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ABSTRACT

In this thesis the development of finite element procedures for

fluid-structure interaction problems is presented. The areas upon

which attention is focused are: numerical transient algorithms which

emphasize implicit-explicit finite element concepts; finite element

kinematical descriptions for modelling fluid subdomains in fluid

structure interaction problems; finite element methodology for nearly

incompressible fluids and solids, and beam, plate and shell structures

based upon theories which include transverse shear deformations; and

finite rotation effects in numerical integration of rate constitutive

equations arising in large-deformation analysis. All these nonlinear

methodologies have been integrated into a working finite element com

puter code. A number of numerical examples are presented to demonstrate

the effectiveness of these approaches.
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Chapter

I NTRODUCTI ON

I. General Remarks and Previous Studies

I-A. Introduction

Significant attention has been devoted to the development of

fluid-structure interaction procedures over the last two decades.

However, many fluid-structure interaction problems are of such complex

ity that the method of analysis must be numerical in nature. Finite

element methods enable the modelling of such complicated problems.

The term IIfluid-structure interaction ll refers to either

(1) fluids contained within structures, or (2) structures surrounded by

fluids. Examples of (1) are the seismic response of ground supported,

cylindrical liquid storage tanks, aerospace applications such as rocket

fuel tanks, and the response of a dam due to sudden acceleration into a

contiguous reservoir. Examples of (2) are the transient motion of sub

merged or partially subm~rged structures, flow-induced vibrations,

normal and abnormal operations of light water reactor. and pressurized

water reactor cores.

The applications of finite element methods to fluid-structure

interaction problems have been made by several investigators. One of

the related current research areas is seismic analysis and design pro

cedures for ground supported, cylindrical liquid storage tanks [1,2J.

Another application is the use of toroidal tanks as pressure-suppression

pools in certain designs of boiling water reactors [3]. Presently used

methods are mostly based on linear small motion response and do not take

satisfactory account of nonlinear effects. For example, in the response

)
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of tanks to strong earthquakes, lift-off, finite-amplitude sloshing, and

nonlinear and inelastic response are important.

Nonlinear fluid-structure finite element procedures have been

proposed by Be1ytschko et al. [4-9] and Donea et al. [10,11] among

others. However, most of these studies are oriented to particular appli

cations, specifically nuclear reactors, and these procedures are not

flexible enough for a wide class of engineering applications.

The ability to solve general classes of fluid-structure interac

tion problems involving finite deformations depends upon the ability to

solve the corresponding uncoupled fluid and structural problems, and

a1so the abil ity to "i nterface" fl ui d and structural subdomai ns.. Even

though the development of general finite element procedures for fluid

structure interactions is obviously too complicated to handle as one

thesis topic, the author's goal is to make significant strides in this

direction.

I-B. Structural/Solid Mechanics

The success of ffnite element methods in structural/solid

mechanics is well known. The main thrusts of research herein were

directed toward both low- and higher-order, two- and three-dimensional

continuum elements with particular reference to nearly incompressible

materials [12-15,19-21] and the development of effective general thick/

thin shell elements based upon theories accounting for transverse shear

deformation [16-18]. Attention is also focused on reduced/selective

integration and allied concepts which have facilitated the development

of simple yet effective Idisp1acement" models for these constrained

media applications [12-21]. For general nonlinear material models, the
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numerical integration of constitutive equations requires special atten

tion since it is a major cost in the finite element calculations. Many

new techniques have been proposed [22-29J for this task. For nonlinear

shell analysis this is complicated by the fact that the stress components

are referred to a rotating basis, and a zero normal stress constraint

needs to be enforced with respect to the normal direction of this basis

[l8J.

I-C. Fluid Mechanics

In the fluid mechanics area, finite element research is just

coming of age. Although much effort has been exerted in recent years,

it is fair to say that transient finite element, Navier-Stokes algorithms

have not achieved the speed and versatility of existing finite difference

methods [30-32J. The basic problems of fluid mechanics involve non

symmetric IIconvection" operators. In most physical problems of engineer

ing interest, convection is dominant. Unlike solid and structural

mechanics which involve well-understood symmetric, positive, spatial

differential operators, nonsymmetric "convection" operators are still not

fully understood [19,33,34J. Due to the ability to eliminate the incom

pressibility constraints and pressure unknowns [19J, and also to the

better understanding of the convection operators [33,35-37J, it is

hoped that the finite element technique, due primari'ly to its, geometric

versatility, will soon equal, and eventually surpass the better finite

difference methods.

I-D. Interface Technigues

The simplest Eulerian-Lagrangian interfacing technique goes under

the name of lIarbitrary Lagrangian-Eu1erian" (ALE) technique in the finite
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difference literature [38]. Donea et al. [10] and Belytschko and Kennedy

[9] generalized the procedure in straightforward fashion to finite ele

ments. Hughes et al. [39] proposed an alternative mixed Lagrangian

Eulerian description in which each degree-of-freedom may be assigned to

move at a fraction of the fluid particle velocity. Many problems, such

as sloshing and surface waves, may be handled by these procedures. To

illustrate the basic idea, consider a cylindrical liquid storage tank,

under the action of a strong earthquake. Field observations after

strong earthquakes indicate: (1) large amplitude free surface sloshing,

which often results in roof damage, (2) nonlinear inelastic tank re

sponse such as the well-known elephantLs foot bulge phenomenon, and

(3) lift-off of tank from foundations. In order to model fluid-structure

problems of this type, the following description may be employed: Lagrangian

for the shell structure, Eulerian for the main core of the fluid, a

split or mixed description for the free surface, and an interpolated

description between the Lagrangian and Eulerian subdomains (see Fig.

I-C.l). In this way the,motion of the fluid may be represented without

gross distortions of the mesh.

I-E. Transient Analysis

Basically, there are two general classes of algorithms for tran

sient nonlinear problems: implicit and explicit [40,41]. Implicit

algorithms tend to be numerically stable, permitting large time steps,

but the cost per step is high and storage requirements tend to increase

dramatically with the size of the mesh. On the other hand, explicit

algorithms tend to be inexpensive per step, and require less storage

than the implicit algorithms, but numerical stability requires that

small steps be employed. There are some problems for which implicit
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algorithms are very efficient and others for which explicit algorithms

are very efficient. However, the direct time integration of the equa

tions resulting from fluid-structure interaction problems presents com

putational difficulties that are not normally encountered in single-field

problems (structural and fluid).

To overcome these difficulties, methods have been developed in

which it is attempted to simultaneously achieve the attributes of both

classes of algorithms. Be1ytschkoandMullen [42,43J proposed an

implicit-explicit nodal partition in which the explicit nodes are inte

grated first in each time step and the results are used subsequently as

"boundary conditions" for the integration of the implicit nodes. Hughes

and Liu [44,45J proposed an alternate e1ement-by-e1ement imp1icit

explicit partition which is amenable to stability and accuracy analysis,

and, at the same time, can be simply and concisely implemented. In this

approach the mesh is divided into implicit and explicit finite element

groups only. The notions of "strong coupling," "wea k coup1ing,"

"interface e1ements," explicit and implicit nodes [46,47] are completely

avoided. The coupling between the groups is fully accounted for by the

standard finite element assembly procedures. The convergence, extension

to nonlinear problems, and implicit-explicit finite element techniques

for symmetric and nonsymmetric systems have been developed in [19,50,51,

54J. A general partitioned transient analysis procedure is proposed by

Park [48J, which is amenable to a unified stability analysis and incor

porates the mentioned algorithms as special cases.

Various other improvements in transient algorithms have also been

recently achieved [49,52,53,55-57J. The applications of these ideas in

different branches of engineering problems has proven to be
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successful [19,39,42,53,55J.

II. Scope of the Present Investigation

This report deals with the developments of finite element proce

dures in fluid-structure interactions. Both geometrical and material

non1inearities are accounted for.

In Chapter 2, the fundamental theories in continuum mechanics are

reviewed. A general theory of mixed lagrangian-Eulerian descriptions

will be derived. The definitions of convective velocity and referential

or mesh time derivative are given. The balance laws, such as conserva

tion of mass and balances of linear and angular momentum are derived with

in·the mixed-lagrangian-Eulerian concept. The formal statements of the

initial/boundary-value problem for the mixed description, Eulerian de

scription and lagrangian description and their corresponding variational

equations will be discussed. A class of rate-type constitutive equations

is introduced which represents a wide class of material models. The

Ga1erkin/finite element formulation and matrix equations, as well as the

incremental constitituve equations are derived. The elimination of the

continuity equation and pressure unknown for a viscous incompressible

fluid is achieved within the framework of the penalty function formula

tion. A related idea for slightly compressible fluids is also discussed.

In Chapter 3, the numerical solution techniques are discussed.

The integrals appear1nginthe variational equations are carried out by

numerical integration. Selective/reduced integration procedures are

discussed in detail. "Upwind" finite elements are developed based upon

modification of standard Gauss-legendre quadrature rules and also

Petrov-Ga1erkin techniques. These enable stable finite element
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approximations to highly convective flows. Consistent, lumped and "row

summed" mass matrices are discussed. The implementation of Lagrangian

Eulerian finite elements is done by introducing a "Lagrange-Euler

parameter. II The numerical integration of rate constitutive equations

is reviewed. and finally. different transient analysis techniques for

the variational equations are presented.

In Chapter 4. the nonlinear finite element analysis of shells is

discussed. The geometry and kinematic descriptions are first defined.

"Laminar" coordinate systems and"fiber"coordinate systems are then

introduced in order to account for the zero-normal stress condition and

to eliminate the "torsi onal II degree of freedom. respectively. The numeri

cal algorithms for integrating the constitutive equations for shells are

then discussed. The avoidance of "mes h-locking" in the thin shell limit

is achieved by a simple modification of the strain-displacement matrix

via selective/reduced integration. Different transformation matrices as

well as the tangent stiffness matrix. internal force vector, and mass

matrix are defined. Different shell elements. such as the selective/

reduced Lagrangian elements and heterosis elements are also discussed.

Numerical examples involving a number of the elements are presented to

demonstrate the effectiveness of the proposed shell procedures.

Numerical examples of incompressible viscous flows by the penalty

function formulation are presented in Chapter 5 to demonstrate the ef

fectiveness and accuracy of the proposed formulation. A free-surface

wave generation problem is used to demonstrate the mixed Lagrangian

Eulerian theory in Chapter 6. Also presented is an example of practical

interest concerning a nonlinear analysis of an inclined cylindrical

liquid storage tank. In addition, the axisymmetric buckling of
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circular cylinders under different boundary conditions due to a uniformly

applied axial load is presented. Finally a dynamic analysis of a liquid

storage tank is presented. A summary of the present study and sugges

tions for further developments are discussed in Chapter 7.
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Chapter 2

FUNDAMENTAL CONTINUUM MECHANICS THEORY

AND FINITE ELEMENT FORMULATION

I. General Description of Governing Equations

"A continuum is an abstraction applied to a large collection of

material particles. Continuum mechanics deals with deformations and

motions of these particles in space and time, under a variety of ex

ternal conditions such as mechanical and thermal processes. The theory

of continuum mechanics serves to establish the mathematical formulation

of any physical phenomenon that takes place in a material body. This

is tantamount to replacement of the actual body with an idealized

Imathematical body' in the sense that it is not an atomistic view of

matter; rather, it associates material bodies with regions of Euclidean

space," K. S. Pister [2J.

Equations describing the behavior of a continuum can generally

be divided into four majQr categories: (1) kinematic, (2) kinetic

(balanced laws), (3) thermodynamic, and (4) constitutive. Detailed

treatments of the subject can be found in many standard texts and ar

ticles [1-6J. However, the two classical descriptions of motion,

Lagrangian and Eulerian [3,5,6J, are not adequate for many free-surface

flows and problems of fluid-solid-structure interaction involving finite

deformation. The Lagrangian description is generally not suitable for the

fluid undergoing large displacements since the mesh will become highly

contorted. In addition, when the Eulerian description is used for the fluid

it is not compatible with the large displacement of the structure for which

the geometries of the boundary are altered.
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It is the purpose of this section to develop a more versatile

description of motion based on the previous developments by Amsden and

Hirt [7], Donea et al. [8], Belytschko and Kennedy [9], Hughes et al.

[10], and references therein.

I-A. General Theory of Mixed Lagrangian-Eulerian Description
n

Suppose a body B occupies a region Rzcm sd. We describe the

moti on of B by a mappi ng p: Rz x [to' t l ] -+ lRnSd. The image of Rz at

time tis denoted by Ry ' and the image of ~ € Rz is denoted by y, i. e. ,

y = cj>(z,t) (IA.l)

Here Rz is thought to be the region occupied at t =to by the "material

particles" which occupy Ry at time t, so we wish to think of Ry as the

"spatial ll region. In order to describe the mixed formulation, we have

to introduce a "reference" region. To this end, let us introduce
n

Rxc m sd which is fixed throughout. Its motion is defined by the map
n

pi ng ~: Rx x [to' t l ] -+ m ~~. We assume that Ry is the image of Rx at t

under the mapping ~, and that! is the image of ~~ Rx. Therefore,

y = $(x,t)
....

By composition we may define a third mapping ~ by

(lA.2)

x = ~(z,t).... ....- (lA.3)

The set-up is illustrated in Figure IA-l.

We may obtain the classical kinematic descriptions by specializ

ing the definition of R and~. The Lagrangian description is obtainedx ....
by picking Rx = Rz and ¢ = cp, whereas if R =Ry and ¢= 1, we have the...., _ x...., "'"
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A

By appropriate selection of Rx and ~, more gen-

eral kinematic descriptions, which are useful for many free-surface and

fluid-solid-structure interaction problems, may be obtained. In order

to describe this formulation, itis helpful to introduce coordinate sys

tems. For simplicity, let us restrict ourselves to proper orthogonal

coordinate frames and let xi' Yi' and zi' 1 ~ i ~ nsd denote the

Cartesian components of x, Y, and z, respectively. Partial differentia-

tion operators will be indicated by the following shorthand notation

[10] :

Ii _ a I _ a I (" referential derivatives")- aX
i at xi fi xed

,i _ a ,t
= ~tlYi fixed

(" spa tial derivatives")- aYi (IA.4)

. i a
• = ~tlZi fixed

("ma terial derivatives")- az.
1

It follows from (IA.4) that:

x: = 0
1

y. t = 0
1 ,

z. = 0
1

(IA.S)

(IA.6)

where 0 .. is the Kronecker delta.
lJ

A summary of useful kinematic definitions, associated with the

mappings defined above, is given as follows:
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Yi = ¢i(:,t) (motion)

ui = y. - z. (displacement)
1 1

. .
(velocity)¢ ui = y. = a¢/at1

U. = y. = a2¢./at2 (acceleration)
1 1 1

y.. = a¢./az. = 6.. + u.. (deformation gradient)
l·J 1 J lJ l·J

Yi = ~i(~,t) (motion)

(IA.7)

(IA.8)

(lA.9 )

(IA.10)

(lA.ll)

(lA.12)

Ui = Yi - xi (displacement)

y.•. = a¢./ClX. = 6.. +u.,. (deformation gradient)
1 J 1 J lJ 1 J

A, ,
U - Yi - i

u'! = y'!
1 1

= a¢;!at

= a2¢./Clt2
1

(velocity)

(acceleration)

(lA.13)

(lA.14)

(IA.15)

(lA. 16)

Xi = ljJi(:,t) (motion)

w. = x. - z· (displacement)
1 . 1 1

. .
aljJi/dt (velocity)ljJ w. = x· =- 1 1

w. - x = a2ljJ./dt2 (acceleration)
1 - i 1

x· . = ClljJ./ClZ. = 6•. +w.. (deformation gradient)
1 • J 1 J lJ l·J

(IA.l7)

(IA.18)

(IA.19)

(IA.20)

(IA.21)

Equations (IA.7) - (IA.l1) are the classical kinematic relations of

the Lagrangian description of a continuum (e.g., ui is the particle dis

placement, ui is the particle velocity, and Ui is the particle accelera

ti on).
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Convective velocity and material time derivatives

Differentiating (IA.12) with ~espect to t, holding ~ fixed, and

using (IA.l]), yields

u. = y." w.+u!
1 1 J J 1

from which it follows that

.
w. = x..c.

1 1,J J

where

. "'.c.=u.-u.
J J J

is called the convective velocity.

(IA.22)

(lA.23)

(lA. 24)

The material time derivative, which appears in continuum conser

vation laws, is the time derivative with the material coordinates (z)

held constant as in equation (IA.4). We assume, however, if f is a

scalar function defined on anyone of the regions Rx' Ry ' or Rz' via

composition, f can be expressed in terms of the other two functions.

Without loss of generality, if f: Rxx[to,tl]+ffi, then we can define

g: Ryx[to,tl]+ffi and h: Rzx[to,tl]+ffi (using (IA.2) and (lA.3)), by:

g(y,t) = g(~(~tt),t) = f(~,t)

h(z,t) = h(~-l(x,t),t) = f(x,t)- -
(IA.25)

In order to avoid introducing new variables (i.e., instead of writing

(IA.25)) we will simply write

f{x,t) = f(y,t) = f{z,t) (I A. :'26)
~ ~ ~

referential spatial material
or or

Eulerian Lagrangian
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with the understanding that the second and third fls in (IA.26) are ac

tually g and h, respectively. Differentiating (IA.26) with respect to

t and holding z fixed, we get

f'+ft.w. =
1 1

'---...r---J
referenti a1

f t+f .u.
, ,1 1

'---....----J
spatial

or
Eul eri an

= f

~
materi a1

or
Lagrangi an

(lA.27)

Since Rx is fixed throughout in this formulation, it is convenient to

express the material time derivative (f) in referential form. Combining

(IA.27) and (IA.23), and by the chain rule~ we have the important

relation

Strain measures

.
f = f' + f . c·

~ 1 1
(l A. 28)

Let ~ = (l-ex): + exy, where 0 ~ ex ~ 1. Also, let dSz,dsy be the

differential distances between points in Rz and Ry~ respectively. We

can write

Consider:

z = z(a)

ds2 = dz • dzz

ds 2 = dy· dy
y - -

and y =y(a)- -

(IA.29)

(lA.30)

and define:

ds2 - ds2 = 2daT • E • day z - - _ (IA.3l)
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If a = 0, E is called Green or Lagrangian strain tensor.

If a = 1, E is called Almansi or Eulerian strain tensor.

(lA.32)

If the motion of B is rigid, then this is equivalent to saying

~ = ~ L5]. Also, for a=1/2 it was shown by Hallquist [14] and by Hughes

and Winget [13] that E has certain useful numerical calculation proper

ties as will be discussed later.

I-B. Balance Laws (Mass and Momentum)

Mass density, conservation of mass (equation of continuity)

We assume there exists a scalar-valued function p{o,t) called mass

density defined on Ry and to~ t~ t l with the properties [5]:

(ii) If Px c. Rx is a bounded subregion of Rx' and if Py = ~(Px,t),

then

m{Py) = J p{~,t) dPy
Py

is the mass of material occupying Py at time t.

We call po(~} the initial mass density, viz.
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If Pz C Rz is a bounded subregion of R t and if P = ~(p tt), thenz y - z

m(Py) = pf p(y,t) dPy = pI p(~tt) Jyz dPz
Y z

where Jyz = det(a~/a~).

The principle of conservation of mass states that mass cannot be

created nor destroyed if we follow the motion of the given mass [12]t

i .e. t

d ( ) d Iat m Py = dt P p(~,t) dPy = 0

y

Equivalently:

Carrying out the material time derivative,(IB.2) becomes

• •
p Jyz + P JyZ = 0

As jyZ = Jyz Uk,k [5]t conservation of mass says:

p + p( u) .~ 0. k,k

(1B.1)

(1B.2)

(1B.3)

(1B.4)

If the material is incompressible so that the density of each material

particle remains constant as it moves, the continuity equation takes the

simpl er form

.
uk,k = 0 (1B.5)

This is the condition of incompressibilitYt which has been important in

classical hydrodynamics and in plasticity theories.
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Body forces and contact forces, surface tractions [~

Body forces

We assume there exists a vector-valued function b(o,t) (body

force density per unit current volume) defined on Ry such that the

resultant force and resultant moment about the origin, 0, of an nsd

dimensional Euclidean space due to the body force acting on the mate

rial in Ry are given by

f >'Xb(y,t)dP
P - - <'< Y
Y

Here..?< is a "cross product" or "vector product."

Contact forces

We assume there exists a vector-valued function T(o,o,t) (surface-

force density per unit current area, actual surface traction, or Cauchy

traction) defined on Ryx U, where U is the set of all unit vectors,

such that the resultant force and resultant moment about 0 due to the

surface forces acting on the

f !(~,~(~,t),t) dAy;
apy

boundary of Py ' denoted apy'

f ~ x !(~,~(~,t),t) dAy
apy

are gi yen by:

where n(y,t) is the unit outer normal vector at ~ ~ apy.

The principles of linear and angular momentum (postulates) [12J

Newton's law states that the time rate of change of linear momentum

of a given mass is equal to the force exerted upon the mass, i.e.,

(1B.6)
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Also, conservation of moment of linear momentum states that the time

rate of change of angular momentum of a given mass with respect to a

given point is equal to the applied torque referred to the same point,

i .e. ,

I ~x~(~,t)dPy + I~x!(~,~,t)dAy = ddt I~xp(~,t) ~(~,t) dPy (IB.7)
~ apy Py

Before deriving the mixed Lagrangian-Eulerian equation of motion

we have to introduce a very important lemma.

Lemma IB-l
n

Let 2: Rzx[to,t l ] -+lR sd be sufficiently regular. Let Py andp

be defined as previously. Suppose g is vector-valued, and

g(y,t) = g(¢(z,t),t) = g(z,t)

then

~t pI p(~,t) 2(~,t) dPy = pI p(~,t) 2(~,t) dPy
y y

Following [5], we can define a second order tensor T(y,t) called

Cauchy, or actual, stress-tensor field on Ry ' Tij(~,t) are the Carte

sian components of the two-tensor T(y,t). If n(y,t) is the unit outer- -
normal vector of apy at ~, then the surface traction vector T is related

to the Cauchy stress-tensor T by:-
T. = Too n.

1 Jl J
(IB.8)

Substituting (IB.8) into (IB.6), using lemma IB-l, and invoking the

divergence theorem, we get
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J (T.. . + b. - pU.) dP = a
Jl,J 1 1 Y

Py

Continuity of integrand implies

T •• 0 + b. = pU.
Jl,J 1 1

(IS.9)

Using (IA.28) on the right-hand side term of (18.9) yields the equations

of motion in the mixed Lagrangian-Eulerian description .

• I •

To. o+b.=p[(u.) +(u.) 'CoJ
Jl,J 1 1 1 ,J J

(lC.la)

Using (IB.7) and following [5J, we have the symmetry of the Cauchy

stress tensor, i.e., Tji = Tij .

II. Formal Statement of the Initial/Boundary-Value Problem

II-A. Mixed Description

We will restrict ourselves to fluid flow problems if the mixed

description is being used.

The object of the initial/boundary-value problem is to find func-
A • _

tions ui : Rxx [to,tlJ -+JR, ui : RyX [to,tlJ -+ JR, and p: RyX [to,tlJ-+JR

(pressure) (where R is the closure of R), such that

(IIA.3)

(IIA.4)

(lIA.l)

(lIA.2)

PU1' = T ••• + b.lJ,J 1

(Ui),i = a on RyX [to,tlJ

T.. = ,,;po"+lJ[(u,) o+(u.) oJ
1J 1J 1,J J,1
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ui = a given representation
depending on ~, as will
be discussed 1n the
next chapter

on dR~X [to,tlJ

on Ryx [toJ

on Rx x [to' t l J

(!lA.5)

(IIA.6)

(IIA.7)

(I IA. 8)

where p > 0 is the density, bi is the prescribed body force (per unit

volume Ry); ~ is the dynamic viscosity; gi and hi are prescribed bound

ary velocities and tractions, respectively; ni is the unit outward

normal vector to dRy; and Uoi and Qoi are the given initial data.

In order to eliminate the pressure unknown and the continuity

equation, we employ a penalty-function formulation of the incompressi

bility condition in which (IIA.2) is dropped and the pressure is deter-

mined from

p = -:\(u.) .
1 ,1

(IIA.9)

where :\ > 0 is the penalty parameter; see [15J for a discussion.

An alternative is to use allslightly compressible formulation ll in

which it is assumed that

. .
o = P, t + ui P, i + pUk, k ~ P, t + pu k, k

Then by using the equation of state for an isothermal process,

F(p,p) = 0

it fo 11 ows tha t

(IIA.10)

P -E.E. N

,t - dP P,t
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We further assume ap/ap ~ constant = 8. Then

and the constitutive equation (IIA.3) becomes
t

T·· = -(p - J 8pUk k dt) 0.. +ll[(U,} . + (u.) .J
lJ 0 , 1J 1,J J,1

o
where Po is the pressure at t =O.

{IIA.ll }

(IIA.12)

With the continuity equation eliminated, the variational equation

corresponding to (IIA.l) through (IIA.8) is

f (pti.u. +T ..li".. }dR = f b.u.dR + f h.u.dA
1 1 lJ 1,J Y 1 1 Y h 1 1 Y

Ry Ry aRy

in which

U = 0i on aR~ (IIA.13)

By virtue of Rx being fixed throughout, we recall

u. = (u!) + (u.) .c.
1 1.. 1. ,J J

III. Linearized Equations of Motion Using Lagrangian Description

III-A. Constitutive Equation

In many engineering applications it is found convenient to put

constitutive equations into rate form. A wide class of plastic, visco

elastic, and viscoplastic models can be put into this form.

Nonlinear elasticity can be put into this form by time

differentiating the more usual forms. We will restrict our attention

here to linear elasticity, the Saint-Venant-Kirchhoff nonlinear elastic
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model, and the Krieg-Key combined isotropic/kinematic hardening plas-

ticity model [21J.

Aclass of rate-type constitutive equations for inviscid materials

For discussion purposes, consider rate-type constitutive equations

of the following form:

where

(IIIA.l)

*T .. =
lJ (UIA.2)

u(k,.Q,) = (uk,.Q, + u.Q"k) / 2

U[k,.Q,] = (Uk,Q, - UQ"k) / 2

(IIIA.3)

(IIIA.4)

(IIIA.5)

(IIIA.6)

Here Cijk~ is the material constitutive tensor which is a function of

Cauchy stress .~ and deformation gradient~. u(k,.Q,) is the symmetric

part of the velocity gradient, whereas u[k,~] is the skew-symmetric

part. Without loss of generality, we further assume the Cijk~'S possess

the minor symmetries:

(I IIA. 7)

*The tensors Sijk.Q, and Cijk~ possess the following symmetries:

(IIIA.B)

(I IIA. 9)

The second term on the right-hand side of equation (IIIA.l) (i.e., the
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SijkR,U[k,R,] term) is the "rotational part" of the rate and is fixed

once and for all by the so-called "objectivity" or "material frame

indifference" as it is now often called [22,23]. As has been discussed

in the paper by Hughes and Winget [13], there are several ways to

account for this rotational term numerically; for details see [13J and

[16]. The third term on the right-hand side of equation (IIIA.l)

(i.e., the C;jkR,u(k,R,) term) is required to be an "objective tensor,1I

but is otherwise arbitrary. We find it is convenient to employ the

Truesdell rate of Lij in which C;jkt has the following form:

* def
Cijkt = - Lik0kR, + (TUOjk + LjR,0ik + tikOjR, + TjkoiR,) / 2 (IIrA.10)

For further discussion of the lI objective tensor,1I C~jkt' the reader is

urged to consult [17,24J.

Combining (IIIA.l), (IIIA.2) and (IIIA.10), we can write the con-

stitutive equation as follows:

(I IrA. 11 )

in which

(I IrA. 12)

Examples of CijkR, for particular materials under consideration

1. Linear elasticity

Awide class of engineering problems can be studied by linear

elastic material behavior. However, if finite rotations are involved,

the analyst must generalize the small strain linear elastic model to

account for these effects. In this way (IIIA.ll) will yield a symmetric
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stiffness matrix due to the choice of Truesdell rate. The choice

Cijk~ =0 (Jaumann rate) results in a nonsymmetric stiffness. As has

been mentioned in the paper by McMeeking and Rice [19], the Cijk~'S

will have a non-negligible effect on material response in the high

stress, finite deformation regime. Use of this model in this regime is

clearly speculative.

If we consider the isotropic linear elastic model, the material

constitutive tensor takes the following form:

(IIIA.13)

where A,~ are the Lam~ parameters.

2. Saint Venant-Kirchhoff model

The second (symmetric) Piola-Kirchhoff stress tensor Ppq is re

lated to the Lagrangian strain tensor Ers by the following relation:

= Dpqrs Ers (IIIA.14)

where A:~ are the Lam~ parameters. The Cijk~'S are defined by [18,20J:

(IIIA.15)

where F.. are the Cartesian components of the deformation gradient ten
lJ

sor and J is the determinant of F. Carrying out the algebra and de--
fining b = ~~T (the Finger tensor), (IIIA.15) becomes:

(IIIA.16)
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3. combined isotro ie-kinematic hardenin

Using the assumption made in the paper by Krieg and Key [21], we

can write the Cijki's as follows:

C, 'k n = AO, '0 +lJ(o'ko +o'ko,J - 211 l;n,'J,n kn, J AI , J ki , j i J , AI AI
(IIlA.l?)

where A,lJ are Lame parameters. I; is set to one during plastic loading,

that is, when ¢ > 0; otherwise, I; is set to zero. ¢ is the Von Mises

yield function defined by:

1 2 2 2 2222
¢ = 6" [(E,;1l-E,;22) +(~22-E,;33) + (E,;33-E,;1l) ] + E,;12+E,;13+E,;23- k

(IllA.18)

in which

(IIIA.19)

and the tensor cxrs is the location of the center of the Von Mises yield

surface, and k is its radius. The plastic hardening rules are:

* 2 •Pex =-(l-S)Bu( )rs 3 r,s
and

k* = _1 S Bl
13

with the effective plastic stretching, dP, defined by

An associated flow rule is used to give:

(IIlA.20)

(II lA. 21)

(I IIA. 22)

(IIIA.23)
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where ~~s = ~rs - 0rs~kk/3 is the deviatoric part of ~rs'

.
A = u(r,s) ~~s

2k2(1 + B/311)

and

(I IIA. 24)

(IIIA.25)

8 is a kinematic variable. If 8 is equal to one, we have the case of

isotropic hardening; if 8 is equal to zero, kinematic hardening, and if 8

is in between, it is combined isotropic-kinematic hardening. B is the plastic

modulus and it is related to the elastic modulus, E, and plastic

modulus, ET, in the uniaxial true stress-strain curve by:

(I I IA. 26)

III-B. Linearized Variational Equation

Before we can derive the appropriate form of the variational

equation, we have to write the constitutive equation in incremental'. .

form. Express T as 6T/6t and Uas 6U/6t, where 6t is the time incre-- - -
ment. Equati on (I IIA.ll) becomes:

(IIIB.l)

Following techniques in [17-20] for deriving linearized varia

tional equations, the linearized version of equation (IIA.27) is given

as follows:
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J pllU .u. dR
1 1 Y

Ry

+ J (llT .. +T .. (llU k) k - (llu.) kTk·)U.. dR
1J 1J , J, 1 1 ,J Y

Ry

= J b.u. dR + J h.u. dAy
1 1 Y h 1 1

Ry dRy
(IIIB.2)

- J Tiju(i,j) dRy
Ry

- J PUiui dRy
Ry

in which

Ui = 0

internal force

inertial force

(IIIB.3)

Substituting the incremental constitutive equation (1IIB.1) into

(IIIB.2) yields:

fp t.U .Li. dR + .J Li. .
1 1 Y 1,J

Ry Ry

where

dijkR. t.uk,R. dRy = external
- interna1
- inertial

force
force
force

(IIIB.4)

(IIIB.5)

We observe that dijkR. will possess the major symmetry if the CijkR.ls

do, which leads to a symmetric (tangent) stiffness matrix in a Galerkinj

finite element fonnu1ation 'as will be discussed in the next section.

This is due to the fact that the Truesdell rate definition of C;jkt in

(1IIA.10) is employed. (There are other rate definitions which give a
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symmetric tangent stiffness matrix.)

Equation (IIIB.l), together with (IIIB.4) and (IIIB.5), consti-

tute a very general formulation which is applicable to arbitrarily large

deformations. If large rotations can be precluded, we set

(IIIB.6)

Consequently,

(IIlB.7)

\

IV. Galerkin/Finite Element Formulation and Matrix Equations

IV-A. Generalized Mixed Lagrangian-Eulerian Linearized Variational
Equation

Combining the results that have been developed in the previous

two sections, we can write the general form of the linearized mixed

Lagrangian-Eulerian variational equation as follows:

f pu. t.(u~) dR + fpu.c.(t.u.) . dR + f pu.t.c.(u.) . dRy
1 1 Y 1 J 1,J Y 1 J 1 ,J

Ry J \ Ry Ry /
~ ~

linearized part of linearized part of convective force
time derivative term

+ f u..d. 'kn t.uk n dR + f U.. d. 'kn t.u k n dR1,J lJ Jfv ,Jfv Y 1,J lJ N ,Jfv Y
R R

,-y ) ,j )

linearized~art of linearized p~t of viscosity
internal force and penalty terms

= f· b.u. dR + f h.u. dAy
1 1 Y h 1 1

Ry dRy

external force



J lijU( i ,j) d~
Ry

- J p(U~ rUi dRy
Ry

J pc.(u.) .u. dR
J 1 ,J 1 Y

Ry

in which

U. = 0
1
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on a~

internal force

inertial force

j

(IVA.l)

(IVA.2)

The first term corresponds to the linearized part of the time-

derivative term and the second two terms correspond to the linearized

part of the convective force. If we select the Lagrangian description,

the latter terms are equal to zero. The third term is the tangential

stiffness matrix, as described in Section III-B. The fourth term is

the linearized part of the viscosity and penalty terms. We will define

dijk~ later in this section.

IV-B. Matrix Equations

Background information on Galerkinjfinite element formulations

may be found in [18,25,26J. Review articles and current trends in

finite element research can be found in [27,28,29J.

The Galerkinjfinite element method consists of the discretiza-

tion of a region, say Rx' into non-overlapping subregions called

lIelements.1I We label each element by an element number lI ell, e.g., the

eth element is denoted by R~, e= 1,2,···,Nume~. The discretization of
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Rx also consists of Numnp "nodal points. 11 The position vector of the

ath node, a= 1,2,···,Numnp is denoted by x. The "shape function"
-a

associated with node a is denoted by Na and it satisfies the relation

Na(~b) = cab· We employ the isoparametric concept [25] that the same

shape functions are used for both geometric interpolation and kinematic

variables. Specifically, we assume for a typical element ("e"), with

nen nodes, that:
nen

Nxex. = I1 a=l a ia

nen
N eYi = I

a=l a Yia

nen e
Ui = I Na u.

a=l la

A
nen Ae

U. = L N u.
1 a=l a 1a

nen ·e
Ui = I Na Uiaa=l

nen AeAI
I Nau. = u~

1 a=l la

(IVB.l)

(IVB. 2)

(IVB.3)

(IVB. 4)

(IVB.5)

(IVB. 6)

where x~a' y~a' u~a' u~a' U~a' and ui: are the ath nodal values of the

coordinates in Rx and Ry' particle displacements and "mesh" displace-

ments, particle velocities and "mesh" velocities, respectively. Also

for programming purposes, it is convenient to introduce matrix counter-

parts of the variational equations (IVA.l) and the corresponding con

stitutive equations (IIIB.l). These are summarized as follows.
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where

[ N.
0

:]=B
1 = 0 Na ~a_a

0 0 Na

· · ·pUl,l pUl ,2 pU l ,3

· · ·
El = pU2,1 pU2,2 pU2,3

· · ·pU3,1 pU3,2 pU3,3

(I VB .7)

(IVB.8)

(IVB.9)
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N 0 0a, 1
N 0 0a,2
Na,3 0 0

0 Na,l 0

B2 = 0 Na,2 0 (I VB. 10)
~a

0 N 0a,3
0 a Na,l

a a Na,2

a a Na,3

[ C
1 c2 C3 a a a a 0

c:J~2 =p : a a c 1 c 2 C3 a a (IVB.11 )

a a a a a C1 c2

B = [:;J (I VB. 12)
~a

[~:6 ~63]
0 = + T (I VB. 13)

~33 ~

N a 0a,l

Na ,2 Na,l 0

a Na,2 0
BY = (IVB. 14)
~a

0 a Na,3

a Na,3 Na,2

Na,3 a Na,l
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Na,2 -Na,l 0

Be = 0 Na,3 -N 2-a a,
-N 0 Na,3 a,l

(I VB •15)

(the components will be
defined in the next
section)

(I VB. 16)

c1u1,1 + c2u1,2 + c3u1,3

n = c1u2,1 + c2u2,2 + c3u2,3- . . .
c1u3,1 + c2u3,2 + c3u3,3

(IVB.l7)

where 0mn denotes the mx n zero matrix, C is a 6 x 6 matrix of material

tangent moduli whose components are given by C1J = Cijk~ in which the

relationships between the indices are given by:

1 1 1
2 1 2
3 2 2
4 3 3 (IVB.18)

5 2 3

6 3 1

The ordering convention in (IVB.18) may seem strange at first, but

it is quite convenient for reducing to two-dimensional and axisymmetric

theories (see Part II of [16J).

The initial-stress matrix, T, is defined as follows:
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'[2
0 0 0

'[6 '[2
0

'[6
'[1 2 2 2 -2

'[1+'[3 '[2
0

'[6 '[5 '[3-'[1 '[6 '[5
4 2 I 4 4 -4- 4 -4

0
'[5

0
'[2 '[5

0'[3 4 -2 2
I-------------------1-----------------------

'[5 '[6
0

'[5 '[6
'[4 2 2 -2 2

T =
'[3+'[4 '[2 '[6 '[4-'[3 '[2

4 4 -4 4 4

SYMMETRIC
'[4+'[1 '[5 '[2 '[1-'[4

4 I 4 4 -4-
~-----------------------

'[1+'[3 '[6 '[5
-4- - 4" - 4"

'[3+'[4 '[2
-4- -4

'[4+'[1
-4-

(IVB.19)

where

(IVB.20)

The 0 matrix is arranged to be compatible with the following ordering of

strain and rotation components:

(IVB.2l)

in which

y .. = (flu. . + flu. i) / 2 }lJ 1 ,J J,

and
w· . = (flu. . - flu. .) / 2
lJ 1 ,J J ,1

(IVB.22)
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Incremental constitutive equation

The following definitions are used to derive the tangential initial

stress matrix, but an improved representation can be used to integrate

the constitutive equation (see Chapter 3, Sect. III).

I:::r = Cy + Sw
~ ---

c = C + C*

Incremental Constitutive Equation (IVB.23)

(IVB. 24)

(IVB.2S)

C = [C1J] (IVB.26)

C1J = CijH (IVB.27)

Tl T2 -Tl -Tl 0 T6

0
Tl +T3 0

T6 TS
2 -T2 "2 "2 Truesdell-

0 Rate Stress-T3 T2 T3 -T3 TS Matrix
C* = ----------------- ------------------ (IVB.28)

-T4 a· -T4 T4 TS T6
T6 0 0

T3+T4 T2-TS "2 2 "2

0
TS 0

T2 T4+Tl
"2 -T6 2" 2

~ul,l

~ul,2 +~u2, 1

t.u2,2
nen

y = = L BY~ue (IVB.29)1 _a -a
~u3,3 a=

~u2,3 +~u3, 2 Incremental
Sty'ai n Vector

~u3, 1+ ~ul ,3



-44-

1"2 0 -1"6

1"3-1"1 1"6 1"5
2 2 -2

-1"2 1"5 0

S = ------------------- (IVB.30)
0 -1"5 1"6
1"6 1"4-1"3 1"2

2 2
1"5 1"2 1'1-1"4
2 -2 -2-

(I VB . 31)w=

Liu l ,2 - Liu2,1

Liu2,3 - Liu3,2

Liu 3,1 - Liu l ,3

Nen
= I Be Li ue

a=l -a -a

Incremental Rotation Vector

Element Nodal Displacement
Increment Vector (IVB.32)

IV-C. Definition of dijk£ for Incompressible Fluid and Slightly
Compressible Fluid

We restrict ourselves to incompressible or slightly compressible

fluids. In this way ~, f*, and I can be set to zero, so that:

Recall from equation (IIA.3) that

1".. = -po.. + 2jJ U(. .), J , J , ,J

For the penalty function formulation l15J, we let

OVc.n

(IVC.2)
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p = -A(U .. ) (IVC.3)
1 ,1

where A > 0 is the penalty parameter. Substituting (IVC.3) into

(lVC.2) yields

'[ .. = AO .. uk k + 211 U(. .)lJ lJ, 1,J

and therefore
"-

[aijk~JDIJ =

and
H211 0 A A 0 0

0 II 0 0 0 0

" A 0 A+211 A 0 0o =
A 0 A H211 0 0

0 0 0 0 II 0

0 0 0 0 0 II

(IVC.4)

(IVC.5)

(IVC.6)

(Note that the 0 is formally the same as the matrix for classical linear

isotropic elasticity.)

If we consider the slightly compressible formulation, recall

equation (IIA.ll),
t

'[ .. = -(p - f 8p uk k dt) 0..lJ 0 , lJ
o

+ 211 u(. .)1,J
(lVC.7)

A time-discrete form of the pressure part of the constitutive

equation is

(lVC.8)

from which it follows that
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6t pS + 2].1 0 ~tps ~tps 0 0

0 11 0 0 0 0

"
~tp(3 0 ~tp(3 + 2].1 6tp(3 0 0

o = (IVC.9)- ~tp(3 0 6tp(3 6tp(3 + 2].1 0 0

0 0 0 0 ].1 0

0 0 0 0 0 ].1
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Chapter 3

NUMERICAL SOLUTION TECHNIQUES

I. Numerical Integration of the Variational Equations

The exact integration of the expressions appearing in the varia

tional equation (IVB.7 of Chapter 2) is, for all practical purposes,

impossible, especially for complex, distorted elements. So instead, we

employ numerical integration formulas to carry it out. For purposes of

finite element analysis it is only necessary to use "sufficiently accu

rate" rules. With numerical integration we replace the integrals by a

weighted sum of values of the integrand. However, the cost of numerical

integration (i.e., computer time) can be quite significant. It is

therefore of interest to determine the minimum integration requirement

permitting "convergence", and yet to preserve the "rate of convergence"

which would result if "exact integration" were used.

There are many numerical integration rules which may be used. In

finite element work, the Gauss numerical integration or Gauss-Legendre

quadrature, as it is now frequently called [1,2,3J, is well suited for

Cartesian produce subdomains (e.g., quadrilaterals and bricks).

I-A. Selective Integration

Historically, kinematical constraints have proven difficult to

deal with by the standard "displacement" finite element method.

Examples of these kinematical constraints are:

1) "Nearly-incompressible" solids, in which the volumetric deformation

is much much less than the deviatoric deformations.

2) "Incompressible" fluids, ;n which the divergence of the velocity
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field is zero.

3) Beams, plates, and shells based upon theories which account for

transverse shear deformations in which the transverse shear defor

mations approach zero in the thin beam (plate, shell, respectively)

1imit.

Simple, low-order elements have behaved particularly poorly. "Mixed"

and "hybrid" [2,4-7,11] elements have been proposed as alternatives.

The whole subject was poorly understood throughout the 1960's. In the

early 1970's reduced integration procedures began to be used. However,

they were also poorly understood and not generally adopted. In 1974,

Fried [8], Nagtegaa1 et al. [9], and Malkus [10] performed important

investigations focusing on the rank condition, constraint counts, and

equivalence theorems, respectively. These workers created renewed in

terest in reduced/selective integration techniques and allied topics

and, as a result, successful methods for kinematically constrained media

could be developed within,the displacement method.

Within recent years, a greater understanding of this subject has

been achieved. Two techniques have proved very popular. They are the

reduced/selective integration procedure as advocated by Malkus and

Hughes [7], and the mean-dilatation formulation proposed by Nagtegaa1

et a1. [9]. Both techniques have proven successful, but both have their

1imi tati ons.

The reduced/selective integration technique is a fairly general

concept and has been applied to a wide variety of finite elements. For

details see [2,7,12-17]. In [12], Hughes and coworkers applied this

technique to finite element analysis of plates, employing the basic
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isoparametric elements [2J: the four-node bilinear quadrilateral and the

nine-node biquadratic quadrilateral. In [13J, Hughes and Cohen proposed

the "heterosis" finite element for plate bending in which they used nine

node biquadratic shape functions for rotation fields and eight-node

"serendipity" shape functions for displacement field, together with the

reduced/selective integration technique. In [14J Hughes and Liu suc

cessfully extended the technique to nonlinear finite element analysis of

shells as will be discussed in more detail in the next chapter. In

[15,16J Hughes and coworkers applied the technique, together with the

penalty function formulation, to finite element analysis of incompressible

viscous flows and Lagrangian-Eulerian descriptions for

incompressible fluids. They will be discussed in detail in Chapter 5.

In [17J Hughes and Prevost employed the same ideas in nonlinear quasi

static finite element analysis of soil via the computer program. DIRT II.

The mean-dilatation formulation is a more special technique

which has been used mostly in the context of basic isoparametric ele

ments. The two approaches are identical for the four-node quadrilateral

in two-dimensional plane strain and the eight-node brick in three-dimen

sional analysis. However, the mean-dilatation formulation appears to

behave somewhat better in axisymmetric analysis than does the correspond

ing reduced/selective integration procedure [9J.

The rationale behind these two techniques has been discussed at

length in [2,7-10,12-17], so we only provide a brief summary here.

The reduced/selective integration procedure for the continuum

elements case goes as follows: The "stiff" term (dilatation term)

may be segregated from the remainder (deviatoric term). A reduced

quadrature rule is then used on the stiff term to lessen the constraint
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("l ocking") and a normal, quadrature is used on the remainder such that

correct rank is maintained. If the segregated terms are tensor invari

ants, that is, the resulting matrices transform properly with respect to

rotation of the global reference frame [12], then the resulting arrays

are similarly invariant. An example of selective Gauss-Legendre inte

gration rules for two-dimensional isoparametric Lagrange elements is

presented in Figure IA-1. Extension to three-dimensional isoparametric

Lagrange elements is straightforward. One drawback of the reduced/

selective integration procedure is that triangular elements and "seren

dipity" quadrilaterals generally exhibit inferior behavior [18].

In the context of the general material laws, such as equation

(IVB.23) of Chapter 2, explicit segregation of the contributions to the

matrix equations into dilatation, deviatoric, and coupling terms proves

very inconvenient. In principle, a decomposition of this kind is pos

sible, however, it is not at all clear how to treat the coupling terms.

Also the element implementation is awkward. Clearly an alternative

general scheme is called for.

Hughes proposed a generalization of selective integration pro

cedures to anisotropic and nonlinear media [19]. Instead of separating

the dijki (in eq. (IIIB.5) of Chapter 2) into dilatation, deviatoric,

and coupling terms, the matrix ~~ appearing in equation (IVB.7) of

Chapter 2 is modified. A summary of the procedure is as follows; for

details the reader is urged to consult [19]. The original BY is-a
divided into Bdil and Bdev which are defined as:-a -a

(lA.1 )
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where

(IA.2)

The deviatoric part is then given by:

B1 0 0 B1 B2 B3
B2 B1 0 0 0 0

0 B2 0 B1 82 83
Bdev = 1----------------- - "3 -------------------a

0 0 B3 B1 B2 B3
0 B3 B2 0 0 0

B3 0 B1 0 0 0

We construct a new ~~ called ~ (which replaces ~~) by:

(IA.3)

BY = Bdev + sd i1 (IA.4)
-a -a -a

in which sdil is the "improved" dilatational contribution and is defined
-a

by: 61 62 83
0 0 0

sdil _ 1
61 82 83

------------------ (lA.5)-a - "3
Bl 82 63
0 0 0

0 0 0
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The resulting BY is
-a

B5 B6 B8
B2 Bl 0

BY=
B4 B7 B8

-----------------a
B4 B6 B9
0 B3 B2
B3 0 Bl

where

(IA.6)

( IA. 7)

B4 = CBl - Bl ) / 3

B5 = Bl + B4
B6 = (82 - B2) / 3

B7 = B2 + B6
88 = (83 - 83) / 3

B9 = 83 + B8

With ~~ defined, the stiffness matrix and internal force vector are

integrated within one "~DOLOOpll [20], using a single integration rule.

~il can be constructed to be equivalent to: (1) selective in

tegration of all orders; (2) mean-dilatation and higher-order general-

izations. Similar procedures have been employed by Hughes and Liu

[l4] in nonlinear finite element analysis of plates and shells (see

also Chapter 4).

As an example, let us pick adil such that it is equivalent to
-a

selective integration. A quadrature rule is specified to integrate the

element stiffness matrix and internal force vector. This rule is con-

sidered the'hormal ll one. Introduce a "reduced" rul e· 1et rd. and, n,nt

§i be the numbers of integration points and the corresponding locations
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for the II reduced" rule. A specified set of shape functions, ~tS, is de

fined with the nodal points equal to It's(i.e., Nk(It) = 0kt)' The

general fonn of B. is,1

Nint
'B"i(f) =/= 1 Nt(f) B' t (lA.8)

1

The equivalent of selective integration is achieved if Bit = Bi(~t)'

The specialization of equation (IA.8) to mean-dilatation formula

tion and other generalizations has been discussed by Hughes [19J, and

wi 11 not be di scussed here. A flow chart of the computer prograrrmi ng

aspects is presented in Table IA-l.

Table IA-l. Flow Chart of Generalizations of Selective Integration
Procedures

1. Loop over each element.

2. Pick up position vector arrays.

3.

4.

5.

6.

7.

8.

9.

Define the shape f~nctions Ni(~k) and derivatives Bit(~k) for

1 ~ k ~ Nint , and store.

Loop on the "nonna l" integration points (h)'

Compute the IInormal" shape functions, ~i(h)' and corresponding

derivatives ~i(ft).

Define B'(~n) using equation (lA.8).
1 _:Iv

Define ~(ft) using equations (lA.6) and (IA.7).

Form stiffness matrix and internal forces.

If t < N. t GO TO 41n

If t > N. t GO' TO 1- 1n '
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I-B. IIUpwind" Finite Elements by Modifying the Standard Gauss-Legendre
Rules

As can be seen from equation (IVB.7) of Chapter 2, the second

and third terms constitute a nonsymmetric operator. The Galerkin finite

element method has been successful in structural and solid mechanics

in which the operator is a symmetric one. Until recently, nonself

adjoint cases (nonsymmetric operators) have not been well understood.

If we use Gauss quadrature on the convective terms appearing in the

above-mentioned equation. spurious spatial oscillations are exhibited

for some high Reynolds number flows. These noisy results can only be

corrected by mesh refinements. However. in most problems of engineer

ing interest. convection is dominant and the geometry is so complex

that severe mesh refinement is not economically feasible. To circum

vent these problems. "upwind" finite elements [15.16.25-29J or Petrov

Galerkin methods [22-25J are used as alternatives to generate stable

finite element approximations to highly convective flows .
..

As observed in the fi nite di fference 1iterature. "upwi nd" dif-

ference schemes [21J may be employed to preclude such oscillations. but

due to excessive numerical diffusion. the accuracy of the solution may

degrade considerably. Among the proposed upwind-type finite-element

procedures, some schemes are subject to the same criticisms. However,

some have been shown to be superior (see e.g., [28,39,40J).

In fact. for some convection-dominated flows. the basic Galerkin/

finite element method is adequate. and a great deal of success and

progress has been reported in the finite element literature (see e.g .•

[30-36J). Nevertheless, based on the "Comments" and IIReply to the

Comments" made by Gartling [37] and Zienkiewicz [38]. respectively. and
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also from the numerical example shown in [15], basic Galerkinjfinite ele

ment methods exhibit spurious behavior wherever there is a downstream

essential, or "hard" boundary condition, in convection dominated situa

ti ons.

The first method used is based upon numerical integration rules

which are simple, efficient, very easy to implement, and yet effective.

Instead of using the standard Gauss-Legendre rules, a modified "upwind"

integration rule was employed. The positions of the integration points

are determined from the "element Reynolds number. 1I Since it has been

adequately documented elsewhere [see 16, and Sec. 4.3 of 15], this modi

fied lI upwind" integration rule will not be discussed here. However, we

will show some numerical examples to demonstrate the effectiveness of

the proposed theories in Chapter 5.

The performance of the "upwind" scheme used was found to be sat

isfactory for a wide class of slow problems, as will be discussed later.

However, for some time-dependent convection-dominated flow problems it

was found that the IIspuri.~us crosswind diffusion ll produced by the upwind

scheme degrades the accuracy of the solution [see 28,39]. A multidimen

sional upwind scheme with no "crosswind diffusion" was designed and

shown to be superior to the quadrature scheme [28,39].

Computational fluid dynamics is still a relatively young science

so it is still too early to evaluate the relative merits of the various

proposed schemes. Although these schemes differ considerably in concept

and implementation, they are "designed" to achieve similar ends. There

fore, it is beyond the scope of this thesis to design the lI ultimate"

scheme for computational fluid dynamics. The interested reader may

profitably consult [25-39] and references cited therein for further in

formation on this topic.
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While the objective of this thesis is development of finite

element procedures for fluid-structure interaction, it is worthwhile to

implement new ideas and examine relative merits. Therefore, the upwind

scheme with no tlcrosswi nd diffusi on tl proposed in [39J wi 11 be used for

the examples shown in Chapter 6. However, for fluid-structure interac-

tion problems in which the mixed Lagrangian-Eulerian formulation is

employed, the scheme in [39J , which is restricted to the Eulerian case,

has to be modified. Following [39J, we modify the equation of motion

in the mixed Lagrangian-Eulerian description (equation IB.10) of

Chapter 2) to:

p( U 1~ ) + pe· (u.) . = ('[.. + D. .) .
J 1 ,J 1J 1J ,J

where D.. is an artificial viscous force and is determined by:
1J

. -
D.. = u· k l..l.k

1 J 1 , J

in which
_A A

lljk = llCkCj

and ~ is defined as follows:
NSD

~ = p( I ~. Cr;' hr;l') / NSDi=l 1 .,,1 <;.

where

~i = coth a~i - l/a~i

or approximately

(IB.1)

(IB.2)

(IB.3)

(IB.4)

(1B.5)



in which

and

_{aq /3
~. = <,

1 sgn a~i

cC" = eC'0 • c<,1 _<,1 _
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-3<aC'0<3
- <,1-

la~i I > 3
(IB.6)

(IB.7)

(IB.8)

The meaning of hC'. and eC'0 is illustrated in Fig. IB-l for the four-node
<,1 -<,1

bilinear quadrilateral. The corresponding variational equation for

(IB.l) can be written as follows:

J [pu.(u!) + T ••u.. J dRy
11 lJl,J

Ry

+ J p(u. + u. )c . u. . dRy
1 1 J 1 ,J

Ry

= J b.U. dR + J h.u. dAy1 1 Y 1 1
Ry ClRh

Y
in which

u. = a on ClRg
1 Y

and

- lJ AU. = ui,kCk1 p II~ II

(IB.9)

(1B.10)

(1B.11)

In [28J. it is suggested to use II consistent weighting." For the

intended applications it was thought to be sufficient at this stage of

development to neglect consistent weighting. Nevertheless. it is anti

cipated that a consistent weighted formulation (Petrov-Galerkin scheme)

would lead to improved results in transient analysis. (This is being
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Fig.18-1
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undertaken in the thesis of Brooks [40].)

I-C. Mass Matrix

If we use the standard Gauss quadrature on the first term of

equation (IVb.7) of Chapter 2, the resulting matrix is called the con-

sistent mass matrix. It is symmetric and positive-definite.

However, for several computational reasons, 1I1umped" mass matrices are

desired. For two- and three-dimensional, rectilinear cases we employ

product Lobatto integration rules [2] on Lagrange elements which gives

rise to a diagonalized mass matrix. The first two Lobatto rules are the

trapezoidal and Simpson's rules, whose products are appropriate for the

4- and 9-node elements, respectively, in the 2-dimensional case, and

whose triple products are appropriate for the 8- and 27-node elements,

respectively, for the 3-dimensional case.

In the axisymmetric case, zero masses along the z-axis, due

to the factor r (radius) appearing in the volume element, would result

if Lobatto integration rules were employed. This can cause difficulties

in transient analysis. Thus a "row sum ll technique is employed to cir-

cumvent the problem. The consistent mass matrix term is

(IC.1)

The row sum matrix is defined to be

me = ~en m
a
e
baa 6=1

no sum on a, a = 1, .•. ,Nen
(IC.2)

and thus we arrive at the row sum mass definition:



1. We employ Gauss quadrature to evalu-

e - Imab - Cab P~a dRy
Re
y

N
using the fact that Ien N =

a=l a
ate the integral in (IC.3).
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no sum on a, . a =1, ••• ,Nen (I C. 3)

For direct integration procedures, the type of mass matrix that

should be used depends on the method of temporal integration as will be

discussed later in this chapter. It is interesting to point out that

consistent mass matrices tend to over~stimate the frequencies, whereas

lumped masses underestimate the frequencies. However, mass lumping is

still a controversial issue in fluid mechanics, due primarily to the

results of Gresho et al. [41].

II. Implementation of Lagrangian-Eulerian Finite Elements

Since all the volume and surface integrals in the variational equa

tions and thus the matrix equations are in terms of Ry and aRy'

respectively, it is important to specify what Ry is in our finite ele

ment discretization. We wish to think of the region Rx as our finite

element mesh in the referential domain. Ry is the image of Rx at time

t E [to,tl ]. Hence, ¢ is the "mo tion" of the mesh. In general $ is

arbitrary. The selection of $ is generally made depending on the use

fulness for the intended application. For our purpose, fluid-structure

interaction, it is useful to specify 91
, or equivalently to specify ~

and thus ¢. So u is the mesh displacement, U' is the mesh velocity,-
and u" is the mesh acceleration.-

"" - -If we select u' = 0, we have the Eulerian description; If we-
s~lect u' = u, we have the Lagrangian description. If we select G'
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.
between 0 and u, we have a mixed description which is employed in Chapter

6 for fluid-structure interaction problems.

We will employ the idea of split descriptions and relate G' to u

and u, following classical ideas [42J. In this way the unknowns u, u' ,
and ull can be solved by temporal numerical integration [2,3,46J, and

~ is then uniquely specified. For further generalizations see [43-45J.

II-A. Generalized Description Using Isoparametric Finite Elements

In this section it is assumed that unless otherwise indicated,

there is no sum on repeated i indices. Let us introduce a IILagrange

Eu1 er parameter arrayll defi ned by:

a= [a .. ] = [a .. c.. ] (IIA.l)
- 1J 11 1J

where aii E [0,1], for i =l,· .. ,NSD ' We relate u' to uand u by:

where

(

A A

dU.+X.) )J J
dXk ,; or n fixed

(IIA.2)

(IIA.3)

We assume that the a .. 's are constants in the present developments.
11

As an example, consider a two-dimensional mesh, and let all = 0,

a22 = 1, (IIA.2) becomes

and (IIA.4)
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A

If a .. = 0 we have ~. = Q, the Eulerian description. If a .. = O.. we
lJ lJ lJ

have g. = ~, the Lagrangian description. We may have split or mixed

Lagrangian-Eulerian descriptions as in IIA.4. If aii takes on values

strictly between 0 and 1, we have a very general description which is

suitable for bubble dynamics and other related applications. See

[43-45,47,48J for further details. However, for our applications we

restrict ourselves to the first three cases.

(IIA.5)i = 1 ... N, , sd

For finite element implementation, we assign a value of ~ to each

nodal point. Further, we employ isoparametric interpolation and let

Nen
= '\ N ae

L a iaa=l

However, in attempting to evaluate the derivatives in (IIA.2), by

virtue of the fact that we are using CO-continuity shape functions, dis

continuities will result across element interfaces. Consequently, a

"weakened" interpretation"of (IIA.2) is necessitated. To this end we

may introduce Galerkin approximations of (IIA.2).

Let
A

V = {ViA}

v = {viA}

(IIA.6)

(IIA.7)

(IIA.8)

A

where v, v, and A are the generalized global vectors of nodal mesh

velocities (~I), material velocities (u), and Lagrange-Euler parameters-
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(a diagonal matrix), respectively. The subscript A takes the values

1,2,···,Numnp. The subscript i takes the values 1,· .. ,Nsd ' With these

definitions, the Galerkin equations may be written as:

where

NumeJl, J
L = L NTN dR
- 1 - - xe= eRx

(IIA.10)

(IIA.ll)NumeJl, J N#n e ~n Ae Ae
s= L 2 NC k (2 Nb'k{ub+xb))dRx- 1 1 a- a b 1 --e= e a= =Rx

Here Re is the referential region of the eth element. We employ Lobatto
x

rules to evaluate the integrals in (IIA.10) and (IIA.ll). The resulting

matrix ~ is symmetric, positive definite, and diagonal. One drawback of

using Lobatto rules is that only Lagrange elements can be used, since

IIzeroesll or IInegativell weighting will result if other element types are

employed. In the axisym~etric case, we employ area average instead of

volume average to avoid zeroes along the z-axis. If Gauss quadra-

ture rules are employed to evaluate (IIA.10) and (IIA.ll), L is non

diagonal though banded; also, alldiffusiorl'of the description (Lagrangian

Eulerian) may take place [16].

III. Numerical Integration of Rate Constitutive Equations

The incremental constitutive equations in Chapter 2 (IVB.23) is a

linearized expression. In a numerical formulation, the stresses will

be calculated at all Gauss quadrature points which correspond to a set

of material particles. As we have noticed before, the first term on
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the right-hand side of the mentioned equation represents the material

response due to deformations, whereas the second term accounts for rota

tional effects, which are uniquely specified by "objectivity." However,

standard time-discretization procedures [49,51,57,58,60J when applied to

this incremental constitutive equation typically only achieve objectiv

ity in the limit of vanishingly small time steps, which is not economical

in practical computing.

If one employs the polar decomposition to separate deformation and

rotation effects [59J, much larger time steps can be accommodated.

However, it is too time consuming to extract the eigenvalues and eigen

vectors [52J at each Gauss point.

Hallquist [50J has shown, in the context of two-dimensional analy

sis, how to maintain objectivity for larger time steps. However, there

are some awkward aspects of the implementation, and the generalization to

three dimensions is not apparent. Hughes [54J proposed an improved algo

rithm for integrating rate constitutive equations in large-deformation

analysis. The algorithm is fairly simple and is shown to be objective

with respect to large rotation increments.

Therefore we employed the mentioned technique in [54J to account

for the rotational term (i.e., Sw) and the various standard numerical

integration algorithms [53,55,56J to account for the material response

part (i.e., ~r) .

III-A. Numerical Algorithm for Rotational Term

We represent the position vector of a particle at time tnE [to,tlJ

by yn. Let ~t be the time increment. The position vector at
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t n+ bot is denoted by ~n+l which may be written as a fun:tion of yn and

the time step; hence,

The particle displacement increment over the step is

n+l no = u - u- - -

(IIlA.l)

(IIIA.2)

Here un+l and un are the approximated values of u at time t n+ lit and

time tn' respectively. Consider the following one-parameter family of

confi guratj ons-

(IIIA.3)

in which a-E [0,1]. Let G denote the gradient of ~ with respect to
n+ay . In component form

n+aG•. = 'do./ay.
1J 1 J

(IIIA.4)

The incremental strain vector _y, and the incremental rotation vector,

w, may be defined in terms of G as follows:

(IlIA.S)

(IIlA.6)

The numerical algorithm for integrating the constitutive equation is as

follows:

(IlIA.7)

(IIlA.B)
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)-1Q=l+(l-a.w w- - - ~ "'"

In = Cy
- N

(IIlA.9)

(IIlA.10)

The expression for Q is obtained by applying the generalized midpoint

rule (see e.g., [61J) to the generating equation dQ/dt =wQ If

a = 1/2 it is a second order accurate algorithm.

For further details of the properties of the algorithm, consult

[54J.

III-B. Numerical Algorithms for Integration of Eg. (IIIA.10)

As already emphasized, the incremental equations derived in

Chapter 2 admit a wide variety of material constitutive models.

However, the application of these equations to physically nonlinear

problems requires detailed knowledge of the material characterization,

that is, C and C. The constitutive algorithms one should use then- -
depend solely on the definition of C. Therefore we will consider

numerical algorithms for linear elasticity, the Saint-Venant-Kirchhoff

nonlinear elastic model, the Krieg-Key combined is@tropic-kinematic

hardening plasticity model, incompressible viscous fluids via the

penalty function formulation, and the slightly compressible fluid.

These are sufficiently general for the developments herein.

1. Linear Elasticity

The C matrix in this case is constant and is given by:
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1..+211 0 A A 0 0

0 11 0 0 0 0

C = A 0 1..+211 A 0 0 (IIIB.1)- A 0 A 1..+211 0 0

0 0 0 0 11 0

0 0 0 0 0 11

If the Truesdell rate is neglected, ~T can be computed easily by taking

advantage of sparseness. Otherwise, a general matrix multiplication

II rou tine" is employed.

2. Saint-Venant-Kirchhoff Nonlinear Elastic Model

The C matrix is defined by the following algorithm:

a) Compute the deformation gradient matrix F (F .. = o(u. +x.) / ox.).
- lJ 1 1 J

b) Compute determinant of ~; J = det(~).

c) Calculate the Finger tensor B = EET

d) Define an array B(1-6) with: B(1) = B(l,1), B(2) = B(2,2), B(3) =B(3,3),

B(4) = B(l,2), B(5) = B(2,3), and B(6) = B(3,1).

e) Define an array A(1-21) using the following algorithms:

K = 1

el. LOOP ON I = 1,6

BB = B(1)

e2. LOOP ON J = 1,6

A(K) = BB*B(J)

K = K+l

IF(J.LT.6) GO TO e2.

IF(I.LT.6) GO TO el.

f) Define constants Cl to C5

Cl = A/J

C2 = l1/J
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C3 = C2 + C2

C4 = Cl + C2

C5 = Cl + C3

g} With the shorthand notation AI = A(I}, the C matrix is then defined

as follows:

C =

/""

C5*Al C5*A4 Cl*A2 Cl*A3 Cl*A5 C5*A6
+C3*A16 +C3*A21 +C3*A18

C4*A16 C5*A9 Cl *A13 C4*A17 C4*A18
+C2*A2 +C3*A20 +C2*All +C2*A5

C5*A7 Cl*A8 C5*A10 Cl *A11
+C3*A19 +C3*A17

C5*A12 C5*A14 C5*A15

C4*A19 C4*A20
SYMMETRIC +C2*A8 +C2*A13

C4*A2l
..

+C2*A3

(1118.2)

6T can then be computed using a general matrix multiplication routine.

3. Krieg-Key Combined-Isotropic-Kinematic Hardening Plasticity Model

For this model the radial return method [60J is employed. The

numerical algorithm is as follows:

a) Compute the elastic "tria'" stress increment as described in the

linear elasticity section. Update the elastic trial stress and call

it it, using (IIIA.7).
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b) Obtain the deviatoric part of (Tt - an):

~rts = deviatoric part of (Tt - an )rs rs (IIIB.3)

c) Compute the second invariant, J2•

_ 1 [( t t 2 t t 2 t t 2 t 2 t 2 t 2
J2 - 6 ~1l-~22) +(~22-~33) +(~33-~1l) ]+~12+~13+~23 (IIIB.4)

d) If (3J2 - (kn)2) is less than or equal to zero, T
n+l = T

t ; go to h.

e) Compute plastic strain increment ~dP.

, (IIIB.S)

where Z = 13J2

f) Compute the following quantities:

n+lg) Radial return for stresses, T

and yield stress kn+l :,

n+l t t
T = T - ~s ~- -

n+l n ta =a +~a~- -

(IlIB.6)

(IIIB.7)

position of yield centers, an+l ;

(IIlB.8)

(IIlB.9)

(IlIB.10)

h) If the tangent stiffness matrix is not required, exit.

i) Compute the f matrix for tangent stiffness calculation as follows:

t

(IlIB.ll)

t
+- means lIis replaced by.1I



-74-

A+21.1

- S~
-sls2 A- sl F,;3 A- F,;l s4 -sls5 -sls6

l.l

s2 - s2s3 - s2s4 - s2s5 - s2s6
- 2

A+21.1

- S2
A- s3s4 - s3s5 - s3s6

3

A+21.1
_ s2 - s4s5 - s4s6

4
SYMMETRIC

2
- s5s6l.l- s5

2
l.l- s6

c =

(IIIB.12)

In (IIIB.12) the shorthand notation sI = s·. is employed (as described
lJ

by (IVBJ8 ) in Chapter 2.

4. Incompressible Viscous Fluid via Penalty Function Formulation

By virtue of the fact that the incompressible viscous fluid used

is isotropic, equations (IIIA.7) through (IIIA.10) are replaced by:

n+l n'[ = '[ + /:,.'[- - - (I IIA.13)

/:,.'[ = C Y-- -- (IIIA.14)

where C is defined by (1118.1) and _y is defined by (IIIA.l) through-
(IIIA.5) in which (IIIA.2) is replaced by:
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. n+1 . no = u - u-
The Lam~ constant A appearing in (IIIS.1) is interpreted as the II pena lty

parameter ll
, which has been described in detail in [15J. Of course,

due to the sparseness of C in (IIIS.1), ~T can easily be computed with

out employing a matrix multiplication routine.

5. Slightly Compressible Viscous Fluid

We assume the fluid is slightly compressible. Equations (IIIA.13)

and (IIIA.14) are employed. However, we divide the ~T computation into

two parts, the viscous part and the pressure part. The viscous part

can be computed using the procedures described above for the incom-

pressib1e viscous fluid with Aset equal to zero. The pressure part

is computed as follows. We assume the pressure at step n,pn, is known

and stored at each Gauss point. The divergence of the material velocity

fie1d,6,is computed at the n+a geometry, that is:

in whi ch
. n+a . n . n+1
u = (1 - a) u + au

n+1Then the new pressure pis:

.,n+1 n
p = p - ~t pS6

sum on i =1" .. ,NSD

etc.

(IIIA.15)

(IIIA.16)

(I IIA. 17)

Since we approximate ~(tn) by ~n~ the divergence part of the linearized

expression ~ div ~ (appearing in the 5th term of eq. (IVB.7) in

Ch t 2) ' . t d b 1\ d' . n+a d. 1\ • h' h . .ap er 1S approx1ma e y u 1~ U = a 1V uu W 1C 1S conS1S-
- -

tent with the pressure computation in which we evaluate 6 at the n+a
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geometry. For implementational purposes, we include a in the tangent

matrix
A

(eq. (IVC.9) in Chapter 2)D and

I+2].1 0 I I 0 0

0 ].1 0 0 0 0

A
I 0 I+2].1 A 0 0

D = (IIIA.18)
I 0 I I+2].1 0 0

0 0 0 0 ].1 0

0 0 0 0 0 ].1

in which A = L1t pSa.

IV. Transient Analysis Techniques for the Variational Equations

There are two strategies used in dealing with the transient prob

lem: (1) modal superposition, and (2) direct integration [2,3J. In

modal superposition methods, the variational equations or matrix equa

tions are diagonalized by finding the eigenvalues and eigenvectors.

These eigenvalues and eigenvectors correspond to the natural frequencies

and modes. In direct integration the matrix equations are integrated

using a numerical step-by-step procedure without transformation of the

equations into a different form like modal superposition. In linear

analysis, the choice of method depends on the frequency content of the

load and on which portion of the frequency response is of interest.

For some particular cases, a combination of both methods is very effec-

tive [62J.

In modal superposition procedures, the most critical and time

consuming aspect of the computation is the determination of the eigen

values. There are a number of eigenvalue methods used in practice

[1,3,46J; each one of them has its own merits. Modal superposition is
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used very little in nonlinear analysis. It appears that it is not suit

able for path-dependent material and finite deformation problems.

For most nonlinear problems, direct integration is the only ef

fective method in transient analysis. Since we are dealing mostly with

nonlinear problems, only direct integration techniques will be discussed.

Basically, there are two general classes of direct integration

methods: (1) implicit integration, and (2) explicit integration [2,3,

46J. Both methods are developed from difference formulas that relate

the accelerations, velocities, and displacements. Implicit algorithms,

some of which are unconditionally stable, permit large time steps, but

the cost per step is high and storage requirements tend to increase

dramatically with the size of the mesh. On the other hand, explicit

algorithms, which are conditionally stable, tend to be inexpensive per

step and require less storage than implicit algorithms; but numerical

stability requires the size of the time step to be inversely propor

tional to the highest frequency of the mesh.

Belytschko and Mullen [63,64], Hughes and Liu [65,66J, and Park

et ale [67-69J proposed implicit-explicit nodal partition, implicit

explicit mesh partition, and staggered solution procedures, respec

tively, to circumvent these difficulties. Other procedures in transi

ent analysis algorithms have also been proven to be successful [70-83J.

Nevertheless, a generalization of all these ideas in one package,

though desirable, requires further research in theoretical and imple

mentation aspects.
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IV-A. Temporal Integration of the Variational Equations

In this section we are going to employ the new family of implicit

explicit algorithms developed in [65,66J for the temporal discre

tization of the variational equations. Although there are many dif

ference formulas that can be used in time discretization [2,3J,based

on previous studies, the Newmark family of methods [84] appears most

suitable for fluid-structure interaction problems.

For discussion purposes, let ~n' v , and a be the nodal vectors
-- -n -n

of mesh displacements, mesh velocities, and mesh accelerations (i.e.,

~n' ~~, ~~) respectively; likewise, ~n' ~n' and ~n are the material dis

placements, material velocities and material referential accelerations

(i.e., ~n' ~n' ~~), respectively. The solution at time step n+l is

determined by the following equations (in order):

i = 0 (i is the iteration counter) (IVA. 1)

d(i ) = a (IVA.2)_n+l _n+l
(i ) - (IVA. 3)~n+l = ~n+l predictor phase for

a(i) material displacements,
= 0 velocities, and ac- (IVA.4)_n+l

celerations

~n+l = d +bt v + (t- S)bt2a (IVA. 5)-n _n -n

~n+l = ~n
+ (l-y)bta (IVA.6)

-n

A( i) A
(IVA. 7)d = d-n+l _n+l

A(i) :::: predictor phase for
~n+l = ~n+l mesh displacements, (IVA.8)

and velocities
A a + bt V + (t- S)bt2a (IVA.9)~n+l = -n _n -n
:::: A

+ (1 - y)bt
A (IVA. 10)~n+l = ~n ~n
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momentum equations (IVA.")

M* = M + YtIto· N (v(i ) ,v (i) ,a( i) )
- - -c -n+l _n+l -n+l

+ ytlt K (dCi))
-v "-n+1

+ f3t1l K (v (i) ,d(i) ,d Ci ))
_d -n+l -n+l -n+l (IVA.12)

(IVA.l3)

(IVA.14)

(IVA.15)

Nume~ J .
K = L ByT 6 BY dR
-v e=l e - - - Y

Ry

pressure and viscous
tangent matrix

tangent stiffness matrix

(IVA.16)

(IVA. 17)

~~~i = discrete nodal applied forces (IVA.18)

Nume.Q, J
F = L NTb dR
-a e=l e - - yRy

body forces (IVA.19)
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Nume.Q.
J ~T~ dAy~S = L surface forces (IVA.20)

e=l aRey

I
Nume.Q. J T (.)

inertia forces (IVA. 21)= L pN an~l dRy- e=l e - -Ry

Nume.Q. f T
convective forces (IVA.22)~~ = L p~ ~ dRy

e=l eRy

Fint - Nume.Q. J yT (i) internal forces (IVA.23)- L B T +1 dRy-n+l e=l e - _n
Ry

a(i+1) = a(i) +/:1a (IVA.24)-n+l -n+l corrector phase
v(i+1) + Llt a(i+1)

for materi a1
= ~n+l displacements, (IVA.25)-n+l y _n+l

velocities, and
accelerations

d(i+1) = d + 13~t2a (i+1) (IVA. 26)_n+1 -n+1 _n+l

---(i+1) A (i+1) x
~n+l = ('!n+l - ~n+l) / yLlt

mesh velocity
representation

corrector phase
for mesh
accelerations and
displacements

(IVA. 27)

(IVA.28)

(IVA.29)

The notations used in equations (IVA.14) through (IVA.23) have been

defined in Chapter 2 (equation IVB.7). The numerical integration for

~~1{ that appears in equation (IVA.23) has been discussed in th~ pre

vious section. The mesh velocity update formula, equation (IVA.27),

has been discussed in Section II of this chapter.
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Let I be the tota1 number of iterati ons. If I =0, the algorithm is

a predictor-corrector algorithm. If more iterations are required (i.e.,

I> 0), it is a predictor-multicorrector algorithm. The generalizations of

(IVA.l) through (IVA.29) to implicit, explicit, implicit-explicit mesh par-

titions, implicit-explicit operator splitting, dynamic relaxation, and

quasi-Newton updates for symmetric and nonsymmetric equation systems have

been discussed in detail in [66,72,79]. The stability, accuracy, and

convergence have been discussed in [65,72,73]. For detailed analyses of

the above algorithms, the reader should consult [75,66,72,73,79J and

references cited therein.

IV-B. Computer Implementation of Equations (IVA.l) through (IVA.29)

We assume the initial data d , v , a , a, v , ~ are all given._0 _0 _0 _0 _0 _0

If the mixed description is used, the global array L is computed accord-

ing to equation (IIA.10) and stored. For computer implementation pur-

poses, let 111 11 and IIE II denote lIimplicit ll and lI explicit ll element groups.

If the entire mesh is tr~ated explicitly,

which is a diagonal matrix (I VB. 1)

(IVB.2)

The terms on the right-hand side of equation (IVB.2) are defined by

equation (IVA.18) to (IVA.23) with i set to zero. If the entire mesh

is treated implicitly, M* is defined as in equation (IVA.12) and equa

tions (IVA.13) through (IVA.17). M* can be reformed and factorized

whenever necessary. However, (~F*)I is recomputed for every iteration.

If a linear implicit/nonlinear explicit splitting is desired, M* is
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defined as

(IVB.3)

where ~* is constant and is computed once and stored. The corre

sponding 6F* is recomputed according to equation (IVA.13) for every

iteration. We notice that ~I + ~E = ~, and ([ext)I + (Eext)E = text.

With these definitions in mind, the solution procedures are as follows:

a) Loop on number of time steps, N.

b) Define predictor 'tnaterial ll values according to equations (IVA.l)
through (IVA.G).

c) Define predictor II mes hll values according to equations (IVA.?)
through (IVA.10),if required.

d) Form ~~~i and (6~*)E as described previously and store.

e) Loop on number of iterations, i =1, ... ,r.

R f d f t . M*· f . d h M* -_ (~*) I + (~*) E.e orm an ac orlze _ 1 requlre, were__

Form (6F*) i and 6F* = {6F*)I + (6F*)E.
....... -....... ....,

f)

g)

h) Solve for 6aaccording to equation (IVA.ll).

i) Update material displacements, velocities, and accelerations ac-
cording to equations (IVA.24) through (IVA.27).

j) Form S according to equation (IIA.ll) if required.

k) Update mesh velocities according to equation (IVA.27), if required.

1) Update mesh accelerations and mesh displacements according to equa
tions (IVA.28) and (IVA.29), if required.

m) Check convergence,if required. If convergence check is required
then for 116~ " .$.£ go to o .

n) If convergence check is required and i =I ·stop. If i < I, go to e.

0) T is replaced by T{l~l).-n _n
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(i+1) (i+1) (i+1)
are replaced by ~n+l ' ~n+l ' and ~n+l ,respectively.

are replaced by a(i+l) v(i+l) and a(i+l) respectively.
-n+l '-n+l' -n+l'

r) If N < maximum number of time steps, go to a.
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Chapter 4

NONLINEAR FINITE ELEMENT ANALYSIS OF SHELLS

1. Introducti on

Within recent years, shell structures have assumed increased im

portance due to new developments in industry; in particular in off

shore structures, nuc1ear reactors , cool i ng towers, and oi 1 tanks. The

demand for IIbetter ll design of a shell structure requires improved shell

analysis procedures, and in many cases the safety of shell structures

cannot be estimated unless a nonlinear analysis is undertaken.

As a result of the increased speed and storage capacity of present

computers, many nonlinear numerical analyses of shells have been at

tempted. Finite element procedures for plate and shell analysis now

span over 20 years. A history of finite element shell analysis is

traced in [1,2]. Descriptions and references to many important works

may be obtained by consulting standard texts [3,4], the review articles

[5], and thesis [6]. The innumerable proposed shell and plate elements

demonstrate the wide dissatisfaction with available methodology.

There are two classical approaches in finite element analysis of

shells: (1) the direct approach which is deduced from a classical shell

theory [7.]; (2) the degeneration approach [4,8] which is deduced from

the field equations of the three-dimensional theory with various assump

tions. The associated shell differential equations derived from the

direct approach, often higher than second order, may require a higher

order interpolation function by the finite element process. Another

disadvantage of this approach is the unavailability of a convenient,
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general enough nonlinear shell theory. It is concluded that to develop

a general enough nonlinear shell theory which can accommodate finite

strains and finite rotations, and permits use of arbitrary, three

dimensional nonlinear constitutive equations, one must adopt the

IIdegeneration ll approach. Mindlin theory [9J is the most widely adopted

basis of the degeneration approach, since generalization to the fully

general nonlinear case is straightforward, and an analogous two-dimen

sional formulation which includes several special cases of practical

interest, namely the axisymmetric case for shells of revolution, the

plane strain case for long tubes, and the plane stress case for rings

and two-dimensional beam/frame structures, can be deduced from the three

dimensional formulation. This theory was originally employed in the

linear case by Ahmad et al. [lOJ, later by Hughes and coworkers [11-14J.

Recent works in the nonlinear area which may be mentioned are [8,15-20,

39J. However, there are still certain numerical difficulties remaining

in the development of a fully-general nonlinear shell theory. As has

been mentioned by Hughes 'and Liu [20J, they are (1) selective integration

techniques, (2) numerical integration of constitutive equations, and

(3) rank-deficiency problems associated with the in-plane rotational

mode.

Of course, there are other approaches to develop nonlinear shell

theory. ,The interested reader may consult [6,2l-23J and references

therein.

The equations of motion derived in Chapter 2 can be used directly

in shell analysis. The Lagrangian formulation will be adopted (i.e.,

Rx = Rz). For discussion purposes we will denote x as an undeformed
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position vector and y as the deformed position vector.

In Section II, the geometrical and kinematical behavior of a

typical shell element will be described. The construction of IIl am ina"

and "fiber" coordinate systems is derived along with the corresponding

transformation arrays which relate these systems to the global frame.

In Section III, numerical integration of the constitutive equations

and the "corotational approximation ll [22,24,25J are discussed. The

definitions of element arrays, selective/reduced integration tech

niques, numerical integration of the lumped mass matrix and shear

correction factors are discussed in Section IV. In Section V, we

discuss the reduced integration Lagrange elements and the heterosis

element. Sample problems involving a number of the elements are con

tained in Section VI.

II. Geometric and Kinematic Descriptions

II-A. Geometry

We denote the position vector of a generic point of the shell in

the undeformed configuration, which is also the reference configuration,

bY~. It is equal to the sum of the position vector of a point in the

reference surface x and a position vector based at a point in the

reference surface which defines the IIfiber direction" through the point

X. Following the finite element discretization procedures described

in Section IV-A of Chapter 3, a·smooth mapping of the biunit cube into

the physical shell domain (see Figure IIA-l) is defined by the follow-
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ing equations:

x(~,n,~) = x(~,n) + x(~,n,~)- - -
nen

x( ~,n) = l: Na(~,n) ~a
a=l
nen

X(~,n,r,;) = l: Na(~,n) ~a (~)
a=l

(no sum)

(IIA.l)

(IIA.2)

(IIA.3)

(IIA.4)

(IIA.5)

(IIA.6)

In equations (IIA.2) - (IIA-6), x is the position vector of nodal point
-a

a; Na denotes a two-dimensional shape function associated with node a;

nen is the number of element nodes; 8a is a unit vector emanating from

node a in the fiber direction; and za is a "thickness function," asso

ciated with node a, which.'is defined by the location of the reference

surface. A lamina surface is defined by equation (IIA.l) for ~ fixed;

and a fiber line is defined by the same equation for ~,n fixed. In

general, the fibers are not perpendicular to the laminae. It has been

found convenient to take as input the coordinates of the top and bottom

surfaces of the shell along each nodal fiber (x+ and x-, respectively)
-a -a

and a parameter ~E[-l,+l] which defines the location of the reference

surface. For example, if ~=-1,0,+1 (respectively), then the refenence

surface is taken to be the bottom, middle, top (respectively) of the
- A + _

shell. From these input data, we may calculate ~a' ~a' za' and za

(a =1,2,'" ,nen ) from:
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x =1 (1 - ~) x- + 1 (1 +~) x+
-a 2 -a 2 -a

~ = (~: - ~~) / II~: - ~~ II

z+ =1 (l-~) IIx+ - x-IIa 2 -a _a

(IIA.7)

(IIA.8)

(IIA.9)

(IIA.10)

II II II II 2 2 2)1/2• denotes the Euclidean norm (i .e., ~ = (xl + x2+ x3 ).

An illustration of these ideas is presented in Figure IIA-2. By virtue

of the fact that the top- and bottom-surface coordinates are uniquely

defined at element interfaces, there are no gaps or overlaps along ele

ment boundaries.

Similarly, the position vector ~ of the same generic point of

the shell in the deformed configuration is defined by:

y(s,n,s) = y(s,n) + Y(s,n,s)- - -
nen

y(s,n) = t Na(s,n) ~a
a=l
nen

Y(s,n,~) = L Na(s,n) Ya(~)
- a=l -

(IIA.")

(IIA.12)

(IIA.l3)

~a(s) (no sum) (IIA.14)

where z (~) and N+,N are defined by (IIA.5) and (IIA.6), respectively.a -
We observe from equations (IIA.4) and (IIA.14) that the nodal fibers are

assumed to be inextensible, i.e., they may rotate, but cannot stretch or

contract. Therefore ~a is a unit vector.
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II-B. Kinematics

We define the displacement Mof a generic point to be the dif

ference between the deformed and the reference configurations of the

same point. It can be written in terms of the sum of the displacement

of that point on the reference surface U, and the"fiber displacement"-
U. Therefore (see Figure IIB-l),

u =y-x=u+U- -
-u = y -x- -
~a = y - x-- -a -a

U = y - X- - -
U = y - X =z 0
-a -a -a a-a
A A A

U = Y - X-a -a -a

(no sum)

(IIB.l)

(IIB.2)

(11B.3)

(IIB.4)

(IIB.5)

(IIB.6)

By virtue of the definition of u, the kinematics of the shell element

are defined by invoking the isoparametric hypothesis that the same ex-

pressions are used for kinematics as for geometry with displacement

variables in place of coordinate variables. In order to define y, a

trial value of Qa is calculated (i.e., ~~rial) and projected radially

to maintain inextensibility. The steps in the procedure are as

follows (see Figure IIB-2):

A A A

U = Y - X-a -a -a

(IB.7)

(IB.8)

We have found the present scheme to be both economical and effective
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unit sphere about
node a

Fig. IT B-2 Nodal fiber inextensibi Iity condition
maintained by radial return
normalization
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in practice.

II-C. Lamina Coordinate Systems

In order to invoke the plane stress hypothesis, at each integration

point in the element a coordinate system is defined as follows:

(lIC.l)

(lIC.2)

(IIC.3)

where a comma is used to denote partial differentiation (e.g.,

y = ay/at,,) and "X" denotes the cross product. We call this coordinate
-,I;

system the lamina coordinate system (see Fig. IIC-l). The :~ direction is

used for the purpose of ~nvoking the zero normal stress hypothesis. We

should note that :~ in general is not parallel to the ~ axis (see

Figure IIC-2), that is, the fiber direction. In order to have a global

finite element formulation, an orthogonal transformation matrix q is

defined:

(IIC.4)

II-D. Fiber Coordinate Systems

Due to the plane stress hypothesis, the rank of the material re

sponse matri x f is fi ve, even though it is a 6 x 6 matri x in the gen

eral three-dimensional constitutive theory. In order to remove
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the in-plane twist mode, we define a unique local Cartesian coordinate

system at each node which is used as a reference frame for rotation in

crements. The algorithm is as follows:

1. Let

2. j = 1

a. = Iv. I
1 -1

i=l,2,3 (110.1)

(IID.2)

3. If al > a3, then a3 = al , and j = 2.

4. If a2 > a3 , j = 3.

5 ef = 0
. -3 ~

6. ef = (Yxe.)/IIYxe.11
_2 - -J --J
f f A

7. :1 = :2 x ~

This orthonormal fiber basis is chosen in such a

is "c1ose ll to the third axis of the global system, then

be IIc1ose" to the global axes (see Figure IID-1). With

(IID.3)

(110.4)

(IID.5)

(IID.6)

(IID.?)

A

way that if ~

f f f
~l' ~2' ~3 will

these

definitions, an orthogonal transformation matrix r is defined such that
. -

for each time step the three incremental fiber displacements in the global

coordinate system can be contracted to two incremental rotations.

Let ~Ol' ~02' ~03 be the global incremental vector components

of ~Q, also let ~e1 and ~e2 be the rotation increments about the basis

vectors ~~ and ~i, respectively. The sign convention is defined in
A

Figure 110-1. The relationship between ~u and ~e is:

where

A

~u = r T 68

r: fiber + global

(IID.8)

(IID.9)
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!fiber

/
/

~=-------.... e2

~el

Fig. IT D-I Nodal fiber basis
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and [-~ -nT =

"

" {~~l }l1U = l1U2-
"l1U3

(lID.10)

(lID.ll)

l18 =- (IID.12)

Equations (IID.8) through (IID.12) enable the reduction of the nodal

degrees-of-freedom from six to five in the matrix incremental equi1ib-

rium equations. This obviates the need to develop artificial in-plane

torsional stiffnesses to numerically stabilize rotation about the fiber

direction [17].

When beam-type stiffeners are assembled with shell elements, the

bending stiffness of the beam naturally provides the in-plane torsional

stiffness of the composite structure, equations (IID.8) through (IID.12)

can be ignored, and six degrees-of-freedom are retained in the global

incremental equilibrium equations.

III. Integration of Constitutive Equations

III-A. Numerical Algorithms

The numerical algorithms described in Section III of the last

chapter cannot be used directly, due to the stress components being

referred to a rotating basis, Also, the zero normal-stress constraint

needs to be enforced with respect to the third direction of the lamina
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basis. So the integration of the rate type constitutive equations re-

quires special considerations.

We define y and w according to equations (IIA.l) through (IIIA.6)- -
of Chapter 3. The orientations of the lamina bases at time t n and t n+l
are defined, respectively by:

qn: global + lamina at t n
n+lq : global + lamina at t n+l

(IIIA.l)

(IIlA.2)

Consequently, the incremental transformation between lamina bases is

given by:

(IIIA.3)

With these definitions, the numerical algorithms are:

where

and

n+1 --;'1+1
T =T + ~T

(IIlA.4)

(IlIA.5)

(IIIA.6)

(IlIA.7)

(I IIA. 8)

The matrix R is in general an approximation to the rotation of

the material particle relative to the lamina basis; (IIIA.8) is used to

insure satisfaction of the zero normal-stress condition in the lamina

n+1 )basis at t n+l (i.e., l33 = O. In many situations of practical in-

terest, the particle rotation will be closed to the rotation of the
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lamina basis and thus ~ ~!. This is the case for what is classically

known as the "sma11 strain-finite rotation approximation. In this

case, the calculation of ~ may be omitted. This philosophy has been

exploited in the works of Argyris [21,23,26,27J and Belytschko [22,24,

25J.

IV. Element Arrays

IV-A. Material Tangent Matrix

The element tangent matrix 0 is defined by equations (IVB.13)

of Chapter 2. For application to shell analysis, the

o matrix needs to be modified to account for the zero normal-stress

condition. We define a zero normal-stress projection operator P such

that the row and column of ~ corresponding to Y33 are removed, i .e. ,

D= pT Op (IVA.l)

where

[P 263J
~ = ;36

(IVA.2)

!3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
P = (IVA.3)- Pl P2 P3 P5 P6

0 0 0 1 0

0 0 0 0 1

and

PI = - C33ij / C3333 (IVA.4)
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IV-B. Strain-Displacement Matrix

In order to prevent "mes h-locking" phenomena [11-14 s 17-20Js

special treatment needs to be given to transverse shear terms. We will

employ the same ideas namely reduced/selective integration techniques s

which have been discussed in Chapter 3. We implement the selective

integration procedure by a simple modification of the strain-displace

ment matrix. The definition of the strain-displacement matrix adopted

is given as follows:

B = [B1sB2s···sBn J- - - - en

B = [:;J a=ls2 s··· sn_a en

B1 0 0 B4 0 0

B2 Bl 0 B5 B4 0

0 B2.. 0 0 B5 0
BY =
-a -----------------------------I

0 B3 B2 0 B6 B5

B3 0 81
I 86 0 B4I

[ B
2 -B l 0 B5 -B4 0

BW = 0 B3 -B2 0 B6 -B5-a . I

I

-B3 0 Bl . -B 0 B4I 6

Ca,; i=ls2 s3
B.

= (NaZa)s(i-3)
1 i=4 s5 s6

(I VB .1)

(IVB.2)

(IVB.3)

(I VB .4)

(IVB. 5)



-111-

Note that Na,i = aNa/ay~ where y~ are the components of the coordinates

in lamina systems. The definition of the 8i 's is found in equation

(IA.8) of Chapter 3. For details consult [20,28J. For the two-

dimensional case, uniform reduced-integration Lagrange elements are em

ployed. In this case,Bi's are taken to be equal to 8i 's.

There appears to be no general nonlinear theory which includes

shear correction effects. An ad hoc procedure, which amounts to replac

ing each 8i in (IVB.3) by K1/ 2 8i where K is the shear correction factor,

is employed herein. (For the example problems in Section VI we have em

ployed K= 5/6.) The strain increments may be computed as follows:

where

'Yvec (IVB. 6)

'Yvec= ,=

I'll

21'12

1'22

21'23

21'31

(I VB . 7)

IV-C. Transformation Matrices

Since we employ a global finite element formulation, all the ar

rays have to be transformed to the global system before they can be

assembled by the standard finite element procedures. The stiffness

matrices and internal force vectors are defined with respect to the

lamina coordinate systems. Two transformation matrices are required~
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[:33 ~:3J 6 dof

Q = (IVC.l)-a

[ :33
~;2 ] 5 dof

_a

[ -1 -IJ- = r a (IVC.2)r
-a -a

a

!6 6 dof

S =
[ 13 ~~2] (IVC.3)_a

5 dof
~33 ~a

[ -1
a ]S = S a -1 (IVC.4)-a -a

a 0

IV-D. Tangent Stiffness Matrix and Internal Force Vector

The element stiffness and internal force are defined as follows:

(IVD. 1)

(IVD.2)

(IVD.3)

where
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+1 +1

I ••• dO=J J ... dE;; dn (laminar integral)

0

Yl,E;; Yl,n Yl,l;;

j = det Y2,E;; Y2,n Y2,l;;

Y3,E;; Y3,n Y3,l;;

Tl T11
T2 T12

T = T3 = T22-vec

T5 T23
T6 T31

(IVD.4)

(IVD.5)

In most situations the variation of 9a with r; will be insignifi

cant. For this reason we can take 9a outside the fiber integral, viz,

. [+1 J~ab = J g~ " J ~~ ~ ~b j dl;; 9b dO
o -1

IV-E. External Force Vector

We allow for both body and surface force vectors.

Body force

The element body force vector is given by:

(IVD.7)

(IVD.8)

(IVLl)
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+1

fbody = ST J J NT b P j ds dCl-a -a -a - 0 0
o -1

(IVE.2)

where Po is the mass density in the initial configuration, b is the pre

scribed body force vector (per unit mass),

and

x1,T)

x2,T)
x3,T)

a a

a LJ

(rVE. 3)

(IVE.4 )

Surface force

The element surface vector is defined by

fsurf = {fsurf }- -a

fsurf = 5T J NT h j ,·t1 top
dO ,_a _a -a _ s

-1 bottom
0

js = 11~,t.; x ~,T) II surface Jacobian

where h is the surface force vector per unit surface area.-

(I VE. 5)

(IVE.6)

(IVE. 7)

Since we consider rather general nonlinear behavior, the

fiber integrals need to be evaluated by a numerical integra-

tion technique instead of analytically. When the shell consists of one

homogeneous layer, Gaussian quadrature is most efficient. If

it is desired to include the outermost fiber points (i.e., s= ±l) then
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Lobatto rules are most accurate. If the shell is built up from a series

of layers of different materials, then Gaussian rules may be effectively

used over each layer. If there are a large number of approximately

equal-sized layers, then midpoint rule on each layer should suffice.

IV-F. Stress Resultants

Bending moments, membrane forces, and transverse shear resultants

may be computed at the lamina quadrature points of the "normal" rule at

which stresses are stored. Let ~t= (~t'~t) be the quadrature points~

1 S t s nint ; the resultants are:

moments +1

= _I TaB(~i") Z(~i,,)d, z,,(~i)'

Z(~t'~) = N+(~) Z+(~t) + N_(~) Z-(~t)

membrance forces

1 ~ (l, 8 ~ 2 (IVF.l)

(IVF.2)

(IVF.3)

(I VF. 4)

+1

na~(~i) = _I TaB(~i") d, Z,,(~i) ,

shears
+1

qa(~i) =K
1

/
2 _I Ta3(~i") d~ Z,~(~i)

1 s (l, 8 ~ 2 (IVF.5)

(IVF.6)

The sign conventions for the stress resultants are illustrated in
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Fi gure IVF-l.

IV-G. Mass Matrix

If the consistent mass matrixis desired, Gaussian integration rules

are used. The consistent mass matrix is:
+1

~ab = I I Po NaNb jo dr; do
o -

where jo and Na are defined by (IVE.3) and (IVE.4), respectively.

If lumped mass is required, Lobatto rules are employed. However,

the lit restriction is stringent for explicit transient calculations [13,38].

Therefore, the following algorithm is used to obtain a lumped mass

matrix for shells such that a much larger time step can be employed with

no convergence rate loss.

Algorithm

a) Define variables; M~ot = rotational mass, M~iSP= translational mass

1. Clear necessary variables and arrays.

2. Loop on laminar integration points.

3. Loop on fiber integration points.

4 Mrot - Mrot + N2 . (- - -. a - a Po a Jo ~i,ni,r;i) Wi' where Wi is the weight of the
nth. t t· .
N ln egra 10n pOlnt.
Mdisp rot.5. a = Ma lf not heterosis.

6 Mdi sp _ Mdi sp + ( ( 2. - - -
. a - a Po Na +Pa O)N9) JO(~i,ni,r;i) Wi if heterosis.

7. If heterosis and a=9, M~iSP=O. (Here PaIs are the serendipity

shape functions.)

b) Normalization

1. Mrot = fen Mrot
a=l a
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n

Mdisp =
en Mdisp2. I

a=l a

3. Mrot
-+- Mrot{~}

a a Mrot

4. Mdisp -+- MdisP1~}
a a .~dlSp

where XM is the total mass.

c) Adjustment to rotational mass:

1 (+ -)2 1 (+ -)21. cxa =4" za + za + 12 za - za
n- 'len + _

2. zeffective = L (za -za)/ nena=l

3. A = effective area = vol ume / Zeffective

4. aa = max{aa; A/8}

5. Mrot
-+- Mrot aa a a

For further details of mass lumping for shells and the critical

time step calculation, see [13,38J.

V. Shell Elements

The elements employed in this work are generalizations of ones

that have been proposed by Hughes [11-14J.

IV-A. Reduced Integration Lagrange Elements and Heterosis Elements

The lamina shape functions and quadrature rules for the Lagrange

elements are shown in Figure VA-l. In each case the appropriate re

duced rule is one order lower than the normal rule. The corresponding

lamina shape functions and quadrature rules for the two-dimensional

cases are shown in Figure VA-2. For this case uniform reduced inte

gration is optimal. As has been discussed in detail by Hughes and



- -
•

•
•

- --

-
- -- I:
:I -
-

--
--

la
m

in
a

sh
a

p
e

I
b

ili
n

e
a

r
I

bi
qu

ad
ra

tic
I

b
ic

u
b

ic
fu

nc
tio

ns
I

I
I

I
• --' -
-
'

1.
0

I

no
rm

al
G

au
ss

ia
n

I
2

x
2

I
3

x
3

I
4

x
4

ru
le

re
du

ce
d

G
au

ss
ia

n
ru

le
Ix

I
2

x
2

3
x
3

F
ig

.
Jl

.
A

-I
L

a
g

ra
n

g
e

sh
e

ll
el

em
en

ts



sh
ap

e
fu

nc
tio

ns

qu
ad

ra
tu

re
ru

le

lin
e

a
r

1-
po

in
t

q
u

a
d

ra
tic

2
-p

o
in

t

cu
bi

c

3
-p

o
in

t

, .... N o I

F
ig

.
Jl

.
A

-2
U

n
if

o
rm

re
du

ce
d

in
te

g
ra

ti
o

n
tw

o
-d

im
e

n
si

o
n

a
l

sh
e

ll
el

em
en

ts



-121-

coworkers [11-13,20J, selective reduced integration elements behave well

in thin shell applications, but may occasionally engender rank defici

ency [11-13J. Research has been undertaken to efficiently remove the

mechanisms. Hughes and Cohen [11,12J proposed the heterosis concept in

which the 9-node Lagrange shape functions are used for rotation fields

and the 8-node serendipity shape functions are used for the displace

ment fields. The resulting element possesses correct rank and behaves

well in the thin shell limit. The heterosis element is implemented by

first constructing the arrays for the selectively integrated Lagrange

element (say, e.g., kl ' /}fl ' etc.), then a projection matrix, H, is- ag - ag
constructed from the serendipity shape functions associated with the

element-boundary nodes. For details of H see [11,12J. The heterosis

arrays are then defined by

~het = H
T

k H-~ - -lag
(VA.l)

VI. Sample Problems

All computations were performed on an IBM 3032 computer at the

California Institute of Technology Computing Center in double precision

(64 bits per floating-point word). If linear elastic properties were

used, two-point Gaussian fiber integration was employed. If plasticity

theory was used, four-point Gaussian fiber integration was employed.

The following notations will be used for identifying the types of ele-

ments in three dimensions:
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U1 - 4-node, uniform reduced integration

51 - 4-node, selective reduced integration

52 - 9-node, selective reduced integration

H52 - 9-node, selective reduced integration heterosis elements '

The full definition of the rotation matrix R and the corotationa1

approximation R~ I were both employed. In no case were the differ-- -
ences discernible. The material model is considered to be homogeneous

and linearly elastic unless otherwise specified. The shear correction

factor, K, was taken to be 5/6 throughout, and for three-dimensional

case, the five-degree-of-freedom nodal system was employed;

for the two-dimensional case the three-degree-of-freedom nodal system

was employed.

For dynamic analysis, the Newmark parameters were taken to be

s = 1/4 and y = 1/2 throughout, unless otherwise indicated.

VI-A. The Elastica

The post-buckling behavior of a clamped beam column was analyzed

with a mesh of twenty 2-node elements. The analytical solution is

available in Timoshenko and Gere [29J. The beam column is tilted ini

tially off center with a slope of 1:500. This imperfection is intro

duced to initiate a non-trivial solution after bifurcation

(buckling) . Data employed in the calculations are given as fol-

lows: Young's modulus -: 4.8x 109; Poisson's ratio = 0, length (L) =la,

and thickness (h) = 0.01. Load-deflection results and deformed pro

files are shown in Figure VI-A.
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VI-B. Pure Bending of a Cantilevered Beam

A thin cantilevered beam was subjected to an end moment. The

analytical solution for this problem is given by the deformed midsur

face curvature = ML/EI, where Mis the applied bending tip moment, L

is the length of the beam, I is the moment of inertia about the axis

of bendi ng and E is Young I s modul us. The end moment was increased

linearly up to a final value of 2n. Two-hundred load steps were em

ployed and approximately two iterations per step were needed for con

vergence. The parameters of the beam were chosen such that the exact

final diameter to length ratio (OIL) equaled n- l = 0.3183. Both twenty

2-node elements and ten 3-node elements were employed to model this

beam and the results were found to be virtually indistinguishable.

Deformed profiles are shown in Figure VI-B. The approximate OIL

equaled 0.3182.

VI-C. Large Deflection of a Diamond-Shaped Frame

A pinned-hinged diamond shaped frame was analyzed, and results

were compared with analytical and experimental data from [30J (see

Figure VI-C). Thirty 2-node elements were employed to model one

quarter of the frame structure due to the double symmetries. Seventy

six equal load steps were employed. The average number of iterations

per step over the first forty steps was less than three. Subsequently

the number of iterations necessary for convergence increased. During

the last six steps between sixteen and thirty iterations per step were

required.
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VI-D. Clamped Spherical Cap Subjected to a Concentrated Load

A thin spherical cap which is clamped around the circumferential

edge is subjected to a concentrated force at the vertex. Twenty and

thirty 2-node elements and ten and fifteen 3-node elements were employed

for the spatial discretizations. Deformed profiles and load-deflection

results are shown in Figure VI-D. The different spatial discretizations

did not produce discernible difference in results. However, refining

the load discretization from fifty to one-hundred did bring the results

in closer agreement with results of other investigators [31-33J.

VI-E. Clamped Circular Plate Subjected to Uniform Pressure

A clamped circular plate subjected to uniform pressure (noncon

servative) was analyzed using thirty-two and sixty-four 2-node elements.

The displacement versus load results and bending moment versus displacement

results are compared with analytical results [34J in Figure VI-E.

Twenty-four equal load st~ps were used. Both meshes gave virtu-

ally identical results.

VI-F. Plate Strip under Uniform Load

This problem is actually one-dimensional and an analytical solu

tion is available in Timoshenko and Woinowsky-Krieger [34J. We applied

the plane strain assumption to a mesh of five 4-node elements for half of

the plate. The plate is simply supported. Pertinent data and results

are shown in Figure VI-F. The load was treated as nonconservative.

Comparison is made with the analytical solution and results of

Horrigmoe [6J who employed hybrid elements. As expected, both Sl and



-128-
h P

H
R =4.76 in
h =0.01576 in
H =0.0859 in

8 = 10.9°
E = lOx 1061b/in2

10' =0.3

.12
P = 0

20

-.12

-.c-
CL

deformed profiles

100r------,----.,.------,------r---'"""*O

-- Bathe
- - Stricklin (thirty shell elements)

• Mescal! (finite difference solution)
80 0 present study 100 steps

x present study 50 steps
(twenty and thirty 2-node
elements, and ten and
fifteen 3- node elements

60 yield the same results)

40

20

OL----..-I---~~--~---~--~2.0

Fig. JZI D Clamped spherical cap subjected
to concentrated load



I -
"

N 1.
0 I

ed
ge

m
o

m
e

n
t,

lin
e

a
r

...
..

+
-c

e
n

te
r

m
o

m
e

n
t,

lin
e

a
r

...
..

.L
c
e

n
te

r
m

o
m

e
n

t,
n

o
n

lin
e

a
r

0
.4

0
.8

1.
2

1.
6

1.
8

w
o

/h

245 :367

e
d

g
e

m
o

m
e

n
t,

n
o

n
lin

e
a

r

(\
J alv ~
.
s
:
:
.

(.
O

W

a
=

1
0

.0
(r

a
d

iu
s)

h
=

0
.1

E
=

1
08

II
=

.2
5

2
4

6
8

10
12

lo
a

d
qa

4j
(E

h4
)

0
.4

.s
::

.
1.

2
.....

.....
. o ~
0

.8

d
is

p
la

c
e

m
e

n
t

vs
lo

a
d

b
e

n
d

in
g

m
o

m
e

n
t

vs
d

is
p

la
c
e

m
e

n
t

F
ig

.I
D

E
C

la
m

p
e

d
c
ir

c
u

la
r

p
la

te
su

b
je

ct
e

d
to

u
n

if
o

rm
p

re
ss

u
re



I .... w o I

4
0

3
0

'"
'

pr
es

en
t

st
ud

y
fiv

e
4

-n
o

d
e

el
em

en
ts

fo
r

h
a

lf
of

be
am

(S
I

an
d

U
I)

lin
e

a
r
S
O
l
u
t
i
o
n
~

_

-
-
-
-
-
-
-
-
-
-
-

2
0

W
o

[m
m

]

Q
'-

-
-
.
.
L

-
.
.
L

-
.
.
.
.
1

.
-
-
-
1

-
-
L

-
-
-
.
J

-/%
7...

......
_

.
lW

o
_

-
.....A

I~
--
~-
-

J

E
=

2
0

6
.8

5
k
N

/m
m

2

1/
=

0
.3

L
=

5
0

8
.0

m
m

h
=

1
2

.7
m

m
(t

h
ic

k
)

4
0

,
i
i
i

Q
I

3
0 0

0
'

10

e::rN E ~
2

0
Z

F
ig

.1
Z

l
F

P
la

te
st

ri
p

un
de

r
u

n
ifo

rm
lo

ad



-131-

Ul elements yielded virtually identical results for this case, even

though the Sl elements took approximately two iterations per load step,

whereas the Ul elements took 4 to 5. Nevertheless, CPU time for the 51

elements was more than double that for the Ul elements. For small prob

lems of this type, all other things being equal, the CPU time is

dominated by the number of numerical integration points.

VI-G. Shallow Circular Arch under Concentrated Load

The problem statement of this one-dimensional problem is depicted

in Figure VI-G. This problem has been solved by Bathe et a1. [35J using

8-node continuum elements. We employed sixteen 4-node elements for half

of the arch. Aplanestrain assumption in the out-of-p1ane direction was

used. As in the previous analysis, the results for 51 and Ul elements

were virtually identical. In each case snap-through occurred at

P = 35.8 lb. The number of iterations per step was 1 to 2 for the Sl

elements and averaged slightly over 4 per step for the Ul elements.

Again, however, the Sl analysis required more than double the CPU time

of the Ul analysis. The load-deflection curve was compared with the

results due to Bathe et al. [35J and was shown in Figure VI-G.

VI-H. Clamped Square Plate under Uniform Load

The problem configuration is defined in Figure VI-H. Plotted

results are for four HS2 elements and sixteen U1 elements. We also

used meshes of four S2 elements, and sixteen and sixty-four Sl ele

ments. In the latter three cases, the results fell pointwise between

the former two plotted cases. For clarity, the latter three cases were

omitted from the plotted results. Our finite element results were
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compared to the classical Rayleigh-Ritz solution obtained by Way [36J

and the finite element results of Kawai and Yoshimura [37J. For this

problem we experimented with treating the load as conservative and non

conservative. This produced no discernible differences. We also ex

perimented with omitting the T and Cmatrices in the calculations: The- -
results were almost identical, even though the number of iterations per

load step was increased from an average of 3 when we included both T

and C, to about 7 or 8.

VI-I. Hinged Cylindrical Shell under Concentrated Load

Figure VI-I shows a circular cylindrical shell with a concen

trated central load applied on the convex side. The straight edges

are hinged, whereas the curved edges are completely free. Due to sym

metry, four-element meshes of S2 and HS2 elements and sixteen 4-node

elements (both Sl and Ul) are used to model one-quarter of the shell.

All of our results were in close agreement and could not be distinguished
. ,

on the scale of the plot. Comparison is made with the results obtained

by Horrigmoe [6J and Bathe and Bolourchi [15J.

VI-J. Transient Elastic-Plastic Response of a Simply-Supported Plate

This problem was solved previously by Liu and Lin [40J who used

small deflection theory, ignoring membrane effects. In our calcula-

tions we assumed full geometric as well as material nonlinearity. One

would anticipate some stiffening in this case due to the tensile

stresses developed as the plate deforms. Since the center displacement

is of the order of half the plate thickness, one would expect small,

but not insignificant differences. As may be seen from the results of
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R = 2540 mm

L = 254mm

h = 12.7 mm

8 = 0.1 rod

E = 3102.75 N/mm 2

ZI = 0.3
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curved edges are free

5.0 10.0
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Figure VI-J, the expected behavior is produced by our calculations which

tend to be slightly stiffer than Liu and Lin's with respect to peak

response. This is more pronounced in the elastic perfectly plastic

case than in the purely elastic case as may be seen. This is also

reasonable, since larger membrane effects would tend to develop due to

the smaller bending resistance in plasticity.

Comparisons between lumped and consistent mass matrices, and im

plicit and explicit algorithms tend to be quite good. Despite the fact

that the explicit time step was taken to be one-fourth the implicit, an

economy of approximately a factor of seven was noted for the explicit

calculations in the elastic-plastic case. In the purely elastic case

this was reduced to a factor of four favoring the explicit technique.

VI-K. Impulsively Loaded Elastic-Plastic Strip

Experimental results for this problem were given by Balmer and

Witmer [41J and results of a finite element calculation were presented

by Belytschko and Marchertas [42] who used an elastic, perfectly

plastic model with artificial viscosity. In our calculations, we ex

perimented with different types of hardening, but did not include any

viscous effects. Another difference between the Be1ytschko-Marchertas

calculation and ours was transverse shear effects which were not in

cluded in theirs, but were included in both the kinematics and consti

tution of ours. A comparison of results is presented in Figure VI-K.

The displacement is quite large, being approximately six times the

strip thickness. Our peak responses tend to be in good agreement with

the experimental value, although they tend to occur at somewhat earlier

times. The closest agreement we are able to get is attained with
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purely kinematic hardening, as may be seen. Considering the ambiguities

in material modeling, the calculation is felt to be quite reasonable.
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Chapter 5

NUMERICAL EXAMPLES OF FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE
VISCOUS FLOWS BY THE PENALTY FUNCTION FORMULATION

I. Introducti on

In this chapter, sample numerical examples are presented and com-

pared with available data to illustrate the accuracy and versatility of

this technique, namely, finite element analysis of incompressible vis-

cous flows by the penalty function formulation. As has been mentioned

in Chapters 2 and 3, the selection of the penalty parameter A is not

trivial. Clearly, A must be large enough so that the compressibility

and pressure errors are negligible, yet not so large that numerical ill

conditioning ensues. Dimensional analysis reveals that, for Stokes

flow, A should be picked according to the relation

A = Cll ( 1.1)

..
where c is a constant which is computer word length dependent only.

Numerical studies reveal that for floating-point word lengths of 60 to

64 bits an appropriate choice of c is 107 . However, in the presence of

the convective momentum which generally dominates the viscous term, the

criterion for the Navier-Stokes equation is empirically defined as:

(1. 2)

where II is the dynamic viscosity and Re is the Reynolds number as given

by

Re = UL/v (1. 3)
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Here Uand L are "characteristic" velocity and length, respectively,

\I = ll/p is the "kinematic viscosity," and p is the density. Usually U

was taken to be the maximum expected velocity and L the maximum dimen

si on.

The solution strategy used for the steady Navier-Stokes equations

is an incremental Newton-Raphson scheme in which density is used as a

"load parameter," see [1-4] for details. The solution of the Stokes

problem is the initial guess. Within each load level, iterations are

performed until convergence is achieved, and the converged solution is

used as the initial guess for the next load level. It should be noted

that the matrix to be inverted [equation (IVA.12) of Chapter 3] is non

symmetric, but possesses a symmetric band-profile structure [4]. Even

though it is well known that, under appropriate hypothesis, the Newton

Raphson scheme exhibits second-order convergence of the iterates, the

reforms and factorizations of the nonsymmetric stiffness are very expen

sive. Furthermore, the storage requirement is extremely demanding.

Research in developing more effective solution algorithms has been a

very active area of late (see, e.g., [5-7]).

The solution strategy we used for the transient Navier-Stokes equa

tions in this chapter is a one-step linear implicit/nonlinear explicit

operator splitting algorithm. The advantages of this linear-implicit

predictor-corrector method are that the matrix is symmetric and need be

formed and factorized only once; also the critical time step is indepen

dent of the Reynolds number. The computer program developed may be run

at a constant (input) time step, or at a step redefined adaptively, for

each tn' according to the formula below:
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/

NSdluo,
l1t ~ 1 (I ~)

i=l si
(I .4)

where usi is the velocity component in the si direction and hsi is the

element length in the si direction.

It is important to cut down on reform and factorization costs

when l1t is being selected adaptively. We have employed a scheme such

that, instead of refactorization, Y is redefined to compensate for the

step-size change. Specifically, we proceed as follows. Let l1tfact
and Yfact denote the values of l1t and Y respectively, used during the

last factorization, and let

(1. 5)

Based on the velocity field at step n, 6tcritis calculated according to

(1.4). Define

(I.6 )

1For stability, Yn+l must be between 1/2 and 1. If Yn+l E [2,lJ, do not

refactorize, but set Y = Y +1 and l1t = l1t l·t in l1F*. If, on the othern cr_

hand, Yn+l4- [l,l], set l1t = l1tcrit ' Y = 3/4 and refactorize. This

value of Y is picked to reduce the likelihood of refactorization in

subsequent steps. There are other procedures along these lines under

investigation [8-10J.

There is a drawback to the present schemes due to the convection

stability condition (1.4). For example, if we are interested in an

essentially steady flow, and the length of time interval, T, required
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to attain steady conditions engenders many steps (e.g., see cavity flows

in the next section), a "fully implicit," unconditionally stable scheme

is no doubt superior. Gresho et al. [11] and Smith and Brebbia [12] have

described such fully implicit schemes. However, we believe that the

storage (due to nonsYmmetric matrix) and computational effort engendered

by fully implicit algorithms are prohibitive in most cases, as often

accuracy dictates taking as small a time step as the convective stabil

ity condition.

To solve large, implicit, three-dimensional problems, iterative

or at least partially iterative methods seem to be a necessity. Although

there is much interest in this topic, a generally reliable iterative

scheme, competitive with direct schemes, does not yet seem to be avail

able. Attempts have been made to overcome the mentioned difficulties;

see [5-7,13-18J and references therein for details.

A least-squares type smoothing procedure [19J is used to perform

the necessary fi lteri ng 0 f the "checkerboard mode" [4J of the pressure

field. A comprehensive study of such techniques has been performed by

Lee et al. [20J. We employed the same ideas in [20J with slight modifi

cation for our purposes. As these have been documented in [4J, the

smoothing procedures are omitted here.

II. Sample Problems

All computations were performed on an IBM 3032 computer at the

California Institute of Technology Computing Center in double precision

(64 bits per floating-point word). The penalty parameter is picked

according to (1.1) or (1.2). Variable time stepping and "upwinding"

are employed throughout the transient analysis problems, according to
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equations (I.4) to (I.6), unless otherwise specified. Lumped mass

matrices are used for two-dimensional problems, and row sum mass

matrices are used for axisymmetric problems.

II-A. Driven Cavity Flow

Several investigators have studied the problem (see [3,4,20-23J).

A problem description is shown in Figure IIA-l. We observe that the

boundary conditions are discontinuous at the upper corners. Two

meshes of 4-node elements, employing different approximations of the

boundary conditions, are shown in Figure IIA-2. The midplane velocity

profiles employing the 20 x 20 and 20 x 21 meshes for Re = 100 and 400

are presented in Figure IIA-3. As can be clearly seen from Figure IIA-3,

different treatments of the boundary conditions can result in signifi

cant quantitative differences, especially as the Reynolds number is

increased. By virtue of the sensitivity of the result to the treatment

of the boundary conditions, care must be taken in interpretation. For

this problem, the fully 'implicit Newton-Raphson method without "upwind"

technique is employed.

The boundary condition problem may also create discrepancies when

different elements are compared. Consider a lOx 10 mesh of square,

9-node elements. This mesh would have the same number of degrees-of

freedom as the 20 x 20 mesh of 4-node el ements, and it may seem appro

priate to compare results. However, one should keep in mind that the

setting of the nodal boundary conditions in identical fashion actually

implies different representations along the vertical edges of the corner

elements (c.f., Figures IIA-2 and IIA-4) since a linear variation in

velocity is employed for the 4-node element, whereas a quadratic
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variation in velocity is employed for the 9-node element, and thus the

amount of fluid "injected" into the cavity is different. Discrepancies

noted between midplane velocity profiles (see [24J) may be attributed to

the different boundary conditions, and are not indicative of the

respective merits of the elements.

The velocity field, streamlines, pressure contours, and velocity

contours for Re = 0 employing the 20 x 21 mesh are presented in Figure

IIA-5. The corresponding plots for Re = 100 and Re = 400 using the same

mesh are presented in Figure IIA-6 and Figure IIA-7, respectively.

II-B. Entry Flow in a Channel

In order to demonstrate the necessity of the "upwind" scheme,

entry flow in a channel is studied. The problem statement and the cor-

responding finite element mesh are shown in Figure IIB-l. We obtained

the velocity field by employing the steady Navier-Stokes algorithm

described above. Four d~fferent integration treatments of the advection

terms are used and comparisons are presented in Figure IIB-2 for a

Peclet number of 150. For details of the upwind scheme, consult Chapter

3 and Ref. [4J. As can be seen, the upwind schemes are superior to the

Gauss schemes. For this high a Peclet number, there is little differ

ence between the optimal and fully upwind schemes.

A much higher Peclet number (1.5 x 107) was studied. The optimal

and full upwind schemes give identical results, whereas the Gauss schemes

plot off scale (see Figure IIB-3).
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II-C. Couette Flow

This problem actually is one-dimensional. The exact

sol ution can be found in standard texts [25 ,26J. The

problem description and mesh are shown in Figure IIC-l and results are

shown in Figure IIC-2. This is a simple problem in which the convec

tion term is identically zero. A boundary layer develops along the

lower edge and diffuses upward, forming a steady, linear velocity pro

file as t increases.

II-D. Dam-Reservoir Problem

It is very important for engineers to know the hydrodynamic

pressure along the inclined upstream face of a dam, due to earthquake

motions. Explicit analytic formulas for calculating total horizontal,

vertical, and normal loads are due to Chwang and Housner [27,28J.

Approximate solutions and numerical solutions of the same problems

have been given in [29,30J. The problem statement is shown in Figure

110-1. The dam is assumed rigid. The fluid is assumed to be incom

pressible and inviscid. The initial conditions are quiescent and at

t = 0+ the dam face is set in constantly accelerating motion toward

the reservoir. Data for the problems are given as follows: ~ = 0;

p = 1; L = 2; H = 1; A = 107; y = 1; 6t = 0.025; and T = 0.1 (4 time

steps). Meshes and results for the 60° dam and 90° dam are shown in

Figure 110-2. Pressures are compared in Figure 110-3 with the exact,

potential flow solution due to Chwang [27J. As can be seen, the re

sults are in good agreement. Also from Figure 110-2, the pressure

contours are orthogonal to the streamline contours. It is expected

from potential theory even though the full Navier-Stokes equation is
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Fig. nC-2. Couette flow: Comparison of finite element re
sults with exact solution.
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employed here.

II-E. Hamel Problem

A problem statement is depicted in Figure IIE-l. The Hamel

problem of convergent flow in a channel ("inflow problem") has been

considered recently by several investigators (see [3.4,24.31]). The

exact solution can be found in [25J. For the particular mesh employed.

a radial velocity profile. in accord with the high Reynolds number

approximation to the exact solution, is set at the outer radius (r= 4)

having constant value of 1/4. The Reynolds number thus may be taken as

Re = 1f/{6v). The circumferential velocity at r= 4 is set to zero. The

outflow boundary condition at r= 1/4 is assumed traction free. At high

Reynolds number this approximates the situation adequately. Results

for Re = 500 and 5x 107 are presented in Figures IIE-2 and llE-3. As

can be seen, the correlation with the exact solution is very good.

(Pressures in Figure IIE-2 and IIE-3 are reported at the element centers

and are "unsmoothed.")

II-F. Flow over a Step

A problem statement is depicted in Figure IlF-l. We us-ed this

problem to demonstrate the necessity of "upwinding" when there i's a

"hard" upwind-facing boundary condition (see upwind section of Chapter

3) and too coarse a mesh is used. In Figure IIF-l we present results

of a calculation perfonned with 9-node Lagrange elements. A (product)

Simpson's rule was used to construct the mass matrix, whereas Gauss ..

Legendre rul es of order 3x 3, 3 x 3. and 2x 2 were used on the convec

tion, II and A tenns, respectively. Data employed were: 11= 1, p= 200;
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Fig.nE-2. Hamel flow: Comparison of finite element ee) with
exact (-) results at low Reynolds number.
(a) Velocity; and (b) pressure.
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Fig. nE-3. Hamel flow: Comparison of finite element (e) with
exact (-) results at high Reynolds number.

'(a) Velocity; and (b) pressure.
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9A = 10 ; y = 1; and t,t = 0.07. As is clearly visible, "wiggles" appear

upstream of the step. Similar results are obtained for the 4-node

elements employing Gauss-Legendre integration of the convective term. It

is felt that this problem demonstrates the inappropriateness of Gauss

Legendre integration of the convected terms under the circumstances de
scri bed.

As can be seen from Figures IIF-3 and IIF-4, results for the

4-node elements which employ the modified upwind treatment of the con

vection term at Re = 200 and 107, respectively, are smooth, and the

upstream "wiggles" are removed in both cases. The data employed in

these cases were: (Re = 200) 11 = 1; p = 200; A = 108; y = 1; (Re = 107)

11 = 1; p = 1013 ; and y = 1. Time steps were selected adaptively.

II-G. Axisymmetric Flow through a Sudden Enlargement

The problem description and finite element mesh used are depicted

in Figure IIG-l. The domain and mesh are split at Section iii for pic

torial purposes only. M~cagno and Hung [32J have obtained both experi-

mental and numerical results for this problem. A fixed time step of

t,t=0.5 was employed, and y=0.75 was used for the transient algorithm.

The dynami c vi scos i ty, 11, was set to 1 throughout. Thus Re = p and the

penalty parameter was taken to be 107p. One point integration of the

A term was employed. The calculations were performed in three se-

quences and were compared to experimental and numerical results due to

Macagno and Hung. In the first sequence, the initial conditions were

quiescent and Re = 30. The sequence consisted of 60 time steps and a

steady flow was achieved after approximately 30 steps. The flow was

used as the i ni ti a1 condi ti on for the second sequence in whi ch Re =60.

This sequence consisted of 40 steps and a steady condition was attained
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after 20 steps. Results for this flow are presented in Figure IIG-2.

With this flow as an initial condition, the final sequence in which

Re = 200 was run for 90 steps. It took almost all this time for the

region just upstream of section iii to become steady. Results are pre

sented in Figure IIG-3.

The overall flow patterns and 1ength scales of the trapped annul ar

eddies are in good agreement with [32]. To study flows at higher Re

would require refinement and extension of the mesh downstream of section

iii, as the recirculation regime tends to stretch out considerably with

i ncreas i ng Re.

II-H. Viscous Flow about an Airfoil

Viscous flow about an NACA0018 airfoil geometry is studied. The

problem statement is shown in Figure IIH-l. The finite element mesh is

shown in Figure IIH-2. We employed unit chord length (i.e., L) through

out. The dynamic viscosity, ~, was set to 1. The input inlet velocity

is 1, thereforeRe = p.

Several runs were made with this mesh. The first, at low

Reynolds number (i.e., 400) and quiescent initial conditions, shows

well the diffusion of vorticity with the development of the boundary

layer; see Figures IIH-3 and IIH-4. Accompanying pressure profiles are

shown in Figure IIH-5.

Steady, high Reynolds number results with quiescent initial

conditions are presented in Figures IIH-6 and IIH-7. Obviously, from

the velocity vector plots, this mesh is not adequate for such a high

Reynolds number. The infinite-domain, potential flow, pressure profiles

are presented in Fig. IIH-7 for comparison purposes. It is conjectured
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Flg.UH-3. Viscous now about an airfoil (Re = 400): Velocity
vectors.
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t=.0889 (n=IOl

t=.2098 (n =201

t=.3299 (n=30l

t= .4493 (n=40l

t= 1.3293 (n=120l

t= 3.0986 (n=280l

Fig.nH-4. Viscous flow about an airfoil (Re =400): Vorticity
contours.
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that enlarging the domain and refining the leading-edge region of the

mesh would bring the results in closer agreement, although the pressure

drop at the trailing edge is to be expected in a viscous computation.

An Re = 106 calculation was made using the Re = 400 solution at

time 3.0986 as an initial condition. In this case the flow separated;

sample results are shown in Figures IIH-8 and IIH-9. At later times

(not shown) the separation point and recirculation regime moved down-

stream.

II-I. Axisymmetric Flow around a Sphere

The problem description and mesh are shown in Figure 111-1.

Initial conditions were assumed quiescent and the "mean-incompressible"

treatment of the A-term was employed.

Runs at Re = 10 and 40 were made; sample results are shown in

Figures III-2and II 1-3. After the flows became steady, comparisons

were made with the infinite-domain, analytical results of Dennis and

Walker [33]. As can be $'een from Figure II 1-3, vorticity (l,;) and

pressure are in good agreement. It is somewhat surprising that the

results at Re = 40 are in such good agreement, as our finite-domain

model seems hardly adequate for this high a Reynolds number. In Table

II-I, pressure-drag (Cp)' viscous-drag (Cv)' and total drag (CD) coef

ficients are compared with the results of Dennis and Walker. (The

coefficients are normalized as follows: drag/(np(D/2)2.) The

agreement is quite good overall, but better at Re = 10 than at

Re =40, as may be expected.
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tl= 0
U2=O
(outlet condition)
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(a) Problem statement

ul=1
u2=O '--~

(inlet condition) ...-----1

(b) Finite element mesh

Fig. n 1-1. Axisymmetric flow around a sphere: Problem
description and finite element mesh.
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(a)
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Fig.n J-2. Axisytnmetric flow around a sphere (Re = 10):
(a) Velocity vectors; (b) pressure contours; and
vorticity contours.
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Table 11-1

Comparison of Drag Coefficients for Flow around a Sphere

Re = 10 Re = 40

Present Dennis & Present Dennis &
Coefficients Study Walker Study Walker

Cp 0.774 0.785 0.347 0.368

Cv 1.419 1.427 0.520 0.536

CD 2.194 2.212 0.868 0.904

III. Remark on Slightly Compressible Formulation for Viscous Fluid Flow

The slightly compressible formulation for viscous fluid flow (see

Chapters 2 and 3) has. been programmed and studied. The dam-reservoir

(110), Hamel flow (lIE), and the free-surface wave generation flow prob

lem (see Chapter 6) have been solved. The results obtained using this

formulation are virtually identical with the penalty function formulation

described above.. So the sample examples will not be presented here.

One of the main advantages of this formulation over the penalty

function formulation is that when a static solution is reached,

all accelerations and velocities will approach zero (due to the fact

that it is a rate type constitutive equation, see Chapters 2 and 3).

In the penalty formulation, a small nonzero velocity is produced to

create a bulk viscous effect to support the loading (e.g., gravity).

Hence, the slightly compressible approach is preferred and has been

developed for the purpose of fluid-structure interaction problems which

will be discussed in great detail in the next chapter.
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Chapter 6

APPLICATION TO FLUID-STRUCTURE INTERACTION

I. Introduction

In Chapter 4 a general three-dimensional finite element formula

tion was described for quasistatic and dynamic nonlinear shell analysis.

This shell theory can easily be degenerated to an analogous two

dimensional formulation which includes several special cases of prac

tical interest. Numerical examples indicate the good behavior of the

elements studied.

In Chapter 3,the penalty function/finite element formulations of

the Navier-Stokes equations was described. Numerical examples indicate

the effectiveness of this scheme. The slightly compressible formulation

for viscous fluid flow has been programmed and studied. As has been

mentioned, one of the main advantages of this formulation over the

penalty function formulatl0n is that when a static solution is reached,

all accelerations and velocities will approach zero. Hence, this

slightly compressible approach will be used for the purpose of fluid

structure interactions.

As a practical application, the proposed finite element proce

dures are employed for the dynamic, three-dimensional, nonlinear,

inelastic response of ground-supported, cylindrical liquid storage

tanks which accounts for fluid-structure interaction and free-surface

sloshing.

Early studies relevant to this topic were performed by

Westergaard [1], Hoskins and Jacobsen [2], Jacobsen [3], Werner and
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Sundquist [4], and Jacobsen and Ayre [5J. They assumed the tank to be

rigid and the hydrodynamic wall pressures are then determined. Housner

[6J developed an analytical method for determining hydrodynamic wall

pressure under the same assumption that the tank is rigid. A mechanical

equivalent model is developed and is widely used in current earthquake

design practice [7J.

Within recent years, studies performed by Veletsos [8J, Yang

[9J, and Veletsos and Yang [lOJ have shown, however, that the rigid

tank assumption may lead to a significant under-estimation of the

magnitude of the resulting forces. The first use of a digital computer

in analyzing this problem with the aid of finite element methods was

completed in 1969 by Edwards [llJ. This investigation treated the

coupled interaction between the elastic wall of the tank and the con

tained liquid. Recent developments along the same line were performed

by Wu et al. [12] and Shaaban and Nash [13J.

Haroun [14J recently conducted a theoretical and experimental

investigation of the dynamic behavior of cylindrical liquid storage

tanks to seek possible improvements in the design of such tanks to

resist earthquakes. In this study, natural frequencies of vibration

of the associated mode shapes are found through the use of a discreti

zation scheme in which the elastic shell is modeled by finite elements

and the fluid region is treated as a continuum by boundary solution

techniques.

However, the methods ci ted are based on sma 11 moti on

linear response, and do not take satisfactory account of nonlinear

effects observed in the field under the action of strong earthquakes,
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such as lift-off of tanks from foundations, finite-amplitude sloshing,

and nonlinear and inelastic tank response. Obviously a more advanced

approach is called for. The whole subject is indeed very complicated

and it is not the purpose of this thesis to perform a nonlinear tank

study, yet the author hopes to have developed a tool which can be used

eventually for that purpose and others.

Before we can perform a fluid-structure interaction calculation,

a contact/sliding element is required to handle the sliding assumption

of the fluid on the tank wall. We begin with the discussion of such a

sliding element. A free-surface wave-propagation problem is then used

to determine the effectiveness of the proposed mixed Lagrangian-Eulerian

scheme. The classical static axisymmetrical buckling of elastic cylind

rical shells subjected to three types of boundary conditions is then

studied, followed by a buckling analysis of a tilted cylindrical liquid

storage tank subjected to internal hydrostatic loading. Finally, a dyn

amic analysis of a liquid-filled cylindrical tank is performed to demon

strate the finite element fluid-structure interaction procedures.

II. Contact/Sliding Element

Contact elements may be used to impose inequality constraints

between nodes. Either perfect friction (i.e., "stick") or frictionless

(i .e., "s lide") conditions may be achieved.

A contact element is defined by three nodes and a spring constant,

or "penalty parameter," k, for our purposes. The connection from node

A to node B defines the "slide line" direction; whereas, node C is the

contact node (see Fig. 11-1). The normalized projected distance of

node C to node A is denoted by ex ~ [0,1] and is given by:
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..

Fig. II-I A Contoct element is defined by three nOdes
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(ILl)

-+
Here XV denotes a vector connecti ng poi nt X to poi nt Vand "." is the dot

-+
product. The normal vector t from node C to AB is defined by:

-+ -+ -+
t =t- (AB x AC) x AB (I1.2)

(I1.3)

where "x" is the cross product and "+" means "i s repl aced by." The

local contact stiffness matrix Kt is:-
t _ [(1 -a)2

~ - k sym

a(l - a)

2
a

-(l-a)]

-a

1

(I1.4)

The rows and columns of the contact stiffness matrix are arranged in

such a way that the first row or column corresponds to node A, while

the 2nd row (or column) and 3rd row (or column) correspond to nodes

Band C, respectively. Before the global assembly procedure, the local

contact stiffness matrix is rotated to the global form ~G (for the

sliding case) via:

KG = TT Kt T- - -
t T

~13 ~13-
T = ~13 t T

~13-
~13 ~13 t T

-

(11.5)

(II.6)
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(11.7)

For the sticking case ~G is

2 0 0 a(l-a) -(l-a)(l-a) 0 0 0 0
2 0 0 a(l-a) 0 -(l-a)(l-a) 0 0

2 0 0 a(l-a) (l-a)(l-a) 0 0
2 0 0 0 0a -a

KG = 2 0 0 0a -a
SYMMETRIC 2 0 0a -a

1 0 0
1 0

1
(11.8)

III. Numerical Examples

III-A. Free-Surface Wave-Propagation Problem

The problem statement and finite element meshes are shown in

Figure IIA-1. We generate a wave numerically by prescribing a displace

ment-time history at the 'left-hand boundary of the domain. This pre-

scribed function is designed in such a way that it is consistent with

the experimental studies performed at Keck Laboratory of the California

Institute of Technology. Its function is to produce a solitary wave-

one in which the nonlinear and dispersive effects are balanced so that

the wave propagates without distortion.

Data used in the analysis are given as follows: g = 1;

L = 949.095; D= 10; H = 0.86, h • 5.895; and ~t = hlc = 1.7888.

Meshes 1 and 2 consist of 160 and 320, 4-node elements, respectively.

The flow was assumed inviscid, p = 1 and A= 2.6089x 107.
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r ~ " H [ CKt ].---......, UI(O,X2,t)='"j( I +tanh (0-4) ;

1X
2

:I c·')gO (I+H/D); K' j~~ - REFERENCE DOMAIN ll,

--- DEFORMED DOMAIN Sly
"

L~X' L ~~

(a) Problem statement and schematic of domains

L

L

"---2h--.......o--h~...--h--l~-.

~L

(b) Finite element mesh I

(c) Finite element mesh 2

K {L - Lagrangian degree-of-freedom
ey E - Eulerian degree-of-freedom

Fig. m A-I Problem statement and finite -element meshes for
free- surface flow
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The finite element calculations employing a one-dimensional

depth averaged theory [15J are compared with calculations for mesh 1,

one element through the depth. The results are shown in Figure IIIA-2.

The figure shows the results agree remarkably well, considering the two

approaches are quite different. Notice that the rate of growth of the

trough is a little greater with the present scheme than it is for the

one-dimensional theory. Even though there is good agreement between

the two theories, experimental results are not consistent with the

previously obtained numerical results. The differences are:. (1) the

experimental waveform propagates somewhat faster and exhibits less

amplitude decay; and (2) dispersion emanating from the back of the wave

is not seen experimentally.

The reason for the discrepancy between the numerical and experi

mental results is the variation of the velocity through the depth

is not 1i near. Both the one-dimensi ana 1 depth average theory and

one element through the depth, two-dimensional theory invoke this assump

tion. As can be seen in 'Figure IIIA-3, with two elements through the

depth, the trough has been reduced and the relative wave height is

essentially constant with propagation. The difference in having two

instead of one element in depth is that the distribution of velocity

is no longer constrained to be linear with depth.

It is also noted experimentally that "noise" superposed upon

a solitary wave tends to proPagate at a slower velocity than the main

pulse. A numerical simulation of this phenomenon is shown in Figure

IIIA-4. The noise is generated by setting a no-slip boundary condition
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along the left-hand edge of the domain, in contrast to previous calcula

tions in which a slip condition was employed. Note how the solitary

wave emerges, unaffected by the initial perturbations.

III-B. Static Axisymmetric Buckling of Elastic Cylindrical Shells

Three types of boundary conditions were employed in this study:

a) bottom fixed--top free;

b) bottom fixed--top fixed with respect to horizontal displacement and
rotation; and

c) bottom simply supported--top fixed with respect to horizontal dis
placement.

Load versus displacement data and deformed profiles are shown in Figure

IIIB-l up to the buckling loads at which time the calculations were ter-

minated. Comparison is made with analytical results based upon eigen-

value analysis (see e.g., [16J).

III-C. Cylindrical Shell Containing a Fluid

An analysis was performed of a tilted cylindrical shell sub

jected to internal hydrostatic loading. The problem statement is shown

in Figure IIIC-l, along with the stress results prior to any significant

nonlinear phenomena. Data employed in this analysis are given as fol

lows:

E = 7.35x105 1b/in2

\) =0.3

D = 16.0 in

L = 20.0 in

R = 4.0 in

h =0.01 in

() = 30.0°

(Young's modulus)

(Poisson's ratio)
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(density of water)

The effective specific gravity, Yeff' was defined to be Yeff = yg. The

value of g used in obtaining the stresses shown in Figure 111C-l was

1.8. Comparison with a membrane theory solution [17J confirmed the cor

rectness of the numerical results outside of the boundary layer at the

fixed end. Buckling calculations were performed by incrementing g.

Results are shown in Figures111C-2 and 111C-3. As may be seen, the

initial bifurcation occurred in attempting to increment g beyond 1.8.

This corresponds to a maximum axial membrane stress of 547.53 psi at

x = L, ~ = TI, which is approximately half the classical value. Although

this result was not anticipated, it bears a great deal of similarity to

results obtained by Argyris and Dunne [18J in their penetrating study of

a compressed cylindrical panel. They too found an initial bifurcation

of approximately half classical. When they pursued the analysis into

the post-buckled regime, a drop in load of only 3% was noted, at which

time the load waS able to be increased again to a value in the vicinity

of classical. At this point a second, and more significant bifurcation

ensued, and this was followed by several more bifurcations. An impor

tant point in considering the results of Argyris and Dunne was that a

preliminary eigenvalue analysis, employing the same mesh used in the

finite deformation case, yielded a buckling load approximating the

classical value on the high side. This lends credence to the analysis,

but a full understanding of the computed initial bifurcation in this case,

and the present case,does not yet seem to exist. The results shown

were obtained using Sl elements. Similar results were also obtained



-211-

"" ~ ~
1\ !\

............ / r-.... 1/ ~

~/
/1\ /

.- V) ..--/ ~"-V -- :;......... r:; ~ :;; ....
r-- -v r--.

...... v ...... ..--1\ ...... .-/

r---- ....... .; --...

r- k' k -- t><

't> -- k kr- ~""IX,
v

----::~ v
----~

~ .......-::

II !11
g= 0.00 g=0.60 g=l.20

D
~ ~

::t ~
I'"--

,// .//'1-:-'...--r-:-- )'"'...- - v /,.....,
./ ./-~:---~.-

~ " ..... ~.-
1'-->-.......:. < ~ r<r-

1"- ...... >< ><L.-- I--..-

"""i',i'- R>< ~r-.-'
~x

.,........ ..--
~

..-
~

9 =1.80 g=1.82 g= 1.90
(START FROM 9 = 1.80) (START FROM 9 = 1.80)

Fig.mC-2. Deformed configurations for the tilted cylindrical shell.



0: 0.00

0"1.20

0 0 1.82
(START FROM 001.801

-212-

g: 0.60

9 =1.80

g= 1.90
(START FROM 11=1.80)

Fig.IDC-3. Detail of lower regions for the tilted cylindrical shell.
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with heterosis elements.

III-D. Dynamic Analysis of a Liquid Filled Cylindrical Tank

A dynamic analysis was performed of a liquid filled cylindrical

tank subjected to a periodic saw-tooth ground acceleration excitation.

The problem statement is shown in Figure 1110-1, along with displace-

ment, velocity, and acceleration time histories at three different

positions (node A, B, and C). The tank is subjected to the mentioned

excitation in the x-direction only. Therefore all the bottom nodes of

the tank are subjected to the same excitation with the other two direc

tions (y and z) fixed. Atypical input ground excitation (acceleration,

velocity, and displacement) is given for node A. Due to symmetry, only

half the tank is modeled by 36 51 shell elements, 80 uniform-reduced in-

tegration 8-node fluid elements, and 30 sliding elements. The height

of the tank is 864 ins (i.e., distance between A and C). The mean dia

meter of the tank is 577 in. (i.e., distance between B and C). The

tank thickness is 1 inch. It is filled with water up to 720 in. The

material properties of the tank and water are:

Tank (steel):

E = 3.0 x 107 ps i

v =0.3

p = 7.324xlO-4 1bsec2/in4

0y = 3.0xl04 psi

B = 0.0

Water:

B = 6.991 x 1012 psi

~ =0.0

(yield stress)

(plastic modulus)

( bu1 k modul us)

(dynamic viscosity)
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p = 9.349 x 10 lb sec/in

g = 3.864 x 102 in/sec 2
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(gravity)

The spring constant, k, of the contact elements is taken to be 4.44 x 1016

psi. The Newmark parameters are: 13 =0.5625, y =1.0, and lit =0.02 sec. A

linear implicit-nonlinear explicit operator splitting algorithm with

one iteraction is employed. A small deformation analysis option is

used. The maximum computed stress occurring in the tank is less than a
y

even though the peak ground excitation is 1.5 g. The relative free

surface motion as well as the relative tank displacement is within the

small motion region. Therefore, no further analysis of this problem was

performed. The computed acceleration, velocity, and displacement time

histories of nodes Band C as well as the relative displacement between

nodes B and A and between nodes C and A are shown in Figure IIIO-l.

It is expected that the fundamental mode is dominant for this kind of

excitation; also nodes Band C are expected to respond in

II phase. 1I This phenomenon can be seen fran the absolute displacement

time histories of nodes Band C in the figure.

The deformed shape of the tank and the free surface motion (with

the input translational motion subtracted) are shown in Figure 1110-2

at a time interval of 0.2 seconds. The magnification factor of these

plots is 7.81. Frequency responses higher than the fundamental slosh

ing frequency were observed. The sloshing period is approximately 6

seconds. Since the free surface motion is much larger than the tank

deformation, plots of the tank response (with the input translational

motion subtracted) are shown in Figure 1110-3, magnified by a factor

of 76.31.
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Chapter 7

SUMMARY AND SUGGESTIONS FOR FURTHER DEVELOPMENT

In this thesis, finite element procedures for fluid-structure

interaction problems have been developed. Different aspects of non

linear methodologies have been studied. A working finite element method

computer code [15], which will be discussed in a separate report, has

been developed which may be applied to the dynamic, three-dimensional,

nonlinear, inelastic analysis of ground-supported, cylindrical liquid

storage tanks subjected to strong shaking, and various other f1uid

structure phenomena. This is a significant step toward the development

of a clean general purpose, modularized, fluid-structure interaction,

finite element computer program that engineers will find helpful.

Future fluid-structure analysis developments will need to

include improved transient algorithms, better fluid-structure interfac

ing techniques, and cont~ct-impact techniques.

Automatic time stepping strategies based upon accuracy consid

erations [1,2J, subcycling techniques [3-5], and effective iterative

equation solvers [6-9] will be generalized and eventually included in

this fluid-structure computer program. The presently developed,

slightly compressible fluid formulation is a step towards the inclusion

of a compressible formulation, although further studies are clearly

required.

The mixed Lagrangian-Eulerian method seems to treat fluid

structure interaction problems with large motions of the structure

naturally and economically. However, for large-deformation bubble
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dynamics calculations [10] that occur, for example, in light water

reactor systems, "continuous rezoning" of meshes, together with mixed

Lagrangian-Eulerian methods are required. As rezoning is expensive

and difficult to do adaptive1y, other techniques are called for. Hirt

and Nichols [llJ proposed a vo1ume-of-f1uid finite difference method

(VOF) in which the boundary of the free surface is not specified

directly, but instead is defined by the fraction of fluid in each cell.

The fraction of fluid is treated as a cell variable and governed by a

transport equation. This technique can permit the solution of very

complicated free-surface problems (e.g., bubble dynamics, etc.). It is

not yet clear how to develop VOF finite element methods due to the more

general topology of finite element meshes compared with finite differ

ences. A combination of VOF and mixed Lagrangian-Eulerian methods may

be an effective compromise.

The contact/sliding element proposed here for fluid-structure

interaction problems cannot be used directly for tanks lifting off from

their foundations, and the resulting large-amplitude sloshing causing

roof damage. This contact element, together with the contact-impact

technique developed by Hughes et a1. [12,13] and Hallquist [1.4] can

serve the purpose and would be a worthwhile generalization.

Finally, a word of caution is in order regarding the ability of

the present capabilities to solve general problems of fluid and struc

tural response. Although a degree of confidence has been established

in certain realms of phenomena, it should be emphasized that the

present developments are incapable of solving many problems of
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physical interest and application of these techniques in such circum

stances is speculative at best. Areas which are particularly difficult

and presently beyond the developed capabilities are (among others) high

Reynolds' number flows and complex shell buckling. Much numerical

research still needs to be done in these areas.
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