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NOTATION

The following symbols are used in this report:

[A] = real symmetric matrix of order 2m, defined by Eq. (3.18)

Aj = constant of partial fraction defined by Eq. (II.19)

34y = constant used in Eqs. (3.9) and (3.24)

AZ,B: = %ia%onaW elements of diagonal matrices: {¢]T[A][¢] and

»J'[B][4] respectively

a.,b. = real and imaginary parts of the jth element of complex
g eigenvector (4]

(8] = real symmetric matrix of order 2m, defined by Eq. (3.18)
[c] = damping matrix

Cy = damping parametér

C. ,C = total translational and rotational damping value for the ith

Yi"%  floor

o
=
1}

center of mass

(]
pr )
It

center of resistance or stiffness

C],CZ,D],DZ,EZ,E3,F = constant of partial fraction defined by Eq. (I1I.18)

[D] = real symmetric matrix of order 2m defined by Eq. (3.18)
Ef+] = expected value

e = eccentricity parameter

exi=e1.,eyi = eccentricity in the x-.and y-direction at ith floor

F = Rayleigh's dissipation function

[Fj] = complex symmetric matrix defined by Eq. (3.20)

fj = jth mode shape of a response quantity

I = mass moment of inertia of the ith floor

I](w),lz(m) = frequency integral function defined by Egs. (I1I.2), (I1.5)

[K],[K] = stiffness and mean stiffness matrix

X1



K = stiffness parameter

Yy

Kxi,Kyi = total translational stiffness in the x- and y-direction

K = total rotational stiffness in 6-direction

kx..’ky.. = x~- and x—direc?ion translational stiffness of the jth
ij ‘i3 column in the ith story :

L = the Lagrangian

Li = column -Tength or story height

[M],[M] = mass and mean mass matrix

MX..,My__ = bending mo@ent in the x- and y-direction of the jth
ij “1j column at ith story

m = mass parameter

m. - =mass of the ith floor

N = number of stories

n = number of éo]dmns in floor lay-out (Fig. 2.2)

P,Q,R,S = constants of partial fractions in Eq. (3.1)
P',Q',R',S' = constants of partial fractions in Eg. (3.16)

pj : = jth comp1ex'eigenva1ue

% = mean square value of a response quantity f, defined by Eq.

(3.1} for proportional damped case and by Eq. (3.16) for
nonproportional one

R

rs = fadius of gyration of the ith floor

PP random mass and stiffness values

{r} = influence coefficient vector

s,t,u,v = elements of constant matrix [c] defined in Appendix II
T = Kinetic Energy

{u} = relative displacement vector

' = Potential Energy

Var[-] = variance

xii



w],wz,ws,

J,y

Wy

= elements of vector {W} defined by Egs. (I1.17)
a design variabie

mean value of design variable X

relative translational displacement

base acceleration time history

x- and y-coordinate of the jth column measured from center
of mass in the ith floor

constant damping coefficient defined in Eg. (2.5)
damping ratio parameter = Cy/me

Jjth modal damping ratio

Jjth participation factor

nondimensional eccentricity ratio = ei/r

real and imaginery part of eigenvalue pj (pj = - 5R+icI)

translational stiffness ratio = Ky_/Ky
T

rotational displacement in o-direction

-rotational stiffness ratio = K /rZK

05 y

real eigenvalue

translational damping ratio = Cy /Cy
i

mass ratio = mi/m

standard deviation of variable X

jth eigenvector

lower half part of complex eigenvector

rotational damping ratio = C /rZC

7Y
frequency parameter = VKy/m

jth modal frequency

partial derivative with respect to a design parameter x

xiii






CHAPTER 1

INTRODUCTION

1.1 General Remarks and Literature Review

Dynamic response of a structural system depends upon its mass,
stiffness and damping characteristics. These quantities can rarely be
estimated precisely as they depend upon uncertain parameters such as
member size, material properties like density and stiffness, and energy
dissipation characteristics. Thus these quantities should be considered
as random variables in an analytical model of a sfructure and the
calculated dynamic response should reflect and include the uncertainties
associated with these parameters.

| Often in a dynamic analysis of a structure for earthquake induced
ground motions, the effects of the variabilities of these parameters on
the design response are inciuded by parametric variation studies in
which some extreme values of these parameters are used to obtain a bound
on the calculated response. This approach may be adequate but does not
combine the uncertainties in a rational and consistent manner. The
uncerfainties can be combined in a consistent fashion .if these para-
meters are considered as random variables with their variabi]ifies com-
bined probabilistically to ascertain the variability of a response.

Several investigations have been performed in the past.in which the
effects of changes in these parameters on the dynamic characteristics
1ike frequencies and mode shapes have been obtained. Fox and Kapoor
[13] deQe]oped a formuiation to obtain the rates of change of eigen-
values and eigenvectors with respect to a design parameter. Similar

approaches were also used by Collins [9], Collins and Thomson [10],



Hasselman and Hart [17,18], Hadjian [14], Soong [36], Hart [15] and
possibly many others, to ascertain the statistical properties of eigen-
values and eigeﬁvectors for given statistical properties of structural
parameters. However, oh]y a 1imited literature is available on the
incorporation of structural parameter uncertainties in the evaluation of
structural response. Liu, Child and Nowotny [24] used a Monte Carlo
type of approach to incorporate parametric uncertainties in the genera-
tion of floor response spectra.

Recently Singh [32] presented a formulation whereby parameter un-
certainties are transmitted to structural response through the rates of
change of dynamic characteristics. A structural reponse quantity like
bending moment or story shear, etc., can be expressed as a function 6f
dynamic chafacteristic such as natural frequencies, mode shapes, modal
damping, and participation factors and thus its rate of change can be
expressed in terms of the rates of change of these dynamic characteris-
tics. This rate of change of response can, in turn, be used in the
calculation of variance of response quantity by a first order approxima-
tion if the parameter uncertainties are known. Higher order approxima-
tions can also be used to improve results if it is desired; however, al-
gebraic manipulations beéome considerably more involved. In this inves-
tigation the first order approximation approach has been used to ascer-
tain the variances of various response quantities for given variances of
the mass and stiffness properties of the structure.

For a structure subjected to earthquake induced ground motions,
usually a symmetric struétura] layout is preferred to avoid torsional

response (In large size structures the torsional response may still be



induced by travelling seismic waves. See Newmark [26]. This, however,
is not the subject of this study). Inspite of best efforts to achieve a
symmetric layout, however, some inadvertant eccentricity between the
mass and stiffness center may still be present because of uncertainty in
the distribution of structural mass and stiffness across the structure.
In some cases eccentricities could be due to architectural features; or
may just be unavoidable. Also the magnitude of such eccentricities will
not be precisely known, as these are random variables. It is therefore
of interest to study the effect of eccentricity on dynamic respense and
include its randomness in the evaluation of seismic response.

Structural systems with eccentricity between mass and stiffness
centers possess some special characteristics. Especially if the eccen-
tricites are small, the systems will usually have closely spaced (nearly
equal) frequencies in certain circumstances. The modes with nearly
equal frequencies, often referred to as "closely spaced moded", gener-
ally interact strongly. As a result such systems usually require
speéiaT analysis procedures to calculate their dynamic response accur-
ately. The eccentric structural systems {herein also referred to as
torsional systems), therefore, have been of considerable research in-
terest to many investigators. Rosenblueth and Elorduy [28], Amin and
Gungor [2], Singh et al [29], Singh and Chu [33], Der Kieureghian [11]
have considered systems with closely spaced frequencies and suggested
the use of special procedures to obtain accurate responses. Kan and
Chopra [21,22,23] haye studied eccentric multistory structural systems
in detail to suggest some simplified analysis procedures. Tso and
Dempsey [37] have also examined a single story two-degree-of-freedom
system in order to study the effect of eccentricity on the response and

to review various code provisions.



Structural systems made with different materials in different parts
would, generally, have nonproportional damping matrices [34]. Other
energy dissipation mechanisms could also lead to nonhroportiona] damping
matrices in the analytical models. Such matrices cannot be diagonalized
by undamped normal modes. That is, if a nonproportional matrix [C] is
pre- and post-multiplied by undamped modal matrix [¢], the resultant
matrix, [@]T[C][¢], will have some off-diagonal terms. These off-dia-
gonal terms represent a modal coupling through damping terms. In eccen-
tric structural systems, where prequencies are closely spaced, and thus
the interaction effects are large, these off diagonal terms may attain a
special significance. It is suspected that in such systems (with eccen-
'tricities), if these off-diagonal damping coupling terms are neglected
(that is, if a nonproporfionai damping matrix is assumed to be a propor-
tional one) the calculated dynamic response may have some significant
errors. It is, thereforg, of interest here to study eccentric systems
with nonproportional damping characteristics.

The analysis of nonproportionally damped systems has aTso.been of
considerable interest to many researchers. Bailak [4], Clough and
Mojtahedi [6]; Hasselman [16], Itoh [20], Johnson and McCaffery [20],
Rosset, Whittman and Dobhy [287, Singh [30], Warbuton and Soni [38],
etc., have studied various aspects of this problem. Several methods of
analysis have also been proposed for such systems., In this investiga-
tion nonproportional dynamic systems with varying eccentricities have
been analyzed by the approach proposed by Singh [30]. For a given
nonproportional damping matrix, this approach provides a mathematically

accurate response for structures excited by ground motions defined in



stochastic terms or by response spectra curves. For comparison pur-
poses, here the response results have been obtained with and without the
assumption of proportionality.

1.2 Scope of Study

In this investigation the effects of uncertainties of mass and
stiffness on the response of a structural system have been examined. For
given coefficients of variation of mass and stiffness, the coefficient
of variation of design response has been obtained. Also structures with
and without torsional oscillations have been examined. The effects of
varying the eccentricity between the mass and stiffness centers on the
dynamic characteristics and response of a multistory building has been
examined. Since eccentric systems are expected to be more susceptible
to nonproportional damping effects, the responses of such systems with
nonproportioné] damping matrix have been studied in details, and the
effect of the commenly made assumption of proportionality for nonpro-
portionally damped systems on the calculation of dynamic response has
been evaluated. Only linearly behaving structures have been considered
in this investigation.

1.3 Organization

Chapter 2 contains the derivation of the equations of motion for a
multistory structural system. The mass, damping and stiffness matrix
for such a system are given in Appendix I. In Chapter 3 the procedures
for the evaluation of seismic response, and also its rate of chaﬁge, for
proportionally and nonproportionally damped structures for stochas-
tically defined ground motion are presented. Further details of the

rates of change of various parameters and frequency integrals are given



in Appendix II. The numerical results for a 5-story torsional building
obtained by the procedures described in Chapter 3 are presented in

Chapter 4. Summary and conclusions are provided in Chapter 5.



CHAPTER TWO
EQUATIONS OF MOTION OF A STRUCTURAL SYSTEM

2.1 Introduction

For dynamic analysis of structural systems subjected to earthquake
induced ground motions, the equations of motion can be written in the
following form:

[M]ca) + L3 + [KItu) = ~[M36r (1) (2.1)
in which fM], [C], [K], respectively, are the mass, damping and stiff-
ness matrices of the structure; {u} is the relative dispiacement vector;
Vg(t)is the base acceleration time history; {r} is the displacement
influence coefficient vector [8] and a dot over a vector represents its
time derivative.

Here these matrices are defined for various building systems in
which masses are assumed to be concentrated at floor levels and the
stiffness is provided by elements such as columns or shear walls con-
necting or supporting various floors. The floor systems are assumed
rigid and thus undeformable. In large floors shear deformation may not
be entirely insignificant, however, such floor deformations have not
been consideréd here.

In a rigid-floor multistory structure, the floor mass when excited
by a horizontal ground motion will, in general, have three degrees of
freedom: motion in.two horizontal directions plus rotation about the
mass center of the floor. However, if the mass and resistance (stiff-
ness) centers are at the same location (that is, zero eccentricity), the

rotational component of the motion may be absent if the base excitation



is applied unffofm]y. This will happen in a symmetrically laid-out
building in which the horﬁzonta1 and rotational motions will be un-
coupled and their dynamic behavior can be studied just by separate
excitations along the twd horizontal directions. Such symmetrical
systems represent a special case of more general eccentric systems
studied here.

0f special interest here are the systems in which mass and resis-
tance centers do not coincide and are at a distance e, commonly re-
ferred to as eccentricity. In such cases the translational motion in
two horizontal directions will be coupled with the rotational motion.
(Because of the presence of torsional motion here, these systems will
often be referred to as torsional systems.) Here the dynamic behavior
of such systems has_been.studied in somewhat greater detail. The
effects of variability oF eccentricity and its influence on the assump-
tion of proportionality for a nonproportional damping matrix have been
studied in detail. In the following section, the development and non-
dimensionalization of the equations of motion of a torsional system are
presented.

2.2 Eguations of Motion of a Torsional System

In general, each floor of a torsional system representing a multi-
story building, would have 3 degrees-of-freedom. Each floor could
possibly have its own arrangement of connecting elements Tike columns
and shear walls, and this may give rjse to different eccentricities for
each floor. However, to Timit the number of problem parameters in this

study, structures with the following special characteristics are



examined:

1. Each floor mass has only two degrees of freedom: translation
in one of the two horizontal directions and rotation about a vertical
axis. This assumes that the resistance center 1ies on one of the axes
of symmetry passing through the center of mass, and the ground motion is
applied in a direction perpendicular to the axis of symmetry. Thus as
shown in Fig. 2.1, the eccentricity in the x-direction alone has been
considered and the excitation is applied in the y-direction,

2. For analytical ease of parameter manipulation and modeling pur-
poses, but without loss of generality, the stiffness in the system is
assumed to have been provided by column elements which connect various
floors. The relative locations of the columns with respect to the
center of mass determine the torsional rigidity of the system.

Assuming that fhe coordinate origin is located at the center of
mass, the total translational and rotational stiffnesses provided by the

resisting elements connecting the (i-1)th and ith floors can be written

as [21]:
n
KXi = 321 kxij (2.2a)
n
Kyi = 321 kyij | (2.2b)
n n 2 '
K . JZ] kxijyu. + jZ1 kyijxij (2.2c)

in which kx and k , respectively, are the x- and y-direction trans-
ij ij ‘

Tational stiffnesses of the jth column in the ith story; x.. and yij’

1J
respectively, are the x- and y-coordinates of the jth column measured



from the center of mass on the ith floor; KX and Ky , respectively, are
i i

total translational stiffnesses in the x- and y-directions; Ke. is the
i

rotational stiffness in the e-direction; and n is the total number of
columns in the ith story.

These total translational stiffnesses can be assumed to be concen-
trated at the center of resistance. The coordinates of the center of
resistance with respect to the mass center define the eccentricities in

the system as follows [21]:

n
1
e = Z k X (2'36)
0 Kyogm Vi
LI (2.3b)
e, = o Vi .3
Yo K g Mg

For the systems considered here, ey = 0; that is, they are symmetrical
' i
about their x-axes. Henceforth the eccentricity e, will be denoted by
i
eic

3. It is assumed that the centers of mass for all floors lie on a
common vertical axis. The centers of resistance for all floors are
also assumed to lie on another vertical axis which is at a distance
e, from the axis of the centers of mass.

4. To account for energy dissipation by damping in each deforming
element, viscous (relative velocity proportional) dashpots are assumed
to exist in parallel with each stiffness element. That is, it is as-
sumed that corresponding to each stiffness element, there is a dashpot.
If Cxij and Cyij represent the damping constants corresponding to k y
and k s then total trqnslationa} and rotational damping constants for
the ithstory can be written as:

X

10



n

CX"I - JZ] Cx'ij (2.4a)
n

Vi T g (2.40)
n ) n

Cei ) JZ'I cxijyij ' JZ] C.ijxij (2.4c)

These damping constants will provide a stiffness proportional

damping matrix if Cy and Cy are assumed directly proportional to
ij ij
kx.- and gy.. with the same constant of proportionality. However, if
ij ij
proportionality constants are not equai, the combined damping matrix

will be nonproportional. Here it is assumed that

k (2.5)

c =gk ,c¢ =
Y yij

S F TGRS SRR

Where, if the proportionality constants oy and Ay are different, the

damping matrix will be nonproportional; otherwise it will be propor-

¥

tional. By adjusting the values of oy and oy different degrees of
nonproportionality can be easily achieved.

5. The floor plan for each story is assumed to be the same and is
shown in Figure 2.2. The radius of gyration, r, for each floor is also
assumed to be the same.

For a structural system described above, the equations of motion
can be derived using either Newton's second iaw, or the method of Vir-
tual Work or Lagrange's equations. Here the Lagrange's equation ap-
proach has been used. The Potential and Kinetic energies of the ith

floor mass of the system are as follows:

11



Kinetic Energy, T:
T.=—]2—m. (\".+"()2

1
i gt tal

Vi .
;% i=1,2,...N (2.6)

where m; = mass of the ith floor; Yi = relative transiational displace-
ment in the y-direction; 61 = rotational displacement in the 6-direc-
tion; ?g = ground excitation velocity in the y-direction; Ii = mass
moment of inertia with respect to the center of mass (miri); and N =

totai numbey of stories;

Potential Energy, V:

1 | 2
Vi= g Ky DO-Ys q) + eg(0s-0; q)]

i ¥
L (YY) e (8, ,4-0,)1
2 Vil it1 1M+ TS
1 2 1 2
+ 5 K, (8.-8, ;)" + 5K (6,,~8:)
Z e_i i 7i-1 2 ei+] i+t i
i=1,2,...N (2.7)

_1 . s 2
Feg by LYia) v e85, 1
FA (VoY) e (8. -87°
7 Cy. i+ i+1 8541784
i+]
1 - » 2 ] 4 p-{ 2
Foc. (BB, N+ acC. (B...-B.)

i=1,2,...N (2.8)
In terms of the Lagrangian, L,
L= T-V (2.9)

the equations of motion can be obtained from the following equation [25]

@y L L, (2.10)
Gy 84y 99

12



where qi‘s are generalized displacements which in our notations represent
the displacement, Yi’ and rotation, B Using Egs. (2.2)-(2.9), the
equations of motion for the ith floor in terms of relative displacement

Yi and rotation ei can be written as follows:

miyi + ('Cy.)Yi-1 + (Cy_+cy )Y, + (-C 3.

i i Yis' T Yigg " TH
o+ (-KyT)Yi_] + (Kyi+Kyi+1)Yi + ('Kyi+])Yi+1
el 08y gt legly tegaly 8+ (el )8y
i i it i+]
Py 08 Ky ek I8t ey D
- 'mi¥g (2.1a)
mirféi + ('eicyi)?i-i + (eicyi + ei+Tcyi+])?i + (-ei+]Cyf+])?i+]
Folegky Mo * ey teggky Y (egky i
+ ("Cei)é1~1 * (cei + cem)é1 * (-C8i+1)éi+1
+ ('Kei)ei—l + (K61 + K61+1)8i + ('K81+])ei+] = 0. ‘(2.11h)

To study the effects of various system parameters, it is sometimes
convenient to nondimensionalize the equations. For this purpose, a mass
parameter "m" (which could be the mass of a floor), a stiffness para-
meter "Ky” (which could be a story stiffness), a damping parameter "Cy"
(which could be the damping of a story), a frequency parameter w = /K;ﬁﬁ
and a damping ratio parameter g = Cy/Zwm, have been introduced. Also
various terms encountered in the equations are expressed in terms of
translational stiffness ratios ny = Kyi/Ky, rotational stiffhess

. ) 2 . : _
ratio Ky = Kei/r Kyi’ translational damping ratio My = Cyi/Cy, rota-

13



tional damping ratio y, C r C » and mass ratio p; = my/m. The
eccentricity is expressed in nond1;ens1ona7 terms as £y = ei/r.

In terms of these nondimensional parameters, Egs. (2.11) can be now
written in the following form:

R A A U L T LR L )
legugtegquin ) 03] * (ejquig o4 D)
* Yyt Yy - Vi +egng(reg )

# (egnytegniag ) (105) ¥ (cegunigg)(reg, )} = -og¥ (2.12a)

D.(J)z(réi) + ZSw{("eiui)?_i_ + (s Hy +g )\7.l + (-e

F+1Hi47 i+1“1+1)vi+1

( 1!’ 1 )(l"@_' ]) (\U.lU.l w]+] 1+1)(r6 ) ( WI_}_'] 1+])(r61+1)}

2, | -
WPl + Cqnerngn)Yy * (epnga o
+ (-x, N4 )(re1 ]) + (K Ny 1+]ﬂ1+])(r8 J#(-x 1+]ﬂi+])(r91+])}

=0. (2.12b)
Similar equations are obtained for each fleor mass. When combined,
these can be written in.matrix form as Eq. (2.1), with matrices [M],
[C], [K] and vector {u}:defined in Appendix I. These matrices can also
be written in partitioned form, where each submatrix is analogous to the
corresponding matrix for a one story, two-degree-of-freedom torsional
structure.

2.3 Dynamic Chatacteristics of a Single-Story System

It has been pointed out by various investigators [2,27,29] that

closeness in frequency is controlled by the eccentricity ratio, e, and

14



the rotational stiffness parameter, x. In the following, this

has been verified by the study of a single story, two-degree-of-freedom
system (see Fig. 2.3) for which the eigenvalues can be obtained in
closed form in terms of these parameter values.

For a single-story system, the equation of motion can be written as

€ } 2 1.0 ¢ y
+ ZBwp . twn
YHre € i< ro

= - {r}y - | (2.13)
o 1.

follows:

The eigenvalues for an undamped system can be obtained from the solution

of the following characteristic equation:

wznnk wZnE
= 0. (2.14)
2 2
B Nne W nK=A
which gives two eignevalues as follows:
2 2
N = 2'0 (1+K)i‘/(]2'*:’8) -4 (k-¢ l (2.]5)

For these two eigenvalues to be equal to each other, the discriminant
should be zero. That is,

(1+6)2 - ¢ + 4 = 0, (2.16)

or
(1-k)% = -4¢° (2.17)
which requires that
=& 2
€= 0. (2.18a)

and

15



= el = 1.0 (2.18b)

Thus, for small values oflnondimensiona1 eccentricity, =, ahd stiffness
ratio, «, close to 1.0, the discriminant will be close to zero and the
two frequencies ~translational and torsional- of the system will be
close to each other. It is in these situations that these modes inter-
act strongly with each other and affect the choice of the methodologies
to be used for accurate evaluation of structural response.

Similar behavior has also been observed in multistory buildings.
That is, if the eccentricity ratios, €55 in various floors are small and
torsional stiffness ratios, k> are near a value of 1.0, the structurai
frequencies in translation and torsion will be close to each other.
There could possibly be gther structural systems where frequencies may
also be closely spaced. These are the very same systems in which the
simpie-to-use method of Square-Root-of-the-Sum-of-the-Squares (SRSS)
procedure gives erroneous results [29]. A correct evaluation of re-
sponse in such systems requires a proper consideration of interaction of
modes with close frequencies [27,29,33].

The mu]ti-degree—of;freedom systems examined in this investigation
possess these properties. The closeness in the frequencies has been

achieved by controlling the eccentricity ratio, Eys

and torsional
stiffness ratio, «., as mentioned above. Various column floor plans, as
shown in Fig. 2.4, have been examined. The torsional stiffness ratios
of these systems are listed in Table 2.1, The floor plans, Figs. 2.4 in
which columns are clustefed and uniformly distributed around the geo-

metric center, provided torsional stiffness ratio values close to 1.0.

16



The torsional systems considered here, therefore, are representative

of such building floor plan lay-outs, Figs. Z2.4.
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CHAPTER 3
SEISMIC RESPONSE ANALYSIS

3.1 Introduction

To study the dynamié behavior of structures under earthquake
loads here, ground motiohs have been modeled as stationary random
processes which can be characterized by a spectral density function. It
is realized that earthquake induced ground motions are essentially
nonstationary and thus cannot be characterized by spectral density func-
tions. However, earthquake ground motions héve often been modeled by
stationary random process by many investigators in the past [2,11,27,
33], as some conclusions of general validity can still be obtained by a
study of structures excited by stationary excitations.

In this chapter, séismic response evaluation procedures for struc-
tures excited by kandomiy characterized ground motion are preéented. of
special intgrest here is the evaluation of the sensitivity and vari-
ability of response vis-a-vis the changes 1in various structural para-
meters. The necessary formulation for systems with proportional and
nonproportional damping matrices are presented. As the modal analysis
approach is duite often used in seismic analysis and design, especially
if one 1ntends to obtain design response from a response spectfum pre-
scfibed as sejsmic design input, the following formulation is also
deveioped with the normal mode approach.

For structural systems excited by randomly characterized ground mo-
tion, the design response is directly related to the root mean square
‘response, Usually, the root mean square response is amplified by a

factor called the peak factor to obtain the design response. It is,

18



therefore, of interest here to examine the mean square response. The
formulations to obtain the mean square response for proportionally and
nonproportionally damped systems using the modal analysis approach have
been developed elsewhere. In the following section the expressions used
to obtain the mean square response are given. These expressions are
then examined with a view to ascertain the variability of the response
due to the variabilities of structural parameters.

3.2 Structural Systems with Proportional Damping Matrices

If the damping matrix, [C], in Eq. (2.1) is proportional to either
mass or stiffness or a combination of them (see Caughey [6]), then the
coupled equations of motion, Eq. (2.1), can be easily decoupled using
the undamped normal modes. In terms of these normal modes, the mean

square response can be written as [33]:

m I (w,) m m
2 _ 2.2 “1\%
RC = ) y5f% +2 7 vy Fsf
Fog=r 99 g 3= k=§+1 IRk
[V
i
] 2 1
{ 'w—'q—_ [QL*(mJ) + Pr Iz(wj)] + m—a' [S'I-I(mk)"'RIz(mk)]} (3.1)
J k

in which Ri is the mean square value of a response guantity f, fj is
the jth mode shape of the response quantity, m = the number of degrees
of freedom, v is the Jjth participation factor defined as
{¢j}T[M]{r}/{¢j}T[M]{¢j}, {¢j} is the jth relative displacement mode
shape, 03 is the jth natural frequency, r = mj/wk, and IT(wj) and
IZ(wj) are the frequency integrals defined in Appendix II. These inte-
grals depend on the excitation spectral density function, modal fre-

quency, Wy and modal damping, Bj' For proportional damping matrix [C],

the modal damping ratio is defined as follows:
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.
] f¢j} [C]{¢j}

ej 5 T . (3.2)

J {¢j} [M]{¢j}

The factors of partial fraction, P, Q, R and S, are also defined in
Appendix 11,

Eq. (3.1) defines the Square-Root-of-the-Sum-of-the-Squares (SRSS)
procedure for ca]cu1atioﬁ of mean square and design response. - For
structural systems where some frequencies are close to each other, the'
consideration of the double summation terms in Eq. (3.1) is important to
properly include the modal interaction effect to evaluate response
accurately [27,33].

The variability of response defined by Eq. (3.1) vis-a-vis the
variabilities of mass, stiffness, and eccentricity is now examined, If
it is assumed that the design response is a constant times the mean
square response, then the variability of the design response can be
assessed from the variability of the mean square response. Here, to ob-
tain the variability in the mean square response, which is a function of
various basic parameters:such as mass, stiffness, eccentricity, etc., a
first order perturbation approach is used, Expanding a response quan-
tity,lR, which is a fun¢t10n of variables X1s Xa5 e Xy o in terms of
Taylor series about the mean value of the variables, and retaining only

first order terms, we obtain [3,5]

E[R(x1,x2,...,xn)] = R(§1,§2,...,§n) (3.3)
n

Var[R(x xge a1 = T (BB%2 (3.4)
1= 1 1

in which E[-] denotes the expected value and Var[+] denotes the var-
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iance, %%T is the partial derivative with respect to variable X5 ob-
i

tained at the mean values Ri's and Oy 's are the standard deviations of
1
the variables, xi's.

This approach requires the evaluation of the rate of change of the

response quantity, gg——. Here R is expressed in terms of dynamic

_ i .
characteristics of the structure, Eq. (3.1}, which in turn are functions
of basic variables X Thus evaluation of %%7-w111 require evaluation

i
of the rates of change of dynamic characteristics such as frequencies,

eigenvectors, participation factors, etc., with respect to the basic

variable. For example, for Eq. (3.1)

2
R 3(R%)
axf ) 2; axf (3-5)
i f i
and
3(R%) m 5f I, (w:)
£ 1957 avd _dy 4 22 2 (A
ax. jzl {2ij3 A (Bx fi R )+ YJfJ oX ( W
3 J
moom of of 3 s
k A _k .
" JZ] k=§+][{YJYk(Bx fio "o TG vt w vy fd

(g [0y (wg) + PrIy0)] + 7 [S (o) + RIylu)D)

I, (w.) 1, (w,) I (w.)
3Q 1737 3 130 23 ¢ 230
SR EA LRI iy el B ol By s IRl Ay
. [ ) »
J J J
. I.{w,)
2 P ary 2 wg) 3s 1'%
T g v 2Pr ) St g
LUJ( Li.)k
1. (w,) I{w,) I, lwy )
R e Ll ey ot (3.6)
3X u)k u)k wk
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( ) Iy (w,)
where the derivatives of frequency integral = a [ ] ~ 4, g;—[—g—ﬁi—ﬂ
Wes
. . . aQ 3R 3s
and the derivatives of partial fraction factors ax’ BT 5§-and T

are defined in Appendix II.

3.2.1 Rates of Change of Dynamic Characteristics for Proportionally
Damped Case

To obtain the rates of change of Wy {¢j}, etc., required in equa-

tion (3.6), the following equations, which are derived based on the

approach presented by Fox and Kapoor [13], have been used:

)
O {¢ } ([ ] Aj[gg-){¢j}

. (3.7)
X T ’
{¢j} [MJ{¢j}
where Aj is the jth eigenvalue = w?. The rate of change of wj is
obtained from:
oul -« X :
__;‘ | _A;L
fi; ~ . (3.8)

To define the rate of change of eigenvectors, the expansion theorem has

been used as:

ad)j m :
Gad = kAt | (3.9)
in which ajg are defined as:
- 1 AN, ‘ o
‘gx.«xg {9y} ([ } Ay [ g;l'[M]){¢j} if §#2
TRt (3.10)
g{d)}[]{cb} ifj=a

The rate of change of a participation factor can be expressed in terms

of the rates of {¢j} and [M], and thus the expressions are straighfor-

ward. For the modal damping ratio defined by Eq. (3.2), the evaluation of
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its rate of change is also straightforward.

3.2.72 Rates of Change with Respect to Mass, Stiffness and Eccentricity

Variables.

As mentioned beforg the-design variables of mass, stiffness and
eccentricity, e, have been considered in this study. The variability in
the mass vafiable is characterized by a random variable " which has a
mean value of 1.0 and standard deviation of oy a3 follows:

M = r [F] (3.11)
where [M] is the random mass matrix with a mean of [M]. This form of
variability assumes that all masses in the structure are prefectly
correlated. A similar form is assumed to characterize the variability
in stiffness:

k1 = r [K] (3.12)
where y is also a random variable with mean value of 1.0 and.standard
deviation o . More complicated characterization of mass and stiffness
variabilities (Such as different mass and stiffness elements being
characterized by different variables) are also possible, but have not
been considered here. Various rates of change defined by Egs. (3.7-3.10)

can now be specialized for these basic variables as follows:

Rates of change with respect to rns with [%g— = [M], [%é—] = 0.,
m m
A 3¢
~d - 1
— = . 3 q o= = 5 {¢:}
arm j arm 2 7]
(3.13)
. 38
?h:lv. . {.,_S_‘l}:_lﬁ‘
arm 2 '3 ° arm 2 "3
Rates of change with respect to i with [%%—J = 0., [%é~] = [K],
Tk k
a4 30,
=L=a 5 o=
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(3.14)

fj;j_:o . {ﬁ}.z_lB'
oy ’ ? ory 2 i

Rates of change with respect to eccentricity, e: with [gg] = 0.,

5T = {¢j}T[%§—]{¢J—} (3.15a)

{-2?-} y ,E] 13‘]:7\; {%}T([%i;- - ;}1 [M]){cpj}l{cbg} (3.15b)
LN

ngi - {ggi}T[M]({r} - 2v;19;3) (3.15¢)

EZJ = 235- (2{223} TLCTte 53 + L33 [5E10850) - 32_;2; 3 (3.15d)

3.3 Structural Systems with Nonproportional Damping Matrices

As discussed in Chapter 2, in this investigation a nonproportional
damping matrix is obtained by using values of ;iAother than 1.0. For
such a damping matrix, undamped normal modes cannot be used to decouple
the equations of motion. However, as shown by Singh [30], it is still
possible to obtain the response by an SRSS procedure, simflar to Eq.
(3.1), if 2m-dimens{ona1 compTex eigenvalues [25] are used. Herein,
this approach has been referred to as Zm-dimensfonql state vector. A
special advantage of this approach is that commonly used response spec-
tra can be used as seismic input for the calculation of design response.
The equation defining the mean square response by this approach is as

follows [30]:

RS = % 4TA I (w;) + a1 (m-)]/wg
fj._.-1 JT1TY NS R

(3.16)
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2 5 ) g Lo )/P8 + P L (0:) 1/
+ rc o+ , -
551 k=%+] Lo 2log)1/o;

+ [ (u) + R‘Iz(mk)]/wi}

- where Aj, aj, P'y Q', R'" and S' are defined in Appendix II. The fre-

guency integral I](m ) and 12(w ) are the same as in Eq. (3.1) and are

J J
also defined in Appendix II.

To obtain the rate of change of R? with respect to a design var-
iable, the rates of change of complex eigenvalues and complex eigenvec-
tors (which define Aj’ aj, P', Q', R', $') are required. The procedure
to obtain these rates is given in the following section.

3.3.1 Rates of Change of Dynamic Characteristics for Nonproportionally
Damped Case:

The equations of motion, Eq. (2.1), for nonproportional damping

matrix [C] can be recast in the following form [25]:
[A1(3) + [Bliz} = [D]{}ai (3.17)

in which the state vector, {z}, and matrices [A], [B] and [D] are de-

fined as follows:

{z}

. 01" m
S, gy - [0
(2m,1) (2m.1) (2m,2m) M] " [C]

-[M] § [0.] [0.1 § [0.]
[B] = -4-—-| ----- s [0 = | ----- g (3.18)
(em2m) | 0.1 [K] (zm,2m) | 0] p D]
(2m 2m) m,2m)
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The eigenvalue problem for Eq. (3.17) can be written as:

[Fj] {¢j} = {0.} j=1,2m (3.19)
(2m,2m) (2m,1) (Zm,T)

in which

[F;1 = py[Al + [B] (3.20)
and {¢j} is the jth Zm—djmensional complex eigenvector and pj is the jth
complex eigenvalue. Premultiplying Eq. (3.19) by {¢j}T and taking the de-

rivative with respect to a design variable x, we obtain:

36 ; :
Y [F;Jtegh + (o) [ 0953 + 10531 TF; 15l = 0, (3.21)

Since [Fj] is a symmetric matrix, the first and the last terms are the
same and are equal to zero in view of Egq. (3.19). Thus Eq. (3.21)
becomes

BF
{453 [ J]{¢ } = 0. (3.22)

Substituting for the derivative of [F.] in terms of the derivative of

[A] and [B], we obtain:

w8 (pJ[‘”’AJ (21 t0,) (3.23)

ox
_ {¢j} EA]{¢j}

'To obtain the rate of an eigenvector, the expansion theorem is used
as:

(=3 = T a4} (3.24)

a .
[F 10 = - —LHe. 1. (3.25)
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3¢
Substituting for S5 31 from Eq. (3.24)

2m
[Fy] 221 3 e} = [ ]{¢ } (3.26)
Premultiplying Eq._(3.26) by {¢k}T,
T aFj
RZ an{¢k} [F J{¢ } o= {¢k} [é;fﬂ{¢j} (3.27)
Using orthogonality condition
T _ . ' .
{¢k} [Fj]{¢£} =0, ifk#¢ (3.28)
Eq. (3.27) reduces to 3, as follows:
aF
Lol [ ]{¢ }
830 ° | (3.29)
{¢Q} [Fj]{¢l}
The numerator of Eg. (3.29) can be written as:
oF . p
(o, 3]{¢ b= L) [A]{¢ )
*lo,) (p 3 J I3 ]{ (3.30)

The first term on the right hand side of Eq. (3.30) is zero because of
the orthogonality condition. The denominator of Eq. (3.29) can also be

written in terms of the complex eigenvalues as follows:

Tre = A+ B 3.31)
in which
* T x0T
AL = {0, [A1{s,) and By = 4,1 [B](4,) C(3.32)

*
If the eigenvectors are normalized with respect to [A], that is A,

*
= 1.0, then from equation {3.31), B, = -P,- Substituting these in
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equation (3.31) we obtain:

{¢ } [F ]{¢ } P; P, - (3.33)
Using Egs. (3.30) and (3.33), a5y is defined as follows:
ag, = -5 00 s R+ BNy ir g7 (3.34)
J& pjpje,
To definé'ajz for j=i, we use the eigenvector normalization equation as:
{¢j}T[A]{¢j} = 1.0 (3.35)

Differentiating with respect to x, we obtain:

3} [AJto3 + o5} [ ]{¢ } = 0. (3.36)

Using Eq. (3.24),
2m
2 1 ay,le,} [A]{¢ b+ (oy) [ ]{¢ = 0. (3.37)
2=1
Using orthogonality and normalization, Eq. (3.35) for eigenvectors, we

obtain:

- _ |

With ajﬁ'defined by £gs. (3.34) and (3.38), the rate of chango of an
eigenvector is obtained from Eq. (3.24).

Egs. (3.23), (3.24), (3.34) and (3.38) giving the rates of change
of pj and complex eigenvectors are defined in terms of matrices and
vectors in 2m-dimensional space. However, realizing that the upper and

Tower parts of an eigenvector are simply related as [25],

| ‘ pj{¢j}L]
{¢j} = 'I ------- (3.39)
(2m,1)
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the equation defining the rates can be written in terms of the lower
eigenvector {q;J.}L alone, as follows:

Rate of Eigenvalue:

B O P S aCq , K
Rate of Eigenvector:
3¢ 2m
=
{ax 2 ajg{¢£} (3.41)
2=1
where
- 5 051 (20,11 + BBE)e)) if § -
a;, = (3.42)
: (-l—*7-{¢ e psL3 2y 12K (4.0 5 7 0
DQ-Pj 4 Jhax X ax J

The {¢j} in Egs. (3.40)-(3.42) now represent only the lower part of the
Jjth eigenvector.

The derivatives of quantities such as Aj’ ajy P', Q', R' and S' are
in turn defined in terms of the rate of pj and {¢j} and are given in
Appendix I1.

In Eq. (3.16), the frequency integrals are defined in terms of the
frequency wy and modal damping ratio Bj’ which in turn are related to

the eigenvalue p; as follows [30]:

Je2+cs (3.43)

Wy RYET

4
B. R

J tuj

(3.44)

H

where ’R and 5y are the real and imaginary part of the eigenvalue P

defined as follows:

P

§ =gt (3.45)
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The rates of change of u& and Bj can now be defined in terms of rates of

change of real and imaginary parts of pj, obtained by Eg. (3.23), as

follows:
O - ar A
. R T
Y o (CR ax T x ) (3.46)
BBj ) BQR aw

(3.47)

3.3.2 Rates of Change with Respect to Mass, Stiffness and Eccentricity
Variables

The rates of change of pj and {¢j} can now be specialized for the
basic variables Yoo Tk and e as follows:

Rates of change with respect to r :

m
op.
A R4 T
T py (o1 [MIte,) | (3.48a)
39
} = - pyl{ey! [ﬂ]{¢ Doyl
2m
12 T
+ RZ} Tﬁzjﬁgj'pj({¢£} [M]{¢j}){¢g} (3.48b)
273

Rates of change with respect to e

D
AN Tre
ark {¢j} [K]{¢j} (3.49a)
3% .
Jy - T
{BTm} Z TE——E-T'({¢ I [K]{¢ }){¢ } (3.49b)

R#J
Rates of change with respect to e:

ap

— = -
e {¢ ! (

P51 + [3RD)4 ) ‘ (3.50a)
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89 .

(e = - 3 (1o} [5E006, 1) (o)
K ' »
E W—y{ab 11 (p; [ ] (5l ey (3.50b)
QfJ

3.4 Rate of Change of a Response Quantity Mode Shape

To assess variability of Ri from Egs. (3.1) and (3.16), we need the
rate of a response quantity mode shape. This response quantity
could be story shear, story torsion, bending moment in a column, etc.
The mode shapes of tﬁese quantities are Tinearly related to the defor-
mation mode shape {¢j} as follows:

if51 = [T]wj} (3.51)

in which [T] is a transformation matrix, which for force response gquan-
tities will involve the stiffness parameter of the system. Using Eg.
(3.51), the rate of f.'can be written as:

af. : '
[ ]w } o+ [T]{——J-} - (3.52)

31



CHAPTER 4
NUMERICAL RESULTS

4.1 General

In this chapter, various numerical results obtained for a five
story, ]0~degrees»of—freedom torsional building system shown in Fig. 2.1
are presented. Response values for maximum relative displacement,
maximum rotation, base shear, base torsional moment and bending moments
in the two corner columns of the first story are obtained. Systems wfth
parameter %-varying between 0.001 to 0.5 have been considered. {The
results for very large %—(>- 3 or more) may not be of much practical
interest. However, they are given here for .comparison purposes.)
Various combinations of damping ratio values used here are: 8 = 0.02,

ax/a = 2.5; 8 = 0.02, ocx/on‘y = 4.0; 8 = 0.02, (xx/(xy = 1.0 and 8 = 0.05,

Y
a.fa. = 0.40. Numerical results are obtained by the compiex mode state

Xy

vector approach, as well as by the normal mode approach. Comparison of
the results obtained by the two approaches shows the sensitivity of the
system response to the assumption of proportionelity. The frequency
parameter, w, characterizes the stiffness of the system and its values
of 1.0, 6.0, 10.0 and 40.0 cycles per second (CPS) have been considered.
This parameter governs ihe Towest frequency of the system. For w = 1.0
and 40.0 CPS., lowest frequencies of (.28 and 11.46 CPS, respectively,
_ were obtained. These fundamental frequencies represent a spectrum of
structures ranging from a flexible tall multi-story building to a more
stiff nuclear power plant.

Also obtained are the rates of change of frequencies, displacement

and rotational responses, base story shear and torsional moment and
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column bending moments with respect to change in mass, stiffness and
eccentricity ratio parameters. These rates show the sensitivity of a
response quantity with respect to the variable,.

Ground motion used in this study has been modeled by a stationary
random process, defined by a spectral density function of the Kanai-
Tajimi form [4] as_fo110ws:
m?+48§w§w2

2)2

3
¢ {w) = 2 S,
g i=1 ! +485w5w

57 (4.1)
11

(05w
The parameters Si’ ws and By of this density function are given in Table
4,1. This density functipn represents a fairly broad-band seismic
input, suitable for design purposes [33].

4.2 Frequency and Response Characteristics of the System

4,2.1 Freguency Characteristics:

Fig. 4.1 shows the variation with % of two 16west frequencies,
which can be identified as translational and rotational frequencies.
The frequencies were obfained, both by the undamped (normal mode) and
" damped (complex mode) eigenvalue analyses. However, the difference in
the values calculated by the two approaches is indiscernible. Thus the
presence of nonproportionality apparently does not affect the va]ues-of
frequencies.,  For small values of %; the two frequencies are close to
each other, as has been mentioned by several investigators in the past
[2,29]. This indicates a strong coupling between the translational and .
torsional mode. However, as %-increases, the separation between these
two frequencies increases with decreasing modal interaction effect. The
rates of change with respect to mass and stiffness parameters and
eccentricity, e, for these two frequencies are shown in Figs. 4.2 and

4.3.
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4.2.2 Characteristics of Relative Displacement and Rotation'Reﬁponses:

Fig. 4.4 shows the Qariations of the root mean square (RMS) values
of the maximum relative displacement (in ft.) and rotational displace-
ment (re, in ft. units) of the system: the values for the top floor
represent the maximum values. The relative displacement values are
first seen to decrease with an increasing value of %—and then start to
increase, whereas, the floor rotation, as would be expected, increases
with increasing vaiue of %u

Fig. 4.5 shows these values obtained by the two approaches: Normal
and compiex mode approaches. The effect of assuming proportionality,
i.eurignoring the nonproporticnality effect introduces sbme error in the
calculation of responses‘For some low values of %; however, it does not
appear to be very large. |

For various sets of damping ratios used, Figs. 4.6-4.8 show the
variation with %-of the rates of change of the relative displacement and
rotational responses with respect to the mass and stiffness parameters
and eccentricity ratio %3

4.2.3 Characterisitcs of Base Shear and Torsional Moment Responses:

The base shear and torsional moment are obtained by a cummulative
summation of shear forces and torsional moments obtained in various
stories of a multistory system. Such total forces are commonly used in
earthquake design of structures, and their values are obtained on the
basis of building code specification. Code provisions usually consider
inelastic behavior of structures. Here, however, the forces have been
obtained only for elastically behaving torsional systems, mainly with
the purpose of studying their sensitivity to the change in various

structural parameters.
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Figs. 4.9 and 4,10 show the variations of normalized base shear and
torsional moment RMS values with gAfor various combinations of damping
ratios. Normalization is done with respect to the weight parameter mg.
Thus, the plotted values in these figures represent the actual values
of base shear and torsional moment divided by mg. Again to examine the
effects of the assumption of proportionality, both the story shear and
torsional moments have been obtained by the normal and complex mode
approachés. Again some differences are noticed for small value of %u

0f special design significance is the rapid build up of torsional
moment due to introduction of even small values of %—= 0.05. A corre-
sponding reduction in the story shear islalso noted. However, if the
presence of eccentricity is in advertant, no advantage of reduction in
story shear may be taken in a design., On the other hand, the effect of
the increased torsional moment myst be considered to ensure safety of a
structural design.

Figs. 4.11-4.13 show the rates of change of these design quantities
with respect to mass and stiffness parameters and eccentricity ratio %;
Large values of the rates of changes and their variation for small
values of %—may also he noted.

4,2.4 Column Bending Moment Response:

For earthquake design of a structure, one usually obtains the total
story‘shear and torsional moment as per the provisions of an appropriaté
code. These shear and moment values are then distributed among various
columns and other resisting elements to obtain the design bending
moments in them. In a dynamic analysis of an elastic system, however,
the column bending moment can also be obtained directly by using the

bending moment modes in Eg. (3.1). For example, the mode shapes for
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bending moment in the jth column of the ith story can be written in

terms of the relative displacement and rotation mode shapes as follows:

_ |
Moo T 7 R TR R84m0 )] (4.2a)
J 1] | :
_ 1

in which MX and M are the bending moments in the x- and y-divrec-
ij ij
tions, respectively, are the x- and y-relative displacement and 05 is

the rotation of the ith floor; and X;4 and yiy are the coordinates of

J
the column with respect to the mass center.

The variations with %—of the normalized root mean square bending
moment response of columns 1 and 5 of Fig. 2.2 are shown in Figs. 4.14-
4.18 for various damping ratio combinations, Aéain, the normalization
is done with respect to the parameter mg. In the calculation of bending

moments in these columns, the values of X; and yij equal to V1.5 r

J
have been used. This will be the case for the corner columns support-
ing a square floor slab. The lower set of curves is for the bending
moment in the x-direction and the higher set is for the bending moment
in the y-direction. A difference in the variation trend for columns ]
and 5 is noted. Aiso plotted on the same scale in Fig. 4.16 are shown
the bending moment.va1ues in the x- and y-direction for these two
columns. The bending moment in column 1 is seen to increase with %
(almost monotonically, except near the small value of %), whereas in
~column 5, it becomes constant with increasing %; Probably it is due to
the reason that for large §3 it is the difference between Yi and
(8.x../r) that determines the bending moment in column 5 and as seen

it
from Figs. 4.4 and 4.5 it does not increase rapidly with %: For column
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1 it is the sum of Yi and (eixij/r) that determines the bending moment

and as shown from Fig. 4.16, it is seen to increase more rapidly with
g

-

Also shown are the results obtained by the normal and complex mode
approaches to evaluate the effect of nonproportionality. It does not
seem to introduce much error for column 1, but for column 5 some differ-
ences are noted, especiaily in the y-bending moment values for small
values of %x

Figs. 4.19-4.24 show the variations with %-Of rates of change of
the bending moments in column 1 and 5 with respect to mass and stiffness
parameters and eccentricity ratio %Afor various sets of damping values.
Sensitivity of the bending moment response with respect to eccentricity
ratio % at small values of %-is indicated by large change in the rate of
change. The differences in the rate of change characteristics of bend-
ing moments in the two opposite side columns, column 1 and 5, especially
near small values of %—may also be noted.

4.3 Effect of Variation of Frequency Parameter:

The results shown in Figs. 4.1-4.24 were obtained for a frequency
parameter value of 10 cps. which gave a Towest frequency of 2.81 cps.
for the system. To examine what effect the bending stiffness will have
on various response characteristics, similar plots were also obtained
for other values of the frequency parameter. The numerical values of
various results were different, but the variation in the values had a
similar trend and therefore the results for other values of w have not
been shown. However, for comparison selected results of the response
values of base shear, base torsional moment and Y-bending moments in

columns 1 and 5 are plotted in Figs. 4.25-4,28 for different values of
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the freQuehcy parameter. Higher response values are obtained for a
frequency parameter of 10 cps, as the input spectral density function,
Eq. 4.1, has a relatively higher ordinates in the frequency range near
the corresponding fundamental frequency of 2.81 cps. For the other two
frequency parameter. values, the spectral density ordinates are of
relatively smaller magnitude.

4.4 Coefficient of Variation of Root Mean Square Response

Using Egs. (3.3) and (3.4), the coefficient of variation of the
root mean square response of base shear, base torsional moment and bend-
ing moments in co]umné 1 and 5 due to the variabilities in the mass
parameter, stiffness parameter and eccentricity ratio, %a have been
obtained, The coefficients of variation of L and %—have been taken
.as 0.15, Columns 2, 3 énd 4 in Tables 4.2-4.6 show the coefficients of
variation for various responses due to each parameter variation individ-
ually, whereas the combined coefficient of variation is shown in column
5. To obtain the combihed coefficient of variation, the random vari-
ables Ym Tk and %—are assumed to be independent. No specific trend in
the values is apparent; and even if there were a trend that would be
attributable to characteristics of the system. These results, however,
demonstrate the application of the methodology proposed herein for the

calculation of the uncertanity in the response.
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CHAPTER 5
SUMMARY AND CONCLUSIONS

In this study the effects of changes in various structural param-
eters on the response of a structure excited by random ground excitation
has been studied. The random parameters considered are: the structural
mass, stiffness and eccentricity between mass and stiffness centers on a
floor. The variabilities in the mass and stiffness are characterized by
the random variables with the mean values equal to 1.0 and known standard
deviations. This assumes'that all massés and stiffnesses varry in the
same proportion. More involved variations of masses and stiffnesses are
also possible. A uniform multistory building with eccentric mass and
stiffness center has been studied. The rates of change of frequencies
and various response quantities with respect to mass, stiffness and
eccentricity parameters are obtained. These rates of change indicate
the sensitivity of a quantity with respect to a parameter and emphasize
the relative importance of that parameter for that response. These
rates are also used in the calculation of response coefficient of
variation for given coefficient of variation values of the parameters.

Numerical results are obtained for a five-story, 10-degrees-of-
freedom structural system with various damping ratio and frequency
parameter values. Both approaches of response caiculations- a more
accurate complex mode approach and an approximate normal mode approach -
have been used to see what error is introduced if the nonproportidna]ity
effects of a damping matrix are ignored. Based on these results the

following conclusions can be drawn:
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1. For large %-rati@s, the system frequencies are rather well
separated. In such a casé neglecting off-dijagonal terms of the matrix
[@]T[C][¢], which represent the nonproportional damping coupling are not
important and can be neglected. That is, the damping matrix [C] can be
assumed to be proportional and the modal damping ratios can be obtained
by Eq. 3.2. This may, however, not be done if the §~ratio is small and
the torsional stiffness ratio parameter is close to 1.0. In such a case
the structural freguencies are not well separated and modal interaction
is possible and it may affect some structural response. However, not
very severe effects were observed in some response values even at these
low %-va]ues. Torsional moment response values are in large errors;
however, since the torsional moment values are very small at small T,
these Targe errors are of no practical significance. The differences in
the story shear values, Fig. 4.10, and column bending moment values,
Fig. 4.18, calculated by the two approaches, may differ significantly
for small %—ratio (1ess than 0.05). Thus in such a case, if the damping
matrix is nonproportional, it may be necessary to use the nonproportional
damping analysis approach presented in Ref. [30]. However, at this
stage of analysis it appears that for a safe design, the effect of
eccentricity may be neglected to obtain a conservative estimate of the
total base shear.

2. An introduction of eccentricity in a direction introduces tor-
sional moments in the system. This, however, is seen to reduce the
direct story shear. There is a sharp drop in the shear and a fairTy
sudden rise in torsional moment up to %—= 0.05. However, no advantage

in a design can probably be taken of this reduction in a story shear.
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For a safe design a value for $-= 0 should be used in the calculations
for shear. This conclusion, however, needs further verification by a
more complete study in which an eccentricity in the y-direction is also
considered. The effects of inadvertent eccentricity inducing torsional
moment should, however, be considered, even if a structure is intended
to be symmetrical. A consideration of an %—vé]ue of the order of 0.05
for -an inadvertant eccentricity seems very desirable.

3. The response coefficient of variation values caiculated here
reflect the effect of uncertainties in the parameters. No dramatic
values of variabilities are obtained. It probably is due to the fact
that the seismic input defined by the spectral density function of Eq.
(4.1) represents a wide band input. A response spectrum curve for this
input is shown to be a broad band spectrum with a flat top over a fairly
wide frequency range. The variations in the mass and stiffness, though
cause a change in the system frequencies, do not broduce much variations
in the response. This may, however, not be the case if the input is not
broad banded such as the fi]fered motion of a floor. In such cases, a
proper use of the methodo]oéy presented here may be desirable to include

the variabilities of parameters in the calculation of design response.
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Table 2.1 TORSIONAL STIFFNESS RATIOS FOR 9 DIFFERENT COLUMN LAYOUTS

FLOOR
PLAN

IN FIGS. 2.4
Ratio of translational stiffness in x- and y-direc. Kx/Ky
0.50 0.75 1.00 1.25 }1.50 1.75
| 2.25 ‘2.62 3.00 3.38 3.75 4.13
1.65 1.73 1.80 1.88 1.95 2.03
1.40 1.43 1.46 1.49 1.51 1.55
1.29 1.31 1.32 1.34 1.35 1.37
1.65 1.73 1.80 1.88 1.95 2.03
1.75 2.13 2.50 2.88 3.25 3.63
1.50 | 1.65 1.80 1.95 2.10 2.25
0.97 1.18 1.42 1.65 1.88 2.10
1.02 1.22 1.44 1.64 1.84 2.04
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Table 4.1  PARAMETERS QF SPECTRAL DENSITY FUNCTION, ¢g(w), Eq. (4.1)

i Si W, Bi
ftz—sec/r'ad rad/sec.

1 0.0015 3.5 0.3925

2 0.000495 23.5 0.3600

3 | 0.000375 39.0 0.3350
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Table 4.2 Coefficient of Variation of Root Mean Square Response of
Base Shear for g, = 0.05 and By=0.02 '

Coefficient of Variation
n Percent Due To
Eccentricity |
Ratio Mass Stiffness Eccentricity Combined
£ Parameter Parameter Ratio
(0 (2) (3) . 4)

0.001 4.272 3.167 0.031 5.318
0.01 3.510 2.411 2.083 4.740
0.02 2.971 1.855 3.509 4.970
0.03 3.067 1.997 3.210 4.868
0.04 3.304 2.250 2.528 4.730
0.05 3.512 2.473 1.932 4.710
0.06 3.667 2.641 - 1.481 4.755
0.07 3.778 2.766 1.749 4.821
0.08 3.857 - 2.860 0.901 4.886
0.10 3.954 2.991 0.564 4.990
0.15 4.017 3.186 0.133 5.128
0.20 3.942 3.366 0.092 5.184
0.25 3.744 3.622 0.209 5.214
0.30 3.399 4.008 0.175 5.258
0.40 2.293 5.170 ’ 0.827 5.716
0.45 1.762 5.718 1.932 6.287
0.50 1.563 5.922 3.142 6.883
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Table 4.3 Coefficient of Variation of Root Mean Square Response of

Base Torsional Moment for B, = 0.05 and By==0.02

Coefficient of Variation

in Percent Due To

Eccentricity
Ratio Mass Stiffness Eccentricity Combined
€ Parameter Parameter Ratio
(1) (2) (3) (1)

0.001 9.822 8.687 14.949 19.885
0.01 8.436 7.299 11.186 15.798
0.02 6.657 5.513 6.349 10.724
0.03 5.683 4.529 3.694 8.152
0.04 5.187 4.022 2.336 6.967
0.05 4.917 3.740 1.592 6.380
0.06 4.759 3.570 1.152 6.060 -
0.07 4.662 3.459 0.875 5.870
(.08 4.599 3.381 0.692 5.750
0.10 4.529 3.282 0.478 5.613
0.15 4.467 3.172 0.297 5.487
0.20 4.406 3.174 0.266 5.436
0.25 4.237 3.317 0.226 5.386
0.30 3.863 3.677 0.027 5.334
0.40 2.251 5.268 1.907 6.038
0.45 1.206 6.298 4.343 7.744
0.50 0.463 7.020 7.862 10.550
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Table 4.4 Coefficient of Variation of Root Mean Square Response of
= 0.05 and By = 0.02

y-Bending Moment in Column 1 for Bx

Coefficient of Variation

in Percent Due To

Eccentricity
Ratio Mass Stiffness Eccentricity Combined
€ Parameter Parameter Ratio
@D, (2) (3) (4) (5)

0.001 4.630 11.772 0.264 12.653
0.01 5.268 11.174 0.777 12.378
0.02 4.980 11.550 0.173 12.579
0.03 4.789 11.849 0.537 12.791
0.04 4.730 12.020 0.501 12.928
0.05 4.732 12.131 0.315 13.025
0.06 4.761 12.213 0.077 13.109
0.07 4.802 12.282 0.180 13.189
0.08 4.848 12.342 0.445 13.269
0.10 4.944 12.450 0.985 13.431
0.15 5.139 12.642 2.431 13.861
0.20 5.181 12.671 4.101 14.290
0.25 4.948 12.421 6.039 14.671
0.30 4.297 11.573 8.187 14. 954
0.40 1.359 8.789 12.273 15.157
0.45 0.680 6.752 13,801 15.380
0.50 2.429 5.020 15.556 16.525
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Table 4.5 Coefficient of Variation of Root Mean Square Response of

Coefficient of Variation

in Percent Due to

y-Bending Moment in Column 5 for By = 0.05 and Bj:O'OZ

Eccentricity '
Ratio Mass Stiffness Eccentricity Combined
3 Parameter Parameter Ratio
(1) (2) (3) (4) (5)

0.001 4.244 12.152 0.289 12.875
0.01 2.852 13.485 1.713 13.890
0.02 3.207 12.979 0.055 13. 368
0.03 3.868 12.334 0.844 12.901
0.04 3.895 11.990 0.949 12.643
0.05 3.966 11.802 0.802 12.476
0.06 3.980 11.684 0.601 12.357
0.07 0 3.967 11.599 0.403 12.265
0.08 3.943 11.532 0.223 12.190
0.10 3.882 11.423 0.075 12.069
0.15 3.733 11. 246 0.538 11.862
0.20 3.626 11.133 0.706 11.730

.25 3.558 11.064 0.607 11.638

.30 3.496 11.004 0.192 11.548

.40 3.089 10.602 1.720 11.176

.45 2.501 10.028 3.354 10. 866

.50 1.705 9.242 5.464 10.871

o o o o o
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FIG. 2.1 A MULTISTORY BUILDING WITH ECCENTRIC MASS AND STIFFNESS CENTERS
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FIG. 2.3 A SINGLE STORY STRUCTURAL SYSTEM WITH ECCENTRIC MASS AND.
STIFFNESS CENTERS

53



4 3
2.4a
| 2 ..3 q
T
| !
a 7 5] <}
2.4b

2 N te | 9 7
Z2.4¢
| 2 3 ﬂri 5 .f 7 8
R S S O S
AT S A A N W
& 15 14 13 | 42 i 10 9
2.4d
e 3t gt g2 38 T5
2 LA JREPLSL.
) lm 1 sl 10 nole @
+ - —
12 lm 14 i4 5 |16

FIG. 24 PLAN VIEW OF 39 DIFFERENT COLUMN LAYOUTS .

54



6.00

3.00 4,00 5.00

o0

FREQUENCY, rad[sec.
2.

. D0

1

scale: 1" = 4.23 rad/sec.

-~ TRANSL. MOQE

- RCTRTIONAL MODRE

.00

FIG. 4.]

0.10 0.20
E/R

0.30

0,40

0.

LOWEST TRANSLATIONAL AND ROTATIONAL FREQUENCIES OBTAINED

BY COMPLEX AND NORMAL MODE

55

50



— TRANSL. MOOE

3.00

- —— ROTATIORANL M

2.00

WRT. STIFFNESS

o
o
.—
—
Q
o
W + ; % :
(=
(a4
oo
=
o
b
=) <
r .
Ll —
. l._
L

WRT. MASS

scale: 1" = 3.52 rad/sec.
0.00 0.10 Q.20 0.30 0. 40 0.50
E/R

FIG. 4.2 RATES OF CHANGE OF LOWEST TRANSLATIONAL AND ROTATIONAL
FREQUENCIES WITH RESPECT TO MASS AND STIFFNESS PARAMETERS.

56



FREQUENCY RATE

00

2,00 3.

.00

1

—~ TRANSL. MOOE

— ROTATIOQANL MODH

-2.00 -1.00D D.00

-3.00

scale: 1" = 7.77 rad/sec.

0.00 0.10 0.20 0.30 0. 40 q.50

E/R

FI1G. 4.3 RATES OF CHANGE OF LOWEST TRANSLATIONAL AND ROTATIONAL
FREQUENCIES WITH RESPECT TO ECCENTRICITY PARAMETER

57



6.00

5.00

00

=

TRANSLATIONAL AND ROTATIONAL DISPLACEMENTS
0

TRANSLATION

\=
kﬂ

ROTATION

_ 8X=0.05, By=0.02

_ Bx=0.08, By=0.02

— 8,°0.02, 8,=0.02
— 8,002, 5,=0.05

scale: 1" = 0.0053 ft.

<. 00 0.10 0. 20

13

J.30 0.40
E/R

FHa. 4.4 ROOT MEAN SQUARE (RMS) RESPONSE OF TRANSLATIONAL AND
ROTATIONAL (re) DISPLACEMENTS OBTAINED BY COMPLEX MODE

APPROACH.

58

ISD



6. 00

5.00

.00

TRANSLATION

TRANSLATIONAL AND ROTATIONAL DISPLACEMENTS

(o]

[on]

o

- ROTATION

Q

a scale: 1" = 0.003 ft,

. a0 0.10 0.20 0.30 0,40 0.50
E/R

FIG. 4.5 RMS RESPONSE OF TRANSLATIONAL AND ROTATIONAL DISPLACEMENTS
OBTAINED BY COMPLEX AND NORMAL MODE APROACHES FOR BX=O.O5 AND By=0.02

REL. TRANSLATIAN : . COMPLEX MQOCE «—u. NORMAL MOOE
ROTATION 1 — COMPLEX MOQRE e NORMAL HADE

59



0.05, B.=0.07
0.08, 8Y=0.02
0
0

3.00

Y-
.02, g/=0.02
Sy

2.00

.00

1

D0

0.

DISPLACEMENT AND ROTATION RATES
-1.00

-2.00

-3.00

scale: 1" = (0.002 ft.

0.00 0. 10 0. 20 0. 30 3. 40 0.50 -
£/R '

FIG. 4.6 RATES OF CHANGE OF RMS RESPONSE OF TRANSLATIONAL AND ROTATIONAL
: DISPLACEMENTS WITH RESPECT TO MASS PARAMETER.

60



——$,=0.05, §_=0.02
o — £,=0.08, pY=0.02
<. . 6.=0.02, 8Y=0.02
[4p] = =

— £,0.02, ,=0-05
[sen]
jom]
c\;.d
[om]

n S

AR

'__ﬂ—i

<T

o

=t

ot

Ec

OD. 1 [l { |

czo { ¥ T 1

fom]

=

=9

=

gg ROTATION

(4]

< -

- 1

o-

(¥p)

=
o /
[om] I
QY I
I
S TRANSLATION
"

i
scale: 1" = 0.004 ft. units
0. 00 0.10 0.20 0.30 0.40 0.50

E/R

FIG. 4.7 RATES OF CHANGE OF RMS RESPONSE OF TRANSLATIONAL AND ROTATIONAL
DISPLACEMENTS WITH RESPECT TO STIFFNESS PARAMETER.

61



2.00 3.00

. 00

1

0.00

ROTATION

TRANSLATION

DISPLACEMENT AND ROTATION RATES
60 -1.00

scale:

1" = 0.269 ft.

N

1]

OO OoOd
o O O
(52 BEAG R AN a %

;
0.00 Q.10

FIG. 4.8 RATES OF CHANGE OF RMS RESPONSE OF TRANSLATIONAL AND

-
C.

20
E/R

-
a.

30

-
0.

40

ROTATIONAL DISPLACEMENTS WITH RESPECT TO ECCENTRICITY

PARAMETER.

62

0.50



6.00

— 8,=0.05, £_=0.07
BX=0.08, g =0.02
Bx=0-02, g =0.02

<<

5.00
<

— 8,70.02, £ =0.05

<

BASE SHEAR

4,00

TORSIONAL MOMENT

SHEAR AND TORSIONAL MOMENT
2.00

o
o

scale: 1" = 0.119 ft. units

%' 00 8.10 DTQOE - 0. 30 0.u40 0.50
/

FIG. 4.9 RMS VALUES OF NORMALIZED BASE SHEAR AND TORSIONAL MOMENT
OBTAINED BY COMPLEX MODE APPROACH.

63



6,00

5.00

-y

4.00

BASE SHEAR

3.00

00

ROTATIONAL MOMENT

SHEAR AND TORSIONAL MOMENT

.00

1

Eg scale: 1" = 0.119 units

.00 0.10 or.aoE/R 9. 30 0,40 0.50

FIG. 4.10 RMS VALUES OF NORMALIZED BASE SHEAR AND TORSIONAL MOMENT
OBTAINED BY COMPLEX AND NORMAL MODE APPROACH FOR BX=O.08

AND 84=0.02.
BRSE SHEQHV: — COMPLEX MGBE — NORMAL MODE
TORSIONAL MOMENT : ... COMPLEX MODE e NGRMAL MCDE

64



TR E0.05,E <002
= — £,50.08, s§=o.02
= — £,=0.02, £=0.02

BASE_ SHEAR — 8,70.02, £=0.05
(]
Q
N- S—

« 3

5 - TORSIONAL MOMENT 3

=

=

Lu N

5 N

= O

&J OI 1 ! — ] V

z o ' ' ‘ ' \

o

ja's

[an]

—

o [}

=<

< —

oY I-'

<

L)

&

b o

=]

O
]
o
o
('?._J
scale: ‘1" = 0.056 ft. units
[ 1 1
0.00 0.10 Q.20 9. 30 0.u40 0.50

E/R

FIG. 4.11 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE SHEAR
AND TORSIONAL MOMENT WITH RESPECT TO MASS PARAMETER.

65



BASE SHEAR AND TORSTONAL MOMENT RATES

—— F,=0.05, §.=0.02
e — 8,=0.08, e§=o.oz
| . £0.02, 5/=0.02
o) — -

— £,0.02, 8,700

S ,

o TORSIONAL MOMENT —
e —
> N . .

- IX W/l

Ne=
BASE SHEAR

CJ X,

o
o 1l 1 LN ¥
o
Q
""'—

o

QD

Al
]

o

i

N

scale: 1" = 0.075 units
0.006 Q. t0 Q.20 0.30 0. 40 Q.
| E/R

FIG. 4.12 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE SHEAR

AND TORSIONAL MOMENT WITH RESPECT TO STIFFNESS PARAMETER.

66

S0



-_— BX=D.05, By=0102
8 — BXTO.OE;, Bij.OZ
“ T o, oo
ol o
o
o
=
- TORSIONAL MOMENT
o

.00
I
.

BASE SHEAR AND TORSIONAL MOMEMT RATES

(=]
<
-
STORY SHEAR
fan]
o]
o
|
o
(]
(?ﬁ
scale: 1" = 9.452 units
0.00 0.10 0. 20 0.30 0. 40 0.50

E/R

FIG. 4.13 RATES OF CHANGE OF RMS VALUES OF NORMALTZED BASE SHEAR
AND TORSIONAL MOMENT WITH RESPECT TO ECCENTRICITY
PARAMETER.

67



6.00

— BX=O.05,
. Bx=0'08’
g — BX'—-O.OZ,
m_ 8X=0.02,
o
o
3:«
(V]
2 o
g @
(o] .
= M
[ds]
=
2 y-DIRECTION
[¥¥]
Qoo
L O
a all
==
<C
]
>
o
<. x-DIRECTION
o " .
o scale: 1" = 0.035 ft. units

B, =0.02
8. =0.02

~ <

By=0. 02

g =0.05

00 0.10 0.2 0.30 0.

0
E/R

40

Q.

FIG. 4.14 RMS VALUES OF NORMALIZED BASE BENDING MOMENTS IN THE x-

AND y-DIRECTIONS IN COLUMN 1 OF FIG. 2.2.

68

S0



6.00

5.00

—_— Bx=0.02, By=0. 05
o
)
=:_.

— £,=0.05, & <0.02
__8,=0.08, 8 =0.02

— Bx=0. 0z, B_y=0' 02
y-DIRECTION

w
5 o
g o
2 51
=
=
=
[NE]
oo
> =
2 ] . =
=
1
>
o]
=]
- x-DIRECTION
o ,
o scale: "l’f = 0.012 ft. units
1
. 00 0. 10 0. 20 0.30 - 0.40 0
E/R |
FIG. 4.15 RMS VALUES OF NORMALIZED BASE BENDING MOMENTS IN THE x-

AND y-DIRECTIONS IN COLUMN 5 OF FIG. 2.2.

69

.50



X~ AND y-BENDING MOMENTS

65.00

o
)
Lf;_
o
o
::-

y-DIRECTION COL. 1
o
o.
cr;—w

y-DIRECTION IN COL. 5

c:J ]

x-DIRECTION IN COL. 1
o)
o
o .
o scale: 1" = 0,020 ft. units

—

0. 00 0.10 0.20 0.30 0,40 0

F1G. 4.16 RMS VALUES OF NORMALIZED BASE BENDING MOMENTS IN
x~ AND y-DIRECTIONS IN COLUMNS 1 AND 5 OF FIG. 2.2.

70

.50



x- AND y-BENDING MOMENTS

6.00

5.00

4,00

y-DIRECTION

Ton)
o
n;...
x-DIRECTION
[we] /
o]
53 scale: 1" = 0.020 ft. units
9. 00 0.10 - 0.20 0. 30 0.u0 Q.
E/R

FI1G. 4.17 RMS VALUES OF NORMALIZED BASE BENDING MOMENTS IN
THE x- AND y-DIRECTIONS IN COLUMN 1 FOR ﬁk=0.08

AND By=0.02.
X~ BENDING MOMENT: ___ COMPLEX MGDE —— NORMAL MODE
Y- BENDING MOMENT: - COMPLEX MODRE — MORMAL MCDE

71

50



x- AND y-BENDING MOMENTS

5.00 6.00

y.06

o

< y-DIRECTION

4]

o

(e

{\;_

o

< x-DIRECTION

8 | scale: 1" = 0.011 ft. units _

< 00 0.10 a.20 9. 30 0.u0 0.50
E/R

FIG. 4,18 RMS VALUES DF NORMALIZED BASE BENDING MOMENTS IN x-
AND y-DIRECTIONS IN COLUMN 5 FOR BX=O.08 AND By=0'02

X~ BENDING MOMENT: ___ COMPLEX MODE ' NUAMAL MOOE

T~ BENDING MOMENT:

— COMPLEX MODE — NORMAL MCOE

72



BENDING MOMENT RATES

3.00

2.00

00

_ Y.
. 0.02, #)=0.02

S BX=U.Ub;VB =(.02

—_— 8x=0.08, g =0.02

BX=O.02, By=0.05

y-DIRECTION

\X-DIRECTION

L

0.

o
[
"'!"_
Q
o
Al
{
(o]
Q
n |
|
scale: 1" = 0.010 ft. units
0.00 .10 0.2 0,30 Q.40 0

0
E/R

FIG 4.19 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE
BENDING MOMENTS IN x- AND y-DIRECTIONS FOR COLUMN 1
WITH RESPECT TO MASS PARAMETER.

73

.50



BENDING MOMENT RATES

—8,=0.05, 8 ,=0.02
= — 8%=0.08, 8Y=0.02
- DIRECTION _6§=0-02, 87=0.02
" = B =0.02, gﬁ:o_os.

2,00

1.00

x-DIRECTION

00

0.

~1.00

o
o
]
{
o}
o}
o
1
scale: 1" = 0.005 ft. units
0.00 0. 10 0. 20 0. 30 0.40 9.50

E/R

FIG. 4.20 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE
BENDING MOMENTS IN x- AND y-DIRECTIONS FOR COLUMN 5
WITH RESPECT TO MASS PARAMETER.

74



BENDING MOMENT RATES

0.50

—— 7,=0.05, §y=0‘02
S — =0.08, §/=0.02
s — 8,=0.02, £ =0.02

— ¢*=0.02, #¥=0.05
X NG
[om]
[wn]
C\:‘
Q
o]
o]
o
o 1 : ; :
x-DIRECTION
Q I /
'q
(o]
jom}
N
(ww}
o
e v~DIRECTION
scale: 1" = 0.027 ft. units
0.00 0.10 0.20 0.30 0,40
E/R
F1g. 4.21 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE

BENDING MOMENTS IN x- AND y-DIRECTIONS FOR COLUMN 1
WITH RESPECT TO STIFFNESS PARAMETER.

75



BENDING MOMENT RATES

"2. 00

3.00

2.00

.00

1

—$,=0.05, 8 =0.02
—£,=0.08, 8Y=0.02
— £,=0.02, 8Y=0.02
__§=0.02, ag’;-o.os

-

0.00

-1.00

-3.00

0.

x=-DIRECTION

y-DIRECTION

scale: 1" = 0.015 ft. units

a0

0.10 9.20 0,30 0. 40 0.50
E/R

FIG. 4.22 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE

BENDING MOMENTS IN x- AND y-DIRECTIONS FOR COLUMN 5
WITH RESPECT TO STIFFNESS PARAMETER.

76



BENDING MOMENT RATES

0.

x-DIRECTION

J'DIREC

PR

scale: 1% = 0.545 ft. units

g 1

1 T
00 0.10 0.20 0.30 0.40
E/R

FIG. 4.23 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE
BENDING MOMENTS IN THE x- AND y-DIRECTIONS FOR
COLUMN 1 WITH RESPECT TO ECCENTRICITY PARAMETER.

77

0.

S0



BENDING MOMENT RATES

3.00

2.00

00

0.

Q
L]
-
o
[on BN
e
o
o
o)
{
scale: 1" = (.545 ft.
9.00 0.10 0. 20 0. 30 0. 40 0.
E/R
FI1G. 4.24 RATES OF CHANGE OF RMS VALUES OF NORMALIZED BASE

x-DIRECTION

y-DIRECTION

RN

BENDING MOMENTS IN x- AND y-DIRECTIONS FOR COLUMN 5

WITH RESPECT TO ECCENTRICITY PARAMETER.

78

50



BASE STORY SHEAR

60

00

6.

5.00

.00

W= 10. CPS

00

3.

= 40. CPS

2,00

W
' S——— J// — |
\\\\\\“H_ // W=1.0CPS

scale: 1" = 0.119 units

9. 00 0.10 0. 20E 0.30 0.40 0.50
/R '

FIG. 4. 25 RMS VALUES OF NORMALIZED BASE SHEAR FOR FREQUENCY
PARAMETER VALUES OF 1, 10 AND 40 CPS.

.00

79



BASE TORSIONAL MOMENT

6.00

2,00

o)
o /k
W= 1.0 CPS
o
e scale: 1" = 0.066 units
DOI I i ] [}
.08 0.10 G.20 0.30 0.40 0.50
E/R

FIG. 4. 26 RMS VALUES OF NORMALIZED BASE TORSIONAL MOMENT FOR
FREQUENCY PARAMETER VALUES OF 1, 10 AND 40 CPS.

80



y-BENDING MOMENT

6.00

_ T

scale: 1" = 0.020 ft. units

p.00

f

.00 0,10 0.20 0.30 0.40 0.50
E/R |

FIG. 4.27 RMS VALUES OF NORMALIZED BASE y-BENDING MOMENT IN
COLUMN T FOR FREQUENCY PARAMETER VALUES OF 1, 10
AND 40 CPS.

81



y-BENDING MOMENT

5.00

4.00

. 6.00

W = 10. CPS

S N\_
__',*1
\w = 1.0 CPS
8 | scale: 1" = 0.011 ft. units
% 09 0.10 0.20 0. 30 .40 q.
E/R

FIG. 428 RMS VALUES OF NORMALIZED BASE y-BENDING MOMENT IN
COLUMN 5 FOR FREQUENCY PARAMETER VALUES OF 1, 10
AND 40 CPS.

82

50



APPENDIX I
MASS, DAMPING AND STIFFNESS MATRICES

Relative displacement vec r, {u}, and nondimensional mass [M],
damping [C] and stiffness [K] matrices of the torsional system are given

as follows:

91
Y‘H]

W= v; (L)
(m,1) re,

YN
rGN

L, o
-
1,2
0 Pl(“f.—)
(4] 92 0
(-2)2
[M] = Poiy
{m,m)
€5
r.
91(;102
‘o
"N, 2
3 (;*)
- (1.2) ~
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These matrices can also be partitioned as follows:

Mass Matrix

Ml
M 0.
.°Mi
[M] = . ‘ (1.5)
- -1
0. N
- M—.
where
. D 0
1 = 1
M . p‘(rloz (1.6)
1'r
Damping Matrix
clic ¢ o ]
VS 0.
i i, i+ i+1
[c] = 26w Lot (1.7)
0 N NN TN
0 NN
L— po
where
u £,
¢! = 1 v (1.8)
€My \P-ill.l
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Stiffness Matrix

— | -
K."H(2 —K2 0.
—K2 K2+K3 -K3 C.
[K] = o T L0 A dH i (1.9)
0 '-KN'] KN-l+KN —KN
0 aN N
where L —
. [ T SN
K- i i (1.10)
FUFESUF

The mass, damping and stiffness matrices for the symﬁetric system
used fo study the effect of variabilities of mass and stiffness on the
response of the system can be obtained from equations (I1.2)(I.4) by eli-
Mminating the rows and columns corresponding to the rotational distortion,

re, in the matrices [(M], [C] and [K]. These are given as follows:

-

Q]

P ' . 0.

(I.11)
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0 M- - TN
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APPENDIX-II
Various terms and their corresponding derivatives used in propor-
tional and nonproportional damping cases in Chapter 3 are defined in this
Appendix.

1I1.1 Proportional Damping Case

II.1.1 Frequency Integrals

" Frequency integrals used in Eq. (3.1) are defined as follows:

, |
a. Ijlwg) = ¢ I-m®9(w) 7 2)3 > §?~dw (11.1)

This integrals for the spectral density defined by Eq. (4.1) can be

written as:
3 Gy (w,,B.)
- T 1 N
Il(wj) 121 7 5§93 ETEM%E_jﬂ' (11.2)
where
22
G](szﬁj) (B w; B o; )[m + w + 46183w1wJ 48 J] (11.3)
- wiwi(Biwj + Bjmi)

_ 2 2
2,
- (Byuwy * ijj)(simj + By 1)(w + us + 43;Bw.0;) (11.4)

in which Sia Wy and B; are parameters of the spectral density function as

shown in Table 4.1.

dw (11.5)

2
A ]

which can be written as:
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o+ 1

.i

Go(w.,B.)
T 2\
7 3i%5Y;5 MFJ%%T}'

1

where

Gz(wj,ﬁj) 48 Wity (B Wy + By i) * mz(B wy + Bows)

i Jd

(I1.6)

(11.7)

The rates of change of these frequency integrals can be obtained using

the following derivatives:

1 (w 31, (w;) duw,
9 . ) 2257 o
s g1 = =g Loy~ - a1, (05) 5 (11.82)
h] ¥
and
I (w.) T (. ) M,
NI A I R | L _J
sx 721 = 3 [mj X 211(“j) 5% (I1.8b)
e [
J J
31 (w;) 3 3G, (w,,B.:)
L2737 i B M B Bl
BB(w,B) 2
- ijg(wj,ej) —-J-—J—ax 1/ [B(w J-,BJ-)] (11.9)
where,
..B. S, G, 38,
BGR(wJ’BJ) i EJG2 wJ . 3 2 BJ (11.10)
X Bwj 9X aBj X

where £ = 1 and 2 in Eqs. (II.8)-(II.10) pertain to I

tively, and

E§l<: 8, [w 2, + 8B.B.w.w, 43 (w + 3w )] + 883w W,
Bwj 35735 i3] J
96, 2 2.2 . .2
QB“'= w,lw;. LW W, .

J J[ it 86183 it 461(wi ¥ mj)]
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3G,

J
oG
2 2 2
ggg-ﬂ wiwj(481 +1.)
.?B(wj’Bj) _ 3B agj , 3B 3B.
) . 0 .
X BmJ X BBJ OX
in which
3B

J

2 52 2

(I1.11¢)

(I1.114)

(11.12)

ab_ 2 2
S wi[(Biwj + iji) + (Biwi + ijj) ]

+ Zmiwj[si(siwj + iji) + Bj(Biwi + ijj)]

- 2 2
[Bjtsiwj + iji) + Bi(Biwi + ijj)] (wi + mj + 4818jmimj)
- 2(Bjoy + By ) (Bywy + Bywg){wy + 28;850;) (I1.13a)
L1 wylws (Baw, + Biwy) + w, (Biw, + B.w,)]
BBj AR i T B ji Y 33
- 2 . 2
£wj(61mj + iji) +ow(Bws + ijj)](wi s+ 4816jwiwj)
- 4(8505 + ijj)(siwj + Sjwi)Biwiwj (11.13b)

11.1.2 Partial Fraction Factors P,Q,R,S

Constants P,Q,R and S are obtained from the solution of the follow-

ing simultaneous equations [30]:

[c1{T} = {u}
where
1010
1= Vi me
0 v 0 t

91

w Lo 0

»
3

(I11.14)
Wy

W= { WP (11.15)
3
Wy



in which u = -2(1-23&); v=1.0; s = -2r2(1-28%); t = r¥; Wy = 0.5 Wy =

J
. = 2 . I

i : 8P 30 R . 3S

The rates of change of partial fraction factors %’ 3% 3x and ™
with respect to a structural parameter can be obtained by solving the
following equations:

(] &% = &% - 2y (11.16)

in which,{%g} and-[ggj are obtained by straight forward differentiation
of terms in [c] and [W] with respect to parameter x of interest. |

II.2 Nonproportional Damping Case

1I.2.1 Frequency Integrals
Frequency integra]s used in equation (3.16) are identical to pro-

portional damping case in Section II.1.1.

I1.2.2 Partial Fraction Factors P',G',R',S’
Factors P',Q',R',S' can be obtaihed from Eq. (II.15) in which ma-
trix [C] remains the same as in Eq. (II.15) and the elements of vector

{W} are defined as:

Wi = D] : Wé = C]D] + 02 + E2 v W' = C]D2 + C2D1 + E2 3
W& = CZDZ (11.17)}
in which
D] = 4aJ.ak
[)2 = 4r[ajak8j8k + bekV]"BJ Vi"ﬁkz - ankBJ VI'BkZ." akaBk Vi‘BJZ- ]
C.= <(1+1r% - 4g.8,r) s C,o=rl (11.18)
1 ‘ 37k ’ 2 :

Ey = (rg; - 8) 3 Eq=r(rg, - g;)F
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F = ﬂs[ajak(sk - FB'

5) - (ajbk By - bsayr /T-63)]

The derivatives of Dys DZ’ Cis Cos Eyy Egand F and consequently of Wi,

_Wé, wg and w& are straightforward. Also, factor Aj is defined as:

A. = b> + (a2 - p?) g2 - b. g. /T-g2
; f (aJ bJ) BJ ZanJ By 1 B3 - (I1.19)

and its derivatives are straightforward.
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