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ABSTRACT

This report presents an evaluation of two sets of seismic design
provisions for masonry construction in the United States - namely, the
1979 Uniform Building Code and the ATC-3-06 "Tentative Provisions for the
Development of Seismic Design Regulations for Buildings".

The method of evaluation is based on an Over-Design Ratio which
compares the shear wall area required to resist code loads with that
required to resist realistic earthquake loads. The latter area is
determined from test results from the continuing masonry research program
at the Earthquake Engineering Research Center, University of California,
Berkeley. A summary of the test results is included in the report.

The report also contains a comparison of the shear wall areas
required by the two sets of seismic provisions, and changes to both sets

of provisions are suggested.
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1. INTRODUCTION

Masonry is the oldest and most traditional of all the construction
materials currently in use. The type of masonry unit has changed
substantially over the centuries, but the fundamental concept of a
masonry unit joined by a bonding material is still the basic form of
masonry construction. There are numerous examples of buildings in
Europe that attest to the longevity of masonry buildings; and
because of this long history of design and construction it would seem
logical to assume that design codes for masonry buildings would be well
established and widely accepted. Unfortunately, this is not the case.

A11 of the early European masonry buildings were based on trial
and error methods of construction. As engineering insight developed,
engineers could show explicitly why the methods of construction used
in the past worked. Then the conservative methods of trial and error
construction were refined and less massive forms of masonry construction
resulted.

During the last three decades our knowledge of earthquake
engineering has increased significantly, primarily as a result of
increased research activity in areas such as geology, seismology, soil
dynamics, analytical techniques, material behavior and structural
performance. A major part of the research in materials has been con-
centrated on steel and reinforced concrete building components.

Research on the dynamic characteristics of masonry structural components
has significantly lagged behind that of other construction materials.
However, in the past eight years masonry research activity has increased

substantially and if this increased effort continues,the seismic



performance of masonry buildings and structural components will be
more thoroughly understood in the coming decade.

Despite lack of knowledge, building codes in seismic areas must
address the design of masonry buildings. The guestion that has to be
considered is "Are seismic design provisions adequate, and what margin
of safety is inherent in them?" An attempt to address this question
was carried out as part of a continuing masonry research program at the
Earthquake Engineering Research Centef, University of California,
Berkeley, and is described in this report. A previous attempt in 1976
based on the limited data available at that time, is presented in an
earlier report entitied "Expected Performance of Uniform Building Code
Designed Masonry Structures". In the intervening five years much has
been learned, and the objective of this report is to summarize this
information and use it to evaluate seismic design provisions, both
current and proposed, for masonry buildings in the United States.

Two sets of seismic design provisions are evaluated here - the
1979 Uniform Building Code (UBC) and the ATC-3-06 "Tentative Provisions
for the Development of Seismic Design Regulations for Buildings". The
method of evaluation of a set of provisions (or code) for load bearing
masonry buildings is to compare the required area for shear resistance
of the code design with that derived from the state-of-the-art. (The
ratio of these required areas is called the Over-Design Ratio.) The
code required shear area is taken to be the ratic of the code design
seismic force to the code recommended masonry unit stress. The area
derived from the state-of-the-art is the ratio of a "realistic" earth-
quake force, obtained from the response spectrum of earthquake ground

motion studies, to the recommended stress determined from the Berkeley

test program.



In Chapter 2 the method used to evaluate the design provisions
is discussed. The results of the Berkeley test program are summarized,
and then used to determine ultimate shear strengths for masonry piers.
In Chapter 3 various comparisons are made between the two sets of pro-
visions,and the Over-Design Ratios are determined. Story shears, over-
turning moments and Over-Design Ratios are given in Chapter 4 for each
of a 3, 9 and 17-story building. Conclusions from the evaluation are

presented in Chapter 5.



2. METHOD OF EVALUATION AND SUMMARY OF RESEARCH RESULTS

2.1 Introduction

At the present time there is one code governing seismic design
of masonry, the Uniform Building Code, and another set of provisions,
ATC-3-06 "Tentative Provisions for the Development of Seismic Regula-
tions for Buildings", which is tentative in that it has not yet been
adopted. Both provisions are of necessity somewhat empirical. This
circumstance raises questions about their adequacy for safe earthquake
design and makes an appraisal of their provisions desirable.

It is not immediately apparent what should be the basis for such
an appraisal. We were guided in our choice by significant advances in
knowledge in two areas; namely, tHe force at each floor that must be
resisted in shear in a multi-story masonry building, and the ability of
different types of masonry to resist these forces. The first comes
from earthquake response spectra which reflect the state-of-the-art in
ascertaining the horizontal force imposed by an earthquake, and analysis
programs which indicate how this force should be distributed floor-by-
floor. The second is the result of an extensive experimental program
on the seismic resistance of masonry conducted at the Earthquake
Engineering Research Center of the University of California.

Accordingly, the appraisal of a code is made by comparing the
area of masonry required at a particular floor of a building, using a
particular kind of masonry, as ascertained from the particular code
provision, with the area as ascertained using the state-of-the-art

(or realistic) force and stress capability of the masonry from the



experimental program. The ratio of the code area to the "realistic"
area we term the Over-Design Ratio (ODR).

The ODR is described more fully in Section 2.2. The way in
which the floor forces are established using each of ihe two design
provisions is described in Section 2.3 and the provisions for allowable
shear stresses for seismic loads appear in Section 2.4.

The "realistic" earthquake floor force is explained in Section
2.5, and Section 2.6 gives a summary of the results of the Berkeley test
program. In Section 2.7 the ultimate shear strengths and associated

ductility factors, used in the study, are developed.

2.2 Over-Design Ratio

The area of masonry wall at a particular floor required to
resist a given load is the load divided by the shear stress capacity

of the masonry.

Load (2.1)
Shear Stress Capacity - .

Area Required =

In what follows we calculate this area three times for each
floor of each building. The first time using the provisions in
ATC-3-06, the second using the Uniform Building Code, and the third
time using a "realistic" horizontal load and shear stress capacity

obtained from the Berkeley test program. So that

- F_code _ F real
A code = o oode and A real o exp.
To make a code assessment we form the ratio
A code
A real ’

and call it the Over-Design Ratio (ODR). It follows then, that

_ Fcode , F real _
ODR = Gcode / o exp (Lc/Rc)/(Leq/Req) (2.2)



where
LC = F code - force specified by a code
RC = ¢ code - shear stress allowed by & code
Leq = F real - force resulting from realistic earthquake
Re = g exp. - ultimate shear stress evaluated from the test
q program.

If the ODR is greater than one, the code under study is conser-

vative, if it is less than one, its provisions are inadequate for safety.

2.3 Loads from Seismic Design Provisions

In the following subsections loads and stresses are evaluated
for both a reinforced masonry building where masonry takes all the
shear, and a more heavily reinforced masonry building where the rein-
forcement takes all the shear, in accordance with ATC-3-06 [1] and the

1979 uBC [2].

2.3.1 ATC-3-06 Tentative Provisions

The equivaient lateral force procedure given in ATC-3-06 for
the seismic base shear, V, in the direction under consideration is

defined by the formula

Vo= CoW (2.3)
where
W = the total gravity load of the building
CS = the seismic design coefficient.

The seismic design coefficient is determined in accordance with
the following formula:
1.2 AS 2.5 A

a
< (2.4)
RT3 = R

Cg



where

T

The

a coefficient representing the effective peak velocity-
related acceleration

a seismic coefficient representing the effective peak
acceleration

a coefficient for the soil profile characteristics of the
site, and S equals 1.2 for unknown soil properties

a response modification factor

the fundamental period of the building.

fundamental period of the building is either determined by

a dynamic analysis or by the formula:

where

The

vertically

where

0.05 hn
T= T (2.5)

height (in feet) above the base to the highest level of
the building

overall length (in feet) of the building at the base in
the direction under consideration.

seismic base shear, as determined by Eq. 2.3, is distributed

in accordance with the following formula:

F, = Cyy V (2.6)
M, hy
CVX = T———k— (2.63)
b Mt
1.0 T £ 0.5
k = 41(T+1.5)  0.5<T<2.5



wi, wx = the portion of W located at or assigned to
level i, x
hi’ hX = the height above the base to level i, x.

3

2.3.2 1979 Uniform Building Code

The seismic base shear determined by the 1979 UBC and acting in
the direction under consideration shall be determined in accordance

with the following formula:

V=Z1KCSW (2.7)
where
Z = numerical coefficient dependent on the seismic zone
I = Occupancy Importance Factor

K = horizontal force factor {Table 23-1 in 1979 UBC)

C = numerical coefficient determined in accordance with
Eq. 2.9
S = numerical coefficient for site structure resonance in

accordance with Eq. 2.8.

For Eq. 2.7 to be comparabie with the corresponding £q. 2.3 of

ATC-3-06, Eq. 2.7 is written as follows:

-
1]

csw (2.7a)
where

Cs

ZJTKCS. (2.7b)

The value of S shall be determined by the following formulas,

but shall be not less than 1.0:

2
T T T
S = 1.0 + = - 0.5(=]), 4 < 1.0, (2.8a)
Ts (Ts) Ts o

w
H]

2
1.2 4 0.6 - 0.3(Tl) , T 5 1.0, (2.8b)
S S



where

T shall be established by a properly substantiated analysis,
but shall be not less than 0.3 sec.

TS shall be established in accordance with UBC standard No. 23.1,
except that the following shall hold:

0.5 < T, <2.5 sec

and Tg shall be as near to T as possible within the range of
site periods.

Where TS is not properly established, -the value of S shall be 1.5.
The value of C shall be determined in accordance with the

following formula:

Lo & om. (2.9)
15/T

Furthermore, the product CS need not exceed 0.14. This will be the
limiting factor when S = 1.5 represents unknown soil properties. For
an Importance Factor equal to 1, and a K factor of 1.33 for load-bearing

shear wall type buildings, C; reduces to

¢! = L33ZS . p15.1.337. (2.10)

o 15/T

The fundamental period, T, of the building can be determined either by

dynamic analysis or by the formula

0.05 hn
T = —— (2.11)
/D
where
D = dimension of the structure (in feet) in a direction

parallel to the applied forces.

Equation 2.11 is the same as Eq. 2.5 for D = L.
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The seismic base shear force determined from Eq. 2.7 is

distributed vertically in accordance with the formula

Fo = Cyy (V- Fp) (2.12)
where
W, h
_ X X
Cvx = —g—-—~———— {2.13)
W. h
shp 1
wi, W, = the portion of W Tocated at or assigned to level i, x
hi’ hx = the height above the base to level 1, x
and
0 T<0.78S
Fy = (2.18)

0.07TV<0.25V T>0.7S.

Ft is the portion of V considered concentrated at the top of the struc-

ture in addition to Fn'

2.4 Allowable Stresses for Seismic Design Provisions

Both seismic design provisions tabulate allowable stresses for
masonry. Both sets of prov%sions adjust the allowable stresses when
seismic design is performed to account for both the cyclic nature of
seismic loads and the past performance of masonry buildings in earth-

quakes.

2.4.1 ATC-3-06 Tentative Provisions

The ATC-3-06 Tentative Provisions require "the strength of
members and connections subjected to seismic forces acting alone or in

combination with other prescribed loads to be determined using a
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capacity reduction factor, ¢, and 2.5 times the allowable working
stresses of Chapter 12A. The value of ¢ shall be as follows:

When considering shear carried by shear reinforcement and

o
o
p—
o+
w
.
.
.
©
]

0.6

When considering shear carried by the masonry . ¢ 0.4."
From the stress tables of Chapter 12A of ATC-3-06 and the use of the
2.5 multiplier and strength reduction factor, the allowable stresses

for seismic loads are those shown in Table 2.1.

TABLE 2.1
ATC-3-06 ALLOWABLE STRESSES FOR SEISMIC LOADS

M M o_
Va2l va - O
Unreinforced Masonry:
Grouted 25 25
Hollow Unit 12 | 1
Reinforced Masonry:
a) Masonry takes 0.9 ¢?;'< 40 2.0 /ﬁ; 5 50
all the shear
b) Reinforcement 2.25 Jfo < 112.5 3.0 /f1 < 180
takes all the
shear

A11 values are in PSI and special inspection is required.

For values of M/Vd between 0 and 1 a straight 1ine interpolation
should be used.

2.4.2 1979 Uniform Building Code

The 1979 UBC requires forces for mésonry shear walls to be

increased by 50% (footnote in Table 24-H) if they are seismic. In
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addition, the allowable stresses for seismic loads are permitted to
increase by one-third over the maximum allowable working stresses of
Table 24-H. When these two factors are considered, the following
Table is obtained for effective allowable shear stresses for masonry
shear walls when considering seismic loads. The values given in
Table 2.2 are obtained by multiplying the allowable stresses of
Table 24-H of the UBC by 1.33/1.5.

TABLE 2.2
1979 UBC ALLOWABLE STRESSES FOR SEISMIC LOADS

M M.
vaz'! va = O
Unreinforced and
Partially Reinforced:
Grouted 25 25
Hollow Unit 12 12
Reinforced Masonry:
a) Masonry takes 0.8 /F1 < 30.2 1.78 Vi < 44.4
all the shear _ -
b) Reinforcement 1.33 /f1 < 66.5 1.78 ¥F1 < 106.7
takes all the
shear

A1l values are PSI and for inspected masonry.

For values of M/Vd between 0 and 1 a straight line interpolation
should be used.

2.5 Loads Resulting from a "Realistic" Earthquake

The most difficult aspect of a study of this kind is to define
in simple terms a "realistic" earthquake force. Two methods can be

used to investigate the dynamic response of a structure to a strong
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motion earthquake. One of the methods requires the formulation of an
inelastic model of the structure. The model is then subjected to a
known ground motion and the inelastic dynamic response is determined.
The results of a study of this type depend on how accurately the struc-
ture is represented by the inelastic model. This approach, although
rather time consuming and costly, is sometimes used to check the final
design of important structures. The major deficiency of this method
for masonry buildings is that the properties of masonry structural
elements in the inelastic range have not yet been incorporated in an
inelastic computer program, but are still under investigation. The
other method, which is the one used here, separates the properties of
the structure from those of the earthquake. The earthquake is
represented by a response spectrum which is then modified to accommodate
the inelastic or ductile response of the building. The building is
modeled elastically and the forces resulting from the reduced response

spectrum are determined.

2.5.1 Inelastic Response Spectrum

In the development of the ATC-3-06 Tentative Provisions a
distinguished group of experts including geologists, seismologists,
soils engineers and structural engineers defiped ground motion response
spectra to represent realistic ground shaking in all regions of the
United States. These spectra are normalized and combined; the
resulting spectrum is shown in Fig. 2.1. ATC-3-06 states that this
spectrum has an 85% - 90% probability of not being exceeded in 50 years.

To define this spectrum the ATC-3-06 provisions introduce two
parameters - effective peak acceleration (EPA) and effective peak

velocity (EPV). The EPA is, by definition, proportional to the
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spectral ordinate for periods in the range 0.1 to 0.5 sec; the
EPV is proportional to the spectral ordinate at a period of about 1
sec. The constant of proportionality (for a 5% damped spectrum) is
set at a standard value of 2.5 in both cases.

The following relationship exists between EPA and EPY and the

coefficients Aa and Av of Eq. 2.4.

EPA = Aa

(2.15)

EPY 30 S Av

where EPA is expressed as a fraction of gravity and the units of EPY
are in./sec.

S = s0il profile coefficient of Eq. 2.4.

In this study, for simpliicity and design purposes, the flat
portion of the spectrum of Fig. 2.1 is extended in the low period
range. The resulting normalized deéign ground mofion response spectrum
is shown in Fig. 2.2. The elastic design response spectrum for 5%

damping is then defined to be

max _ _
SaoX = 2.5 EPA = 2.5 A,
(2.16)
max _ _
Sy X = 2.5EPV =755 A.

If the soil profile is unknown, let

S = 1.2,

then

Max _
Sv = 90 Av.

When the standard approximate relationship between velocity and

acceleration, namely
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2m Sv

Sa = wS, = —3— (2.17)

max
c®d = Sg—a < zl (2.18)
can be expressed as
max max
c®9 = 2—“—9-?"—— < Zi : (2.19)
where
c®9 = acceleration spectral ordinate
g = acceleration of gravity
T = period of vibration.

To construct inelastic acceleration response spectra from the
elastic response spectrum we adopt the method of Newmark and Hall([3],
[4]1,[5]) which is explained as follows:

For small excursions into the inelastic range, when the resis-
tance of the structure is idealized as an elasto-plastic function, the
total displacement of the structure is assumed to remain unchanged,
but is divided by the ductility factor, u, to obtain yield displacement
or acceleration. This is assumed to be valid for periods of vibration
greater than about 0.5 sec. For stiffer structures with a Tower period
of vibration and also an elasto-plastic resistance function, a new
level of acceleration is reached by equating the energy absorption of
the elasto-plastic system to the energy absorption of the elastic
system. Hence, the accelerations are divided by a factor of v2u-T.

This is explained in Fig. 2.3 which is taken from reference 6.
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The resulting expression is then valid for the inelastic

response spectra for all ductilities:

max max
ceq . 2w SV . Sa (2.20
- < 20)

H wgltl }Eu_'] g

Plots of Cﬁq, presented in Fig. 3.20, are discussed in Section 3.1.3.
To evaluate the base shear for a single degree-of-freedom system
exhibiting a ductile response, Eq. 2.20 is used as the base shear

coefficient in the same manner as Eqs. 2.3 and 2.7; i.e.,
Vo= cﬁq W, (2.21)

For a multi degree-of-freedom system, some form of modal combination
must be used to define the base shear force. The individual modal

responses are given by

V. = cﬁ?i W, (2.22)
where
Vi = base shear determined for the ith mode of vibration for
ductility u,
Cﬁ?i = corresponding spectral value, and
W, = effective weight responding in modé i.

i
The most commonly accepted method of combining forces of
different modes is the square root of the sum of the squares method.
This is a statistical approximation and its validity for use with an
inelastic response spectrum has not been established. Nevertheless,
for the purposes of this study, it will be used in Chapter 4 where
three individual buildings are studied, to determine the base shears

from the inelastic spectrum. In Chapter 3 where the ODR is evaluated
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from base_shear forces, Eq. 2.22 is simplified by incorporating a
modal-participation factor, o , such that only the first mode response

of the building needs to be considered. Then

vV = cﬁq ol (2.23)
where
v = total base shear
o = modal-participation factor (see Appendix A)
W = total gravity load

Cﬁq = design response spectra defined by Eq. 2.20.

The only problem now remaining is to get a reasonable estimate
of the modal-participation factor, a. Using the results of the
analyses of the three buildings o was determined (see Appendix A)

to be

a = 0.017/T + 0.686 < 1.0. (2.24)

This is assumed to be valid for stiff structures with three or more
degrees of freedom in the direction under consideration.

This means that by using a fraction o of the total weight with
the first mode only, an estimate of the "realistic" earthquake forces

can be made.

2.6 Summary of Test Results

This section provides a review and analysis of the test results
obtained in the University of California, Berkeley test program to
date. Tables 2.3 to 2.5, obtained from references 7 to 11, summarize

the results of the tests and indicate that the average ultimate shear
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stress is affected by the height-to-width ratio of the piers, the type
of masonry material, the amount of reinforcement and the type of
grouting - either full or partial.

A comparison of the effect of the variables on the ultimate
strengths and the inelastic behavior of the piers is shown graphically
in the hysteresis envelopes presented in Figs. 2.6 through 2.17.

The first two subsections below discuss the inelastic behavior
of the piers and the effects of various parameters on the ultimate
strength; the third subsection discusses methods for predicting the
ultimate strength. Then based on this discussion, the ultimate stresses
and ductility factors used in this study are established and justified

in Section 2.7.

2.6.1 Inelastic Behavior of Piers

Recently the single pier test setup (Fig. 2.4) used for the tests
reported here, has been modified (Fig. 2.5). This modification was made
because in these tests the value of the compressive vertical load acting
on the pier increased as the in-plane horizontal displacement of the
test specimen increased. This increase was due to the natural tendency
of constraining steel columns to maintain a constant length, and dis-
torted the results by changing the mode of failiure of some of the piers
from flexure to shear. Thus, the inelastic behavior of a pier after a
major diagonal crack occurs, may be different from the behavior observed
in the tests reported here. These potential distortions of the test
results have been validated by preliminary tests using a modified
single pier test setup that eliminated the additional compressive load
on the piers. The modification consisted of replacing the steel columns

by vertical actuators; these actuators impose forces of equal value but
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opposite sign at two sides of the pier and the magnitude of the forces
is selected to maintain the point of inflection of the deformed shape
at the mid-height of the pier. The modified single pier test setup
permits the test to be developed under any desired constant bearing
Toad, and a series of tests is presently underway to ratify or modify
the previous results concerning the inelastic behavior of the piers
after major diagonal cracks have occurred. Consequently, a detailed
discussion of the characteristics of the shear mode of failure wiil not
be presented here but will await ratification or modification of the

results obtained to date.

2.6.1.1 Flexural Mode of Failure

The inelastic characteristics obtained for the four double piers
displaying a flexural mode of failure, are quite desirable (see Fig. 2.6)
in that they are similar to those displayed by elastic-plastic materials.
Furthermore, the use of plates in mortar joints in Tests HCBL-21-15 and
16 [7] significantly improved the inelastic performance of the piers.
These results are similar to those obtained by Priestley ([1273,[13]) in
his extensive cantilever pier tests on the flexural mode of failure,
from which he reports ductility factors ranaing from 4 to 8. Thus,
it is clear that if a pier can be designed to fail in flexure then
desirable inelastic performance can be anticipated.

The vertical compressive load is an important parameter in
determining the inelastic performance of the piers since it can change
the mode of failure of the piers and thereby significantly affect the
inelastic characteristics. The effect of an increasing compressive
load can be removed from the test results for a single pier as

discussed in reference 9. The flexural hysteresis envelope thus
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derived from the experimentally determined envelope for the pier failing
in shear (i.e., assuming the compressive load is constant) is similar
to the hysteresis envelope for the double pier; it is also very

desirable as shown in Fig. 2.17 for Tests HCBR-21-8 and 9.

2.6.1.2 Shear Mode of Failure

i) Effect of partial grouting: From the hysteresis envelopes
presented in Figs. 2.13 and 2.15, it is clear that there is no signifi-
cant difference in the inelastic characteristics of partially and fully
grouted hollow concrete block piers. However, for hollow clay brick
piers there is a significant difference. As seen in Figs. 2.14 and
2.16 the inelastic behavior of the partially grouted HCBR piers is
significantly less desirable than that of the fu11y grouted piers; the
deformation capability of the partially grouted piers is less, the
strength degradation is much sharper, and the ultimate strength based
on net area stresses is always smaller than that of the corresponding
fully grouted piers.

ii) Effect of horizontal reinforcement: In general, the test
results of Figs. 2.7 through 2.12 show that horizontal reinforcement
increases the ductility of the pier and hence the energy that the pier
is able to absorb. An increase in the amount of horizontal reinforce-
ment improves the crack pattern and increases the pier's deformation
capacity. However, there is not a linear relationship between the
amount of reinforcement and the amount of improvement obtained.
Furthermore, the horizontal reinforcement does not appear to influence
the rate of strength degradation of the pier after the ultimate
strength has been attained, although this will be studied more

extensively with the new test setup. This favorable influence of the
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reinforcement on the pier behavior holds for the HCBL and HCBR piers,
but is quite minimal for the double wythe, grouted core, clay brick

(CBRC) piers.

2.6.2 Effect of Various Parameters on the U]timate Strength

2.6.2.1 Effect of Type of Material and Height-to-Width Ratio

The three different types of material had different effects on
the average ultimate stresses associated with the shear mode of failure.
The trends in the results for the hollow concrete block (HCBL) and
hollow clay brick piers (HCBR) were similar and, in general, the hollow
clay brick piers had higher ultimate stresses than the corresponding
hollow concrete block piers, except for piers with a height-to-width
ratio of 0.5. The values for the grouted core clay brick piers {CBRC)
were different from both the HCBR and HCBL piers in that they did not
increase as the height-to-width ratio decreased. Whereas for both the
HCBL and HCBR piers there was an increase in the ultimate stress as the
height-to-width ratio decreased.

For the HCBL piers the range of the average ultimate shear stress
was 106 - 212 psi for piers with a height-to-width ratio of 2, 123 - 231
psi for a height-to-width ratio of 1 and 310 - 413 psi for a height-to-
width ratio of 0.5. The corresponding ranges for the ratios of average
ultimate shear stress to V?;‘were 2.1 -4; 3.0 - 6.3 and 5.2 - 7.6,
respectively.

For the HCBR piers the range of the average ultimate shear stress
was 206 - 321 psi for a height-to-width ratio of 2, 225 - 337 psi for
a height-to-width ratio of 1 and 318 - 437 psi for a height-to-width
ratio of 0.5. The corresponding ranges of the ratios of average ultimate

shear stress to /ﬁ; were 3.1 - 4.8, 4.2 - 6.5 and 6.0 - 8.2, respectively.
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For the CBRC piers the range of the average ultimate shear
stress was similar for piers of all three height-to-width ratios and
was 213 - 272 psi. The corresponding range for the ratio of average
ultimate shear stress to J?;'was 4.3 = 5.3,

The above values are listed in Tables 2.6 through 2.9 and

illustrated graphically in Fig. 2.18.

2.6.2.2 Effect of Horizontal Reinforcement

For the hollow concrete block piers the effect of varying the
amount of horizontal reinforcement was included in only one set of the
2 to 1 double piers. The 0.25% horizontal reinforcement (area of steel
to gross vertical area of pier) increased the ultimate strength by
approximately 40%. For the HCBL-11 piers, horizontal reinforcement
increased the ultimate shear stress only when significant amounts
(0.34% and 0.48%) were added to the piers. The increase in strength
was of the order of 30%. For the HCBL-12 piers, the effect of
increasing the amount of horizontal reinforcement was less clear
because of the variations in the results. However, there was a trend
of increasing strength with increasing amounts of reinforcement (see
Fig. 2.19a).

For the hollow clay brick piers increaging the amount of
horizontal reinforcement appeared to increase the ultimate stress of
the HCBR-21 piers and, to a lesser extent, that of the HCBR-12 piers,
although it had little effect on the HCBR-11 piers (see Fig. 2.19b).

For the grouted core clay brick piers increasing the amount of
horizontal reinforcement had 1little or no effect on the ultimate

strength for all three height-to-width ratios (see Fig. 2.19c).
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2.6.2.3 Effect of Type of Grouting

Partial grouting was included as a variable in a limited number
of tests on both the hollow concrete block and hollow clay brick piers
with height-to-width ratios of 2 and 1. It was not included in the
tests on piers with a height-to-width ratio of 0.5.

For the hollow concrete block piers with a height-to-width ratio
of 2 partial grouting had no significant effect on the net ultimate
shear stress (see Table 2.3). In the 1 to 1 piers the net ultimate
shear stress of the partially grouted piers was 20 to 30% greater than
that of the fully grouted piers.

For the hollow clay brick piers partial grouting caused a reduc-
tion of O to 30% in the net uitimate shear stress of the piers (see
Table 2.4}. Furthermore, partial grouting significantly decreased the
desirability of the inelastic performance of the piers as discussed in

the following subsection.

2.6.3 Prediction of Ultimate Strength

The ultimate Tateral load strength of each pier is determined by
the Tesser of the lateral load capacities associated with each of the
two modes of failure. The ultimate strength associated with the slid-
ing modes of failure has not yet been fully investigated and, therefore,
the following discussion will be restricted to the flexural and the
shear modes of failure.

The “fTéxura1 lateral load capacity" (lateral load capacity
associated with the flexural mode of failure) is a function of the
tensile yield strength of the vertical reinforcement, the applied axial
Toad and the dimensions of the pier [8]. The methods suggested to

predict the flexural lateral load capacity of a pier are similar and
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reasonably accurate, and are based on methods commonly used for
reinforced concrete flexural elements. If all of the tension steel is
assumed to be yielding, and the moment of the resultant of compressive
forces around the extreme compression fiber is neglected, the moment
capacity of a section under an axial compressive force N is given by

" d
N = J A fy d. + Nz (2.25)

where di is the distance between the vertical reinforcing bar with area
ASi and the extreme compressive fiber, d is the width of the pier and
fy is the yield strength of the vertical reinforcement (Fig. 2.21). If
Mb and Mt denote the moment capacity of the bottom and top sections,
respectively, of a pier of height h, the flexural lateral load capacity

of a pier fixed against rotation at both top and bottom sections is

B s ]F(Mt+Mb). (2.26)

If special devices such as those described in references 7 and
13 are used to increase the compressive strength of the masonry, the
ultimate strength of the vertical steel fu should be used in Eq. 2.25
instead of yield strength fy to give an upper bound on the ultimate
strength.

For the small number of piers that failed in the flexural mode
of failure, Eq. 2.25 predicted the ultimate strength reasonably
accurately. Furthermore, in Priestley's test program in which he
extensively studied the flexural mode of failure, Eq. 2.25, using both
fy and f ., gave the bounds for all the cantilever piers he tested [12],
[13].



4.

The "shear lateral load capacity" (lateral load capacity
associated with the shear mode of failure) may be defined at two levels.
The "shear crack strength" is defined as the lateral load required to
produce the first major diagonal crack; the "ultimate shear strength"
is the maximum lateral Toad resisted by the piers. In the case of the
piers with height-to-width ratios of 2, both quantities are the same
([71, [9], [10]). In the case of the squat piers, (height-to-width
ratio of 0.5), the lateral load continued to increase after the occur-
rence of the first major diagonal crack because the compression toe of
the pier was wide enough to carry a signjficant shear. Increased
amounts of cracking finally produced the failure of the pier at ultimate
loads that exceeded the shear crack strength by percentages varying
from 5% (CBRC piers), to 11% {(HCBR piers), to 67% (HCBL piers).

Concurrent with the erection of the piers, prisms and square
panels were constructed using the same mortar, grout and masonry.units.
The prisms were one block or brick wide, had the same thickness as the
piers and a height five times the thickness. The square panels had the
same thickness as the piers and the panel dimension was either 32 in.
(HCBL) or 36 in. (HCBR and CBRC). The prisms were tested in uniaxial
compression, the paneils in diagonal compression (see Figs. 2.22 and

2.23). Tables 2.6 to 2.8 present the prism compressive strength f&,

0
ter

the pier strength associated with the occurrence of the first major

the panel critical tensile strength o, .., as formulated by Blume [8],

diagonal crack Tgs the average ultimate shear stress t , and the pier

u

critical tensile strength o The pier critical tensile stress was

ter’
computed at the neutral axis of the pier sections, following the simple
beam theory for a section under combined flexure, shear and axial force;

a parabolic distribution of shear stress over the cross section was
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assumed. Tables 2.6 to 2.8 also present a comparison of the ratios

0

ctcrlotcr

: TS/J?;', and tu/JT;'for all tests that failed in the shear
mode of failure. Figure 2.18 is a plot of the average ultimate stress
T expressed in terms of /?;'versus the moment to shear ratio of the
piers. Figures 2.19 and 2.20 are similar plots with the amount of
horizontal reinforcement and axial stress, respectively, as the
abscissa.

From Tables 2.6 to 2.8 and Figs. 2.24 and 2.25, it is clear that

there is a very wide scatter both above and below 1 in the ratio

0
ter”

induces a diagonal tension failure similar to that observed in the

Gtcrlo This is somewhat surprising in that the square panel test
piers. However, it indicates that a prediction of the shear crack
strength based on the critical tensile strength measured from a
diagonal compression test on a square panel test must account for the
scatter and lower bound values obtained in this program. Because of
the need for conservatism in utilizing this test data some other method
of predicting the shear crack strength may be more appropriate.

The ratios of Tg and T, to /ﬁ; shown in Figs. 2.18 through 2.20
and Tables 2.6 to 2.8, also contain a significant amount of scatter,
although at this time, prediction of the shear crack strength or
ultimate strength based onAfﬁ and height-to-width ratio appears to
be a reasonable approach.

This statement should be qualified at this time because piers
of similar dimensions and reinforcement ratios have not been tested
where fﬁ varies significantly, and piers with height-to-width ratios

greater than 2 have not been tested.
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2.22 PRISM TEST AND MODULUS OF ELASTICITY MEASUREMENT
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steel is present. The case of Tight horizontal reinforcement is
defined as the ratio of the area of reinforcing steel to the gross
vertical area of the pier being less than 0.002, whereas a heavily
horizontally reinforced pier has a ratio greater than 0.002. In these
two cases jamb steel is assumed to be present.

Some of the recommended values of Tulf?;'are on the conservative
side, but they must account for the effects of some of the variables
that have not been included in the test program, such as variations in
workmanship, piers with M/Vd ratios greater than 1, and significant
variations in fﬁ. In addition, the recommended values of 1 and 0 for
M/Vd must provide a reasonable estimate when interpolated for an M/Vd
ratio of 0.5.

The Newmark-Hall method of reducing the elastic spectra to
account for ductility is based on an idealized elasto-plastic force-
deflection relationship as discusséd in Section 2.5.3. Consequently,
the hysteresis envelopes of Figs. 2.6 to 2.17 must be idealized as
elasto-plastic curves. To do this, an appropriate ductility factor
and corresponding ultimate strength must be evaluated from the test
results. For the horizontally reinforced walls a ductility factor of
2 is assumed to represent the test results conservatively. For the
piers with Tight horizontal reinforcement the associated ultimate
strength is assessed at 80% of the recommended value given in Table 2.9.
For heavily horizontally reinforced walls the ultimate strength
associated with a ductility factor of 3 is assessed at 80% of the
recommended values given in Table 2.9. For the walls with jamb steel
only, no ductile response is assumed and thus 100% of the recommended

values of Table 2.9 are used with a ductility factor of 1.

Preceding page blank
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The ductility factor of 2 for walls with Tight horizontal
reinforcement was assessed from the test results reported here and
shown in Figs. 2.6 to 2.17. The limited number of tests since per-
formed with the modified single pier test setup indicates that at high
constant compressive loads the post cracking behavior of the piers is
more brittle, and therefore less desirable, than that observed in the
tests described here. This performance may only be for piers subjected
to high compressive loads, but until more test data are available the
conservative value of 2 will be used.

The factors for ductility and ultimate strength discussed above
are applicable for partially grouted hollow concrete block piers, but
they are not applicable for partially grouted hollow clay brick piers.
As discussed previously, hollow clay brick piers have little or no
ductile capacity and their net ultimate strength is 70 to 100% less
than that of the fully grouted piers. Therefore, the analysis presented
in the following chapters is applicable to partially grouted hollow
clay brick piers if a ductility factor of 1 is used in conjunction with

70% of the recommended net ultimate strengths of fully grouted piers.
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TABLE 2.10
ULTIMATE STRENGTH REDUCTION FACTORS

DUCTILITY | STRENGTH
FACTOR REDUCTION
Visaist FACTOR
S
i
JAMB STEEL ONLY 1 1.0
LIGHT HORIZONTAL REINFORCEMENT 2 0.8
(< 0.002)
HEAVY HORIZONTAL REINFORCEMENT 3 0.8
(> 0.002)
FLEXURAL FAILURE(l) _ 4 0.8

NOTE: (1) This assumed strength reduction factor is valid
for this study only, since its value is a function
of the dimensions, amount of reinforcement etc.
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3. COMPARISON AND EVALUATION OF U.S. SEISMIC DESIGN PROVISIONS

3.1 Introduction

The seismic design loads and stresses for the two sets of design
provisions have been summarized in Chapter 2; a "realistic" earthquake
Toad was defined and recommended ultimate strengths presented. In
Chapter 3 these values are compared and evaluated. First, in Section
3.2 a comparison is made between the design base shear forces for the
two sets of code provisions; then these are compared with the base
shear forces resulting from a "realistic” earthquake load. Section 3.3
provides a tabular comparison of the allowable shear stresses recom-
mended by the codes with those recommended from experimental results,
and Section 3.4 combines the results of Sections 3.2 and 3.3 to provide
a comparison of the minimum required shear areas for seismic loads for
the two sets of provisions. In Section 3.5 the Over-Design Ratios are
determined for the two sets of provisions using the base shear of a
building, and these then provide the basis for the evaluation of the

design provisions presented in Section 3.6.

3.2 Comparison of Loads

3.2.1 ATC-3-06 Tentative Provisions

Equations 2.3 and 2.4 are the base shear equations used in
ATC-3-06. For the purpose of this study we assume the soil properties
to be unknown; it follows that $ is 1.2.

Then, using

Aa = Av = 0.4 for the zone of highest seismicity



7

and

3.5 for reinforced masonry

1.25 for partially reinforced and
unreinforced masonry,

from Eq. ‘2.4 of Section 2.3.1 the seismic design coefficient is

C, = 0.1646 T2/3 < 0.2857 for reinforced (3.1a)
masonry,
c. = 0.4608 T2/3 < 0.8000 for partially rein-  (3.1b)

forced and unreinforced
masonry.

Equation 3.1 is plotted in Fig. 3.1.

3.2.2 1979 Uniform Building Code

Equation 2.7 is the base shear equation used in the 1979 UBC.
Thus, ifZ=1.0, I = 1.0, K=1.33, S = 1.5 and CS } 0.14, from Eq. 2.7b

of Section 2.3.2 the seismic design coefficient is

¢! =0.1330 17/2 < 0.1862 (3.2)
for all masonry buildings. Equation 3.2 is plotted in Figure 3.1.

3.2.3 "Realistic" Earthquake

Equation 2.23, together with Egs. 2.20, 2.16 and 2.24, gives
the base shear for the "realistic" earthquake. For Av = 0.4, from

Eqs 2.20 and 2.16 of Section 2.5.1

eq _ 0.5854 ]
C. i g = (3.3)

Eq. 3.3 is plotted in Fig. 3.2 for different ductilities, u.
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3.2.4 Design Provisions vs. "Realistic" Earthquake Load

A direct comparison between the design provisions and the
realistic earthquake loads can now be made. Ignoring the modal-

participation factor, a, for the time being, we can evaluate the ratio

L C
C S
—_ = —= (3.4)
]"eq ced
u
using Eqs. 3.1 and 3.3.
It follows that, for the ATC-3-06 Tentative Provisions, for

reinforced masonry

0.2857 5 T < 0.4373 sec.

10.1646

573 3 1 > 0.4373 sec.
C ae
C:q = ; (3.5a)
N . T < 0.5854 y2u-T

VZ2u-T - B

L0.5854 < T 0.5854 y2u-1

uT ? n

and for partially reinforced and unreinforced masonry

0.8000 ; T < 0.4373 sec.

%4?-:—2—@- s T >0.4373 sec.
.
5._ = (3.5b)
e
1 . e 0.5854 V2u-1
v2u-1 - =

0.5854 . ., 0.5854 y2u-1
171 u
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Similarly, from Eqs. 3.2 and 3.3, for the 1979 UBC for all masonry
buildings-

0.1862 ; T < 0.5102 sec.

s T > 0.5102 sec.

S_ = (3.6)

1, 0.5854 VBT
vZu-1 u

0.5854 . . 0.5854 yZi-T
u

Equations 3.5a and 3.6 are plotted in Fig. 3.3 to represent the rein-
forced case for both design provisions, and Eqs. 3.5b and 3.6 are
plotted together in Fig. 3.4 to represent the unreinforced and

partially reinforced cases for both design provisions.

3.3 Comparison of Stresses

The allowable stresses, as defined by the two design provisions,
are given in Tables 2.1 and 2.2 for ATC-3-06 and 1979 UBC, respectively.
In most cases the allowable stresses are a function of f_, but with
an upper limit.

Estimates of the ultimate shear strengths of different materials
derived from the Berkeley test results on single piers are given in
Table 2.9. For the purpose of this study these ultimate strengths
should be modified by the strength reduction factors dependent on the
assumed ductility and amount of reinforcement, as given in Table 2.10.
These strengths are directly proportional to J?;'with no upper limit.

The values from the Tables 2.1, 2.2 and 2.9 are used to evaluate

the ratio Req/Rc of Eq. 2.2 as follows:
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TABLE 3.1

COMPARISON OF ULTIMATE STRENGTH AND EFFECTIVE CODE ALLOWABLE SHEAR

STRESSES: R
58 eq/Rc

ATC 3-06 AND 1979 UBC ATC 3-06 1979 UBC
REINFORCED REINFORCED
M : Masonry Takes Reinforcement Masonry Takes Reinforcement
Material | V0 Ratio Partially Reinforced the Shear Takes the Shear the Shear Takes the Shear
> Hollow Unit | €.125 /FT| 0.050 /T 0.027 /A7 0.086 /F7 0.085 /F
»2.222 > 1.333 > 2,500 > 2.256
HCBL
0 Hollow Unit | 0,375 ‘/ﬁ;i- 0.100 v’ﬁ;l' 0.033 JT;{ 0.113 JT-;'H‘ 0.056 J?;;
> 2.500 > 2.000 > 2.809 > 3.3
> 1 Hollow Unit | 0.250 /f; 0,100 /1‘;'"- 0.040 J?;; 0.133 /ﬁ; 0.068 /T’;'n'
> 4.444 > 2.000 > 5,000 > 3.384
HCER
4] Hollow Unit | 0.417 J'Fn‘; ¢.120 v"’r'r’r; 0.036 JF"'; 0.135% ‘/'Fr‘r; 0.061 ff';
> 3.000 > 2.167 > 3 23.652
Grouted 0.140 Jf'r‘n'
z1 0.100 /f'; 0.040 VT© 0.133 JT; 0.068 J?;
> 4,444 > 2,000 > 5.000 > 3.384
CERC
Grouted 0.149 v’?['l;
0 0.080 /T 0.025 /F7 0.090 /7 0.042 AT
> 2.000 > 1.500 > 2.247 > 2.528

For M/Vd Between 0 and 1 Interpolate by Straight Lines
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i. For partially reinforced masonry the recommended values
of Table 2.9 are used. These are divided by the unrein-
forced allowable stresses of Table 2.1 and 2.2. This is
valid since the design provisions explicitly state that
in general "partially reinforced masonry shall be designed
as unreinforced masonry." (ATC-3-06: 12A, 3.7; 1979 UBC:
2419.(a)).

ii. For the case where masonry takes all the shear, we use
corresponding values from Tables 2.1 and 2.2 for Rc,and
the recommended ultimate values from Table 2.9 for Req'

iii. For the case where the reinforcement is assumed to take

all the shear, the_corresponding values from Tables 2.1
and 2.2 are used for Re and for R, the recommended

q
ultimate values from Table 2.9.

The results are presented in Table 3.1.

3.4 Comparison of Minimum Required Seismic Shear Areas

A comparison of the ATC-3-06 Tentative Provisions and the 1979
UBC will be made by comparing the area of shear wall that each of the
design provisions requires, for both reinforced and partially reinforced
masonry in the zone of highest seismicity. The required area is

defined in Eq. 2.1 as

A - Load
required Resistance °

See Section 3.2 for a definition of the stresses used for reinforced

and partially reinforced masonry.
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3.4.1 ATC-3-06 Tentative Provisions

Using Eq. 2.1 with Eqs. 2.3 and 3.1 and Table 2.1, the minimum

required area is

Am1'n _ Cs W

required = Max. values from Table 2.1 (3.7)

where for reinforced masonry

C, = 0.1646 T2/ < 0.2757,

and for partially reinforced and unreinforced masonry
c, = 0.4608 T2/3 < 0.8000.

Equation 3.7 is plotted in Figs. 3.5 (reinforcement takes all

the shear) and 3.6 (masonry takes all the shear) for reinforced masonry

Amin
required

given in terms of the weight of the building and is the minimum area

and in Fig. 3.7 for partially reinforced masonry, where is

required by ATC-3-06.

3.4.2 1979 Uniform Building Code

Using Eq. 2.1 with Eqs. 2.7a and 3.2 and Table 2.2,the minimum

required area is

; " C' W
Am'ln i = S (3 8)
required Max. values from Table 2.2 ’
where for all masonry
c. =0.1330 7°/% < 0.1862 -

Equation 3.8 is plotted in Figs. 3.5 (reinforcement takes all
the shear) and 3.6 (masonry takes all the shear) for reinforced masonry

and in Fig. 3.7 for partially reinforced and unreinforced masonry in

terms of the weight of the building.
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3.4.3 Discussion

It.is clear, from Figs. 3.5, 3.6 and 3.7, that the 1979 UBC is
more conservative than ATC-3-06 for the case of reinforced masonry
when reinforcement takes all the shear (Fig. 3.5); whereas ATC-3-06
is more conservative for stiff or low period buiidings for the case of
reinforced masonry when the masonry is assumed to take all the shear
(Fig. 3.6).

For partially reinforced masonry (Fig. 3.7), which uses the
shear values for unreinforced masonry, ATC-3-06 requires approximately
3 to 4 times more shear wall area than the 1979 UBC for the two cases
considered. This is primarily due to the change in R-factor from 3.5
to 1.25 in the ATC-3-06 Tentative Provisions for partially reinforced
masonry. For the 1979 UBC there is no change in the design force level

for partially reinforced masonry.

3.5 Qver-Design Ratio for the Design Provisions

The Over-Design-Ratio, as defined in Eg. 2.2, is

L. R
ODR = [E— R—eq- (3.9)
eq [ o4
The first factor
L C_W C
= = g (3.10)
eq ¢t o W o c&9
u u

This ratio is plotted for a = 1.00 and the zone of highest seismicity
of the two design provisions in Fig. 3.3 for reinforced masonry and
Fig. 3.4 for partially reinforced masonry. The second factor, Req/Rc’

is the resistance ratio which is given in Tablie 3.1 as a function of
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fé and M/Vd. Then, if Su is a strength reduction factor used when
inelastic deformation is assumed the ODR for the zone of highest

seismicity can be written as

C R
= . 24
ODR Sa Su cea Rc (3.11)
u
where
Sa = é—; o = modal-participation factor (see Appendix A and
Eq. 2.24)
S]J is a strength reduction factor given in Table 2.10
cs
g is obtained from Fig. 3.3 or Fig. 3.4
CIJ
Re
i_g is given in Table 3.1.

C

The ODR for each set of design provisions for the zone of highest
seismicity is plotted in Figs. 3.8 through 3.13; for the cases when
reinforcement takes all the shear and masonry takes all the shear, and
for three different types of fully grouted construction - hollow
concrete block, hollow clay brick and grouted core clay brick.

In Tables 3.2 and 3.3 the ODR values corresponding to the zero
period are listed for various ductilities, materials and the three
cases, partially reinforced, reinforced where the masonry takes the

shear and reinforced where the reinforcement takes the shear.

3.5.1 Generalization of the Over-Design Ratio

It is possible to express the ODR in such a way that it is valid
for any seismic zone. To do this the following points must be

considered.
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i. Equations 2.4 and 2.20 are functions of A (or Aa) which

depends on the seismic zone of a building location.

ji. Equation 2.10 is a function of Z which depends on the

seismic zone of a building location.

iii. In all the above equations the zone of highest seismicity

is assumed to apply. Hence Aa = A = 0.4 3 Z =1.00.

Accordingly, we introduce a scaling factor, qu, for the seismic

zone and the final equation for the ODR becomes

c R
= g¢ S _eq
ODR Seq Su Sa c£a -ﬁz— (3.12)
u
where
1.00 for ATC-3-06
s¢ =
Z‘S'Ta for UBC 1979.
Su = a strength reduction factor listed in Table 2.10.
S, = %-(see Appendix A and Eq. 2.24).
Cs
—a is obtained from Fig. 3.3 (Eq 3.5a or Eg. 3.6) for
Cuq reinforced masonry, or Fig. 3.4 (Eq. 3.5b or Eq. 3.6)

partially reinforced masonry.

R
Ri‘- is given in Table 3.1.
[o

It is apparent that the plots in Figs. 3.8 through 3.13 are only

affected by the factor qu when different seismic zones are considered.

3.6 Discussion of the Over-Design Ratio

It is clear from Tables 3.2 and 3.3 and Figs. 3.8 through 3.13

that there are significant variations in the ODR for the various
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material types, M/Vd ratios and amount of reinforcement. In Figs. 3.8

through 3.13, it is apparent that the ODR increases as the period

increases.

This is a reflection of the conservatism that is included

in the design spectra of the provisions because of a number of reasons

associated with the structural behavior of longer period buildings.

The ATC-3-06 Commentary states the reasons as follows:

1.

The fundamental period of a building increases with number
of stories. Hence, the longer the T, the larger the likely
number of stories and therefore the number of degrees of
freedom; hence, the more likely that high ductility require-
ments can be concentrated in a few stories of the building,

at least for some earthquakes.

The number of potential modes of failure increases,
generally with T. If design spectra were proportional to
response spectra for single-degree-of-freedom systems, the

probability of failure would increase with T.

Instability of a building is more of a problem with

increasing T.

The conservatism included in the design spectra at longer periods

does not have any significant impact for load-bearing masonry shear wall

buildings, because most masonry shear wall buildings will have a period

of one second or less (see Table 4.2). Thus the following discussion

is based on the ODR ratios for zero period given in Tables 3.2 and 3.3.

The allowable shear stresses for reinforced masonry in both sets

of provisions do not provide any differentiation for different types

of materials of construction, whereas for unreinforced masonry they do.
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From Table 2.9, however, it is clear that there are significant
differences in the ultimate shear stresses for the different types of
materials. Thus, consideration should be given to this differentiation
in the design provisions. The following discussion shows that
adjusting the effective allowable shear stresses equally for all
materials yields a conservative ODR, and that the amount of con-

servatism will be very significant for some materials.

3.6.1 Partially Reinforced Masonry

For the ATC-3-06 Tentative Provisions, the ODR for partially
reinforced masonry varies from 3.5 to 10.4 for the recommended
ductility factor of 1. This results primarily from the use for
partially reinforced masonry of the allowable stresses and R-factor
of 1.25 specified for unreinforced masonry. An increase in the
effective allowable shear stresses or an increase in the R-factor above
1.25 for this type of construction would lower the QDR to a value
closer to 1 and thus result in less conservatism.

For the 1979 UBC, the ODR for partially reinforced masonry
varies from 0.81 to 2.42 for the recommended ductility factor of 1.
This variation above and below 1 results from the use of an allowable
shear stress for masonry which is independent of the M/Vd ratio. If
this provision is not changed than the effective allowable shear stresses
must be decreased so that the ODR is equal to or greater than 1. To
achieve this for hollow concrete block a decrease of approximately 25%
in the effective allowable shear stresses is required, and this would
then result in a conservative ODR for an M/Vd ratio equal to 0. On the
other hand, for hollow clay brick the effective allowable shear stress

could be increased by 50 to 60% and the ODR would still be greater than 1.
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Whereas for the grouted core clay brick the effective allowable shear
stress must be decreased only by 12 to 15% for the ODR to be equal to

or greater than 1.

3.6.2 Reinforced Masonry - Masonry Takes The Shear

For the ATC-3-06 Tentative Provisions and an M/Vd ratio equal to
0, the ODR varies from 0.79 to 1.19 (Table 3.2) for the three material
types and the recommended ductility factor of 2. Currently there is
no differentiation in the allowable stresses for different materials
and therefore the effective allowable shear stress for an M/Vd ratio
of 0 should be decreased by 25% if the ODR is to be approximately equal
to 1 for all material types. The effect of this change would result
in an ODR of 1.50 for hollow clay brick construction and 1.25 for
hollow concrete block construction.

For M/Vd > 1, the ODR varies from 0.88 to 1.76 (Table 3.2) for
the three material types. Decreasing the effective allowable shear
stress by 15% for this M/Vd ratio would result in an ODR of approx-
imately 1 for hollow concrete block and 2 for clay brick construction.

For the 1979 UBC and an M/Vd ratio equal to 0, the ODR varies
from 0.58 to 0.87 (Table 3.3) for the three material types and the
recommended ductility factor of 2. This is clearly non-conservative
and the effective allowable shear stress should be decreased by 70%
for the ODR to be approximately equal to or greater than 1 for all
material types.

For M/Vd > 1 the ODR varies from 0.65 to 1.29 (Table 3.3). As
for the ATC-3-06 Tentative Provisions, if the effective allowable shear
stress is decreased so that the ODR is approximately equal to 1 for

- hollow concrete block the provision will result in a conservative ODR
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for clay brick, since there is no differentiation in allowable stresses
for different materials. The decrease in effective allowable shear
stress should be of the order of 50% for the ODR to be approximately

equal to or greater than 1.

3.6.3 Reinforced Masonry - Reinforcement Takes the Shear

For the ATC-3-06 provisions and an M/Vd ratio equal to 0, the
ODR varies from 0.77 to 1.711 {Table 3.2} for the three material types
and the recommended ductility factor of 3. A decrease in thé effaective
allowable shear stress of 30% for this M/Vd ratio would ensure that the
ODR was approximately equal to or greater than 1 for all material types.
However, the ODR for hollow clay brick would be equal to 1.44 and thus
be conservative.

For M/vd > 1 the ODR varies from 0.68 to 1.02. A decrease in
the effective allowable shear stress of 50% would make the ODR approx-
jmately equal to or greater than 1 for all material types.

For the 1979 UBC provisions and M/Vd equal td 0 the ODR varies
from 0.84 to 1.22 (Table 3.3) for the three material types and the
recommended ductility factor of 3. A decrease of 20% in the effective
allowable shear stress would ensure that the ODR was approximately
equal to or greater than 1 for all material types.

For M/Vd > 1 the ObR varies from 0.75 to 1.13. In this case a
decrease of 33-1/3% in the effective allowable shear stress would
ensure that the QDR was approximately equal to or greater than 1 for

all material types.
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4. EVALUATION OF THE OVER-DESIGN RATIO FOR 3, 9 and 17-STORY BUILDINGS

4.7 Introduction

Chapter 3 presented the Over-Design Ratios for the 1979 UBC and
for the ATC-3-06 provisions using the design base shear forces to
evaluate the two sets of provisions. In this chapter the 0DRs are
calculated for three buildings with identical floor plans and varying
heights; namely, 3, 9 and 17 stories. The structural details of the
three buildings and their computed dynamic characteristics are given in
Section 4.2. Section 4.3 presents the story shears and overturning
moments of the three buildings when subjected to loads for each set of
provisions and to the "realistic" earthquake load. Section 4.4 contains
the results of the calculations of the ODRs and, finally, a discussion

of the results is presented in Section 4.5.

4.2 Characteristics and Properties of the Buildings

4.2.1 Plan and Elevation of the Buildings

The general floor plan which is shown in Fig. 4.1, is the same
for all buildings. The overall plan dimensions are 74 ft by 132 ft.

The assumed wall thicknesses are given in Table 4.1. Typical elevation

TABLE 4.1
WALL THICKNESS

Building Thickness
Type 9 in. 1 in. 13 in.
3 Story Fl1. 1 - F1. 3 - -
9 Story F1. 5 - F1. 9 F1. 1 - F1. 4 ' -
17 Story F1. 13 - F1. 17 F1. 7 - F1. 12 F1. 1 - F1. 6

A1l Floor Heights are 9 ft 4 in. = 112 in.
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and section views are shown in Figs. 4.2 through 4.5 for the 9-story
building.” The shear wall arrangement is symmetric in both directions

with walls varying in width from 10 ft to 31 ft.

4.2.2 Structural Modeling

The program ETABS, which was used to compute the dynamic
characteristics of the buildings as well as the building responses to
the various loads, is a three-dimensional dynamic and static analysis
program for buildings written by Wilson, Hollings and Dovey [14].

In modeling the buildings for ETABS, the following simplifica-

tions were made:

1. Narrow shear walls (< 20 ft wide) are modeled by the
"equivalent frame" or "deep columm analogy" concept [7]

which is described as follows:

i. The center lines of the wall sections (except corner
walls) and of all connecting beams form the equivalent

frame.

ii. The cross-sectional properties of the column sections
in the equivalent frame are identical to those of the

corresponding wall section in the real building.

iii. The central portions of all model beams have the same
cross-sectional properties as the connecting beams of
the actual structure. The fictitious portion of the
beams contained within the shear walls are modeled as
a2 "rigid" Tink aé shown in Fig. 4.6. To account for
the beam-column joint flexibility, the "rigid" Tink is

taken as five sixths of the real length.
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2. Stiffness and rigidity of all members are based on uncracked

sections.

3. The wider shear walls are represented by shear panel-
elements connected to the columns of the equivalent frame
or to dummy columns in accordance with the wall position.
The shear panel-elements have both shear and flexural stiff-

ness as described in reference 14.
4. The floor system is assumed to be rigid in its own plane.
5. Foundation supports are assumed to be rigid (fixed).

The model resulting from these simplifications was used for the
computer analysis. It is shown in Figs. 4.7 through 4.11 for the

9-story building.

4.2.3 Dynamic Characteristics of the Buildings

The periods of the various modes used in the analysis of each
of the three buildings are presented in Table 4.2. It is interesting
to compare the code-calculated period and that computed by the dynamic
analysis. For the 3-story building, the code-calculated values in
both directions are greater than those computed from the dynamic analysis.
This also occurs for the 9-story building in the Y-direction (short
direction) of the building. In the X-direction (long direction) the
code and dynamic analysis values are in reasonable agreement. For the
17-story building the code-calculated period is less than that computed
from the dynamic analysis in the X-direction, and in the Y-direction
this is reversed.

The number of modes used for each direction different for each

building. For the 3-story building, all three modes for each direction



100

were used in the spectral analysis. For the 9-story building four
modes were used for each direction and for the 17-story building six
modes were used. This was considered sufficient as the SRSS modal
combination method is not significantly affected by the higher modes.
Because the buildings are symmetric both in mass and in geometry,
and because, for simplicity, no accidental eccentricity is considered

(as is required by the codes) all the mode shapes are uncoupled.

4.3 Detailed Results

The results presented in this section are for both design
provisions and for the "realistic" earthquake assuming ductility values
of 1, 2 and 4. Plots of the story shear férces, panel shear forces and
overturning moments (OTM) for the design provisions only will be pre-

sented for each story level.

4.3.1 The Design Provisions

The story and panel shears and the overturning moments for the
three buildings are determined for the zone of highest seismicity of
both design provisions. For other zones the values can be obtained by
scaling the results by the appropriate factor.

The design story shear forces and the 0TM of the three buildings
are calculated using the cbmputed first mode periods and the weights
of the buildings given in Table 4.2 with Eqs. 2.3, 3.1 and 2.6 for
ATC-3-06 and with Egs. 2.7, 3.2 and 2.11 for the 1979 UBC. The results
are plotted in Figs. 4.12, 4.14 and 4.16 for the 3, 9 and 17-story
buildings, respectively. The panel forces, calculated using the story
shears in ETABS [14], are plotted in Figs. 4.13, 4.15 and 4.17 for the

3, 9 and 17-story buildings, respectively.
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4.3.2 The "Realistic" Earthquake

Using the spectra of Fig. 3.2 for ductilities of 1, 2 and 4, and
the zone of highest seismicity, a spectral analysis was performed on
the buildings using ETABS [14]. The SRSS modal combination approach
was used to obtain the story shear forces and the panel forces. The
plots of these are presented in Figs. 4.18 and 4.19 for the 3-story
building, Figs. 4.20 and 4.21 for the 9-story building, and in Figs.
4.22 and 4.23 for the 17-story building. It is evident that the forces
resulting from the realistic earthquake are much higher than those

predicted by the design provisions.

4.4 Qver-Design Ratios for the Three Buildings

The ODRs for the three buildings are presented on a story-by-
story basis in conjunction with a comparison of the code loads to the
"realistic" earthquake loads in Figs. 4.24 through 4.28.

In Figs. 4.24 and 4.25 the ratios of the code loads and
"realistic" earthquake loads are compared for ductility ratios of 1, 2
and 4 for the ATC-3-06 and 1979 UBC provisions, respectively. Also
included in these plots are the ODRs for the cases in which masonry
takes the shear and in which reinforcement takes the shear. The values
of Req/RC used to calculate the ODR are for hollow concrete block
using a strength reduction factor of 0.8 and M/Vd = 0.

For the three buildings the ratio of code to "realistic" load is
close to or greater than 1 when a ductility factor of 4 is used with
the "realistic" earthquake load. When a ductility factor of 2 is used,
the ratio is between 0.50 and 0.65 and decreases below 0.50 when a

ductility factor of 1 is used. The values of the ODRs are close to

those presented in Tables 3.2 and 3.3 for the 3 and 9-story buildings.
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For the 17-story building the ODR is greater than 1 for a ductility
ratio of 2. This reflects the conservatism in the code loads at
Tonger periods exhibited in Figs. 3.8 through 3.13,

Figures 4.26, 4.27 and 4.28 present similar plots to those given
in Figs. 4.24 and 4.25, except they are based on the shear forces in
the specific walls W1, W2 and W3, respectively, and the allowable stress
corresponding to the M/Vd ratios for a particular wall is used.
Specific values of these plots of specific walls are tabulated in
Tables 4.3 and 4.4 for allowable shear stresses corresponding to hollow
concrete block ultimate strengths using f& = 3,000 psi.

The main conclusion from this analysis on a building by building
and wall by wall basis is that the results are similar to those pre-

sented in Chapter 3 which were based on the base shear coefficient.
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5. EVALUATION OF THE 1979 UBC AND ATC-3-06 SEISMIC DESIGN PROVISIONS

The method used to evaluate the two sets of seismic design
provisions is described in Section 2.2 and is based on the Over-Design
Ratio (ODR). If the ODR is significantly greater than 1, then the
design provisions are considered to be conservative; if it is signi-
ficantly less than 1, the design provisions are considered to be non-
conservative. The accuracy of the ODR values presented in the pre-
ceding sections depends on the accuracy of the four variables (Lc, Leq’
RC and Req) that constitute the ODR. Two of the four factors, the code
load (Lc) and code allowable stress (Rc), are specified by the design
provisions. The ultimate strength Req’ is determined from test data
as described in Section 2.7. Although further testing is necessary,

Req calculated from the test data currently available is considered to
be a reasonable estimate of the ultimate shear strength. The greatest
degree of uncertainty is in the "realistic" earthquake load, Leq' This
is due to uncertainties in earthquake ground motion studies and to the
inaccuracies inherent in the use of a ductility reduced elastic
spectrum to represent the inelastic response of a masonry building as
described in Section 2.5. Nonetheless the ODR provides a reasonable
basis for evaluating the adequacy of seismic design provisions at this
time,

From the discussion of results presented in Section 3.6, it is
clear that the effective allowable shear stresses for seismic loads for
the design provisions considered in this study require some adjustments.

Care must be exercised as adjustments are made since the results pre-

sented here only consider the effects of seismic loads.
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Adjustments in the effective allowable shear stresses can be
made in various ways depending on the particular design provision.

For ATC-3-06 the ¢ factor, the R-factor or the allowable shear stress
can be adjusted. For the UBC the K-factor, the 1.5 factor to increase
the seismic shear load or the allowable shear stress can be adjusted.
However, before adjustments are contemplated to either set of provisions,
it is clear that serious consideration should be given to the use of
separate allowable shear stresses for different types of reinforced
masonry construction. This is currently incorporated in the allowable
shear stresses for unreinforced masonry, but reinforced masonry uses
the same allowable shear stresses for all types of construction. If
this change is not made and the allowable shear stresses are adjusted
so the ODRs are approximately equal to or greater than 1, there will
then be a considerable amount of conservatism for some materials.

In the ATC-3-06 Tentative Provisions, it is clear that the ODRs
for partially reinforced masonry are very conservative. Adjustments
for this type of construction can be made either by increasing the
R-factor above 1.25 or by using higher allowable shear stresses. For
reinforced masonry the effective allowable shear stresses are reason-
able for M/Vd = 0 for both fully grouted hollow concrete and hollow
clay brick construction, but non-conservative for the grouted core clay
brick method of construction. For M/Vd > 1 the effective allowable
shear stresses for fully grouted hollow clay brick and grouted core
clay brick walls are reasonable when reinforcement takes the shear and
conservative when masonry takes the shear. For fully grouted hollow
concrete block construction the effective allowable shear stresses are

non-conservative for both cases of reinforced masonry.



134

For the 1979 UBC, the effective allowable shear stresses for
partially reinforced masonry are non-conservative for grouted core clay
brick and fully grouted hollow concrete block (M/Vd > 1) methods of
construction. For fully grouted hollow clay brick and holiow concrete
block (M/Vd = 0) the effective allowable shear stresses are conservative.
Furthermore, adjustments in these allowable stresses can be made for
material type since they are the allowable stresses for unreinforced
masonry. It should be noted, however; that the effective allowable
shear stresses for unreinforced masonry do not differentiate between
walls with different M/Vd ratios.

In the 1979 UBC, for reinforced masonry with M/Vd = 0, the
effective allowable shear stresses when reinforcement takes the shear
are reasonable for both fully grouted hollow concrete block and hollow
clay brick. For grouted core clay brick construction they are non-
conservative. When masonry takes the shear the effective allowable
shear stresses for all three methods of construction are non-conservative.
For M/Vd>1 the effective allowable shear stresses are reascnable
when either masonry or reinforcement takes the shear for fully grouted
holTow clay brick and grouted core clay brick construction. For fully
grouted hollow concrete block, the effective allowable shear stresses
are non-conservative when either masonry or reinforcement takes the
shear.

It should be noted that the ultimate strengths and associated
ductility factors used here to determine the ODRs were derived from
tests on fully grouted hollow concrete and clay brick piers. In the
limited number of tests performed on partially grouted piers, the per-

formance of partially grouted hollow concrete block piers has been
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similar to that of fully grouted piers and, therefore, the conclusions
presented here would be applicable to both fully and partially grouted
hollow concrete block construction. However, the same situation is

not applicable to partially grouted hollow clay brick piers, which have
little or no ductile capacity and whose net strength varies between

70% and 100% of that for fully grouted piers. Thus, significantly
lower effective allowable shear stresses would have to be used for
partially grouted hollow clay brick cénstruction in comparison to

those used for fully grouted construction.
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APPENDIX A
HIGHER MODE EFFECTS

As indicated by Egq. 2.22 the total base shear in a building
should be found by including at least the first few modes of vibration
provided two modes of vibration in the same direction do not have
frequencies close to one another. This is usually done in one of two
ways, the first of which is a direct summation of the absolute values

of each mode so that

N
Vo= o) (A-1)
i=1
where
V = the total base shear
Vi = hase shear of mode i
N = total number of modes considered.

This approach is a conservative one, because the modal maximums do not
in general occur at the same time. The second method, which is fre-

quently used, takes the square root of the sum of the squares or

N 2 1
el ) (A-2)
i=

This method also has its defects, but works well for symmetrical
buildings (no modal coupling) for which no two modes in the same
direction have similar periods of vibration.

Since we used only the fundamental mode in calculating the base
shear for comparison with the codes, we now compare this base shear
with the appropriate shear when higher modes are taken into account.

We compare the two base shears for each of the three buildings
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described in Chapter 4. For each building the first three modes of
each translational direction are combined using the root-mean-square
method of ETABS [14]; this corresponds to the second method mentioned
above.

For known mode shapes, the maximum elastic force vector in mode

i is (see reference [15])

Fsi,max = M & ;? | Sa(Eq2 T4) (A-3)
where

M = the diagonal mass matrix,
6} = the i th mode shape vector,

N
L, = ¢I M 321
B = ¢ L g 33 ’
{T} = unit colum vector ,

Sa(Ei, Ti) = the spectra1 acceleration for_damping 5 and
period T 3 - units of in./secé.

The base shear in each mode can now be obtained from

V. = (T F, =§— S (E:s Ty) (A-4)
i si,max M1 a‘ci* it
l_2
Comparing Eq. A-4 and Eq. 2.23, we see that the term Hi
i
represents the effective mass vibrating in mode i;
o5 [ g ] 2
2 m;$
L J¥iJ
= 1 _ Lj=1
Mieff T W " —in—z - (A-5)
jg'l mj'b.”

as expected.
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Table A-1 summarizes the results of the calculations for the
three buildings. The base shear for each mode is calculated using
Eq. A-4.

The base shear, V, is then calculated using Eq. A-2, and compared

with VT, the value calculated from Eq. 2.23; namely,
Vrp=a Sa(gl’ Tl) Miotal (A-6)
where
Mtota] is the total mass of the building and o is determined as
follows.

The values of o for the 3, 9 and 17-story buildings, calculated

N (L?)
E (i
q = _J;?____;L_ , (A-7)

total

from
2

are listed in Table A-2. A least squares estimate of o, from these

values, assuming a relation of the form

+b

2
]
—ij s

yields

o = 2907 4 0.686 < 1.00 (A-8)

where T is the fundamental period in the direction considered.

The modal-participation factor gives an estimate of how much of

the total weight should be used with the fundamental mode to caiculate
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the basic shear in order to get a close estimate of what the root-mean-
square modal combination method would yield.

The base shear VT is calculated from Eqs. A-6 and A-8, and is
then compared with V in the last column of Table A-2. The two methods

are shown to be within 4% of each other.
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"Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earth-
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"PLUSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Inter-

action," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977

"Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthgquake of June
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"A Literature Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and
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"DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by
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(PBE 276 526)A09

"Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and
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1977 (PB 283 180)A06

"Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K. Chopra -
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D.F. Tsztoo ~ 1978 (PB 284 978)A04

UCB/EERC-T8/02 "Effect of Tensile Prestrxain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A. Mukhopadhyay - 1978

UCB/EERC-78/03 “Experimental Results of an Earthguake Isolation System using Natural Rubber Bearings," by J.M.
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"Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages,” by B. Forzani,
E.P. Popov and V.V. Bertero - April 1979(PB 298 267)A06

“The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams
to Cyclic lLoads, Using System Identification," by J. Stanton & H, McNiven - Jan. 1979(PB 295 875)Al0

"Linear and Nonlinear Earthquake Response of Simple Torsionally Coupled Systems," by C.L. Kan and
A.K. Chopra - Feb. 1979(PB 298 262) A06

"A Mathematical Model of Masonry for Predicting its Linear Seismic Response Characteristics," by
Y. Mengi and H.D. McNiven - Feb. 1979(PB 298 266)A06

"Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement,"
by M.A. Manrique, V.V. Bertero and E.P. Popov - May 1979(PB 301 114)A06

"Static Tilt Tests of a Tall Cylindrical Liguid Storage Tank," by R.W. Clough and A. Niwa - Feb. 1979
(PB 301 167) AO6

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 1 - Summary Report," by P.N. Spencer, V.F. Zackay, and E.R. Parker -
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"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Fower Flants
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“The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 3 - Evaluation of Commercial Steels," by W.S. Owen, R.M.N. Pelloux,
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"Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages,” by S. Viwathanatepa,
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"OPTDYN - A General Purpose Optimization Program for Problems with or without Dynamic Constraints,”
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"Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Tnreraction
Effects," by A.K. Chopra, P. Chakrabarti and S. Gupta -~ Jan. 1980(AD-A087297) 410

"Rocking Response of Rigid Blocks to Earthquakes,” by C.5. Yim, A.K. Chopra and J. Penzien - Jan. 1980
(PEA0 166 002) A04

"Cptimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by 3.W. Zagajeski
and V.v. Berterc = Jan. 1980(PB8C 164 635}A06

"gffects of amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinfoxced
Concrete wWalls," by R. Iliya and V.V, Bertero - Feb. 1980(PB8L 122 525)A09

"Shaking Table Research on Concrete Dam Models,” by A. Niwa and R.W. Clough - Sept. 1980(PBS8) 122 368)A08

"The Design of 3teel Energy-absorbing Restrainers and their Incorporation into Huclear Power Plants for
Enhanced Safety {(Vol lA): Piping with Enerqy Absorbing Restrainers: Parameter Study on Small Systems,”
by G.H. pPowell, C. Oughourlian and J. Simons - June 1980

"Inelastic Torsional Response of Structures Subjected to Earthguake Ground Motions,” by Y. Yamazaki
April 1980(PB8SL 122 327)A08

"Study of X=-Braced Steel Frame Structures Undex Earthquake Simulation," by Y. Ghanaat - April 1980
{PBRBL 122 335)AlLl

"Hybrid Medelling of Soil-Structure Interaction," Dy S, Gupta, T.W. Lin, J. Penzien and C.S. Yeh
May 1980(PB81 122 319)Aa07

"General Applicability of a Monlinear Model of & One Story Steel Frame," by B.I. Sveinsaon and
H.D. MeNiven - May 1980(PB8l 124 877)A06

"A Green—-Function Method for Wave Interaction with a Submerged Body," by W. Kioka - April 1980
{PBBL 122 269)a07

“Hydrodynamic Pressure and Added Mags for Axisymmetric Bodies," by F. Nilrat - May 1980(PBSL1 122 343)A08

"Treatment of Non-Linear Drag Forces Acting on Offshore Platforms,” by B.V. Dao and J. Penzien
May 1980 (PB81 132 413)A07

"20 Plane/Axisymmetric Solid Element {(Type 3 - Elastic or Elastic-Perfectly Plastic) for the ANSR-II
Program,” by D.P. Mondkar and G.H. Powell - July 1980(PBS1 122 350)A03

"A Response Spectrum Method for Random Vibrations,” by A. Der Kiureghian = June 1980{pB81122 301)a03

"Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin
June 1980 (PBEB1 124 885)Al0

"Dynamic Response of Simple Arch Dams Including Hydrodynamic Interaction," by C.S. Porter and
A.K. Chopra - July 1980(PB81 124 00C)AL3

"Experimental Testing of a Friction Damped Aseismic Base Isolation System with Fail-Safe
Characteristics,” by J.M. Kelly, K.£. Beucke and M.5. Skinner - July 1280(PBS1 148 595)A04

“The Design of Steel Energy-absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol 1B}: Stochastic Seismic Analyses of Nuclear Power Plant Structures and Piping
Systems Subjected to Multiple Support Excitations,” by M.C, Lee and J. Penzien - June 1980

“The Design of Steel Energy-absorbing Restrainers and their Incorporation inte Nuclear Power Plants

for Enhanced Safety (Vol 1C): nNumerical Method for Dynamic Substructure Analysis," by J.M. Dickens

and E.L. Wilson - June 1980

“The Design of Steel Energy-aAbsorbing Restrainers and thejr Incorporation intc Nuclear Power Plants

for Enhanced Safety (Vol 2): Development and Testing of Restraints for Nuclear Piping Systems,” by
J.M. Kelly and M.S5. Skinner - June 1980

"3D Solid Element {Type 4-Elastic¢ or Elastic-Perfectly-Plastic) for the ANSR-II Program,” by
D.P. Mondkar and G.H. Powell - July 198C({PBBL 123 242)A03

"Gap=Fricticn Element (Type S5) for the ANSR-II Program,” by D.P. Mondkar and G.H. Powell - July 1980
(PB81 122 285} A03

"U-Bar Restraint Element (Type ll} for the ANSR-II Program," by C. Cughourlian and G.H. Powell
July 1980(PBBL 122 293} a0Q3

"Testing of a Watural Rubber Base Isolation System by an Explosively Simulated EBarthaguake,™ by
J.M. Kelly - Rugust 1980

"Input Identification from Structural Vibrational Response,” by Y. Hu - August 1980 (PBS1 152 308)A0S

“Cyelic Inelastic Behavior of Steel Offshore Structures," by V.A. Zayas, $.A. Mahin and E.P. Popov
BRugust 1980

"Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response," by M.G. Oliva
October 19B0(PRBL 154 304)Al0

"Dynamic Properties of a Twelve-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M, Stephen - October 1980

"Dynamic Properties of an Zight-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - October 1980

"Predictive Dynamic Response of Panel Type Structures Under Earthquakes,” by J.P. Koilegger and
J.G. Bouwkamp = October 1980(PRSl 152 316)A04

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 3}: Testing of Commercial Steels in Low-Cycle Torsional Fatigue," by
P. Spencer, E.R. Parker, E. Jongewaard and M. Droxy
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"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 4): Shaking Table Tests of Piping Systems with Energy-Absorbing Restrainers,"
by S.F. Stiemer and W.G. Godden - Sept. 1980

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 5): Summary Report,” by P. Spencer

"Experimental Testing of an Energy-Absorbing Base Isolation System,"” bv J.M. Kelly, M.5. Skinner and
K.E. Beucke - October 1980(PB81 154 072)A04

"Simulating and Analyzing Artificial Non-Stationary Earthquake Ground Motions," by R.F. Nau, R.M. Oliver

and K.S. Pister - October 1980(PB81 153 397)A04
"Earthquake Engineering at Berkeley - 1980," = Sept. 1980

“Inelastic Seismic Analysis of Large Panel Buildings," by V. Schricker and G.H. Powell - Sept. 1980
(PB81 154 338)Al3

"Dynamic Response of Embankment, Concrete~Gravity and Arch Dams Including Hydrodynamic Interaction,”
by J.F. Hall and A.K. Chopra - October 1980(PB81 152 324)All

“Inelastic Buckling of Steel Struts Under Cyclic load Reversal," by R.G. Black, W.A. Wenger and
E.P. Popov - October 1980(PB81 154 312)A08

“Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Earthquake," by
P. Repetto, I. Arango and H.B. Seed - Sept. 1980(PB81 161 739)A05

"Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete
Frame," by J.M. Blondet, R.W. Clough and S.A. Mahin

"Modelling of Soil-Structure Interaction by Finite and Infinite Elements," by F. Medina
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"Control of Seismic Response of Piping Systems and
Other Structures by Base Isolation," edited by
J. M. Kelly - January 1981 (PBBllZOO 735)A05

"OPTNSR - An Interactive Software System for Optimal
Design of Statically and Dynamically Loaded Structures
with Nonlinear Response," by M. A. Bhatti, V. Ciampi and
K. S. Pister - January 1981 (PB81 218 851)Aa09

"Analysis of Local Variations in Free Field Seismic
Ground Motion," by J.-C. Chen, J. Lysmer and H. B. Seed -
Januvary 1981 (AD-A0S9508)Al13

"Inelastic Structural Modeling of Braced Offshore
Platforms for Seismic Loading,"™ by V. A. Zayas, P.=-S. B.
shing, S. A. Mahin and E. P. Popov - January 1981

“Dynamic Response of Light Equipment in Structures," by
A. Der Kiureghian, J. L. Sackman and B. Nour-Omid -
April 1981 (PB81 218 497)A04

"Preliminary Experimental Investigation of a Broad Base
Liguid Storage Tank," by J. G. Bouwkanp, J. P. Kollegger
and R. M. Stephen - May 1981

"The Seismic Resistant Design of Reinforced Concrete
Coupled Structural Walls,” by A. E. ABktan and V. V. Bertero -
June 1981

"The Undrained Shearing Resistant of Cohesive Soils at
Large Deformation,”™ by M. R. Piles and H. B. Seed -
August 1981

"Experimental Behavior of a Spatial Piping System with
Steel Energy Absorbers Subjected to a Simulated
Differential Seismic Input,” by $. F. Stiemer, W. G. Godden
and J. M. Kelly ~ July 1981

"gvaluation of Seismic Design Provisions for Masonry in
the United States," by B. XI. Sveinsson, R. L. Mayes and
H. D. McHNiven - August 1981
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