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ABSTRACT

This report describes a series of experiments carried out on the shaking table at the
Earthquake Simulator Laboratory of the Earthquake Engineering Research Laboratory,
involving a base isolation system which incorporated multilayer isolation bearings of
polychloroprene rubber. The Neoprene for the bearings was manufactured by E. I. du Pont
de Nemours & Co. (Inc.), Wilmington, Delaware: compounding and processing of the
Neoprene and fabrication of the bearings took place at Oil States Industries Inc., Athens,
Texas. Several forms of isolation system using the same basic bearing design but including
inserts of different materials in a central hole in each bearing were studied. The inserts
were used to enhance the damping properties of the system and to improve the response.
The results indicate that there are no difficulties in designing an effective isolation system
in polychloroprene rubber and that the multilayer elastomeric bearings can substantially
reduce the seismic loads experienced by a building and its contents. Elastomeric inserts
were effective in improving the response only to a limited extent. The use of lead inserts
to enhance the damping was very effective in controlling the displacement. There is an
increasing interest in the use of base isolation as a way of reducing the effects of earth­
quakes on structures. There is general acceptance of the concept but doubts about its
implementation center on the question of suitable bearings. Experiments of the kind
reported here, on large models where scaling effects are minimized, can allay the fears of
the seismic engineering profession that bearings may not be available.
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I. INTRODUCTION

The many thousands of earthquakes that occur each year can cause great loss of life

and damage to property when they happen in heavily populated areas. In addition to the

buildings which collapse those left standing may have been weakened beyond use or may

have had their contents totally destroyed. The damage from an earthquake is caused

mainly by the horizontal ground motion, which is amplified by the vibratory response of the

building. Standard methods of building for earthquake protection have concentrated on

strengthening buildings to resist these horizontal forces. However, when the structure of

the building is strengthened it may increase the degree of amplification of the ground

motion and while the building may be saved in this way its contents may be more severely

damaged and the danger to occupants increased.

This report describes an experimental study on the shaking table at the Earthquake

Simulator Laboratory of the Earthquake Engineering Research Center of the University of

California, Berkeley, of an alternative approach to earthquake protection of structures. This

method is called aseismic base isolation. In this approach the building floats on foundation

bearings that prevent horizontal ground motions from being transmitted upward into the

structure.

The foundation system for the test program incorporated a new design of multilayer

bearing in polychloroprene rubber (Neoprene). The bearings were designed by the Polymer

Products Department of the Elastomers Division of E. I. Du Pont de Nemours & Co. (Inc.)

and were manufactured by Oil States Industries, Inc. Two hardnesses of rubber were used

and inserts were used in some tests to increase the damping in the bearings. Two elas­

tomeric materials and lead were used for these inserts.

The results of the shaking table experiments indicate that the polychloroprene rubber

bearings can produce effective isolation systems and can substantially reduce the seismic

loads experienced by a building and its contents. The elastomeric inserts in the bearings
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were found to be of limited utility in improving the performance of the bearings, but the

lead inserts resulted in improved performance.

There is an increasing interest in the use of base isolation as a way of reducing the

effects of earthquake on structures. While there is general acceptance of the concept,

doubts about its implementation center on the question of suitable bearings. Experiments

of the kind reported here, on large models where scaling effects are minimized, can allay

the fears of the seismic engineering profession that bearings may not be available.
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II. ASEISMIC BASE ISOLATION

Base isolation is an antiseismic design strategy founded on the premise that a building

can be decoupled from the damaging horizontal components of earthquake ground motion

through a mechanism that prevents or at least attenuates the transmission of horizontal

acceleration into the building. Many unimplemented base isolation systems have been pro­

posed [ll, ranging from ball bearings to inverted suspension systems, but the concept has

become a practical reality in recent years with the development of multilayer elastomeric

bearings. These bearings have been developed for highway bridges [2] to allow for thermal

expansion, for helicopter rotors [31, and for wharf fenders [4]. They have recently been

used to isolate buildings from the effects of ground-borne acoustic vibration [5]. Some

very large buildings have been constructed on multilayer bearings, e.g. the Berlin Confer­

ence Hall [6].

Bearings for use in an aseismic isolation system are a natural development of acoustic

isolation bearings, and although they differ in design, the manufacture, materials, and

installation would be similar. In fact, there are two systems based on natural rubber which

have been or are being implemented: namely, three small school buildings in France on a

system designed by Delfosse [7] and a four story office building which has been designed

and constructed in New Zealand using natural rubber laminated bridge bearings incorporat­

ing two inch diameter lead inserts [8]. A nuclear power plant (Kroeberg) on a Neoprene

bearing topped by a slip plate system is presently under construction in South Africa [9].

There has been some resistance in the engineering profession to the use of base isola­

tion as an aseismic design strategy connected with a lack of confidence and experience in

the use of elastomeric materials in engineering applications, but experience with bridge

bearings over many years has demonstrated that they are reliable, long lived, and resistant

to environmental damage, including damage from oil and fire [lO].
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This form of seismic protection depends on lowering the fundamental frequency of

the structure to below the range of frequencies which dominate in the earthquake input

generally, for buildings on good soil, from 1 Hz to 10 Hz. This method of protection then

is applicable to buildings of rigid construction, for example, masonry or reinforced concrete

with story heights from 4 to 14 stories. A building of less than 4 stories is relatively easy to

make earthquake resistant and one greater than 14 stories will have a natural frequency low

enough to be below the dominant range of the earthquake, and will in any case be resistant

to lateral loads due to wind load requirements. However, many buildings below 4 stories

could benefit from base isolation if they house sensitive equipment which must continue to

operate in the aftermath of an earthquake. Examples are hospitals, telephone exchanges,

and pumping stations for water or gas pipelines. Recently, circuit breakers at the Edmons­

ton Pumping Plant of the California State Water Project have been mounted on isolators for

seismic protection [Ill.

An important consideration in the design of nuclear and, recently, geothermal power

plants in seismically active regions is the assurance of the structural integrity of essential

equipment such as pumps, valves, and control devices, and piping systems under

earthquake-induced loading. These components are connected to the primary structure,

and their response is determined by the response of the primary structure to the earthquake

ground motion. The design process for such equipment and for piping systems is a particu­

larly difficult one, complicated both by uncertainties in the specification of the ground

motion and by uncertainties in the specification of the primary structure.

Since the secondary systems are driven by the primary structure during seismic

motion, it is possible that very high accelerations could be induced in light equipment

items. A further complication arises when the equipment or piping system has a natural

frequency close to one of the natural frequencies of the primary system - a situation

referred to as tuning and one almost inevitable in a large system. In this case, it can be
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shown that the interaction between the equipment and the structure can be very important,

even in relatively light equipment. If this interaction is ignored, as is usually the case in

design methods, equipment response will be significantly overestimated and excessively

conservative equipment design will result.

Peak earthquake levels for which nuclear and geothermal power plants must be

designed have been steadily increased by regulatory agencies over the past several years,

leading to the proposal that inelastic action be permitted in the equipment and its supports

or that energy-absorbing restrainers be used in piping systems. Since plastic deformation

produces a drop in the frequencies of the system and an energy absorption, the response of

the equipment or the piping would theoretically be lowered to a level below that which

would prevail if the system were to remain elastic. However, plastic action inevitably

involves some damage to the equipment supports of the primary structure and will require

nonlinear deterministic analysis of both the primary and secondary systems.

Base isolation on elastomeric bearings is an alternative approach to aseismic design in

which internal equipment or piping is protected from earthquake motion by constructing

the entire power plant on a base isolation system. There are many possible systems, but in

essence they all involve a double layer foundation system with a lower element fixed to the

ground and an upper element separated from the lower by a decoupling system. The feasi­

bility of a number of possible base isolation systems has been demonstrated by large-scale

shaking table experiments at the Earthquake Engineering Research Center of the University

of California, Berkeley. The major benefits of base isolation to equipment and piping

design are that equipment-structure interaction and inelastic response need not be con­

sidered, and, due to the fact that the primary structure above the isolation system moves

almost as a rigid body, all support points of a piping system have the same displacement

time history. Multiple support response spectrum analysis, with its controversial aspects,

thus need not be used.
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The research work to be described here concerns an experimental study if different

types of base isolation system using Neoprene bearings. It will be shown that in general

base isolation will reduce the accelerations experienced by buildings and equipment.

The benefits that base isolation brings to the buildings and their contents in the sense

of reduction in acceleration are achieved at the cost of increased relative displacement

between the structure and the ground. These displacements can be very large. The recom­

mended design spectrum for nuclear plant [12] specifies a relative displacement of around

30 inches for a 5% damped 0.5 Hz system subjected to a 1.0g peak ground acceleration,

while that for buildings in California, according to the recommendations of ATC-3 [13], for

the same system and for O.4g peak ground acceleration, is around 8.0 inches. While there

is a very real question as to the validity of these extremely large low-frequency displace­

ments and while the 8.0 inches for buildings would be acceptable, it is unlikely that 30

inches would be acceptable and some control system would be required. In the test series

reported here, three methods of controlling displacement through the use of inserts in the

bearings have been explored, and these are described in the next section.
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III. EXPERIMENTAL PROGRAM

a) Test Facilities

The experiments reported here were carried out at the Earthquake Simulator Labora­

tory of the Earthquake Engineering Research Center at the Richmond Field Station of the

University of California, Berkeley. The main dynamic test facility is a 20 ft x 20 ft shaking

table with associated control equipment, described by Rea and Penzien [l4].

The shaking table is a 20 ft x 20 ft x 1 ft prestressed concrete slab, driven indepen­

dently in the vertical direction by servo-controlled actuators. The 100 kip dead weight of

the table, plus the weight of the model, is supported by differential air pressure during

operation, thus relieving the vertical actuators of any static load-carrying function. The

control signals for the two degrees of freedom are in the form of analog displacement time

histories on magnetic tape, obtained normally through a double integration of acceleration

time histories. The table motion has been demonstrated to have good repeatability.

The limits of table motion with no model are given in reference 13. The displace­

ment limits result from the actuator strokes; oil-pumping capacity limits the velocity, and

the acceleration is limited by actuator force capacities and the oil column resonance of the

drive system. With a model on the table, the acceleration limits are somewhat lower; the

other limits are not appreciably affected.

The data acquisition system, centered around a NOVA 1200 minicomputer equipped

with a Diablo 31 magnetic disc unit, is capable of discretely sampling up to 128 channels at

rates of up to 100 samples/sec/channel. Transducer signals, in analog form, pass through a

NEFF system 620 analog-digital processor. The digitized data are then temporarily stored

on a magnetic disc before being transferred to tape by a Wang 9-track magnetic tape drive

for permanent storage.
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b) Five-Story Frame Structural Model

The experimental model used is shown in Figure 1. It is a five-story frame mounted

on two heavy (l6WF) base floor girders that are supported by four sets of rubber bearings

resting on load cells. The load cells are anchored onto the shaking table with high-tension

stress rods. The dead load is provided by concrete blocks tied down to the frame at various

floor levels as shown in Figure 1. The weight of the dead load adds up to 72 kip, which

gives an approximate total weight of 80 kip for the entire structure. Thus, a compressive

force of approximately 20 kip is produced in each bearing. The dead load provided by the

concrete blocks produces stress levels comparable to those in a full-scale structural frame,

and the geometrical scale factor of the model is roughly 1/3. The corresponding time scale

factor will be .J3.

Although the experimental model has four columns per frame, each frame is carried

on only two bearings. It is impractical to carry each frame on a bearing under each column,

as would be done in an actual structure, since this would require a very small bearing

design and the bearings as manufactured are about as small as can be made by standard

techniques. A disadvantage of the use of four bearings under the model rather than eight

is that the base frame girders are much larger relative to the structural frame than they

would be in a full-scale structure: the appearance of the model exaggerates the proportions

that a base slab in a real building would have. Although unfortunate, this is unavoidable

particularly in view of the fact that the stability of laminated isolation bearings becomes

more critical as the isolation mass per bearing is reduced at a fixed isolation frequency [I 5].

c> Elastomeric Bearings

The elastomeric bearings for the base isolation tests were designed by the Polymer

Products Department, Elastomers Division of E. I. du Pont de Nemours & Co. (Inc.),

Wilmington, Delaware and were manufactured and donated by Oil States Industries Inc.,

Athens, Texas. The Du Pont Neoprene was compounded and compression molded with
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steel shims in a one-step process to form the multilayer bearings. Oil States Industries Inc.

has been manufacturing similar maintenance-free Neoprene bearing pads for prestressed

concrete bridges for over 25 years. Du Pont engineers designed the bearings to provide the

structural model with a natural frequency of approximately 0.6 Hz in the horizontal direc­

tion and 16 Hz in the vertical. A cylindrical bearing design was preferred so as to minimize

the formation of localized stress points. A hole was provided in the center of the bearing

to facilitate the insertion of dissimilar elastomeric materials. The design of the bearing was

based on concepts developed in reference 16.

The dimensions of each bearing were as follows: a cross sectional area of 20.6 square

inches; an effective elastomer height of 2.5 inches; a total height of 5.5 inches; an outside

diameter of 5.5 inches and an inside diameter of 2.0 inches; 44 layers of Neoprene, each

layer approximately 0.057 inch thick; 43 layers of 16 gauge steel, each layer approximately

0.06 inch thick; and end plates 7 inches x 7 inches square and 0.250 inch thick. Two sets

of bearings were manufactured, one set in 50A durometer hardness Neoprene and another

in 40A hardness. A typical bearing as installed is shown in Figure 2.

Prior to the dynamic testing, the bearings were statically tested in a specially designed

press in which a pair of bearings were loaded to a specified vertical force and then horizon­

tally deflected at the midline as shown in Figure 3. These tests were done to verify the

horizontal stiffness of the bearings under vertical load and to determine the vertical dis­

placement consequent on horizontal displacement. It is typical of such elastomeric bearings

that the horizontal stiffness decreases with increasing vertical load. Under a vertical load of

20 kip, the lateral stiffness of a single 50A durometer bearing was approximately 1.0 kip/in

at zero lateral deflection. This stiffness steadily decreased with increasing lateral deflection,

reaching a value of approximately 0.4 kip/in at a lateral deflection of 2 inches.

Static compression tests under purely vertical loading were conducted to determine

the vertical stiffness under the working load and also to measure the buckling load in the
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bearings. As in the horizontal stiffness tests, a pair of bearings was tested: this allowed in

the testing machine a buckling mode compatible with that under installation conditions

beneath the structure. Vertical load-deflection curves for both the 50A and 40A durometer

bearings are shown in Figure 4.

Under a vertical load of 20 kip, the vertical stiffness of a single 50A durometer bear­

ing was measured at 600 kip/in, while that for a 40A durometer bearing was 420 kip/in.

The peak load carried by the 50A durometer bearing was 53.8 kip, however the 40A

durometer bearing was able to sustain a peak load of only 33.4 kip.

d) Damping-Enhancing Inserts

The controlling design criterion for base isolation systems is relative displacement

between the ground and the building. As the isolation frequency is reduced the relative

displacement increases. One way of reducing the relative displacement without increasing

the acceleration is to increase the effective damping in the bearings. However, rubbers

both artificial and natural with high damping are subject to creep and reduced strength and

it is relatively difficult to produce rubber suitable for an isolation bearing with a damping

factor (tan 8) greater than 0.1 which corresponds to 5% of critical equivalent viscous damp­

ing in the fundamental isolated mode of structure. Increasing the damping to around 10%

of critical damping would improve the displacement characteristics of the isolation system

while retaining low acceleration transmission.

One method of increasing damping is to include in the isolation system a set of

energy-absorbing devices which operate on the principle of elastic-plastic cyclic deformation

of mild steel. Examples of these have been tested on the shaking table, and some have in

fact been implemented in practice, and have been shown to be reliable and effective. They

have the disadvantage that they require a separate mechanical system to enable them to

work with the isolation system.
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An alternative method is to include a high damping material in the bearings them-

selves and this approach if successful eliminates the need for a separate mechanical system.

Part of the present study is to assess the effectiveness of such inserts in increasing the

damping in the bearings and improving the response of the isolation system.

The bearings were manufactured with a central hole 2.0 inches in diameter: this

allowed the insertion of cylindrical plugs of other materials. The insert material is con-

strained by the steel plates of the bearing to deform almost entirely in pure shear. In the

experimental program three damping materials were studied: two of these were elastomeric

materials, AOIPRENEt urethane rubber and VAMACt ethylene/acrylic elastomer, while

the third was lead. At 20°C AOIPRENE® has a damping factor (tan S) of 0.1 and

VAMAC® has a damping factor:j: of 0.25. Cylinders of the three materials were cast and

machined to 2.0 inches diameter and 5.5 inches high and pressed into the bearings. In the

case of the lead inserts only two of the four bearings were filled. Since the table motion is

in one horizontal direction, no complication arises if two are filled and two not. There were

thus six different foundation systems in the test series, namely:

1) fixed base (FB);

2) 50A durometer hardness bearings (500);

3) 40A durometer hardness bearings (400);

4) 50A durometer hardness bearings with AOIPRENE® inserts (50/A);

5) 50A durometer hardness bearings with VAMAC® inserts (SO/V);

6) 50A durometer hardness bearings with lead inserts (50/L).

t ADIPRENE and VAMAC are registered U.S. trademarks of E.!. du Pont de Nemours & Co. (Inc.)

:j: Data obtained from Rhevibron (Toyo Baldwin Co. Ltd.)
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IV. EARTHQUAKE SIMULATOR TEST PROGRAM

a) Earthquake Input

Four earthquake input signals, based on records of historical California earthquakes,

were used for this test series: each was time scaled at a factor of.J3. This time scaling of

the earthquake inputs corresponds to the geometrical scale of the model, so that the

acceleration response of the model to these inputs should correspond to the actual accelera­

tion of a full-scale structure to th'e historical earthquakes. The displacements in the model

will correspond to one third of those for the full-scale structure.

The four earthquake records used were the EI Centro 1940 SOOE component, the

Pacoima Dam 1971 S14W component, the Taft 1952 S69E component, and the Parkfield

1966 N65E component. The EI Centro and Taft are typical California earthquake records,

one representing a long duration record and the other a short duration signal with dominant

frequencies in the 1 Hz to 5 Hz range. The Pacoima record has frequencies in a slightly

higher range but has a high-frequency pulse in the middle of the signal that produces a very

high acceleration. The Parkfield signal is a short duration signal with low-frequency energy.

The Fourier spectra of the four records, and their displacement and acceleration time his­

tories are shown in Figures 5 to 7. It should be noted that each of the originally recorded

signals has been filtered to provide an acceptable balance of motion for the table. This is

particularly important in the range of frequencies below 0.5 Hz: these low-frequency com­

ponents have been cut back in order that the table motion is not restricted by displacement

limits.

In addition to testing the system with simulated earthquakes, pull-back tests were car­

ried out to determine the response of the model with the various foundations in free vibra­

tion, In these tests the model was pulled in one direction by a wire attached to the second

floor and a bolt was cut, allowing the model to snap back. Data were collected during the

free-vibration period. This allows the frequencies of the system to be estimated and the
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damping in the fundamental isolation mode for the various isolation systems to be

evaluated. The pull-back tests were carried out on the model for all foundation conditions

except the lead-filled bearings.

b) Frame Response - Vertical Direction

The frequencies of vibration in the vertical direction for the fixed-base structure were

very high and thus the vertical modes are not significantly excited for this case. However

the vertical response of the structural model on the laminated rubber bearings must be con­

sidered. The frequency of symmetrical vertical vibration for the structural system mounted

on the 50A durometer bearings was measured at 13.0 Hz. This is significantly lower than

the 17.1 Hz frequency estimated on the basis of a rigid 80 kip superstructure, giving an

indication of the effect of the flexibility of the base beam and the frame itself in altering

system response. The frequency of rocking on the 50A durometer bearings was measured

at approximately 15.8 Hz: this frequency would be significantly increased under full-scale

installation conditions with bearings located under each column. A third mode with

significant vertical amplitudes, corresponding to base girder flexure, was detected at a fre­

quency of 18.6 Hz. None of these vertical mode frequencies are significantly altered by the

inclusion of the elastomeric insert materials.

c) Frame Response - Horizontal Direction

The pull-back tests of the frame in the fixed-base condition gave fixed-base frequen­

cies in horizontal vibration of 3.9 Hz, 12.4 Hz, and 20.0 Hz. On the 50A durometer bear­

ings the first three frequencies were found to be 0.75 Hz, 6.1 Hz, and 14.8 Hz: time his­

tories of base displacement and total base shear for this test are shown in Figure 8. The

0.75 Hz isolation frequency corresponds to a vibration mode which is roughly a horizontal

rigid body translation of the frame, while the other two frequencies correspond to the first

two structural modes of the model. It is characteristic of base isolation systems that they
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add a rigid body mode with a low-frequency and increase the frequencies of the deforma­

tional modes above their values in the fixed-base system.

The horizontal stiffness of a single 50A durometer bearing assuming that the total

weight of the frame was 80 kip and on the basis of a 0.75 Hz isolation frequency is approxi­

mately 1.15 kip/in. This stiffness is 15% higher than that measured under static conditions,

giving an indication of the difference between bearing properties measured statically and the

same properties under dynamic conditions. For the 40A durometer bearings the pull-back

test gave 0.50 Hz, 6.0 Hz, and 14.7 Hz for the three lowest frequencies. The estimated

horizontal stiffness of a single 40A durometer bearing in this case is thus 0.50 kip/in.

When the ADIPRENE® cylinders were inserted into the 50A durometer bearings the

three lateral vibration frequencies were 1.0 Hz, 6.2 Hz, and 15.0 Hz: the lateral stiffness of

a single ADIPRENE®-filled bearing is thus 2.0 kip/in. For the bearings with the VAMAC®

inserts the frequencies were 0.8 Hz, 6.1 Hz, and 14.9 Hz, and the individual lateral bearing

stiffness was 1.3 kip/in. No pull-back tests were performed on the lead-filled bearings due

to the inherent nonlinear response of lead.

The response of the frame to the three earthquake signals with combined horizontal

and vertical input is summarized in Table 1: no vertical signal is available for the Parkfield

record. Table 2 lists the responses to the signals with horizontal excitation only, with the

vertical input suppressed.

The reason for conducting tests with horizontal input only is that the model as assem­

bled tends to exaggerate the horizontal accelerations that result from vertical input. This is

illustrated in Figure 9, which shows the peak amplitudes of horizontal acceleration at each

level in the frame mounted on the 50A durometer bearings under combined vertical and

horizontal excitation, and also under vertical only and horizontal only input. It is apparent

that the horizontal accelerations due to the vertical motion dominate the peak horizontal

accelerations recorded under combined excitation.



15

The spectral amplitudes of horizontal acceleration at each level in the frame under

purely vertical excitation is shown in Figure 10. The broad band of significant response

between 21 Hz and 26 Hz, particularly noticeable in the accelerations at floor 3 in the

frame, is due to high-frequency local vibration modes of individual beams within the frame.

These components tend to mask the accelerations produced by the horizontal signal, but

due to their significantly higher frequency content have very small displacements and do

not markedly alter the overall structural response. The local vibration of the beams is

caused by the additional dead load applied in the model, and would occur at much higher

frequencies in a full-scale structure.

To demonstrate the significant reduction in accelerations brought about through the

use of the isolation bearings, the measured accelerations at all floor levels for the fixed­

base, lead-filled and 40A durometer base conditions are shown in Figures 11 through 14.

The accelerations for the fixed base case increase almost linearly from the bottom of the

frame to a maximum at the fifth floor: generally this maximum is roughly four times the

table acceleration.

The effectiveness of the various foundation conditions in reducing the forces applied

to the structure is shown in Figures 15 through 18 where the measured accelerations at all

floor levels are plotted. In these plots the accelerations for the model in the fixed-base con­

dition are omitted: had they been included, the scale would have had to be so reduced that

the differences in acceleration between the various cases would have been obscured. Figure

15 shows the accelerations in the frame when the El Centro signal is used. The maximum

table acceleration is roughly 0.54g and the fifth floor acceleration for the fixed-base case is

1.9g. Each isolated case shows accelerations which are roughly constant with height and

less than the table acceleration. The 500 bearings show accelerations of roughly 1.0g in the

frame and adding the VAMAC® inserts increases the acceleration only slightly. Adding the

ADIPRENE® inserts increases the accelerations to 0.12g and adding the lead inserts dou-
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bles the accelerations. Generally it can be said that the elastomeric inserts increase the

accelerations slightly, but reduce relative displacements across the bearings. In the El Cen­

tro record the relative displacement is 2.6 inches with the unfilled 50D bearings, across the

VAMAC®-filled bearings it is 2.3 inches, and across the ADIPRENE®-filled bearings it is

1.5 inches.

The 40D bearings show the greatest reductions in acceleration. The accelerations are

11% of the table input and 2.3% of the corresponding fifth floor acceleration in the fixed­

base condition.

The results for the other records are similar. For the Parkfield signal, for example,

the reductions are somewhat less than for the El Centro signal, but again the 50D bearings

produce accelerations of O.lg and the 40D bearings accelerations of 0.05g, but here the

peak input is 0.375g. The maximum fixed-base acceleration is 1.75g, so that the reductions

over the fixed-base case are still substantial. For the Pacoima Dam record and the Taft

record the reductions are greater than those for the Parkfield signal.

d) Bearing Response

The bearings in the experimental program were mounted on shear load cells which

record the shear forces experienced during a test. Relative displacement of the base frame

with respect to the floor was measured using linear potentiometers. Time history plots of

total base shear and relative bearing displacement for the the unfilled and filled bearings

subjected to the El Centro signal are shown in Figures 19 through 22. The hysteresis loops

generated by the bearings during a test can also be plotted: examples for the unfilled and

filled bearings during a large cycle of displacement in the El Centro record are shown in

Figures 23 through 26. From these curves it is possible to estimate the equivalent linear

viscous damping ratio based on the ratio of the area of the hysteresis loop to the maximum

stored energy. Denoting the area of the hysteresis loop by WD and the maximum stored

energy by Ws, the damping ratio ~ (i.e. the ratio of the viscous damping coefficient to that
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for critical damping) for the fundamental isolated mode is given by g = wD/47T Ws . This

assumes that the system is in steady state at resonance, however it will give a reasonable

approximation to the damping ratio in this case. For the 40D bearings the damping is

approximately 10% of critical, while for the SOD bearings the damping is 11% of critical.

The estimate for the SOD bearings with ADIPRENE® inserts is 8% of critical and for the

SOD bearings with VAMAC® inserts the damping ratio is 10%. These damping ratios are

consistent with those obtained from the pull back tests which were found to be approxi­

mately 11 % to 13% of critical.

The measured damping in the structural system is, in each case, much higher than

would be expected from the damping factor for the Neoprene itself. The damping factort

tan 0 of both the SOA durometer and the 40A durometer hardness Neoprene was recorded

as 0.1 at 11 Hz. A value of 0.1 for tan 0 corresponds to an equivalent viscous damping

ratio of 5% of critical in the fundamental isolated mode of the structure. Damping factors

in Neoprene do not vary much with frequency and if at all decrease with decreasing fre­

quency. The shear strains are very much larger in the bearings than in the dynamic testing

of the rubber: at the maximum displacement of the SOD bearings in the El Centro signal,

2.6 inches, the shear strain in the rubber exceeds 100%. The fact that the damping ratio for

the bearing with ADIPRENE® inserts is only 9% is due to the doubling of the stiffness of

the bearing, thus reducing the effective damping. It is clear that the reduction in displace­

ment produced by the ADIPRENE® inserts is due to the increase in frequency rather than

to increased damping. The VAMAC® inserts produce a 15% increase in stiffness and an

increase in the energy dissipated but the damping ratio itself is unchanged. The conclusion

to be drawn from these results is that the inserts are not effective in reducing response.

The effect of the ADIPRENE® could be achieved more simply merely by using a larger

bearing: the influence of the VAMAC® insert, although it adds some dissipation, is not

significant. There simply is not enough material in the insert to dissipate enough energy to

t Data obtained from Rhevibron (Toyo Baldwin Co. Ltd.)
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produce a worthwhile change in the response.

The response of the 500 bearings without inserts was tested further to determine the

limiting displacement to which the bearings could be subjected. The input signal was

increased from a peak horizontal acceleration of 0.54g to 0.68g which produced a relative

displacement of 3.5 inches across the bearings. The accelerations in the frame remained

roughly around 0.10g to O.l1g, that is, the table acceleration was increased by 25%, but the

response remained almost unchanged. This suggests that at larger strains the effective

stiffness is reduced and the effective damping is increased. The input peak horizontal

acceleration was again increased, to 0.835g, which produced a maximum bearing displace­

ment of 4.2 inches: this displacement indicates a shear strain of 170% in the elastomer.

The frame accelerations were now around 0.12g. The accelerations of the base and fifth

floor are plotted as a function of the table acceleration in Figure 27. The structural

accelerations change only slightly with increasing earthquake intensity: the explanation for

this is that the bearing properties are changing in a manner favorable to protection of the

structure. The increase in displacements with increased earthquake intensity is also shown

in Figure 27. No external evidence of failure was observed. That the effective stiffness is

reduced and the effective damping increased for these large bearing deformations is clear

from the hysteresis loops show in Figures 28 (a) through (d). The fattening of the loops at

the large excursion is clear and in two bearings there is a reduction in stiffness. The two

bearings with the reduced stiffness are those for which there is an increased compressive

load due to the overturning moment. Although the overturning moment is small since the

frame accelerations are small (the increase in bearing load is only 20%), the additional

compressive load coupled to the large lateral displacement has a large effect on the horizon­

tal stiffness.
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e) Lead-Filled Bearings

The response of the structural model on the lead-filled bearings is markedly different

from that on the unfilled or elastomer-filled bearings. The lead appears to act as if it were

almost rigidly perfectly plastic with a yield shear stress of approximately 1.4 kiplin 2. The

response of the frame for very small input motion is thus similar to the fixed-base

response, however as the intensity of the motion increases the effective stiffness drops and

the amplification of the input acceleration is reduced. As the lead yields, significant energy

dissipation occurs. In effect, the lead acts as a mechanical fuse and an energy dissipator,

and the damping per cycle increases almost linearly with displacement. In this way the lead

produces an almost ideal isolation system and combined with the compactness of the

lead/bearing assembly produces a very effective system.

The accelerations experienced by the frame on the lead-filled bearings are always less

than the input accelerations for the comparison cases shown in Figures 15 through 18.

They are higher than for the other foundation systems, but the relative displacements are

lower. For the El Centro signal with a peak table acceleration of 0.54g, the frame accelera­

tions (Figure 15) are between 0.20 and 0.25g and the frame responds more or Jess as a rigid

body. The relative displacement at the bearings is reduced to 0.86 inches from 2.6 inches

for the unfilled bearings. The lead is nonlinear in its response and in principle a permanent

deformation after yielding is possible. The nonlinearity also implies that the response

should be dependent on previous history. In fact no permanent deformation was observed

after a test and there was no dependence on previous history. Four runs were carried out

on the model using the same input signal (El Centro), As shown in Figure 29, the

accelerations recorded on the model varied slightly but unsystematically and were no more

than the variations in the peak table input acceleration. A possible explanation for the lack

of permanent displacement and history dependence is that the portion of greatest intensity

of the earthquake which would produce the largest accelerations and relative displacements
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and produce permanent set in the bearings is followed by a period of lower intensity where

some yielding of the lead takes place. During this period the centering action of the rubber

forces the lead back to the neutral position and over several cycles of reduced yielding the

permanent force in the lead disappears, allowing the system to restart more or less in an

unloaded, undisplaced initial condition.

The nonlinear response of the system and the increased isolation with increased input

intensity is shown in Figures 30 through 34. To demonstrate this effect the model was sub­

jected to a series of El Centro input motions with steadily increasing intensity from a peak

acceleration of 0.115g to one of 1.46g. As the table accelerations increase over this range

by a factor of more than ten, it is shown in Figure 30 that the fifth floor accelerations and

the base accelerations increase only by factors of around five. The nonlinearity of the lead

compared to the linearity of the unfilled bearings is shown in Figure 30. To demonstrate

the increased isolation with increased intensity the accelerations in the frame .have been

plotted as normalized with respect to the peak table acceleration. The convergence to a

reduction factor of 40% of the input acceleration is clear (Figure 32). A plot of normalized

displacement, normalized fifth floor acceleration, and normalized base acceleration is shown

in Figure 33. It is interesting to note that while the accelerations decrease, the relative dis­

placement remains almost exactly equal to the peak table displacement over the entire

range of input (Figure 34).

Hysteresis loops for the lead-filled bearings are shown in Figures 35 through 38. The

first can be compared with those for the other foundation systems with the same earth­

quake input (Figures 23 through 26). The total effective base stiffness is 13 kip/inch, com­

pared with 4.6 kip/inch for the unfilled bearings and based on the area of the hysteresis

loop the equivalent viscous damping ratio is approximately 35%. For the much larger

earthquake shown in Figure 36, the effective stiffness of the bearing system becomes 7

kip/inch and the equivalent viscous damping factor is again around 35%.
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Since two bearings contained lead inserts and two did not it is easy to obtain the force

in the lead by subtraction and this is shown in Figures 37 and 38. The force in the lead

when yielding is almost constant at 9 kip, which corresponds to a shear stress of 1.4 kip/in 2•

The shear strain in the lead at maximum displacement is roughly 45%. The yield shear

strain is difficult to estimate from these plots, but based on a Young's modulus value of 2.4

x 106 lb/in 2 it is around 0.15%: the ductility factor for the lead is thus 300. This is an

exceptionally large ductility factor in engineering practice, but lead appears to be capable of

sustaining unlimited cyclic plastic deformation without failure. This ability is due to the

fact that at ambient temperatures the lead is being hot worked: during cyclic plastic defor­

mation the lead is continually able to recover its original mechanical properties [I7].

It seems clear from the results that the amount of lead in the bearings was greater

than optimum. Previous tests with an energy-absorbing base isolation system have sug­

gested that the optimum response is obtained when the yield level is around. 5% of the

weight of the structure. Here the yield level was around 10% of the weight of the structure

and thus the accelerations could be reduced and the degree of protection increased while

maintaining displacements within safe limits for the bearings.
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V. CONCLUSIONS

The experimental program has shown that the multilayer isolation bearings of

polychloroprene can be effective in protecting buildings from damage by earthquake ground

motion. The 50A durometer hardness bearings are capable of sustaining a relative lateral

displacement of 75% of their diameter without buckling and the material itself is capable of

sustaining a shear strain of 170% without failure. The reductions in acceleration experi­

enced by the superstructure as compared to conventionally designed structures vary with

earthquake signal, but are not less than a factor of 10 and can be much higher. Although

the 40A durometer bearings achieved the greatest overall degree of structural protection

under the simulated earthquake inputs considered, they were too close to their stability

limit to be considered candidates for full-scale application.

The peak earthquake accelerations at which the maximum deformations of the bear­

ings were achieved were 0.835g. For most buildings and structures in California the peak

design accelerations are not greater than O.4g [13] and in such cases a simple rubber bearing

isolation system would suffice. At that level of peak earthquake acceleration the maximum

relative displacement would be on the order of 6 inches for bearings with 10% of critical

damping as in this study and around 8 inches if the bearings had a damping factor of only

5% of critical.

For nuclear plants the very low probability seismic events for which the plant must be

designed could require a much higher design peak acceleration than could be accommo­

dated by a simple rubber bearing base isolation system. The energy-dissipating base isola­

tion system in which rubber bearings and lead inserts are integrated then becomes an ideal

choice for seismic protection. No other structural design strategy can simultaneously pro­

tect a structure at such earthquake intensities and limit the forces applied to sensitive inter­

nal equipment.
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The effectiveness of base isolation on multilayer elastomeric bearings has been

demonstrated by these and other experiments. The remaining unanswered question is the

cost. The bearings themselves are not expensive items, particularly if many are manufac­

tured. Increased foundation costs are required mainly because of the need for a seismic gap

around the structure. This would require the foundation pit to be surrounded by a retain­

ing wall. The gap would be covered by an elastomeric seal and the foundation pit used for

parking, for example, or mechanical purposes.

The savings on the other hand on the construction of the superstructure could offset

these increased costs. Seismic shear walls would be diminished and other structural ele­

ments reduced. Bracing for ceiling suspended components and for mechanical and electrical

components would be reduced.

A study was carried out [18] of the comparative cost of an isolated and a convention­

ally founded six-story medical building with roughly 170,000 square feet as shown in Figure

39. A potential savings using base isolation of $107,000 was estimated for the structural

system alone. However, further savings could be possible since a major portion of the cost

of a medical facility is in sensitive equipment. If this equipment must be braced or

attached to walls in such a way as to protect it against earthquakes its mobility will be

greatly reduced. Equipment that cannot be moved conveniently from one location to

another within the building due to earthquake bracing will have to be replicated many

times. Thus, it seems clear that base isolation must reduce the cost of buildings where the

protection of equipment is paramount. Decreased costs with increased safety are the driv­

ing force behind all structural engineering research, but aseismic base isolation offers the

best method for the achievement of these goals.
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H Table H Base H FI5 H Table Rei Base Base V Table VFI5
Accel Accel Accel Displ Displ Shear Accel Accel

(g) (g) (g) (in) (in) (k) (g) (g)

Fixed Base 0.520 0.500 1.894 0.924 0.000 69.1 0.365 0.675

SO/Lead 0.543 0.260 0.345 0.914 0.931 10.91 0.399 0.764
®

1.509 8.01 0.400 0.75250/ ADIPRENE 0.553 0.235 0.408 0.914
®

7.02 0.61950/VAMAC 0.536 0.154 0.234 0.917 2.331 0.402

50 Durometer 0.562 0.171 0.208 0.914 2.362 7.13 0.415 0.664

40 Durometer 0.555 0.104 0.169 0.915 2.160 3.04 0.422 0.585

Table l(a). EI Centro input signal: V = 200, H = 200

H Table H Base H FI5 H Table Rei Base Base V Table VFI5
Accel Accel Accel Displ Displ Shear Accel Accel

(g) (g) (g) (in) (in) (k) (g) (g)

Fixed Base 1.042 2.602 4.550 1.522 0.200 166.0 0.622 1.914

SO/Lead 1.282 0.466 0.716 1.534 2.450 16.32 0.583 0.804
®

10.39 0.589 0.66750/ ADIPRENE 1.319 0.190 0.358 1.527 2.672
®

0.61'350/VAMAC 1.296 0.181 0.205 1.527 2.058 6.69 0.656

50 Durometer 1.287 0.210 0.220 1.523 2.011 6.22 0.557 0.638

40 Durometer 1.290 0.165 0.266 1.534 1.734 2.95 0.618 0.655

Table l(b). Pacoima Dam input signal: V=200, H=300

H Table H Base HFI5 H Table Rei Base Base V Table VFI5
Accel Accel Accel Displ Displ Shear Accel Accel

(g) (g) (g) (in) (in) (k) (g) (g)

Fixed Base 0.536 0.464 1.640 1.862 0.020 59.8 0.520 0.523

SO/Lead 0.548 0.322 0.336 1.817 1.519 13.82 0.436 0.443
®

50/ ADIPRENE 0.546 0.244 0.230 1.806 2.761 10.96 0.441 0.523
®

50/VAMAC 0.541 0.189 0.191 1.806 2.972 8.66 0.445 0.470

50 Durometer 0.527 0.173 0.225 1.804 3.430 8.03 0.404 0.480

40 Durometer 0.541 0.122 0.143 1.812 2.893 3.97 0.450 0.496

Table l(c). Taft input signal: V=350, H=350
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H Table H Base H Fl 5 H Table H Base H FI5 Rei Base Base
Accel Accel Accel Displ Displ Displ Displ Shear

(g) (g) (g) (in) (in) (in) (in) (k)

Fixed Base 0.379 0.861 1.810 1.526 1.692 3.178 0.117 66.0

50/Lead 0.377 0.320 0.361 1.508 2.053 2.374 1.878 14.43
®

50/ ADIPRENE 0.374 0.202 0.218 1.511 3.174 3.407 3.366 11.81
®

50/VAMAC 0.370 0.117 0.123 1.513 2.410 2.542 2.629 7.33

50 Durometer 0.375 0.098 0.112 1.514 2.321 2.373 2.565 6.76

40 Durometer 0.378 0.052 0.067 1.511 1.426 1.489 2.771 3.28

Table 2(a). Parkfield input signal: V=O, H=300

H Table H Base H Fl5 H Table H Base H FI5 Rei Base Base
Accel Accel Accel Displ Displ Displ Displ Shear

(g) (g) (g) (in) (in) (in) (in) (k)

Fixed Base 0.555 0.681 2.629 0.908 0.920 1.936 0.138 95.9

50/Lead 0.553 0.245 0.271 0.910 1.197 1.338 0.885 11.26
®

50/ ADIPRENE 0.531 0.119 0.134 0.915 1.695 1.822 1.480 7.98
®

50/VAMAC 0.535 0.103 0.112 0.910 2.200 2.330 2.263 6.95

50 Durometer 0.534 0.100 0.110 0.909 2.255 2.306 2.589 6.63

40 Durometer 0.543 0.050 0.059 0.912 1.309 1.372 2.077 2.81

Table 2(b). El Centro input signal: V =0, H =200
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H Table H Base H FI5 H Table H Base H FI5 ReI Base Base
Accel Accel Accel Displ Displ Displ Displ Shear

(g) (g) (g) (in) (in) (in) (in) (k)

Fixed Base 0.588 0.836 1.909 1.874 2.028 2.816 0.137 69.6

SO/Lead 0.581 0.282 0.355 1.822 2.688 2.871 1.455 13.68
®

SO/ADiPRENE 0.576 0.151 0.165 1.808 3.267 3.415 2.819 10.35
®

50/VAMAC 0.562 0.130 0.147 1.809 3.002 3.140 3.000 7.92

50 Durometer 0.548 0.156 0.235 1.808 2.950 3.101 3.430 8.03

40 Durometer 0.558 0.069 0.069 1.820 1.850 1.905 2.607 2.90

Table 2(c). Taft input signal: V=O, H=350

H Table H Base H FI5 H Table H Base H FI5 ReI Base Base
Accel Accel Accel Displ Displ Displ Displ Shear

(g) (g) (g) (in) (in) (in) (in) (k)

Fixed Base 1.047 1.076 2.833 1.578 1.683 2.496 0.127 103.3

SO/Lead 1.330 0.471 0.690 1.537 1.482 1.902 2.473 16.52
®

SO/ADiPRENE 1.283 0.133 0.193 1.520 1.336 1.533 2.685 10.47
®

50/VAMAC 1.292 0.120 0.157 1.521 0.812 0.878 2.063 6.53

50 Durometer 1.287 0.210 0.220 1.523 0.755 0.819 2.011 6.22

40 Durometer 1.258 0.071 0.112 1.531 0.625 0.647 1.794 2.47

Table 2(d). Pacoima input signal: V=O, H=300
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Figure 1 Five story, three bay one-third scale structural model
used in base isolation experiments.



Figure 2

A bearing mounted on a load cen on the shaking table
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Figure 3 Static test of bearings under simultaneous vertical
and horizontal load. Two bearings were tested simultaneously.
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FOURIER SPECTRA OF INPUT SIGNALS

1 • 0 r--------;r------------------.--,

10. 0
PARKFIELD TABLE ACCELERATION

1 • 0 lr-----------r-----------------,

1 O. 0
PACOIMA TABLE ACCELERATION

1 • 0 r---------------,r----------------,

10. 0
TAFT TABLE ACCELERATION

1. 0""---------.....------------------.

1 O. 0
EL CENTR6 TABLE ACCELERATIOM

FREQUENCY, HZ

Figure 5 Fourier amplitude spectra of time-scaled simulated
earthquake input signals.
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Figure 13 Frame accelerations for Taft input signal
showing fixed-base response.
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Figure 21 Time history records for 50A durometer bearings
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