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SUMMARY

A finite element model for the dynamic analysis of an

axisynnnetric thin rotational shell founded on a shallow ring

footing was developed using high-precision rotational elements

for the shell, isoparametric solid elements for the soil, and

an energy transmitting boundary at the ring footing. The soil

medium and the structure are connected by a frequency dependent

dynamic boundary system. A sensitivity study of the equivalent

boundary system to the driving frequency revealed that stiffness

components were more sensitive than damping components and that

the rotational components were more sensitive than the trans­

lational components. Free vitration, response spectrum and

time history analyses of a hyperbolic cooling tower shell

showed that the overall flexibility of the shell increased with

a decrease in soil stiffness, reducing many forces in the shell

proper and especially in the column supports from the values

calculated when interaction is neglected. Relatively large

forces and twisting moments are introduced into the ring

footing which is, however, massive and capable of resisting

these forces. Foundation uplift is investigated and found to

be a minor problem. It is suggested that the structural design

and resulting behavior of such shells can be improved by

consideration of soil-structure interaction. Such an analysis

is facilitated by the use of the SHORE-IV computer program

developed in conjunction with this research.

II
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I-Introduction

1-1 General

One of the main criteria in selecting a mathematical

model is to represent the significant physical behavior of

the system as closely as possible. For the dynamic analysis

of structures founded on shallow foundations, soil interaction

in the structure response is expected, in general, to be

notable. The importance of foundation interaction in the

structure response depends on the properties of the structure

relative to those of the foundation and soil medium.

Although many large shells such as cooling towers

are placed on rigid pile or caisson foundations, others may

be founded on individual footings or perhaps on a concentric

ring footing. With the capability of a soil-structure inter­

action model for rotational shells, a basis for rationally

evaluating the footing option in the list of alternative

foundations may be established. Considerable economic benefits

may be anticipated from this added option in the form of

savings on foundation costs and reduced internal design forces

due to the possible amelorating effect of the interaction.

In this report, a dynamic axisymmetric finite element

model suitable for shells of revolution founded on ring

footings is developed. The analysis is carried out in the

time domain while the soil model is based on a driving
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frequency identical to the fundamental frequency of the

structure on a fixed foundation. The inertial coupling

method is used in the analysis and, as a result, no decon­

volution is required. The approach used in this research

is tempered by the availability and potential of the high

precision rotational shell finite element model (1-3).

With this factor in mind, the authors of this report developed

a compatible representation of the soil medium with the

existing shell element foundation, suitable for any type of

dynamic analysis.

1-2 Review of Past Work

l-2a General

Although a great deal of attention has been devoted to

nuclear containment structures, dams and multistory buildings

(4-7), the influence of the surrounding medium on the dynamic

response of large towers and other shells of revolution has

apparently not been studied extensively. However, it is useful

to review the existing knowledge of soil-structure interaction by

citing some of the studies carried out by different authors. One

may divide the work into three general categories: the approaches

to soil-structure interaction, method and techniques, and para­

meters and applications. Among the last category, there does

not appear to have been definitive studies on the interaction

between the axisymmetric shells and the foundation system.
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Before dealing with each of the preceding categories, it

is convenient to introduce the work which is cited for the

purpose of assessing the state of the art. A survey of

the soil effect on the design of nuclear power plants

has been performed by the Ad Hoc Group on Soil-Structure

Interaction (1). This paper provides some general insight

which may be useful for the specific problem at hand.

Veletsos (4) outlined a simple, practically oriented pro­

cedure for studying the effects of ground shock and earth­

quake motions on structure-foundation systems. The pro­

cedure is fairly straight fonvard and it is believed that

considerable insight for understanding the general nature

of the problem may be gained from such work. A limitation

of that analysis is that it is only applicable for structures

which may be modeled by a rigid foundation mat supported at

the surface of a homogeneous half-space. An additional

limitation of the procedure is the assumption of a linear

response for the superstructure.

1-2b Approaches to Soil-Structure Interaction

The basic alternative approaches to deal with the

soil-structure interaction problem can be divided into

complete interaction and inertial interaction analysis (1).

The second approach neglects kinematic interaction and
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basically does not explicitly account for the variation of

the input ground motion with the depth below the surface.

The essential difference between the idealized complete

interaction analysis and the inertial interaction analysis

lies in the treatment of embedded structures. For embedded

structures, the complete interaction analysis is clearly

superior from a theoretical viewpoint, but the principal

limitation is the cost of analysis.

Vaish and Chopra (2) classified the complete inter­

action analysis into a combined model and a substructure

model. In the combined model, the entire structure-soil

medium is treated as a combined system subjected to an ex­

citation at some assumed or actual boundary location such

as the soil-rock interface. In the substructure model, the

system is separated into substructures. Then the founda­

tion medium is represented as an elastic half-space and is

interfaced with the structure through a set of common co­

ordinates at the boundary of the structure and the soil.

l-2c Methods and Techniques

Numerical methods and, in particular, the finite

element technique, have usually been used to carry out

complete interaction analysis, while inertial interaction

analysis has generally been based on analytical solutions.

These solutions treat the soil as a viscoelastic half-space

or an elastic half space.
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A complete interaction analysis for circular footings

-on layered media is presented by Kausel, Roesset and Waas

(8) using a transmitting boundary to represent the far

field. Dynamic analysis of rigid circular footings resting

on a homogeneous, elastic half space has been carried out

by Luco and Westmann (9). In this work numerical results

for the analytical solution have been presented for the

torsional, vertical, rocking and horizontal oscillations

of the rigid disc.

Various approximate methods of superposition for the

interaction problem have been recently proposed (10,11,12,

13,14). The methods have differed in the way in which modal

damping is calculated, Novak (10), Rainer (12), and

Roesset, Whitman and Dobry (13) assigned weighted values of

damping based on the energy ratio criterion for evaluation

of equivalent modal damping in composite elastic and

inelastic structures,whereas Tsai (14) calculated the modal

damping by matching the exact and normal modal solutions

of the amplitude transfer function for a certain structure

location. Bielak (11) assumed that the modal damping can be

approximated based on some simplified soil-structure models

and the appropriate soil properties.

Clough and Mojtahedi (15) concluded that the most

efficient procedure, in case of non-proportional damping

system, is to express the response in terms of undamped

modal coordinates and to integrate directly the resulting

coupled equations.
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l-2d Parameters and Applications

The actual properties of the soil medium play the

primary role in assessing the actual influence of soil­

structure interaction on the structure response. Recently,

Pandya and Setlur (16) have defined four cases which provide

a range of soil properties useful for comparative analysis

and subsequent generalization. It is the opinion of these

authors that soil flexibility or compliance is the most

important parameter in the soil-structure interaction phenom­

enon, and that a given flexibility can be realized by a non­

unique combination of the basic parameters such as soil

depth, shear modulus, etc.

Penzien (17) suggests a system of a non-linear spring

and viscous dashpots to represent the soil for determing

the properties. In this model, Penzien chooses a non­

linear elastic spring with hysteresis characteristics

to represent the immediate deformation characteristics of

the soil structure under cyclic loading and a viscous dash­

pot in parallel with the spring, to represent the internal

damping within the soil, while the creep behavior of the

soil is represented by a viscous element in series with the

spring-dashpot combination.

An evaluation of the effects of the foundation damping

on the seismic response of simple building-foundation

systems is presented by Veletsos and Nair (18). The

supporting medium is modeled as a linear viscoelastic half
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space. This study shows that a consideration of the effect

of energy dissipation by hysteretic action in the soil is

to increase the overall damping of the structure-foundation

system and to reduce the deformation of the structure.

In the approach taken by Scanlan (19), the seismic

wave effect is studied by generalizing the input function

in the time domain so as to account for the travel time of

the passing wave over the plan dimension of the structural

foundation. His study is based on a rigid foundation-soil

spring model and suggests that a passing earthquake may

excite both lateral and rotational displacements even for a

structure which is symmetrical in plan and properties. The

study suggests an inherent self-diminishing feature to

earthquake excitation relative to the particulars of a

given design.

Akiyoshi (20) has proposed a new viscous boundary for

shear waves in a one-dimensional discrete model that ab­

sorbs the whole energy of the wave traveling toward the

boundary. Akiyoshi concluded that a mesh spacing less than

one-sixth the wavelength of a sinusoidal wave should be

used to obtain the allowable numerical solutions. The

limitation of the proposed method is that it is restricted

to the case of lumped mass-spring models.

The approaches and methods reviewed above have been

applied to different types of structures. Reference was
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made previously to three papers dealing with the nuclear

containment structures, dams and multistory buildings (1,

2,3). The analysis of a tall chimney, including foundation

interaction, for the effects of gusting wind, vortex

shedding and earthquake is studied by Novak (10). This

study shows that the general trend of the soil-structure

interaction effects is to reduce the response to dynamic

loads. The effect of embedment and the influence of

internal damping is investigated by Kousel (21) for cir­

cular foundation on layered media. The case of two­

dimensional rigid foundation of semi-elliptical cross­

section is studied by Luco, Wong and Trifunac (22) to ex­

amine the effects of the embedment depth and the angle of

incidence of the seismic waves on the response of the

foundation. This studY' shows that rocking and torsional

motion of the foundation is generated in addition to trans­

lation.

1-3 SCOPE AND AIM

The aim of the present investigation is to develop a

more realistic mathematical model for the dynamic analysis

of shells of revolution by inclUding the soil effect as a

new factor which should influence the dynamic behavior of

such structures. With this proposed model, it is possible

to study the effect of the soil condition on the dynamic

response of large towers like reinforced concrete cooling

towers. In addition to the seismic analysis capability of
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the proposed model, it is also applicable to other dynamic

loads like wind forces. This wide capability may provide

better understanding to the dynamic behavior of the axi­

symmetric shells and shell-like structures.

A basic theoretical background is furnished in Chapter

2. In that chapter the wave propagation equations in the soil

medium are presented and Hamilton's principle is specialized

and adapted for the specific problem discussed in this report.

The finite element formulation is presented along with the

parametric studies concerning the soil model in Chapter 3.

The basic formulations of the axisymmetric shell elements and

the method of the analysis are given in Chapter 4. In Chapter

5, the seismic analysis of a cooling tower is presented and

the results of free vibration, response spectrum, and time

history analysis are discussed. Conclusions and recommendations

for further investigations are presented in Chapter 6. In

addition to this report, two companion volumes, a theoretical

manual and a user's manual for the computer program which was

developed in the course of this study, have been prepared.

The program will be distributed through the NIS/EE, Berkeley,

California.
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2-Soil Model

2-1 Introduction

In the present chapter, the basic formulation for the

wave propagation problem in a layered medium is presented

for a general mode (j ~ 0). However, if one considers the

foundation to be a rigid concentric ring footing, only the

first two modes in the series are needed to describe the

general motion of the footing acting on the free surface of

a soil stratum. These are j = 0 for vertical and torsional

excitation (axisymmetric modes), and j = 1 for rocking and

swaying (antisymmetric modes). The soil model along with the

connection problem are explained and discussed with respect

to several parameters.

2-2 DISPLACEMENTS AND LOADS

Let any point in the soil medium be described by the

coordinates r, z,e as shown in Figure 1. In the cylindrical

coordinate system, the displacements in the radial, vertical

and tangential directions are denoted by u, w, e, re­

spectively, while the loads in these directions are denoted

by Pr , P z and Pe. 'They can always be expressed in Fourier

series by

~

u = L (uj cosje + -j sinje)us a
j=O
~

w = L (wj cosje + -j sinje)w
j=O

s a

~

v = L (-v j sinje + -j
cosje) (2-1)va

J=O
s
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AXIS OF SYM.

----J~.-

u,F}

Figure 1. Coordinate System
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and,

00

Pr
L (pj cosje +

-j sinj e)= P
j=O r s r a

00

Pz
:E (pj cosje +

-j sinj e)= P
Zaj=O Zs

00

Pe = L (-pj sinje + P~ cosj e)
j=O as a

where the modal amplitudes with subscript s, a are re-

ferred to as the symmetric and antisymmetric displacement

(load) components. Equations (2-1) may be rewritten in

matrix form as

u -j -j cosjeu us a
00

w =L: -j -j (2-2)Ws wa- - - j=O - - - -
v -j -vj sinj6va s

with similar expressions for the loads. An alternative

notation could be

u =L: - ij6ue
j

w =L: - ije\"e
j

and v =L: - ij6
(2-3)ve

j
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but since the modal amplitudes are complex for complex

moduli, the latter notation is not advantageous.

The negative sign introduced in the sine term for

the tangential components has the effect of yielding

the same wave equations for both the symmetric and anti­

symmetric components (same stiffness matrix in the

finite element formulation) •

The displacement vector of Equation (2-2) is written

in partition form to separate the in-plane components

(u,w) from the out-of-plane component (v). The modal dis-

placement vector is then

U {Ul · U2}= ··
where - {ii, w}Ul =

- -and U2 = v

(2-4)

(2-5)

2-3 COMPATIBILITY EQUATIONS

The small strain and rotation-displacement relations

expressed in cylindrical coordinates are

= au
E: rr ar

= aw
E: zz az

= ~+ 1 av
E: ee r r ae

au + awYzr = az ar
(2-6)
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1 au + av v
Yre = r ae ar r

av + 1 aw
Yez = aedZ r

and the Fourier Expansions are

00

E: rr =
~

(gj co'sj e + -j sinje)E:rrs rra
00

E: = ~ (E j cosje + -j sinj e)E:zz )=0 zZs zZa

00

~
-j cosj'; + -j sinje)E: ee = (E: ee E: ee

j=O -s a
(2-7)

00

L -j cosj e + -j sinj e)Yzr = (Yzr Yzr
j=O s a

00

Yre = L (-yj sinje + -j cosj e)
res Yre

j=O a

00

"'fez = L (-yj sinje + -j cosj e)ezs
Yez

j=O a

where the modal amplitudes are related by

-
E: rr = u,r

-E: zz = '''1, Z

1 (u-jv)E: ee = r

- (2-8)Yzr = u'z + w'r

- 1 - - -
Yre = r(ju-v+rv'r)

Yez = jw/r + v,z
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The above equation may be expressed in matrix form as

-E: = Au (2-9)

(2-10)

and A is the partitioned matrix operator

I
a

0 I 0ar I
I
I

0
a I 0az I

I
1 0

I _ i- Ir r
A = I (2-11)

I

a a I

az ar I 0
I- - - - -

i 0 a 1r-(-)r ar r

0 i a
r az

It is convenient to write Equation (2-9) in the partitioned

form

A
I

'A- , u
E1 11 I J 12 1

I (2-12)- -----~------ j A 21
I -

E:2 I A22 U2
I
I
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2-4 CONSTITUTIVE EQUATIONS

The stresses can be expanded in the same way as the

strains and the modal components of stresses and strains

are related by

cr = Dg (2-13)

For cross-anisotropy, D(the constitutivity matrix)

is restricted to be a function of rand z only. In the

present study, only materials with properties not varying

with e will be considered. Matrix 0 for an isotropic

material is given by

a
].l

a

o

a

a

A+2].l

a

A+2].l
Ia I
I

a I,
A+2].l a I

I
].l I

I

-------------~-----I

I ].l
I
I a
I

D =

= [~1_!-~-]
La I 02

(2-14)

..
where A and ].l are the Lame constants (complex in general) .

They are related to Young's modulus, Poisson's ratio and

shear modulus through
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A = vE = 2vG
(l+v) (1-2v) l-2v

E
G (2-15)1..1 = 2 (l+v) =

The modal stresses is defined by

- {cr.l :er 2 }cr =
-

{errr,erzz,eree erzr }where cr1 = (2-16)

- {crre,crez }and cr2 =

while the true stresses are given by

co

I: -j cr j ) [c~s~e]cr1 = (cr ls
j=O la

s~nJe

(2-17)
0:>

-j [-Sin~eJL: -j
cr2 = (cr 2s cr 2a)J=O cosJe

The partitioning of this matrix into the submatrices D1

and D2 is consistent with that of the stresses and strains,

and it follows that

2-5 WAVE EQUATIONS

(2-18)

The general equations of wave propagation expressed

in cylindrical coordinates are (27)
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d~l) ]
dr

II d dUr dr r(E

au)]ae

(2-19)

where

~ = volumetric change

= E + E + Err ZZ ee

= 1 d{ru) + dW + 1 ov
r dr dZ r ae (2-20)

For harmonic excitations with frequency n, the modal

Fourier expansion of Equation (2-l9) can be expressed by

i:;;[COSje] =

j=O sinje

co

+ ll{jw _ av) +ll .L(l d (rV) _ ~)]
r r dZ dZ r or r [

COSj e]
sinje

co [ ]

_ cosj e

?=~w sinj e
-1 r:co

{(;\+211)f-(U + au j - + aw)= "" oZ r dr - r v azpn 2
j=O

II l-(d(rv) _ ju) _ ~(j; dV)]
r dr ar r r dZ



a .- a- a au a-
- lJ-(.J!!. - '" vz ) +lJ -(- - 2!) Jaz roar az ar

co

j=O
[-sin~eJ =

cosJe
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co

-1 "'"pQ2 4.J
j=O

r
Sin~e]
cosJe

(2-21)

For an arbitrary j, it follows that

- -1 a u au i v + aw) i(au aWlu = pQ2 [ (A+211) -(- + ar - +lJar r r az r az ar

+ 1:LL (a (n) - jU)Jr az ar

-1 [ (A+2lJ) t-(s' + au i - + aWl l!..L (a (rv) ju)w = pQ2 ar - v -z r r az r ar ar

_ll (i W- av)]
r r az

- au ~} a i- av)-1 [(A+2].l)i{£ + E+v = pQ2 ar - - lJ az{r wr r r az az

(2-22)

which shall be called the Modal Wave Equations (MWE).

They are only functions of rand z, with the parameter

j = 0, 1, 2, •.• dependent on the Fourier decomposition of

the loadings or prescribed displacements. The general

solution of ~mE is (28)
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. aH ~2) (kr)
U= ~ntr(kA -iz C -mz) ] + i B H~2) (kr)e-mz ]e e -m e ar r J

(2-23)

in which Hj2) (kr) are second Hankel functions of order j

(order of Fourier component), A, B, C are integration con-

stants, k is an arbitrary parameter Lwave number), and

i ± Ik2 n 2

= - Vi"
P

/k 2± n 2
m = -::zVs (2-24)

and

1
/ A~2~=vp

1 IT=Vs

where v p and Vs are the compression and shear wave

velocities, respectively.
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In the particular solutions given by (2-23), analagous

expressions containing first Hankel functions H~l) (kr)
J

have been omitted, since they correspond, in combination
intwith the factor e , to waves travelling from infinity

towards the origin and thus must be disregarded in accord-

ance with Sommerfeld's radiation principle (29). (Sources

confined to the vicinty of the origin). For this reason,

the index (2) and the argument (kr) in the Hankel functions

will be dropped.

The solution of the modal wave equations may be

written as

inte (2-25)

~'1here H! = .L H~2) (kr)
J ar J

and

f 1 (z) -~z - mCe-mz= kAe

f 2 (z) = kCe-mz - ~Ae-~z

f 3 (Z) Be-mz=

(2-26)
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intDropping the time dependent term e from (2-25) to-

gether with (2-26) one gets

Y = HF (2-27)

where Y is the modal displacement without the time de-

pendent term, and

and

H! 0 i H.
J r J

H 0 kH. 0
(2-28)= J

i H. 0 H!
r J J

In the above equation F is only a function of z while H

is a function of r and the harmonic number j.

Also, expressions for the strains and stresses in

terms of the functions f i will be needed later. Sub­

stituting (2-27) into (2-8) results in

i H.- f 1 H'~ f 3 (H! ~)€rr = + -
J r J r

€zz = f~·k·H.
J
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H! . 2, . H .
Eee = f 1 (.:...1. JT H.) + f 3 ~(~ - H!)r r J r r J

- f{ H! + f2, k H! + f~ i H. (2-29)Yzr =
J J r J

iC.2H! H)
.2,

1 H!- f 1 f 3 (~ Hj + H~)Yre = +r J r r J J

- f' i H. f2, k i H. ft H!Yez = + +1 r J r J 3 J

and with

~ = (f 2 - kf.l) k H. (2-30)
J

the stresses follow as

- 211e: + A~a =rr rr

- 211E ZZ
A<Pa = +zz

a ee = 211Eee + A~

(2-31)-a zr = llY zr
-are llYre=
-ae = llY ezz

The modal wave equations (2-22) may be expressed in

matrix form using Equations (2-25) through (2-28) as

H • Z = 0 (2-32)
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where H is given by (2-28) and Z is a vector depends only

on z

z .=

Z1 ( A+ 2lJ) (kf ~ - k 2f d + lJ. (f~ - kf ~ ) + pn 2f 1

z~ = (A;.2lJ) (f~-kfP+lJk(fl-kf~)+pn2f~

Z3 lJ(f~-k2f3) +pn 2f 3 (2-33)

The above form of MWE is suitable for the finite element

formulations as we will discuss later.

2.-6 PRINCIPLE OF VIRTUAL DISPLACEMENTS

In dynamics, the generalization of the principle of

virtual displacements into a law of kinetics by use of

D'Aambert's principle is referred to as Hamilton's

principle. For conservative systems, the principle states

that the work performed by the applied external loads

and inertial forces during a~ arbitrary virtual displace­

ment field that is consistent with the constraints is

equal to the change in strain energy plus the energy dissi­

pated by internal friction during that virtual displacement.

Hamilton's principle shall be specialized and adapted

for the specific problem discussed in this report in

which the coordinate system is cylindrical, and the visco­

elastic constants are complex. By applying two Fourier

transformations, one in the time domain, and one in the a
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coordinate, the principle of virtual displacements for

axisymmetric systems subjected to a general harmonic

excitation shall be developed.

A general form of Hamilton's principle in elasticity

is

ae: .. cr .. dV -fau. (b.-pu.)dV
~J ~J ~ ~ ~

V
- ~ OUiPidA}t = 0

( 2-34)

where ae: .. is the virtual strain field corresponding to
~J

the displacement field cUi which is consistent with the

constraints and vanishes at the time to and tl. The

term ce: .. cr .. represents the change in strain energy as
~J ~J

well as the energy lost due to internal friction. S

corresponds to that portion of the boundary where the forces

are prescribed.

Since the prescribed virtual displacements are ar-

bitrary, a set of displacements can be chosen of the form

cUi (x,t) = cu. (x) . a(t)- ~

to .::t < tl--ce: .. (x,t) = ce: .. (x) • a(t)
~J ~J

(2-35)

where x stands for the coordinate system,

x = (Xl' X2, X3) (2-36)
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and a(t) is the Dirac delta function. Substitution in

(2-34) and integration over the time domain yields

f Og . .cr.· dV -f QU. (b.-p{i. )dV -f au. p.dA = 0
~J ~J ~ ~ ~ ~ ~

v v S

(2-37 )

where cr ij , b i , u i and Pi are evaluated at the time t.

Alternatively, it is possible to arrive at this

result starting from the equilibrium equations (wave

equation) and the boundary force equations, and constrain-

ing the time variable to remain constant while the virtual

displacements are applied, that is, the real motion is

stopped while the virtual displacements are performed; how-

ever, the inertial forces must be assumed to persist. In

other words, it is assumed that the performance of the

virtual displacements consumes no time (30).

Applying a Fourier transformation (FT) to (2-37) and

defining

cr .. (n)
~J

-
= FT (cr i j (t) ), Pi (n) = FT (b i (t) ), Pi (n) = FT (p i (t) ) ,

(2-38)
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yields

f 0€..a.. dV - f 0u. (b. +pQ2;. ) dV -f P~ 0u~ dA = 0
~J ~J ~ ~ ~ ......

v v S

(2-39)

where the transformed quantities are in general complex.

For real elastic moduli, the stresses will be real

and in phase with the strains and displacements whereas,

for complex moduli, they will be complex and there will

be a phase lag between these two quantities. The relation

- -between the transformed stresses cr ij and strains Eij is

given by equation (2-13).

An alternate form of equation (2-39) is obtained

using integration by parts, resulting in

£ C~. (; ... + b. +pQ2;.)dV + feu. (p.-n.;; .. )dA = 0
~ ~J , J ~ ~ ~ ~ J ~J

S

(2-40)

which, for arbitrary variations of the virtual displace-

ments CUi yields the body and boundary equilibrium

equations. Using the stress-strain relation, the term

in parenthesis in the first integral becomes the wave

equation, which shall be useful later on. Switching now

from tensor to matrix notation and dropping the superscript

-with the implicit understanding that the applied forces

(displacements) are harmonic, equation (2-39) becomes
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(2-41)

For a cylindrically orthotropic (cross anisotropic)

material, integration w/r to e, with dV = rdrdedz, and

using

2II

JCsin me sin ne de
o

for m=n~O

otherwise

2II

fcos
o

2IIf sin
o

me cos ne de = 0

{

II for m=n~O

= 2II
O

for m=n=O
otherwise

for any values of m and n

yields for the principle of virtual displacements

(2-42)

where the superscript bar refers to the Fourier modal

amplitude. Similarly, by substituting Equation (2-32)

into Equation (2-40), we find

(2-43)
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-* -where a = {njaij } are the projection of the modal

stresses on the unit outward boundary

normal nj

H.· Z = the modal wave equation (2-32).

Equation (2-43) is preferable to equation (2-42)

or (2-4l) when using the principle of virtual displace-

ments to define the eigenvalue problem for the visco-

elastic energy absorbing boundary since it does not re-

quire a cumbersome integration of products of the Hankel

functions over the coordinate r.
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3. FINITE ELEMENT FORMULATION'

3-1 INTRODUCTION

Numerical techniques have been used successfully in

the stress analysis of many complex structures. In

particular, the finite element technique has been the

major tool for analyzing different types of structures

such as solids of revolution and shells of revolution.

These two classes of structures are of special importance

in modelling the axisymmetric shell-soil system. The use

of highly efficient rotational shell finite elements to

model the superstructure suggested that the soil medium be

represented in a similar manner. A main problem in this

case is to account for the proper boundary conditions at the

edges of a finite domain which will not introduce undesirable

reflections of waves into the region of interest. A possible

solution is to place the boundaries at a substantial distance

from the footing if there is internal dissipation of energy

in the soil. This approach requires a very large number of

elements and is therefore expensive.

This chapter presents the finite element model used

to represent the soil medium where axisYmrnetrical isopara­

metric quadratic solid elements with transmitting vertical

boundaries placed directly at the outer edge of the structure
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are employed (Figure 2). with the energy transmitting

boundary, the finite element region is reduced to minimum,

resulting in a high order sophisticated model with com­

paratively few elements as has been the continuing objective

in previous investigations at Washington University. The

formulation of the rotational shell elements is presented

elsewhere (2, 3).

3-2 SOLID ELEMENT FORMULATION

The core region of Figure 2 is modelled by means of

axisymmetric isoparametric quadratic solid elements. For

each nodal circle there are three degrees-of-freedom;

two of them are in-plane, u and w, while the third, v, is

out-of-plane. These in-plane and out-of-plane degrees-of­

freedom are separated in the formulations of the element

stiffness and mass matrices. The name "isoparametric"

derives from use of the same interpolation functions to

define the element shape as are used to define the dis­

placements within the element.

If ~ denotes the expansion vector for the isoparametric

formulation,
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Figure 2. Finite Element Model for the
Soil Medium
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n

" ¢l.r.£-. ~ ~

i=l

n

'" ¢l.z.£.J ~ ~

i=l

(3-l)

,

where n = number of nodes per element.

In vector notation

where r~ = {ri l r2/ ••• rn}

T
Zo = {Zil Z2/"' Z

n }

Using the same expansions for the displacements ,

where

{3-2}

{3-3}

{3-4}

u = [~1
and ( 3-S)



-34-

In equation (3-4), ~T is called the expansion matrix.

From (2-10) and (3-4), one can write

Ul

(3-6)

.:.

-W2.
3x3n

cpTI
All I Al2

4x2 I 4xl= L _
I

A21 \ A22
2x2 I 2xl

I

or e: = B Uo

where B =

I
bll J b l2

4x2n : 4xn
I- - - - - - --,---------

b21 I b 22
2x2n : 2xn

I

(3-7)

Substitution into equation (2-42) gives

~ 6U~{ff(BTDB-Pn2~~T)uordrdZ-f~prds}= 0
elements

(3-8)

For the kth element, the consistent mass matrix Mk , the

stiffness matrix Kk and the load vector P k are defined as:
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Mk = ffp~~T rdrdz

Kk = ffSTDB rdrdz (3-9)

Pk = f~P rds

3-2a Isoparametric Formulations

For quadratic elements, the total number of nodes

per element n is equal to eight and the shape functions

~i = gi (i=l, ••• ,S) may be chosen as functions of the

dimensionless coordinates ~ and n. In Table 1 the

expressions for gi' gi,~ and gi,n are given.

The Jacobian is defined by

Jac =

r l zl

:r 2 z2

r 3 z3

r 4 z4

r S Zs
r 6 z6
r 7 z7
r S Zs

or Jac =

8
~g. ~r.
+-J.l~'~ ~
~=

8

"g. r.£..i ~,n ~
i=l

8

"g. ~z.£- ~,~ ~
i=l

8
"g. z.£.J ~,n ~
i=l

(3-10)

The inverse of the Jacobian IJ is, then, given by

IJ =
[

IJll

IJ Z1

1JIZ]
IJzz
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where

and

IJ 21 =

-37-

(tgi,nZi)1 IJac I

-(~ii"Zi)/IJacl
8

-(~Ii,nri)/IJacl

8

(~ii, ~ri)/ IJac I

(3-11)

where IJacl is the determinant of the Jacobian matrix

of equation (3-10). The inverse of the Jacobian is

necessary for the transformation from r-z coordinates

to ~-n natural coordinates,

) , r = IJ 1 1 • ( ), ~ + IJ 1 2 • ( ), n

(3-12)

) , z = IJ 2 1 • ( ), ~ + IJ 2 2 • ( ), n

3-2b Element Mass and Stiffness Matrices

Using partitioned form of the B, D and ~ matrices

we get:

m

o

o

o

m

o

o

o

m
24x24



where

and
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ffp</lepT rdrdz

I

Kl I K2
I----1---

KT : K32 I

24x24

(3-13 )

where
T T

Kl = ff(bllDlb l l+b21D2 b 2l)rdrdz

T T
K2 = ff(bllDlb l 2+b 2l D2b22)rdrdz

T T (3-14)K3 = ff(b22 D2b22+b l2 Dlbl2)rdrdz

From (3-7), the submatrices bll' bl2, b21 and b22 are

given by (See Appendix 1) ..

gl,r g2,r ••••• 9 8 a a • • • •• 0,r

0 0 • • •• e a gl,z g2 ••• ·ga
b ll = ' z , z (3-1S-a)

gl/r g2/r····· ·gS/r a o••..•• 0

gl,z g2 •••••. g a gl,r g2,r····<Ja ,4, z , z
4x16
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0 o•. . . . . . . 0

=i 0 o. . . •. . . . 0
b 12 = r

gl g 2' •••••• g a

0 o•. . . . . . . 0

4x8

(3-15-b)

o••••••• a

o o. . . . •.0]
g2' •••• g a

2x16

(3-15-c)

gl,Z g2 ••••••••• g,z a,z

2x8·

(3-15-d)

and ~~T is given by:

gf glg2 glg3 •••• glga

g2g1 g~ g2g3 g2ga
2g3g1 g3g2 g3 ••••• g3ga

~~T = (3-16)

• 2
gagl gag2 g ag3' ... ga

8x8
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with RG defined as

8

~=L
i=l

g.r.
~ ~

(3-17)

1 1

and ff( )rdrdz = jf ~ ( )RG det Jac d~dn
-1 -1

(3-18)

the mass matrix Mk and the stiffness matrix Kk are ob­

tained for a general Fourier harmonic j; however, Mk

is independent of j as one can see from equations (3-13)

and (3-16).

The integration in each element is carried out by

means of four points Gaussian integration with the dimen-

sionless coordinates ~, n. Since in the Gaussian quadra-

ture scheme, there are no points on the boundary of the

elements, no problems are encountered wi~~ the singularity

of the integrand of the symmetry axis (r=O) for those

elements adjacent to it.

The details of the isoparametric formulation for the

element stiffness matrix is presented in Appendix I.

3-3 THE BOUNDARIES

It is assumed that the finite element region has a

fixed lower boundary, which may be true if we are dealing

with a stratum over rock of infinite horizontal extent.

The lower boundary location factor will be studied in

case of a deep stratum or half space.
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Now, for the total mass matrix M, total stiffness

matrix K, and the total load vector P we have the

following equation

(K - 0 2 M)u = P (3-19)

where u stands for the total nodal displacements.

The above equation needs to be modified to include

the effect of the far field on the stiffness of the core

region. This can be achieved by considering the equili­

brium of the vertical boundaries of the core region. If

the core region of Figure 2 is removed and replaced by

equivalent distributed forces corresponding to the in­

ternal stresses, the dynamic equilibrium of the far-field

will be preserved. Since no other prescribed forces act

on the far-field, the displacements at the boundary and

at any other point in the far-field will be uniquely de­

fined in terms of these boundary forces. The relation

between these boundary forces and the corresponding boundary

displacements is the dynamic boundary matrix to be added

to the total dynamic stiffness matrix of equation (3-19).

For a consistent boundary (8), it is always possible

to express the displacements in the far-field in terms of

eigenfunctions corresponding to the natural modes of wave

propagation in the stratum. The general solution to the

problem is given by Equation (2-23) where k is an undeter­

mined parameter of the wave number. In an unbounded medium,
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any value of k, and thus any wave length, is admissible;

for a layered stratum, however, only a discrete set of

values of k (each one with a corresponding propagation

mode) will satisfy the boundary condition. At a given

frequency, 0, there are thus, an infinite but discrete

set of propagation modes and wave numbers k, which can

be found by solving a transcendental eigenvalue problem.

For each eigenfunction one can determine the distribution

of stresses up to a multiplicative constant, the partici­

pation factor of the mode. Combining these modal stresses

so as to match any given distribution of stresses at the

boundary, one can compute the participation factors and,

correspondingly, the dynamic stiffness function relating

boundary stresses to boundary displacements.

The solution of the actual transcendental eigenvalue

problem for the continuum problem is difficult and time

consuming requiring, in general, search procedures. A

discrete eigenvalue problem can be obtained by substituting

the actual dependence of the displacements on the z

variable, as given by Equations (2-25) and (2-26), by an

assumed expansion consistent with that used for the finite

elements. The result is an algebraic eigenvalue problem

with a finite number of eigenvectors and eigenvalues, for

which efficient numerical solutions are available.
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Wave Numbers and Modes of Propagation

Consider the toroidal section of the far-field limited

by two cylindrical surfaces of radii r o and r l , as shown

in Figure 3~ The stratum is discretized in horizontal

layers, the interfaces of which match the nodal circles

of the finite element mesh in the core region. For the

nth layer there are three nodes i, i+l, i+2, for the ith

node the three degrees of freedom are:

(3-20)

The exact values for these three nodal displacements

are given by Equation (2-25),

x· = H • F.
~ ~

and for the layer number n,

(3-21)

Approximate solution for the nodal displacements may be

obtained using the same expansions as for the coordinates

and displacements in the finite element region
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F. = N X.
~ ~

(3-22)

(3-23)

in which I is a 3x3 identity matrix, and gi represents

the expansion coefficients. For a quadratic expansion,

Combining Equations (3-20) to (3-24) yield

U = N Uoappn n

(3-24)

( 3-25a)

= the approximate nodal displacements
for the nth layer

and
xli H! + .L X3' H.

J r o ~ J

kX2 . H.
~ J

.L Xl' H. + X3 . H!
r o ~ J ~ J

xl i + l Hj + .L H.r
o

x3i+l J
Uo =

n kX2i + l H.
J

.L H. + x3i+l H!Xl'+lr o ~ J J

Xl i +2 H! + .L H.
J r

o
x 3i +2 J

kx2i+2 H.
J

L X1 i +2
H. + x 3 i + 2 H!

r o J J
n

(3-25b)
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Using the same basic procedure for the finite element

formulation as previously employed, an approximate

solution is obtained by SUbstituting the displacement

expansion into the expression of the principle of virtual

displacements (2-43), integrating over the region, and

requiring the result to vanish for an arbitrary Qu.

Substituting the above approximate displacements in

(2-43) and summing over the i layers yields

i

r;
n=l f -T - -*QU (p-o- )rds

Sl

f -T - -*+ cSu (p-cr )rds

S2

+1 ouT (p-;·)rdS] = a

S3 (3-26)

In the above equation, consistent nodal forces - andPo Pl

are applied at each of the boundaries r o and r1 such that

the integrands over So and Sl vanish

i rdS]L [ -T- f -T- f -T-*QU P = QU prds = QU 0-

n=l o 0

So So (3-27)

! rdS]L: [ -T- f -T- f -'T'-*QUiP 1 = QU prds = QU-o-
n=l Sl 51
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with no external prescribed forces acting at the layer

interfaces;

-T-*
QU cr rds -f oiiT,,.rdsJ= 0

53

(3-28)

in which

{crrz ' - cr ez } forcr zz ' 52

-*cr = (3-29)

-{a cr zz ' C1 ez } for 53rz'

From Equations (2-29), (2-30) and (2-31)

- 1l{(f!+kf2)Hj i H.f;}crrz +
r J

cr* -
kHj{(A+211)f~-Akfl} (3-30-a)= cr zz =

- II { (f ~ +kf 2) i H.+f~ H! }cr ez r J J

or cr* = H-Z2o F (3-30-b)

where Z2 i5 an operator matrix

a llk 0II fi

Z2 = -Ak {A+211)~z 0 (3-31)

0 a a
llaz
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The wave equation H·Z, Equation (2-32), may be written

as

W = H • Zl • F

in which Zl is an operator matrix

o

o

(3-32)

a a

(3-33)

With ou = HoN·oX and F = N·X, Equation (3-28) becomes

~

~
n=l

(3-34)

In the above equation,

emN' = =az [g! I.]
1. 1.

in which i = 1, 2, 3 and k = 1, 2, 3.

Also, in Equation (3-34) i

NTHTH = HN T and - IT'HN' -, where



H =

-49":'

I l
HI 0 HZI I

I I
o H3 0 I 0 I 0

I I
H2 0 HII I

__ _____1 1 _

IHlo HZ:
Io 10 H3 0 I 0

I I
IH2 0 HII

--- ---f------I- - ----
I IHI 0 Hz
I I

o I 0 10 H3 0
I I

I I Hz 0 HI
I I

(3-35)

in which HI = H! 2 + (i) 2 H7
J r J

H2 = II H! H.
r J J

H3 = k 2H7
J

Factoring out the H matrix, which is independent of z,

from Equation (3-34) and rearranging the equation yields

[~:T(Zl-Zl)NdZ - ~nN'TZ2NdZ]X= a

(3-36)

rl

For an arbitrary oX and with JC Hrdr ~ a (non singular
r o

matrix) which is the same for all layers in the case of

vertical boundaries, the following equation must hold:
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i

L
n=l

and with

-/
o

(3-37)

h

{
4

2

2

16

-1

2

-1 2 4

1 -4 3

-3 4 -1

-4 0 4
(3-38)

h 7 -8 1

;; gigkdz 1 -8 16 -8and = 3h

1 -8 7

equation (3-37) becomes

i

li c[S]n-K[Bl n - k [A]n){X} = 0

in which

(3-39)
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For the whole stratum, the assembled matrices of (3-40)

leads to

(3-41)

2which is an eigenvalue problem in k i , the wave number of

the propagation mode Xi. The order of this eigenvalue

problem is 61, where 1 is the total number of layers in

the stratum.

3-3b Dynamic Stiffness Matrix of the Energy Absorbing

i.e.

Boundary

Consider Equation (3-27) with ds = dz and r =

of the nodal

hn

= r o f uTa*dZJ for an arbitrary variation

o
displacements. But

h

~
(3-42)

CL
S

=

-*as =

where ps = the nodal forces for the sth propagation mode

the participation factor for the sth
propagation mode

the sth modal boundary stresses vector

=
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Therefore, from Equations (2-31) and (2-29)

2.lJH'!-Ak 2H.
J J

(lJH! ).L
J dZ

211L (H!-H./r )
r o J J 0

d
(AkH.)~

J aZ

o

= o

o

o

o

o

o

o

o

o

o

f'
1

f'
2

f'3

= -[s]{f} - [T]{f'} (3-43)

where;

Sl = 211H'! - Ak 2H.
J J

211 L (H! 1S2 = - r Hj )r o J 0

S3 = llk H!
J

.1.... H!
. 2

S4 = ll(H'! - + JT Hj ) (3-44)
J r o J r o

T1 = AkH.
, J

T2 = llH'.
J

and T3 = II L H.
r o J
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with {f} = [N]{X} and {fl} = [NI]{X}

where

s =

s

s

s

and T =
T

T

T

(3-45)

(3-46)

which leads to the following equation for the nodal forces

in the sth mode:

h

Ps = a$ro(r~o NTNdz]S + [ (3-47)

Matrices Sand T may be simplified by taking advantage

of the property of Hankel functions

1 H!
• 2

H'~ = - - [k 2 - 1.:] H .
J r J r2 J

H! = k H. 1 - i H.
J J- r J

(3-48)

H = - H-1 1

which yields
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5 = k 2 51 + k52 + 53

and (3-49)
T = kT1 + T2

with

A+2].l 0 0 H. 0 0J

51 0 ].l 0 0 -H. 1 a (3-S0a)= J-
a 0 II 0 a H.

J

-2 0 2j· -H. 1 0 0J-
52 =L 0 j a a H. 0 (3-S0b)r o J

2j a -2 a 0 -H. 1J-

1 0 -1 H. a aJ
53- 21.1j (j+1) (-1) 0 0 0 a -H. 1 0 (3-S0c)

r 2 J-
0

-1 0 1 0 a H.
J

a -A 0 H. 1 0 aJ-
T1 = II 0 a a H. a (3-S0d)J

0 0 0 0 0 -H. 1J-

0 0 0 H. 0 0J
and T2 = -tl -1 0 1 a -H. 1 a (3-S0e)r o J-

a a a 0 a H.
J
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Defining the modal vectors XA and XBs s

where
{XA'f T T TXAs = XA, •••• XAi ••• XA2 t}

{XB'f T T TXBs = XB2 •••• XBi···XB2t}

+ [El {XA} s}

(3-51)

(3-52)

the nodal load vector for the whole stratum assembled

from Ps for each discrete layer where matrices A, E and

G are formed from the layer matrices An' En and Gn in a

similar fashion as in the eigenvalue problem.

An is the matrix given by Equation (3-40-b)
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2(j+1)g.g. ~ m
,

rogigm

-2 (j+l) g i gm

o

o

o

-2(j+l)g.g
~ m

-r g.g'
o ~ m

2(j+l)g.g
~ m

9x9
(3-53)

with i = 1, 2, 3

m = 1, 2, 3

t..ro ,
-~gigm --2- gigm

~ro ,iH.
~ gigm 2 gigm

jgigm 0

o

Adding up the contributions of each mode gives for the

boundary load vector

6~

Pb = ~lasro{(A]{XA}sk~+IG]{XB}sks+(E]{XA}s}
or

In (3-54)

(3-54)

IXA] = I{XA}1{XA}2 •.• {XA}s •.• {XA}6~]6~x6~

IXB] = I{XB}1{XB}2 ..• {XB}s ... {XB}6~]6~x6~
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[K 2] and [K] are diagonal matrices with k~ and

ks on the main diagonal respectively

(s=l to 6i)

The modal participation factors {a} are the only unknown

vector in the RES of Equation (3-54). The next step,

then, is to calculate the boundary displacement vector in

terms of the modal participation factors, and to relate

the boundary load vector to the boundary displacement

vector to form the boundary matrix.

At any particular node i, the displacement vector is

given by

i

u. = La H(S)Xi(s) (3-55)
~ s=l s

i uI sLor ui = as
s=l uJs

uKs
i

where uJs

uKs
i

= ks Hj (ks r o )X2(s)

foHj(ksro)Xl (S)+Hj(ks r o )X3(s)
1
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Therefore

u

-w

v

=

i

uI (I) uI (2) • • •uI (s) • • •uI (6 i )

uJ(l) uJ(2) ••• uJ(s) ••• uJ(6i)

uK(l) uK(2) ••• uK(s) ••• uK(6i)

= [UU] i {cd

(3-56)

Defining {ub }6ixl as the boundary displacement vector,

and with ui as a general nodal vector, {ub } may be

,'1ritten as

[uu] 1

[uu] 2

[Ull] .. ~

[uu] 2i

{a.} = [uu]·{a.} (3-57)

{a.}
-1

= [uu] U b
(3-58)

The dynamic stiffness matrix of the energy absorbing

boundary Rb is defined through the following relation:

(3-59 )
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Substituting (3-58) into (3-54) for {a} and equating the

resulting RHS to the RHS of (3-59) for an arbitrary ub '

it follows that

R
b

= r o [[A] [XA] [K 2] + [G] [XB] [K] + [E] [XA] J [Uu]-l

(3-60)

3.4 TOTAL DYNAMIC STIFFNESS MATRIX OF THE SOIL MEDIUM

Consider the boundary load vector of Equation (3-59)

as an external load vector acting with negative sign on

the finite element region, Equation (3-19) becomes;

and by increasing the size of Rb by adding zero rows and

columns to match the dimension of K and M, one can get

(3-61)

or

= p

where Kc is the total dynamic stiffness matrix of the

soil medium,

(3-62)
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Equation (3-61) may be solved by conventional numerical

methods to obtain the nodal displacements. Although neither

the total dynamic stiffness matrix of Equation (3-62) nor the

formula of Equation (3-61) will be used in their present form

in the structure-soil system of the next chapter, these are

very useful in checking the finite element model of the soil

medium and the effectiveness of the vertical energy absorbing

boundaries. The checking of the model presented in this

chapter is part of the study described in the following section.

3-5 STUDY OF ENERGY ABSORBING BOUNDARY

In order to check the applicability and effectiveness

of the energy absorbing boundary based on the preceding

theory, a time history analysis is carried out for two

cycles of a sinusoidal ground acceleration applied at the

lower boundary of the finite element region of Figure 4.

The sinusoidal ground acceleration has a maximum amplitude of

20%g and a frequency equals to 10 radians per second. For

j = 1, the dynamic analysis is performed using two models

which are the same, except for the vertical boundaries. The

first model has an energy absorbing boundary which is

represented by the dynamic boundary matrix [R]b of Equation

(3-60) while the second has a roller boundary which allows

the nodal points along the vertical boundary to move freely
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1
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Figure 4. F.E. Mesh for the Time
History Analysis of Two
Cycles of a Sinusoidal
Acceleration
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in the vertical and circumferential directions, while re-

stricting radial motion. Numerical computations herein are

conducted using the Newmark method with S = 1/4 and a time

step of 0.005 second.

The three components of the response acceleration of

node 4 in the radial, vertical, and circumferential directions

(u, W, and V, respectively) are given in Figure 5. The

response accelerations show that, in contrast to the undamped

response in the model with a roller boundary (solid lines),

the model with an energy absorbing boundary produced a

damped response (dashed lines). These results are comparable

to those given in Akiyoshi's study for viscous boundaries (20).

However, the compatible viscous boundary in Akiyoshi's model

proved to be more effective in absorbing the entire energy

of the wave traveling toward the boundary; it is yet to be

examined for an axisymmetric solid model.

To check for the correctness of the present model, a

classical problem from the literature is considered, namely

the dynamic analysis of a rigid circular footing on an

elastic half space (32). The vertical displacement 0 of the

footing is calculated from the relation (see Figure 6)

inr
p

irlt0 e = -£F e
where K

0 = 0 + i O.r 1.
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in which Po and ~ = the amplitude and frequency, respectively,

of the exciting force; t = time; and K = the static spring

constant. It may be shown that

4GR
o

K = I-v (3- 65)

The dimensionless quantity F, herein designated the dis-

placement function, is a function of Poisson's ratio v

and the dimensionless frequency ratio a .a

The rigid circular plate is idealized by a row of

massless finite elements of very high rigidity (10 6 times

greater than that of the stratum) as shown in Figure 6.

The equivalent value for the force amplitude in the finite

element model is taken as P /2ITr and is concentrated along
o 0

the foundation edge; the material damping, defined

explicitly in Equation 3-68, is taken as 5 2-o. In the figure

the real part of the displacement in the w direction 0 isr

plotted against the dimensionless frequency ratio a , foro

P = 1.0 K, r = 10', G = 2492 K/Ft2 and v = 1/3. Theo a

results for the finite element model with an energy absorbing

boundary show good agreement, especially in the lower frequency

range in which the shear wave length A becomes longer and

the element size ratio t/A becomes smaller. The results for

the same problem obtained by Lysmer and Kuhlemeyer (33) are

also plotted. It can be seen that the present model with

only 10 elements gave results comparable to those of Lysmer
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and Kuhlemeyer for which 64 elements were used. This

provides a check for the correctness of the present model

and suggests its applicability for very deep stratums

although it would be desirable to use the actual Hlro In

a physical situation.

3-6 Impedance Matrix

The impedance matrix is the dynamic stiffness to be

added to the superstructure matrices to complete the

structure-soil model. It is composed of the dynamic stiff-

ness coefficients corresponding to the common degrees of

freedom between the superstructure and the soil model.

For structure-foundation systems idealized in three dimen-

sions, three boundary value problems for the foundation

, h 'h 'f i~t l' d . d' 'd 11 fWlt a unlt armonlC orce e app le In lVl ua y or

each of the three degrees of freedoms of each connection

nodal point need to be solved.

Considering Equation (3-61), with the RHS all equated

to zero except for the value at one of the common d.o.f.

which is set to unity, and solving for the displacements at

the common d.o.f., the complex compliance matrix for the

foundation [c]can be obtained. The complex impedance

matrix [K] is then found by inverting the compliance matrix

[c], i. e. ,

[K] = [c]-l (3-66)
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Herein, prescribed forces rather than displacements are used to

avoid the complex mixed boundary value problem which could

result from enforcing the traction free condition outside the

structure-foundation interface. However, it may appear preferable

to solve the problem with prescribed displacements to ensure

compatibility of the deformations at the surface of the

foundation with the deformations in a displacement formulation

of the finite element system representing the structure (34).

The applicability of the latter procedure to the problem at

hand has not been investigated.

3-7 Connection Model

The connection between the soil medium and the ring

footing is established by eliminating the six degrees of

freedoms at the corners D and F shown in Figure 7 while

forming the rotational d.o.f. at E from the eliminated

degrees of freedom; in other words, the nine d.o.f. are

lumped into five d.o.f. at the mid point of the footing base.

The base uplift is treated by restricting the contact stresses

between the soil and the footing to be compressive or shearing,

but not tensile. Mild tension may be admissible,but no

quantitative results are available as yet.

In order to formulate the soil stiffnesses and damping

at the connecting nodal point, the following method is

commonly used:

K = K - 2DK.
r l

C = (K. + 2DK )/~
l r

(3-67)

(3-68)
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-
where K + iK. is the complex soil-stiffness with no material

r 1

damping and D is the material damping parameter independent of

the driving frequency n. It is obvious that both K and C

of Equation (3-67) and (3-68) are frequency dependent since

Kr and Ki are frequency dependent and the material damping

affects both stiffness and damping.

The nine stiffness elements of Figure 8 are obtained

from Equation (3-67) by considering each stiffness element

on the main diagonal as a linear spring in the corresponding

direction. The stiffness elements of the connection model

are formulated from these nine stiffnesses:

K = K1 + K4 + K7
U

K = K2 + Ks + Kgw

Kv K3 + Ks + Kg (3-69)

Ke = B 2 /4 (K 2 + Ka)

K¢ = B 2 /4 (K3 + Kg)

The damping system is formulated from matrix C

(Equation 3-68) in a way similar to the stiffness elements

of the connection model discussed above. The resultants in

the five degrees of freedom at the center point E of Figure

7 are evaluated as follows:

Cu = C1 + C4 + C7

C = C2 + Cs + Caw

Cv = C3 + C6 + Cg (3-70)

Ce = B 2 /4 (C 2 + Cg)

C~ = B 2 /4 (C 3 + Cg)
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For obvious reasons the connecting model is called

the Equivalent Boundary System (EBS) for the ring footing.

The EBS is frequency dependent and must be updated for each

Fourier harmonic. In Equations (3-69) and (3-70) the K's

and CiS are modal values which are expressed in Fourier series

in the e direction. Figure 9 shows the resultant trans­

lational and the rotational stiffness and damping elements

at the midpoint of the footing base.

3-8 SENSITIVITY STUDY OF THE EBS

3-8a Effect of the Stratum Depth

The depth of the stratum for a given ring footing

dimension affects the results for the stiffnesses and damping

of the EBS since the dynamic response of the nodes at the

foundation level is significantly influenced by the reflections

at the rock-soil surface.

To evaluate the convergence of the EBS quantities for

the case of a very deep stratum, six meshes with the same

element size throughout were considered. Figure 10 shows

the dimensions of the meshes, which progress from a shallow

stratum to a very deep one. Table 2 gives the soil material

properties which are used for all meshes and the stiff­

nesses and damping of the EBS are shown in Figures 11 and

12, respectively. These results indicate the importance of

the stratum depth factor for the stiffnesses. On the other

hand, the damping elements are less sensitive to the depth
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factor as may be observed from Figure 12. The lesser

sensitivity of the damping elements with the stratum depth

suggests that the damping is mainly due to the radiation of

the waves horizontally in the far-field and that the vertical

radiation of the waves is not a major factor.

The study of the stratum depth presented herein suggests

some useful guidelines which may expedite the parametric study.

One very important finding is that the stiffness elements

are the most sensitive of the EBS components. Also, the

results reveal that the assumption of a fixed lower boundary

at a depth H = 3ro is reasonable.

3-8b Effect of the Driving Frequency

To study the effect of the driving frequency on the

EBS components, a frequency ratio a o is considered for the

range l/n to 2 (8), where

a =o

Qr
o

v s
(3-71)

and v s is the shear wave velocity for the stratum. The

antisymmetrical Fourier harmonic (j=l) is considered in the

study using mesh of Figure 10 with the ratio H/r = 3.
o

Figure 13 shows the dependence of the stiffness elements

on the driving frequency. It is evident that both trans-

lational and rotational stiffnesses are very sensitive to

the change of a o . The sensitivity of the stiffness elements

may be understood by examining Equation (1-61), where the
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second and third terms of the RHS of the equation are

functions of the driving frequency Q. Similar observations

may be applied to the damping elements in Figure 14. However,

the damping elements are less dependent on the excitation

frequency than the stiffness elements. This conclusion

agrees with the results presented in References 8 and 35.

3-8c Higher Harmonics

In Figures 15 and 16 the results of the first six

Fourier harmonics (j = 0 to 5) are shown. The same mesh

used for the driving frequency study is retained and the

excitation frequency ratio a is taken equal to 1.64. Ito

is interesting to notice that the EBS parameters for j > 1

are approximately constant for the u, v and ~ components,

while the wand 8 components (vertical and rocking), show

more variation. This observation may be useful in reducing

the size of the problem if the stiffnesses and damping elements

of the higher harmonics are considered to be independent of

the Fourier number j and suggests a helpful procedure to

determine the EBS components for j > 1 with the aid of one

harmonic number j, (j > 2).

3-8d Mesh Study

To evaluate the convergence of the finite element

solution with decreasing element size, four meshes with a

depth ratio Hlro = 3 were considered. Soil material

properties used in the analysis are given in Table 1. The

four meshes along with the results are shown in Figure 17.
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Only the dimensionless stiffness elements k are plotted

against the element size ratio ~/A, where

k = K/Gro

= K/Gr Bo

(u,w,v)

(S,</»
(3-72)

~ is the longest element dimension in the mesh, and A

is the shear wave length.

In Figure 17 the continuum solution could be extra-

polated by the intersection of the curves with the vertical

axis (~/A = 0). The results indicate that the largest

element dimension in the mesh should not exceed A/6 for

satisfactory results in case of a uniform mesh. Also, it

may be observed that the rate of convergence for the five

components is approximately the same and that it is very

slow for element size ratio less than 1/8.

In order to investigate the possibility of using

larger elements with increasing depth, another four meshes

are considered with same soil properties and depth ratio as

those used in the convergence study. Knowing the continuum

solution for the EBS from the convergence study, the errors

in the finite element solution of the four meshes are cal-

culated and plotted against the ratio 100/n, where n is the

total number of elements in a mesh, Figure 18. Also, the

four meshes used in the study are shown in the same figures.

It is interesting to notice that the mesh with twenty

elements produced results with error as small as 0.7% of
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the continuum solution, although elements with dimensions

equal to A/4 are used. Also, the results indicate only

negligible differences between the two meshes with twenty

eight and forty elements, which suggests that the spurious

reflection of the elastic waves may be significant in these

types of grids; however, more study is needed to substantiate

this observation {36).

It should be noted here that the geometry of the

foundation, which is a ring footing, affects the mesh size

and the elements refinement near the foundation level. In

extreme cases, where Biro gets small (less the 0.1), the

zone of influence or the so-called dynamic pressure bulb

will take a toroidal shape below the ring footing and,

consequently, more economical finite element meshes may be

used with large elements away from the footing, radially

towards the axis of symmetry and downwards away from the

dynamic pressure bulb towards the lower boundary.
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4-S0IL-STRUCTURE ANALYSIS

4-1 Introduction

As mentioned earlier, many large shells such as cooling

towers, are placed on rigid pile or caisson foundations. In

such cases the soil-structure interaction is expected to be

minimal, and in general, the dynamic analysis without the

soil effect may yield more conservative results. However,

other shells may be founded on individual footings, or

perhaps on a concentric ring footing. The soil-structure

interaction in this latter case could prove very important,

and as a result, the analysis without the soil interaction

may be incomplete. Due to the possible amelorating effect

of the interaction, the internal design forces may be reduced.

In this section, the shell model is quickly reviewed

and the complete model of shell-soil system is presented.

The dynamic analysis is carried out in the time domain, and

the soil components are formulated at a driving frequency

identical to the fundamental frequency of the structure on a

fixed foundation. The study is conducted on a cooling tower

on a hypothetical foundation, with a variety of soil conditions

chosen to generate a trend of results from which some con­

clusions may be drawn.

4-2 Soil-Structure Model

Figure 19 shows the finite element model for the shell­

soil system. The shell is represented by high-precision
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rotational shell finite elements, while the soil medium is

represented by a dynamic boundary system at the common

degrees of freedom between the shell foundation and the

underlaying soil.

For the shell elements (Figure 20), the strain-displace­

ment relationships used in the formulation include the effect

of transverse shear deformations. In forming the element

stiffness and mass matrices, displacement fields of arbitrary

order, i.e., linear to sixth order, can be used, and because

only CO continuity is required to be satisfied, the extra

coefficients in quadratic and higher order displacement­

fields are eliminated by kinematic condensation at the element

level. Proportional damping is assumed and the damping matrix

is arrived at through a linear combination of the condensed

stiffness and mass matrices.

4-3 SCHEME OF COMPUTATION

The master flow chart of the computation scheme is

presented in Figure 21. In this model the calculation of the

displacements and stresses in a shell of revolution subjected

to a general loading (static or dynamic loading which may

be symmetrical, antisymmetrical or with any distribution

pattern around the axis of symmetry of the shell) is treated.

The simplest case of loading is static, for which no soil

effect need be considered in the analysis; however, the load

distribution may be complicated and a Fourier series expansion
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is required to carry out the analysis harmonicwise. The

Shell of Revolution Soil System program (SHORE IV) ,with a

fixed lower boundary (infinite stiffness 'and zero damping

for the EBS), follows the same computational algorithm as

contained in the SHORE-III program (37-38) in this case.

In case of dynamic analysis, the soil effect is intro­

duced to provide a more realistic model. The EBS may be

evaluated and referred to the foundation level using the

program SUBASEi then the dynamic analysis is carried out

harmonicwise using the SHORE IV program which is described

in the companion volumes to this report (39-40).

To account for the possibility of uplift, the stresses

at the foundation level should be checked, with any net

tensile stresses corresponding to uplifti however, the dead

load stresses as well as the effect of any non-structural

elements tied to the shell foundation should be included in

calculating the net tensile stress at the soil-foundation

interface. If the separation zone is significant, the analysis

should be carried out again with a modified EBS with zero

stiffness and damping in the separation zone. The modification

may be accomplished by expanding the modified EBS in Fourier

series and introducing the resulting modal values into the

ring footing. The analysis is completed if the resulting

separation angle, Figure 22, is the same as in the previous

cycle.
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For shells with column supports, the local stresses

near the base should be corrected. This is facilitated

by the application of a static superposition technique whereby

the solution is taken as a combination of the continuous

boundary case and a self-equilibrated line load case, both

of which are represented in Fourier series, Figure 23. A

computer program to evaluate the Fourier coefficients,

the SHORC program, was developed by the authors of this

report and is described and listed elsewhere (41). The

correction should be carried out in the ring footing as well.

It should be noted here that the FORIT program (see Figure 6)

is capable of evaluating the Fourier coefficient for any

loading distribution including the particular case of a

self-equilibrated line load.

4-4 FREE VIBRATION ANALYSIS OF A COOLING TOWER ON RING FOOTING

To investigate the soil effect on the dynamic properties

of rotational shells, a free vibration analysis of the rein­

forced concrete cooling tower shell shown in Figure 24 is

carried out. The tower is assumed to have a shallow ring

footing foundation and the shell meridian consists of three

curves with slope continuity at the junction points (nodal

points #4 and #7). Equations for the shell meridian are

given in Table 3. Three soil cases are considered: (I) a

soft to intermediate soil; (II) an intermediate to stiff

soil; and (III) a soil with fundamental frequency close to
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that of the structure so that strong amplification due to

resonance effects, if present, would show up. An additional

case (IV), structure founded directly on competent rock,

is considered as a basis of comparison. The details of the

soil properties are given in References 16 and 31.

The analysis is carried out with a driving frequency

of ~ = 12.34 radlsec (the fundamental frequency of the shell

on a fixed foundation) for the antisyrnmetrical mode (j = 1).

The EBS are computed using a soil model with 24 elements and

a depth ratio Hlro in the range of 3, except for Case II

where the bed rock is at 250 ft. below the foundation level.

The natural frequencies for the first three modes are

given in Table 4. The change in the fundamental frequency

is found to be only in the range of 5% of the fixed base

frequency so that any further approximation in the EBS using

the resulting interactive frequencies is unnecessary. On

the other hand, the decrease in the frequency of the second

mode reaches 25% of the fixed base case (Case IV). The

change decreases as the soil gets stiffer, as may be observed

by comparing the frequencies of the four cases in Table 4.

In Figure 25, the first three normalized eigenvectors

for cases I and IV, which represent the extreme soil con­

ditions, are shown. For the soft to intermediate soil case

(Case I), the interactive eigenvectors of the second mode

are drastically different than the fixed case (Case IV),
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Tab1e~. First Three Natural Frequencies
of the Studied Cases

I (/JI (/J2

i
(/J3

Rad./sec. Rad./sec. Rad./sec.,

Case I 11.84 14.86
I

27.19

Case II 12.02 17.46 32.41
I

11.85: Case III 14.98 27.33
I
, Case IV 12.34 19.26 36.37
I
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whereas there is not much difference between the eigen-

vectors of the first mode for the two soil cases. A

similar but less predominant influence of the soil on the

interactive eigenvectors is observed for Case II (the

stiff-shallow soil case). The eigenvectors of Case III are

found to be very similar to those of Case I. This may be

attributed to the combined effect of the soil depth and the

shear modulus producing very similar compliances for the

first and the third soil cases.

4-5 RESPONSE SPECTRUM ANALYSIS

To assess the importance of soil-structure interaction

on the stress resultants and stress couples in the shell, a

response spectrum analysis is carried out using the same

four soil cases employed in the free vibration analysis as

a supporting medium for the tower of Figure 24. The shell-

soil systems for the four cases are subjected to a horizontal

response spectrum with 20%g ground acceleration, Figure 26,

and a damping ratio of 5% is considered for the first three

modes of vibration in all cases. The high intensity of the

ground motion is chosen for the purpose of approaching the

case of foundation uplift, if present.

oThe stress resultants and stress couples at e = 0 for

the shell are given in Figures 27 through 30. It can be

seen that the fixed base case produces resultant forces which

envelop all soil cases, except for N¢, when a fixed base
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condition (Case IV) is used, but this may be an extremely

conservative approach.

No significant amplification due to suspected resonance

effects is seen in the stress resultants and stress couples

for Case III. This is due to the fact that the rocking and

swaying motions tend to suppress the response of the

structure at the fundamental frequency of the fixed base

structure. This observation is in accord with the results

reported in Ref. 16.

The axial forces, bending moments and twisting moments

in the columns are calculated at e = 00 and the results are

shown in Table 5. It may be observed that there is a sharp

decrease in the axial forces and bending moments as the soil

stiffness decreases. The decrease in the bending moment may

be attributed to the smoothing of the second mode shape

(Figure 25) in the lower region, whereas the 15 percent re­

duction of the axial forces may be due to the reduction in

the total base shear as a result of a smaller input inertial

forces due to the interaction effect.

The twisting moment in the columns increases as the soil

stiffness decreases. However, the values of the twisting

moments are not large enough to be a controlling factor in

the column design as can be seen from Table 8. The response

of the concentric ring footing is given in Table 9. The

results presented in this table are the complete solution
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which consists of the continuous boundary solution and

the self-equilibrated correction (See Figure 23). In

the self-equilibrated correction, the SHORC program is

used to calculate the Fourier coefficients for the loads

and the resulting self-equilibrated loads are applied as

line loads at the top of the beam which is modeled as two

rotational shell elements. The highest harmonic number

used in expanding the self-equilibrated loads was 440. The

lower boundary of the footing consisted of static springs

with zero masses and damping, i.e., the correction is

carried out as static self-equilibrated forces.

Table 9 shows that the three cases of soil structure

interaction give responses for the axial forces and bending

moments sharply higher than the fixed base response, while

the torsional moment decreases as the soil becomes softer.

Convergence to the fixed base results as the soil gets

stiffer is evident from Table 6. Incidentally, the values

presented for the vertical moment are computed from N~

results along the footing depth, since the vertical bending

moment corresponds to the rotational degree of freedom about

the normal axis which is neglected in linear shell theories

(42) •

To check against foundation uplift, the N~ component

of the stress resultants is computed at the foundation level

for D. L., factored by 0.9 and then added to the unfactored

earthquake response. The results are tabulated in Table 7.
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It may be seen from Table 10 that the net stress as

the foundation level for all cases is compressive and no

uplift occurs for the severe 20%g spectrum used in the

analysis. However, it is clear that the softer the soil

the more likely the uplift to occur. To investigate this

possibility more closely,the vertical component of the

earthquake may be included. A vertical response spectrum

with 13%g ground acceleration and 5% damping is considered

and the analysis is carried out at driving frequency of

n = 32.75 rad/sec, which is the fundamental frequency of

the structure on fixed base for j = O. The RSS of Nep at

the foundation level for the vertical and horizontal ground

motions for Case I is computed and the net value for Nep is

found by combining the resulting RSS value of Nep with the

factored D.L. value.

the equation:

The net value of Nep is computed from

where

and

N~(net) = (N 2 + N2 )1/2 - 0.9 N~d
't' eph epv 't'

Nep = Nep at the foundation level due to
h horizontal ground motion

Nep = Nep at the foundation level due to
v vertical ground motion

Nep = Nep at the foundation level due to the
d dead load

(4-1)
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For Case I N~ (net) is computed from Equation (4-1), with

N~v = 29.8 K/ft, and the resulting value of N~(net) is found

to be a tensile stress of 1.3 K/ft which can cause uplift.

However, N~(net) is probably too small to cause a real

uplift as this net stress could be counteracted by the soil

friction on the sides of the footing.

4-6 TIME HISTORY ANALYSIS

The tower of Fig. 24 was first analyzed under the El-

Centro earthquake (5/18/40) EW Compo with input in the form

of Fig. 31. The soil medium is considered as an elastic half

space as in the response spectrum analysis (Case 2) and then

the analysis repeated with fixed lower boundary at node #10

(Case b). The time duration of the analysis is taken as

five seconds and the time step for Newmark 8 method integration

is taken 0.02 second in case a, and 0.005 second in case b.

The damping coefficients (a=0.7l5779 and 8=0.003356) are

obtained based on 5% damping ratio for the first two modes of

vibration (the modes of vibrations are obtained during the

response spectrum analysis) .

The results for both cases are plotted at selected nodes

on Figs. 32-38. The use of computer plotting ,which is en-

compassed in the SHORE-IV program,enhances the output of a

time history analysis by presenting the voluminous results

in a readily assimilated form. Although a wide range of

parametric studies were not conducted for this time history

analysis, the results are adequate to demonstrate the



Pages 116 and 117 have been removed.

Due to legibility problems, the following figure has been omitted:

Figure 31 - Input Data Echo for Time History Analysis of
Hyperboloidal Shell with Soil Effect
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possible influence of the flexible foundation on the

maximum stresses and displacements.

For a specified earthquake time history and realistic

field data to represent the soil, the SHORE-IV computer

program can be used directly to carry out an analysis such

as that presented in Figs. 32-38 for the EI-Centro Earthquake

and the elastic half space soil medium.

As a further example, the tower of Figure 24 is

analyzed under the EI-Centro earthquake (5/18/40) EW Compo

using the same four soil cases employing in the free vibration

analysis as a supporting medium. The time of the analysis is

taken as five seconds and the time step for Newmark S method

integration is taken 0.02 seconds for the three soil cases

and 0.005 seconds in the fixed base case. The damping co-

efficients (a=0.715779 and S=0.003356) are obtained based on

5% damping ratio for the first modes of vibration which are

obtained during the response spectrum analysis. Due to the

difficulty in grouping the results together for the four

cases, they are shown individually in Figs. 39 through 54.

Figures 39 to 42 and 43 to 46 show the plots of Ne and Me

respectively at node #1 (e=oo). Also, Figs. 47 to 50 and 51

to 54 show the plots of N~ and Ne respectively at node #7

(e=oo). The results are in the sequence of four soil cases

for each stress resultant or stress couple. In order to
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identify the differences between three soil cases and the

fixed base case (Case IV), the maximum responses are listed

in Table 8. The comparison of the maximum response values

show that the soil indeed influences the response of the

shell when a strong motion earthquake loading is applied.

Within the constraints of the present research, based on

linear theories for the shell and the soil, similar

information is obtained from the response spectrum approach.

However, the capability for performing and displaying the

results of a time history analysis demonstrated in this

exercise are important in extended applications incorporating

more realistic soil models.
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5-CONCLUSIONS AND RECOMMENDATIONS

5-1 Conclusions

A finite element model for axisymmetric shell or shell-

like structures founded on shallow ring footings was developed.

The model consists of high-precision rotational shell elements

to represent the axisymmetric shell structures and isoparametric

solid elements with an energy transmitting boundary at the

ring footing extremities to represent the soil medium.

The substructure approach was chosen in the soil-structure

interaction analysis, which simplifies the connection problem

between the soil medium and the structure. Also, by using

the substructure approach, the free field of the ground

motion may be input directly at the foundation level.

The connection problem between the three dimensional

soil medium and the two dimensional shell elements is solved

by introducing a frequency dependent dynamic boundary system

at the common degrees of freedom between the shell foundation

and the underlaying soil. The soil model components were

computed at the fundamental frequency of the shell structure

without the soil system for the free vibration and response

spectrum analysis, whereas the dominant driving frequency of

the time history excitations was used with the time history

analysis. For dynamic wind analysis the fundamental frequency

of the system would likely be suitable; however, dynamic

wind analysis using the present model has not been carried out.
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It was shown that the require size of the finite element

mesh is controlled throughout the dynamic pressure bulb by the

shortest shear wave length and that this bulb exists through

a depth of about one and half times the footing radius. The

influence of the lower boundary on the soil model components

is significant only for depths less than three times the

footing radius due to the reflections of the waves on the

assumed rock-soil interface, which tends to increase the

stiffness elements and decrease the damping elements (con-

vergence to the fixed base case). Based on the dynamic

pressure bulb study, an economical finite element mesh for

the soil medium was suggested for use with shells having a

small B/r ratio.
o

A sensitivity study of the equivalent boundary system

to the driving frequency showed that the stiffness components

are more sensitive than the damping components, and also that

the rotational components are the most sensitive to the

driving frequency. A similar conclusion may be drawn for the

sensitivity of the EBS to Fourier harmonic number j. It is

also concluded that the EBS components are fairly independent

of the harmonic number j for j > 1, which suggests an efficient

procedure to determine the EBS components for j > 1 based on

a single harmonic number (j ~ 2) analysis.
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The free vibration analysis of a cooling tower on a

shallow foundation showed that the overall flexibility of

the shell increases with a decrease in the soil stiffness.

Consequently, there is a reduction of the inertial forces

on the shell. The study also revealed a dramatic change in

the second mode of vibration as the soil gets more flexible.

This relieves the lower region of the shell (column supports

in cooling towers) from the high stresses which often occur

when the soil interaction is neglected. It is concluded

from this study that the soil flexibility or compliance is

a very important parameter in the soil-structure interaction

phenomenon and that a given flexibility can be realized by

a non-unique combination of the basic parameters. This

finding is in agreement with Pandya and Setlur's conclusions

(16) •

The importance of soil-structure interaction on the

stress resultants and stress couples in the shell was shown

by a response spectrum analysis of the cooling tower used in

the free vibration analysis. It was shown that the fixed

base or very stiff coil case produces resultant forces which

envelope all soil cases, except for the N~ component. The

reduction, which is in the range of 20% of the fixed base

solution, may permit reduction of the shell cross section and

the circumferential steel in the shell, resulting in a con-

siderable cost savings. Perhaps, the segment in the shell

structure most affected by soil-structure interaction are the
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column supports as may be seen from Table 5. The reduction

in the stresses may reach 50% for certain soil flexibilities.

The analysis of the concentric ring footing, which

has not been studied previously so far as the authors can

determine, revealed very large twisting moments on the

footing which increases with increasing the soil stiffness.

On the other hand, the axial force and bending moments

increase with decreasing the soil stiffness. With the present

model, the footing can be analyzed as a ring resting on a

continuous elastic foundation, bringing forth the axial

forces and the torsion which were not possible to obtain with

the continuous beam-over-point support model used before.

Confidence in the ring footing response was established by

comparing the present model results to the result of a space

frame model.

The possibility of foundation uplift increases with

increasing the soil flexibility. In the design earthquake

considered here, uplift could occur only if the two components

(vertical and horizontal) of the ground motions were con­

sidered simultaneously. However, the net tensile stress

after adding the dead load effect is too small to cause a

real uplift, as shown in the analysis.

5-2 Recommendations for Further Study

The subject of axisymmetric shells-soil interaction is

a new topic in soil-structure interaction and the research
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presented in this report may be extended to include or

account for several other factors which may prove very

important for certain types of problems. Among these are

the effect of non-uniform earthquake excitation which may

yield further reduction in the structure response due to

the inherent self-diminishing feature to this type of

earthquake excitation, as suggested by Scanlan (19). For

such an excitation, time history analysis is most suitable

and the analysis must include more than the first two

Fourier harmonics (j > 1).

Another factor which may prove very important is the

fact that the soil material may not be elastic but more

likely viscoelastic or nonlinear. For a realistic analysis

of viscoelastic soil material, experimental data for the

Lame~ constant seems to be necessary. Unfortunately, there

is not much available data for various types of soil, es­

pecially when the soil layers are saturated so that the

water pressure could add to the complexity of the soil material.

In this kind of soil problem, the damping may be very sensi­

tive and more study is needed for the choice of the damping

ratio to adequately represent the material and radiation

damping. The relationship between the damping ratio and the

viscous damping where complex Lame~ constants of the soil

material are used needs further study.
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For axisymmetric shells founded on pile foundations, an

inertial interaction mode may not be sufficient and complete

interaction may be more realistic. However, in this type

of analysis the use of the transmitting boundary is still

valid and probably can save in the computation cost. More

investigation is required to account for pile-pile inter­

action in the pile group and also for the possibility of

modelling the pile group as an equivalent axisymmetric

element. In case of friction piles the problem may be more

complicated due to the settlement and creep action with

time.

Separate shallow footings may be an option in the list

of alternatives for shell structures with column supports.

This type of foundation could be the most economical type.

However, very little is known about the individual behavior

of those footings under dynamic loading when the soil­

interaction is included, which suggests further investigation

in this area as well.
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APPENDIX I

Details Of Stiffness Matrix For An

Isoparametric Solid Element

This appendix presents the details of the 24x24

stiffness matrix components of a quadratic isoparametric

solid element for a general Fourier harmonic j. The

shape function ~i and first derivatives are given in

Table 1 , which are chosen to represent the element geo­

metry as well as the displacements within the element.

From Equations (3-6) to (3-9), using the partitioned form

of S, D and ~ matrices one can get

TTl T 'i'
(bllDlbll+b21D2 S 21) / (b 11 Dlb12+b 21Dzb 2 2)

16 x 16 I 16x8
-- ------- ---- - - - ---
(b~lDlb12+bIlD2b22)T : (b~2D2bz2+bi2Dlb12)

8x16 I 8x8

I

= the stiffness matrix of the kth element~

(I-I)

24x24

and with Equation (2-11) we can write
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ag
bIn = --ll b1m = 0ar

ag(R.-8)
b 2n = b 2s = 0 b 2R. = az

gn -jg(s-16)
b 3n = , b 3 R. = 0 , b 3s =r r

b 4n

agn
b4R.

ag(R.-S) b4s 0= az , = =ar ,

b Sn
jgn

bsR. a b ss r L (9(s-16»= = , =r ar r

b6h = 0 b 6R. = ~ g(R.-8), b6s = ag(s-16),
az

(1-2 )

where

(n = 1, ••• ,8)

(m = 9, ••• ,24)

(R. = 9, ••• ,16)

(s = 17, ••. ,24)

Using the above values of the B matrix in Equation I-I

yields,
I

Kl 1 I K12I

*
T T b 21

I (1-3 )
b ll Dl bll + b 21 D2 = ---,----

-T I K22K12
I 16x16

where each of Kll , K12 and K22 are suhmatrices of order

8xS.

*

16xS

(1-4 )
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*

* bI2 02 b22 + b~2 01 b12 = [K3~

8x8

(1-5)

(1-6 )

In Equations (1-3) to (1-6) the elements of the sub-

matrices are defined as:

KJ.lmn = (A+2]..1) [g gn,r + g g /r2 ]m,r m n

A+ r(gm gn,r + gn gm,r) + ]..Igm,z gn,z

+ ]..I (i) 2 gm gnr

K12mn = A[gn,z(gm,r + gmjr) l + ]..Igm,z gn,r

- j]..lgm (gn/r),r - ~ gn[Agm,r+(A+2]..1)gm;rlK13mn =

K22mn = (A+2]..1) (g gn,zl + ]..I [gm,r gn,r l + ]..I (i) 2 gm gnm,z r

K23mn = ]..I i gn,z - i Agn gm,zr gm r

(A+2]..1) (i) 2
gm g

K = gm gn + ]..I[r (-) , r (rn) , r + gm,z gn,zl33mn r r

. (1-7)

,..,here (m = 1, ••• ,8), and (n = 1" .. ,8)
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Now, the element stiffness element Kk can be written as:

rdrdz (1-8 )

and with the transformation of Equation (3-12) together

with (3-17), the submatrices of Equation (1-7) can be

expressed in terms of the natural coordinates ~ and n ,

as follows:

(A+21J) (IJll g ~ + IJ12 g ) (IJ ll g ~ + IJ12 g )
m,~ m,n n,~ n,n

(1-9)

(1-10)
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(IJ 11 g . ~ + IJ 12 g ) - j(A+2U) gm gn
m, ., m, n (RG) 2

(I-II)

(A+2U) (IJ21 g ~ + IJ zz g ) (IJ Z1 g ~ + IJ Z2 g )m,., m,n n,., n,n

+ U(IJ 11 g ~ + IJ 1z g ) (IJ 11 g ~ + IJ12 gn, n)m,., m,n n,.,

g (IJ 2 1 g I: + IJ 2 2 g n)n m,., m,

K33mn = (~) z (A+2U)gm g + U[(IJ21 g ~ + IJ22 g n)'RG n m,., m,

(1-12)

(1-13)

In the above equations IJll, IJIZ, IJ21 and IJ22 are

defined by Equation (3-11), and;

(1-14)
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(m = l, ••• , 8)

(n = 1, ••• ,8)

The final stiffness matrix Kk is obtained by sub­

stituting Equations (1-9) to (I-14Y in Equation (1-8),

and with Equation (3-18), one can write

RGdet.Jacd~dn

24X24

(1-15)

(m = l, ••. , 8) and (n = l, ..• , 8 )

The integration in the above equation is carried out by

means of four points Gaussian integration with the natural

cooredinates ~, n.




