NSF/CEE-81057

PER2-14761 9

WASHINGTON UNIVERSIT

SCHOOL or ENGINEERING anD APPLIED SC!ENCE
DEPARTMENT OF CIVIL ENGINEERING

SHORE IV

finite Element Program for Dynamic and Static Analysis

of Shells of Revolution

'THEORETICAL MANUAL
by
0. M. El-Shafee, P. K. Basu, B. J. Lee
and

P. L. Gould

Research Report No. 57 Structural Division October 1981

This report is part of final report for
National Science Foundation Grant
PRF7900012

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

Ui.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 2218)






PREFACE

This manual describes the theoretical background of the software
{SHORE-IV) for the static and dynamic analysis of axisymmetric shells
and plates.

In this program the shell is disecretized by high-precision rota-
tional shell finite elements of any quadratic shape, The thickness of
the element may vary in the meridional direction. Special open type
elements are used to take into account the effect of regularly spaced
members at the base or at some intermediate level of the shell. The
shell may be isotropic, or orthotropiec (single or multi-layer), or
framed. The program can take care of both axisymmetric and asymmetric
external effects like mechanical and thermal loads, horizontal and
vertical base accelerations, and support settlements. For shells
founded over shallow ring footing the soil-structure interaction can be
included in the analysis, The soil medium may be shallow or deep
strata. The program can handle layered soil material as well as half-

space soil medium.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation,
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INTRODUCTICN

SHORE~-IV is a finite elsment program for the linear static and
dynamic analysis of arbitrarily loaded axisymmetric plates and shells.
It is written in FORIRAN IV language.

The meridian curve of the shell may have any geometric shape incliuding
cloged ends. Ino addition to commen boundary condltions, the shell may
he supported ca a series of regularly spaced ipelined and/or vertical
members arcund the circumference, (see Fig. 1). Such a framework may be
loczted 2t some intermediste level as well (see Fig. 2). Alsc framed
structures which follow the form of & surface of revélution can te
analyzad.

The shell is discretized by a series of curved rotational elements
and cap elements, if necessary. The thickness of an element wmay vary
linearly ir the meridiomal direction. Special ‘o.pen type elements' are .
used for frameworks at the base and at intermediate levels, Discontinuous
meridian curves are permissible, provided a nodal circle-is located at

such 2 discontinuity.






For the shell elements, the strain~displacement relationships used
in the formulation include the effects of transverse shear deformations.
Fourth-order Lagrangian interpolation polynomials are used to represent
various combinations of the definitive geometric parameters of the
shell. The coefficients of these polynomials are evaluated from exact
geometric data. In forming the element stiffness and mass matrices,
displacement fields of arbitrary order, actually linear to sixth, can
be used. As only C° continuity is required to be satisfied, the extra
coefficients in gquadratic and higher order displacement fields are
eliminated by kinematic condensation at the element level. Thus, the
size of the global problem is independent of the order of interpolation
polynomials. Proportional damping is assumed and the damping matrix is
arrived at through a linear combination of the condensed stiffness and
mass matrices,

In the case of the open type elements, the displacement fields are
taken as Hermitian polynomials. The stiffness and mass matrices are
formed by distributing the properties of the individual members around
the circumference.

Axisymmetric isoparametric quadratic solid elements are employed to
represent the finite element region of the soil medium below the struc-
ture, (see Fig. 3). The vertical boundaries which can be placed directly
at the foundation extremities, represent the far field as a semi-analytic
energy transmitting boundary(l)*, which is based on the exact displacement
functions in the horizontal direction and an expansion in the vertical

direction consistent with that used for the finite elements in the core

*Numerals in parventheses indicate references in the Bibliography.






region. The lowér boundary is assumed to be fixed, which is necessary
for the numerical stability of the finite element solution.

The connection problem between the three dimensional soil medium
and the two dimensional foundation element is solved by introducing a
frequency dependent dynamic boundary system at the common degrees of
freedom between the ring footing and the underlaying soil. The soil
model is formulated at the fundamental frequency of the structure on a
fixed foundation.

The static or transient loads include - councentrated line loads
(applied at designated nodal points), distributed loads (replaced by
consistent equivalent nodal loads), and thermal effects (expressed as
equivalent initial loads). Transient loads may also include earthquake
effects in the form of vertical or horizontal base accelerations.
Alternatively, the earthquake effect can be considered through response
spectrum analysis. Static analysis due to support settlements can also
be carried out.

All loads (or effects) which are not axisymmettric are expanded in
symmetric (and, 1f necessary, also antisymmetric) Fourier harmonics and
the final result is obtained by superimposing the results of each
harmonic. The distributed loads and temperature may vary linearly along
the meridian of each element. The temperature may also vary linearly
through the thickness.

For reducing the differential equations of motion into an equivalent
set of algebraic equations, any three step scheme or one step higher
derivative scheme can be used. The time step can be varied at will, In

selving the set of linear simultaneous equations, a very efficient

modification of the Gaussian elimination scheme which takes advantage of






the symmetric narrow banded nature of the global matrices is used. Free
vibration analysis is carried out by the combined Sturm sequence and

) . . . (2)

inverse iteratiocn technique .

For dynamic analysis including soil-structure interaction the

inertial coupling method is used and, as a result, no deconvolution is

required.

GEOMETRY OF ELEMENTS
The geometry of 'a general rotational shell element is shown in
Fig, 4., Points on the meridian of the element are defined in terms of

the nondimensional parameter s such that

|
0
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where

the length of the meridian of element 'i'
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The equation of the meridian curve of a shell element is defined by
2 z
AZ 4+ BRZ+ CR + DZ+ER+F =20 (2)

where A, B, C, D, E, and F are constants for the meridian curve, In the

case of open type elements A =B = C = Q.






The derivation of the element matrices will, in general, involve
numerical integration due to the presence of definitrive geometric param-
eters like l/R¢, 1/R, cos¢$, cosd/R, ete., in the strain—displacemeht
relationships (Appendix-A). In order to arrive at the terms of the
elemént matrices in explicit forms, these parameters are expressed by

(3)

fourth degree Lagrangian polynomials which satisfy the values of
these parameters exactly at five equidistant points along the meridian,
including the ends.

At the center of a cap element, R = 0 and R' = », so L and certain
other geometric parameters cannot be determined as described. This is
overcome(Q) by a suitable rotation of the coordinate axes into the
R-2 system as shown in Fig. 5.

Various axisymmetric shell and plate elements that can be used for
digscretizing the shell are shown in Fig, 6. Open type elements with
different member arrangements are also shown in the same figure. Dif-
ferent end conditions of the members of cpen type elements are shown in

Fig. 7. It may be noted here that no meridional discontinuity is allowed

at the lower end of an open type element, except at the base.

DISPLACEMENT FIELDS
Shell Elements
As-the effect of transverse shear strains are included in the

strain-displacement relationships, u, v, w, B Be-displacement fields,

¢,
Fig. 8, expressed as functions of s and 6, are considered. Each displace~
ment component is considered as a product of the meridiomal and circum-

ferential fields. The meridional field is a polynomial in s and the

circumferential field is represented by a finite Fourier geries.
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where

q(J)(e) = cos j@ for j » 0
= -gin j6 for 3 <0
‘E(J>(8) = -sin j6 for 7 > 0

[]

cos jO for j < O
u(l)(s), V(J)(s), sases etc. = nth degree interpolation
polynomials in s corresponding
to jth harmonic.
For a typical harmonic
0 (5,801 = 10139 (53} (4)

where

o) = 1497 )79 ()¢ (690 P ()5 (o) |
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Each displacement function is represented as an interpolation poly-

nomial of the form

a, ‘
ey = 3T, GmLs) (5)
Z=1

where Nk are the shape functions, as defined below.

Ny = {1-s)
N = s
N = $5"2(1-5), for k>2.
Also,
E% = the displacement at s = 0
3l = the displecement at s = 1

For further details see Ref. 5.
In individual members of open type elements, the following Hermitian
fields which ensure displacement and slope continuities at the ends of a.

member are used:

n

u

su, + (1-s) E

v = (1-38% + 233)Vt + (352 - 233)v5

et s(s2-s) Pc 8 5 : (6)
24043 2_n5e3

(1-3s%42s?)w, + (3s°-2s e

2
+ s(s=1) L, ez

&
i

-s(3=1)2 - 2
s(s=1) L, eyt s(s~~-s) L. eyb

s8__ + {1-s) Bxb

Sx <t






The nodal variables u 8 ., ete. are defined in Fig. 9 zand

62 o Ve By Ot
the nondimensional variable s = x/Lc. In the case of inclined.members,
it is necessary to transform the above displacements in local coordinate
system into those corresponding to the curvilinear coordinates of the
axisymmetric system. The variation of displacements can be accommodated
by using Fourier series expansions in § as was done in the case of shell
elements. Thus, the top and bottom end displacements of an inclined member

corresponding te the jth harmonic, with its center located at '§', can be

written as

(
%

0 (5,001 = 16,18, %(s) 3

(71

i (5,001 = 18,13,/ (a) )

where

s -2 % - 2 3% -3 {he - 8§ -

fo, |

and

ke +2) 3% + 5 e + 8 Ve + 9 o +

re | 3

In these diagonal matrices e is the horizontal angle subtended by the member
at the axis of revolution.
ELEMENT STIFFNESS AND MASS MATRICES
On substituting the assumed displacement fTields into the strain-
displacement relationships (Appendix A) the following expressions are

obtained. The membrane strain components,

3
- (1) (3 (3) L{3) (31 S0
{e} JE:[EI BOUETES ] et et
= -m
1






where
— - -t
1 aNi Ni
T3 ¢ B ° 9
9
N, cos ¢ -3 K N, sin ¢
(3 _ i i i
B o= R R R 6 0
=-JN 1 aNi N, cocs ¢
R ST B ¢ > 0
J H
fGJJ = fﬁj 33 9J i
o1 = 1e0e1el 301 e(Weo) eca) o))

{A('j)} = the vector of Fouriser coefficients for external nodal
variables at the top (s=0) and bottom (s=lj nodes corre-
sponding to the Jth harmonic

_ Gy Q) {3) W @y @) (3) (34,
= luy ™ vty B850 " Bgg U T T W Bs1 Bgy ~ 15
{Q(j)} = the vector of Fourier ccefficients for intermal nodal
variables of +the jth harmonic
- {al(J)’bl(J)’CI(J)’dl(J)’el(J),az(j)’bz(j)’CZ(J)’ Y
and {e}l = fs¢, Ty €¢e}

The curvature components,

my ,
{X} = Z {Xl(‘]),XZ ,*Ca('j),---] {A[‘j], Q[J]}
==y
my
= 30 bt b, Qb (9]
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where
e oy
3N
1 i
0 Q Q T "3e 0
-3N
(3 _ My
Xi = 0 g 0 Nicos¢ R
3N, W
i 1
0 e Q R L 58 " Nicos¢
[ PR —

and {X} = {X¢, XSJ X¢e}‘

The transverse shear strain components,

o2
e 30 0,0 ()l gl
d

=-m;

s
- :E:.EGa(J)l b3l Qlddy

J=my
where
=N, al,
——t L i
R¢ Q L 3s Nl 0
Yi(J) - :
-N.sin¢ -JN,
i i
B 0 3 A o] DI:L_“~
and {Y(j)} = {Y¢(J), Ye(j)}.
Expressing ’
[Gi(j)]
ot =) 16,91 | 1oy
e —-SxM

(10}

(11)
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where

M=2=+ 2(2+ni) , and
i=

ni = the number of inte:nal nodal variables for the i-th field,

the element stiffness matrix for the J-th harmonic becomes

.
9] - ff 6F 9 %aeld Yy rasds. | (12)
Q -7 -

(5)

The kinematically consistent element mass matrix corresponding

to any harmonic 1s expressed by

1-
(m] = L f[GmIT[am][c;m]Rds (13)
o

CONSTITUTIVE RELATIONSHEIPS
Shell Elements
The relationship between the force resultants and the strain components

are expressed by

]

{n} (2] (e} - (W] (k)
where

{¥} = the stress resultants and stress-couple resultants

as shown in Figs. 8 and 10

M

{N¢’N8’N8¢ ¢’M8,M¢8’Q¢’Qa}

the linear and shearing strains, and changes in curvature

{e}

]

and torsion corresponding to the above forece resultants.

R CIFLIPLIVE S P SR ST,
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[E] = the (8x8) elasticity matrix. The non-zerc terms of this
metrix in the case of isotropic and orthotropic materials?
and for framed shells are given in Appendix B,
and
{Nt} = the ipitial stress-resultants and stress—couples due to

thermal effects.

= {th’NtE’O’Mtcp te=°’
For an isotropic shell material
X % . % h/2
B = A = Eu
tp e80T fT(c)d;
-h/2
h/2
* _ » - Ea
-h/2
where
@ = the ccefficient of thermsl expansion
™Mg) =

for any point located at a distance f from the

middle surface.

Open Type Elements

(15)

the temperature difference from the reference value

The relationship between the force resultants at any section of a

member in the open type element and the strain components are sxpressed

by .
{§°}

[c°] {°} - {N:}
where

{xe}

as shown in Fig. 8

n

x Y,A ,L \IY,MZ}

(16)

the stress resulfants and stress-couple resultaants






L =13-

{e®} = +the linear and shear strains, the twist per unit length,
and the changes in cuwrvature on y and 2z
= {Esty:Yzaxanpoz}
[C°] = (6x6) elasticity matrix
s —_
AGA Q
AGA
GJ
o} B
EIIELi
[«
{Nt};‘= the Initial stress-resultants and stress-couples due to
thermal effect
= @, oM. o
= Ntx o} Mty ¢
* a/2
Ntx = Eg T(Z)bdZ
/2
" d/2
ey B f 7{2) bZ 4z
<3/2
where
[Gm]sm = [T‘Ilanz:ﬂs:ﬂu=n5=- LI ]

ng = [N, NN, NN,

(2]

n? nd . .
(ph,ph, ek, pia',gIE-] for isotropic shells
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The lumped mass matrix is arrived at by considering a unit accelera-
tion corresponding to each degree of freedem at a time and assigmng the

corresponding mass to the same degrese of freedom.

ELEMENT LOAD VECTORS
(s}

The consistent lcad vector for an element due to distributed loads,

qu("ﬂ‘, fe(‘ﬂ', and f;('” acting along the ¢, 9, and  directions corresponding

to harmonic j is expressed as

'{psu'}'} =1 fl[Gm]T[Gfl(Fsm}Rds | (17)
Q
where
(%] = UMy.fisfiasfinsfisser- ]
ﬁi = [Ni,Ni,Ni,0,0]
(6] = [Fy,72]
Ei = w{ﬁi, z‘wi, Ei, 0,01
. Ty = (1-s)
§, = s
{Fsm} - {%I(J), fa1(j)’ lem' fmm’ fezm* fczm}

The consistent load vector due to the thermal effect Is expressed as

1
el ea| f [G(J)lT[Ht][Gt]ds) i)y (18)
a
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where

o : —
a ub
uh h
0 Q
S
- 12 12
t Fa
- 1-u2 "%‘2‘ 1_11.;_
0 0
Q Q
| 0 Q ]
i o X 0
[6°] =
o ¥ o &

At £ ¢ S e~ ) S . 35

Q1

= the coefficient of thermal expaasion

EQUATIONE OF MOTION

(6)

Using Hamilton's variational principle the equation of motion can

be expressed as below. In the case of mechanical and thermal loads,
[£]1{D} + [C]{ﬁ} + [M]{D} = {F} (19)

whers

L]

the stiffness matrix;

[¥]
]

1]

the mass matrix;






]

[c]

(D}, (D}, (D)

{r} =

4,8

wy,uz

£1:82 =

-16-

the proportional damping matrix;

a [M] + 8[x];

the vector of nodal displacements, velogities,
and accelerations;

the load vector due to mechanical and thermal
effects,

constants depending upon the damping ratios
corresponding to two umequal natural frequencies

of vibration;

2uwjwy (w28, = wif2)
2 ?

)

2
(" = oy

2(wggp = wi81)

2 2 i
(“2 - Wi )

the circular frequencies;

the corresponding modal damping ratics.

In the case of base acceleration, (D}, (D} and {D} are messured relative

to the base and the load vector {F} beccmes -[M]{ﬁg} whera {ﬁs} is the

vector of base accelerations: as discussed later.

In the case of free vibration analysis, the loading and damping terms

are dropped and the resulting eigenvalue problem becomes

[K1{D} + [M]{D} =0 (20)

For static analysis the damping and inertia terms are dropped from

the sgquation of motion.

The global stiffness and mass matrices [Kland [M] for each harmonic

are of size (SHx%SN)}, where N is the itotal number of nodal cirsles. These
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matrices are assembled after computing the condensed element stiffness

and mass matrices. The case with & discontinuocus meridionazl curve at a node
needs special trestment and is taken care of by defining a master set of |
coordinates at such a nodal circle and transforming the stiffness and mass
coefficients of the adjacent element§ to coincide with these coordinates,

The (SNxl) global load vector, {F}, for esch harmonic i3 computed by
algetraically combining the condensed nodal leading vectors for the elements;
In the event of a finite discontinuity at a node, the forces for each
element are transformed to the master system for the node.

By a simple fransformation from Cartesian to curvilinear coordinates
the base acceleration vectors for vertical acceleration (j=0) and horizon-
tal acceleration {(j=l) are expressed as

{ﬁg(o)} = {sin $; =~ cos ¢, 0 vevoosin 9~cos 9. 0 ...,

| sin ggy - cos by Q} év

{ﬁs(l)} = {~ cos 8«cos ¢, sin 8§, -cos 8:sin ¢, O O..... (21)

~ ccs 8 cos ¢f sin 8, =cecs 8°sin ¢i 0 QOuvene
.; cos 8 cos ¢5N,sin 8, -¢cos 8 sin ¢5N 0 O}gh
vhere g& and éh are the vertical and horizontal components of base

acceleration.

CONDENSATION OF MATRICES
The kinematic condensation of the stiffness and mess matrices and
the load wvectors to eliminate the internal degress of fresdom at the
element level reduces the overall size and bandwidth of the resulting
set of equations. In the case of dymnamic résponse analysis assumiﬁg
prepertional damping, the equation of motion for an element may be

written in partioned form, with the harmonic index suppressed, as
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— ~
krr’ krc Dr Krr Erc. Dr
+ 8
k D e & D
e ce c er ce ¢
(22)
r' R ey
m oo} . m m by
Y re Dr pogieg e Dr Pr
+ a - + . :
b P
m m o! m m c ol
| cT ce cr cc

where the subscript r denotes external degrees of freedom and ¢ denotes
the intarnal degrees of freedom to be condensed.
The sbove equation can now be expanded as

+ +
kerr * k'rch * B kerr' 8 Krch ¢ merr Ta mrch

N

+ merr + mrch =P (23]
kR D +%k D +8k D +38k D +am D +am D
cr T cC < cr r ce < cr r ce ¢
+ m 5 + m 5 =P
er’ T ce e c
Solving the gecond equaticn successivaly it can be shownm that
D +8D =k T (F -k (D +80D))
] e ce e er T r
-1 -1 -1 = '
* (kcc Bee kcc kcr - kcc mcr) (Dr T Drz
(2b)
+ Higher order terms

e -l’ i .. . .
o R (o D, + Dr) + Higher order terms

2
o
+
o
n
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It should be noted that the last two equations are essentially based on
the assumption of simple harmonic motion which is necessary to effect a
kinematic condemsation in this form.

When the higher crder terms are neglected and the last two equations

are substituted in the first, the condensed equation of motion becomes

(K] 4,3 + (8 [R] +a (&) (B} + [&] {D,} = (P} (25)
in which

[k] = k1:1: - krckcc—l cr

[El] = mrr * erkCC—l mCCkCC-l mCCkCC-‘l cr - erkCG_l mcr

—erkCC-l cr

and

{é} =t T ka:r:l‘:ccm1 t;-;

S0IL MODEL

For viscoelastic material and a cylindrical coordinate system

(Fig. 11), Hamilton's principle becomes:

2
f Geij Uij dv --f § ui(bi + o8 ui)dv ~f P éui dA = 0

v v 8 (26)
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in which

i=r, 2z, 6

u, = displacement vector
., = strain temsor

1]
g., = stress tensor

1l

bi = bhody force vector

¢ = mass density
Q = driving frequency

p, = load vector

In equation (26) the quantities are, in general, complex. However,
for real elastic moduli, the stresses will be real and in phase with the
strains and displacements. An alternate form of equation (26) is

obtained using integration by parts, resuliting in

2
v/P 5ui(cij,j + bi + pf2 ui)dv +J/~ Sui(pi—njaij)dA =0 (27
v gt
in which

nj = unit outward normal on the boundary

For arbitrary variations of virtual displacements Gui, equation
(27) yields the body and boundary equilibrium equations.
If ¢ denotes the shape function for the isoparametric formulation

and
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fur = fo] {uy} (28)
2” 0

where [CI>]T = @T (29)
0 @T

equation (27), for a cross-—anisotropic material, becomes
2
2 s{uO}Tffq@][A}T[nMA][@}T—pn (017017 {uy} rardz

elements
—f[@]{ﬁ} rds} = 0 (30)

where

]

[A] operator matyix relating the strain tensor
to the displacement vector

and

constitutive matrix

(D]

h . . .
For the kE—'element, the consistent mass matrix [Mk], the stiffness

matrix [Kk] and the load vector P, are defined as

k

[Mkl =ffp{®][®]T rdrdz

(K, ] =ff (o] [ATT[DI[AI(&]" rdrdz , (1)

(7,1 =f{¢>]{5} rds

respectively.
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The global mass matrix {M], stiffness matrix [K], and the load

vector {P} are related by the familiar free vibration equation

((X] - @2(M]) {u} = {P} - @2)

where {u} stands for the total nodal displacesments and ¢ is the

driving frequency.

Equation (32) should be modified to include the effect of the far
field on the finite element region. This can be achieved by con-
sidering the equilibrium of the vertical boundaries of the core region.
If the core region of Figure 1 is removed and replaced by equivalent
distributed forces corresponding to the internal stresses, the dynamic
equilibrium of the far-field will be preserved. The relation between
these boundary forces and the corresponding boundary displacements is
the dynamic boundary matrix to be added to the dynamic stiffness matrix
of Equation (32).

For a consistent boundary, it is always possible to express the
displacements in the far-field in terms of eigenfunctions corresponding
0 the natural modes of wave propagation in the stratum. A discrete
eigenvalue problem can be cbtained by replacing the actual dependence
of the displacements in the vertical direction by an expansion consistent
with that used for the finite elements,while retaining the exact
solution in the radial direction.

Consider the toroidal section of the far-field iimited by twé

cylindrical surfaces of radii r, and r;, as shown in Figure 3. An






isoparametric representation for the nodal displacements in the

-2 3-

finite element region is convenient (1):

{uappn}

where

V]

and

I

I}

[¥] u, 3

n

the approximate nodal displacements for

the nzﬁ layer

the expansion matrix

lisz 7 Tp 354 ]
k x H
247

x H. + x. H!

To lisz 0 Shep

(33)

(34)
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in which
{X., X., X,}. = nodal displacements cf node i
1 2 371
ry = radius of the vertical boundary
k = wave number (unknown)
j = Fourier mode number

- gkd)
H, = I-Ij (kro)

= second Hankel function

Equation (27) is now rewritten in matrix form (1)

u/t/;{u}T + [H}+{Z} rdrdz +~/ﬁ S{u}T({P} - {6})rds = 0

where [H] is a matrix depending on the wave number k, on the
driving frequency @ and the radius r; and {Z} is a vector depending

only on z.

In addition, the modal wave equation (1) is considered
{H1{Z} = {0}

Equation (36) represents the body equilibrium equation, while
the second integral in Equation (35) represents the boundary equili-
brium equation.

Summing over the ! layers, with the requirement £for the
integrands over SO and Sl to vanish (Figure 3) and with no external
prescribed forces acting at the layer interfaces (82 and 83),

Equation (35) becomes

(33)

(36)
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53

2
E [}C/g{u}T[H]{Z}rdrdz -‘/ﬁ S{u}T{G}rds - d/ﬁ G{uﬂ%c}~rds] = 0
S
n=1 2 .

(37
which leads to an algebraic eigenvalue problem with 6% eigenvectors
(medes of propagation {x}i) and the corresponding eigenvalues (the
wave mumber ki). The details of the wave propagation problem are
available elsewhere (1).
The equivalent distributed forces corresponding to the internal
stresses {E}i at the vertical boundaries can be formulated in terms
of the mode shape {x}i and weighted by the modal participation
factor e, such that
hi
P}, = o 1, ‘/F N Tie3, dz (38)

with 0

1T, = (NTTINTIST, ¢ INDTINTDOTI ) 3, : (39)

where

(40)

e
(4213
e d
i
n

and T

=

[
[]

3

-4 9xg
in which Si and Ti are 3x3 matrices containing the wave numbers ki

and Hankel functions with first and second derivatives.
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Summing the contributions of each mode gives the boundary.

load vector,

61
P}, = 2 a.r (5}, (41)
b 4= TITOTTL
i=1
where
4 = total number of layers
{i}i= the boundary vector which contains the wave

number ki, the wave mode shape {x}i, and the
layer properties (1),

An alternate form of equation (15) in matrix notation, is

42
{P}y = rylx*]{al (42)
with [x*] = [{x}l{x}z ..... {x}i ..... {X}6£1 (43)
= the boundary matrix
and
{a}T = {a #u ) @, .} (44)
17277717 e
= the modal participation factors vector
The boundary displacement vector {u}b is formulated in a
similar way and the resulting displacement is found to be
{ud, = [u*]{a} (45)

with

it

(u*]

the displacement matrix ().






~27-

Equations (42) and (45) lead to the boundary dynamic stiffness

matrix of the energy absorbing boundary [R]b:

= % 1fux]
[R], = r,lx*][us] (46)
The total global dynamic stiffness matrix of the soil medium is
given by
2
kK1, = [K] o M] + (R] (47)
where
[R] = the matrix given by Equation (46), expanded to
the dimensions of [K] and [M] of Equation (32).
Finally, Equation (32) becomes
[K]S{U} = {P} (48)

Considering Equation (48), with the RHS all equated to zero except
for the value at one of the common d.o.f, which is set to umity, and
solving for the displacements at the common d.o0.f., the complex compliance
matrix for the foundation [C] can be obtained. The complex impedance

matrix [K] is then found by inverting the compliance matrix [C], i.e.,

[®] = (¢t (49)

In Fig., 12 the common d.o.f. are associated with nodes m~2, m-1

and m, and the resulting impedance matrix [R] will be of the order 9x9.
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Herein prescribed forces rather than displacements are used to avoid the
complex mixed boundary value problem which could result from the traction
free condition outside the structure-foundation interface.
The Connection Model

The comnection between the soil medium and the ring footing is
established by eliminating the six degrees of freedoms at the corners D
and F shown in Fig. 13 while forming the rotational d.o.f. at E from the
eliminated degrees of freedom; in other words, the nine d.o.f., are
lumped into five d.o.f. at the mid point of the footing base. The base
uplift is treated by restricting the contact stresses between the soil
and the feooting to be compressive or shearing, but not tensile., Mild
tension may be admissible but no gquantitative results are available as
yet,

In order to formulate the soil stiffnesses and damping at the

connecting nodal point, the following method is commonly used:

~
[
~

. ZDKi (50a)

@]
il

(Ei + 2Dir) /% (50b)

where Rr + iﬁi is the complex soil-stiffness with none material damping;
D is the material damping parameter independent of the driving frequency
1. It is obvious that beth K and C of Equation (50) are frequency
dependent since Rr and ﬁi are frequency dependent and the material
damping affects both stiffness and damping.

The nine stiffness elements of Fig. 14 are obtained from Equation

(50a) by considering each stiffness element on the main diagonal as
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a linear spring in the corresponding direction. The stiffness elements

of the connection model are formulated from these nine stiffnesses:

Ky + Ky + Ky

~
]

-~
it

Ko + X5 + Ky

-~
L]

v Ky + Kg + Kq (51)

-~
]

~
L]

The damping system is formulated from matrix C (Equation (50b)
in a way similar to the stiffness elements of the connection model
discussed above. The resultants in the five degrees of freedom at

the center peint E of Figure 13 are eyaluatred as follows:

C_=Cy +Cy + Cy

u

Cw =C; + L5 + Cg

CV = Cy + Cg + Cq (52)
EZ
BZ

Cy = 3 (€3 + Co)

For obvious reasons the connecting model is named the Equivalént
Boundary System (EBS) for the ring footing. The EBS is frequency
dependent and must be updated for each Fourier harmonic. In Equations
(51) and (52) the K'siand C's are the modal values and they are
expressed in Fourier series in the @ direction. Figure 3 shows the
modal translational and the rotational stiffnesses and damping

elements at the midpoint of the footing base.
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SOLUTION OF EQUATIONS OF MOTION

After assembling the system matrices and vectors by the direct
addition of the terms corresponding to each degree of freedom in the
element stiffness and mass matrices and vectors, if the scil structure
interaction is not considered, the boundary conditions are enforced by
'zeroizing' the rows and columns of the stiffness, mass, and damping
matrices corresponding to the constrained degrees of freedom, with the
exception that the diagonal term in such rows and columns of the stiffness
matrix is set equal to one. At the same time, the terms in the load
vector corresponding to these degrees of freedom are replaced by the
given values of the constraints, which may be non-zero. In the case of
non-zerc values of the constraints, the other terms in the load vector
are suitably modified. Howevexr, in the case of eigenvalue problems, it
is more convenient to disregard the rows and columns in the system
matrices corresponding toc the degrees of freedom defined as zero.
Free Vibration Analysis

Apart from its use for the first step towards linear dynamic analysis
by mode superposition and also for a response spectrum analysis, the
solution of the eigenvalue problem is helpful in selecting a suitable
time step for direct integration algorithms. The characteristic features
of the eigenvalue problem at hand are that the stiffness and mass matrices
are positive definite, narrow banded, and symmetric. Moreover, only a
few eigenvalues, usually the first few are desired. All of these features
are exploited in an algorithm put forward by Gupta(z). This algorithm
makes use of the Sturm sequence property of the principal minors of
{([m] - Alk]) to determine the number of A2 lying within a given range

(AU, AL), where A is equal to l/mz. Then the upper and lower bounds of
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individual roots are determined by repeated bisection and application of
Sturm éequence properties. Finally, the rocts are accurately located
and the corresponding eigenvectors are found simultaneously by inﬁerse
iteration using the mean value of the roots based on the bounds estab-
lished earlier and starting with a unit eigenvector. During each itera—
tion step a new adstimate of Ar is obtained using the Rayleigh quotient.
For every root only one triamgular decomposition of ([m] - A[k]) is
performed.
Static Analysis

The set of 5N equations are solved for each harmonic using a modified
version of the Gaussian elimination method which takes advantage of the
symmetric narrow bandedness of the stiffness matrix and the fact that
terns in the rows and columns corresponding to the constrained degrees
of freedom are zero except the diagonal term which is equal to one.
Time History Analyseis

The solution of the 5N second order equations of motion may be
carried out by direct integration. The equations are first reduced to
SN algebraic equations by the direct application of unconditionally
stable differencerformulas. Such formulas may either be single step
higher derivative types like those in the Newmark-f scheme {(with B=0.25),
Wilson-9 scheme (8=1.4), etc., or multistep types like Houbolt's formula.
Then these equations are solved step-by-step for the given digitized
load function. The various steps involved in the solution procedure are
as follows:

(1) Setting up the linear stiffness matrix [k], the mass matrix

[m}, and the scaled load vector for the harmonic under consideration.
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(2) Introducing the boundary conditions and setting the vectors
D%}, {ﬁ°}, and {B°} to the given initial conditions. The initial
conditions for at least two vectors are required to be defined.

(3) Choosing a suitable time step, At, based on the period of
vibration of one of the higher modes for the harmonic under consideration,
determining the proportional damping coefficients, and calculating the
parameters Al and A2 to AS’ or ;2 to AS’ of the integration scheme used.
The expressions for these parameters are given in Appendix C.

(4) 1If only two of the initial conditions are specified, it is

necessary to solve the following equations for the vector which is unknown.
[K] {D}° + (o [M] + 8 [K]) {D}° + [(M] {D}° = {F}° (53)

(5) If a multistep scheme is being used it is necessary tec estimate

the displacements at -At and -ZAt using the following equations.

-1

2 .
(D}t = {D}° - ar (B} + A- (D}°

(54)

-2

(D} —{D}° + 2{} T + at® (D}°

(6) Setting up the equivalent stiffness matrix
[K] = [K] + Al [M] (55}

(7) Triangularizing [K] which must only be dome once.

(8 Calculating the equivalent locad vector

R =81 (F}" + L-8) 1, {F} (56)

where lr is the load coefficient for the rth step and 5 = 1.4 for Wilson-8

scheme and equal to 1 for other schemes.
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(9) Solving for {D}" by back substitution of {R}" into the decom-
posed equivalent stiffness matrix.
(10) Calculating the displacement, velocity, and acceleration

vector for the rth step using

D) = ()7 + 4, 07+ YR+ 4y 0 s,

L r _ r-1 - -1 Sar=1

{D}" = A, {D} AL, {D} ST {D} - A, {D} (537
TLT r _ r-1 _ s.r-1 e I=1

{p} = Ag {D} ag {D} Arg {D} Ay {D}

in the case of single step higher derivative schemes, or

SIS -1 7 -2 7 r=3y ;5
{p} = ({D} + A6 {D} + A7 {D} + A8 {D} )/A2
D} = (2,01 + (03"t 4 B (017 4 B, (01T /e (58)
D} = (2 0)7 + B 0} + B (0} 4 2 0 Y e

in the case 3-step schemes. The parameters appearing here are defined

in Appendix C.

DETERMINATION OF STRESS RESULTANTS AND STRESSES
The stress resultants are computed at the nodal points using the
global displacement vector {D}. The stresses at the intermediate points
are determined after finding the coefficients of higher order displacement
terms. | .
Once the stress resultants are known, the stresses at any point in
the shell can be determined. For instance, in the case of orthotropic

layered shells,
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at the midsurface,

Y
g, == ()
AL Ae
(59)
T (%_9)
qb? Ny A4
and at the outer surface of amy layer,
g = ;__(523 " Eﬁl z )
¢ e Ae —'Se k-
(60)
i} M
o0 }1_' (A'e z s'e )
k e e
where
Bok th
e =F o i.e., ratio of Young's moduli of k™ layer to that
..|¢n
for the outermcst layer (See Fig. 10)
G
“ﬁ = EQQE; i.e., ratio of shear moduli eof kth layer to
¢on :
that for outermest layer
n-1
Ae = hc RS 21l hk Me *2 hn
k=1
' = £ '
Ae same as Ae with The replaced by Me
n~-1 ) k . :
s, =33 lln -1 - £ (L-n) (2 1 n)+n)+nd
k=1 k=1
! = 3 !
Se Same as Se with nk replaced by nk
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w
[}

the distance of outer fibre of a layer 'k'.

(total number of layers - 1)/2, that is the number of

s}
(]

of pairs of symmetrical layers in addition to thé central
one. ‘
In the case of isotropic shells under thermel loading, the above
formulse become

at the midsurface,

o oY Exm0)
h

¢ L-u
(61)
o Toe
%9 = n
and at the ocuter surfaces,
_ fﬁ. & M¢ EaT(:p/2)
9% T TR IT 2 T 1-
% h U
N 6 M (62)
o - _Q§_+ &8
48 h - hE

In the case of framed shells the forces in the framing members in the o
and 8-directions can be obtained by simply multiplying the stress~
resultants by the spacing of the meridicnal and circumferential members,
respectively.

GENERAL FEATURES OF THE PROGRAM

SHORE-IIT program is designed for the linesr static and dynamic

analysis of axisymmetric shells (and shell-like structures) and plates.

It is written in FORTRAN IV language and has been developed on an IBM
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360/65 computer. It is an in-core solver requiring less than 500k in
high speed storage. Tor running the program it is necessary to use
an overlay structure (see fig. 5, SHORE-IV Users Manual). All calcula-
tions are done in double precision with 32 bits word length.
As can be seen from the flow diagram for SHORE~-IV  shown in Figures
15 o 19, the complete soluticn process, which is done harmonic-wise,
can be divided into five steps:
Step 1: Data Input
The input data for geometry, nodal location, material, loading
(Harmonic-wise), control data, etc., are read and, if necessary,
additional data are generated. All dataz are stored in common
arrays and temporary disk files.
Step 2: Generation of Element Matrices
Corresponding to the current harmonic, the stiffness matrix
and, if necessary, the mass matrix and/or the loading vector for
each element are generated. Thase are stored in temporary disk
files.
Step 3: Assembly of Global Matrices
Por each harmonic, the stiffness matrix and, if necessary, the
mass matrix and/or the loading vector for the structure are assembled
and stored in temporary disk files.
Step 4: Calculation of Response
For each harmonic, the desired struetural response is calculated
and the results printed out in desired formats. Pertial and total

effects ¢f the harmonics are z2lso computed znd priated.
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Step 5: . Time History Flots
In the cagse of time history analysis by direct‘integraticn,
the time history response plots can be obtained on the line printer.
Alternatively, 2 plct tape can be created for obtaining off-line
time history response plots on a Caleomp plotter,
Purther details about the program are discussed in the SHORE-IV
Users Manual.
EXAMPLE PROBLEMS
Freeg Vibration Analysis of Cylindrical Shell
The free vibration analysis of the shell shown in Fig. 20 is
carried out with seven and twelve elements for p = 2,3,4,5,6. The
results for the first fowr harmonics with p = 3 zand seven elements are
shown in Fig. 21. Comparisons with the results obtained by Donnell's

(7) (8)

theory and experiment , and numerical Iintegration are also shown.
SHORE-IV seoluticns show good agreement with others, The convergence
characteristics with different values of p in the case of the zerseth
harmonic is shown in Fig. 22. In the case of the Ffirst mode, the
solution appears %o be independent of p, but in the case of higher meodas
the scluticn seems to converge as the degree of polynomial interpelation
is reduced.
Free Vibration Analysis of Hemispherical Shell

The hemispherical shell shown in Fig. 23 is discretized with thres,
five and ten equal elements and analyzed for the zeroeth harmonic using
third and sixth degree polynomizl interpolations. . The natural fregquencies
for tkhe first four modes are spown in Fig. 24. The analytical solution

obtained by Kalmnins and Krzus (9,10) based on Reissner-Naghdi theory
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which includes both transverse shear and rotary inertia effects are also
shown. It-may be noted that in the case of the 6th degree polynomial
interpolation, the soluticn shows excellent convergence as the number of
elements is increased; whereas, in the case of third degree polynomial
interpolation the solution shows improvement as the number of elements
is increased. The convergence characteristics of SHORE-ITI solution
with increasing degree of polynomial is shown in Fig. 25. It may be
noted that higher values of p showed counsistent behavior. But, in the
case of the third degree polynomial, good results are obtained in the
case of second and third modes. The first four mode shapes for the
shell as obtained for p = 3 and five elements are shown in Fig. 26. It
was found that these mode shapes are nearly the same as those with ten
elements.

Free Vibration Analysis of Empty Water Tank with Soil Interaction Effect:

The tank shown in Fig. 27 was analyzed using sixth-order general
elements; the seventh element is the ring footing of the tank. The soil
is modeled using sixteen isoparametric quadratic solid elements. The
s0il model is amalyzed at a driving frequency of 358.8 rad./sec., which
is the fundamental frequency of the tank on a rigid foundation.

The first five mode of vibrations along with the corresponding
frequencies are shown in Fig, 28, It may be noticed that the funda-
mental frequenéy of this stiff structure dropped from 358.8 rad./sec. to
151.6 rad./sec. when the soil interaction is considered. A better soil
model may be obtained if the analysis is repeated at the new fundamental

frequency {151.6 rad./sec.).
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Static Analysis of Hyperboloidal Shell
The column supported hyperbelic cooling tower shown in Fig. 29 was
analyzed for a mean wind pressure expressed in terms of the following

six harmonics.

Harmonic Number Fourier Coefficient
0 -0.064317
1 ~2.072503
2 -3.846021
3 -3. 404910
4 -3.962074
5 0.3289617

The shell was discretized using ten general axisymmétric shell
elements and one open type element at the base (Fig. 29). The variation
of the mean wind pressure in the meridional direction was assumed to be
constant. Sixth degree polynomial interpolations of the displacement
fields were used in the case of shell elements. The C.P.U. time required
for running *the problem was 1.5 secs. per element for each harmonic

loading case. The membrane and bending stress resultants, N, NS’ M

$ ¢’
Me, at 8§ = 0° obtained by the analysis are shown in Fig. 30. The nature

and distribution of forces and moments in the shell agree well to those

(11

reported in past literature The nature and distribution of the

forces and moments in the columns are shown in Fig. 31.
Cylindrical Shell Under Blast Load
The cylindrical shell (Fig. 32) is analyzed for the zerceth harmonic.

only as shown in Fig. 33. For this harmonic, the time period corre-

sponding to the third mode is 2,42 x 10-4 sec, whereas in the case of

the f£ifth mode it was found to be 2.415 x l()-.4 sec. Thus a suitable
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value of the time step, At, at one tenth of the period is approximately
2.5 x lO_5 sec, However, the first time step cannot exceed 5 x 10-6 sec.
but larger time steps can be used after this step. The normal displacement
at the top of shell as obtained by SHORE-IV and by Johnson and Greif(lz)
are shown in Fig. 34. It may be noted that there is excellent agreement
between the SHORE-IV solution and Johuson and Greif's solution based on
numerical integration.
Hyperboloidal Shell wnder Dynamic Wind Load

The tower shown in Fig. 29 is analyzed for the wind loading shown
in Fig. 35. The digitized wind data is at 0.5 second intervals. The
damping coefficients used are o = 0,276 and 8 = 0.0058. The time step
used was 0.025 sec., which is about 1/50th of the fundamental period.
The pressure was assumed constant over the height of the tower, and the
eight harmonics, as shown in Fig. 35, were used. The resulting time
history of the normal displacement at throat level and the meridional

force (N,) are shown in Figs. 36 and 37. The SHORE-IV solution was

4
based on eleven third order elements (Fig. 29), whereas, in Ref. 13
twenty elements were used,.
Rasponse Spectrum Analystis of Hyperboloidal Shell with Soil Interaction:

The tower shown in Fig. 38 is analyzed under the ground motion
given by the response spectrum of Fig., 39. The damping ratios for both
the shell and the soil are 5% of the critical damping ratio. The analysis
of the soil is carried out under arbitrary driving frequency of 20 rad./sec.
2

The soil medium is an elastic half space with shear modulus of 1600 k/ft

and Poigsonfs ratio of 0.4, The RSS of the N M, and Me are

¢’ Ne’ Ne¢’ ¢

plotted along the circumferential axis for selected nodal points in
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Figs. 40 to 42. For comparison the same problem with fixed base results
are plotted with dashed lines on the same figures,
Time History Analysis of Hyperboloidal Shell

a. With soil effect (EBS)

b. Without soil effect (fixed)

The tower of Fig. 38 is analyzed under El-Centro earthquake (5-18-1940)
EW Comp. The s0il medium is considered as an elastic half space as in
the response spectrum analysis, and then the analysis repeated with
fixed lower boundary at node #10. The time of the analysis is taken as
five seconds and the time step for Newmark B method integration is taken
0.02 second in case a, and 0.005 second in case b (fixed base). The
damping coefficients (a=0.715779 and B8=0.003356) are obtained based on
5% damping ratioc for the first two modes of vibration (the modes of
vibrations are obtained during the response spectrum analysis). The
time history results are shown in Figs. 43 to 49.

For further details about these problems see Ref, 5,
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Figure 4. Geometry of Axisymmetric Shell Element






—4f—

Wi

INFINITE SLOPE

R CAP -ELEMENT

GENERAL ELEMENT

T T T o e e 2 P ﬁW‘

Figure 5. Rotation ef Axes for Cap Element






47—

CODOE

TYPE

GENERAL
(CURVED )

A

CAP

{ INFINITE .
SLOPE)

A

CAP

( FINITE
SLOPE )

A

CAP

(FLAT
PLATE)

GENERAL

(FLAT
PLATE)

Figure 6.

Library of Elements







—48-

CoOE| TYPE SHAPE
6 OPEN //
7 | OPEN
8 OPEN V w
S OPEN V N

Figure 6.

{Contd,)







~49—

L2LLE Vs rd

FULL CONTINUITY AT .
' BOTH ENOS
CODE NUMBER: |

777 7777 Vi d

MEMBERS MONOLITHIC
PINNED ENDS
CODE NUMBER:2

MEMBERS AND ENDS
PINNED
CODE NUMBER: 3

o/ sidd Wrririd

TOP. ENDS LIXE CODE NO.!
BOT. ENDS LIKE CODE NO3
CODE  NUMBER: 4

TOP ENDS LIKE CODE NO.2
BOT. ENDS LIXE CODE NO.3
CODE  NUMBER.S

TOP ENDS LIKE CODE NO3
BOT. ENDS LIKE CODE NO.J
CODE _NUMEER: 6

TOP ENDS LIKE CODE NOJ3

BOT ENDS LIKE CODE NO2
CODE _NUMBER: 7 |

Figure 7. End Conditions of Open Type Elements
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Figure 9. Bar- Element
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Figurs 13. Ring Footing Cross Section
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Figure 18, Flow Chart Segment foe SHORE-IV  Progranm
(RESPONSE SPECTRUM)
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RESULTS JF EIGENVALUE ANALYSIS FOR MQDE NO. = 1
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Figure 28. Water Tank Results
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Figure 28. (cont.)
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Figure 28. (cont.)
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' APPENDIX B — ELEMENTS OF CONSTITUTIVE MATRIX

_ The elements of constitutive matrix [H] for isotropic and sihgle-layer

orthotropic shells are given below.

Isotropic Single~layer Orthotropic
Hll Aih th‘
le u gih u¢e th
Moo
. Hiz Aih th
_ Hag
Haq (1;u1Aih/2 @¢ah
3 3
L Ab /12 & h3/12
. 3 310
H45 U Aih /12 u¢e Aéh /12
_ U,
B Ah3n2 i
55 3
, 1 Moy AoR¥/12
_ 3 3
B | l(l-u)Aih/2 AG¢nh
Hog A(:L-y)Aihfz . AG,h

A = E/(1-u2); h = total shell thickness at any point in the meridian

A = shenr factor {to suppress transverse shearing strains, i.e.
Kirchhoff hypothesis, set A=100)

>
|

= E¢(;'- ”e¢'“¢e)

E¢ = Young's modulus in ¢é-direction

u¢9, ua¢ = Poisson's ratins for ¢'or‘e directions with respect to
§ or ¢ directions

G¢0, G¢n’ Gy, = the shear moduli for $-8, ¢-n, end 8-n planes
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The elements of the constitutive matrix [H] for symmetrical multi—iayer
.1;ye: orthotroplc shells are given below. ' ' |

Multi-layer Orthatropic

A)h
Hiy o % (A kK X
| A
le E}.:J (U¢e O)khk
. H ]
D),
Ha2 h o Hgy © KE
G .} h
Hyg . ;18( s8)x %
E 2 h 2 i
{(a ) + 'k In
g 2 (a), (o -1-5) .
) 2 Il:'{z
B, . T g A0, (5 * 75 )y
2
o
g1 Ty,
Hss z (ue¢ Ay) (o + T2
5 I 2 hkz
2, b
AL
B, c (Gm)khk
' b
Hog lgf(Gen)khk

(Ao)k, ete. = the value of A_, ete for layer 'k' at any point
hk = thickness of layer 'k'
:k = the distance from the centroid of layer k to middle

surface, assuming symmetrical layers (see Fig
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APPENDIX  C-DIRECT INTEGRATION SCHIMES

1. Single Step Higher Derivative Schemes:
After the stiffness matrix [K] and mass matrix [M] has been formed,

it 1s necessary to evaulate the following constants.

P, P P, P
1 2°3 @ 2 2°3 8
A = ( + -~ ) / (P, + -}
.lA Pl Atz Pl At 3 Pl At _
o - pla2fig
2 3 Pl At
, ‘1 Py Pyla -4 8) 1 2
Ay = 7 t 73 At SR I
P. At 1 3
1
‘ P.P.
B, = = r (Gt R Ay e
P, AL 1 3 ' '
1
P, P
. 1 2 Py |
kg (——2Pl D o+ (5= -1)-4p)ee +
1
. p_-1
2 3
g2 st (=2—)
(Py =Py 4 == + ° Py
1
A = (A, - == )
6 27 %y
<]
A7 = { A2~l ) At - 3;
P. P P (P -1) '
_ 273 3473 2
Ag = ( =5 -1 )g ot + 3 At
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1
A =
9 2
Pl At
All. = l -
0. Pl At
i 1
A= ¢ 72, T )
by
2 Pl At
P
2
A= {(z=-1)
. 13 Pl
A, = ( ~32-~ 1) At
14 2e
1
where
Pl’ Pos P3 = the parameters of integration scheme
At = the time step
a, B = the coefficients of Rayleigh damping matrix

Next, it is necessary to form the modified stiffness matrix,

followed by forward elimination,

(K] = (K] +4, [M]

Then, the modified load vector is formed as below.

1-Py

Py

{§(t+ﬁt)} = {F(c+at)} + {F(e)}

+ M) (agla(e)} + A A(0)} + A5£X(c)})

It is
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Finally, the displacements {£(t+A t )} are calculated by back substitution.
Thus,

{(A(e+ )} = (RK]™F {F(eae)}

and the true displacement vector at time 't+At' will then be
(A(ehae)} = ((B(eam)} + AA(D)} + A AR} + A MDD /4,

the corresponding velocity and acceleration vectors are then calculated from

[}

{A{e+AL) } Alé{A(:+Ac)} - AlZ{A(:)} - AIS{ACt)} - Alé{A(t)}

[}

(A(ehn)} = aglaleran)} - agla(n)} - alde)) - a0}

3 = 1.. For the Wilson-€ method,

P, = i/é and P2 = 1/2, For an unconditionally stable scheme, in the first

In the case of the Newmark-f method, P

case, cne should take P, = 1/4 and P, = 1/2, and in the later case P, = 1.4,

1 3

2
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2; Multistep {3~-step) Schemes:

~ Here the constants to be evaluated are

. ‘ P
S Y °5 . ‘ )
R A1 - { it f Pia Y/ (A + Plg}
P
- 18
'42 (1+ At )
Z =v- P6 _ PZCQ h's ‘%1)
3 At2 At
A o P7 _ P3(C€ —SAI)
4 AtZ At
- PS PA(thj-B AA].)
Ay = =~y - At
. At
M Fyf
6 At
.
PO
7 At
- 94
Ag = -
At

where Pl’ PZ’ etc. are the parameters of integration scheme.

Here the modified stiffness matrix and load vector will be

[R] = (K] +4 (]

{(F(erat)} = (F(eran)} + D] (A5(a()} +

;4{A(t—A;)} + ES{A{t~2At)})






-101~

:As iﬁlscheme 1, after solving the followiﬁg for {E(t+At)}
[ﬁ] tA(ear)} = {F(eraE)}
_theidisplace;ent vector is calculated from
{L;(t-!'At)} = ({Z\(&At)} + AG{A(t)} +,§7(A('c-ac)}

+ Aglace-an)) /&,

In the case of the first time step, i.e. at t=4t, it is necessary to

modify some of the aforementioned constants as below,

¢y

(P3 + 8P4)B

C, = (P7 + 8P8) + (P3 + 8P4)a_

* = ~-PC
&, (Aq = 2,C,)
AS* = (AS - P4C3)

ar

' i A A A * *
_ For this step, Al’ A3, AA’ and A5 are to be replaced §y A*, A3 .

AA*’ and A.*, Moreover, it is necessary to evaluate the following?

5
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{AGA0)} = | {8(03)- ae {A(O)} + 4% {5(0)}/2.0
{a( -2a8)} = < {ACO)} + 2 {a(-a£)} + ae? {A(O)}

In the case of Houbolt's scheme

Ppo= /6P, =-3.0525 = 1557, = 1/3;

Py = 2,03 B, =-5.03 P, = 4.0; By = -1.0

6 8

7
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