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EARTHQUAKE RESISTANT STRUCTURAL WALLS
ANALYSIS OF COUPLED WALL SPECIMENS

by
T. Takayanagi;(l)‘ArScanlon,(z) and wW. G. Corley(3)

INTRODUCTION

Reinforced concrete structural walls provide a means of
stiffening multistory buildings against earthquake-induced lat-
eral loads. Of particular interest are coupled wall systems
consisting of two walls connected by beams; Connecting beams
can effectively dissipate energy by formation o©f inelastic
hinges at beam ends.

.. In general, ccupled wall systems can be char;cterized by two
primary structural actions. These are flexural resistance of
individual walls and coupling resistance due to axiél force
acting in the walls. A#ial force in the walls is the accumula-
tion of forces transmitted through shear forces in connecting.
beams. The degree of coupling is directly dependent on capacity
of the connecting beams. |

To investigate performance of coupled wall systems under
lateral load, an experimental program was conducted at the Con-
struction Technology Laboratories. An analytical investigation
was also undertaken to simulate behavior of the test specimens
using computer modelling techniques. This report describes the

analytical phase of the investigaticen.

(1)Former Senior Structural Engineer, and (2)Manager, Analytical
Design Section, (3)Divisional Director, Engineering Develcpment
Division, Portland Cemént Association, Skokie, Illinois.



Analytical models for constituent members of a coupled wall
sysﬁem and a procedure to assemble these member models into an
overall structural model are presented. The basic member models
used in this report are modified versiéns of flexural line
elements, They include ﬁpecific features of the walls and con-
necting beams in addition to the conventional flexural yielding
feature. These specific features are: 1) interaction between
moment and axial force in the walls, 2) coupling between shear
and meoment in the walls and connecting beams, and 3) rotation
due to strain in beam tensile reinforcement embedded in the
wall. |

For a member subjected to moments and axial forces that
change in the process of loading, neither moment-curvature nor
axial stress versus axial strain relationships can be uniquely
determined in advance. The reason for this is that the inelas-
tic axial action and flexural action are  coupled. Structural
response depends on the ratio of axial lecad to moment acting on
a member. Details of this behavior are discussed in Appendix A,

Experimental resuits {2,7) have indicated that shear yield-
ing and flexural yielding are also coupled in the form of an
almost-simultaneous occurrence of shear yielding and flexural
yielding. This coupling behavior is explained in detail in
Appendices A and C.

Strain in beam tensile reinforcement embedded in the wall
can be significant in reducing the-overall stiffness of coupled
wall systems, especially for systems with strong beams. Treat-

ment of this effect is described in Appendix A.

-2-



Hysteretic propertiesv of constituent elements are estab-
lished by utilizing, and modifying where necessary, available
hysteresis rules.

Response of coupled wall systems to lateral loads is cal-
culated using the developed analytical procedure. In the analy;
sis, a stiffness updating process is carried out on each con-
stituent member in a step-by-step manner.

"Finally, calculated results are compared to experimental
results., The influence of various‘parameters that control the
response of coupled wall systems 1is discussed based on the

compar ison between the experimental and analytical results.



"ANALYTICAL MODELS

General

Realistic modelling of member behavior is_‘essential for
. analytical models to accurately predict the overall behavior of
structural systems under loading. For reinforced concrete
~structures under reversed loading, the member properties include
primary curve shapes and hys%eretic characteristics defining
force-deformation relationships at member ends.

There are three possible approaches to evaluate reinforced
concrete member properties. The first approach relies on purely
analytical treatment based on stress-strain relationships of
concrete and reinforcement and the gecometrical configuration of
the member. This apprcach requires data pertaining to tri-axial
stress history, strain discontinuities associated with cracking,
bond slip, and sco forth.

The second apprcach is based on t@e cross-sectional proper-
ties of members. Instantaneous stiffness of a member can be
evaluated by integrating the rigidity distribution along the_
member axis. However, it is difficult to consider effects such
as crack opening, bond slip, and inclined cracks in this
approach.

The third approach is to utilize force-deformation relation-
ships obtained in tests on beam specimens under simple loading
conditions.

In this investigation, all three approaches have been used

in different aspects of the modelling procedure. For example,



analytical models based on stress-strain relationships of mat-
erials have been used to model flexural properties, and inter-
action betwéen axial behavior and flexural behavior. On the
other hand, properties associated with shear action, such as
primary curve of shear-versus-shear-distortion relationship and
coupling between shear yielding and flexural yielding are based
on experimental results. Hysteretic characteristics of various
types of force-deformation relationship are also based on

experimental results,

Structural Idealization

The lateral resistance of a coupled wall system consists of
two primérsttructural actions: flexural resistance of indivi-
dual walls and the coupling moment due to axial forces‘acting.in
fhe walls. Axial force in a wall is the accumulation of shear
forces transmitted thrpugh the connecting beams.

Walls and connecting beams are replaced by line members at
their centroidal axes. The wall members have flexural, axial
and shear rigidities as their member stiffness components. . The
connecting beam members have flexural and shear rigidities.
Three displacement components are considered at each wall-beam
joint: horizontal displacement, vertical displacement énd-rota-
tion. Walls are assumed to be fully fixed at the base. The
structural model of the coupled wall systems analyzed in this
investigation is shown in Fig. 1.

(10) has been

The combined two <cantilever beam model
adopted for the connecting beams. The beam consists ¢f two
cantilever beams whose free ends are placed at the inflection

-5- )
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point. The model is quite suitable for the connecting beams of
a coupled wall system, since the infleétion point is practically
fixed at the midspan of the beam during the locading process.
The beams are connected to each wall through a rigid link and a
rotational spring as shown in Fig 1.

The rotational spring models beam end rotation due to the
steel bar elongation and concrete compression in the joint core
area as well as the inelastic flexural and shear actions over
the beam 1length. Such inelastic actions are expected to be
localized rear the beam ends because of the antisymmetric dis-
tribution of moment over the beam length. The beam itself 1is
considered to be a flexural member with uniform elastic rigidity
along its lengfh. : o

Wall members arngubjected to a more general distribution of
moments than the connecting beams. Alsco, the change of axial
forée during the loading process can cause.a change of moment
capacity in the wall members. Therefore, 1inelastic flexural
behavior in the wall can be exéected to expand along the length
of the mémber rather than be localized at the ends as for the
ceonnecting beams,

To allow the inelastic action to expand over a partial
length of wall member, the member 1is further divided into
several subelements as shown in Fig. 1. The degree of subdivi-
sion decreases ‘with story height since the major inelastic
action is expected at the base. The finer arrangement of sub-

elements allows closer idealization of 1localized 1inelastic

1
\
N

action at that part. )



Details of the procedure: used to develop the analytical

models for constituent members are discussed in Appendix A.

Calculation Procedure

A method of analysis for reinforced concrete coupled wall
systems subjected to large reversing loads or monotonically
increasing loads is described here. The methocd of analysis was
develcped to investigate inelastic behavier ©of a coupled wall
system when the system 1is loaded into a highly inelastic
range.(B)

Instantaneous stiffness components offeach member are eval-
uated on the basis of the force-deformation relationships of the
beam rotaticonal springs and wall subelements. The force-

deformation relationships follow a specified set of hysteresis

rules.

The instantaneous structural stiffness matrix is developed
by assembling the instantanecus member stiffnesses. Inelastic
behavior of the structure under static loads is evaluated by
applying 1loads incrementally. The instanténeous sﬁructural
stiffness is assumed to be constant within a small load step.
Geometric nonlinearity is ignored in the analysis. Therefore,
the structural analysis can be based on the initial configura-
tion.

Details of the assemblage process of the structual stiffness
matrix and the calculation process tracing the formation of

failure mechanisms are explained in Appendix B.



Computer Programs

Two computer programs, SIVAl and SIVA2, were used for this:
investigation. Program SIVAl performs static analysis of
coupled wall systems.. Program SIVA2 is specialized for static
analysis of isoclated structural walls. These programs were

~ r
originally developed at the University of Illinois at Champaign-

(8), and modified at the Construction Technology

Urbana
Laboratories by T. Takayanagi.

Analysis procedures are described in Appendices. A and B.
The programs have the capability to perform inelastic static
analysis of structural walls under monotonic or reversed loading
in a step-by-step manner. The programs are limited to analysis
of structural wallg with up to 10 stories. A wall member can be
aivided into subelements in any arrangement up to 7 elements.

(1) Gith the optiens relating to

Takeda's hysteresis rules
strength loss, "pinching" effect, coupling between shear and
flexural components, and interaction between axial and flexural
components have been adopted in the programs. Calculated story

force-displacement curves of the structure can be plotted at the

end of the calculations.



STATIC ANALYSIS

Preliminary Remarks

The analytical procedure outlined in "‘the previous chapter
was applied to the coupled wall systems tested at the Construc-
tion Technology Laboratories. Two systems Qenpted by Cs8-1 and
RCS-1 were selected for analysis. RCS-1 is the repaired system
of CS-1 in which the coupling beams were replaced with stronger
beams after these original beams were extensively damaged in the
test of C8-1. Test details are described in Ref. 12.

Static analyses were performed to evaluate the influence of
variocus parameters on the behavior of coupled wall systems under
large statically applied loads. -Overall validity of the analyt-
ical models was confirmed by comparing analytical results with
experimental results.

Thg analytical procedure was also applied to simulations of
isolatea wall tests conducted at the Construction Technology

(7) These analyses were made to verify the capa-

Laboratories.
bility of the wall member models to simulate inelastic behavior
of isolated walls. Emphasis was placed on the effect of cou-
pling between flexural yielding and shear yielding on the over-
all behavior ¢of isolated walls. Results‘of the analysis as well
as the comparison between analytical and test results are des-

cribed in detail in Appendix C.

Idealization of Coupled Wall Specimens

Dimensions of the coupled wall systems are shown in Fig, 1.

i

Two identical rectangular walls are connected by six beams to

-10-
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represent a-six-story coupled wall. Each wall has a height of
18 ft (5.5 m), a horizontal length of 6 ft 3 in. (1.9 m), and a
thickness of 4 in. (106 mm); Beams are spaced uniformly along
the height at 3 £t (0.9 m) centers. They have a span of 16-2/3
in. (423 mm) and a width of 4 in. (106 mm).

For system CS-1, beams have a depth of 6-2/3 in. (169 mm)
and a width of 4 in. (106 mm). For repaired system RCS-1, beaﬁs
have a depth ¢f 8 in. (203 mm) and a width of 10 in. (254 mm),
Floor slabs are éimulated by 2.3 in. (64 mm) by 1 ft (0.3 m)
wide stubs running the full length of the specimen on both
sides. Details of the specimens, such as\material properties,
reinforcement arrangement, and test setup are described in
Ref. (12).

For the computer analysis, walls and beams of the specimens
are idealized as line members at their centroidal axes as shown
in Fig. 1. <Connecting beams are modelled by an inelastic rota-
tional spring and a2 rigid segment at each end. An elastic ele--
ment is placed between the springs. Wall elements are divided
into segments for more accurate modelling of inelastic behavior
within a story height. Details of the models are discussed in
Appendix A.

The walls are assumed to be fixed at the base. Loads afe
applied laterally in small increments at the top ¢f the coupled

wall system. The load increment used in the analysis is 1/200

of the maximum static load applied.

-11-



Primary Parameters

Effects of the following parameters on behavior of coupled
wall systems were investigated: (1) inelastic shear behavior
with coupling between flexural yielding and shear yielding in
the Qalls, (2) interaetion between flexural behavior and axial
behavior in the walls, (3) inelastic shear behavicor in the
beams, (4) rotation due to  strain in embedded reinforcement at
the beams ends, (5) pinching and strength loss in the beams.

Primary curves for the force-deformation relationships of
the beam rotational springs and wall subelemeets were determined
by the procedure ou;lined in Appendix A. Parameters defining
the primary 'curves’ used -in the analysis are summarized in
Table 1. Uncracked wall and beam.properties are uniform over
the height of the structures. The wall properties of Specimen
RCS5~-1 were determined based on test results for CS-1.

Analysis of Elements

Analysis of each constituent element under monotonically
increasing load was conducted prior to analysis of coupled wall
systems to determine the inelastic deformation characteristics
of the elements. Effects of parameters such as inelastic shear
deformation and rotation due to tensile strain of embedded rein-
forcement oﬁ the overall force-displacement relationships of the
elements are investigated by comparison with available element
test results.

| Results of the element analyses are used for the subsequent

analysis of coupled wall systems.

-12-



TABLE 1 PRIMARY CURVE PROPERTIES OF
’ CONSTITUENT ELEMENTS

Cs5-1 RCS5-1
Wall Subelement
Elastic Axial Rigidity (kip) 1,113,000 1,113,000
Axial Rigidity of a Fully ‘
Cracked Sectioni{l) (kip) ; 139,000- 139,000
Shear Versus Shear Distortion Curve . ‘
First Slope (kip) - 300,000 23,000 (4)
Second - Slope {kip) 23,000 -
Third Slope {(kip) 400 400
Cracking Shear (kip) 20 -
Shear Strength (kip) 0] -
Moment Versus Curvature Curve
First Slope ; (kip-in2) 708,000,000 220,000,000 (3)
Second Slope - (kip—inz) 186,000,000 -
Third Slope (kip—inz) 2,600,000 2,600,000
Cracking Moment {(kip~-in) 2,300 -
Yielding Moment (kip~in) 12,000 12,000
Beam Rotational Springr

First Slope(2) (kip-in) 1,300,0000 6,120,000

235,000(3) ° 2,450,000(6)
1,710,000(7}

Second Slope ' (kip=in) 126,000 1,390,000
3,900 (3) 556,000 (6)
335,000(7)
Third Slope (kip=in) 1,000 12,000
500 (3) 4,800 (6)
4,600(7)
Cracking Moment (kip~in) 16 55
Yielding Moment {kip-in) 47 350

(1)

(2)

(3)

(4)
(3)

(5)

(6)

(7)

Only the reinforcement contribution is considered in 'the calculation of
axial rigidity,

Actual meaning of the value is 6EI/L if effects of strain in embedded
reinforcement and inelastic shear deformation are not considered.

Effects of strain in embedded reinforcement and inelastic shear deforma-
tion are considered.

No uncracked stages are considered since the walls have been cracked in
the test of CS-1. Therefore, the primary curves are bilinearized rather
than trilinearized.-

Reduced flexural rigidity is assumed based on the results of CS-1 test.
Effect of inelastic shear deformation is considered.

Effects of strain in embedded reinforcement and inelastic = shear

deformation are considered. 3
-13~-



Beam Element Analysis. Effects of inelastic shear deforma-

tion and rotation due to strain in embedded reinforcement, on
the load-deflection relationship of a beam member are investi-
gated using the apalytical model for beams described in Appendix -
a, Calculated results are compared with reéults of coupling
beam tests(l3).

Beam Specimen C2 in Ref. 13 was selected for the comparison.
Dimensions of Specimen C2 are the same as those o¢f coupling
beams of CS-1. However, the amount of flexural reinforcement of
C2 is twice as much as that of CS-1. No companion spegimen was
made for the coupling beams of CS-1.

Although Specimen C2 does not represent, in the strict
sense, the coupling beams of CS-1, ‘it was decided to conduct the
analysis of C2 as a part of the constituent element analysis.
Analysis of Specimen C2 provided information on the effects'of
inelastic shear deformation and rotation due to strain in
embedded reinforcement. The analysis also provided confirmation
of the validity of the beam model used for the analysis of cou-
pled wall systems,.

The measured load-deflection envelope of Specimen C2 is com-
pared in Fig. 2 with calcﬁlated values. \The calculated curves
represent three separate analyses. In the first analysis, only
flexural deformations are considered as contributing to the
deflection. In the second analysis, flexural and shéar deforma-
tions are considered. In the third analysis, rotations due to

strain in embedded reinforcement are included in addition to

flexure and shear deformations.

~14-
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It can be seen from Fig. 2, that the ineiastic shear defor-
mation and rotation due to strain in embedded reinforcement play
a significant role in reducing the rotational stiffness of the
coupling beams. The case where the inelastic shear deformation
and rotation - due to strain 1in embedded reinforcement are

included provides‘the best agreement with the measured curve.

Wall Element Analysis. A comparison was made between
(14)

results of isclated wall tests and results obtained using
the analytical model for wall memberF.

The isolated wall specimen seleéted for analysis represents
the  individual wall of a coupled wall system and has the same
details used for the coupled walls. The specimen was subjected
to moncotonically increasing .loads applied at the top. Tﬁe wall
member properties of CS-1 listed in Table 1 were used for the
analysis of the isolated wall specimen.

Figure 3 shows a comparison between two calculated. load-
deflection curves and the measured curve. The broken line
represents the case where no inelastic shear deformation was
considered in the analysis. The line-dot line shows the case
where inelastic shear deformation was taken into account. It

can be seen that inelastic shear deformation had a significant

effect before flexural yielding occurred.

Analysis ¢f Coupled Wall Systems

Inelastic response of the coupled wall Systems CS-1 and
RCS-1 under static loads was calculated by the analytical pro-

cedure described 1in this report. Results of the calculations

-16-
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-
are compared with ‘experimental results. Unless otherwise

stated, loads were applied in monotonically increasing fashion.
Parameters of primary interest in this analysis are inelas-
tic shear deformations in the walls and beams, interaction
between axial and flexural actions in the walls, and beam end
rotation due to strain in embedded reinforcement. Loads were

applied at the top of the wall system in small increments.

Load-Versus-Top-Floor-Displacement Relationships. Load-

versus-top-floor-displacement relationships were calculated to
identify the effects o©of several parameters on overall behavior
of the systems. Calculated curves for CS-1 and RCS-1 are com-
pared with the corresponding experimental results in Figs. 4 and
5, respectively.

.Test results shown iIn Figs. 4 and 5 are envelopes of
repeated loading history curves. The curves represent average
results for the two walls tested. For CS-1, effects of end
rotation due to strain in embedded reinforcem;nt and inelastic
shear deformation are combined since the contribution of the
beams to overall behavior of the system is relatively small.
On the other hand, for RCS-1, effects of end rotation and
inelastic shear are shown separately in Fig. 5.

In Figs. 4 and 5, the entry "Yes" means that the effect
described in the column heading was included in the analysis.
"No" means that the effect was not included. "Interaction"
means that the effect of axial force changes on the inelastic

flexural rigidity and the effect of curvature changes on the

-18-
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inelastic axial rigidity in the walls ére included. For the

{

case where the interaction effect is not included, elastic axial
rigidity 1is assumed throughout 'the analysgs and no flexural
rigidity change due to axial force change is considered.

When the effect of a particular parameter is examined‘in the
analysis, only that parameter is changed while all other param-
eters are held constant.

As shown in Fig. 4, the effect of inelastic shear defbrma—
tion in the walls on the overall behavior of CS-1 is so signifi-
cant that without this effect a comparison between the analyti-
cal results and the test results is poor. On the other hand,
effects of other parameters pertinent to coupling beams appear
nominal compared ‘;o the inelastic shear effect 1in the walls.
This can be explained by the fact that weak connecting beams
used for CS-1 produce a system that behaves like two isolated
walls in parallel.

-However, 1in the analysis of RCS-1, it 1is apparent t%at
coupling between the two walls plays a significant role in
determining the behavior of the system because of strong con-
necting beams used for the repaired system.

As shown 1in Fig. 5, 1if the interaction effect 1s not
included in the analysis, the comparison between test and analy-
tical results is poor. O©On the other hand, effects of end rota-
tion due to strain in embedded reinforcement and inelastic shear
deformation in the connecting heams are not as significant as

!
the interaction effect. '
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Since no strength loss in the post-yield range is considered
in the analysis, the calculated results. of the beam strength
overestimate the observed results at large deflections.

In the following, inelastic behavior of the coupled wall
systems is discussed on the basis of calcuiated results for the
case where all» the major parameters identified so far are

included in the analysis.

Base-Axial-Force-Versus-Top-Vertical-Displacement Relation-

y

ship of wWalls. In the process of loading, axial stiffness of

wall members:changes substantially reflecting the cracking or
crushing of the concrete and vielding of the reinforcement.
Figures 6 and 7 show the relationships between akial force at
the base and vertical displacement at the top of walls for CS-1
and RCS-1, respectively.

The displacement at the top of a wall is the accumulation of
vertical deformation over the wall height. Also, axial force
at the base is the accumulation of coupling force transmitted
through the connecting beams. Therefore, the curves show the
general trend of inelastic axial behavior of wall members.

Cases where the axial stiffness is assumed to be elastic and
constant during lcading are also shown in Figs. 6 and 7 to serve
as a basis for evaluation o©f the effect of inelastic axial
stiffness in the walls, Since no interaction effects are
included, the curves based on elastic axial stiffness are sym-

metrical about the origin.
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As shown in Fig. 6, Specimen CS-1 exhibits a significant.
- reduction in axial stiffness for the tension wall as well as for
the compression wall as loads increase. The maximum top verti-
cal displacement of the tension wall includiﬂg the interactioﬁ
effect is about 6 times as much as the elastic response value.
The corresponding vaiue for the compression wall 1is about 4
times. Curves for both the tension and compression walls indi-
cate a small coupling effect for the specimen.

On the other hand, in the case of Specimen RCS-1, the ten-
sion wall curve is significantly different from that for. the.
compression wail as shown in Fig. 7. The curve for the tension
wall is softened markedly once flexural cracks open at a very
early stage of loading.. The maximum top vertical displacement

of the tension wall, for the case where the interactioh effect

is included, is about 6 times as large as it would be if the
axial stiffness of the wall remained elastic.

For the compression wall, the curves for inelastic axial
stiffness and for elastic axial stiffness show practically no
difference. This means that, if compressive forces due to the
coupling effect are large enough to offset the opening of
flexural cracks, the compression wall can be assumed to behave

elastically in the axial direction.

Redistribution of Base Shear in Two Walls. Figures 8 and 9

show the change in distribution of base shear between the  two
walls with increase in applied loads for Specimens CS-1 and

RCS~1, respectively. A part of the shear force in the tension
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wall is transferred to the compression‘wail through the connect-
ing beams because of changes in wall flexural and shear stiff-
nesses,

Shear force transferred at each floor level is acdhmulated
down to the base. The transferred shear causes a compressive
force in the connecting beams so that the strength of the con-
necting beams increases. This is especially true for RCS-1. An
iteﬁation process is adopted to include the effect of the beam
strength increase in the. analysis of RCS-1. The iterative
process is as follows:

(1) The fléxural strength without the axial force effect is

assumed for each connecting beam in the first run.

(2) The flexural strenéth of each connecting beam is recal-
culated based on the existing axial force recorded at
the end of the first run.

(3) The second run is implemented assuming a revised flex-
ural strength for each. connecting beam. Calculated
results of the second run are used in the comparison
with experimental results.

As shown in Fig. 8; the base shear of CS5-1 is equally dis-
tributed between the two walls in the elastic  range. When
cracking in the tension wall is initiated, the base shear in the
tension wall starts shifting to the compression wall. At maxi-
mum load, 43% of the total’/ base shear is taken by the tension

w%ll.

For Specimen RCS-~1, the transfer of shear is more signifi-

cant. At maximum load, only 20% of the total base shear is

-28-



carried by the tension wall while the remaining portion is taken
by the compression wall. |

It was assumed that the two walls of RCS-1 were equally
damaged as a - result of the CS-1 test. fherefore, the same

initial stiffness was used for each wall.

Coupling Effect in Lateral Deflection. = Coupling action of -

the two walls connected through the beams is one of the most
distinctive featﬁres of the coupled wall system. The lateral
deflection at'the top floor level consists of flexural and shear
components of deformation of the individual wélls in addition to
story rotation due to contraction of the compression wall and
elongation of the tension wall.

The  contribution of story rotation to the top lateral
deflection is &n indicator of the magnitude of the coupling
effect. The. ratio of the deflection due to the coupling effect
to the total deflection is used to indicate the significance of
this coupling effect. This ratio keeps changing during the
process of loading reflecting inelastic actions taking place in
the constituent elements. | ~

Variations in ratios at successive levels of deflection for
CS-1 and RCS-l‘are shown in Figs. 10 and 11, respectively. .As
shown in thesé figures, the ratios start to change whenever
inelastic events, such as concrete cracking or reinforcement
vielding at critical parts of the constituent members take
place.

For CS-1, the initial ratio of 27% reduces to 20% at crack-

ing of the walls and beams. After reaching 20%, the ratio
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graduall} starts to increase until beam.yielding_occurs-as shown
in Fig. 10. During increase of the‘ratio, the wall axigl stiff-
ness decreases faster than flexural stiffness. When yielding of
the connecting beams starts, the ratic starts decreasiﬁg again
and continues this trend to the end of loading. . No significant
increase of axial force in the walls occurs at this stage. The
ratio ranges from 27% at thelbeginning stage to 6% at the final
stage and indicétes relatively light coupling in CS-1.

As shown in Fig. 11, RCS-1 shows a much greater coupling
effect than CS-1. The initial ratio of 65% gradually decreases
to 60% when yielding of the connecting beams starts, After
yielding in the beams the ratic decreases at a faster rate. The
ratio eventually decreases to 20% at the end of leocading. These
results for RCS-1 show that a significant portion of the lateral
deflection is caused by coupling action even late in the loading

sequence when large deflections occur.

Base Moment Distribution Pattern. Overturning moment at

each story level is resisted by the coupling moment due to the
axial forces in the walls and the flexural moments in the indi-
vidual walls, The ratio of coupling moment to overturning
moment at the base is another indicator of the relative magni-
tude of the coupling»effect with respect to ;he total behavior
of coupled wall systemé.

Variations in the coupling moment to overturning moment

ratico with increasing load for CS-1 and RCS-1 are illustrated

in Figs. 12 and 13, respectively. Also shown in the same
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figures are variations in the ratios of flexural moments in the
compression and tension walls to overturning moment, Change in
the ratios as locading 1increases 1indicates 1inelastic action
taking place in critical members.

For CS-1, the ratio of coupling moment to overturning moment
starts at about 30% as shéwn in Fig. 1l2. This ratio indicates
relatively light coupling for the specimen. The ratio starts
decreasing when crackiﬁg occurs in the beams. Thisvdecreasing
trend is moderated at the initiation of cracking in the walls.
The ratio starts‘decreaéing again when yielding of beams occurs.
This decreése continues up to the initiation of yielding in the
walls when the ratio reduces to 12%. 1Inelastic behavior in the
connecting.béams is, a major contributor to the decreasing. trend
of the ratio. /

Calculated results for RCS-1 show the same tendency as for
CS-1 except in the magnitude of the coupling ratic. As shown in
Fig. 13, the ratio of coupling moment to overturning moment
starts at 85% indicating a large coupling of the two walls con-
nected by strong beams. Thé ratio starts decreasing when
inelastic actign in the members takes place. Inelastic action
of the connecting beams, such as cracking of concrete and yield-
ing of reinforcement, accelerates this decreasing‘rate. At the
end of loading, the coupling moment accounts for 50% of the
overturniné moment at the base.

The remaining portion of the overturning mcment is the sum

of the flexural moment in the compression wall and that in the

tension wall.‘ This flexural moment is equally distributed
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between the compression wall.and the‘tenéion wall at the begin-
ning of loading. As inelastic actidnAtakes place in the walls,
the tension wall. starts decreasing its share of the flexural
moment. For CS-1, the contributidn of the tension wall repre-
sents about 42% of the total flexural moment at the end of load-
ing as shown in Fig. 12. This shows that a small amount of the
flexural moment has shifted  from the tension wall to the com-
pression wall.

On the other hand, the tension wall of RCS-1 shares only 20%
‘of the total flexural moment at the end of loading as shown in
Fig. 13. A large amount of the‘flexural moment has shifted from-
the tension wall to the éompression wall during the 1loading
process. The shift of flexural moment reflects early deteriora-
tion in the tension wall, prior to deterioration in the compres-

sion wall.

Load~-Versus-Top-Floor-Displacement Relationship Under Rever-

sed Loading. Figure 14 shows the load-deflection relationships

of CS-1 under reversed loading. Yielding sequence of consti-
tuent members is also shown. Although the calculated curve
slightly underestimates the absorbed energy relative to the
observed curve in the test, the analytical result satisfactorily
predicts the test result. |

In the énalysis, pinching behavior in the momeht—rotation
rélationship of the beams was based on results of beam element
tests. However, no significant pinching effec£ is exhibited in

",

either the analytical result or the experimental results.
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Absence of significant pinching can be attributed tolweak con-
necting beams used for this specimen.

A corresponding analysis for RCS-1 was not attempted,
because the hysteresis rules built into the computer program are

not ‘applicable to a structure already damaged before loading.
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SUMMARY AND CONCLUSIONS

A structural model that can predict the response history and
failure mechanisms of coupled wall systems.under static load is
described in this report. The model was applied to coupled wall
specimens tested at the Construction Technology Laboratories,

The analytical results are compared with test results;
Effects pf assumed analytical conditions on bvérall behavior‘of
the strﬁétures are discussed on the basis of this comparison.

Conclusions drawn from the analysis of coupled wall systems
and the comparison of analytical results with test results are:

1. Analytical models used in this investigation can simu-
late important aspects of behaviour of constituent
members of coupled wall systems.

2. The analytical results. are in satisfactory agreement
with the experiméntal results with respect to overall
behavior of the coupled wall systems considered.

3. For a two-wall system coupled by weak beams, the indi-
vidual walls govern overall behavior of the system.
Inelastic shear deformation in walls plays a signifi-
cant role in reducing the systém stiffness as loading
increases.

4. In the heavily coupled wall system, RCS-1, a large
amount of the shear is transferred to the compression
wall through connecting beams. As a result, the com-
pression wall shares larger portions of the shear and
moment at its base relative td the tension wall. To

reproduce the concentration of shear and moment in
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the compression  wall,’ interactiqn between axial and
flexural actions in the walls should be incluqéd in the
analysis.

RCS-1 is characterized by heavy coupling between the
two walls. At the initial stage of loading 85%.of the
base moment is taken by the coupling moment. For CS-1,
with relatively light coupling beams, only 30%.cof the
base moment is taken by the coupling moﬁent at initial

loading.
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APPENDIX A - DEVELOPMENT OF MEMEER ANALYTICAL MODELS’

Proéedures used in develcping the analytical models for
constituent members are explained in this Appendix. Force-
deformation relationships for members are derived from stress-
strain relationships of the constituent materials. In addition,
hysteresis rules adopted for different types of members are

discussed in detail.

Material Properties

Inelastic seétional properties of mgmber elements are based
on idealized stress-strain curves for concrete and reinforce-
ment. Moment-curvature and axial force—-axial strain relation-
ships of a section are developed by integrating stress distribu-
tions over the secticn. Stress distributions are determined
based on the assumption of linear variation in strain across the

cross section.

Stress-Strain Relationship of Concrete. A parabola combined
(1)

with a straight line as proposed by Hognestad is adopted
for the stress-strain relationship ©of concrete. The relation-
ship is:

£E =0 . ' e < &

(Al)

th
Q

[}

Fh

W]
e o

|n
~!_

]

ol o
|o
\\_/

[ (]

m

T

A
(4]

[9]

| A
m

o)



and

where

The adopted

- - ] )
£ [1 (1 - £/£07 (A2)
- 1y %
650 (fc) (23)
concrete stress
uniaxial compressive strength of concrete
tensile strength of concrete
concrete strain
: 1
strain at fo
strain at ft
constant defining the descending slope
of the stress-strain curve. A value of

100 was used in the analysis,.

curve is shown in Fig. Al.

Stress~Strain Relationship of Reinforcement. A plecewise

linear stress-strain relationship is adopted for the reinforce-

ment. The relationship is:

where

fg. = Eg g .s = v

fs = fy gy S eg < eh (A4)
fg = fo + By (Bg = Fy) “h S84 S By

fs = fu Ey — €5

reinforcement stress

yield stress of the reinforcement

ultimate stress of the reinforcement

aA-2



e = strain of the reinforcement

s
= strain at £
fy y
Ep = strain at onset of strain hardening
€y = strgln at fu
Es = modulus of elasticity of the reinforcement

Eh = modulus to define stiffness in strain
hardening range

The proposed stress-strain curve for reinforcement is illus-
trated in Fig. A2. The relation§hip,is assumed to be symmetric

with respect to the origin,

Sectional Properties

%ember stiffness is obtained by integrating sectional préé-
erties over the length of the member. Each sectional property
can be expressed by either analytically developed equations
based on the material properties or empirical equations based on
a number of tests,

Y J

Moment-Curvature Relaticnship. The primary moment-

curvature curve of a section subjected to a monotonically
increasing moment and a constant axial force can be derived
based on the idealized material properties of concrete and
reinforcement. It is assumed that strain wvaries linearly over
the depth of the section as shown in Fig. A3. Curvature and

strains are related through the following equations,
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=el/(c -d" (A5)
= ss/(d - C)
where
¢ = curvature'
Ee = concrete strain at extreme‘compressive fiber
eg = sStrain in compressive reinforcement
Eg = strain in tensile reinforcement
d' = distance from extreme compressive fiber
to center of compressive réinforcement
d = distance from extreme compressive fiber to
center of tensile reinforcement
¢ = depth of neutral axis
Equilibrium of resultant forces results in the following
j
expression.
c
fcb dx + Aé fé - Asfs = N (A6)
_CI
where
fé = stress in compressive reinforcement
fs = stress in tensile reinforcement
b = width of cross section
Aé = total area of compressive reinforcement
AS = total area of tensile reinforcement
N = axial load acting on section
c¢' = distance from neutral axis to point of maximum

tensile stress in concrete



Resultant moment M, at depth %, can be calculated by the

following egquation.

¢ o ‘
M = J i‘fcb'édlf, + (X - CJ' ‘ fcbdx + A;fé (x-4d"')
-c -C
\\ .

D

+_Asfs(d - X} + N (x 5) (A7)

where

D = total depth of section

Ut
1}

distance from neutral axis

The first term on the right-hand side ¢©f Eq. A7 represents the
moment due to the concrete stress block calculated with respect
to the neutral axis. The second term reflects the change of the
moment axis location from the neutral axis to the depth, «x.
Normally, the moment, M, is evaluated with respect to the plas-
tic centroid of the section.

An iterative method is used to solve Egs. A5 and A6 for c¢
with given Ec and WN. The moment, M, and curvature, ®, can
be derived by Egs. A5 and A7 with calculated ¢ and given c*
Moment-curvature curves for a wall section subjected to differ-
ent axial forces, calculated on the basis of the abovementioned
procedure, are shown in Fig. A4,

For simplicity, the original moment-curvature curves are
trilinearized. The slopes in the three stages of this idealized

moment-curvature relationship are defined as follows:
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D = M/_c MS.M'
ba c
M~ Mc :

®= M/ L —E ;O M <M< ¥ (A8)
q)y_cpc C c— - Y
M -M

¢ = M/‘-I_.X + @ M <M
Oy - Py ¢ Yy -

where

M = bending moment

Mc = cracking moment

My = yielding moment

Mu = ultimate moment

® = curvature

c = curvature at cracking

¢§ = curvature at yielding

@u =- curvature at ultimate stage

i
Cracking moment corresponds to the commencement ©of flexural
cracking. Flexural cracking at a cross section occurs when the
stress at the extreme tensile fiber of the section exceeds the
concrete tensile strength. . Yield moment is defined as the
moment at yield of the tensile reinforcement,
A geries of idealized moment-versus-curvature relationships

of a wall section for different wvalues of constant axial force

is shown in Fig. AS.
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Axial-Force-Versus-Axial-Strain Relationship. The axial-

force-versus-axial-strain relationship of a section may be sig-
nificantly affected by the presence of éurvature in the section.
Therefore, an axial force-axial strain curve can be defined only
for a fixed curvature. The axial-force-versus-axial-strain
relationship correspnding to a given curvature can be calculated
using the same procedure as for the moment-curvature relation-
ship. B

In the procedure, axial strain is determined by taking an
average of the axial strain distribution over the cross section
with given curvature and axial force.v There are an infinite
number of such axial force-axial strain curves corresponding to
different values of curvature. A series of axial‘force—axial-
strain curves is shown in Fig. A6.

It is assumed that the relation among axial force, axial
strain, and curvature can be established irrespective of the
lcading history. Therefore, if the axial force and curvature
at any stage in a loading process are known, the corresponding
axial strain can be uniquely determined ~without. knowing the
previous history of loading.

To simplify the problem, the axial force-axial strain curves
are represented by straight lines with different slopes as shown
in Fig. A7. The range of axial force-axial strain curves 1is
limited by two boundary lines A ahd B. If an axial force-axial
strain curve exceeds either boundary line A or B, the curve is
assumed to travel along the corresponding line A or B. Line A

corresponds to the situation where the tensile stress due to
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moment is overcome by the compressive stress due to compressive
force. Line B corresponds to a fully cracked section in which
only reinforcing bars c¢ary load. Line A is approximateiy
streight‘ until concrete ‘crushing is initiated. Line B is

straight until reinforcement vielding occurs.

Shear-Versus-Shear-Distortion Relationship. Development of

a moment-curvature relationship for a section is straightforward
from an analytical viewpoint. All quantities required for the
moment-curvature relationship are defined at each section over
the full loading range. The moment-curvature relationship can
therefore be used to develop force deformation relationships for
members idealized as line elements. However, it i1s difficult to
establish the shear-versus-shear-distortion relationship for a
section. The shear resistance mechanism is associated with
inclined cracks that are not confined to a single section in the
member. Therefore, the shear-versus-shear-distortion relation-
ship can be evaluated only in an average sense over a length of
the member. h

There are two possible methods for evaluating parameters
characterizing the primary curve for the shear-versus-shear-
distortion relationship. One is to establish an elaborate model
of the hinging region including detailed consideration of the

(2) This would include

various shear resisting mechanisms.
such compconents as gecmetrical conditions associated with
inclined shear cracking, flexural cracking and concrete struts,

web reinforcement resistance, dowel action of reinforcement,



confinement of boundary elements, shear friction in the compres-
sion- zone, bond degradation, and aggregate interlock. The
primary curve of the shear-versus-shear-distortion relationship
could then be evaluated by an analysis based on this elaborate
model.

The other approach consists of modelling the gross or over-
all behavior of the hinging-region. As with the first method,
this approach relies heavily on experimental data.

At present, there is little data upon which to base a satis-
factory model of inelastic shear behavior that would account for
the contribution of various component mechanisms. This is true
even for monotonic loading. The problems become even more com=
plex in the case of reversed cyclic loading. In addition, such
a model would be computationally very expensive f@r use in
cyclic loading with no assurance of improvement in the accuracy
of the results. Because of this, an _‘approach based on total
"hinge behavior presently appéars to be the most practical means
of modelling inelastic shear behavior.

Ih order to establish the primary curve for the shear-
versus-shear-distortion relationship, it is necessary to evalu-
ate certain parameters. These parameters are cracking shear
level, shear strength, and the corresponding shear distortions.
An idealized primary curve for the shear-versus-shear-distortion
relationsip is shown in Fig. AS.

The cracking shear level of wall members can be taken as the
lesser of the results indicated by Egs. (11~-33) and (11-34) in

Section 11.10.6 of the 1977 ACI Building Code (ACI 318-77). (%)
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For the cracking level of beam members, Eq. (l1-6) in Section
11.3.2 of ACI 318-77 can be used.

The shear strength of wall members can be roughly predicted

by the following empirical equation(4).
0.00371 x p .0 % (£ + 2570)
n " ﬂ-”?w + 0.12
+ 0.0714 ffyph+o.oo7fC1 (A9)
" hc
X he sz - —2> x 0.0124
where
he = average thickness of wall including boundary
columns (in.)
Qw = horizontal length of wall (in.)
hc = depth of boundary column under tension (in.)
fd = compressive stress of wall due to gravity
load (psi)
Ph = »horizontal web reinforgement ratio (%)
fy = yield strength of web reinforcement (psi)
fé = compressive strength of concrete Spsi)
Pf = ratio of main reinforcement area of column under
tension‘to total area of wall (%)
M/V = moment-shear ratio {in.)
Vn = shear strength (kip)

This equation is based on a number of test results for isolated

structural walls and accounts for the effect of the flexural



reinforcement in the boundary columns on the shear strength. No

!
comparable expression relating shear capacity of walls with

boundary columns is available in the ACI Code(3).

Furthermore, confinement of <concrete in the adjacent
columns, flexural moment capacity and failure mode might be con-
sidered as additional factors to evaluate the shear strength
capacity of walls. These factors are not included in Eqg. A9 and
the ACI ‘equations. Test results(4) indicate that the shear
distortion corresponding to shear strength can be assumed equal
to 0.003 radians for practical purposes.

The shear strength for beam members can be estimated by the

following equation which is similar to the equation for wall

members. ‘ :
0.00384 x p, O3 (£r + 2570)
n 7 | oo+ 0.12
+ 0.0714 ~/fy_ph}bd x 0.0124 (al0)
where
Pf = tensile reinforcement ratio (%)
fé = concrete strength (psi)
fy = yield stress of shear reinforcement (psi)
%} = shear reinforcement ratio (%)
M/V = moment versus shear ratio {in.)
Vn = shear strength (kip)
b = beam width (in)
d' = distance from extremelcémpression f%bér to

centroid of tensile reinforcement
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Equation A9 for wall members is a modified version of Eg. AlQC.
The shear distortion corresponding to shear strength should

be evaluated in order to establish the primary curvé for the

shear-versus-shear-distortion relationship. If the beam deflec-

tion corresponding to the shear strength is assumed to consist

of flexural deflection and shear distortion, the shear distor-

tion component in the total aeflection can be roughly evaluated
as the difference between the total deflection and the flexural
deflection component. In view ¢of the fact that the flexural
deflection can be calculated by the sectional analysis reason-
ably accurately and the information as to the total deflection
of beams is readily available in most tests results, values of
shear distortion estimated in this procedure can be considered
as being reasonably accurate.

Shibata claims 1in his paper(s) that Eg. Al0 gives the
smaller standard deviation than Eq. 11.2 of ACI 318-77 in: terms
of the ratio of test results to predicted values. Superiority

of one equation over the other has not been clearly determined,

however, Therefore, it was decided to use the lesser of wvalues

given by Eq. A9 and Eg. {(11-2) of ACI for walls and the lesser

of the results calculated by Eg. Al0 and Eg. (11-2) of ACI

318-77 for beams.

Interaction Among Axial, Flexural and Shear Components

It appears reasonable to assume that for the general case,
the instantaneous fcrce-deformation relationships governing the

axial, flexural and shear components in a member are inter-



related. This interrelationship becomes particularly signifi-
cént when structures behave inelastically under large load
reversals.

Simple analytical models have been developed in an attempt
to correlate these force components. Although three coﬁponents,
axial, flexural and shear, are mutually interrelated in the
process of loading, only two types of interrelationship are
independently considered here. ©One is the interaction between
shear and moment and the other is the interaction between moment
and axial force. Other possible interactions such as shear and
axial force are ignored. However, shear and axial force are

indirectly c¢orrelated through the other two types of interrela-

tion considered here.

Coupling Between Shear and Moment. .Instantaneous shear

distortion can be expressed as a function not only. of shear
force but also of flexural rotation and axial deformation exist-

ing in a section as follows:

vy =TI v, 8,8 ) (ALll)
in which V = shear force, © = flexural rotation, and % = axial
deformation. An incremental. form of Eg. All is expressed as
follows:
d7 = = AV + = d 4 = 45 ‘ (A12)
aV a9 38

At the present state of knowledge, it is difficult to eval-

uate the gquantities on the right-hand side of Eg. Al2 at any



instant in the process of loading. This is due mainly to the
scarcity of experimental data and the lack of sufficient know-
ledge on the telationships among these gquantities. But experi-

mental results(2'7)

clearly @ indicate that inelastic shear dis-
tortion is related to flexural yielding. The coupling ié exhib-
ited in the almost-simultaneous occurrence of shear yielding
and flexural>yielding well below the calculated shear capacity
level.

Abrupt widening of flexural cracks and propagation of these
craéks into the web at the onset ©f flexural yielding cause a
change in shear resistance mechanism from truss analogy type to
dowel action of vertical reinforcement and interface friction
over the remaiﬁing small portion of compressive concrete,

Looking at this behavior from a different viewpoint, when
shear cracks in the web are initiated, the wall starts to behave
as an anisotropic material and tends to expand. Hoyever, this
tendency 1is restrained. by the boundary elements. After the
boundary . element reinforcement yields, this constraint is
released causing a drastic reduction in shear stiffness. This
phénomenon prdvides an explanation for the almost-simultaneocus
occcurrence oOf flexural yielding and "shear yielding" observed
in the tests of isolated walls conducted at the Construction
Technolegy Laboratories.(7)

Generally shear distortion 1s related to flexural rotation

in a complicated manner depending on the nominal shear stress

level, size of flexural cracks, and other factors. A simple



analytical model was therefore established to reflect the basic
inelastic shear mechanism identified experimentally.

In the analytical model, shear stiffness and flexural stiff-
ness are combined in series. Interaction between shear distor-
tion and flexural rotation is accounted for in the sense that,
once either shear yielding or flexural yielding occurs, a reduc-
tion in‘element stiffness results. The shear force and moment
are related through the equilibrium equations.

Interaction 5etween shear yielding and flexural yielding can
be incorporated into thebinelastic shear-force-shear-distortion
relationship in several ways.

The assumption that shear rigidity decreases in direct pro-
portion to flexural rigidity was used in a previous Study‘e).
This assumption appears to be reasonable for members subjected
to monotonically increasing 1loadings, since experimental

(9) indicate that the shear-distortion-flexural-rota-

results
tion relationship is approximately linear even in the inelastic
region.

The equation stating this assumption can be expressed in the

form )
GAi = Te GAe {(Al3)
where
GA, = inelastic shear rigidity

GAe = elastic shear ridigity_ -

EI

inelastic flexural rigidity

EIe = elastic flexural rigidity
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The mechanisms operating 1in pseudo-static tests where
applied shear and moment are in phase produce shear and flexural
deformations that are approximately linearly related.

However, this assﬁﬁption may not'bé appropriate in dynamic
response analysis. During dynamic response, the shear force and
moment at a section are generally not in phase, Shear force
usually varies much more rapidly than moment.

Iﬁ the second approach the shear flexibility term in the
member flexibility matrix is considered to be independent of the
flexural flexibility term, Shear €flexibility isﬂﬁssumed to be
a function of only the shear and shear distortion. The shear
vyield level is set at the current shear force level when flex-
ural yielding occurs. This procedure ensures that shear yield-
ing coincides with flexural yielding,\irrespective of the shear
yield level originally specified.

The first approach has been adopted in modelling beam and
wall members ©of c¢oupled wall systems. The second approach has
been used for the analysis of isoclated walls in this investiga-
tion. These two approaches are based on the concept that shear
_yielding ;oincides with flexural yielding.

¢

Interaction Betweeh Moment and Axial Force. Inelastic

behavior of a member subjected to moments and axial forces that
change in the process of loading is discussed here.

A series of idealized moment-curvature relationships for
different values of constant axial force 1is shown in Fig.. A5,

During 1loading the axial force on a section 1is subject to



change. The moment-curvature curve of a section under changing
axial load is traced by appropriate shifts between the’
series of moment-curvature curves for constant axial loads as
shown by the dashed lines in Fig. A5. It is assumed that the
axial force is small enough that the axial force-moment inter-
action curve is in the linear range between the net tension
strength and the balanced point as illustrated in Fig. A9.

Cases where the axial compressive forces are above the balanced
point are not considered, -

IAxial»rigidity is affected by cracking depth and inelastic-
ity in the reinforcement and concrete. In order to simplify the
problem, it is assumed that the axial rigidity is related only
to the curvature and axial strain of the section. -Thereforé,
the flexural and axial actions of a section are correlated to
each other. A procedure to calculate the instantaneocus inelas-
tic flexural and axial rigidities of a section, takinglinto
account the effect of axial force on the moment-curvature curve
and the effect of curvature on the axial force-axial strain
curve is briefly explained here. The details of the procedure
are described in Ref. 8.

It is assumed that the moment is a function of curvature and
axial force, and the axial force is a function of curvature and
axlial strain. Therefore, the moment and the axial force are

expressed in the following forms,.respectively.

m M(d ,n}

(Al4)

1]

n N(®d ,e )

where
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m = bending moment at a section
n = axial fofce at a‘section
M = bending moment function
N = axial force function
© = curvature
e = axial sfrain
The incremental forms of moment, m, and axial force, n, can
be expressed by partially differentiating Eg. Al4 with respect

to each parameter.

ams= 5% + 33 on (Al5)
An = %% AD + %g Ag (Al6)
where |
Am = increment of moment
An = increment of axial force
A® = increment of curvature
Ae = increment of axial strain

After substituting Eqg. Alé for n in Eg. AlS5, the following

equations can be derived in matrix form,.

aM _ M 3N aM N
am ] + na n J¢ Ad
= A(l7)
An 0 oN
50 3c Ae

This stiffness matrix is not symmetric because of the assumption

made in Eg. Al4. 1In order to restore symmetry in the stiffness

matrix, Eqg. Al7 1is rewritten by taking an inverse of Eg.
Am

Al7. Then the inverse is used to express AD in terms of %g
o , An ON .
and a medification factor, and Az in terms of 5c and a modi-
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fication factor as follows:

(an| [28 1 : ] oo
¢ o0 1 - 2M an
an Am :
|- =
An | N 1
’ se |1 (2L o am _ 2§ |
N ~ - o od an on -\ J

It is assumed that the ratio of the increment of axial force

over that of moment, %ﬁ; does not change markedly during the
An
Am

used for the matrix terms in Eg. Al8 to avoid an iterative

loading process. Therefore, tpe previous step value of isg
process.

The value of %% can be. derived from the idealized moment-
versus-curvature hysteresis 1loop for the corresponding axial
force acting on the section. The value of gg can be calculated
by referring to the idealized axial force~axial strain curve for
a given curvature.

Two diagonal terms in the matrix of Eg. Al8 are considered
as the current effective flexural ‘figidity‘ and the current
effective axial rigidity, respectively. On the other hand,
%% and gg can ?e considered as pseudo-rigidities.

The current effective flexural rigidity represents the slope
of the moment-curvature curve, including the effect of a chang-
ing axial force. The current effective axial rigidity repre-
sents the slope of the axial force-axial strain curve including
the effect of a changing curvature.{ The pseudo-flexural rigid-
it& ié the slope of the moment-curvature curve with constant

axial force acting on the section. The pseudo-axial rigidity is

the slope of the axial force-axial strain curve for constant

curvature.



Deformational Properties of Members

Deformational properties of members can be determined by
integrating sectional properties over the member length. Since'
beams and‘walls are modelled in different forms, developments of
the deformational p;operty mcdels for beams and walls. are dis-

cussed separately.

Beam Deformational Properties. - A beam member has shear

force and bending moment as its force components, and lateral
displacement and rotation as its displacement components. These
components are specified at the member ends.

Rotational springs are placed at the ends of each connecting
beam to consider the rotation due to inelastic flexural action
over the beam length, strain in embedded tensile reinforcement
at the ends of the beam, and shear deformation within the span
of the beam. The linear flexibie beam element spans between the
rotational springs. The definition of moments and rotations at

beam ends is illustrated in Fig. 2l0.

A) Rotation due to Inelastic Flexural Action. Inelastic flex-

ural action in the connecting beam is aséumed to be localized
at the ends of the beam since the beam is exposed to antisym-
metric distribution of moment along 1its kiength. There 1is a
natural correspondence between the deformational properties of
the rotétional springs and the fixed;end—moment-versus-free-end—

displacement relationship of a cantilever beam.

End rotations of a simply supported member subjected to an

antisymmetric moment distribution can be related to the defor-

13
|
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(10). There-

mations of two cantilevers as discussed byIOtani
fore, the deformational properties of the rotatibnal springs in
the inelastic region can be derived by calculating the moment-
displacement curve of a cantilever whose span is half the. clear
span length of the connectiﬂg beam. This assumes that the point
of contraflexure is fixed at midspan of. the connecting beam. To-
make the procedure applicable to beams of arbitrary length, a
cantilever Qith unit length is considered in the analysis.

For a cantilever, the curvature distribution can be defined
for a given fixed end moment using Eq. AB. Displacement at the
free end of the cantilever beam is then calculated from the
- curvature distribution by computing the first moment of the
curvature diagram about the free end.

The free end displacement, (M), of the cantilever with unit

length can be expressed as a function of the fixed end moment,

M, by the following equations:

_ M
5 M) = 3g7 M <M
1. c
M1 3/ 1 1
5(M) = 3 ET, + o —EIl —-—E12> Mc<_M§_MY (A19)
_M [ 1 3/.1 1\ 3 /1 1
5 M) = 3 BT, © ° |EI} EID + B EI, EI3>
M <M
y—
where
MC
Ct:ﬁ—
M
B =X
M



With the moment-versus-displacement relationship of a unit™
length cantilever available, the relationship for a cantilever
beam of any length can be derived .by simply multiplying the
relationship ;for a unit length cantilever by the square of the
length for the desired span.

The idealized moment-displacement relationship of a unit
length cantil?ver,is established by trilinearizing the 6riginal
curve expressed by Eg. Al9. The origin, cracking, yielding and
ultimate points on the curve are connected - successively by
straight lines. The ultimate moment is defined as the point
where the extreme compressive fiber strain reaches 0.004.

Slopes in the three stages o©of the idealized moment-versus-

displacement relationship are defined as follows:

s(M) = =< | M< M
M - Mc
s(M) = L—=F M <M< M (A20)
Mu - M
s(M) = ——X M < M
where | g
S(M) = instantaneous stiffness of unit length cantilever
5c = cracking displacement of unit length cantilever
BY = yielding displacement of unit length cantilever
Su = ultimate displacement of unit length cantilever

The incremental rotation of the rotational spring due to

inelastic flexural action can be expressed approximately by the

instantaneous stiffness, S(M), since inelastic flexural action
is assumed to be localized at the beam end. Accordingly,
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(A21)

where
& - jncremental rotation
AM = incremental moment
L = length cof beam

Equation A2l is used as a part of the instantaneous moment-
versus-rotation relationship df the rotational springs in the

analysis.

B) Rotation Due to Inelastic Shear Deformation. In addition to

the flexural deformation of the connecting‘beams, rotation due
to shear deformation of the beams is also taken into account in
this investigation.

It is assumed that the inelastic shear rigidity reduces in -
direct proportionlto the inelastic flexural rigidity. There-
fore, the ratio of the incremental displacement based solely on
flexural rigidity to that based on both flexural and shear
rigidities is considered to remain constant during any stage of
inelastic action.

This displacement ratio is considered as a modifying factor
to be applied to the instantanecus flexural stiffness, S(M).
The displacement ratio can be expressed as follows:

8¢ 1

25 3EIi

5 7 1 (A22)
GAi L ‘ ’

A-32



where _
&3 _ = incremental displacement due to flexural

rigidity only

&5 = increment of the total free end displacement
EI;, = instantaneous flexural rigidity
GAi = instantaneous shear rigidity

Thus the stiffness which includes the shear deformation effect

can be expressed as

ST(M) = 5S(M) ééi (A23)
“ Ja’s)
where
S(M) = instantaneocus stiffness based on flexural rigidity
ST(M) = instantanecus stiffness based on flexural and shear
rigidity

For the case where rotation due to shear deformation is con-
sidered in the analyses, the instantaneous stiffness ST(M) is

used instead of S(M) in Eg. A2l.

C) Rotation due to Strain of Tensile Reinforcement Embedded in

the Wall. Rotation due to strain of tensile reinforcement
along its embedded length in the wall is considered as an addi-
tional flexibility facteor for the rotaticonal spring at the and
¢f a beam.

Bond stress 1s assumed to be constant along the embedded
length of the renforcement. Therefore, the tensile stress in
the reinforcement decreases linearly with distanée from the face

of the wall.
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It is assumed that the reinforcement embedment length is
sufficient to sustain the maximum tensile stress occurring in
the loading process., The strain hardening portion of the
stress-strain curvel for the reinforcement 1is idealized as a
straight line connecting the yield point and the point at maxi-
mum strength. Elongation of reinforcement over the development
length is calculated by integrating the strain over the length.

If the stress in the reinforcement exceeds the yield stress,

£ the development length is divided into two parts, as shown

v
in Fig. All. A drastic reduction in axial ridigity of the rein-
forcement takes place at yielding. " Therefore, integration of
strain must be performed separately over the two parts of the
development length from the point ¢f zero stress to that of the
yield stress, and from the point of the yield stress tofthat of
the maximum stress. Strain in compressive reinforcement embed-
ded in the walls is assumed to by zero.

Based on the assumptions made here, the rotation versus

moment relationship can be expressed as follows:

£ \?2
w _ 1_D v )y 2 1 -
§ E_ a\ W (@ = an MM
7 Y (A24)
2
u ' — 1
s y y 'y ( )
)
M_ <M

B
1
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where

. W = rotation due to strain in embedded tensile
reinforcement
M = bending moment at the beam end

My = yielding moment at the beam end .

D = diameter of a reinforcing bar

u = average bond stress

ES = Young's modulus of the reinforcement
EY = inelastic modulus of the reinforcement

after yielding

fy = yielding stress of the reinforcement
d = depth of the tensile reinforcement
d' = depth of the compressive reinforcement

Details of the derivation of Eg. A24 are described in Ref. -

The idealized form of the moment-rotation relationship is
again obtained by trilinearizing the original curve, success-
ively connecting points at the origin, cracking, yielding and
ultimate moments. ' _ y |

The £flexibilities in the three stages of the idealized

mement-rotation relationship are defined as follows:

w <
£1) = 55 MM
C
foy = By Y | < y<
(M) = e Mo MM (A25)
y
b C
W oW
con = i
_ N



where

f(M) = flexibility resulting from the bond slippage
of tensile reinforcement of a beam
w0, = rotation corresponding to the cracking moment,
calculated from Eq. A24
w& = rotation corresponding to the yielding moment,
calculated from Eq. A24
wu = rotation corresponding to the ultimate mcoment,

calculated from Egq. AZ24

The incremental rotation of the rotational spring due to
strain in embedded reinforcement can be expressed by the flexibi-

lity, £(M), as follows:
A8 = EM)AM (A26)

Equation A26 1is used as a part of the instantaneous moment-
rotation relationship of a rotational spring in the analysis.
Moments and rotations at beam ends are related. through a
flexibility matrix that can be established as the sum of several
types of flexibility as discussed in preceding paragraphs. The
flexibility matrix, excluding the vertical displacement compo-
nents, can be calculated by simply adding the flexibilities of
the rotational springs to those due to elastic flexural actions
in the flexible element. The flexibility matrix 1is expressed

as:
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L L L
fee fep 6ET ~ GEI 25T (M) £(Me) 0
= L L | T | L
Ene fop - FEI §EL ° . TmsTon)t £(Mp)
where
L = length of the beam clear span
EI = elastic flexural rigidity of the
flexible element
—_— and —_ = rotaticnal flexibilities due to
2ST(MC) 2ST(MD)

the inelastic flexural and shear
actions over the beam length,

defined in Eg. A23

f(MC) and f(MC) rotational flexibilities due to

the reinforcement strain in the

joint core, defined in Eq., A26

moments at the clear span ends

\n

MC and MD
of the beam

In the development of Eg. A27, part of the elastic flexibility
coefficients of the diagonal elements in the £first matrix on the
right-hand side of the equation ha?e been assigned to the term,
L/2ST(M), in the second matrix. In the second matrix, the
f;exibility consfants, L/2ST(M) and f£(M), are functions of the
existing moment level and the loading history of the rotational
spring. |
It should be noted that the off-diagonal terms reflecting
the interaction between opposite end rotations depend solely on

the elastic flexible terms.



Incremental end rotations of the combined rotational spring-
flexible element system are related to incremental end moments

through the combined flexibility matrix as

~ )
2B £ £ : M
C ) CC CD C (A28)
40 foc oo Mp
- -
where
AB c and NQD = incremental rotations at the
clear span ends of the beam
AMC and AMD = incremental moments at the clear span
ends of the beam
Wall Deformational Properties. A wall member has axial

force, shear force and bending moment as its force components,
and axial displacement, lateral displacement and rotation as its
displacement components. These member force and displacement
componehts are shown in Fig. Al2.

Each wall member is con§idered‘to consist of several sub-
elements so that each subelement can be sﬁbjected to a different
stage of inelastic action. The stiffness properties of each
subelement are assumed to be constant over the length of the
subelement.

For the time being, ;he wall member 1is considered as a
cantilever to facilitate calculations of the member deforma-
tional properties, The member deformational properties ‘are

calculated from the section properties of each subelement. The
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configuration of the cantilever 1is shown in Fig. Al2, The
flexibility matrix of the cantilever can be derived by using
the transformation matrix and the flexibility matrix of each

element as follows:

T
£, =3§1 [Tj:l [fj] [Tj] o (A29)

flexibility matrix of the cantilever

where

o
(L
|

Fj} = flexibility matrix of the j th subelement

UI=]
(e
1]

transformation matrix of the j th subelement

with respect to the free end

B

transpose matrix of Tj

the number of subelements in the member.

]

The matrices used in Eg. A29 can be expressed as follows:

_— -
Ez—l— 0 0
i3
3 2
. . . (A30)
[f.]. = | 0 b - E—E_l_
3 3BT, Ay ET,
¢ 2 2 -
0 i 23
2ET BT,y
— et
— _
1 0 Q
[Tj] = 0 1 0 (a31)
0 L J 1
. - L + g
- %1 J —




where

L = total length of the cantilever
Qj = length of the j th subelement
EAij = instantaneous axial rigid%ty of
the j th subelement
VGAij = instantaneous shear rigidity of
the j th subelement
EIij = ‘instantaneous flexural rigidity of

the j th subelement

These subelement rigidities can be calculated from Eqs. Al3 and
Al8. Egquation A29 is considered‘to be the basic formulation to
express the deformational properties of walls. The stiffness
matrix of Qall members can be developed based on Eg. A29 as

discussed in Appendix B.

Hysteresis Rules

A hysteretic moment~rotation relationship following the

(11)

rules preoposed by Takeda et al has been adopted for the

instantaneous flexural stiffness terms in this investigation,
The basic shear—ﬁorce—veESus-shear-distortion relationship for
the inelastic shear stiffness is also assumed to follow Takeda's
hysteresis loop.

The primary curve of the hysteresis loop is established by
connecting the origin, cracking point, yielding point ana ulti-

mate point successively by straight lines, thus forming the tri-

linearized curve. No limit on the third slope is considered
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for the primary curve. The loading curve 1is basically directed
toward the previcus maximum point on the primary curve in that
direction. The slope o©of the unloading <curve 1is degraded
depending on the maximum deflection reached in either direction,

Details of Takeda's hysteresis rules  are given in Ref. 10.
These rules have to be modifiéd to deal with some specific féa~
tures that appear in the behavior of constituent members of the

coupled wall systems under lateral loads.

Interaction Among Axial, Flexural and Shear Components. For

the wall subelements the moment-curvature curves for different
values of axial force are trilinearized as shown in Fig. AS.
Cracking and yielding levels are shifted in accordance with the
value of axial force.

The current moment-curvature curve is chosen to be thé one
corresponding to the current level of axial force. The pseudo-
rigidity, %#ﬁ in Eg. Al8, obtained from/ the slope o©of the
current moment-curvature curve, follows Takeda's hysteresis
rules. The real flexural rigidity can be obtained by multi-
plying g% by a factor reflecting the effect of transferring from
one moment-curvature curve to another due to the change of axial
force. This factor is defined in Eq. AlB.‘ An actual hysteresis
loop for a wall subelemgnt is given by the thick solid curves in

‘ ) 3
Fig. Al3. The detailed procedure for evaluating 3% and 5% was

discussed in Ref. 8.
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The curves of the axial force-axial strain relationships for
different values of curvature are idealized by a set of straight
lines with two boundary lines as shown in Fig. A7. The working
axial force-axial strain curve is assumed to be the -one corre-
sponding to the current value of curvature. The pseudo-axial

rigidity, oN in Eg. Al8, is considered as the slope of the

0E
the current axial force-axial strain curve,

Because of lack of data for this relationship, no hysteretic
properties are given to the axial force-axial strain curves in
this analysis. Therefore, its unloading curve follows the same
trace as the loading curve., In other words, the axial force,
axial strain, and curvature can be related to one another irre-
spective of the previous lcocading history.

In addition to the interaction between axial and flexural
components mentioned abaove, coupling between shear yielding and
flexural yielding has been introduced in an approximate way.

Shear yielding occurs whenever flexural yielding occurs, inde-

pendent of the shear yield level originally specified.

Pinching Action and Gradual Strength Loss of Shear

Hysteresis Properties. Modifications to the conventional type

of hysteresis model have been introduced to permit more realis-
tic modeling of the shear-force-versus-shear-distortion rela-

tionship.

A-45



Two significant features have been incorporated in the shear
hysteresis properties; One is a gradual loss of sﬁrength with
repeated load reversals beyond a specified shear deformation,
and the other is pinching action in the reloading branch.

The strength softening is primarily due to the distorted
concrete section and the permanent strain accumulated in the
shear reinforcement. These are related tc the number of rever-
sals and the previous maximum shear distortion.

After the working hysteresis loop has exceeded the strength,
a strength loss is introduced in the hystergsis loop on subse-
gquent cycles. The rate of strength loss is assumed to increase
proportionally with deformation.

A guideline is introduced in the hysteresis loop to include
the effect of strength loss in the analysis as shown in Fig,.
Al4. The reloading branch does not go to the previous maximum
deformation. Instead, it 1is directed towards a point corré—
sponding to the previous maximum distortion. Beyond this point
the hystersis - loop runs® parallel to the third slope of the
original primary curve. |

Pinching action is attributed mainly to the fact that beforé
previously formed cracks in the‘compressive zone concrete can
close, dowel action of the reinforcement across the cracks pro-
vides the sole resistance to the applied shear force. The
"pinching" action is observed in hysteresis loops obtained from
tests on wall specimens.

This feature is considered in the analysis by introducing a
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reduced shear stiffness in place of the current reloading slope
whenever a branch of the hysteresis loop is located in the
second ér fourth gquadrant as shown in Fig. Al4.

The options of strength loss and pinching action are con-
side;ed for the shear-versus-shear-distortion relationship of
isolated wall members in this analysis. The same options are
also used for the rotational springs of connecting beam members,
because no separate inelastic shear spring is provided for the

connecting beams.



APPENDIX B - ASSEMBLAGE OF STRUCTURAL STIFFNESS MATRIX

AND CALCULATION OF FAILURE MECHEANISM FORMATICN

The procedures for assemblying the structural stiffness
matrix and tracing the failure mechanism formation are discussed

in this Appendix.

Member Stiffness Matrix

A computational procedure to develop the stiffness matrix of
each constituent member is described here. Member stiffness
matrices are derived from the flexibility matrices developed in

Appendix A.

Beam Member Stiffness Matrix. The beam is connected to each

wall through a rigid link and a rotational spring as shown in
Fig. Bl.® The rotational spring models the inelastic flexural
and shear actions within the beam length as well as the beam end
rotations due to bond slip in the joint core as described in the
main body of the report.

The flexibility matrix for a simply supported connecting
beam excluding the rigid links, 1is expressed by Eqg. A27 in
Appendix A. The stiffness matrix can be obtained by inverting
the flexibility matrix, A transformation matrix relates the
member end components of the elastic fiexible beam to those of
the total connecting beam system including the rigid links. The.

instantaneous moment-rotaticn relationship of a simply sup-
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ported system that consists of the rigid 1links, rotational

springs and flexible beam can be expressed as follows:

AM 1+ & A K K 1+ A

:\ ) . CC CD. (B1)
AMB A 1+ A KDC KDD »k
where.

A = ratio of the length ¢f a rigid link

to that of a flexible beam

H

K and K stiffness terms derived from the

cc’! “¢p’ T'pDC DD
inverse of the flexibility matrix
in Eq. A28 in Appendix A.
1 1
NaA and ABB = incremental rotations at the ends

of a simply-supported beam system
with the rigid links

incremental moments at the ends of

A A
Ma and MB
a simply-supported beam system with

the rigid links

Actual interpretation of Qﬁ; and Aeé in a deformed configuration
is shown in Fig. Bl.

Neither shear forces nor lateral displacements at the mem-
ber ends are considered in Eg. Bl. In order to include these

member end components missing in Eg. Bl in the final form, the

incremental end rotations, 99  and of a simply supported

m 1
A B’
beam system should ‘be expressed in terms of incremental end

rotations,'ﬂﬁA and % | measured from the horizontal position

Bl
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and incremental end vertical displacements, AVp and AVg s that
are related through a transformation matrix. These member end
components are illustrated in Fig. Bl.

Similarly, the incremental member end shear forces, ANA and
ANB, can be related to the incremental member end moments,
AMA and AMB' through a transposed‘ form of the same transfor-
mation matrix.

The final force-displacement relation of a connecting beam

system 1s expressed in the following form.

~ ™~ B l 1
AN —_— —_—
L{1+2 ) L(1+2))
A = A A
< MA > 1 0 1+ KCC‘ KCD
-1 -1 A1+ A K K
A —_— - ‘
Ng | 17T+ 2% T{I+25 oe DD
A 0 1
- -
WU N | DU SR S
L(l+2)) L(l+23)
X 1 =1
v Italtmrny 0 Tiieza b

! L i

where -

incremental shear forces at the ends of a

A NA and ANB

connecting beam system

incremental lateral displacements at

AVA and AVB =
1 the ends of a connecting beam system
ASA and 4&% = incremental rotations at the ends of a

connecting beam system measured from the

horizontal position

(B2)



With the global coordinate system also adopted as the local
coordinate system for the connecting. beam, these member end
components are also considered as the beam contribution to the

ﬁormulation of the structural stiffness matrix.

Wall Member Stiffness Matrix. Stiffness matrix of a canti-

iever beam can be obtained as the inverse of the flexibility
matrix of the cantilever beam. The flexibility matrix of the
cantilever beam is expressed by Eg. A29. The member stiffness
matrix of a wall member can be developed on the basis of the
stiffness métrix of the cantilever beam using conventional
matrix formulation. The member stiffness matrix relates the
incremental member end forces to the ' incremental member end

displacements as follows:

- N~ ' 7]
A A 3
Va : Ya
A K T ' A
Pa Tap %ap Tap ! - Tap Xas Ua
AM ! A8
A A
ﬁ ------ >= ----------------% ----------------- < ------ >(53)
A ! A
NB ! 62}
AP K T‘II | A
B AB TaB ! Xap Ug
]
A Ja's]
1
. My Y | B . B
where ‘ _
K = three by three stiffness matrix of the cantilever
AB -

-
s

beam (the inverse of f_ in Eq. A29 in
Appendix A,

transformation matrix of the cantilever beam

—
i
&
|
1]

r ]
1 0 0
[TAé] = 0 1 0
0 -L 1



1]

— T ]
[TAQJ transpose matrix of [?Ag]

ANA and ANB = incremental axial forces at the ends of a

wall member

APA and-APB = incrementél shear forces at the ends of a.

wall member

‘QMA and AMB = incremental moments at the ends of a wall

member

AvA and AVB = incremental vertical displacements at the
ends of a wall member

AUy and Aug = incremental lateral displacements at the

ends of a Qall member
A0 p and My = incremental rotations at the énds
of a2 wall member
These member end components can be considered as the Jjoint dis-
placements and forces, since the global coordinate system has
also been adopted for the member coordinates. The member stiff-
ness matrix contributes to the formulation of the total struc-

tural stiffness matrix.

Structural Stiffness Matrix

The instantanecous structural stiffness matrix is develcped
by superimposing at each joint stiffness contributicons from all
members connected at that joint. The internal degrees of free-
dom are condensed out of the structural stiffness matrix before
the system eguations are established so that only horizontal-
story movements appear in the final form of the equations. The
incremental force-displacement relationship .of a structure 1is

J
s

expressed as follows:



where

(
4 R B ! 1 r N
AP K11 1| Ki2 . Au
-—-- B e -—-- (B4)
S | .
AN } Ay
_ K i K
- K21 | 22 "
. y, — -\ J
Kll = submatrix of size, I by I
K12 = submatrix of size, I by 2J
K21 = submatrix of size, 2J by I
K22 = submatrix of size, 2J by 23
= number of stories
J = number of joints
aAp = incremental story lateral force vector
AN = incremental joint vertical force vector
AM = incremental joint moment vector
Au = incremental story lateral displacement vector
Ay = incremental joint vertical displacement vector
A8 = incremental joint rotation vector

Only external lateral loads are

considered in the analysis.

Static condensation of the vertical displacements and rotations

results in an instantanecus structural stiffness matrix that

relates the incremental lateral displacements to the incremental

lateral forces as follows:

(5} - [[Kn} - Te) [rg] [Kuﬂ (ss) e

With a given set ¢of incremental lateral loads and ‘a known



instantaneous structural stiffness, Eg. B5 can be solved for

incremental lateral displacements.

Analysis for Static Loads

Static lateral loads applied to the structure can be either
monotonically increasing loads or slowly reversed loads. A
given set of lateral lcads is applied to each story level of the
structure in small increments. The load increments are chosen
.to be small enough to avoid any significant calculation error
due to overshoocting in the hystersis loop.

Equation B5 of the incremental lateral force-versus-dis-
placement relatioﬁships is solved for the incremental lateral
story displacements under a given set of laterél loads by a
step-by-step procedure., The structural stiffness is assumed to
be constant dﬁring' a load increment. Incremental Jjoint dis-
placements and member forces are calculated at the end of each
load increment.

Incremental vertical displacements and rotations at the

joints are calculated from the following equation.

AV - -1 A \
= X2z K1 u (B6)
26

Equation B6é can be derived in the process of the static conden-
sation. Incremental member end forces are computed from the

incremental member-end-forces~versus-displacement relationships



that are subject to the hysteresis :ﬁlesr If a member force
exceeds . its specifed‘value, the member stiffness is modified at
the beginning of the next load increment in accordance with the
hysteresis rules. Finally, the current member end displacements
and forces are evaluated by adding the computed incremental
values to the accuﬁulated values from the previous steps.
Formation of failure mechanisms in the structur; and the
failure process of each constitueﬁt member can be traced in the

static analysis described above,






APPENDIX C- STATIC ANALYSIS OF ISOLATED STRUCTURAL WALLS

Isolated Structural Wall Tests

The analytical models were used to simulate slowly reversed
loading tests of isolated walls conducted at the Construction

(7)

Technology Laboratories. Agreement between analytical and
experimental results provides some justification for the use of
the analytical models in the analysis of coupled.wallisystems.

Laboratory tests have been conducted on large-scale rein-
forced concrete isolated structural walls under monotonically
increasing as well as slowly reversed loadings. - The results of
these‘ tests indicate a strong rélationship between flexural
yielding and shear vyielding. This was shown 1in the almost-
simultaneous occurrence of shear yielding with flexural yield-
ing. Further details of the experimental program are found in
Ref. 7,

To check the reliability of the analytical model used 1in
the analysis of' coupled wall systems, results obtained using
the analytical model were compared with experimental results
for two selecﬁed isolated wall specimens. These specimens are
denoted by B4 and BS in Ref. 7.

Overall dimensions of Specirﬁens B4 and BS5 are given in
Fig. Cl. The test specimens are approximately one-third scale
representationg of full-size walls, Amounts of reinforcement
used for different sections of the specimens are summarized in
Table Cl. Design yield stress of the reinforcement was 60 Kksi
(414 MPa) and design concrete strength was 6000 psi (41.4 MPa).

f
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TABLE Cl - REINFORCEMENT,OF TEST SPECIMENS

-
Reinforcement (%)
Specimen
B4 1.11 0.31 0.29 1.28
BS 3.67 0.63 0.29 1.35
£ = ratio of main flexural reinforcement area to

gross concrete area of boundary element

ratio of horizontal shear reinforcement area
to gross concrete area of a vertical section
of wall web

ratio of vertical web reinforcement area to
gross concrete area of a horizontal section
of wall web -

ratio of effective volume of confinement rein-
forcement to the volume of core in accordance

with Eq. A.4 of ACI 318-71.

TABLE C2 - PRIMARY CURVES FOR SPECIMENS

B4 B5

Flexural Properties

Cracking Moment {(kip-in.) 4,500 4,500
Yielding Moment (kip—in.b 9,000 24,000
First Rigidity (kip-in.;) 1,450,000,000 1,630,000,000
Second Rigidity (kip~in.Z) 76,000,000 450,000,000
Third Rigidity (kip-in.") 4,000,000 15,000,000
Shear Properties

Cracking Shear (kip) 25 25
Yielding Shear (kip) 82 127
Shear Strength (kip) 106 107
First Rigidity (kip) 430,000 430,000
Second Rigidity (kip) 17,000 40,000
Third Rigidity (kip) 1,300 8,000
+Slip Rigidity (kip) . 4,000

1 kip = 4.4482 kN

1 kip—in.2 = 0.1130 kN-m 2

1 kip-in. = 0.00287 kN-m




The specimens were constructed with confinement reinforce-
ment in the lower 6 ft (l1.83 m) of the boundary elements. Each
specimen was locaded as a vertical cantilever with a concentrated
horizontal load at the top. The load was monotonically
increased for B4 and cyclically reversed for B5. No axial force

was applied to either wall.

Analytical Procedure

The program SIVA2 was used to simulate the test of the two
isolated stfuctural walls. Takeda‘§ hysteresis ;ules are used
for the inelastic shear-force-versus-shear-distortion relation-
ship. Also considered in the program are strength loss, "pinch-
ing" effect, and coupling between shear and flexural yielding.

The primary curves for the moment-versus-curvature rela-
tionship and the shear-versus-shear-distortion relationship can
be determined by the procedure described in this report. The
slope of the reloading branch of the shear-force-versus-shear-
distortion relationship representing pinching can be based on
available test data. The rate of strength loss may also be
evaluated from experimental results. However, strength loss was
not considered in the analysis, since it is assumed that the
response will not exceed the deformation at which strength loss
occurs,

The parameters defining the primary curves used in the
analyses are summarized in Téble C2. An idealized moéel of the

specimens is shown in Fig. C2. The wall is finely segmented in



the hinging region to take account of rapid changes in the
inelastic behavior of this region. The load increment applied

in each step is 1/150 of the maximum static load.

Comparison of Analytical and Experimental Results

The calculated results for Specimens B4 and BS are compared
with the measured results. Specimen B4 was subjected to a mono-
tonically increasing load while Specimen BS was tested under
reversed cyclic loading. For specimen B5, the first two major
cycles are. simulated by limiting displacements in accordance
with recorded data.

Three different assumptions were investigated for each of
the two specimens.

Case 1 - The shear-versus—shear-distortion'relationship is
assumed to be linearly elastic, with all ineiastic action in the
wall being accounted for by flexural yielding.

Case 2 - Inelastic shear deformations are allowed in addi-
tion to.flexural yield. WNo coupling is assumed between these
two yielding mechanisms. The shear strength level is determined
independehtly of flexure yielding.

Case 3 - Coupling between shear and flexural deformations
is considered such that shear yielding is initiated whenever

flexural yielding occurs.,

Specimen B4. Analytical results for the base-shear-versus-

top-displacement relationship corresponding to these three cases

are compared with test data for Specimen B4 in Fig. C3. The
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analytical results for all three cases: compare reasonably well
Qith experimental data. Case 2 gives the closest agreement.

Deflected shapes corresponding to a top deflection of 9 in.
are shown in Fig. C4. Figures C4 (a) and (b) show the flexural
and shear components of deflection separately for Cases 2 and 3,
together with the respective "measured" values. The "measuqed"
flexural and shear components were calculated by integrating
rotations and distortions recorded during the tests over a
height of 6 ft and assuming a linear variation of deflectiocon
from this point to the top of the wall. Figure C4 (c) shows
the total deflected shapes for these two cases togeth;r with
the corresponding measured deflection.

These figures clearly show the effect of coupling between
shear and flexural vyielding on the deflected shape. As
shown in Fig. C4 (b), if coupling is not considered, the deflec-
ted shape due to the shear component is a straight line. This
follows from the fact that the shear force is constant along
the height of the wall, When coupling is considered, a shape
change in the slope of the wall occurs near the hinging region.

This is also apparent in the experimental curve.

Specimen B5. Figure C5 shows a comparison of base shear

versus top displacement relationships for the different analyt-
ical cases and the measured curve for Specimen BS5. The case
@here a linearly elastic shear versus shear distortion relation-
ship 1is assumed, slightly overestimates the absorbed energy

relative to the test results. The other two cases, where

inelastic shear behavior is assumed, satisfactorily reproduced

Cc-7



Fig. C3

HEIGHT, It

100~

kips

30+/

BASE SHEAR,

fin.= 25.4 mm.
1kip= 4,435 xN

Test Result

e==ew= (zse | Tlgstic Snheor

i Rigidity.

=== Case 2 Ineigstic Shedar
Rigidity.

m—e— Cgse 3 Coupiing Between

Sheor Yieid and

Flaxural Yield,

] . J

) 10
TOP DISPLACEMENT, in.

Base-Shear-Versus-Top~Displacement Relations

for Specimen B4

DEFLECTION, in,

{g) Flexural

Fig. C6

15-_'I
I
i
2]
/|
-
= 9._‘: ot
= | .
T =
s |f 3
w 5 . — Meosured w
T { il
l - Cose 2
—— Case 3
3
lin =254 mm
|£1. Q303 m

0 4 8
DEFLECTION, in: DEFLECTION, in,
{b) Shear () Total

Deflected Shapes for Specimen B4



the hysteresis loops recorded during the test.

Deflected shapes corresponding t¢ the positive peak in the
second cycle are shown in Fig. C6. The flexural and shear com-
ponents of the deflected shape are presented separately in the
figure, in addition to total deflected shapes.

Both Cases 2 and 3 satisfactorily predicted the measured
total deflected shape as can be seen in Fig. C6 {c). However,
Case 3, which considers the coupling between shear yielding and
flexural yielding simulated the test result much closer than
Case 2. This is most apparent from a comparison of analytical
and test results in terms of flexural énd shear components as

shown in Fig. C6 (a) and (b).

Summary

Structural walls are generally designed with sufficient
shear capacity to ensure  that fléxural yielding occurs
before the shear capacity of the member is reached.

Tests conducted at the Construction Technology Laboratories
indicate the almost-simuitaneous occurrénce of shear vyielding
and flexural yielding at a load level well below the calculated
static shear <capacity. This observation raised questions
concerning the probable effects of such shear yielding in walls
on the behavior of coupled wall systemé.

Some validation of the analytical model was obtained by
using it to reproduce observed results %or selected specimens
tested under slowly reversing loads. Comparisons between ana-

lytical and experimental results indicate satisfactory agree-



ment. This leads to the conclusion that the analytical model
developed here can well represent the wall members of coupled
wall systems.

The following observations may be made on the basis of
results of this limited  study. r These observations strictly
apply only to the cases and parameter ranges covered 1in the
investigation.

i; Although vyielding in shear concurrent with flexural
vielding increases the shearing component of distortion
in the hinging region of walls, its effect on the over-
all behavior of walls is relatively small.

2. Use of analytical medels that account for inelastic
shear distortion in walls 1is necessary to successfully
simulate the overall hysteretic behavior of 1isolated
structural walls subjected to slowly reversed loading.

3. By including the effect of coupling between shear
yielding and flexural yielding, increased distortions
in the hihging region obeserved in the test were suc-

cessfully simulated in the analysis.



