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NOTATION

The following symbols are used in this report:

[A] = real symmetric matrix of order 2m, defined by Eq. (3.18)

Aj = constant of partial fraction defined by Eq. (11.19)

a.,b.
J J

[B]

[C]

C.M.

C.R.

= constant used in Eqs. (3.9) and (3.24)

= diagonal elements of diagonal matrices: [¢]T[A][¢] and
[¢]T[B][¢] respectively

= real and imaginary parts of the jth element of complex
eigenvector {¢j}

= real symmetric matrix of order 2m, defined by Eq. (3.'8)

= damping matrix

= damping parameter

= total translational and rotational damping value for the ith
floor

= center of mass

= center of resistance or stiffness

C"C2,Dl,D2,E2,E3,F = constant of partial fraction defined by Eq. (11.18)

[0] = real symmetric matrix of order 2m defined by Eq. (3.18)

E[o] = expected value

e = eccentricity parameter

e =e.,e = eccentricity in the x- and y-direction at ith floor
xi 1 y i

F = Rayleigh's dissipation function

[F.] complex symmetric matrix defined by Eq. (3.20)
J

f. = jth mode shape of a response quantity
J

I. = mass moment of inertia of the ith floor
1

1,(w),12(w) = frequency integral function defined by Eqs. (11.2), (11.5)

[K],[K] = stiffness and mean stiffness matrix

xi



Ky

K ,K
xi Yi

K
() .

1

k ,k
Xij Yij

L

L.
1

[M],[M]

M ,M
X·· y ..
lJ 1J

m

m·
1

N

n

P,Q,R,S

= stiffness parameter

= total translational stiffness in the x- and y-direction

= total rotational stiffness in a-direction

= x- and y-direction translational stiffness of the jth
column in the ith story

= the Lagrangian

= column length or story height

= mass and mean mass matrix

= bending moment in the x- and y-direction of the jth
column at ith story

= mass parameter

= mass of the ith floor

= number of stories

= number of columns in floor lay-out (Fig. 2.2)

= constants of partial fractions in Eq. (3.1)

pi ,Q' ,R' ,S' = constants of partial fractions in Eq. (3.16)

r.
1

{r}

s,t,u,V

T

{u}

V

Var[·J

= jth complex eigenvalue

= mean square value of a response quantity f, defined by Eq.
(3.1) for proportional damped case and by Eq. (3.16) for
nonproportional one

= radius of gyration of the ith floor

= random mass and stiffness values

= influence coefficient vector

= elements of constant matrix [c] defined in Appendix II

= Kinetic Energy

= relative displacement vector

= Potential Energy

= variance
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Wl ,W2,W3,W4 = elements of vector {W} defined by Eqs. (11.17)

X.
1

-
X.

1

Y.
1

x . . ,y ..
lJ 1 J

e.
1

K·
1

= a design variable

= mean value of design variable xi

= relative translational displacement

= base acceleration time history

= x- and y-coordinate of the jth column measured from center.
of mass in the ith floor

= constant damping coefficient defined in Eq. (2.5)

= damping ratio parameter = Cy/2mw

= jth modal damping ratio

= jth participation factor

= nondimensional eccentricity ratio = ei/r

= real and imaginery part of eigenvalue Pj (Pj = - sR+isI)

= translational stiffness ratio = Ky./Ky
1

= rotational displacement in e-direction

= rotational stiffness ratio = Ke./r2Ky
1

Aj = real eigenvalue

~.
1

p.
1

erx·1
{<p.}

J

{<Pj}L

l/J i

w

w·
J

a
ax

= translational damping ratio = Cy./Cy
1

= mass ratio = mi/m

= standard deviation of variable xi

= jth eigenvector

= lower half part of complex eigenvector

= rotational damping ratio = co./r2cy .
1 1

= frequency parameter = IKy/m

= jth modal frequency

= partial derivative with respect to a design parameter x
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CHAPTER 1

INTRODUCTION

1.1 General Remarks and Literature Review

Dynamic response of a structural system depends upon its mass,

stiffness and damping characteristics. These quantities can rarely be

estimated precisely as they depend upon uncertain parameters such as

member size, material properties like density and stiffness, and energy

dissipation characteristics. Thus these quantities should be considered

as random variables in an analytical model of a structure and the

calculated dynamic response should reflect and include the uncertainties

associated with these parameters.

Often in a dynamic analysis of a structure for earthquake induced

ground motions, the effects of the variabilities of these parameters on

the design response are included by parametric variation studies in

which some extreme values of these parameters are used to obtain a bound

on the calculated response. This approach may be adequate but does not

combine the uncertainties in a rational and consistent manner. The

uncertainties can be combined in a consistent fashion if these para­

meters are considered as random variables with their variabilities com­

bined probabilistical1y to ascertain the variability of a response.

Several investigations have been performed in the past in which the

effects of changes in these parameters on the dynamic characteristics

like frequencies and mode shapes have been obtained. Fox and Kapoor

[13] developed a formulation to obtain the rates of change of eigen­

values and eigenvectors with respect to a design parameter. Similar

approaches were also used by Collins [9], Collins and Thomson [lOJ,



Hasselman and Hart [17,18J, Hadjian [14J, Soong [36J, Hart [15J and

possibly many others, to ascertain the statistical properties of eigen­

values and eigenvectors for given statistical properties of structural

parameters. However, only a limited literature is available on the

incorporation of structural parameter uncertainties in the evaluation of

structural response. Liu, Child and Nowotny [24J used a Monte Carlo

type of approach to incorporate parametric uncertainties in the genera­

tion of floor response spectra.

Recently Singh [32] presented a formulation whereby parameter un­

certainties are transmitted to structural response through the rates of

change of dynamic characteristics. A structural reponse quantity like

bending moment or story shear, etc., can be expressed as a function of

dynamic characteristic such as natural frequencies, mode shapes, modal

damping, and participation factors and thus its rate of change can be

expressed in terms of the rates of change of these dynamic characteris­

tics. This rate of change of response can, in turn, be used in the

calculation of variance of response quantity by a first order approxima­

tion if the parameter uncertainties are known. Higher order approxima­

tions can also be used to improve results if it is desired; however, al­

gebraic manipulations become considerably more involved. In this inves­

tigation the first order approximation approach has been used to ascer­

tain the variances of various response quantities for given variances of

the mass and stiffness properties of the structure.

For a structure subjected to earthquake induced ground motions,

usually a symmetric structural layout is preferred to avoid torsional

response (In large size structures the torsional response may still be
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induced by travelling seismic waves. See Newmark [26J. This, however,

is not the subject of this study). Inspite of best efforts to achieve a

symmetric layout, however, some inadvertant eccentricity between the

mass and stiffness center may still be present because of uncertainty in

the distribution of structural mass and stiffness across the structure.

In some cases eccentricities could be due to architectural features, or

may just be unavoidable. Also the magnitude of such eccentricities will

not be precisely known, as these are random variables. It is therefore

of interest to study the effect of eccentricity on dynamic response and

include its randomness in the evaluation of seismic response.

Structural systems with eccentricity between mass and stiffness

centers possess some special characteristics. Especially if the eccen­

tricites are small, the systems will usually have closely spaced (nearly

equal) frequencies in certain circumstances. The modes with nearly

equal frequencies, often referred to as "closely spaced moded", gener­

ally interact strongly. As a result such systems usually require

special analysis procedures to calculate their dynamic response accur­

ately. The eccentric structural systems (herein also referred to as

torsional systems), therefore, have been of considerable research in­

terest to many investigators. Rosenblueth and Elorduy [28J, Amin and

Gungor [2J, Singh et al [29], Singh and Chu [33J, Der Kieureghian [11J

have considered systems with closely spaced frequencies and suggested

the use of special procedures to obtain accurate responses. Kan and

Chopra [21,22,23J have studied eccentric multistory structural systems

in detail to suggest some simplified analysis procedures. Tso and

Dempsey [37J have also examined a single story two-degree-of-freedom

system in order to study the effect of eccentricity on the response and

to review various code provisions.

3



Structural systems made with different materials in different parts

would, generally, have nonproportional damping matrices [34]. Other

energy dissipation mechanisms could also lead to nonproportional damping

matrices in the analytical models. Such matrices cannot be diagonalized

by undamped normal modes. That is, if a nonproportional matrix [C] is

pre- and post-multiplied by undamped modal matrix [~J, the resultant

matrix, [~]T[C][¢], will have some off-diagonal terms. These off-dia-

gonal terms represent a modal coupling through damping terms. In eccen­

tric structural systems, where prequencies are closely spaced, and thus

the interaction effects are large, these off diagonal terms may attain a

special significance. It is suspected that in such systems (with eccen­

tricities), if these off-diagonal damping coupling terms are neglected

(that is, if a nonproportiona1 damping matrix is assumed to be a propor­

tional one) the calculated dynamic response may have some significant

errors. It is, therefore, of interest here to study eccentric systems

with nonproportiona1 damping characteristics.

The analysis of nonproportionally damped systems has also been of

considerable interest to many researchers. Bailak [4], Clough and

Mojtahedi [6], Hasselman [16], Itoh [20J, Johnson and McCaffery [20J,

Rosset, Whittman and Dobry [28], Singh [30], Warbuton and Soni [38],

etc., have studied various aspects of this problem. Several methods of

analysis have also been proposed for such systems. In this investiga­

tion nonproportional dynamic systems with varying eccentricities have

been analyzed by the approach proposed by Singh [30]. For a given

nonproportiona1 damping matrix, this approach provides a mathematically

accurate response for structures excited by ground motions defined in

4



stochastic terms or by response spectra curves. For comparison pur­

poses, here the response results have been obtained with and without the

assumption of proportionality.

1.2 Scope of Study

In this investigation the effects of uncertainties of mass and

stiffness on the response of a structural system have been examined. For

given coefficients of variation of mass and stiffness, the coefficient

of variation of design response has been obtained. Also structures with

and without torsional oscillations have been examined. The effects of

varying the eccentricity between the mass and stiffness centers on the

dynamic characteristics and response of a multistory building has been

examined. Since eccentric systems are expected to be more susceptible

to nonproportional damping effects, the responses of such systems with

nonproportional damping matrix have been studied in details, and the

effect of the commonly made assumption of proportionality for nonpro­

portionally damped systems on the calculation of dynamic response has

been evaluated. Only linearly behaving structures have been considered

in this investigation.

1.3 Organization

Chapter 2 contains the derivation of the equations of motion for a

multistory structural system. The mass, damping and stiffness matrix

for such a system are given in Appendix I. In Chapter 3 the procedures

for the evaluation of seismic response, and also its rate of change, for

proportionally and nonproportionally damped structures for stochas­

tically defined ground motion are presented. Further details of the

rates of change of various parameters and frequency integrals are given

5



in Appendix II. The numerical results for a 5-story torsional building

obtained by the procedures described in Chapter 3 are presented in

Chapter 4. Summary and conclusions are provided in Chapter 5.
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CHAPTER TWO

EQUATIONS OF MOTION OF A STRUCTURAL SYSTEM

2.1 Introduction

For dynamic analysis of structural systems subjected to earthquake

induced ground motions, the equations of motion can be written in the

following form:

[M]{u} + [C]{u} + [K]{u} = -[M]{r}Yg(t) (2.1)

in which [M], [C], [K], respectively, are the mass, damping and stiff-

ness matrices of the structure; {u} is the relative displacement vector;

Yg(t) is the base acceleration time history; {r} is the displacement

influence coefficient vector [8J and a dot over a vector represents its

time derivative.

Here these matrices are defined for various building systems in

which masses are assumed to be concentrated at floor levels and the

stiffness is provided by elements such as columns or shear walls con-

necting or supporting various floors. The floor systems are assumed

rigid and thus undeformable. In large floors shear deformation may not

be entirely insignificant, however, such floor deformations have not

been considered here.

In a rigid-floor multistory structure, the floor mass when excited

by a horizontal ground motion will, in general, have three degrees of

freedom: motion in two horizontal directions plus rotation about the

mass center of the floor. However, if the mass and resistance (stiff­

ness) centers are at the same location (that is, zero eccentricity), the

rotational component of the motion may be absent if the base excitation

7



is applied uniformly. This will happen in a symmetrically laid-out

building in which the horizontal and rotational motions will be un­

coupled and their dynamic behavior can be studied just by separate

excitations along the two horizontal directions. Such symmetrical

systems represent a special case of more general eccentric systems

studied here.

Of special interest here are the systems in which mass and resis­

tance centers do not coincide and are at a distance e, commonly re­

ferred to as eccentricity. In such cases the translational motion in

two horizontal directions will be.coupled with the rotational motion.

(Because of the presence of torsional motion here, these systems will

often be referred to as torsional systems.) Here the dynamic behavior

of such systems has been studied in somewhat greater detail. The

effects of variability of eccentricity and its influence on the assump­

tion of proportionality for a nonproportional damping matrix have been

studied in detail. In the following section, the development and non­

dimensionalization of the equations of motion of a torsional system are

presented.

2.2 Equations of Motion of a Torsional System

In general, each floor of a torsional system representing a multi­

story building, would have 3 degrees-of-freedom. Each floor could

possibly have its own arrangement of connecting elements like columns

and shear walls, and this may give rise to different eccentricities for

each floor. However, to limit the number of problem parameters in this

study, structures with the following special characteristics are

8



examined:

1. Each floor mass has only two degrees of freedom: translation

in one of the two horizontal directions and rotation about a vertical

axis. This assumes that the resistance center lies on one of the axes

of symmetry passing through the center of mass, and the ground motion is

applied in a direction perpendicular to the axis of symmetry. Thus as

shown in Fig. 2.1, the eccentricity in the x-direction alone has been

considered and the excitation is applied in the y-direction.

2. For analytical ease of parameter manipulation and modeling pur­

poses, but without loss of generality, the stiffness in the system is

assumed to have been provided by column elements which connect various

floors. The relative locations of the columns with respect to the

center of mass determine the torsional rigidity of the system.

Assuming that the coordinate origin is located at the center of

mass, the total translational and rotational stiffnesses provided by the

resisting elements connecting the (i-l)th and ith floors can be written

as [21]:

n
Kx. = I kx..

1 j=l lJ

n
Ky. = L k

j=l y ..
1 lJ

n 2
n 2K = l kx..Yij + I ky.. Xi j

i j=l lJ j=l lJ

(2.2a)

(2.2b)

(2.2c)

and y .. ,
lJ

measured

in which kx.. and ky .. ' respectively, are the x- and y-direction trans-
1J 1J

lational stiffnesses of the jth column in the ith story; x..lJ

respectively, are the x- and y-coordinates of the jth column

9



from the center of mass on the ith floor; Kx. and Ky.' respectively, are
1 1

total translational stiffnesses in the x- and y-directions; Ke. is the
1

rotational stiffness in the e-direction; and n is the total number of

columns in the ith story.

These total translational stiffnesses can be assumed to be concen-

trated at the center of resistance. The coordinates of the center of

resistance with respect to the mass center define the eccentricities in

the system as follows [21]:

1 n
eXi == K.Y

i
j~l kyijXu

1 n
ey . == -K r kx ..YiJ·

1 x· j==l lJ
1

(2.3a)

(2.3b)

For the systems considered here, e == 0; that is, they are symmetrical
Yi

about their x-axes. Henceforth the eccentricity e will be denoted by
xi

,
3. It is assumed that the centers of mass for all floors lie on a

common vertical axis. The centers of resistance for all floors are

also assumed to lie on another vertical axis which is at a distance

e· from the axis of the centers of mass.
1

4. To account for energy dissipation by damping in each deforming

element, viScous (relative velocity proportional) dashpots are assumed

to exist in parallel with each stiffness element. That is, it is as-

sumed that corresponding to each stiffness element, there is a dashpot.

If cx.. and cy.. represent the damping
1J 1J

and k
yij

' then total translational and

the ith story can be written as:

10

constants corresponding to kx..
lJ

rotational damping constants for



n
cx. = L cx..

1 j=l lJ

n
cy . = I cy ..

1 j=l lJ

n 2 n 2C = I c y .. + L cy..xije· j=l x.. lJ j=l1 1J 1J

(2.4a)

(2.4b)

(2.4c)

(2.5)

These damping constants will provide a stiffness proportional

damping matrix if cx.. and cy .. are assumed directly proportional to
1 J 1J

kx.. and ky .. with the same constant of proportionality. However, if
1J 1J

proportionality constants are not equal, the combined damping matrix

will be nonproportional. Here it is assumed that

c =a k , C = a k
xij x xij Yij Y Yij

Where, if the proportionality constants ax and ay are different, the

damping matrix will be nonproportional; otherwise it will be propor-

tional. By adjusting the values of ax and ay, different degrees of

nonproportionality can be easily achieved.

5. The floor plan for each story is assumed to be the same and is

shown in Figure 2.2. The radius of gyration, r, for each floor is also

assumed to be the same.

For a structural system described above, the equations of motion

can be derived using either Newton's second law, or the method of Vir­

tual Work or Lagrange's equations. Here the Lagrange's equation ap­

proach has been used. The Potential and Kinetic energies of the ith

floor mass of the system are as follows:

11



Kinetic Energy, T:

1 • • 2 1 ·2T. = -2 m. (Y. + Y) + -2 1.8.
1 1 1 g. 11

i=1,2, ••• N (2.6)

where mi =mass of the ith floor; Yi = relative translational displace­

ment in the y-direction; ai = rotational displacement in the a-direc­

tion; Yg = ground excitation velocity in the y-direction; Ii = mass

moment of inertia with respect to the center of mass (mir~); and N=

total number of stories.

Potential Energy, V:

1 2V. = 7) K [(y.-Y·
l

) + e.(e.-e. 1)]
1 L Yi 1 1- 1 1 1-

+ -2
1

K [(Y'+l-Y') + e·+l (e·+l -e.)]2
Yi+l 1 1 1 1 1

1 2 1 2+ -2 Ke (e.-a, 1) + -2 Ke (e·+1-8.)
i 1 1- i+l 1 1

i = 1,2, .•. N

Rayleigh's dissipation function, F,

1 o. •• 2
F = -2 C [(Y.-Y. 1) + e.(e.-e. 1)]y. 1 1- 1 1 1-

1

1 •• •• 2
+ -2 C [(Y·+1-Y.) + e·+l (a·+1-e.)]

Yi+l 1 1 1 1 1

1 (0. 2 1 •• 2
+ -2 Ce e.-6'_1) + -2 Ce (e·+1-e.)

i 1 1 i+1 1 1

i=1,2, ..• N

In terms of the Lagrangian, L,

L = T-V

(2.7)

(2.8)

(2.9)

the equations of motion can be obtained from the following equation [25]

(2.10)

12



where qi's are generalized displacements which in our notations represent

the displacement~ Yi~ and rotation~ ai . Using Eqs. (2.2)-(2.9)~ the

equations of motion for the ith floor in terms of relative displacement

Yi and rotation Gi can be written as follows:

(C +C )Y. + (-C )V'tl
Yi Yit1 1 YHl 1

+ (K +K )Y. + (-K )Y.+1
Yi Yi+l 1 YHl 1

+ (e.C + e·+1C )8. + (-e'+l C )8'+1
1 Yi 1 Yi+l 1 1 Yi+l 1

m.Y. + (-C )y, 1 +
1 1 y, 1-

1

+ (-K )Y. 1
Y· 1­

1

+ (-e.C )8. 1
1 Yi 1-

+ (-e.K )e, 1 + (e,K + e'+lK )e, + (-e'+l K )8'+1
1 Yi 1- 1 Yi 1 Y;+l 1 1 Yi+l 1

= -m.Y
1 g

2" •m.r,e. + (-e.C )Y, 1 + (e,C
1 1 1 1 Yi 1- 1 Yi

(2.lla)

+ e.+,C )V, + (-e'+lC )V'+l
1 Yi+1 1 1 Yi+1 1

+ (-e,K )Y. 1 + (e.K + e'+l K )Y. + (-e·+1K )Y'+l·
1 Yi 1- 1 Yi 1 Yi+l 1 1 Yi+1 1

+ (-C e )8. 1 + (Ce + Ce )6
1
, + (-Ce )8'+1

i 1- i i+l i+l 1

+ (-Ke )e'_l + (Ke, + Ka )e, + (-Ke. )8'+1 = O. (2.11b)
i 1 1 i+1 1 i+1 1

To study the effects of various system parameters t it is sometimes

convenient to nondimensionalize the equations. For this purpose, a mass

parameter "m" (which could be the mass of a floor), a stiffness para­

meter "K/ (which could be a story stiffness), a damping parameter "C/
(which could be the damping of a story), a frequency parameter w = /Ky/m

and a damping ratio parameter 6 = Cy/2wm, have been introduced. Also

various terms encountered in the equations are expressed in terms of

translational stiffness ratios ni =

ratio Ki = Ke,/r2Ky ., translational
1 1

Ky. IK , rotational stiffness, Y
1

damping ratio ~. = Cy Ie , rata-
1 . Y

1

13



tional damping ratio o/i = ce./r2cy ., and mass ratio Pi =mi/m. The
1 1

eccentricity is expressed in nondimensional terms as £. = e./r.
1 1

In terms of these nondimensional parameters, Eqs. (2.11) can be now

written in the following form:
.,

p.Y. + 2Sw{-~.Y. 1 + (~'+~'+l)Y' - ~l'+lYl'+l + c.~.(re. 1)1 1 1 1- .• 1 1 1 1 1 1-

2
+ w {-n· Y. l+(n.+n·+l)Y' - n'+l Y' 1 + £·n·(re. 1)1 1- 1 1 1 1 1+ 1 1 1-

+ (£i ni+£i+1 ni+,){rs i ) + (-ci+1 ni+l)(re i +1)} = -PiYg (2.12a)

r i 2 ..
Pi{r-) (rei) + 2Sw{(-ci~i)Yi_1 + (£i~i+£i+1~i+1)Yi + (-£i+1~i+1)Yi+l

+ {-o/.~.)(re. 1· )+(o/'~'+o/'+l~'+l)(re')+{-o/'+ln'+l)(re'+l)}1 1 1- 1 1 1 1 1 1 1 1

= O. (2.12b)

Similar equations are obtained for each floor mass. When combined,

these can be written in matrix form as Eq. (2.1), with matrices [M],

[C], [K] and vector {u} defined in Appendix I. These matrices can also

be written in partitioned form, where each submatrix is analogous to the

corresponding matrix for a one story, two-degree-of-freedom torsional

structure.

2.3 Dynamic Chatacteristicsof a Single-Story System

It has been pointed out by various investigators [2,27,29] that

closeness in frequency is controlled by the eccentricity ratio, £,and

14



the rotational stiffness parameter, K. In the following, this

has been verified by the study of a single story, two-degree-of-freedom

system (see Fig. 2.3) for which the eigenvalues can be obtained in

closed form in terms of these parameter values.

For a single-story system, the equation of motion can be written as

fo 11 ows:

[ 1.
0

0]I~I+ 2SWll[l. 0 s]1 ~ I
o 1.0 r8 S ~ r8 i

[
1. 0] ..= - {r}y
01. g

2[1.0+w n
S

(2.13)

The eigenvalues for an undamped system can be obtained from the solution

of the following characteristic equation:

2 2
W n-A W TIS

2 2
W TIS W nK-A

= O. (2.14)

which gives two eignevalues as follows:

\ _ 2 (1+K)±;{1+K)2-4(K-s2 )
A - W TI 2.0 (2.15)

For these two eigenvalues to be equal to each other, the discriminant

should be zero. That is,

2 2(l+K) - 4K + 4s = O.

or
2 2(l-K) = -4E.:

which requires that
ec=-=Oc. r .

and

15
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K
_ e_

K - r 2K
y

- 1.0 (2.l8b)

Thus, for small values of nondimensional eccentricitYt €t and stiffness

ratio, K t close to 1.0, the discriminant will be close to zero and the

two frequencies -translational and torsional- of the system will be

close to each other. It is in these situations that these modes inter-

act strongly with each other and affect the choice of the methodologies

to be used for accurate evaluation of structural response.

Similar behavior has also been observed in multistory buildings.

That is, if the eccentricity ratios t €i' in various floors are small and

torsional stiffness ratios, Ki' are near a value of 1.0, the structural

frequencies in translation and torsion will be close to each other.

There could possibly be other structural systems where frequencies may

also be closely spaced. These are the very same systems in which the

s impl e-to-use method of iquare-.!!.oot-of-the-ium-of-the-iquares (SRSS)

procedure gives erroneouS results [29J. A correct evaluation of re-

sponse in such systems requires a proper consideration of interaction of

modes with close frequencies [27,29,33].

The multi-degree-of·freedom systems examined in this investigation

possess these properties. The closeness in the frequencies has been

achieved by controlling the eccentricity ratio, £i' and torsional

stiffness ratio, K i , as mentioned above. Various column floor plans, as

shown in Fig. 2.4, have been examined. The torsional stiffness ratios

of these systems are listed in Table 2.1. The floor plans, Figs. 2.4 in

which columns are clustered and uniformly distributed around the geo-

metric center, provided torsional stiffness ratio values close to 1.0.

16



The torsional systems considered here, therefore, are representative

of such building floor plan lay-outs, Figs. 2.4.

17



CHAPTER 3

SEISMIC RESPONSE ANALYSIS

3. 1 Introduction

To study the dynamic behavior of structures under earthquake

loads here, ground motions have been modeled as stationary random

processes which can be characterized by a spectral density function. It

is realized that earthquake induced ground motions are essentially

nonstationary and thus cannot be characterized by spectral density func­

tions. However, earthquake ground motions have often been modeled by

stationary random process by many investigators in the past [2,11,21,

33J, as some conclusions of general validity can still be obtained by a

study of structures excited by stationary excitations.

In this chapter, seismic response evaluation procedures for struc­

tures excited by randomly characterized ground motion are presented. Of

special interest here is the evaluation of the sensitivity and vari­

ability of response vis-a-vis the changes in various structural para­

meters. The necessary formulation for systems with proportional and

nonproportional damping matrices are presented. As the modal analysis

approach is quite often used in seismic analysis and design, especially

if one intends to obtain design response from a response spectrum pre­

scribed as seismic design input, the following formulation is also

developed with the normal mode approach.

For structural systems excited by randomly characterized ground mo­

tion, the design response is directly related to the root mean square

response. Usually, the root mean square response is amplified by a

factor called the peak factor to obtain the design response. It is,

18



(3.1)

therefore, of interest here to examine the mean square response. The

formulations to obtain the mean square response for proportionally and

nonproportionally damped systems using the modal analysis approach have

been developed elsewhere. In the following section the expressions used

to obtain the mean square response are given. These expressions are

then examined with a view to ascertain the variability of the response

due to the variabilities of structural parameters.

3.2 Structural Systems with Proportional Damping Matrices

If the damping matrix, ICJ, in Eq. (2.1) is proportional to either

mass or stiffness or a combination of them (see Caughey [6]), then the

coupled equations of motion, Eq. (2.1), can be easily decoupled using

the undamped normal modes. In terms of these normal modes, the mean

square response can be written as [33J:

2 m 2 2 Il(w.) m m
Rf = I y. f. --,--"J_ + 2 I. \' YJ'YkfJ' fkj=l J J 4 j=l k=J+l

wj

, 2 1{ 4 [QI1(wj) + Pr I2(wj)] + "4" [SI,(wk)+RI 2(wk)]}
wj wk

in which Rj is the mean square value of a response quantity f, f j is

the jth mode shape of the response quantity, m = the number of degrees

of freedom, Yj is the jth participation factor defined as

{~j}T[M]{r}/{~j}T[MJ{~j}' {~j} is the jth relative displacement mode

shape, Wj is the jth natural frequency, r = wj/wk' and Il(wj) and

12(wj ) are the frequency integrals defined in Appendix II. These inte­

grals depend on the excitation spectra' density function, modal fre­

quency, wj ' and modal damping, Sj' For proportional damping matrix [C],

the modal damping ratio is defined as follows:

19



(3.2)

The factors of partial fraction, P, Q, Rand S, are also defined in

Appendi x II.

Eq. (3.1) defines the ~quare-Root-of-the-~um-of-the-~quares (SRSS)

procedure for calculation of mean square and design response. For

structural systems where some frequencies are close to each other, the

consideration of the double summation terms in Eq. (3.1) is important to

properly include the modal interaction effect to evaluate response

accurately [27,33].

The variability of response defined by Eq. (3.1) vis-a-vis the

variabilities of mass, stiffness, and eccentricity is now examined. If

it is assumed that the design response is a constant times the mean

square response, then the variability of the design response can be

assessed from the variability of the mean square response. Here, to ob-

tain the variability in the mean square response, which is a function of

various basic parameters such as mass, stiffness, eccentricity, etc., a

first order perturbation approach is used. Expanding a response quan-

tity, R, which is a function of variables xl' x2' ... , xn' in terms of

Taylor series about the mean value of the variables, and retaining only

first order terms, we obtain [3,5]

(3.3)

(3.4)

in which [[.] denotes the expected value and Var[·] denotes the var-

20



(3.5)

iance, ~~. is the pal~tial derivative with respect to variable xi ob­
1

tained at the mean values X,.I S and a 's are the standard deviations ofx.
1

the variables, xi's.

This approach requires the evaluation of the rate of change of the

response quantity, ~R . Here R is expressed in terms of dynamicox·,
characteristics of the structure, Eq. (3.1), which in turn are functions

of basic variables xi' Thus evaluation of ~~. will require evaluation
1

of the rates of change of dynamic characteristics such as frequencies,

eigenvectors, participation factors, etc., with respect to the basic

variable. For example, for Eq. (3.1)
2aRf _ 1 a(R f )

aX
i

- 2R
f

ax
i

and

m m af. afk aYj aYk
+2 I I [{Y'Yk(..---.lfk+-f')+(-Yk+-y·)f.fk}o

j=l k=j+l J ax ax J ax ax J J
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d I,(w.)
where the deri vati ves of frequency integral ax [ i],

w·
aP J aQand the derivatives of partial fraction factors ax' ax'

are defined in Appendix II.

3.2.1 Rates of Change of Dynamic Characteristics for Proportionally
Damped Case

To obtain the rates of change of wj ' {cPj}' etc., required in equa­

tion (3.6), the following equations, which are derived based on the

approach presented by Fox and Kapoor [13], have been used:

at. .
_J =
ax

T aK aM
{<Pj} ([ax] - Aiax]){<pj}

{<pj}T[M]{¢j}

where Aj is the jth eigenvalue = wi. The rate of change of Wj is

obta i ned from:

(3.7)

aW. 1 dA.
J - J (3.8)ax - 2wj ax

To define the rate of change of eigenvectors, the expansion theorem has

been used as:

(3.9)

in which ajQ are defined as:

(3.10)
if j = Q

J
1 . T([aK aM ~
~ {<P Q } a) - X}axJ - ax [M]){<Pj} if j f Q

a. = J Q

J Q ) 1 T aM
~ - l {<Pj} [ax]{<pj}

rate of change of a participation factor can be expressed in termsThe

of the rates of {¢j} and [M], and thus the expressions are straighfor­

ward. For the modal damping ratio defined by Eq. (3.2), the evaluation of
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its rate of change is also straightforward.

3.2.2 Rates of Change with Respect to Mass, Stiffness and Eccentricity

Variables.

As mentioned befor~ the design variables of mass, stiffness and

eccentricity, e, have been considered in this study. The variability in

the mass variable is characterized by a random variable rm which has a

mean value of 1.0 and standard deviation of om as follows:

[M] = rm[M] (3.11)

where [M] is the random mass matrix with a mean of [A]. This form of

variability assumes that all masses in the structure are prefectly

correlated. A similar form is assumed to characterize the variability

in stiffness:

(3.12)

where r
k

is also a random variable with mean value of 1.0 and standard

deviation ok' More complicated characterization of mass and stiffness

variabilities (such as different mass and stiffness elements being

characterized by different variables) are also possible, but have not

been considered here. Various rates of change defined by Eqs. (3.7-3.10)

can now be specialized for these basic variables as follows:

Rates of change with respect to r :m
with [aM] =

arm
[M], [~~ ] = 0.,

m

ay. 1 as·
dr~ = 2 Yj {~}

Rates of change wi th

1
2 Sj'

respect to r k:

(3.13)

[R] ,
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(3.14)

or·
_J = 0
d

•r k

(3.15a)

Rates of change with respect to eccentricity~ e: with [~~J = 0.,

dA· T aK
aeJ

= H j } [a-e]{¢j}

o<P •

{deJ} =
m
I

Q;=l
Q;fj

(3.15b)

(3. 15c)

(3.15d)

3.3 Structural Systems with Nonproportional Damping Matrices

As discussed in Chapter 2, in this investigation a nonproportional
a

damping matrix is obtained by using values of ~ other than 1.0. For
ay

such a damping matrix, undamped normal modes cannot be used to decouple

the equations of motion. However, as shown by Singh [30], it is still

possible to obtain the response by an SRSS procedure, similar to Eq.

(3.1), if 2m-dimensional complex eigenvalues [25] are used. Herein,

this approach has been referred to as 2m-dimensional state vector. A

special advantage of this approach is that commonly used response spec-

tra can be used as seismic input for the calculation of design response.

The equatl0n defining the mean square response by this approach is as

follows [30J:

R2 = ~ [ () , 2 ( ) ] 2f L 4 A.I l w· + a.I 2 w· /w·
j~l J J J J J

(3.16)
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where Aj , aj , pi, QI, RI and $' are defined in Appendix II. The fre­

quency integral Il(w j ) and 12(wj) are the same as in Eq. (3.1) and are

also defined in Appendix II.

To obtain the rate of change of R~ with respect to a design var­

iable, the rates of change of complex eigenvalues and complex eigenvec­

tors (whi~h define Aj , a
j

, pI, Ql, R1, $') are required. The procedure

to obtain these rates is given in the following section.

3.3.1 Rates of Change of Dynamic Characteristics for Nonproportionally
Damped Case:

The equations of motion, Eq. (2.1), for nonproportional damping

matrix [CJ can be recast in the following form [25J:

[AJ{z} + [BJ{z} = -[DJ{i~'~} Yg (3.17)

in which the state vector, {z}, and matrices [AJ, [B] and [D) are de­

fined as follows:

{z} ={{ld} [AJ
(2m,1) (~~:l) (2m,2m)

[8] = [~:~~+:~~~ j
(2m,2m) [O.J I [KJ

(2m, 2m)

~ W~Ll--m-] ;
[DJ = [:~~~-L:~~~]

(2m,2m) [O.J: [MJ
(2m, 2m)

25
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The eigenvalue problem for Eq. (3.17) can be written as:

[F.] {</>.}
J J

(2m,2m) (2m,1)

in which

:: {o.}

(2m,1)
j = 1,2m (3.19)

[F.] = p.[A] + [B]
J J

(3.20)

and {</>j} is the jth 2m-dimensional complex eigenvector and Pj is the jth

complex eigenvalue. Premultiplying Eq. (3.19) by {<pj}T and taking the de­

rivative with respect to a design variable x, we obtain:

(3.21)

Since [FjJ is a symmetric matrix, the first and the last terms are the

same and are equal to zero in view of Eq. (3.19). Thus Eq. (3.21)

becomes

(3.22)

Substituting for the derivative of [FjJ in terms of the derivative of

[A] and [B], we obtain:

(3.23)

To obtain the rate of an eigenvector, the expansion theorem is used

as:

Using Eq. (3.19)

a</> . aF.
[Fj]{a/} = - {af}{</>j}.
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d<j> •

Substituting for {axJ } from Eq. (3.24)

2m aF.
[FjJ ~Il aj£{<p£} = -[~J{¢j}

Premultiplying Eq. (3.26) by {<Pk}T,

2m aF.
£~l aj£{¢k}T[FjJ{<P£} = -{<Pk}T[axJ]{<p j }

Using orthogonality condition

T{<P k} [Fj]{<P~} = O. if k 1 £

Eq. (3.27) reduces to aj £ as follows:

T aF.
a = _ _{<P.-:..:~,-;} :;::-[.....:..a;..:...xJ_J_{<P........j'--}
j~ {<p }T[F.]{<p }

~ J ~

The numerator of Eq. (3.29) can be written as:

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

The first term on the right hand side of Eq. (3.30) is zero because of

the orthogonality condition. The denominator of Eq. (3.29) can also be

written in terms of the complex eigenvalues as follows:

T * *
{<P£} [FjJ{¢£} = PjA£ + B~

in which

A: = {<p£}T[AJ{<P£} and B: = {<p~}T[BJ{<P£}

(3.31)

(3.32)

*If the eigenvectors are normalized with respect to [AJ, that is A~

*= 1.0, then from equation (3.31), B£ = -p£. Substituting these in
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equation (3.3l) we obtain:

(3.33)

(3.34)

Using Eqs. (3.30) and (3.33), ajt is defined as follows:

= _ 1 { }T ( [aA] + [~]) { }ajt p.-p <P t Pj ax ax <Pj
J R-

To defineaj £ for j=~, we use the eigenvector normalization equation as:

(3.35)

Differentiating with respect to x, we obtain:

Us; ng Eq. (3.24),

2m
2 £I

l
ajt{¢t}T[A]{¢j} + {¢j}T[~~J{¢j} = O.

(3.36)

(3.37)

(3.38)

Using orthogonality and normalization, Eq. (3.35) for eigenvectors, we

obtain:

1 T aA
ajj = - 2 {<pj} [ax]{<pj}

With aj £ defined by Eqs. (3.34) and (3.38), the rate of change of an

eigenvector is obtained from Eq. (3.24).

Eqs. (3.23), (3.24), (3.34) and (3.38) giving the rates of change

of Pj and complex eigenvectors are defined in terms of matrices and

vectors in 2m-dimensional space. However, realizing that the upper and

lower parts of an eigenvector are simply related as [25],

{¢. }
J

(2m,1)

(3.39)

28



the equation defining the rates can be written in terms of the lower

eigenvector {¢j}L alone, as follows:

Rate of Eigenvalue:

dp.
___J = _ {~ }T(p2[aMJ + p [dC] + [3K]){~ }
ax 'f'j j ax j ax ax 'f'j (3.40)

Rate of Eigenvector:

(3.41 )

where

(3.42)

ifj=9,

(p ~p.) {¢9,}T(p][~~J + Pj[~~J + [~~]){¢j}if j f 9,
9, J

The {¢j} in Eqs. (3.40)-(3.42) now represent only the lower part of the

jth eigenvector.

The derivatives of quantities such as A
j

, aj , pi, QI, RI and S' are

in turn defined in terms of the rate of Pj and {¢j} and are given in

Appendi x I I.

In Eq. (3.16), the frequency integrals are defined in terms of the

frequency wj and modal damping ratio Bj , which in turn are related to

the eigenvalue Pj as follows [30J:

w. = /1;,2+1;,2 (3.43)
J R I

1:;R
8. = - (3.44)
J (JJ j

where sR and G1 are the real and imaginary part of the eigenvalue Pj

defined as follows:

(3.45)
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The rates of change of oj. and B· can now be defi ned in terms of rates of
J J

change of real and imaginary parts of Pj' obtained by Eq. (3.23), as

follows:

dill. 1 dl,R (Jr'I
__-1- =~ (T. -- + r -)
'j 'R ') 'I ',)X,x (j)j (x (3.46)

(3.47)

3.3.2 Rates of Change with Respect to Mass, Stiffness and Eccentricity
Variables

The rates of change of Pj and {¢j} can now be specialized for the

basic variables rm, r k and e as follows:

Rates of change with respect to r :m

3p. 2 T
~ = - p. {¢.} [M] {¢ .}
3rm J J J

(3.48a)

3¢ .
{a/} - -

m

2m
+ I

9,=1
9,fj

Tp.({¢.} [~]{¢.}){¢.}
J J. J J

(3.48b)

Rates of change with respect to r k :

3p. T
_J = - {¢J'} [K]{¢J'}ark

Rates of change with respect to e:

3p.
_J = _ {~ }T(p [de] + [~J){~ }
de 't' j j 3e de 't' j
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3¢ . 1 ( T 3e )
{3e

J
} = - 2" {¢j} [<leJ{¢j} {¢j}

2m
+ ~~l (P:-Pj) {¢~}T(pj [~~J + [~~J){<Pj}

Mj

(3.50b)

(3.51)

(3.52)

3.4 Rate of Change of a Response Quantity Mode Shape

To assess variability of R~ from Eqs. (3.1) and (3.16), we need the

rate of a response quantity mode shape. This response quantity

could be story shear, story torsion, bending moment in a column, etc.

The mode shapes of these quantities are linearly related to the defor­

mation mode shape {¢j} as follows:

{fj } = [T]{¢j}

in which [TJ is a transformation matrix, which for force response quan­

tities will involve the stiffness parameter of the system. Using Eq.

(3.51), the rate of f j can be written as:

3fJ aT 8¢.
{~} = [3){¢j} + [T]{if}
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CHAPTER 4

NUMERICAL RESULTS

4.1 General

In this chapter, various numerical results obtained for a five

story, 10-degrees-of-freedom torsional building system shown in Fig. 2.1

are presented. Response values for maximum relative displacement,

maximum rotation, base shear, base torsional moment and bending moments

in the two corner columns of the first story are obtained. Systems with

parameter ~ varying between 0.001 to 0.5 have been considered. (The

results for very large ~ (>. 3 or more) may not be of much practical

interest. However, they are given here for comparison purposes.)

Various combinations of damping ratio values used here are: S = 0.02,

ax/ay = 2.5; S = 0.02, ax/ay = 4.0; S = 0.02, ax/ay = 1.0 and S = 0.05,

ax/ay = 0.40. Numerical results are obtained by the complex mode state

vector approach, as well as by the normal mode approach. Comparison of

the results obtained by the two approaches shows the sensitivity of the

system response to the assumption of proportionality. The frequency

parameter, w, characterizes the stiffness of the system and its values

of 1.0,6.0, 10.0 and 40.0 cycles per second (CPS) have been considered.

This parameter governs the lowest frequency of the system. For w = 1.0

and 40.0 CPS., lowest frequencies of 0.28 and 11.40 CPS, respectively,

were obtained. These fundamental frequencies represent a spectrum of

structures ranging from a flexible tall multi-story building to a more

stiff nuclear power plant.

Also obtained are the rates of change of frequencies, displacement

and rotational responses, base story shear and torsional moment and
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column bending moments with respect to change in mass, stiffness and

eccentricity ratio parameters. These rates show the sensitivity of a

response quantity with respect to the variable.

Ground motion used in this study has been modeled by a stationary

random process, defined by a spectral density function of the Kanai-

Tajimi form [4J as follows:

4 222w.+413.w.w
1 1 1
222 222(w.-w ) +4B·w.w
111

(4.1)

The parameters Si' wi and Bi of this density function are given in Table

4.1. This density function represents a fairly broad-band seismic

input, suitable for design purposes [33].

4.2 Frequency and Response Characteristics of the System

4.2.1 Frequency Characteristics:

Fig. 4.1 shows the variation with ~ of two lowest frequencies,

which can be identified as translational and rotational frequencies.

The frequencies were obtained, both by the undamped (normal mode) and

damped (complex mode) eigenvalue analyses. However, the difference in

the values calculated by the two approaches is indiscernible. Thus the

presence of nonproportionality apparently does not affect the values of

frequencies. For small values of ~, the two frequencies are close to

each other, as has been mentioned by several investigators in the past

[2,29]. This indicates a strong coupling between the translational and.

torsional mode. However, as ~ increases, the separation between these

two frequencies increases with decreasing modal interaction effect. The

rates of change with respect to mass and stiffness parameters and

eccentricity, e, for these two frequencies are shown in Figs. 4.2 and

4.3.

33



4.2.2 Characteristics of Relative Displacement and Rotation Responses:

Fig. 4.4 shows the variations of the root mean square (RMS) values

of the maximum relative displacement (in ft.) and rotational displace­

ment (re, in ft. units) of the system: the values for the top floor

represent the maximum values. The relative displacement values are

first seen to decrease with an increasing value of f and then start to

increase, whereas, the floor rotation, as would be expected, increases

with increasing valueof%.

Fig. 4.5 shows these values obtained by the two approaches: Normal

and complex mode approaches. The effect of assuming proportionality,

i.e. ignoring the nonproportionality effect introduces some error in the

calculation of responses for some low values of ~; however, it does not

appear to be very large.

For various sets of damping ratios used, Figs. 4.6-4.8 show the

variation with %of the rates of change of the relative displacement and

rotational responses with respect to the mass and stiffness parameters

and eccentricity ratio f.
4.2.3 Characterisitcs of Base Shear and Torsional Moment Responses:

The base shear and torsional moment are obtained by a cummulative

summation of shear forces and torsional moments obtained in various

stories of a multistory system. Such total forces are commonly used in

earthquake design of structures, and their values are obtained on the

basis of building code specification. Code provisions usually consider

inelastic behavior of structures. Here, however, the forces have been

obtained only for elastically behaving torsional systems, mainly with

the purpose of studying their sensitivity to the change in various

structural parameters.
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Figs. 4.9 and 4.10 show the variations of normalized base shear and

torsional moment RMS values with ~ for various combinations of damping

ratios. Normalization is done with respect to the weight parameter mg.

Thus, the plotted values in these figures represent the actual values

of base shear and torsional moment divided by mg. Again to examine the

effects of the assumption of proportionality, both the story shear and

torsional moments have been obtained by the normal and complex mode

approaches. Again some differences are noticed for small value of ~.

Of special design significance is the rapid build up of torsional

moment due to introduction of even small values of ~ = 0.05. A corre-r .

sponding reduction in the story shear is also noted. However, if the

presence of eccentricity is in advertant, no advantage of reduction in

story shear may be taken in a design. On the other hand, the effect of

the increased torsional moment must be considered to ensure safety of a

structural design.

Figs. 4.11-4.13 show the rates of change of these design quantities

with respect to mass and stiffness parameters and eccentricity ratio f.
Large values of the rates of changes and their variation for small

values of ~ may also be noted.

4.2.4 Column Bending Moment Response:

For earthquake design of a structure, one usually obtains the total

story shear and torsional moment as per the provisions of an appropriate

code. These shear and moment values are then distributed among various

columns and other resisting elements to obtain the design bending

moments in them. In a dynamic analysis of an elastic system, however,

the column bending moment can also be obtained directly by using the

bending moment modes in Eq. (3.1). For example, the mode shapes for
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bending moment in the jth column of the ith story can be written in

terms of the relative displacement and rotation mode shapes as follows:

M =~ k L.[X.-X. l-Y· .(e.-e. 1)]xi j L xi j 1 11 - 1J 1 1 -

My .. =} k L.[Y.-Y. l+x .. (e.-e. 1)]
1J y i j 1 11- 1J 1 1 -

(4.2a)

(4.2b)

in which Mx.. and My .. are the bending moments in the x- and y-direc-
1J 1 J

tions, respectively, are the x- and y-relative displacement and 6i is

the rotation of the ith floor; and x·· and y.. are the coordinates of
lJ 1J

the column with respect to the mass center.

The variations with~ of the normalized root mean square bending

moment response of columns 1 and 5 of Fig. 2.2 are shown in Figs. 4.14-

4.18 for various damping ratio combinations. Again, the normalization

is done with respect to the parameter mg. In the calculation of bending

moments in these columns, the values of xij and Yij equal to ~ r

have been used. This will be the case for the corner columns support­

ing a square floor slab. The lower set of curves is for the bending

moment in the x-direction and the higher set is for the bending moment

in the y-direction. A difference in the variation trend for columns 1

and 5 is noted. Also plotted on the same scale in Fig. 4.16 are shown

the bending moment values in the x- and y-direction for these two

columns. The bending moment in column 1 is seen to increase with ~

(a1most monotoni call y, except near the small val ue of j), whereasi n

column 5, it becomes constant with increasing~. Probably it is due to

the reason that for large ~, it is the difference between Yi and

(6 i xij /r) that determines the bending moment in column 5 and as seen

from Figs. 4.4 and 4.5 it does not increase rapidly with~. For column
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1 it is the sum of Vi and (8 i xij /r) that determines the bending moment

and as shown from Fig. 4.16, it is seen to increase.more rapidly with
e
r·

Also shown are the results obtained by the normal and complex mode

approaches to evaluate the effect of nonproportiona1ity. It does not

seem to introduce much error for column 1, but for column 5 some differ-

ences are noted, especially in the y-bending moment values for small

values of f.
Figs. 4.19-4.24 show the variations with f of rates of change of

the bending moments in column 1 and 5 with respect to mass and stiffness

parameters and eccentricity ratio f for various sets of damping values.

Sensitivity of the bending moment response with respect to eccentricity

ratio ~ at small values of f is indicated by large change in the rate of

change. The differences in the rate of change characteristics of bend-

ing moments in the two opposite side columns, column 1 and 5, especially

near small values of ~ may also be noted.

4.3 Effect of Variation of Frequency Parameter:

The results shown in Figs. 4.1-4.24 were obtained for a frequency

parameter value of 10 cps. which gave a lowest frequency of 2.81 cps.

for the system. To examine what effect the bending stiffness will have

on various response characteristics, similar plots were also obtained

for other values of the frequency parameter. The numerical values of

various results were different, but the variation in the values had a

similar trend and therefore the results for other values of w have not

been shown. However, for comparison selected results of the response

values of base shear, base torsional moment and V-bending moments in

columns 1 and 5 are plotted in Figs. 4.25-4.28 for different values of
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the frequency parameter. Higher response values are obtained for a

frequency parameter of 10 cps, as the input spectral density function,

Eq. 4.1, has a relatively higher ordinates in the frequency range near

the corresponding fundamental frequency of 2.81 cps. For the other two

frequency parameter values, the spectral density ordinates are of

relatively smaller magnitude.

4.4 Coefficient of Variation of Root Mean Square Response

Using Eqs. (3.3) and (3.4), the coefficient of variation of the

root mean square response of base shear, base torsional moment and bend-

ing moments in columns 1 and 5 due to the variabilities in the mass

parameter, stiffness parameter and eccentricity ratio, ~, have been

obtained. The coefficients of variation of rm, r k and ~ have been taken

as 0.15. Columns 2, 3 and 4 in Tables 4.2-4.6 show the coefficients of

variation for various responses due to each parameter variation individ-

ually, whereas the combined coefficient of variation is shown in column

5. To obtain the combined coefficient of variation, the random vari­

ables rm, rk and f are assumed to be independent. No specific trend in

the values is apparent; and even if there were a trend that would be

attributable to characteristics of the system. These results, however,

demonstrate the application of the methodology proposed herein for the

calculation of the uncertanity in the response.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this study the effects of changes in various structural param­

eters on the response of a structure excited by random ground excitation

has been studied. The random parameters considered are: the structural

mass, stiffness and eccentricity between mass and stiffness centers on a

floor. The variabilities in the mass and stiffness are characterized by

the random variables with the mean values equal to 1.0 and known standard

deviations. This assumes that all masses and stiffnesses varry in the

same proportion. More involved variations of masses and stiffnesses are

also possible. A uniform multistory building with eccentric mass and

stiffness center has been studied. The rates of change of frequencies

and various response quantities with respect to mass, stiffness and

eccentricity parameters are obtained. These rates of change indicate

the sensitivity of a quantity with respect to a parameter and emphasize

the relative importance of that parameter for that response. These

rates are also used in the calculation of response coefficient of

variation for given coefficient of variation values of the parameters.

Numerical results are obtained for a five-story, 10-degrees-of­

freedom structural system with various damping ratio and frequency

parameter values. Both approaches of response calculations- a more

accurate complex mode approach and an approximate normal mode approach ­

have been used to see what error is introduced if the nonproportionality

effects of a damping matrix are ignored. Based on these results the

following conclusions can be drawn:
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1. For large ~ ratios, the system frequencies are rather well

separated. In such a case neglecting off-diagonal terms of the matrix

[~]T[C][~], which represent the nonproportional damping coupling are not

important and can be neglected. That is, the damping matrix [C] can be

assumed to be proportional and the modal damping ratios can be obtained

by Eq. 3.2. This may, however, not be done if the i ratio is small and

the torsional stiffness ratio parameter is close to 1.0. In such a case

the structural frequencies are not well separated and modal interaction

is possible and it may affect some structural response. However, not

very severe effects were observed in some response values even at these

low ~ values. Torsional moment response values are in large errors;

however, since the torsional moment values are very small at small ~,

these large errors are of no practical significance. The differences in

the story shear values, Fig. 4.10, and column bending moment values,

Fig. 4.18, calculated by the two approaches, may differ significantly

for small ~ ratio (less than 0.05). Thus in such a case, if the dampi~g

matrix is nonproportional, it may be necessary to use the nonproportional

damping analysis approach presented in Ref. [30]. However, at this

stage of analysis it appears that for a safe design, the effect of

eccentricity may be neglected to obtain a conservative estimate of the

total base shear.

2. An introduction of eccentricity in a direction introduces tor-

sional moments in the system. This, however, is seen to reduce the

direct story shear. There is a sharp drop in the shear and a fairly

sudden rise in torsional moment up to ~ = 0.05. However, no advantage

in a design can probably be taken of this reduction in a story shear.
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For a safe design a value for ~ = 0 should be used in the calculations

for shear. This conclusion, however, needs further verification by a

more complete study in which an eccentricity in the y-direction is also

considered. The effects of inadvertent eccentricity inducing torsional

moment should, however, be considered, even if a structure is intended

to be symmetrical. A consideration of an ; value of the order of 0.05

for an inadvertant eccentricity seems very desirable.

3. The response coefficient of variation values calculated here

reflect the effect of uncertainties in the parameters. No dramatic

values of variabilities are obtained. It probably is due to the fact

that the seismic input defined by the spectral density function of Eq.

(4.1) represents a wide band input. A response spectrum curve for this

input is shown to be a broad band spectrum with a flat top over a fairly

wide frequency range. The variations in the mass and stiffness, though

cause a change in the system frequencies, do not produce much variations

in the response. This may, however, not be the case if the input is not

broad banded such as the filtered motion of a floor. In such cases, a

proper use of the methodology presented here may be desirable to include

the variabilities of parameters in the calculation of design response.
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Table 2.1 TORSIONAL STIFFNESS RATIOS FOR 9 DIFFERENT COLUMN LAYOUTS
IN FIGS. 2.4

FLOOR Ratio of translational stiffness in x- and y-direc. Kx/Ky
PLAN 0.50 0.75 1. 00 1. 25 1. 50 1. 75

a 2.25 2.62 3.00 3.38 3.75 4.13

b 1. 65 1. 73 1. 80 1. 88 1. 95 2.03

c 1.40 1.43 1. 46 1. 49 1. 51 1. 55

d 1. 29 1. 31 1.32 1. 34 1. 35 1. 37

e 1. 65 1. 73 1. 80 1. 88 1. 95 2.03

f 1. 75 2.13 2.50 2.88 3.25 3.63

9 1. 50 1. 65 1. 80 1. 95 2.10 2.25

h 0.97 1. 19 1. 42 1.65 1.88 2.10

1 1. 02 1.22 1. 44 1. 64 1. 84 2.04
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Table 4.1 PARAMETERS OF SPECTRAL DENSITy FUNCTION, ¢g(w), Eq. (4.1)

i s. w. S·
1 1 1

ft2-sec/rad rad/sec.

1 0.0015 13.5 0.3925

2 0.000495 23.5 0.3600

3 0.000375 39.0 0.3350
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Table 4.2 Coefficient of Variation of Root Mean Square Response of
Base Shear for ~x = 0.05 and ~y::; 0.02 .

Coefficient of Variation
in Percent Due To

Eccentri city
Ratio Mass Stiffness Eccentricity Combined

£ Parameter Parameter Ratio
(1) (2) (3) (4)

0.001 4.272 3.167 0.031 5.318

0.01 3.510 2.411 2.083 4. 740

0.02 2.971 1.855 3.509 4.970

0.03 3.067 1.997 3.210 4.868

0.04 3.304 2.250 2.528 4.730

0.05 3.512 2.473 1.932 4.710

0.06 3.667 2.641 1.481 4.755

0.07 3.778 2.766 1. 149 4.821

0.08 3.857 2.860 0.901 4.886

0.10 3.954 2.991 0.564 4.990

O. 15 4.017 3.186 0.133 5.128

0.20 3.942 3.366 0.092 5.184

0.25 3.744 3.622 0.209 5.214

0.30 3.399 4.008 0.175 5.258

0.40 2.293 5.170 0.827 5.716

0.45 1.762 5.718 -1.932 6.287

0.50 1.563 5.922 3.142 6.883
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Table 4.3 Coefficient of Variation of Root Mean Square Response of
Base Torsional Moment for ~x = 0.05 and ~y=0.02

Coefficient of Variation
in Percent Due To

Eccentricity
Ratio Mass Stiffness Eccentricity Combined

f, Parameter Parameter Ratio
(1) (2) (3) (4)

0.001 9.822 8.687 14.949 19.885

0.01 8.436 7.299 11.186 15.798

0.02 6.657 5.513 6.349 10.724

0.03 5.683 4.529 3.694 8.152

0.04 5.187 4.022 2.336 6.967

0.05 4.917 3.740 1.592 6.380

0.06 4.759 3.570 1.152 6.060

0.07 4.662 3.459 0.875 5.870

0.08 4.599 3.381 0.692 5.750

0.10 4.529 3.282 0.478 5.613

0.15 4.467 3.172 0.297 5.487

0.20 4.406 3.174 0.266 5.436

0.25 4.237 3.317 0.226 5.386

0.30 3.863 3.677 0.027 5.334

0.40 2.251 5.268 1.907 6.038

0.45 1.206 6.298 4.343 7.744

0.50 0.463 7.020 7.862 10.550
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Table 4.4 Coefficient of Variation of Root Mean Square Response of
y-Sending Moment in Column 1 for ~x =0.05 and ~y =0.02

:

Coefficient of Variation
in Percent Due To

Eccentricity
Ratio Mass Stiffness Eccentricity Combined

t: Parameter Parameter Ratio
(1) (2) (3) (4) (5)

0.001 4.630 11. 772 0.264 12.653

0.01 5.268 11. 174 0.777 12.378

0.02 4.980 11.550 0.173 12.579

0.03 4.789 11. 849 0.537 12.791

0.04 4.730 12.020 0.501 12.928

0.05 4.732 12.131 0.315 13.025

0.06 4.761 12.213 0.077 13.109

0.07 4.802 12.282 0.180 13.189

0.08 4.848 12.342 0.445 13.269

0.10 4.944 12.450 0.985 13.431

0.15 5.139 12.642 2.431 13.861

0.20 5. 181 12.671 4.101 14.290

0.25 4.948 12.421 6.039 14.671

0.30 4.297 11. 573 8.187 14.954

0.40 1. 359 8.789 12.273 15.157

0.45 0.680 6.752 13.801 15.380

0.50 2.429 5.020 15.556 16.525
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Table 4.5 Coefficient of Variation of Root Mean Square Response of
y-Bending Moment in Column 5 for ~x = 0.05 and ~y=0.02

Coefficient of Variation
in Percent Due to

Eccentricity
Ratio Mass Stiffness Eccentricity Combined

£ Parameter Parameter Ratio
(1) (2) (3) (4) (5)

0.001 4.244 12.152 0.289 12.875

0.01 2.852 13.485 1. 713 13.890

0.02 3.201 12.979 0.055 13.368

0.03 3.868 12.334 0.844 12.901

0.04 3.895 11. 990 0.949 12.643

0.05 3.966 11.802 0.802 12.476

0.06 3.980 11. 684 0.601 12.357

0.07 3.967 11. 599 0.403 12.265

0.08 3.943 11.532 0.223 12.190

0.10 3.882 11. 423 0.075 12.069

0.15 3.733 11.246 0.538 11. 862

0.20 3.626 11.133 0.706 11. 730

0.25 3.558 11. 064 0.607 11. 638

0.30 3.496 11. 004 0.192 11. 548

0.40 3.089 10.602 1.720 11. 176

0.45 2.501 10.028 3.354 10.866

0.50 1.705 9.242 5.464 10.871

50



AXES OF MASS----l
CENTER I

'i

!--AXES OF RESISTANCE
. CENTER

I

x

'-".J y ttl
GROUND~ Q

EXCITATION
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APPENDIX I

MASS, DA~lPING AND STIFFNESS MATRICES

Relative displacement vec r, {u}, and nondimensional mass [M],

damping [C] and stiffness [K] matrices of the torsional system are given

as follows:

{U} =

(m,1)

a

[M] =
(m,m)

y.
1

re l

o
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p.
1
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Y:N 2
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N r

(1. 2)



84



n,
+n

2
E:

,n
,+

E:
2n

2
-n

2
-E

: 2n 2
O.

O.

E:
,n

,+
E:

2n
2

K
,n

,+
K 2n

2
-E

: 2n 2
-K

2n 2
0

O.
O.

-n
2

-E
: 2

n 2
n 2+n

3
E 2

n2
+E

: 3n 3
-n

3
-E

: 3n 3
-E

: 2
n 2

-K
2n 2

E: 2n 2+E
: 3n 3

K
2n

2+
K

3n
3

-E
: 3n 3

-K
3n 3

.
.

.
.

.
[K

]
=

W
21

-n
·

-E
·n

·
ni

+
ni

+
'

E
:in

i+
E

i+
,n

i+
'

-n
;+

,
-E

:;+
,n

;+
,

,
,,

(m
,m

)
-E

·n
·

-K
;n

;
E

:;n
i+

E
:;+

,n
i+

'
K

.n
.+

K.
,n

.+
,

-E
:;+

,n
i+

,
-K

;+
,n

i+
l

,,
"

,+
,

co
I

-n
N-

l
-E

:N
-l

n
N-

l
nN

-l+
n

N
2N

_l
llN

_,
+2

N
lIN

-li
N

-c
N

nN
<.T

1

O.
-E

:N
-'n

N-,
-K

~1
-1

n
N

-'
£N

-,l
IN

-l+
£N

nN
KN

-ln
N_

l+
KN

Tl
N

-£
Nn

N
-K

Nn
N

O.
O.

-n
-E

: lf
1N

TIN
-K

NT
lN

N
O.

O.
-E

:N
n N

-K
Nn

'N
2 NTl N

KN
TlN

(1
.4

)



These matrices can also be partitioned as follows:

Mass Matrix

[M] ::;

where

. i
M

o.
. N-1

M

(1. 5)

. [po OJ1 1
M ::; r i 2

o Pi (y:-)

Damping Matrix

c1+c2

_c2

[C] = 28w

o.

where

. N-1
-C

o.

o.

(1.6 )

(1. 7)

£.il.]1 1

1jJ·il·1 1
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Stiffness Matrix

0,

(L 9)

0, '_KN- l KN-1+KN' _KN

O. _KN KN

(L10)

The mass, damping and stiffness matrices for the symmetric system

used to study the effect of variabilities of mass and stiffness on the

response of the system can be obtained from equations (1,2)(1.4) by eli-

.minating the rows and columns corresponding to the rotational distortion,

re, in the matrices [M], [C] and [K], These are given as follows:

Pl

O.

[M] =
(N,N)

O.

p.
1
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fl1 +fl2 -fl2

-fl2 fl2+fl3 o.

[C]=2Bw -]..I. ]..Ii +flit1 -flit1 (1.12)1

(N,N)

o. -flN_l ]..IN-l+flN -]..IN

-]..IN ]..IN

nl+n2 -n2

-n2 n2+n3 -n3 o.

[K] =w2 -no n;+n;+l -n· 1 (1.13)
(N,N)

1 1+

o. -]..IN-l -nN-1+nN -nN

-nN nN
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APPENDIX-XI

Various terms and their corresponding derivatives used in propor­

tional and nonproportiona1 damping cases in Chppter 3 are defined in this

Appendix.

11.1 Proportional Damping Case

11.1.1 Frequency Integrals

frequency integrals used in Eq. (3.1) are defined as follows:

a.
2 00

I1(w.) = C f ¢ (w)
J -00 9

4w.
2 2 ~ 2 2 2 dw

(w.-w ) +48·w.w
J J J

(ILl)

This integrals for the spectral density defined by Eq. (4.1) can be

written as:

where

(11.2)

Gl (w.,8.)
J J

2 2 2 2
= (6·w.+8.w.)[w. + w. + 46·S·w.w. + 4S.w.]

llJJ 1 J lJ1J lJ

- w.w.(S·w. + 8.w.)
1 1 1 J J 1

(IL3)

2 2B(w.,8.) = w.w.[(8·w. + B.w.) + (B.w. + B.w.) ]
:J J 1 J 1 J J 1 1 1 J J

2 2- (B.w. + 8.w.)(8.w. + 8.w.)(w. + W. + 48.S.w.w.) (11.4)
11 JJ'J J" J 'J'J

in which Si' Wi and Si are parameters of the spectral density function as

shown in Table 4.1.

b.
2 2w. W
J d222 2 2 2 w

(w j - w ) +48j wj w
(II.5)

which can be written as:
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~ 7T G2(wj , S•)
12(w.);:; L -2 S.w.w. B(w S.'

J ;=1 1 1 J j' J

where

(II. 6)

2 2G2(wj , Sj) = 4B.W•W• ( B.w· + B·w.) + w· (B.W• + B·w. ) (11. 7)
1 1 J 1 J J 1 11 1 J J

The rates of change of these frequency integrals can be obtained using

the following derivatives:

o 11 (wj ) _ 1 oI 1 (w.) ow.
ax [ 4 ] - ~ [wj ax J - 411 (wj ) ~]

w. w·
J J

and

as(wj,B j ) 2
- w.Gn(w.,B.) a }/ [s(w.,s.)]

JNJJ x JJ

(I 1.8a)

(11. 8b)

(11.9)

(I1.10)

where,
aG

1
(w.,B.) aG1 3w. 3G1 aSj--,--=-"J,---"J'-..- = __J + __
ax aWj ax aBj ax

where 1 = 1 and 2 in Eqs. (11.8)-(11.10) pertain to 11 and 12 respec-

tive1y, and

aG1 2 2 2 2 3-'\- = S.[w. + 8B·S.w.w. + 4S.(w .. + 3w.)] + 8S
1
·w.w.

oW • J J 1 J 1 J 1 1 J 1 J
J

oG
~.1 =w.[w~ + 86.S.w.w, t 4(3~(W~ + ( 2 )]
oPj J J 1 J 1 J 1 . 1 j
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aG2 _ 2 2-a- - 4S i w.(2S.w. + s.w.) + w·s.wj 1 . ., J J' 1 J

in which

aB 2 2
--~-- ~ w·[(s·w. + S.w.) + (s.w. + s.w.) ]
oW j ,. 1 J J' "J J

(II,l1c)

(I1.l1d)

(I1.12)

+ 2w1·w.[S,.(B
1
·w. + B.w.) + f3.(S.w. + f3.w.)]

J J J' J" J J

- [SJ'(S"w. + S.w.) + s.(s.w. + s.w.)] (w~ + w~ + 4S.S.w.w.)
J J' ., l' J J , J 1 J 1 J

- 2(S·w. + fLw.)(S.w. + S.w.)(w. + 2S.S.w.)
1J J' " JJ J 1J1

(I1. 13a)

aB
~ = 2w.w.[w·(S.w. + S.w.) + w.(S.w. + S.w.)]
U~j 1 J 1 1 J J' J" J J

2 2- [w.(f3.w. + S.w.) +w.(s.w. + B.w.)](w. + w. + 4S.S.w.w.)
J 1J J1 111 JJ 1 J 1J1J

- 4(S.w. + a.w.)(a.w. + S.w.)B.w.w.
l' JJ1J Jl'1J

(I 1. 13b)

11.1.2 Partial Fraction Factors P,Q,R,S

Constants P,Q,R and S are obtained from the solution of the fol1ow-

ing simultaneous equations [30]:

[c]{T} = {W} (I1.14)

where

[~
0 1

i]
P W1

[c] = 1 s {T} = Q {W} = WI? (I1.15)
U t R W3
V 0 S Wit

91



in which u = -2(1-2S~); v = 1.0; s = -2r2(1-2sj); t = r4; w1 = 0.; w2 =

2 21.0; w3 = -(l+r -2S j Skr); and w4 = r .
tiP aQ aR asThe rates of change of partial fraction factors ax' ax' ax and ax

with respect to a structural parameter can be obtained by solving the

following equations:

(IL16)

in Which.{~~} and-[~~] are obtained by straight forward differentiation

of terms in [c] and [W] with respect to parameter x of interest.

11.2 Nonproportiona1 Damping Case

11.2.1 Freguency Integrals

Frequency integrals used in equation (3.16) are identical to pro­

portional damping case in Section 11.1.1.

11.2.2 Partial Fraction Factors P',Q' ,R',S'

Factors pl,QI ,R',S' can be obtained from Eg. (11.15) in which ma­

trix [Cl remains the same as in Eg. (11.15) and the elements of vector

{W} are defined as:

Wi = Dl ; W2= Cl Dl + D2 + E2
W4= C2D2

in which

(ILl?)

(11.18)

02 = 4r[ajakSjSk + bj bk/1-Sj IT=73f - ajbkSj IT=73f - akb j Sk 1T=Sj]

Cl = -(1 + r2 - 4sj skr) ; C2 = r2
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F ::; -8[a j ak(r\ - rl3j ) - (ajbk~ - bjakr 1f=i3j)]

The derivatives of 01' D2, Cl , C2, E2, E3 and F and consequently of W"

W2, W3and W4are straightforward. Also, factor Aj is defined as:

A - b2 (2 2) 2 r.---}. - . + a. - b. {3. - 2 a.b. {3. v'1 -13';-
J J J J J J J J J

and its derivatives are straightforward.
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