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SUMMARY -

A finite element model for the dynamic analysis of an
axisymmetric thin rotational shell founded on a shallow ring
footing was developed using high-precision rotational elements
for the shell, isoparametric solid elements for the soil, and
an energy transmitting boundary at the ring footing. The soil
medium and the structure are connected by a frequency dependent
dynamic boundary system. A sensitivity study of the equivalent
boundary system to the driving frequency revealed that stiffness
components were more sensitive than damping components and that
the rotational components were more sensitive than the trans-
lational components. Free vikration, response spectrum and
time history analyses of a hyperbolic cooling tower shell
showed that the overall flexibility of the shell increased with
a decrease in soil stiffness, reducing many forces in the shell
proper and especially in the column supports from the values
calculated when interaction is neglected. Relatively large
forces and twisting moments are introduced into the ring
footing which is, however, massive and capable of resisting
these forces. Foundation uplift is investigated and found to
be a minor problem. It is suggested that the structural design
and resulting behavior of such shells can be improved by
consideration of soil-structure interaction. Such an analysis
is facilitated by the use of the SHORE-IV computer program

developed in conjunction with this research.
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l-Introduction

1-1 General

One of the main criteria in selecting a mathematical
model is to represent the significant physical behavior of
the system as closely as possible. For the dynamic analysis
of structures founded on shallow foundations, soil interaction
in the structure response is expected, in general, to be
notable. The importance of foundation interaction in the
structure response depends on the properties of the structure
relative to those of the foundation and soil medium.

Although many large shells such as ¢ooling towers
are placed on rigid pile or caisson foundations, others may
be founded on individual footings or perhaps on a concentric
ring footing. With the capability of a soil-structure inter-
action model for rotational shells, a basis for rationally
evaluating the footing option in the list of alternative
foundations may be established. Considerable economic benefits
may be anticipated from this added option in the form of
savings on foundation costs and reduced internal design forces
due to the possible amelorating effect of the interaction.

In this report, a dynamic axisymmetric finite element
model suitable for shells of revolution founded on ring
footings is develcped. The analysis is carried out in the

time domain while the soil model is based on a driving
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frequency identical to the fundamental frequency of the
structure on a fixed foundation. The inertial coupling

method is used in the analysis and, as a result, no decon-
volution is required. The approach used in this research

is tempered by the availability and potential of the high
precision rotational shell finite element model (1-3).

With this factor in mind, the authors of this report developed
a compatible representation of the soil medium with the
existing shell element foundation, suitable for any type of

dynamic analysis.

1-2 Review of Past Work

1-2a General

Although a great deal of attention has been devoted to
nuclear containment structures, dams and multistory buildings
(4-7), the influence of the surrounding medium on the dynamic
regsponse of large towers and other shells of revolution has
apparently not been studied extensively. However, it is useful
to review the existing knowledge of soil-structure interaction by
citing some of the studies carried out by different authors. One
may divide the work into three general categories: the approaches
to soil-structure interaction, method and technigues, and para-
meters and applications. Among the last category, there does
not appear to have been definitive studies on the interaction

between the axisymmetric shells and the foundation system.



Before dealing with each of the preceding categories, it
is convenient to introduce the work which is cited for the
purpose of assessing the state of the art. A survey of
the soil effect on the design of nuclear power plants’
has been performed by the Ad Hoc Group on Soil-Structure
Interaction (l). This paper provides some general insight
which may be useful for the specific problem at hand.
Veletsos (4) outlined a simple, practically oriented pro-
cedure for studying the effects of ground shock and earth-
quake motions on structﬁre-foundation systems., The pro-
cedure is fairly straight forward and it is believed that
considerable insight for understanding the general nature
of the problem may be gained from such work. A limitation
of that analysis is that it is only applicable for structures
which may be modeled by a rigid foundation mat supported at
the surface of a homogeneous half-space. An additional
limitation of the procedure is the assumption of a linear
response for the superstructure.
1-2b Approaches to Soil-Structure Interaction

The basic alternative approaches to deal with the
soil-structure interaction problem can be divided into

complete interaction and inertial interaction analysis (1).

The second approach neglects kinematic interaction and



basically does not explicitly account for the variation of
the input ground motion with the depth below the surface.
The essential difference between the idealized complete
interaction analysis and the inertial interaction analysis
lies in the treatment of embedded structures. For embedded
structures, the complete interaction analysis is clearly
superior from a theoretical viewpoint, but the principal
limitation is the cost of analysis.

Vaish and Chopra (2} classified the complete inter-
action analysis into a combined model and a substructure
model. In the combined model, the entire structure-soil
medium is treated as a combined system subjected to an ex-
citation at some assumed or actual boundary location such
as the soil-rock interface. In the substructure model,  the
system is separated into substructures. Then the founda-
tion medium is represented as an elastic half-space and is
interfaced with the structure through a set of common co-
ordinates at the bhoundary of the structure and the soil.
1-2c¢  Methods and Technigues

Numerical methods and, in particular, the finite
element technique, have usually been used td carry out
complete interaction analysis, while inertial interaction
analysis has generally been based on analytical solutions.
These solutions treat the soil as a viscoelastic half-space

or an elastic half space.
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A complete interaction analysis for circular footings
on layered media is presented by Kausel, Roesset and Waas
(8) using a transmitting boundary to represent the far
field. Dynamic analysis of rigid circular footings resting
on a homogeneous, elastic half space has been carried‘out
by Luco and Westmann (9). In this work numerical results
for the analytical solution have been presented for the
torsional, vertical, rocking and horizontal oscillations
of the rigid disc.

Varicus approximate methods of superposition for the
interaction problem have been recently proposad (10,11,12,

" 13,14). The methods have differed in the way in which modal
damping is calculated, [Novak (10), Rainer (12), and
Roésset, Whitman and Debry (13} assigned weighted values of
damping based on the energy ratio criterion for evaluation
of equivalent modal damping in composite elastic and
inelastic structures ,whereas Tsai (l14) calculated the modal
damping by matching the exact and normal modal solutions

of the amplitude transfer function for a certain structure
location. Bielak (l1l) assumed that the modal damping <an be
approximated based on scme simplified soil-structure models
and the appropriate soil properties.

Clough and Mojtahedi (15) concluded that the most
efficient procedure, in case of non-proportional damping
system, is to express the response in terms of undamped
modal coordinates and to integrate directly the resulting

coupled equations.



1-24 Parameters and 2pplications

The actual properties of the soil medium play the
primary role in assessing the actual influence of soil-
structure interaction on the structure response. Recently,
Pandya and Setlur (16) have defined four cases which provide
a range of soil properties useful for comparative anélysis
and subsequent generalization. It is the opinion of these
authors that soil flexibility or compliance is the most
important parameter in the goil=-structure interaction phenom- -
enon, and that a given flexibility can be realized by a non-
unique combinaticn of the basic parameters such as soil
depth, shear modulus, etc.

Penzien (17) suggests a system of a non-linear spring
and viscous dashpots to represent the soil for determing
the properties. In this model, Penzien chooses a non-
linear elastic spring with hysteresis characteristics
to represent the immediate deformation characteristics of
the soil structure under cyclic loading and a viscous dash-
pot in parallel with the spring, to represent the internal
damping within the soil, while the creep behavior of the
solil is represented by a viscous element in series with the
spring-dashpot combination.

An evaluation of the effects of the foundation damping
on the seismic response cof simple building-foundation
systems is presented by Veletsos and Nair (18). The

supporting medium is mocdeled as a linear viscoelastic half
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space. This study shows that a consideration of the effect
of energy dissipation by hysteretic action in the soil is
to increase the overall damping of the structure-foundation
system and to reduce the deformation of the structure.

In the approach taken by Scanlan (19), the seismic
wave effect is studied by generalizing the input function
in the time domain so as to account for the travel time of
the passing wave over the plan dimension of the structural
foundation. His study is based on a rigid foundation-soil
spring model and suggests that a passing earthguake may
excite both lateral and rotational displacements even for a
structure which is symmetrical in plan and properties, The
study suggests an inherent self-diminishing feature to
earthquake excitation relative to the particulars of a
given design.

Akiyoshi (20) has proposed a new viscous boundary for
shear waves in a one-dimensional discrete model that ab-
sorbs the whole energy of the wave traveling toward the
boundary. Akiyoshi concluded that a mesh spacing less than
one-sixth the wavelength of a sinusoidal wave should be
used to obtain the allowable numerical solutions. The
limitation of the proposed method is that it is restricted
to the case of lumped mass-spring models.

The approaches and methods reviewed above have been

applied to different types of structures. Reference was



-8-

made previously to three papers dealing with the nuclear
containment structures, dams and multistory buildings (1,
2,3)., The analysis of a tall chimney, including foundation
interaction, for the effects of gusting wind, vortex
shedding and earthquake is studied by Novak (10). This
study shows that the general trend of the soil-structure
interaction effects is to reduce the response to dynamic
loads. The effect of embedment and the influence of
internal damping is investigated by Kousel (21) for cir-
cular foundation on layered media. The case of two-
dimensional rigid foundation of semi-elliptical cross-
section is studied by Luco, Wong and Trifunac (22) to ax-
amine the effects of the embedment depth and the angle of
incidence of the seismic waves on the response of the
foundation. This study shows that rocking and torsional
motion of the foundation is generated in addition to trans-
lation.
1-3 SCOPE AND AIM

The aim of the present investigation is to develop a
more realistic mathematical model for the dynamic analysis
of shells of revolution by including the soil effect as a
new factor which should influence the dynamic behavior of
such structures. With this proposed model, it is possible
to study the effect of the soil condition on the dynamic
response of large towers like reinforced concrete cooling

towers. In addition tec the seismic analysis capability of



the proposed model, it is also applicable to other dynamic
loads like wind forces. This wide capability may provide
better understanding to the dynamic behavior of the axi-
symmetric shells and shell-like structures.

A basic theoretical backaround is furnished in Chapter
2. In that chapter the wave propagation equations in the soil
medium are presented and Hamilton's principle is specialized
and adapted for the specific problem discussed in this report.
The finite element formulation is presented along with the
parametric studies concerning the soil model in Chapter 3.
The basic formulations of the axisymmetric shell elements and
the method of the analysis are given in Chapter 4. In Chapter
5, the seismic analysis of a cooling tower is presented and
the results of free vibration, response spectrum, and time
history analysis are discussed. Conclusions and recommendations
for further investigations are presented in Chapter 6. In
addition to this report, two companion volumes, a theocretical
manual and a user's manual for the computer program which was
developed in the course of this study, have been prepared.
The program will be distributed through the NIS/EE, Berkeley,

California.
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2-50il Model

2-1 Introduction

In the present chapter, the basic formulation for the
wave propagation problem in a layered medium is presented
for a general mode (j > Q). However, iIf one considers the
foundation to be a rigid concentric ring footing, only the
first two modes in the series are needed to describe the
general motion of the footing acting on the free surface of
a soil stratum. These are j = 0 for vertical and torsional
excitation (axisymmetric modes}, and j = 1 for rocking and
swaying (antisymmetric modes). The soil model along with the
connection problem are explained and discussed with respect

to several parameters.

2~2 DISPLACEMENTS AND LOADS

Let any point in the soil medium be described by the
coordinates r, z,6 as shown in Figure 1. 1In the cvlindrical
coordinate system, the displacements in the radial, vertical
and tangential directions are denoted by u, w, 8, re-—
spectively, while the loads in these directions are denoted

by P, Pz and Pe.“They can always be expressed in Fourier

series by

<ag cosje + ag sinje)

Mo

0

.
]

M

3 cosig + 5 sins
O(ws cosjf + w3 sinje)

o
Il

B

v = (-Gg sinjs + Gg cos3ie) (2-1)

u
]
(=)
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and,

L4 +]
H
i
™
gy
H

cosje + 51 sinjsg)
j=0 s a

L}
N

[}
™ s
—

di
N -

cosjg + §g sinj8)
j=0 =1 a

[=~]

_ _33 . =J .

Py = 2: ( Py sinjé + Pe cosjf)
]=0 s a

where the modal amplitudes with subscript s, a are re-

ferred to as the symmetric and antisymmetric displacement

{(load) components. Equations (2-1) may be rewritten in

matrix form as

[ L 5 3 | [eosso]
u ug uy gos;@
m »
= =} =3
W -E wy o Wy (2-2)
--- sz |-8--3-
L v vy V3 sinj®

with similar expressions for the loads. 2n alternative

noctation could be
u=3" uet??
]
w=3 wetl®
]

and v = Jeti® (2=3)
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but since the modal amplitudes are complex for complex
moduli, the latter notation is not advantageous.

The negative sign introduced in the sine term for
the tangential components has the effect of yielding
the same wave equations for both the symmetric and anti-
symmetric components {same stiffness matrix in the
finite element formulation).

The displacement vector of Equation (2-2) is written
in partition form to separate the in-plane components
(u,w) from the out-of-plane component (v). The modal dis-

placement vector is then

u = {u; I ul (2-4)
where a; = {u, w}
and Q: = V (2-5)

2-3 COMPATIEBILITY EQUATIONS
The small strain and rotation-displacement relations

expressed in cylindrical coordinates are

= 34
€rr 3r
= W
2z = 5z
. u . 13av
€gg = * T 39
= 3, 3w -
Yzr =3z T 3¢ (2-6)
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and the Fourier Expansicons are

= =3 = =]
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-4 =5 zz zZ
- =3 ; =3
oo = 0, (E3g cOSIE + )¢
j=0 =] a
m »
- J : <]
Yor = 2: (er cos) @ + Yzr
j=0 s a
- =3 I =3
Yrg = Z ( Yre sinjé + Yre
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R
1l
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sinj®)

cosje)

cosje)

where the modal amplitudes are related by

oL M|
i

u,r

1 ,- .=

— -V

T (u-jv)

=

u,z W,r

l'..._ -
;(3u-v+rv,r)

w/r + v,z

(2-7)

(2-8)
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The above eguation may be expressed in matrix form as

€ = Au (2~9)

-— - - - '— — -
where € = {Err’ €,2' €88’ Ygr'Tre’ Yez} (2~10)

Pl

and A is the partitioned matrix operator

_ , -
9 }
e 0 1 0
J
i
3 i
0 3z | 0
|
1 I3
r 0 I T
A= : (2~11)
3 3 !
3z 33 |0
; b5 ,1
t 0 llr‘a??
l
. |
i 3
i 0 r : 92 |

It is convenient to write Eguation (2-9) in the partitioned

form

€1 11
{2~12)

E2 jRA21
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2-4 CONSTITUTIVE EQUATIONS
The stresses can be expanded in the same way as the
strains and the modal components of stresses and strains

are related by

Qal
"

o

™

(2-13)

For cross-anisotropy, D(the constitutivity matrix)
is restricted to be a function of r and z only. In the
present study, only materials with properties not varying
with 8 will be considered. Matrix D for an isotropic

material is given by

A+2u A A 0
A A+2u A 0
A A A+2u 0

S e . G —— L -} ot i e w— ———— —

|
!
SR P — (2-14)
|
I

where A and u are the Lame constants (complex in general).
They are related to Young's modulus, Poisson's ratioc and

shear modulus thrcugh
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A = vE = 2vG
(1+v) (1-2v) 1-2v

- E - -
Y $ ey =G (2-15)

The modal stresses is defined by

g = {c1:02}
where oy = {Err’gzz'aee Ezr} (2-186)
and 0; = {Erefaez}

while the true stresses are given by

-3 2 cosjé
gy = Z (Uis Uia)
3=0 L_sinje
- - (2-17)
fb a3 -sinje
02 = &t (O a,.)
1= 2s "2a cosjé
. -

The partitioning of this matrix into the submatrices D;
and D; is consistent with that of the stresses and strains,

and it follows that

gy =D, 51
(2-18)

82 = D2 Ez
2-5 WAVE EQUATIONS
The general equations of wave propagation expressed

in cylindrical coordinates are (27)
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= 2102058 - E gz - )
W = %[mzu)gé -2 Q8 dwu
where
A= #olumetric change
= Err + EZZ + Eee

3 au W

Pg;(-g ar)]

) oW v

38758 ~ 320}

3 ,9 3u

ar(ar(rV) gg)]
(2-19)
(2=-20)

For harmonic excitations with frequency &, the modal

Fourier expansion of Equation (2-19) can be expressed by

_ | cosje
u [] 13
5=0 sinj®b
m i)
_lcosis
W =
J=;; sinj s

8

a,Su _ 3=, dw
- }\+2u)arr+ﬁ"rv+a—z)
. = - Nt cosj8d
P B g 2D - 1)
sinjé
-1 [+ =S + 32 - 27 + 39
paz
j=0
. - )
v 3{rv) _ .=y _ My = _ 3w cos]
- 3705t ju) TE W - 3]

sinj®
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- -sinj® 1 - g - ae
v = —=7 [ (a+2p) l(— = - L Y
cosj8 P&z Jg 3x r ¥ 32
j=0
- - "e
_ iw _ 3a_du _ aw simd
“az( 3z)+u ar‘az Br):l .
cosj®
(2-21)
For an arbitrary j, it follows that
- _ =1 3 ,u .91 _ 3o, 3w 3,84 _ 3w
U= oaz [+ zE + 5y~ vV 390 H 237 - 30
B3 dlrv) _ .=
* r 3z ( ar ju)l
= _ -1 5 &, 3w _ 3z, 3w _upd 3Ew _ .-
W = oqz [(A+2u)az(r taT T TVt r 57 (3 Ju)
TS RS R L4
r (r ' az}}
- =L i@, % jv dw, 03 J- 3V
v = oaz [(k+2“)?(r * 3T r*oaz) A 3z

(2-22)

which shall be called the Modal Wave Egquations (MWE).
They are only functions of r and 2z, with the parameter

j =0, 1, 2,...dependent on the Fourier decomposition of
the loadings or prescribed displacements. The general

solution of MWE is (28)



- iot vz -mz OHS) D) (2)
u = [ (kae -mCe )——133———— + % B H (kr)e mz]
7 = e ¥ [ (cke ™2 2207 %) & Hj(Z) (kr) ]
(2)
- ] - - : OH.™' (kr) _
v = elgt[(kAe lz—mCe mz)% ng)(kr) + B ——1—35——— e mz]

(2-23)

in which H§2)(kr) are second Hankel functions of order j

(order of Fourier component), A, B, C are integration con-

stants, k is an arbitrary parameter (wave number), and

(2=-24)
and
1 . 0
vp A+2u
i e
Vs U

where vp and vy are the compression and shear wave

velocities, respectively.
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‘In the particular solutions given by (2-23), analagous
expressions containing first Hankel functions Hél)(kr)
have been omitted, since they correspond, in combination

with the factor elﬂt

 to waves travelling from infinity
towards the origin and thus must be disregarded in accord-
ance with Sommerfeld's radiation principle (29). (Sources
confined to the vicinty of the origin). For this reason,
the index (2) and the argument (kr) in the Hankel functions
will be dropped.

The solution of the modal wave equations may be

written as

bl iQt ' i
u=e (f1(21Hj + fa(Z)r Hj)
W = k2 (2) Hy e L0t (2-25)
v = M g ¢ £a(2)RY)
_ 3 . (2)
where H% = 57 Hj {kr)
and
£,(2) = xae %% ~ mce ™2
£.(2) = kCe % - RAe-lz

(2-26)

£,(2) = Be 2
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Dropping the time dependent term eth from (2-25) to-

gether with (2-26) one gets

<1
]

HF (2-~27)

where Y is the modal displacement without the time de-

pendent term, and

F = {f;, £f2, £3}

and
H! 0 £ H;
g = 0 kHy O (2-28)
< Hy 0 H!
L. -

In the above equation F is only a function of z while H
is a function of r and the harmonic number j.

Also, expressions for the strains and stresses in
terms of the functions £, will be needed later. Sub-

stituting (2-27) into (2-8) results in

I

[] H .
" 1 s
rr £: Hj + £3 - (Hj - )

ZZ2



Eee = fl(;i - %; Hj) + £ %(E% - Hé)
Ypr = £1 B} + £2 k HY + £1 in, (2-29)
§re, = £, %LZHE - %) + fa(%; Hj - % H5 + H;)
;Sz = £, % Hy + £ k % Hj + £} Hj
and with
3= (£} - kfn)k H. (2-30)

J

the stresses follow as

Oy = 2usrr + Ad
T, = 2uezz + A0

{2-31)
Ogr = Wzr

aqi

6 = "Vrg

Ty -
ez - ]—lYez

The modal wave equations (2-22) may be expressed in

matrix form using Equations (2-25) through (2-28) as

H«2=20 (2-32)
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where H is given by (2-28) and Z is a vector depends only

on 2
- - -
z1 (A+2u) (kE3=K3£) +u (£7-kE}) +pQ%E,
z = z2| = | (A+2u) (£5-kE])+uk (£]-kE,) +0oQ2E,
zz u(fz-sz,) +oQ2f; ] (2-33)

The above form of MWE is suitable for the finite element
formulations as we will discuss later.
2-6 PRINCIPLE OF VIRTUAL DISPLACEMENTS
In dynamics, the generalization of the principle of
virtual displacements into a law of kinetics by use of
D'Aambert's principle is referred to as Hamilton's
principle. For conservative systems, the principle states
that the work performed by the applied external loads
and inertial forces during an arbitrary virtual displace-
ment field that is consistent with the constraints is
equal to the change in strain energy plus the energy dissi-
pated by internal friction during that virtual displacement.
Hamilton's principle shali be specialized and adapted
for the specific problem discussed in this report in
which the coordinate system is cylindrical, and the visco-
elastic constants are complex. By applying two Fourier

transformations, one in the time domain, and one in the 8
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coordinate, the principle of virtual displacements for
axisymmetric systems subjected to a generazl harmonic
excitation shall be developed.

A general form ¢f Hamilton's principle in elasticity
is

£t :
f [f dsijcijdv -fdui(bi-pui)dv —f GuipidA]dt =0
toky v [5; .
(2-34)

where GSij is the virtual strain field corresponding to

the displacement field dui which is consistent with the
constraints and wvanishes at the time t, and t;. The

term Geij Uij represents the change in strain energy as
well as the energy lost due to internal friction. §
corresponds to that portion of the boundary where the forces
are prescribed.

Since the prescribed virtual displacements are ar-

bitrary, a set of displacements can be chosen ¢f the form

suy (x,t) §ug (x) -+ §(¢)

n
Cn
]
—~
]
—
-
On
—~
(U
~—

6eij(x,t)

(2-35)

where x stands for the coordinate system,

x = (X1, X2, X3) (2-36)
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and &8(t) is the Dirac delta function. Substitution in

(2-34) and integration over the time domain yields

v v S

(2-37)

where cij’ bi' u; and p; are evaluated at the time t.

Alternatively, it is possible to arrive at this
result starting from the equilibrium equations (wave
equation) and the boundary force equations, and constrain-
ing the time wvariable to remain constant while the virtual
displacements are applied, that is, the real motion is
stopped while the virtual displacements are performed; how-
ever, the inertial force; must be assumed to persist. In
other words, it is assumed that the performance of the

virtual displacements consumes no time (30).

Applying a Fourier transformation (FT) to (2-37) and

defining
u, (@) = FT(u, (), -Q%9 (@) = PT(u, (t)) (2-38)
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~ -~ - ~ “~ 2~ _ -~ - o
faeijcij dv j‘; §u; (b, +pQ ui)dv 'épi §u,da = 0

(2-39)

where the transformed quantities are in general complex.

For real elastic moduli, the stresses will be real
and in phase with the strains and displacements whereas,
for complex moduli, they will be complex and there will
be a phase lag between these two quantities. The relation
between the transformed stresses aij and strains Ei' is
given by equation (2-13).

An alternate form of equation (2-39) is obtained
using integration by parts, resulting in

. - - ~ o~ - _
,é‘aui(cij,j + bi +oR ui)dv +j;6ui(pi njcij)dA 0

(2-40)

which, for arbitrary variations of the virtual displace-~
ments Sui yields the body and boundary equilibrium
equations. Using the stress-strain relation, the term

in parenthesis in the first integral becomes the wave
egquation, which shall be useful later on. Switching now
from tensor to matrix notation and dropping the superscript
‘~with the implicit understanding that the applied forces

(displacements) are harmonic, equation (2-39) becomes
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T T 2 T
fés gdv -f Su” (b+pRulav —f Su'pda = 0 (2-41)
v v S

For a cylindrically orthotropic (cross anisotropic)

material, integration w/r to €, with dv = rdrdédz, and

using

211

f I for m=n#0
sin mé sin né 48 = (&__ -8 §_ )0 =
0 mn mé né { 0 otherwise

jgn I for m=n#0
cos m& cos nd 48 = (&6_ +5_.8_.)T = }20 for m=n=0
0 mn “md nd { 0 otherwise

21

f sin mé cos nf d4se
0

yields for the principle of virtual displacements

i
o

for any values of m and n

I[SET D £ rdrdz -.[fpﬂz $Elardrdz

= J siras (2-42)
S

where the superscript bar refers to the Fourier modal
amplitude. Similarly, by substituting Equation (2-32)

into Equation (2-40), we find

ffaﬁT-H-z-rdrdz +stT(§—E*)rds =0 (2-43)



~-29-

where o = {njaij} are the projection of the modal
stresses on the unit outward boundary

normal nj
H*% = the modal wave equation (2-32).
Equation (2-43) is preferable to equation (2-42)
or (2-41) when using the principle of virtual displace-
ments to define the eigenvalue problem for the visco-
elastic energy absorbing boundary since it does not re-
quire a cumberscome integration of products of the Hankel

functions over the coordinate r.
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3. FINITE ELEMENT FORMULATION

3-1 INTRODUCTION

Numerical techniques have been used successfully in
the stress analysis of many complex structures. In
particular, the finite element technique has been the
major tool for analyzing different types of structures
such as solids of revolution and shells of revolution.
These two classes of structures are of special importance
in modelling the axisymmetric shell-socil system. The use
of highly efficient rotational shell finite elements to
model the superstructure suggested that the soil medium be
represented in a similar manner. A main problem in this
case 1is to account for the proper boundary conditions at the
edges of a finite domain which will not introduce undesirable
reflections of waves into the region of interest. A possible
solution is to place the boundaries at a substantial distance
from the footing if there is internal dissipation of energy
in the soil. This approach requires a very large number of
elements and is therefore expensive.

This chapter presents the finite element model used
to represent the soil medium where axisymmetrical isopara-
metric quadratic solid elements with transmitting vertical

boundaries placed directly at the outer edge of the structure
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are employed (Figure 2). With the energy transmitting
boundary, the finite element region is reduced to minimum,
resulting in a high order sophisticated model with com-
paratively few elements as has been the continuing objective
in previous investigations at Washington University. The
formulation of the rotational shell elements is presented

elsewhere (2, 3).

3-2 SOLID ELEMENT FORMULATION

The core region of Figure 2 is modelled by means of
axisymmetric isoparametric quadratic solid elements. For
each nodal circle there are three degreeg-of-freedom;
two of them are in-plane, u and w, while the third, v, is
out-of-plane. These in-plane and out-~of-plane degrees-of-
freedom are separated in the formulations of the element
stiffness and mass matrices. The name "isoparametric"”
derives from use of the same interpolation functions to
define the element shape as are used to define the dis-
placements within the element.

If ¢ denotes the expansion vector for the isoparametric

formulation,
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of nodes per element.

In vector notation

where

Using

where

and

r
z
T _
rO = {rll
T
ZO = {zlr

rg,.-.rn}

Zz,---Zn}

(3-1)

(3=-2)

(3-3)

the same expansions for the displacements,

1 £
o]

<1

=g
]
I
f o)
=

= {u]_'uz,-e',uan]. IWZ,ccoyW

n

(3-4)

V1 V274660 ,Vn}

(3-5)
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In equation (3-4), ¢T is called the expansion matrix.

From (2-10) and (3-4), one can write

-
J

U
a2
- | :
€1 Arr | A 8T ay
4x1 4%2 | 4x1 i -
—_———} =z ee—- - ® . LA
€2 - CX | RAz2 ¢ W2
2x1 2X2} 2x1 . (3-86)
6x1 6x3 3x3n _,YE-
v
va
X “n]
3nxl
or ¢ = B u_
- x _
bi: | bia
4x2n | 4xn
- —.._-____'__
where B m———————e (3=7)
bz; } b2s
2x2n 2xn
i | |
6x3n
Substitution into equation (2-42) gives
T T 2557 - _
§u_{//(B"DB-pQ*®%")u_rdrdz-/oéprds} = 0 (3-8)

elements

For the kth element, the consistent mass matrix M, the

stiffness matrix Kk and the load vector Pk are defined as:
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M, = ffp@@T rdrdz

IIBTDB rdrdz {(3-9)

A
il

[¢P rds

g
]

3-2a Isoparametric Formulations
For quadratic elements, the total number of nodes
per element n is equal to eight and the shape functions

¢i =9g; (i=1l,...,8) may be chosen as functions of the

dimensionless coordinates £ and n. In Table 1 the
expressions for gir 93 £ and 95 n are given.
r r

The Jacobian is defined by

- -
T %
I 23
Ty Z3
91,892,593,£94,£95,£96,£97,593,¢ r, 2,
Jac = ry Zg
gl,ngzmg3,ng4mgS;ﬂgGmg7,ng3m r5 .26
r8 28
8 8
g. T, g. ,2Z.
1?:1“g 1 igll'g 1 (3-10)
or Jac = 8 8
_Zgi,nri Z: i,n"1
I_1.=l i=

The inverse of the Jacobian IJ is, then, given by

IJy:1 IJ:1:
IJ

IJ2: IJ22
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(3-T) U~

(3-ug) (3-DL

(3%
Au+cmvﬁu+ﬁvm

(3+T) U-
(3-g) (3+1)L

(:3-1%-

Aw+cNVAw-va

(cu-1)&-
(u-32) (L)L
(U+T) 3-
(usze) (usn) ¥
(;u-n
(u-32) (-1
Acnwvw-

(u+ge) (u-1) €

(Uu-T) (3-1)%
(1-3-U) (u+1) (3-1) %
(usD) (.3-10
(T-U+3) (u+T) (3+) €
(zu-1) (3+1)<
(1-u-3) (u-1) (3+) £
(U-1) (;3-0%

(U+3+T) (u-T) (3-D ¥

]
Wt

21,

g

I0JO9A :oﬁm:maxm 103

SOATIRATISQ 3ISATI pue suotioung adeys 1 9Tqel



where

and

IJ]_]_

IJ;:2

IJ21

IJ22
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(3-11)

where |Jac| is the determinant of the Jacobian matrix

of equation (3-10).

The inverse of the Jacobian is

necesgsary for the transformation from r-z coordinates

to £-n natural cocordinates,

(

(

3-2b

)’r = IJ11

)'z = IJ2,

Element Mass and Stiffness Matrices

(

(

),

)y

g

g

+ IJ12

+ IJa22 *

(

(

)

n

(3-12)

Using partitioned form of the B, D and ¢ matrices

we get:
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where m = ffp¢¢T rdrdz (3-13)
8x8
I
X1 E K2
and K, = T
K> | Ks
24%x24

where K, = ff(b?1D1b11+b?1D2bgl)rdrdz

Sr(bYDib;2+by Dybgg) rdrdz

=
~
U

S/ (bZ:D2bz2+by 2D by ,) rdrdz (3-14)

A
H

From (3-7}, the submatrices bi;i, biz2, ba2; and b:; are

given by (See Appendix I).

- | .

gl'r gz’r ooooo ga’r 0 0 ""'0
0 0 -----0 g g ceesg
by = 1,2 2,2 8,2 (3-15-a)
gl/r g2/r"""g8/r 0 3 IO ¢ |
gl'z gzlzo.aoo-gsrz gl,r gz,r....0‘8’4
L, —

4x16



bia

bz, =

R

H -

g
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and ¢¢T is given by:

b¢

O 0......“0
0 0-...'...0

(3-15-h)
gl gz.-oocooga
0 Oeeeeannn 0

4x8

g1 gZ""'°g8 0 0-.....0

(3-15-¢)
0 0.......0 g]_ g2¢¢.o-g3

2x16

5 2 2
T3z J1/x) rar(gz/r)""rgf(gﬂ/r)

(3-15-4)
gl,z gzrzonnoscco.gs'z

2x8
gi g192 g193.+++919s
g291 g§ g:293 gz29a
gagl gsgz gg.....gaga
" - - - (3-16)

gsad: 9sg:z deda.. .. g§

8x8
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With RG defined as

8
RG = ;g; 9;Ty (3-17)
1 1
and fS{ )rdrdz = Jr Jr( YRG det Jac dE&dn (3-18)
-1 -1

the mass matrix Mk and the stiffness matrix K, are ob-
tained for a general Fourier harmonic j; however, Mk

is independent of j as one can see from equations (3-13)
and (3-16).

The integration in each element is carried out by
means of four points Gaussian integration with the dimen-
sionless coordinates £, n. Since in the Gaussian quadra-
ture scheme, there are no points on the boundary of the
elements, no problems are encountered with the singularity
of the integrand of the symmetry axis (r=0) for those
elements adjacent to it.

The details of the isoparametric formulation for the
element stiffness matrix is presented in Appendix I.

3-3 THE BOUNDARIES

It is assumed that the finite element region has a
fixed lower boundary, which may be true if we are dealing
with a stratum over rock of infinite horizontal extent.
The lower boundary location factor will be stﬁdied in

case of a deep stratum or half space.
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Now, for the total mass matrix M, total stiffness
matrix K, and the total load vector P we have the

following equation

(R - @2 M)u =P (3-19)

where u stands for the total nodal displacements.

The above equation needs to be modified to include
the effect of the far field on the stiffness of the core
region. This can be achieved by considering the equili-
brium of the vertical boundaries of the core region. If
the core region of Figure 2 is removed and replaced by
equivalent distributed forces corresponding to the in-
ternal stresses, the dynamic equilibrium of the far-field
will ke preserved. Since no other prescribed forces act
on the far-field, the displacements at the boundary and
at any other point in the far-field will be uniquely de-
fined in terms of these boundary forces. The relation
between these boundary forces and the corresponding boundary
displacements is the dynamic boundary matrix to be added
to the total dynamic stiffness matrix of equation (3-19).

For a consistent boundary (8), it is always possible
to express the displacements in the far-field in terms of
eigenfunctions corresponding to the natural modes of wave
propagation in the stratum. The general solution to the
problem is given hy Equation (2-23) where k is an undeter-

mined parameter of the wave number, In an unbounded medium,
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any value of k, and thus any wave length, is admissible;
for a layered stratum, however, only a discrete set of
values of k (each one with a corresponding propagaticon
mode) will satisfy the boundary condition. At a given
frequency, 2, there are thus, an infinite but discrete
set of propagation modes and wave numbers k, which can

be found by solving a transcendental eigenvalue problem.
For each eigenfunction one can determine the distribution
of stresses up to a multiplicative constant, the partici-
pation.factor of the mode. Combining these modal stresses
so as to match any given distribution of stresses at the
boundary, one can compute the participation factors and,
correspondingly, the dynamic stiffness function relating
boundary stresses to boundary displacements.

The solution of the actual transcendental eigenvalue
prbblem for the continuum problem is difficult and +time
consumihg requiring, in general, search procedures. A
discrete eigenvalue problem can be obtained by substituting
the actual dependence of the displacements on the z
variable, as given by Equations (2-25) and (2-26), by an
assumed expansion consistent with that used for the finite
elements. The result is an algebraic eigenvalue problem
with a finite number of eigenvectors and eigenvalues, for

which efficient numerical solutions are available.
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3-3a Wave Numbers and Modes of Propagation

Consider the toroidal section of the far-field limited
by two cylindrical surfaces of radii r, and rys as shown
in Figure 3.. The stratum is discretized in horizontal
layers, the interfaces of which match the nodal circles
of the finite element mesh in the core region. For the

nth layer there are three nodes i, i+l, i+2, for the ith

node the three degrees of freedom are:

xi = {X1, X2, Xa}i {3-20)
The exact values for these three nodal displacements

are given by Equation (2=-25),

and for the layer number n,

X = {xl.

Xas, R3;3 X1, X2, x :
n 17 FRir ML Ryl T2i41 Oy

i+1
X190 X25,00 Xagool (3-21)

Approximate solution for the nodal displacements may be
obtained using the same expansions as for the coordinates

and displacements in the finite element region
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Fi =N X, (3-22)
where
N = [gllrg21r93113x9 (3-23)

in which I is a 3x3 identity matrix, and g; represents

the expansion coefficients. For a quadratic expansion,

g = %(ﬂz‘n), gs = 1-n? and gs = >(n?+n) (3-24)

(S

Combining Equations (3-20) to (3-24) yield

=NU 3-28
Uappn o ( a)

the approximate nodal displacements
for the nth layer

and R

U, = (3-25b)
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Using the same basic procedure for the finite element
formulation as previocusly employed, an approximate
solution is obtainéd by substituting the displacement
expansion into the expression of the principle of virtual
displacements (2-43), integrating over the regicn, and
requiring the result to vanish for an arbitrary dSu.
Substituting the above approximate displacements in

(2=43) and summing over the 2 layers yields

Z: =T =P ,= =* =T ,= =%
[lygu .H.z.rdrdz.+~‘/'6u.(p-c Jrds + Jréu (p~-c )rds
n=1

So S1 ’

-7 - ) ' - - R
+ chu (p-c )rds +f6u (p-c )zrds | = 0

S» S3 (3"26)

In the above equation, consistent nodal forces §o and p;
are applied at each of the boundaries r, and r; such that

the integrands over s and s; vanish

o]

M-

o
]
H

o

LcSuQ]?Q = f Su prds f5u g rds
o

(3-27)

[Vjp

-
- - -Ma=*
Su?Pl = Squrds J/'GuTG rds]

S Si

3
it
=
—
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with no external prescribed forces acting at the layer

interfaces;

&

- ' . -, T
Z [fﬁuT H Z rdrdz —f §ar 5 rds -f cSuTc*rds]= 0
n=1

in which f
{Urz: Uzzl Uez} for s,
-
c =ﬁ
l—{crz' Gopt Tg,t for s,
From Eguations (2-29), (2-30) zand (2-31)

or

S2

=

HeZ,F

where Z; is an operator matrix

a_
u 3z
=ik

uk

(A+2HI%E

i
u{(f{+kfz)35 + o H

£
J

kH, { (A+2u) £1-AkE1 ]

u{(£{+kf2) £ Hy+E] H)

(3-28)

(3-29)

3}

{(3-30-a)

-

{(3-30-b)

(3-31)
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The wave egquation H+<2Z, Eguation (2-32), may be written
as -

W=H 2, * F (3-32)

in which 2, is an operator matrix

—

32 3
2 — - 2 ———
PRI +UE— = k2 (A+21) k() 5= 0
2 d m'lz-ul~=2-l-(>ﬁ+2u)Bz 0
Z, = “kT Ol gz 9z*
2 2,82
i 0 0 P~k T5eT
(3-33)

With 6u = H*N*6X and F = N+X, Equation (3-28) becomes

3
> .jr{JﬁXTNTHTH(El-Ei)NXdz - JrSXTN‘THEZNXdz rdri= 0
n=1 r z z
(3-34)

In the above equation,

NN = [g;. g ], N' = &= [g] I,]

in which i =1, 2, 3 and k = 1, 2, 3.

Also, in Equation (3-34);-

T T, =.,T

N'HTH = EN® and N'TH



_ [ | _
Hy 0 Hy }
| |
0 H; 0| 0 | 0
i |
H O H;! }
_______ [
| l
| H1 0 Hzl
- |
= 0 [0 Hj oi 0 (3-35)
|
|H2 O Hip
_____ —+_—_-——l_—_——_
: 1H; O Hz
|
0 { 0 Io Hy O
l
{ }Hz 0 Hl
N ] .

in which H, = B'? + (&2 g2
in whic 1 23 (r) 3
= 421l g! §,
Ha r 33
2
Hy = szj

Factoring out the H matrix, which is independent of z,

from Equation (3-34) and rearranging the equation yields

L 1 By %a
E 5X° [f I_irdr] [fNT(El-E;,)Ndz -f N'TEZNdz]X =0
n=1 4 0 0
Q

(3-386)
r
For an arbitrary &X and with Jr Hrdr # 0 (non singular
r
o
matrix) which is the same for all layers in the case of

vertical boundaries, the following equation must held:



2 By s
T = 71 |T_
f NT(B,-Z))Ndz - N'"Z.Ndz |{X = 0 (3-37)
and with
h 4 2 -1
f g, dz = -h.._.
9i% 30 2 16 2
L—-l 2 4J
-3 4 -1
2 1
fo 9i9xdz2 =5 | -4 0 4 (3-38)
1 -4 3
- -
- -
h 7 -8 1
1
and f gig}':dz = 35 -8 16 =8
0 ‘ .
1 -8 7
L .
equation (3-37) becomes
A
- _ 1 _ (3-39
ngl ([s] ,-x[B] -x [a] )ixy =0 )

in which
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For the whole stratum, the assembled matrices of (3-40)
leads to

(S-KB-k2?A)X = 0 (3-41)

which is an eigenvalue problem in k;, the wave number of
the propagation mode Xi. The order of this eigenvalue
problem is 6%, where % is the total number of layers in
the stratum.

3-3b Dynamic Stiffness Matrix of the Energy Absorbing

Boundary
Consider Equation (3-27) with ds = dz and r = Tyt
i.e.
L hn
T—% . :
2: Po =T, N0 dz | for an arbitrary wvariation
n=1l
0

of the nodal displacements. But

h
= Tt a 3-4
P, = a.T, J[ N0, dz (3-42)
0
where Py = the nodal forces for the st‘E propagation mode
ag = the participation factor for the g &R
propagation mode
I
g = the SEE modal boundary stresses vector

}

= {=0ppr =T, =05,k

Irr Zr
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Therefore, from Equations (2-31) and (2-29)

B 3 i I r
vH"-Ak2H. AkH.)=— 2 H!-H.
2uHJ k Hj ( LY uro( i j/ro) £,
(uB! 2 wkH. (uj—H-)a— f
= 3’53z 3 r "i'az ?
s . H. .
2ud—(E'-H./r_) 0 u(E" - 4+ (d-y2g.) £,
i r, J 3 ©° J I's Io JJ .
[ ] 7 i ] i
S1i 0 Sy £ 0 ™ ] f;
= = 0 S3 0] fz - T, 0 T3 f;
Sa 0 Sy f3 0 0 0 f;
- aad L. - = = b
= =[s]{£f} - [T]{f"} (3=43)
where;
= " -~ Ak2H.
S1 ZUHJ Hjl
s, = 2u 14— (H! - =— H.)
T, 3 r, 3
S3 = uk Hj!
_ P G il -
Sy, = u(Hj z, HJ + ré HJ) (3-44)
= X N
T, KHJ
_ )
Tz - UHJ:
and Ty = | %— H
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.

with {f} = [N]{X} and {£'} = [N']{Xx}

- - -
NTGS = (N'NS + N'N'T)x (3-45)
where

s 7
5 = s and T = T
S T
- 9x9 9% 9

(3-46)

which leads to the following equation for the nodal forces
in the sth mode:

B h

Py = aer(IJ/; NTNdZ]§ + jg NTN'dzJE)X (3-47)

Matrices S and T may be simplified by taking advantage

of the property of Hankel functions

o o l-,, | - 2 _ ﬁ
= IS i

' =k H, , - L H, 3-48
Hj j-1 T % By ( )
Hp=-H

which yields
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S = k? 81 + ks2 + s3

(3-49)
and T = kTl + T2
with _ - - -
A+20 0 0 B, 0 0
s1 = O wuw 0 0 “Hi g 0 (3-50a)
0o o 0 0o H
i "1l j
[ 17T i
=2 0 2 |-H_; 0 0
= H_ : -
s2 - 0 3 0 0 Ay 0 (3-50b)
23 0 2|1 0 0 -Hjy
B ir .
1 0 -1 H:1 0 0
§3=2Y ‘2+1’ -] o o o R (3-50¢)
r
° -1 0 1 0 H,
— — b J i
I— —— —
0 -x of fEy 0 0
TL = TR 0 0 E 0 (3-504)
0 0 0 0 0 -Hy
- . b, e
[0 o ol H, 0 0
- - Ei - - b
and T2 ro 1 o 1 0 -H;; 0 (3-50e)
0 0 0 0 H,
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vectors XAS and XBS

where T
XA, = {xa] xa
XB_ = {XB? XB
H.
B
-Hj-l
{XBi}s Hj

T T T
z-...XAi..oX.AzQ}
T T T
2""XBi..‘XB22}
- - -
Xy
X2
Hj xa )
- - -1l
—— [— -
X
X2
-Hj_l X3 .
-t e —l

and the boundary lcad vector Pbs as

Pps = agr {IAl{xa} K2 + [G]{xB}_ X

+ [E]{XA}S}

(3=-51)

(3-52)

the nodal lecad vector for the whole sktratum assembled

from Ps for each discrete layer where matrices A, E and

G are formed from the layer matrices ALy En and Gn in a

similar fashion as in the eigenvalue problem.

An is the matrix given by Eguation (3-40-b)
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- . | 9
R, 2(j+l)g,9, ~2(3+1) g9,
= ) Ei t - t
En Jg ré ¥09i%m To91%m
-2(j+l)g 9, 2(3+1)g;9,
i 3%3)
%9
(3-53)
and 2 1
h i kro ]
n 2 -“gigm = 3 gigm Jgigm
G_ = f -— ur .
moJdp Yo =299, % 9,9, 0
3915 0 M99y
= 3x3
- = 9x9
with i=1, 2, 3
m = i, 2, 3
Adding up the contributions of each mode gives for the
boundary load wvector
6L
- 2
P, = Z;:l“sro{ (A] (XA} k2+[G] {XB} k_+[E] (XA} )
or
P, = 1, [(A][XA][R?1+1G] [xB] [R1+(E] [xa]j{a} (3-54)
In (3-54)

[XB] = [{XB}:{xB}2...{XB}_...{XB} 1.0 ey
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[K?] and [K] are diagonal matrices with k; and
ks on the main diagonal respectively
{(s=1 to 62)

and {o} = {01, Q2, G3seee,sC_rosarsggl

s
The modal participation factors {a} are the only unknown
vector in the RHS of Eguation (3-54). The next step,
then, is to calculate the boundary displacement ﬁector in
terms of the modal participation factors, and to relate
the boundary load vector to the boundary displacement
vector to form the boundary matrix.

At any particular node i, the displacement vector is

given by
A
u, = Za H(s)X.; (s) (3-55)
i &1s il
2
ul
s
or u, =D, a
i =1 8 qu
uKs
i
- - L -
ul Hj(ksro)x1(5)+ T Hj(ksro)X3(s)
where
uJ = ksHj(kSro)xz(s)
uk j '
si{ %—Hj(ksro)xl(s)+Hj(ksro)Xa(s) .
. Jd i L ~o 41
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Therefore
o
a wI(l) uI(2)...ul(s)...ul(6%) %2
wi] = Jul() uwi(2)...uJ(s)...uT(6%) &; = [&ﬁ}i{a}
v uk({1l) uK(2)...uK(S)...uk(62) .
| 1i L di] %5y

(3-56)

Defining {ub}leI as the boundary displacement vector,
and with u; as a general nodal vector, {ub} may be
written as

. —

[uul:
{qul 2 .
uy = : {a} = [qu]-{a} (3-57)
[u}ll i
(qul,,
- T 6Lx6R
fa} = [@l™ u, (3-58)

The dynamic stiffness matrix of the energy absorbing

boundary Ry, is defined through the following relation:
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Substituting (3-58) into (3-54) for {c} and equating the
resulting RHS to the RHS of (3-59) for an arbitrary Uy s
it follows that

Ry =1

° {[A] (X2l [K*] + [G][XBI(K] + [E] [XA]] STy

(3-60)

3.4 TOTAI, DYNAMIC STIFFNESS MATRIX OF THE SOIL MEDIUM
Consider the boundary load vector of Equation (3-59)
as an external lcad vector acting with negative sign on

the finite element region, Equation (3-19) becomes:
- N2 = -
{K Q“M)u P Rbub

and by increasing the size of Ry by adding zero rows and

columns to match the dimension of K and M, one can get

(R - 92°M+R)u

]
L

(3-61)

or

Il
g

Kcu

where Kc is the total dynamic stiffness matrix of the

soil medium,

R, = K - Q2M+R (3-62)



Equation (3-61) may be solved by conventional numerical
methods to obtain the nodal displacements. Although neither
the total dynamic stiffness matrix of Equation (3-62) nor the
formula of Equation (3-61) will be used in their present form
in the structure-soil system of the next chapter, these are
very useful in checking the finite element model of the soil
medium and the effectiveness of the vertical energy absorbing
boundaries. The checking of the model presented in this

chapter is part of the study described in the following section.

3-5 STUDY OF ENERGY ABSORBING BOUNDARY

In order to check the applicability and effectiveness
of the energy absorbing boundary based on the pPreceding
theory, a time history analysis is carried out for two
cycles of a sinusoidal ground acceleration applied at the
lower boundary of the finite element region of Figure 4.
The sinusoidal ground acceleration has a maximum amplitude of
20%g and a frequency equals to 10 radians per second. For
j = 1, the dynamic analysis is performed using two models
which are the same, except for the vertical boundaries. The
first model has an energy absorbing boundary which is
represented by the dynamic boundary matrix [R]b of Egquation
(3-60) while the second has a roller boundary which allows

the nodal points along the vertical boundary to move freely
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in the vertical and circumferential directions, while re-
stricting radial motion. Numerical computations herein are
conducted using the Newmark method with 8 = 1/4 and a time
step of 0.005 second.

The three components of the response acceleration of
node 4 in the radial, vertical, and circumferential directions
(i, w, and Vv, respectively) are given in Figure 5. The
response accelerations show that, in contrast to the undamped
response in the model with a roller boundary (solid lines),
the model with an energy absorbing boundary produced a
damped response (dashed lines). These results are comparable
to those given in Akiyoshi's study for viscous boundaries (20).
However, the compatible viscous boundary in Akiyoshi's model
proved to be more effective in absorbing the entire energy
of the wave traveling toward the boundary; it is yet to be
examined for an axisymmetric solid model.

To check for the correctness of the present model, a
classical problem from the literature is considered, namely
the dynamic analysis of a rigid circular footing on an
elastic half space (32). The vertical displacement § of the

footing is calculated from the relation (see Figure 6)
. P (3—63)

5 elﬂt’ 9 ine

where K

(3-64)
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in which P, and @ = the amplitude and fregquency, respectively,
of the exciting force; t = time; and K = the static spring
constant. It may be shown that

4GR

K = 7=° (3-65)

The dimensionless quantity F, herein designated the dis-
placement function, is a function of Poisson's ratio v
and the dimensionless frequency ratio ag.

The rigid circular plate is idealized by a row of
massless finite elements of very high rigidity (106 times
greater than that of the stratum) as shown in Figure 6.

The equivalent value for the force amplitude in the finite
element model is taken as PO/ZIIro and is concentrated along
the foundation edge; the material damping, defined

explicitly in Equation 3-68, is taken as 5%. In the figure
the real part of the displacement in the w direction Gr is
plotted against the dimensionless frequency ratio agr for

P, = 1.0 K, r_ = 10", G = 2492 K/Ft® and v = 1/3. The
results for the finite element model with an energy absorbing
boundary show good agreement, especially in the lower £frequency
range in which the shear wave length A becomes longer and

the element size ratio 2/A becomes smaller. The results for
the same problem obtained by Lysmer and Kuhlemeyer (33) are
also plotted. It can be seen that the present model with

only 10 elements gave results comparable to those of Lysmer
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and Kuhlemeyer for which 64 elements were used. This
provides a check for the correctness of the present model
and suggests its applicability for very deep stratums
although it would be desirable to use the actual H/rO in
a physical situation.
3-6 Impedance Matrix

The impedance matrix is the dynamic stiffness to be
added to the superstructure matrices to complete the
structure-scil model., It is composed of the dynamic stiff-
ness coefficients corresponding to the common degrees of
freedom between the superstructure and the soil model.
For structure-foundation systems idealized in three dimen-
sions, three boundary value problems for the foundation

. . . 19
with a unit harmonic force et t

applied individually for
each of the three degrees of freedoms of each connection
nodal point need to be solved.

Considering Eguation (3-61), with the RHS all equated
to zero except for the value at one of the common d.o.f.
which is set to unity, and solving for the displacements at
the common d.o.f., the complex compliance matrix for the
foundation [C]can be obtained. The complex impedance

matrix [ﬁ] is then found by inverting the compliance matrix

EC], i.e.,

[&] = [}t (3-66)
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Herein, prescribed forces rather than displacements are used to
avoid the complex mixed boundary value problem which could
result from enforcing the traction free condition outside the
structure-foundation interface. However, it may appear preferable
to solve the problem with prescribed displacements to ensure
compatibility of the deformations at the surface of the
foundation with the deformations in a displacement formulation
of the finite element system representing the structure (34}.
The applicability of the latter procedure to the problem at
hand has not been investigated.
3-7 Connection Model

The connection between the soil medium and the ring
footing is established by eliminating the six degrees of
freedoms at the corners D and F shown in Fiqure 7 while
forming the rotational d.o.f. at E from the eliminated
degrees of freedom; in other words, the nine d.o.f. are
lumped into five d.o.f. at the mid point of the footing base.
The base uplift is treated by restricting the contact stresses
between the soil and the footing to be compressive or shearing,
but not tensile. Mild tension may be admissible,but no
guantitative results are available as yet.

In order to formulate the so0il stiffnesses and damping
at the connecting nodal point, the following method is

commonly used:

K = K. - 2DK. (3-67)
xr 1l

C = (Ki + ZDKI)/Q (3-68)
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Figure 7. Ring Footing Cross Section
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where Rr + iﬁi is the complex soil-stiffness with no material
damping and D is the material damping parameter independent of
the driving frequency Q. It is obvious that both K and C
of Equation (3-67) and (3-68) are frequency dependent since
Rr and Ei are frequency dependent and the material damping
affects both stiffness and damping.

The nine stiffness elements of Figure 8 are obtained
from Egquation (3-67) by considering each stiffness element
on the main diagonal as a linear spring in the corresponding

direction. The stiffness elements of the connection model

are formulated from these nine stiffnesses:

K, = K1 + K + Ky

K, = Kz + K5 + Kg

K, = K3 + K5 + Ky (3-69)
Ky = B2/4 (K, + Kg)

K, = B?/4 (K3 + Kg)

The damping system is formulated from matrix C
(Equation 3-68) in a way similar to the stiffness elements
of the connection model discussed above. The resultants in
the five degrees of freedom at the center point E of Figure

7 are evaluated as follows:

C, =Cp +C +Cy

C, = Cz + Cs5 + Cg

C, = C3 + Cg *+ Cq (3-70)
Cy = B2/4 (C, + Cg)

C, = B2/4 (Cy + Cg)
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Ko=Ki+ K+ Ky

Ky=Ka+ K+ Kg
Kg= [+ Kgl B2/ 4
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Figure 8. Eguivalent Boundary
Stiffnesses
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For cobvious reasons the connecting model is called
the Equivalent Boundary System (EBS) for the ring footing.
The EBS is frequency dependent and must be updated for each
Fourier harmonic. In Egquations (3-69) and (3-70) the K's
and C's are modal values which are expressed in Fourier series
in the 6 direction. Figqure 9 shows the resultant trans-
lational and the rotational stiffness and damping elements

at the midpoint of the footing base.

3-8 SENSITIVITY STUDY OF THE EBS

3-8a Effect of the Stratum Depth

The depth of the stratum for a given ring footing
dimension affects the results for the stiffnesses and damping
of the EBS since the dynamic response of the nodes at the
foundation level is significantly influenced by the reflections
at the rock-socil surface.

To evaluate the convergence of the EBS quantities for
the case of a very deep stratum, six meshes with the same
element size throughout were considered. Figure 10 shows
the dimensions of the meshes, which progress from a shallow
stratum to a very deep cone. Table 2 gives the scil material
properties which are used for all meshes and the stiff-
nesses and damping of the EBS are shown in Figures 11 and
12, respectively. These results indicate the importance of
the stratum depth factor for the stiffnesses. On the other

hand, the damping elements are less sensitive to the depth
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factor as may be observed from Figure 12. The lesser
sensitivity of the damping elements with the stratum depth
suggests that the damping is mainly due to the radiation of
the waves horizontally in the far-field and that the vertical
radiation of the waves is not a major factor.

The study of the stratum depth presented herein suggests
some useful guidelines which may expedite the parametric study.
One very important finding is that the stiffness elements
are the most sensitive of the EBS components. Also, the
results reveal that the assumption of a fixed lower boundary
at a depth H = 3rO is reascnable.

3-8b Effect of the Driving Frequency

To study the effect of the driving frequency on the
EBS components, a frequency ratio a, is considered for the

range 1/I to 2 (8), where

a = —2 (3-71)

and Vg is the shear wave velocity for the stratum. The
antisymmetrical Fourier harmonic (j=1) is considered in the
study using mesh of Figure 10 with the ratio H/rO = 3.

Figure 13 shows the dependence of the stiffness elements
on the driving frequency. It is evident that both trans-
lational and rotational stiffnesses are very sensitive to
the change of a._. The sensitivity of the stiffness elements

o

may be understood by examining Equation (1-61), where the
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second and third terms of the RHS of the equation are
functions of the driving frequency . Similar observations
may be applied to the damping elements in Figure 14. However,
the damping elements are less dependent on the excitation
frequency than the stiffness elements. This conclusion
agrees with the results presented in References 8 and 35.

3-8¢c Higher Harmonics

In Figures 15 and 16 the results of the first six
Fourier harmonics (j = 0 to 5) are shown. The same mesh
used for the driving frequency study is retained and the
excitation frequency ratio a, is taken equal to 1.64. It
is interesting to notice that the EBS parameters for j > 1
are approximately constant for the u, v and ¢ components,
while the w and 6 components (vertical and rocking), show
more variation. This observation may be useful in reducing
the size of the problem if the stiffnesses and damping elements
of the higher harmonics are considered to be independent of
the Fourier number j and suggests a helpful procedure to
determine the EBS components for j > 1 with the aid of one
harmonic number j, (j > 2).

3-8d Mesh Study

To evaluate the convergence of the finite element
solution with decreasing element size, four meshes with a
depth ratio H/r_ = 3 were considered. Soil material
properties used in the analysis are given in Table 1. The

four meshes along with the results are shown in Figure 17.
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Damping in Antisymmetrical Modes
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Only the dimensionless stiffness elements k are plotted

against the element size ratio 4/A, where

k = K/GrO (u,w,v)
(3=-72)

K/GrOB (6,4)

¢ is the longest element dimension in the mesh, and A
is the shear wave length.

In Figure 17 the continuum solution could be extra-
pclated by the intersection of the curves with the vertical
axis (&/A = 0). The results indicate that the largest
element dimension in the mesh should not exceed A/6 for
satisfactory results in case of a uniform mesh. Also, it
may be observed that the rate of convergence for the five
components is approximately the same and that it is very
slow for element size ratio less than 1/8.

In order to investigate the possibility of using
larger elements with increasing depth, another four meshes
are considered with same soil properties and depth ratio as
those used in the convergence study. Knowing the continuum
solution for the EBS from the convergence study, the errors
in the finite element sclution of the four meshes are cal-
culated and plotted against the ratioc 100/n, where n is the
total number of elements in a mesh, Figure 18. Also, the
four meshes used in the study are shown in the same figures.

It is interesting to notice that the mesh with twenty

elements produced results with error as small as 0.7% of
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the continuum solution, although elements with dimensions
equal to A/4 are used. Also, the results indicate only
negligible differences between the two meshes with twenty
eight and forty elements, which suggests that the spurious
reflection of the elastic waves may be significant in these
types of grids; however, more study is needed to substantiate
this observation (36).

It should be noted here that the geometry of the
foundation, which is & ring footing, affects the mesh size
and the elements refinement near the foundation level. In
extreme cases, where B/ro gets small (less the 0.1), the
zone of influence or the so-called dynamic pressure bulb
will take a torcidal shape below the ring footing and,
consequently, more economical finite element meshes may be
used with large elements away from the footing, radially
towards the axis of symmetry and downwards away from the

dynamic pressure bulb towards the lower boundary.
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4-SOIL-STRUCTURE ANALYSIS

4-1 Introduction

As mentioned earlier, many large shells such as cooling
towers, are placed on rigid pile or caisson foundations., In
such cases the soil-structure interaction is expected to be
minimal, and in general, the dynamic analysis without the
soil effect may yvield more conservative results. However,
other shells may be founded on individual footings, or
perhaps on a concentric ring footing. The soil-structure
interaction in this latter case could prove very important,
and as a result, the analysis without the soil interaction
may be incomplete. Due to the possible amelorating effect
of the interaction, the internal design forces may be reduced.

In this section, the shell model is quickly reviewed
and the complete model of shell-scil system is presented.
The dynamic analysis is carried out in the time domain, and
the soil components are formulated at a driving frequency
identical to the fundamental frequency of the structure on a
fixed foundation. The study is conducted on a cooling tower
on a hypothetical foundation, with a variety of soil conditions
chosen to generate a trend of results from which some con-
clusions may be drawn.
4-2 Soil-Structure Model

Figure 19 shows the finite element model for the shell-

soil system. The shell is represented by high-precision
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rotational shell finite elements, while the s0il medium is
represented by a dynamic boundary system at the common
degrees of freedom between the shell foundation and the
underlaying soil.

For the shell elements (Figure 20), the strain-displace-
ment relationships used in the formulation include the effect
of transverse shear deformations. In forming the element
stiffness and mass matrices, displacement fields of arbitrary
order, i.e., linear to sixth order, can be used, and because
only c® continuity is required to be satisfied, the extra
coefficients in quadratic and higher order displacement-
fields are eliminated by kinematic condensation at the element
level. Proportional damping is assumed and the damping matrix
is arrived at through a linear combination of the condensed

stiffness and mass matrices.

4-3 SCHEME OF COMPUTATION
The master flow chart of the computation scheme is

presented in Figure 21. 1In this model the calculation of the
displacements and stresses in a shell of revelution subjected
to a general loading (static or dynamic loading which may

be symmetrical, antisymmetrical or with any distribution
pattern around the axis of symmetry of the shell) is treated.
The simplest case of loading is static, for which no soil
effect need be considered in the analysis; however, the load

distribution may be complicated and a Fourier series expansion
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is required to carry out the analysis harmonicwise. The
Shell of Revolution Soil System program (SHORE IV),with a
fixed lower boundary {infinite stiffness ‘and zero damping
for the EBS), follows the same computational algorithm as
contained in the SHORE-III program (37-38) in this case.

In case of dynamic analysis, the so0il effect is intro-
duced to provide a more realistic model. The EBS may be
evaluated and referred to the foundation level using the
program SUBASE; then the dynamic analysis is carried out
harmonicwise using the SHORE IV program which is described
in the companion volumes to this report (39-40).

To account for the possibility of uplift, the stresses
at the foundation level should be checked, with any net
tensile stresses corresponding to uplift; however, the dead
load stresses as well as the effect of any non-structural
elements tied to the shell foundation should be included in
calculating the net tensile stress at the soil-foundation
interface. If the separation zone is significant, the analysis
should be carried out again with a modified EBS with zero
stiffness and damping in the separation zone. The modification
may be accomplished by expanding the modified EBS in Fourier
series and introducing the resulting modal values into the
ring footing. The analysis is completed if the resulting
separation angle, Figure 22, is the same as in the previous

cycie.
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For shells with column supports, the local sStresses
near the base should be corrected. This is facilitated
by the application of a static superposition technique whereby
the solution is taken as a combination of the continuous
boundary case and a self-egquilibrated line load case, both
of which are represented in Fourier series, Figure 23. A
computer program to evaluate the Fourier coefficients,
the SHORC program, was developed by the authors of this
report and is described and listed elsewhere (41). The
correction should be carried out in the ring footing as well.
It should be noted here that the FORIT program (see Figure 6)
is capable of evaluating the Fourier coefficient for any
loading distribution including the particular case of a

self-equilibrated line locad.

4-4 FREE VIBRATION ANALYSIS OF A COOLING TOWER ON RING FOOTING
To investigate the scil effect on the dynamic properties
of rotational shells, a free vibration analysis of the rein-
forced concrete cooling tower shell shown in Figure 24 is
carried out. The tower is assumed to have a shallow ring
footing foundation and the shell meridian consists of three

curves with slope continuity at the junction points (nodal

points #4 and #7). Equations for the shell meridian are
given in Table 3. Three soil cases are considered: (I) a
soft to intermediate soil; (II) an intermediate to stiff

soil; and (III) a soil with fundamental frequency close to
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that of the structure so that strong amplification due to
resonance effects, if present, would show up. An additional
case (IV), structure founded directly on competent rock,
is considered as a basis of comparison. The details of the
soil properties are given in References 16 and 31.

The analysis is carried out with a driving frequency
of @ = 12.34 rad/sec (the fundamental frequency of the shell
on a fixed foundation) for the antisymmetrical mede (j = 1).
The EBS are computed using a soil model with 24 elements and
a depth ratio H/rO in the range of 3, except for Case II
where the bed rock is at 250 ft. below the foundation level.

The natural frequencies for the first three modes are
given in Table 4. The change in the fundamental frequehcy
is found to be only in the range of 5% of the fixed base
frequency so that any further approximation in the EBS using
the resulting interactive frequencies is unnecessary. On
the other hand, the decrease in the frequency of the second
mode reaches 25% of the fixed base case {(Case IV). The
change decreases as the socil gets stiffer, as may be observed
by comparing the frequencies of the four cases in Table 4.
‘ In Figure 25, the first three normalized eigenvectors
for cases I and IV, which represent the extreme soil con-
ditions, are shown. For the soft to intermediate soil case
(Case I), the interactive eigenvectors of the second mode

are drastically different than the fixed case (Case IV),
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Table %. First Three Natural Frequencies
: of the Studied Cases
wy Wa w3
Rad./sec. Rad. /sec. Rad./sec.
Case I 11.84 14.86 27.19
Case II 12.02 17.46 32.41
Case III 11.85 14,98 27.33
Case IV 12.34 19.256 36.37
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whereas there is not much difference between the eigen-
vectors of the first mode for the two soil cases. A
similar but less predominant influence of the soil on the
interactive eigenvectors is observed for Case II (the
stiff-shallow soil case). The eigenvectors of Case III are
found to be very similar to those of Case I. This may be
attributed to the combined effect of the soil depth and the
shear modulus producing very similar compliances for the

first and the third soil cases.

4-5 RESPONSE SPECTRUM ANALYSIS

To assess the importance of soil-structure interaction
on the stress resultants and stress couples in the shell, a
response spectrum analysis is carried out using the same
four soil cases employed in the free vibration analysis as
a supporting medium for the tower of Figure 24. The shell-
soil systems for the four cases are subjected to a horizontal
response spectrum with 20%g ground acceleration, Figure 26,
and a damping ratic of 5% is considered for the first three
modes of vibration in all cases. The high intensity of the
ground motion is chosen for the purpose of approaching the
case of foundation uplift, if present.

The stress resultants and stress couples at 8 = 0% for
the shell are given in Figures 27 through 30. It can be
seen that the fixed base case produces resultant forces which

envelop all soil cases, except for N when a fixed base

¢l
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condition {Case IV) is used, but this may be an extremely
conservative approach.

No significant amplification due to suspected resonance
effects is seen in the stress resultants and stress couples
for Case III. This is due to the fact that the rocking and
swaying motiocns tend to suppress the response of the
structure at the fundamental frequency of the fixed base
structure. This observation is in accord with the results
reported in Ref. 16.

The axial forces, bending moments and twisting moments

© and the results are

in the columns are calculated at & = 0
shown in Table 5, It may be observed that there is a sharp
decrease in the axial forces and bending moments as the soil
stiffness decreases. The decrease in the bending moment may
be attributed to the smoothing of the second mode shape
(Figure 25) in the lower region, whereas the 15 percent re-
duction of the axial forces may be due to the reduction in
the total base shear as a result of a smaller input inertial
forces due to the interaction effect.

The twisting moment in the columns increases as the soil
stiffness decreases. However, the values of the twisting
moments are not large enough to be a controlling factor in
the column design as can be seen from Table 8. The response

of the concentric ring footing is given in Table 9. The

results presented in this table are the complete solution
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which consists of the continuous boundary solution and
the self-equilibrated correction (See Figure 23). 1In

the self-equilibrated correction, the SHORC program is
used to calculate the Fourier coefficients for the loads
and the resulting self-eguilibrated loads are applied as
line loads at the top of the beam which is modeled as two
rotational shell elements. The highest harmonic number
used in expanding the self-equilibrated loads was 440. The
lower boundary of the footing consisted of static springs
with zero masses and damping, i.e., the correction is
carried out as static self-equilibrated forces.

Table 9 shows that the three cases of soil structure
interaction give responses for the axial forces and bending
moments sharply higher than the fixed base response, while
the torsional moment decreases as the soil becomes softer.
Convergence tc the fixed base results as the soil gets
stiffer is evident from Table 6. Incidentally, the values
presented for the vertical moment are computed from N¢
results along the footing depth, since the vertical bending
moment corresponds to the rotational degree of freedom about
the normal axis which is neglected in linear shell thecries
(42).

To check against foundation uplift, the N¢ component
of the stress resultants is computed at the foundation level
for D. L., factored by 0.9 and then added to the unfactored

earthquake response., The results are tabulated in Table 7.
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It may be seen from Table 10 that the net stress as
the foundation level for all cases is compressive and no
uplift occurs for the severe 20%g spectrum used in the
analysis. However, it is clear that the softer the soil
the more likely the uplift to occur. To investigate this
possibility more closely,the vertical component of the
earthquake may be included. A vertical response spectrum
with 13%g ground acceleration and 5% damping is considered
and the analysis is carried out at driving frequency of
Q = 32.75 rad/sec, which is the fundamental fregquency of
the structure on fixed base for j = 0. The RSS of N¢ at

the foundation level for the vertical and horizontal ground

motions for Case I is computed and the net value for N, is

4
found by combining the resulting RSS value of N¢ with the
factored D.L. value. The net value of N¢ is computed from

the equation:

N¢(net) = (qu5 + Ni Y172 ol Ny (4-1)
h v d
where
N¢ = N, at the foundation level due to
h hoérizontal ground motion
N = N, at the foundation level due to
by vertical ground motion
and
N = Ny at the foundation level due to the

¢d dead load
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For Case I N¢(net) is computed from Equation (4-1), with
N¢V = 29.8 K/ft, and the resulting value of N¢(net) is found
to be a tensile stress of 1.3 K/ft which can cause uplift.
However, N¢(net) is probably too small to cause a real

uplift as this net stress could be counteracted by the soil

friction on the sides of the footing.

4-6 TIME HISTORY ANALYSIS

The tower of Fig. 24 was first analyzed under the El-
Centro earthquake (5/18/40) EW Comp. with input in the form
of Fig. 31, The soil medium is considered as an elastic half
space as in the response spectrum analysis (Case 2) and then
the analysis repeated with fixed lower boundary at node #10
(Case b). The time duration of the analysis is taken as
five seconds and the time step for Newmark 8 method integration
is taken 0.02 second in case a, and 0.005 second in case b.
The damping coefficients («=0.715779 and £=0.003356) are
obtained based on 5% damping ratio for the first two modes of
vibration (the modes of vibrations are obtained during the
response spectrum analysis).

The results for both cases are plotted at selected nodes
on Figs. 32-38. The use of computer plotting,which is en-
compassed in the SHORE-1IV program,enhances the output of a
time history analysis by presenting the wvoluminous results
in a readily assimilated form. Although a wide range of
parametric studies were not conducted for this time history

analysis, the results are adequate to demonstrate the



Pages 116 and 117 have been removed.

Due to legibility problems, the following figure has been omitted:

Figure 31 - Input Data Echo for Time History Analysis of
Hyperboloidal Shell with Soil Effect
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possible influence of the flexible foundation on the
maximum stresses and displacements.

For a specified earthquake time history and realistic
field data to represent the soil, the SHORE-IV computer
program can be used directly to carry out an analysis such
as that presented in Figs. 32-38 for the El-Centro Earthquake
and the elastic half space soil medium.

As a further example, the tower of Figure 24 is
analyzed under the El-Centro earthguake (5/18/40) EW Comp.
using the same four soil cases employing in the free vibration
analysis as a supporting medium. The time of the analysis is
taken as five seconds and the time step for Newmark 8 method
integration is taken 0.02 seconds for the three soil cases
and 0.005 seconds in the fixed base case. The damping co-
efficients (a=0.715779 and 8=0.003356) are obtained based on
5% damping ratio for the first modes of vibration which are
obtained during the response spectrum analysis. Due to the
difficulty in grouping the results together for the four
cases, they are shown individually in Figs. 39 through 54.

FPigures 39 to 42 and 43 to 46 show the plots of N and M,

0
respectively at node #1 (8=0°). Also, Figs. 47 to 50 and 51

to 54 show the plots of N, and N, respectively at node #7

$

(e=00). The results are in the segquence of four soil cases

for each stress resultant or stress couple. In order to
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identify the differences between three soil cases and the
fixed base case {(Case IV), the maximum responses are listed
in Table 3. The comparison of the maximum response values
show that the soil indeed influences the response of the
shell when a strong motion earthquake loading is applied.
Within the constraints of the present research, based on
linear theories for the shell and the soil, similar
information is obtained from the response spectrum approach.
However, the capability for performing and displaying the
results of a time history analysis demonstrated in this
exercise are important in extended applications incorporating

more realistic soil models.
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5-CONCLUSIONS AND RECOMMENDATIONS

5-1 Conclusions

A finite element model for axisymmetric shell or shell-
like structures founded on shallow ring footings was developed.
The model consists of high-precision rotational shell elements
to represent the axisymmetric shell structures and isoparametric
solid elements with an energy transmitting boundary at the
ring footing extremities to represent the soil medium.
The substructure approach was chosen in the soil-structure
interaction analysis, which simplifies the connection problem
between the soil medium and the structure. Also, by using
the substructure approach, the free field of the ground
motion may be input directly at the foundation level.

The connection problem between the three dimensional
soil medium and the two dimensional shell elements is solved
by introducing a freguency dependent dynamic boundary system
at the common degrees of freedom between the shell foundation
and the underlaying soil. The soil model components were
computed at the fundamental frequency of the shell structure
without the soil system for the free vibration and response
spectrum analysis, whereas the dominant driving frequency of
the time history excitations was used with the time history
analysie. For dynamic wind analysis the fundamental frequency
of the system would likely be suitable; however, dynamic

wind analysis using the present model has not been carried out.
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It was shown that the require size of the finite element
mesh is controlled throughout the dynamic pressure bulb by the
shortest shear wave length and that this bulb exists through
a depth of about one and half times the footing radius. The
influence of the lower boundary on the soil model components
is significant only for depths less than three times the
footing radius due to the reflections of the waves on the
assumed rock-scil interface, which tends to increase the
stiffness elements and decrease the damping elements (con-
vergence to the fixed base case). Based on the dynamic
pressure bulb study, an economical finite element mesh for
the soil medium was suggested for use with shells having a
small B/rO ratio.

A sensitivity study of the equivalent boundary system
to the driving freguency showed that the stiffness components
are more sensitive than the damping components, and also that
the rotational components are the most sensitive to the
driving frequency. A similar conclusion may be drawn for the
sensitivity of the EBS to Fourier harmonic number j. It is
also concluded that the EBS components are fairly independent
of the harmonic number j for j > 1, which suggests an efficient
procedure to determine the EBS components for j > 1 based on

a single harmonic number (j > 2) analysis.
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The free vibration analysis of a cooling tower on a
shallow foundation showed that the overall flexibility of
the shell increases with a decrease in the soil stiffness.
Consequently, there is a reduction of the inertial forces
on the shell. The study also revealed a dramatic change in
the second mode of vibration as the soil gets more flexible.
This relieves the lower region of the shell (column supports
in cooling towers) from the high stresses which often occur
when the soil interaction is neglected. It is concluded
from this study that the soil flexibility or compliance is
a very important parameter in the soil-structure interaction
phenomenon and that a given flexibility can be realized by
a non-unique combination of the basic parameters. This
finding is in agreement with Pandya and Setlur's conclusions
(16).

The importance of soil-structure interaction on the.
stress resultants and stress couples in the shell was shown
by a response spectrum analysis of the cooling tower used in
the free vibration analysis. It was shown that the fixed
base or very stiff coil case produces resultant forces which

envelope all soil cases, except for the N, component. The

¢
reduction, which is in the range of 20% of the fixed base
solution, may permit reduction of the shell cross section and
the circumferential steel in the shell, resulting in a con-

siderable cost savings. Perhaps, the segment in the shell

structure most affected by soil-structure interaction are the
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column supports as may be seen from Table 5. The reduction
in the stresses may reach 50% for certain soil flexibilities.

The analysis of the concentric ring footing, which
has not been studied previously so far as the authors can
determine, revealed very large twisting moments on the
footing which increases with increasing the scil stiffness,
On the other hand, the axial force and bending moments
increase with decreasing the soil stiffness. With the present
model, the footing can be analyzed as a ring resting on a
continuous elastic foundation, bringing forth the axial
forces and the torsion which were not possible tc obtain with
the continuous beam-over-point support model used before.
Confidence in the ring footing response was established by
comparing the present model results to the result of a space
frame model.

The possibility of foundation uplift increases with
increasing the soil flexibility. In the design earthquake
considered here, uplift could occur only if the two componenté
(vertical and horizontal) of the ground motions were con-
sidered simultaneocusly. However, the net tensile stress
after adding the dead load effect is too small to cause a

real uplift, as shown in the analysis.

5-2 Recommendations for Further Study
The subject of axisymmetric shells-soil interaction is

a new topic in soil-structure interaction and the research
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presented in this report may be extended to include or
account for several other factors which may prove very
important for certain types of problems. Among these are
the effect of non-uniform earthquake excitation which may
yield further reduction in the structure response due to
the inherent self-diminishing feature to this type of
earthgquake excitation, as suggested by Scanlan (19). For
such an excitation, time history analysis is most suitable
and the analysis must include more than the first two
Fourier harmonics (j > 1).

Another factor which may prove very important is the
fact that the soil material may not be elastic but more
likely viscoelastic or nonlinear. For a realistic analysis
of viscoelastic soil material, experimental data for the
Lame” constant seems to be necessary. Unfortunately, there
is not much available data for variocus types of soil, es-
pecially when the soil layers are saturated so that the
water pressure could add to the complexity of the soil material.
In this kind of soil problem, the damping may be very sensi-
tive and more study is needed for the choice of the damping
ratio to adequately represent the material and radiation
damping. The relationship between the damping ratic and the
viscous damping where complex Lame” constants of the soil

material are used needs further study.
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For axisymmetric shells founded on pile foundations, an
inertial interaction mode may not be sufficient and complete
interaction may be more realistic. However, in this type
of analysis the use of the transmitting boundary is still
valid and probably can save in the computation cost. More
investigation is required to account for pile-pile inter-
action in the pile group and also for the possibility of
modelling the pile group as an equivalent axisymmetric
element. In case of friction piles the problem may be more
complicated due to the settlement and creep action with
time.

Separate shallow footings may be an option in the list
of alternatives for shell structures with column supports.
This type of foundation could be the most economical type.
However, very little is known about the individual behavior
of those footings under dynamic loading when the soil-
interaction is included, which suggests further investigation

in this area as well.
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APPENDIX T

Details Of Stiffness Matrix For An

Isoparametric Solid Element

This appendix presents the details of the 24x24
stiffness matrix components of a gquadratic isoparametric
solid element for a general Fourier harmonic Jj. The
shape function ¢i and first derivatives are given in
Takle 1 , which are chosen to represent the element geo-
metry as well as the displacements within the element.
From Equations (3-6) to (3-%9), using the partitioned form

of 8, D and ¢ matrices one can get

- -

T T T
(b?1D1b11+b2102321) | (bT1D1b12+b31D2b22)

% = JJ o eas 1Ry
=
T

|
l

8x16 | 8x8
l

24x24

= the stiffness matrix of the kth element.

and with Equation (2-11) we can write
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agn
bln T 3r ' blm =0
9g(2-8)
Bon = Ppg =0 v By = =53
9, , -jg(s-16)
BP3n = % r bgg = 0 ¢ Byg = —F
g
_ _°n - 2g(&-8) _
Y4n = 3z ¢ by 5+ Pgs = O
jgn 3 -
= — = = & (9ls=16)
= = 1 - _ 3g{s-16)
bgp = 0 r by = 7 92=8), b 3z
(1-2)
where
) (n = 1100018)
(m = 9,-0-,24)
(’Q' = 9’!v0716)

(s = 17,...,24)

Using the above wvalues of the B matrix in Equation 7-1

yields,

(I-3)

[
|
|
T
* b?I Dy by + b2y Dz by = |=——~——~
|
l

L. J16x16

where each of K;,, K,, and Ky, are submatrices of order

8x8.

* bgl Dy baz + b?z D b1z = —— (I-4)
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m m - O
* (bz; Dy byy + b?x D; b;2)” = [K?al K?J (I-5)
8x1lh
* bgz Da bgs + b?z D; b1z = [ﬁaJ (I-6)
8x8

In Equations (I-3) to (I~6) the elements of the sub-

matrices are defined as:

=i
It

2
1lmn (A+2u)[gm,r gn,r + Im gn/r ]

A
+ Flog 9n,r ¥ 90 Im,z) * ",z 9n,z

+ud? g g,

=i
it

12mn Afgn,z{gm,r * gm/&)] + ugm,z gn,r

: - 1
Ky amn Jugm(gn/ﬁﬂ,r - gn[Aqm,r+(l+2u)gmvbﬂ

K22mn

(+2u) lgy 5 9, .1 + ulg 1+ u(%)2 9 9n

m,r gn,r

=y d -1
K23mn Y %m gn,z r Agn gm,z

. g g
Kygun = OF20 (D2 qp g +ulr @, v G, v+ gy, 9, ]

Z "nn,2

- (I-7)

‘Vhere (m= l,.-.,S), and (n= lll"’s)
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Now, the element stiffness element Kk can be written as:

Kk= ff I_(?zl K22

izg rdrdz (I_S)

and with the transformation of Equation (3-12) together
with (3-17), the submatrices of Equation (I-7) can be
expressed in terms of the natural coordinates & and n,

as follows:

Kllm.n = (A+2u) (I3, gm,E + IJ;, gmm) (I3, 95, + Id;2 gnm) |

\ .
+ Eatgm(Isz %n,c + IJ:2 gn'n)+gn(IJ11 I, et IJ:2 gm,n)]

+ u(IJ2 I, & + IJz2 gm,n) (IJ2, 9n,c + IJ:2 gnm)

3,2 (I-9)
+ (RG) H gm gn + (A+n) [gmgn/(RGz)]
Klzmn = }\(IJZI gn'g + IJ22 gn,n) (IJll gm'g + IJlZ gmyn+gm/RG)

+ wu(IJz,; gm,£+ IJz gm,n)(IJ“ gn.€+ IJ;:> gn,n)

. . - (I-10)
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I

= < b - - A
RKigmn = &g In(T912 gn.E+ 131, 9n,n gn/RG) RG %n -

j (A+2
(IT11 In, e + 1012 9 ) - 1lt2uw)

N (RG) 2 m n

(I1-11)

=i
I

25mn (A+2u) (IJ2, Im, £ + IJ,;: gm’n)(IJz1 gn,g + IJ22 gn.n)

+ p(IJ;, Im, & + IJ;2 gm,n)(IJll 9n,t + IJ:2 gn,n)

5 2
* (g ¥ o9y 9, (1-12)

ui S
e gm(IJ21 In,t + IJ2:2 9n, ) G

Kosmn = n
9 (TT2y g ¢ + T2z gy ) (1-13)
7 = (ly?

(IJ2: In, + IJ22 gn,n) + (IJ:1: I, g * IJ:2 Im, 7

- gm/RG)(IJll 9n,z * IJiz2 g - gn/RG)] (I-14)

n,n

In the above equations IJ;i, IJi12, IJ2: and IJ,; are

defined by Equation (3-11), and;
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(m = lpo-cys)

It

(n l‘,..-,S)
The final stiffness matrix Ky is obtained by sub-
stituting Equations (I-9) to (I-14) in Equation (I-8),

and with Equation (3-18), one can write -

- o o -
Kii 1 Kz 1 Fy3
I [
N R S —
s R R
K, =f f 1255 | 23, | "3 | rodet.acagan
R i e
13 | P23 | 33
| l

24X24

(I-15)

(m=1,...,8) and (n=1,...,8)

The integration in the above equation is carried out by
means of four points Gaussian integration with the natural

cooredinates £, n.






