *bL4

AININDIYS SSTINQISNIWIO
oot oe 0 A9 |

SV S R

e 0 TS

NG T OR-T ﬁyw_mﬁ

UG E ISR N—_—

10~

o=

s
Ul

(o4

.
Z F
A
Pt
7
kel
- | et
b
oI
s
—_
QJ“«B
e
rr

i1
o



-73-
APPENDIX

Current vs. Waas' quadratic eigenvalue problem:

In the original work of Waas (1972), the displacement vector in
Cartesian coordinates did not include the factor i = /<1 1in front of
the vertical component, which was in addition taken positive downward.
Thus, the quadratic eigenvalue problem corresponding to Eq. (14) had
in Waas' work the form

(Ak°+iBk+C)V=0 (171)

-~

with symmetric matrices A = A, C = C, and an antisymmetric (skew sym-
metric) matrix B with the structure

I “Byz
? = BT (172)
5%
Also
Vx oy
v = = (173)
W L,

The modal shapes Y were shown by Waas to satisfy the orthogonality
relationship
=T ) 2

KVAVYK-V CV=2K (174)

which was also used to normalize the eigenvectors. The diagonal matrix
K is identical to Kp in the main text. The subscript will be dropped
for notation simplicity. The adjoined vector V above is defined as

i
V= (175)

-, )
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Substituting (173), (175) into (174), we obtain

. . AX VXK . Cx Vx )
(K Vx"K vz) - (v -V ) = 2K
AZ VZK v CZ VZ
that is, (176)
T T T T _ 2
K VX,AX \& K + vZ C, vz - (K Vz AZ vz K + VX Cx Vx) = 2K (177)
or using (173),
T T T T _ 2
K &, Ax o K- ®Z C oo, + (K 3, AZ o, K - 3, CX @x) = 2K (178)

which is Waas' orthogonality condition in the current notation. On the
other hand, the orthogonality condition expressed by Eq. (22 } (consid-
ering the in-plane problem only, since the antiplane is trivial) is

Y'RZ= K
(179)
VTze-K
or in full
.
T T g l *x
(K o, @z) 1 = K , (180a)
T
(Bl A L ek
]
(key  2]) }-‘--K (180b)
C, J 2K
That is,
T T,.T T _
Ke A o +0 B o +0 A 0 K=K (181a)
T T 3
Ke C & +K 2, B, &K+ 2, C,h e K=-K (181b)
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Multiplying the first equation by K from the right, followed by a

transpesition, and the second by K-1 from the right, we obtain

T T. 2 .T - 2

Ko, A & K+Ko 'B o +K & A & = K (182a)
T -1 T T _ 2

Ke C o K +Ko B o+ C o =-K (182b)

Alternatively, if (181a) is multiplied by K from the left and trans-
posed, and (181b) is multiplied by K'] from the left, we obtain
T

T T

2 -
3, A 0, K"+ o B oK+Ko, A o K=K (183a)
T T -1 T -2
o Coo t o, B o, K+K o C o K=-K (183b)
On the other hand, the eigenvalue Eq. (20a) impiies
A o KE+C 8 +B_ 8K = 0 (184a)
X X X X XZ 'z
T 2 3 _
sz e, K= + Az o, K™+ Cz o, K=9 (184b)

Multiplying (184a) by @I from the left and subtracting from (183a), we
obtain

T

T - 2
K e, Az 2, K - e CX e, = K

(185)

Alternatively, multiplying (184b) by K'] from the right, by @E from the
left, transposing and subtracting from (182a)
T T _ 2
Ke A & K - o C o =K (186)
Addition of (185) and (186) yields then Eq. (177); this proves the equiv-
alence of Waas' orthonormality condition with the one employed in this
report.
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It remains to prove the other useful relationships that have been used

throughout this report.

Consider the first orthogonality condition in Eq. (179)}:

YVIXz=¢

(187)

If the soil has damping, then all wavenumbers are non-zero, and the in-

verse of K exists. Thus

2—1 K—-l Y'T _ K-I
and
V-7t T
But rA ,1
K= { -
A T
\sz AzJ
F =1
and A ]
-1 X _
X = 1 }
1.7 -1 =13
-AZ BXz AX» AZ j

Also, the right-hand side of Eq. (189) is in expanded form:

T

% 1 T T B % ] ®Z
K {K @X @z} =

o K ' T T

z ¢, K& e, 9,

A;1 %, @I
A;] =% @;
U VR WL S
0 =@ K @Z j

(188)

(189)

(190)

(191)

(192)

(193)
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An analogous operation with the second orthogonality condition

VT Tz=-8
results in the following expression:
-1 -1 -1 -2 T
j Cy Cx Bz Cz 1 2 K o
{ -1 J“ T
Cz 2, K %
This implies
-1 _ -2 T
Co = - Ko
-1 -2 T
C; = -2, K79,
-1 -1 -3 T
Cx szc = Dy K o,
_ -1 T
0 = 2, K 8,

Equations (193) and (195) give then the relationships:

T _
Ax @X @x = I
T _
AZ <I>Z @z— I
A o K @T A_=-8B
X °X z "z )
-2 T _
CX @X K @x = . 1
-2 .7 _
Cz @Z K @Z = -1
-3 .7 _
Cx Oy K ¢, Cz T Pxz
)] el ‘;T_
@Z 0

(194)
2, k3 ¢Z
o, K2 ¢;
} (195)
)
t (196)
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