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1. Introduction:

The useful life of a flexible structure, such as a ship, a tall building,
or a large airplane, depends on the possibility aud.probability of fatigue
failures lue to the vibration of such structures. Each vibratlonal mode can
be deécrihed with an equation of motion of the form: mx + bi + kx = U{t),
where U(t) is the input or excitation force. Theoretically, it is possible to
find an input which will drive both the deflection, x(t), and velocity, ;{(t),
to zero in finite time for arbitrary initial conditions because such a linear
system is completely controllable,

In the real-world, one is concerned with limited supply of energy which is
required to produce control forces. It is well known that more energy is re-
quired for higher gains. .Moreover, there always exisfs a delay time in generat-
ing the desired control fgrcu. To study the reliability aspects of the struc-
tural control problem [1], it is necessary to cogsider the effects of the gain
and delay time which are inherent in applying contrel systems to ensure struc-
tural safety.

The objective of this study ic to find the effects of several combinations
of gain and delay time on structural control, To solve the problem, one is able
to use the following two approaches: the classical control theoxry in the fre-
quency domain, and the modern control theory in the time domain.

2. Literature Review:

During these past several decades, active control has been extensively
applied in aerospace and mechanical engincering practices. However, applica-
tions to civil engineering structur :s began only in recent years. One reason is
that civil engineering structures tend to be more complex as well as bulkier and
thus more difficult to control. While active control is not advocated for every
structure, there are certain. structures for which the use of active control can

result in a more efficient and reliable design,



To control the behavior of a given structure, one can use either passive
and/or active control systems. The main idea of using a control system is that
flexible structures such as extremely tall buildings or long bridges
can be designed to resist essentially th: operational gravity loads and the
active control system can take care of any si le-sway motions resulting from
lateral loads. Recently, the relevant literature :nd the interrelation-
ship among structural identification, control, and reliability in wind engineer-
ing were discussed [2]. In the following, additional literature on this subject
matter is reviewed briefly.

A general approach to aétive structural control was discussed by M.

Abdel Rohman and H. H. E. Leipholz [3]. They proposed a unified approach to

be used in the active control of structures to satisfy simultaneously the re-
quirements for safety, serviceability, and human comfort considerations. The
feasibility of using such a cont ol was also considered. In another paper,
Rohman and Leiphoiz [4] studied the vibration of a single-span bridge. The
control mechanism has been used Lo control the vibration of the bridge. They
also showed some of the benefits from using a closed~loop control in controlling
flexible civil engineering structures.

Active damping of large structures in winds was studied by Richard A. Lund
{5]. Mass dampers have been installed in large buildings to reduce building
motion during high winds. These systems are presently designed to operate as
passive tuned mass dampers. An investigation of the benefits of active con-
trol in such systems was presented by Lund.

Anti-earthquake application of pulse generators was studied by Sami F.
Masri and George A. Bekey [6]. They used servo-controlled gas pulsé genera-
tors to mitigate the earthquake induced motions of tall buildings.

The active control of structures by modal‘synthesis was presented by

L. Meirovitch and H. 0z [7]. Their contrpl scheme consists of independent



modal control providing active damping for the controlled modes of the struc-
ture,

The concept of active feedback control is studied by John Roorda [8].

The first experiment demonstrates in a simple way the essential ingredients of
an active feedback control system. It involves the control of the midspan
deflection of a king=-post truss by selectively lengthening or shortening the
under-slung cable in a controlled way. In addition, a vertical cantilever is
controlled with a pair of vertical steel tendeons fixed to a cross arm attached
at the column and to a yoke which pivots about the column center line near

the base,

Soong and Chang [9] studied an optimal control configuration using the
theory of modal control. For tall buildings, the application of modern con-
trol theory introduces a number of difficult problems. An important problem
is that of obtaining optimal control configuration or the determination of
appropriate locations of cﬁntrollers. This tbpig has been studied by Soong
and Chang [9].

Recently, optimal open-loop —ontrcl of structures under earthquake excita-
tion was studied by J. N. Yang anl M. J. Lin [10]. They used an active tendon
control system and an active mass damper system.

3. Formulation of the Problem

A lumped-mass one-story building with active control devices is shown in
Figure (1). The particular control devices as considered herein consist of a
"jet-engine-like impulse force generator" attached to the top of the building.

The equation of motion for such a structure can be written in the following form:
mx + bx + kx = N + u ‘ ¢y

where N = N(t) is the external excitation sucih as earthquakes. For example,

N = —mﬁé, where ig denotes the ground .cceleration., In Equation 1, the term



u = u(x,x;t) denotes the control force generated with a control device which
is located at the top of the system. The Laplace transfer function of the

plant (structure) can be written as follows:

G, () = —t 2)

msz+bs+k

where:
= Mass of the system

m
b = Damping of the system
k = Stiffness of the spring

Without loss of generality, the external force can be disregarded for
the subsequent discussions because the external force can be assumed as a

part of u 1in Equation (1) becomes:
m¥ + bx + kx = u (3)

For a single-degree—of-freedom system, Equation {3) can be writtén in

the following form:

'ﬁ = AX + Bu
Y =¢X (&)
where:
0 1 0
-k b 1
m m m

Now, the matrix P can be defined in the following form:
P = [B] AB] (5)

Because the rank of the P matrix is equsl to two, therefore, this system
is controllable {see Appendix A). The syster is also observable because the

rank of @ matrix is also equal to two. Where Q matrix is defined as:

q = [, a'ch (6)



The block diagram of the systéem without any control device is shown in
Fig. 2. A generalized closed loop system schematics is shown in Fig. 3.

in civil englneering structures, the disturbonece force Ls the majof in-
put force of the system. To reduce the undersirable effects of disturbances,
one can use either the feediorward control system or feedback control system.
It is also possible to use both systems at the same time.

For example, consider the system as shown in Fig. 4 where K  is an ad-

P

justable gain andGc(s) and H(s) are fixed components. The closed-loop trans-

fer function for the disturbance is:

XN(S) GP(S)

_ "
N(s) 1+KPG¢(S)GP(S)H(S)

To minimize the effect of the disturbance force, the adjustable gain KP
should be chosen as large as poss ble. One c:n also reduce the undersirable dis=-
turbance force by using a feedforvard control. Fig. 5 shows a system with
feedforward control. A disturbance feedforward is an open-loop and it depends
on the constancy of the parameters. 1In Fig. 5 both open-loop and closed-loop
control systems are used simultaneously. In this system, errors from all causes
can be reduced without requiring a large loop gain. A feedforward system can
be used if and only if one can m-asure the disturbance forces.

Consider the system as éhowu in Fig. 5. It has been assumed that both
plant transfer function, GP(S)’ and disturban.e transfer fuaction, Gz(s), are
knownt., One can easily find a suitable controiler transfer function, GC(s),
then, the disturbance feedforward transfer function, Gl(S) can be found as
follows:

G, (s)

G, (8) = -~ ——r———r—e— . (8)
1 GC(S)GP(S)

Consider the system shown in Fig. 4, The transfer function of the



system can be obtained as

XN(S) GP(S)
N(s) TR, G_ (5)C, () H(s) (%)

The effect of the controller is scen by the presence of KP in the denom-
inator of the transfér function. From this equation, the response XN(S) to
the disturbance force, N(s), can be found., On the other hand, in considering
the response to the reference inp it R(s), Qe may assume that the disturbance

is zero. Then the response XR(s) to the reference input R(s) can be obtained

from

X (s) ) KPGC(S)GP(S) ) (10
R(s) 1+KPGCCS)GP(S)H(S) )

The response to the simultaneous application of the reference input and
disturbance can be obtained by adding the two individual responses. 1In other
words, the total response X(s) due to the simultancous application of the

reference input R(s) and disturbance N(s) is given by

G (s) ‘
P
e = T g o, T H Fplc(DRE) + N @] (1)

The reference input R(s) can be assumed to be zero because the set point

of the controller is fixed. Consider now the case where ‘KPGC(S)H(S)|>>1 and
X (8)

1KGC(S)GP(S)H(S)[>>1- In this case, the closed-loop transfer function ey~

becomes almost zero, or as small as possible. This 1s an advantage of using

the closed loop system, If the referemce imput R(s) not to be equal to zero,
XR(S) 1
then the closed-loop transfer function izgy— approaches ﬁIET as the gain

of KG (8)G

XR(S)C

Ry becomes Independent of KPCC(S) and GP(S) and becomes inverseley propor-

P(s)H(s) increases. This means that the closed-loop transfer function

tional to H(s) so that the wvaria ions of GP(S) and K
X .s)

closed-loop transfer function ﬁzgj—. This is another advantage of the closed-

( h
PGC(S) do not affect the

loop system. It can easily be scen that any closed-loop system with unity
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feedback tends to equalize the input and output.

A lumped mass n—story building with act ve cocntrol devices is shown in
Fig. (6). The particular control devices conside ed herein consist of jet-—
engine attached to each tloo-, The equations of iwotion can be written in the

following form:
ny + c§ + ky = N + bu (12)

in which y is the relative displacement vector, N is the external excitation
- vector that it is called disturbance force, v is the vector of control force.
Each eleﬁent of u represents either the pushing or pulling force generated by
a control device located at each fleoor. b is a n#r matrix whose elements de-
pend on the arrangement of the controller. m, ¢, and k are the mass matrix,
the damping matrix, and the stiffness matrix respectively and they are nxn
matrices.

By using state space concept, Equation 12 can be converted into a set
of 2n first order differentiai equation, Note also that without loss of
generality, the external forces or disturbanc: forces can be disregarded and

hence Equation 12 becomess

X = Ax + Bu (13)
where: Y = cx
X = ...-15_ A= _g__ _E__. B = _g__
Y -mk ~-m ¢ m b

Because the main objective of this invesrigation is earthquake; one can
neglect the damping of the systeun only during the time of the earthquake.
By using the similarity transformation, Fquation 12 can be written in

the following form:

X = AX + Bu (14)

Y = ¢xX 7



where
A= T_lAT , B = T-lB , and ¢ = Tc

It can be shown that the eigenvectors corresponding to distinct eigen—
values are independent. Hence 1f A has 2n distinct eigenvalues, one can find a
T matrix that diagonalizes it. 1In this case the T matrix is called the modal
matrix of the system and all differential equations are uncoupled and the
system can be solved like a siﬁgle input single outﬁut.

1f, however, an eigenvalue is repeated, the situation is more complicated.
For example, if A is an cigenvalue of multiplicity k, then it is possible that
there are anywhere from 1 to k independent eigenvectors associated with it.
The actual number depends on the particular matrix A. Note that Equation 13
represents the open-loop system. It is also assumed that the open-loop
system has 2n distinct eigenvalue. Tt means that there exists a nonsingular

modal matrix. By using block diagram, Equation 13 can be shown as follows:

W X = AX + Bub—at

The solution of this equation is:

eA(t—tl) eA(t—t)

t
X(t) = X(t,) + J Bu(T)dT (15)
t

1
The application of the modal matrix is useful in solving these equations.
To find out whether the system is controllable one needs to form.
the P matrix, The rank of the P matrix must be equal to 2n. To have a stable

system, it is necessary that all eigenvalues of the system must be located in
left half plane.

4, Optimal Control

Suppose a controller input is to be maninulated in such a way that the

performance index



J

o0

[ (<y,Qy> + <u,Ru>)dt

o

(16)

iz minimised for a plant having state-:pace cquations

X
Y
where (A,C)

is given by

u

AX + Bu

cX

-1 . .
"R BPX, Q=CqQcC

(17)

is an observable pair. The corresponding optimal control action

(18)

where P is the unique positive de¢ finitc soluiion of the steady-state matrix

Ricecati equation,

_PA-ATP + FBR B

-1
P

CTGC

(19)

This is the negative feedback convention form of the Riccati equationm.

5. Numerical Example:
Consider the control éystem shown in Fig. 1.
is:
X = AX + Bu
where: X i 0 1
1 )
] A= B =
T 25 =5
l 3 3
PA + AP + Q - PBR "B'P = 0
fP P [_0 1 0 25 P
11 12 . = 1
P P -25 =5 1 -5 e,
12 22 3 2 3 12
| 10
P11 P12 0 [0 3 ] Pll
Pz Fa2f |0 P12

The equation for the plant

(20)
0
10
3
(21)
P 1 0
12 +
P22 0 0
P
12} .
=0 (22)
Pya



The solution of the Riccati equation is:

.1681  .0578

(23)
L0578 .008
and the optimal control force is:
u = -[.1926 .0267]X ‘ (24)

6. Discussion and Conclusions

Consider a single-degree-of-freedom structural system subjected to an
artificlally generated earthquake. The properties of this earthquake are
given as follows:

(1) The duration of the record is 15 seconds;

(2) The uniform time interv.l is .05 sec.;

(3) The exponential decay constant is .62;

(4) The duration of the parabolic bulldup time is .5 sec.;

(5) The time at start of exponential decay is 7.5 sec.;

(6) The lowest input spectrum frequency is .1l Hz;

(7) The highest input spectrum frequency is 10 Hz.

(8) The maximum acceleration is l.g;

(%) The Maximum velocity is 24 in/sec.;

(10) The Maximum displacement is 5 in.

Moreover, the properties of the system are given as follows:

m= .3 Kip §—e—‘2i
in
sec

c = .5 Kip —‘-:'i-_-r"l"—'

K= 2.5 Kip/in

Considering the information as lirted in Table (1), it is observed that
by increasing the gain KP, one can control the displacement of the system.

It is also clear that by reducing the displacement the control force will in-

10



crease. The same discussion is valid for the feeéb;ck gain, It means that
by increasing the feedback gain, H, the displacem¢nt of the response will de-
crease, If the feedback‘gain is set to be ,20, a nearly optimal solution can
be obtained. However, the reduction of the displacement is not very much.

0f course, by changing the "Q" we may find another gain that it may give a

desire displacement., Result as summarized in Table (1) are shown in Fig. (8)

through 15,

Fig. (8) shows the behaviof of the systen without active control force.
The top plot is the external force, which is the product of mass and the
ground acceleration, The active contyol force and displacement of the response
have been plotted. It can be secn that the control force is equal to zero and
the maximum displacement is equal to -3.32 inches, By using the active control
force, the reséonse displacement becomes smaller than the displacement of the
system without active control system. Note fhat by increasing either the gain
Kp or the feedback gain, H; or both, the response of the system becomes smaller.
In Table (1) an unity feedback control system is used, and only the behavior
of the system with respect to changing ol the gain Kp is shown., Fig. (9) shows
the active control force and displacement of the response when KP ig equal to
.20, The maximum displacement in this canse is -3.30 in. It {s obvious that
the required active control force is small and also the displacement does not
change very much.

Fig. (10) shows the samé system KP is.equal to one and the maximum dis-
placement is -3.06 inches., The active control force has been increased in
this case. The maximum displacement in Fig. (11) is equal to 3,22 inches and
the value of the active control force has been increased.

By choosing Kp to be equal to 5.0, the maximum displacement is found to
be +3,14 inches. When Kp is equal to 10, the maximum displacement is +2.9
inches. Due to higher gains such as Kp = 25 or Kp = 100, the maximum displace-

ments became smaller. In these last two cases the maximum displacements are

11



respectively =2.32 inches and +1.27 inches. These re:ults are shown in Fig. (12)
thru (15). Note that the transfer function of the cot troller has been assumed
as a constant gain, Kp,. If we assume that the transier function of the jet
engine to be Eréii ; we may have the same results bui it is obvious that the

a

gsystem may or may not be stable. By changing Ta, we 1nay have an unstable

system. Table (2) shows the result of the same syster when the transfer

function of the controller has been assumed as follows:: GC(S) = % s}
The value of H, Kp have been chosen as ), and 1. respectively. Theaonly
variable of the system is Ta and the rest of the parareters are constant.
Assuming '1‘a equal to zero, we will have a maximum displacement equal to .179".
By increasing the value Ta’ we will have a higher wvalite for the displacement,
For example, Fig. (18) shows the displécemént'bf the response when Ta is

equal to .001l. In this case, thc maximum displacement is equal to ,180" and

it is greater than the maximum displacement with Ta equal to zero. TFig. (19)
shows the plot of the active control force for this csse, Note also that the
system 1s stable because all eigenvalues have a negative real part. Fig. (20)
shows the behavior of the same system when Ta has beer chosed as .005. The
displacement of the system is higher than both previous cases with maximum value
of .181". The active control force for this case has been shown in Fig. (21).
Fig, (22) thru (30) show the behavior of the system by increasing the value of
Ta' The displacement of the system has become larger. Due to some value of Ta,
we may have an unstable system. For c¢xample, by choosing Ta equal to .5 we have
an unstable system. The displaccment of.the system at time t = 20 sec. is

equal to ,966". Fig. (28) shows the response. of this sytem, In this case, we
have two eigenvalue with positive real part. By increasing the value of Ta to
one, the system becomes stable and all eigenvalues have a-negative real part.
Note also that the maximum displacement of the system without any active con-
trol force due to the same external forece, sin?t, is ejual to .60"., By in-

creasing the value of Ta’ the displacement becomes larger. Notice that in

1z



most cases the value of thé'displacement is sééllerméﬁan the value of displace-
ment without any active control force unless the system becomes unstable. For
example, by chossing Ta.equal to 1. although‘we have 2 stable system, but the
displacement of the system with .active control system Ls gicater than the dis-

placement without any active: coni'rol system. It mean: that by using active

control system the performance of the system is much worse than performance
of the system without active control force, and note :ilso that the stability
of the system is important,

In this report, the effects of gain and d:lay time are studied. General-
1y, the larger the gain and the smaller the delay time, the more effective will
be the control system, TIn the real world, there exist practical limitations
as to the upper bound of the gain and the lowgr bound of the delay time, The
structural reliability as a function o! these factors is being studied in

more detail and will be presented in the next technical report.
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APPENDIX: Controllability and Observability of Linear Systems

The linear system as represented by the following equation of motion,

X = AX + Bu | (A-1)

with the following solution:

t
X)) = BepeX(eg) + ' o(e;,008(0)u(o)do (4-2)
0

is said to be controllable at time t, if there exists u(0u), t

<o<
0 <o<t

0 ,» Which

satisfies A-2 for arbitrarily specified vectors, X(tl), X(to).

1

One can show that u(0) is a control which satisfies A-? for arbitrary

X(tl) and X(to). u(o) is given by following equations:

* ok e
8(@) = B (@8 (),0X(e 67T (K(E)) - Bty ¢ IX(E) (4-3)
and
t * *
X(t ,ty) & f (t1,0)B(0)B (0)@ (t,,0)do (A-4)
t
0
Theorem:

The linear system X = AX + Bu is control lable at t, 1f and only if there

exists a finite t'l>t0 such that

X(tl,t0)>0 (A-5)

X(tl,to) is called the controllability matriz:, and one can show that X(t,to)
satisfies the following equation:

- %* %

X(t,t.) = X(t,t )A (t) + A(t)X(t,tO) +B(t)B (t) (A-6)

X(to,to) =0

For a time-invariant system, both matrices, A, B, are constants. Using

Cayley-Hamilton theorem we have:

14



Theorem:

A linear time invariant system is controcllable only 1f rank P = n

where P is a matrix as follows:
[P] = [B, AB, A%G, —-=m-mmm , "7 1E) 7))

There is another theorem for controllability of a linear-time-invariant
system. If A, B are constants, then the linear system is controllable if
and only if X(»~,0)>0, or

ooA F*
X(«,0) = [ e t

*
tes e’ tarso (A-8)
0
and if A is stable X(=,0) satisfies

* *
X(»,0)A + AX(»,0) + BB =0 (A-9)

Therefore there are two controllability criteria as follows:

Controllability Criterion 1

The constant coefficient system, for which A has distinct eigenvalues,
is completely controllable if and only if there are no zero rows of Bn = T—lB,
where T is the modal matrix.

Controllability Criterion 2

A constant coefficient linear system with the representation {A,B,C,D} is

completely controllable if and only if the matrix of
2 n-1
PA[B|AB|A“B|-~--|A" "B]| has rank n. (A-10)
Consider the following single-degree-of-freedom mechanical system:

MY+ BX + KX = u

pde P
]

i o

o =

o
+

e =
=4

15



where:

8™ M M
0 1 0
A= B =
a b c
0 c
Pd
c bc

It is obvious that rank P = 2, Therefore, the system is controllable,
In this example the disturbance force has been ignored.

Observability of Linear Systems:

The linear system X = AX, vy = c¢X with solution
y(0) = c(0)0(0,t)X(t), o>t (A-11)

is observable at time t if there exists some t1>t such that X(t) can uniquely

be determined by measuring v{(7).

The linear system 1s observable at time, t, if and only if there exists

a finite tl>t such that K(tl,t)>° where K(tl,t) is given by:

tl * %
K(t,t)A [ 7 ¢ (0,0)e (0)e(0)8(o,t)do (A-12)
t .
-1 tl * *
X(t) = K(t,,t) [ 7 @ (o,t)e (0)y(o)do (A-13)
' t

K(tl,t)ris called the observability matrix and it must satisfy the follow-

ing differential equatiom,
. ' % *
—K(tl,t) = K(tl,t)A(t) + A (t)K(tl,t) + ¢ {(t)e(t)

K(t,t) =0 (A-14)

r

Observability for time-invariant systems depend only on the constant

matrices A and c¢. No reference need be made to a particular interval [to,tl].

16



-Obsefvability Criterion 1

The constant coefficient system, for which A nas distinet eigenvalues,
is completely observable 1f and only if there are 10 zero columns of e, = ¢T.
where T is the modal matrix,

Observabllity Criterion 2

A constant coefficient linear system is complctely obscrvable if and only

if the nxmn matrix, Q, has rank pn:
k, % % 3 :
QAle A e [ —————— A c ] (A-15)

If both matrices A and c are constant then the linear time-invariant system

is observable if and only if

%
K(w,O)é fm eA t.c*.c.eAtdt>0 (A-16)

If A is stable then K(x,0) satisfies
% %
K(<,00A + A K(2,0) + cc=0 (A-17)

The controllability as well as observability of a linear time-invariant
system is invariant under andy similarity trinsformation.

As an example, consider the single degrce freedom system. The equation

of motion is given by:

X o 1] Ix 0
L 1 + u
Xz a b XZ C

4
{¥}=[1 0]

X,

17



In this case the outpul of the system is displacement.

aret,afet ]
1 0

Q= rank Q = 2
0 1 '

It is obvious that the rank Q is two, tharefore the system is observable.

18
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TABLE (1)

Case Fig. Ta H Kp g::élacement g:ﬁ;city 2:2:
1 .00 |0.00 0.00 ~3.32 23.14 -372.24
2 1. .20 -3.3 23.40 -373.84
3 10 .00 1. 1.0 —3.06 -24,68 =377.67
4 11 .00 13 2.0 3.22 -25.66 387.55
5 12 | .00 |1. |s.0 1,14 -24.13 | 429.17
6 13 .00 1. 10. 2.9 -24,78 451,57
7 14 00 1. 25, -2.32 -28.83 463.93
8 15 .00 (1. 100. 1.27 22.74 525,89

TABLE (2)
Case Fig- N Ta H Kp gi:;lacement
9 16 SinZt 0. 5. 1. . 17987
10 18 Sin2t .001 5. 1. .18017
11 20 Sin2t .005 5. 1. .18137
12 22 Sin2t .01 5. .18291
13 24 Sin2t .05 5. 1. . 19654
14 26 Sin2t .1 5. 1. .2143
15 28 Sin2t .5 5. 1. .86574
16 30 Sin2t 1. 5. 1. .6056
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for Case 6 in Table 1.
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External Force, Velocity, and Displacement Response
for Case 10 in Table 2.
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for Case 11 in Table 2.
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External Force, Velocity, and Displacement Response
for Case 14 in Table 2.
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