EVALUATION OF A SHAKING TABLE TEST PROGRAM ON RESPONSE BEHAVIOR OF A TWO STORY REINFORCED CONCRETE FRAME

by

J. MARCIAL BLONDET
RAY W. CLOUGH
STEPHEN A. MAHIN

Report to the National Science Foundation

See back of report for up to date listing of EERC reports.

DISCLAIMER
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Earthquake Engineering Research Center, University of California, Berkeley.
Title and Subtitle
Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete Frame

Authors
J. Marcial Blondet, Ray W. Clough, Stephen A. Mahin

Performing Organization Name and Address
Earthquake Engineering Research Center
University of California, Berkeley
47th Street and Hoffman Blvd.
Richmond, CA. 94804

Sponsoring Organization Name and Address
National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550

Abstract (Limit: 200 words)
This report presents an evaluation of the different stages involved in an experimental study of the seismic behavior of a reinforced concrete structure, by means of an earthquake simulator (shaking table). The discussion is focused mainly on how representative the test structure and the table input motions are with respect to the actual, "real life" buildings and seismic ground excitations. The design of the structure is then reviewed from the point of view of a current seismic code, and the experimental results are compared with analytical expectations as well as with the design demand levels.

The last chapter summarizes the conclusions obtained and points out areas for future research.

Availability Statement
Release Unlimited

Security Class (This Report)
21. No. of Pages
22. Price

(See ANSI-Z39.18)
See Instructions on Reverse

OPTIONAL FORM 272 (4-77)
Department of Commerce
EVALUATION OF A SHAKING TABLE TEST PROGRAM
ON RESPONSE BEHAVIOR OF
A TWO STORY REINFORCED CONCRETE FRAME

by

J. Marcial Blondet
Ray W. Clough
and
Stephen A. Mahin

A Report to the National Science Foundation

Report No. UCB/EERC-80/42
Earthquake Engineering Research Center
University of California
Berkeley, California

December 1980
This report presents an evaluation of the different stages involved in a experimental study of the seismic behavior of a reinforced concrete structure, by means of an earthquake simulator (shaking table). The discussion is focused mainly on how representative the test structure and the table input motions are with respect to the actual, "real life" buildings and seismic ground excitations. The design of the structure is then reviewed from the point of view of a current seismic code, and the experimental results are compared with analytical expectations as well as with the design demand levels.

The last chapter summarizes the conclusions obtained and points out areas for future research.
ACKNOWLEDGEMENTS

The research presented in this report has been financially supported by the National Science Foundation whose continuous sponsorship for Earthquake Engineering research is gratefully acknowledged.

The first author is deeply grateful to the Latin American Scholarship Program of American Universities (LASPAU), and to the Pontificia Universidad Católica del Perú, for having provided him with the opportunity to pursue graduate studies at Berkeley.

Many thanks are due to Ruth Canier and Shirley Edwards who typed the manuscript and to Gail Peazell, Mary Edmunds and Gert Weil for their care and dedication in preparing the graphics.

The Computing Center of the University of California, Berkeley provided the computing and plotting facilities.

This report constituted the Master of Engineering Thesis of the first author; the work was supervised by the second and third authors.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Objective of the Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 General Organization of the Report</td>
<td>4</td>
</tr>
<tr>
<td>2. PROTOTYPE, IDEAL MODEL AND ACTUAL TEST STRUCTURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1 General Objectives</td>
<td>7</td>
</tr>
<tr>
<td>2.2 The Prototype Structure</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Scaling Procedure</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Ideal Model vs Test Structure</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Static and Elastic Vibration Analysis</td>
<td>11</td>
</tr>
<tr>
<td>2.5a Distribution of Internal Forces</td>
<td>12</td>
</tr>
<tr>
<td>2.5b Dynamic Properties</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Elasto-Plastic Analysis</td>
<td>14</td>
</tr>
<tr>
<td>2.6a Section Strength</td>
<td>15</td>
</tr>
<tr>
<td>2.6b Structural Performance under Lateral Loads</td>
<td>16</td>
</tr>
<tr>
<td>2.7 Conclusions</td>
<td>18</td>
</tr>
<tr>
<td>3. EVALUATION OF THE INPUT MOTIONS</td>
<td>45</td>
</tr>
<tr>
<td>3.1 Preliminary Observations</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Description of Test Motions</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Effect of Time Scaling</td>
<td>46</td>
</tr>
</tbody>
</table>
4. EVALUATION OF THE DESIGN OF THE TEST STRUCTURE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Preliminary Considerations</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Determination of Seismic Lateral Forces</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Determination of Gravity Loads on Girders</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Elastic Analysis</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Code Requirements for Columns</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Code Requirements for Girders</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Requirements for Joints</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Strong Column-Weak Girder Design</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Drift Limitations</td>
<td>98</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusions</td>
<td>98</td>
</tr>
</tbody>
</table>

5. GLOBAL RESPONSE OF RCF2 DURING TESTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Motivation</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Run W1: Taft 100</td>
<td>111</td>
</tr>
<tr>
<td>5.3</td>
<td>Run W2: Taft 850(1)</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Run W3: Taft 850(2)</td>
<td>119</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>120</td>
</tr>
</tbody>
</table>

6. SUMMARY OF CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Initial Remarks</td>
<td>167</td>
</tr>
<tr>
<td>6.2</td>
<td>Restatement of Conclusions</td>
<td>167</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Design of Test Specimen</td>
<td>167</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Selection of Seismic Excitation</td>
<td>168</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Structural Response</td>
<td>168</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Experimental Results vs "State of the Practice"</td>
<td>169</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.3 Final Remarks</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A DESIGN OF ORIGINAL TEST STRUCTURE (PROTOTYPE)</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B DESIGN OF TEST STRUCTURES RCF1 AND RCF2</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C IDEAL MODEL: DERIVATION OF ANALYTICAL CHARACTERISTICS</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D TEST STRUCTURE: DERIVATION OF ANALYTICAL CHARACTERISTICS</td>
<td>215</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Computation of Prototype Story Weights</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Scaling Ratios: Model to Prototype</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Section Forces due to Gravity Loads (Dead Load Only) from Elastic Analysis</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Section Strengths (Plastic Moments) used in Elasto Plastic Analysis</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Story Shears, Displacements and Drifts Obtained from Elasto-Plastic Analysis. Case I: Lower Bound of Section Strength</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Story Shears, Displacements and Drifts Obtained from Elasto-Plastic Analysis. Case II: Upper Bound of Section Strength</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Computation of Story Drift Ductilities (Elasto-Plastic Analysis)</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Shear and Axial Forces in Elements at Collapse (Elasto-Plastic Analysis)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Earthquake Simulator Test Program</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Variation of Natural Periods of Test Structure through Test History (from Reference [2])</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Characteristics of Selected Earthquakes (Partially Obtained from Reference [16])</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Section Forces at Member Ends from Elastic Analysis of Ideal Model</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Design Load Conditions for Ideal Model Columns</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Prototype Office Building Dimensions</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Test Structure and Test Arrangement on Shaking Table</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Ideal Model vs. Test Structure: Dimensions and Loads</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Test Structure - Details of Reinforcement</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Section Characteristics of Ideal Model and RCF2</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Longitudinal View of the Idealized Frames - Elastic Analysis</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Bending Moment Diagrams Dead Load Only - Elastic Analysis</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Dynamic Properties of Ideal Model and RCF2</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Idealized Longitudinal Frames - Elasto-Plastic Analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Axial Force - Bending Moment Interaction Diagrams for Columns of Ideal Model and RCF2</td>
<td>37</td>
</tr>
<tr>
<td>2.11</td>
<td>Definition of Drift Ductility</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>Bottom Story Shear vs. Drift from Elasto-Plastic Analysis. Ideal Model and RCF2</td>
<td>39</td>
</tr>
<tr>
<td>2.13</td>
<td>Top Story Shear vs. Drift from Elasto-Plastic Analysis. Ideal Model and RCF2</td>
<td>40</td>
</tr>
<tr>
<td>2.14</td>
<td>Collapse Mechanisms and Sequence of Plastic Hinge Formation (from Elasto-Plastic Analysis)</td>
<td>41</td>
</tr>
<tr>
<td>2.15</td>
<td>Distribution of Bending Moments at Collapse. Elasto-Plastic Analysis, Case I</td>
<td>42</td>
</tr>
<tr>
<td>2.16</td>
<td>Distribution of Bending Moments at Collapse. Elasto-Plastic Analysis, Case II</td>
<td>43</td>
</tr>
<tr>
<td>3.1(a)</td>
<td>Taft 1952 N69W Acceleration Record</td>
<td>56</td>
</tr>
<tr>
<td>3.1(b)</td>
<td>Horizontal Table Acceleration. Run W1: Taft 100</td>
<td>56</td>
</tr>
<tr>
<td>3.1(c)</td>
<td>Horizontal Table Acceleration. Run W2: Taft 850(1)</td>
<td>57</td>
</tr>
<tr>
<td>3.1(d)</td>
<td>Horizontal Table Acceleration. Run W3: Taft 850(2)</td>
<td>57</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of Time Scaling on the Acceleration Record of Run W2: Taft 850(1).</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Pseudo Velocity Response Spectra (2% Damping) Time-Scaled Run W2: Taft 850(1) and Selected Recorded Seismic Events.</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Pseudo Acceleration Response Spectra (2% Damping) Time-Scaled Run W2: Taft 850(1) and Selected Recorded Seismic Events.</td>
<td></td>
</tr>
<tr>
<td>3.11(a)</td>
<td>Average Acceleration Spectra for Different Site Conditions (from Reference [18]).</td>
<td></td>
</tr>
<tr>
<td>3.11(b)</td>
<td>84 Percentile Acceleration Spectra for Different Site Conditions (from Reference [18]).</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Normalized Acceleration Spectra for Stiff Soil Conditions and Run W2: Taft 850(1).</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Ideal Model Dimensions and Loads for Elastic Analysis.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Section Dimensions and Provided Reinforcement. Ideal Model.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>P-M Interaction Diagram for Ideal Model Columns.</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>Determination of Required Confinement Length for Ideal Model Columns (Section 2626f - UBC79)</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>Flexural Strength Requirements for Ideal Model Bottom Story Girder</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>Flexural Strength Requirements for Ideal Model Top Story Girder</td>
<td>107</td>
</tr>
<tr>
<td>4.7</td>
<td>Shear Distribution in Girders. Ideal Model Elastic Analysis</td>
<td>108</td>
</tr>
<tr>
<td>4.8</td>
<td>Shear Panel Analogy to Determine Shear Stresses at Joints</td>
<td>109</td>
</tr>
<tr>
<td>5.1</td>
<td>Displacement Response of RCF2 During Run W1; Solid Line - Bottom Floor; Dashed Line - Top Floor (Relative to Table)</td>
<td>122</td>
</tr>
<tr>
<td>5.2</td>
<td>Top Story Drift. Run W1</td>
<td>123</td>
</tr>
<tr>
<td>5.3</td>
<td>Bottom Story Shear (from Acceleration Records). Run W1</td>
<td>124</td>
</tr>
<tr>
<td>5.4</td>
<td>Top Story Shear (from Acceleration Records). Run W1</td>
<td>125</td>
</tr>
<tr>
<td>5.5</td>
<td>Bottom Story Shear vs. Drift Relationship. Run W1</td>
<td>126</td>
</tr>
<tr>
<td>5.6</td>
<td>Top Story Shear vs. Drift Relationship. Run W1</td>
<td>127</td>
</tr>
<tr>
<td>5.7</td>
<td>Bottom Story Shear vs. Drift Relationship during 5-sec Intervals. Run W1</td>
<td>128</td>
</tr>
<tr>
<td>5.8</td>
<td>Top Story Shear vs. Drift Relationship during 5-sec Intervals. Run W1</td>
<td>129</td>
</tr>
<tr>
<td>5.9</td>
<td>Actual vs. "Gross Section" Lateral Stiffness. Run W1</td>
<td>130</td>
</tr>
<tr>
<td>5.10</td>
<td>Displacement Response of RCF2 During Run W2; Solid Line - Bottom Floor; Dashed Line - Top Floor (Relative to Table)</td>
<td>131</td>
</tr>
<tr>
<td>5.11</td>
<td>Top Story Drift. Run W2</td>
<td>132</td>
</tr>
<tr>
<td>5.12</td>
<td>Bottom Story Shear (from Acceleration Records). Run W2</td>
<td>133</td>
</tr>
<tr>
<td>5.13</td>
<td>Top Story Shear (from Acceleration Records). Run W2</td>
<td>134</td>
</tr>
<tr>
<td>5.14</td>
<td>Bottom Story Shear vs. Drift Relationship. Run W2</td>
<td>135</td>
</tr>
<tr>
<td>5.15</td>
<td>Top Story Shear vs. Drift Relationship. Run W2</td>
<td>136</td>
</tr>
<tr>
<td>5.16</td>
<td>Bottom Story Shear vs. Drift Relationship during 5-sec Intervals. Run W2</td>
<td>137</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>5.17</td>
<td>Bottom Story Shear vs. Drift Relationship During Strongest Shaking of Run W2</td>
<td>140</td>
</tr>
<tr>
<td>5.18</td>
<td>Top Story Shear vs. Drift Relationship during 5-sec Intervals. Run W2</td>
<td>141</td>
</tr>
<tr>
<td>5.19</td>
<td>Top Story Shear vs. Drift Relationship During Strongest Shaking of Run W2</td>
<td>144</td>
</tr>
<tr>
<td>5.20</td>
<td>Comparison Between Bottom and Top Story Behavior During Part of Run W2</td>
<td>145</td>
</tr>
<tr>
<td>5.21</td>
<td>Test Results vs. Expected Performance. Bottom Story. Run W2</td>
<td>146</td>
</tr>
<tr>
<td>5.22</td>
<td>Test Results vs. Expected Performance. Top Story. Run W2</td>
<td>147</td>
</tr>
<tr>
<td>5.23</td>
<td>Displacement Response of RCF2 During Run W3 Solid Line-Bottom Floor; Dashed Line: Top Floor (Relative to Table).</td>
<td>148</td>
</tr>
<tr>
<td>5.24</td>
<td>Top Story Drift. Run W3</td>
<td>149</td>
</tr>
<tr>
<td>5.25</td>
<td>Bottom Story Shear (from Acceleration Records). Run W3</td>
<td>150</td>
</tr>
<tr>
<td>5.26</td>
<td>Top Story Shear (from Acceleration Records). Run W3</td>
<td>151</td>
</tr>
<tr>
<td>5.27</td>
<td>Bottom Story Shear vs. Drift Relationship. Run W3</td>
<td>152</td>
</tr>
<tr>
<td>5.28</td>
<td>Top Story Shear vs. Drift Relationship. Run W3</td>
<td>153</td>
</tr>
<tr>
<td>5.29</td>
<td>Bottom Story Shear vs. Drift Relationship during 5-sec Intervals. Run W3</td>
<td>154</td>
</tr>
<tr>
<td>5.30</td>
<td>Bottom Story Shear vs. Drift Relationship During Strongest Shaking on Run W3</td>
<td>157</td>
</tr>
<tr>
<td>5.31</td>
<td>Top Story Shear vs. Drift Relationship during 5-sec Intervals. Run W3</td>
<td>158</td>
</tr>
<tr>
<td>5.32</td>
<td>Top Story Shear vs. Drift Relationship During Strongest Shaking on Run W3</td>
<td>161</td>
</tr>
<tr>
<td>5.33</td>
<td>Comparison Between Bottom and Top Story Behavior During Part of Run W3</td>
<td>162</td>
</tr>
<tr>
<td>5.34</td>
<td>RCF2 Bottom Story Performance During Runs W2 and W3</td>
<td>163</td>
</tr>
<tr>
<td>5.35</td>
<td>RCF2 Top Story Performance During Runs W2 and W3</td>
<td>165</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Objective of Study

During the past few years, a considerable amount of research regarding the behavior of reinforced concrete structures under seismic excitation has been carried out at the University of California, Berkeley. An important part of this research has been done using the shaking table facility at the Earthquake Simulator Laboratory located at the Richmond Field Station, Richmond, California, as part of the research program "Energy Absorption Characteristics of Structural Systems Subjected to Earthquake Excitations," sponsored by the National Science Foundation.

Five reinforced concrete frames, in reduced scale have been tested on the shaking table, and an impressive amount of valuable information regarding various types of structural behavior under different levels of seismic excitations has been obtained from such tests. The results from these experiments have been published in several reports (References [1] to [6]) or are in process of preparation for publication.

However, it has become apparent that a global evaluation of the diverse procedures involved in the development of each phase of the experiments, and of the information obtained from the tests, would be desirable before proceeding with further testing. The main purpose of the evaluation would be to obtain an overall view of what has been learned from the experiments, presenting the acquired knowledge in a systematic way, not as the results of a series of isolated tests. It is expected that the study would provide guidelines for future testing.

In order to fully achieve the stated goal, it would be necessary to evaluate the following aspects of the testing procedure:
1) The design of the test models, and their capability to adequately simulate actual structures subjected to realistic earthquake-induced ground motions and/or to perform according to a selected type of structural behavior.

2) Selection of the test program; this involves the selection of shaking table inputs to the structure, the number of tests to be performed and the instrumentation needed to record the desired information. Of particular interest is whether or not the selected table motions are representative of actual ground motions produced by earthquakes.

3) Prediction of structural behavior; this is necessary in order to verify whether the design of the models and the test program is adequate to obtain the desired structural performance. Both "standard" and "state-of-the-art" techniques to predict response behavior, should be examined.

4) Data reduction and interpretation of results; this is a crucial phase of the process, since it leads to an evaluation of the validity and accuracy of the analytical techniques used to predict the behavior of the test structure. Hence, it identifies areas where more research is needed to provide understanding of the mechanisms responsible for the observed behavior of the models during dynamic excitation.

This report summarizes the first step towards the goal outlined above. Its scope is limited, since only one of the structures tested has been examined, and only some of the factors discussed above are studied. However, it is expected that the results from this study will provide useful guidelines for further evaluations.

The basic aim of this study has been to provide answers to the following questions:

(a) Do the tests adequately simulate the behavior of a real reinforced concrete building subjected to earthquake-induced dynamic excitations?
(b) Does the design of the test structure satisfy current code requirements for structures to be built in regions of high seismic activity? If so, is the observed behavior of the structure adequate from the point of view defined by the code philosophy?

(c) How reliable are "standard," or code-related techniques, for predicting the dynamic behavior of reinforced concrete buildings under seismic excitations?

The second reinforced concrete test frame (RCF2) has been chosen for this study. The principal reasons for having chosen RCF2, among the five structures tested, can be summarized as follows:

1) Its design is simple from the point of view that it is derived directly from a typical two-story office building, basically by means of a dimensional reduction of about 30%. Also its structural behavior was controlled predominantly by flexure, in contrast with RCF3 and RCF4, where significant design distortions were introduced in order to produce models whose behavior would be controlled by shear.

2) Close inspection and control was exercised during its construction process, thus avoiding errors such as those found in RCF1[1], and guaranteeing uniformity in the material properties, and close correspondence with the structural plans.

3) The test program selected for this frame was particularly convenient since it consisted of a strong shaking applied to an essentially undamaged structure (simulating service conditions), followed by a strong aftershock. The table motion was applied along the major axis of the frame, thus simplifying interpretation of the results as compared with RCF5 which was subjected to shaking simultaneously along its two principal axes.

To facilitate and make this study more general, only the global behavior of the test structure is examined. Thus, the parameters used to define the structural performance are the story shears and drifts and the lateral stiffness and
strength of the frame; the parameters used to define the table excitation are the peak table acceleration, the shape of the acceleration response spectra, and the spectral intensity.

Finally, it should be noted that the conclusions of this investigation can be applied directly only to structures with characteristics similar to those of the prototype from which RCF2 was derived. Specifically, they apply to low rise R/C buildings for which behavior controlled by flexure can be guaranteed, and where the interference of so-called non-structural elements is minimized.

1.2 General Organization of Report

The first problem to be described and analysed in this study arises from the fact that the test structure presents deviations with respect to an ideal model obtained by applying similitude laws to the prototype building. These deviations and their probable effect on correlation between the performance of the test structure and that of the prototype are described in Chapter 2.

Chapter 3 is devoted to evaluation of the input motions, considering whether the table excitation corresponds to possible seismic ground motions, in prototype scale.

In Chapter 4, the design of the model is verified with reference to the Uniform Building Code, 1979[11]. This evaluation is considered necessary because the design of the prototype from which the test structure was derived was based on UCB 1970[9] and ACI 1971[10], codes which no longer are in use.

The overall performance of the structure is described in Chapter 5, and is compared with expected behavior indicated by analyses. Of particular interest is the comparison between the "ultimate" lateral forces specified by the code, and the corresponding inertia forces developed by the structure during the simulated seismic excitations, i.e. the relationship between the design lateral strength and the actual capacity demonstrated by the structure.
General conclusions are drawn in Chapter 6, providing answers to the questions defining the aims of this study, and emphasizing areas of needed research. A number of appendices are included at the end of the report in which the original design of the structure, and the computations of section properties according to several idealizations are presented.
2. PROTOTYPE, IDEAL MODEL AND ACTUAL TEST STRUCTURE

2.1 General Objectives

The test specimen which was the object of the present study can be regarded as the result of a series of modifications performed on a selected prototype structure representative of typical design and construction procedures. The aim of this chapter is to determine if the significant structural and dynamic characteristics of the prototype have been retained in the test structure, in order to ascertain whether the performance of the test structure during the dynamic tests simulates adequately the response of the prototype under strong seismic excitations.

In the following sections, the evolution of the test structure from the prototype building is studied, evaluating the relevance of each phase of the process with regard to the correlation between test structure and prototype.

Most of the information presented here regarding the genesis of the test structure, has been obtained from References [1] and [2], in which the structure design is described in detail.

2.2 The Prototype Structure

One of the basic features sought for the test specimen was that it should be a simple but complete structure, reproducing a "practical situation"[1]. The need for simplicity led to the selection as prototype of a building whose seismic deformations are predominately flexural, and not very sensitive to shear and axial forces. This type of behavior is desirable in framed structures subjected to seismic excitations. In addition it is the most studied- and understood- deformation mechanism in reinforced concrete structures, and a large number of computer programs and analytical techniques are available to predict such behavior.
It appeared suitable to select as a prototype structure a portion of the resisting frame of a narrow two-story office building. Its dimensions are shown in Figure 2.1, and the computation of the story weights is summarized in Table 2.1. It should be noted that these values differ slightly from those computed in Reference [1] due to a different estimation of the weights of the girders and columns. It is assumed that the "non-structural" elements (such as walls and partitions) contribute to the weight but are isolated from the resisting frame. Thus, they do not contribute to the structural stiffness and strength of the building.

After having defined the essential characteristics of the building configuration, the resisting frame was designed according to UBC 1970[9] and ACI 1971[10] codes. Appendix A, which has been taken from Reference [1] summarizes the philosophy and the procedures involved in the design of the prototype structure.

2.3 Scaling Process

When the prototype structure had been defined, further considerations in design of the test specimen were imposed by limitations of the shaking table system, by test convenience, and by economic factors. The limitations of the earthquake simulator facility are discussed extensively in Reference [7], the most significant for the case under consideration being that the specimen had to fit conveniently on the 20 x 20 ft table, with a total weight not in excess of 100 kips. Also it was considered desirable for the fundamental natural frequency to be in the range of 2 to 5 Hz.

Based on these considerations, it was decided to perform a length scale reduction of about 30% on the prototype structure. Accordingly, several other scaling ratios were selected and/or derived using similitude laws to establish the correspondence between model and prototype. A list of the scaling factors employed is presented in Table 2.2.
Strict application of the similitude laws to the prototype structure would lead to an ideal reduced model. Due to several reasons, which are discussed briefly in the next section, the actual test specimen has some significant differences from the ideal model; however, the test structure will be capable of simulating the global behavior of the prototype if its overall performance under lateral loads is comparable to that of the ideal model.

2.4 Ideal Model vs Test Structure

The most relevant discrepancies between ideal model and test structure result from the decision to reduce the distance between longitudinal frames as much as possible. This was done for test convenience and economic reasons, and was permissible because the frame was intended to be excited in one direction only. The term longitudinal refers here to the direction of the shaking table motion.

This reduction of width was performed taking into consideration the need for maintaining the T-beam action of the girders by providing the slab width recommended by the ACI code[10]. However, it should be noted that the ACI specifications concerning T-beam action are based on strength considerations, therefore there is a possibility that the stiffness contribution of the model floor diaphragm might be different from that in the test structure. This problem has not been dealt with in the present study.

Additional masses had to be included on both floors of the test structure, for the following reasons: to simulate the weight of the portion deleted by the reduction in width, to account for the weight of the non-structural elements not included in the test specimen and also to compensate for the fact that the material density was not scaled. Both the prototype and the test specimen were to be made of normal weight concrete.
These additional masses were added to the frame in the form of concrete blocks attached to the longitudinal girders. Their weight was computed to simulate only the dead load condition in the prototype; additional live load was not included for test safety reasons. The fact that the concrete blocks are attached to the longitudinal girders at "discrete" supports, caused the load distribution in the test structure to differ substantially from that of the ideal model, where the slab loads would be distributed over the longitudinal and transverse girders by two-way action. Furthermore, because of its reduced width, the slab in the test structure behaves as one-way slab, transmitting almost all its load to the longitudinal girders. These changes in distribution of the gravity loads acting on the test structure cause changes of the distribution of the internal forces, and hence would lead to a different pattern of cracking under service loads.

The presence of the concrete blocks on the test structure might also have affected the distribution of inertia forces during the dynamic excitation, because the blocks might suffer a "rocking" motion, thus inducing extra dynamic effects on the supporting girders. Since no recordings were made of the block motions during the tests, this effect was not taken into account in evaluating the experimental data, nor in the mathematical idealization of the test structure employed in various analyses made during this study.

Some other test structure features (such as the force transducers located at midheight of the columns to measure internal forces during the tests, the presence of lateral bracing to avoid torsional deformations, and a slight difference in lengths of the test structure columns compared to the ideal model's) might have some effect in the correlation process, but certainly to a much lesser extent than those discussed in the previous paragraphs.

Front and side elevations of the test structure are presented in Figure 2.2, and simplified sketches to compare the geometry and loads of the model and the
test structure are shown in Figure 2.3. The original procedure for designing the
test structure is presented in Appendix B, which is taken directly from Refer-
cence [1]. The details of the reinforcement of the test structure are shown in
Figure 2.4; those of the ideal model are very similar. The main differences in
reinforcement of the test structure are the use of undeformed #2 bars for the
stirrups and the concentration of stirrups near the force transducers. Also
there was a slightly inaccurate conversion of the reinforcing bar areas between
the prototype and test structure (see Appendix B).

In order to quantify and evaluate the main difference between model and
test structure, a number of analyses (elastic and elasto-plastic) were performed
for both structures. The basic features to be examined and compared in these
calculations are: the distribution of section forces; possible patterns of crack-
ing under gravity loads; the lateral strength, ductility, and stiffness; the mass
and lateral elastic flexibility matrices; and the vibration mode shapes and fre-
quencies.

The assumptions made to idealize the structures, the limitations of the
analyses performed and a discussion of the results obtained are presented in the
following sections. The calculations leading to the numerical values employed
in the analyses are detailed in Appendix C for the ideal model, and in Appendix
D for the test structure.

2.5 Static and Elastic Vibration Analysis

The computer program ETABS has been used to compute the distribution of
section forces due to gravity loads as well as the vibration mode shapes and fre-
quencies of both structures.

The following assumptions have been made, for both structures, for reasons
of simplicity or to conform to the limitations of the program.

a) Each structure is a 3-D frame, in which the floor slabs are infinitely
rigid in their own plane. The story masses are concentrated at the floor levels.

b) The members are linear elastic. Their stiffness characteristics are based on gross section geometric properties. The contribution of the slabs to the stiffness of the structure is considered by assuming a T-beam section for the girders, using slab widths and modulus of elasticity as recommended by the 1979 UBC code. The geometric characteristics of the transverse sections of the members are presented in Figure 2.5.

c) The joints are infinitely rigid, and the supports are completely fixed.

Figure 2.6 shows a view of the idealized frames in the longitudinal direction. The dimensions shown are center-to-center of members, those of the test structure correspond to the values measured in the laboratory and those of the ideal model were obtained by applying the appropriate scaling factor to the prototype. The computations of story masses and member loads are given in Appendices C and D. The results of these analyses can be summarized as follows:

2.5a Distribution of Internal Forces

The section forces on both structures, induced by gravity loads (dead load only) are presented in Table 2.3. As expected, the distributions of internal forces are very dissimilar, with differences as much as 150%. However, the stress levels associated with these static loads are very small compared with those developed under strong dynamic excitations, hence they would not be expected to significantly affect the overall inelastic behavior of the structures.

The dead load bending moment diagrams for both structures are shown in Figure 2.7, along with the respective cracking moment levels. It can be seen that the patterns of cracking are different, the test structure being cracked in the central regions of the bottom girder and in zones near the ends of the upper columns, whereas the ideal model would be practically uncracked. However, considering the effect of shrinkage, and the possibility of previous loading of the
model (due to live load or a mild seismic excitation), it seems reasonable to assume that the levels and patterns of cracking of both structures would be similar, prior to the "strong" shaking simulated by the tests.

The low stress levels associated with shear and axial forces due to gravity loads also demonstrate the predominant role of flexure in the behavior of the structures. For instance, the axial load in the bottom story columns of both structures is about 10 kips, which is well below the balanced load (about 50 kips, computed using "standard" procedures) and produces an average compressive stress of about 200 psi (0.05 \(f'_c \)). This indicates that the columns would behave practically as flexural members.

The average shear stresses in the top story columns are

\[
v_c = \frac{V}{bd} = \frac{1.20 \times 10^3}{5.66 \times 6.96} = 30.9 \text{ psi}
\]

for the ideal model, and

\[
v_c = \frac{V}{bd} = \frac{1.62 \times 10^3}{5.75 \times 6.75} = 41.7 \text{ psi}
\]

for the test structure. Comparing these values with the conservative estimate of the shear strength of the concrete given by \(2 \sqrt{f'_c} \) (126.5 psi), it can be seen that under gravity loads, the shear forces are of little relevance.

2.5b Dynamic Properties

The natural mode shapes and frequencies of vibration of both structures were calculated; in addition, lateral flexibility matrices were generated by the application of unit lateral forces at each floor level of the structures.

The results of these analyses, which summarize the dynamic characteristics of ideal model and test structure in the elastic range, are presented in Figure 2.8. It can be seen that the differences, although significant (up to 15%), are within acceptable limits; thus the structures have reasonably similar dynamic properties.
2.6 Elasto-plastic Analysis

In order to compare the lateral strength and deformation capacity of the ideal model and the test structure, a number of elasto-plastic analyses have been performed using the computer program ULARC[14], which is based on simple plastic theory. The basic assumptions used to idealize the structures and the manner of loading are:

a) The structures are assumed to be 2-D frames, composed of linear members, connected at nodal points.

b) The section flexural behavior is elasto-perfectly plastic. The section stiffness is based, as in the case of the elastic analysis, on the gross section characteristics, considering T-beam action for the girders. The flexural capacity is based on the specified material properties, and is computed according to procedures suggested by the UBC and ACI codes. Two sets of flexural capacities have been derived in order to obtain bounds for the lateral strength of the frames. The rotational deformation capacity of the sections is assumed to be sufficient to allow the development of the structural collapse mechanisms.

c) Since the program does not handle distributed loads on the members, only concentrated nodal loads are considered. The distributed loads are simulated by equivalent concentrated loads, computed using the replacement theorem of simple plastic theory. For simplicity of comparison the concentrated loads are assumed to be applied at the same points in both structures; their locations correspond to those of the supports of the concrete blocks on the test structure.

d) The lateral loads applied to both structures are approximately proportional to the inertia forces associated with the first mode of vibration, as computed in the elastic analysis.

e) The loads are applied in two stages. First the gravity loads (dead load only) are applied in full, and then, proportional monotonically increasing lateral forces are applied at the floor level until a mechanism is formed, and
the frame collapses.

f) The inelastic deformation is assumed to be concentrated at point plastic hinges, which can develop only at the ends of the members.

g) The following effects are disregarded: strain hardening of the reinforcing steel, spalling and the effect of confinement on the concrete, possibility of shear failure, finite size of the joints and the inelastic regions, $P - \Delta$ effects, and axial force-bending moment interaction for the column capacity.

The idealized frames with the corresponding loads are shown in Figure 2.9, the calculations leading to the numerical values employed in the idealization process are presented in Appendices C and D.

The following results have been obtained:

2.6a Section Strength

In order to obtain bounds for the section strengths (and hence for the structural strength) these have been computed according to two different assumptions. A lower bound (Case I) was estimated using the specified material properties for f'_{C} (4.0 ksi) and f_{Y} (40.0 ksi) and reducing the nominal strength thus obtained by a factor ϕ. Conservatively, ϕ has been set equal to 0.7 for the columns, and to 0.9 for the girders. An upper bound (Case II) was obtained by considering an increase of the yield stress of the steel of 25%, (thus considering $f_{Y} = 1.25 f_{Y}$ specified = 50.0 ksi) and deleting the capacity reduction factor ϕ.

The additional assumptions used to estimate the strength of the sections are those recommended by the ACI and UBC codes: linear distribution of strain along the depth of the section, a rectangular block of compressive stress for the concrete (attained when the maximum concrete strain is 0.003), elasto-plastic behavior of the reinforcing steel, and perfect bond between reinforcing steel and the surrounding concrete.
The flexural ("plastic" moment) capacity of the girders has been determined assuming T-beam action of the slab, and considering the contribution of compression reinforcement. The participation of the slab reinforcement has been neglected. The capacity of the columns has been calculated using the computer program RCCOLA\^{15}; the results are given in the form of axial force-bending moment interaction diagrams (Figure 2.10). However, because the computer program ULARC used to perform the elasto-plastic analysis cannot handle the effect of axial force-bending moment interaction for the section capacity, it has been assumed that the flexural capacity of the columns is constant, and corresponds to the "ultimate" moment that the section can develop if submitted to the axial force resulting from gravity loads acting on the structure. This is a reasonable assumption since the variation of the flexural capacity due to the change in axial force produced by the overturning effect is approximately equal and opposite for the two columns when they are subjected to low gravity axial forces, which is the present case.

The geometric characteristics of the sections of both structures can be seen in Figure 2.5, and the two sets of section strengths used for the analysis of the ideal model and the test structure are listed in Table 2.4. These results show that the capacities of the girders differ by up to 20%; the discrepancy due primarily to the fact that the required area ratio (prototype-model) cannot be obtained with standard reinforcing bars in the prototype and the test structure (see Appendix B). Fortunately this effect is not significant for the columns; the interaction diagrams for the columns of both structures, shown in Figure 2.10, are remarkably similar based on analogous assumptions of material properties.

2.6b Structural Performance under Lateral Loads.

The overall behavior of the structures under lateral loads was evaluated by studying their story shear-story drift relationships, and the sequence of plastic
hinges formation leading to the development of the collapse mechanisms. The lateral deformations of the structure in the inelastic range that occur before formation of collapse mechanism is indicated by the story drift ductilities (μ_0). The drift ductility is defined for this study as the ratio of the interstory displacement (drift) corresponding to the formation of the last plastic hinge to the drift that would have been obtained if the structure had remained elastic until attaining its lateral capacity. Figure 2.11 illustrates the definition of μ_0. It should be noted that these ductility ratios are dependent on the relative floor lateral loads and on the idealized section behavior. Therefore, great care should be exercised in comparing the values presented here with those obtained for other structures, under different loading patterns, definitions of ductility and assumptions of section behavior.

The story shears, displacements and drifts are shown in Tables 2.5 and 2.6, for each structure and each set of assumed section strengths. The story shears are plotted versus the story drifts in Figures 2.12 and 2.13; the associated collapse mechanisms and sequence of plastic hinge formation can be seen in Figure 2.14, and the drift ductilities are presented in Table 2.7.

The following observations can be drawn from these results:

1) The results of Case I (lower bound for the section capacities) are highly unrealistic, since the predicted ultimate strength is about 50% lower than the maximum base shear actually developed by the test structure during the dynamic tests (see Chapter 5). The "upper" bound of the lateral strength (computed for Case II) is about 18% lower than the corresponding experimental value; consequently, only the results of Case II are used for the present discussion.

2) The lateral stiffness, strength and ductility of the ideal model and the test structure are reasonably similar, as can be seen in Figures 2.12 and 2.13.

3) The collapse mechanism of both structures is of the soft-story type,
the inelastic deformation being concentrated mainly at the ends of the bottom story columns. This is due to the fact that the capacity of the bottom story girder is about 50% larger than that of the column. Under these circumstances, the overall behavior of the structures in the inelastic range is controlled by the columns' strength and deformation capacities.

To complete this discussion, the distribution of section forces at collapse are presented in Table 2.8, and Figures 2.15 and 2.16. In this case the differences are not as large as in the case of the structural behavior under gravity loads; furthermore, the section forces of the bottom story columns are reasonably similar (particularly, the bending moment distributions are practically identical). As was seen in the previous paragraphs, the global behavior of the frames is controlled by the strength of the lower columns; hence, the observed differences in section forces are not very important for the correlation of the overall behavior of the test structure and the prototype. Regarding local damage in both structures, it is expected to be concentrated in the end zones of the columns, and the bottom story girders. Also, the bending moment in the central region of the bottom story girder of the test structure is very close to its plastic moment, therefore some damage can be expected in that zone of the test structure which would not be present in the ideal model (and prototype). As noted previously, this is due to the fact that the weight of the concrete blocks is concentrated in the central region of the test structure longitudinal girders.

2.7 Conclusions

The most significant differences between the behavior of the test structure and the ideal model (and hence between test structure and prototype) arise from the dissimilar distribution of section forces due to the concrete blocks on the test structure. This fact suggests that forces associated with any particular section would be different for both structures. However, since the model and the
test structure have similar global dynamic characteristics and similar global strength, stiffness and ductility capacity, it can be predicted that their overall behavior under dynamic excitations will be similar. Consequently, the overall dynamic behavior of the prototype structure when subjected to seismic excitations will be simulated adequately by the test structure during the shaking table tests, if the dynamic excitations of both structures can be correlated according to appropriate similitude relations.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNIT WEIGHT</th>
<th>DIMENSIONS (ft or ft²)</th>
<th>WEIGHT (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOTTOM STORY</td>
<td>TOP STORY</td>
</tr>
<tr>
<td>SLAB</td>
<td>.05 ksf</td>
<td>408.</td>
<td>408.</td>
</tr>
<tr>
<td>CEILING</td>
<td>.001 ksf</td>
<td>408.</td>
<td>408.</td>
</tr>
<tr>
<td>FLOOR</td>
<td>.001 ksf</td>
<td>408.</td>
<td>-</td>
</tr>
<tr>
<td>ROOFING</td>
<td>.01 ksf</td>
<td>-</td>
<td>408.</td>
</tr>
<tr>
<td>WALLS ON TRANSVERSE GIRDERS</td>
<td>.207 k/ft</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>PARTITIONS ON LONGITUDINAL GIRDERS</td>
<td>.140 k/ft</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>COLUMNS & GIRDERS</td>
<td>.100 k/ft</td>
<td>118</td>
<td>100.</td>
</tr>
</tbody>
</table>

TOTAL 47.72k 34.89k

TOTAL WEIGHT 82.61 kips

TABLE 2.1

COMPUTATION OF PROTOTYPE STORY WEIGHTS
<table>
<thead>
<tr>
<th>MAGNITUDE</th>
<th>DIMENSION</th>
<th>SCALING RATIO</th>
<th>OBSERVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>L</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>L²</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>STRAIN</td>
<td>-</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>STRESS</td>
<td>FL⁻²</td>
<td>1.000</td>
<td>assumed</td>
</tr>
<tr>
<td>CONCENTRATED FORCE</td>
<td>F</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>GRAVITY</td>
<td>LT⁻²</td>
<td>1.000</td>
<td>assumed</td>
</tr>
<tr>
<td>ACCELERATION</td>
<td>LT⁻²</td>
<td>1.000</td>
<td>to have inertia forces scaled by 0.50</td>
</tr>
<tr>
<td>DISTRIBUTED LOAD</td>
<td>FL⁻¹</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>MOMENT</td>
<td>FL⁻¹T²</td>
<td>0.3536</td>
<td></td>
</tr>
<tr>
<td>MASS</td>
<td>FL⁻¹T²</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>TORSIONAL MASS</td>
<td>FLT²</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>MOMENT OF INERTIA</td>
<td>L⁴</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td>FL²T²</td>
<td>1.4142</td>
<td>not respected</td>
</tr>
<tr>
<td>TIME</td>
<td>T</td>
<td>0.8409</td>
<td>not used in tests</td>
</tr>
</tbody>
</table>

TABLE 2.2

SCALING RATIOS: MODEL TO PROTOTYPE
Table 2.3

Section Forces Due to Gravity Loads (Dead Load Only) From Elastic Analysis

<table>
<thead>
<tr>
<th>FORCES ON COLUMNS (kips, in)</th>
<th>AXIAL FORCE (+) Compression</th>
<th>SHEAR FORCE</th>
<th>MAX BENDING MOMENT BOTTOM STORY COL.</th>
<th>MAX BENDING MOMENT TOP STORY COL.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Story Column</td>
<td>Top Story Column</td>
<td>Bottom Story Column</td>
<td>Top Story Column</td>
</tr>
<tr>
<td>IDEAL MODEL</td>
<td>10.16</td>
<td>4.39</td>
<td>0.40</td>
<td>1.20</td>
</tr>
<tr>
<td>TEST STRUCTURE</td>
<td>9.34</td>
<td>3.68</td>
<td>0.96</td>
<td>1.62</td>
</tr>
<tr>
<td>Difference %</td>
<td>-8%</td>
<td>-16%</td>
<td>140%</td>
<td>35%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORCES ON GIRDERs (kips, in)</th>
<th>AXIAL FORCE (+) Compression</th>
<th>MAX SHEAR FORCE</th>
<th>MAX NEGATIVE MOMENT</th>
<th>MAX POSITIVE MOMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Story Girder</td>
<td>Top Story Girder</td>
<td>Bottom Story Girder</td>
<td>Top Story Girder</td>
</tr>
<tr>
<td>IDEAL MODEL</td>
<td>-0.79</td>
<td>1.28</td>
<td>3.53</td>
<td>3.38</td>
</tr>
<tr>
<td>TEST STRUCTURE</td>
<td>-0.65</td>
<td>1.62</td>
<td>5.02</td>
<td>3.02</td>
</tr>
<tr>
<td>Difference %</td>
<td>-16%</td>
<td>26%</td>
<td>42%</td>
<td>-11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80%</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>146%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Top Story

<table>
<thead>
<tr>
<th>Case II $f'_c = 4.0 \text{ ksi}$</th>
<th>Bottom Story</th>
<th>Top Story</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Girders</td>
<td>Columns</td>
</tr>
<tr>
<td>$f_y = 5.0 \text{ ksi}$ No ϕ</td>
<td>M_p^+</td>
<td>M_p^-</td>
</tr>
<tr>
<td>MODEL</td>
<td>320.5</td>
<td>271.2</td>
</tr>
<tr>
<td>TEST STR.</td>
<td>314.2</td>
<td>313.4</td>
</tr>
<tr>
<td>Difference %</td>
<td>-2%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Bottom Story

<table>
<thead>
<tr>
<th>Case I $f'_c = 4.0 \text{ ksi}$</th>
<th>Bottom Story</th>
<th>Top Story</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Girders $\phi = .9$</td>
<td>Columns $\phi = .7$</td>
</tr>
<tr>
<td></td>
<td>M_p^+</td>
<td>M_p^-</td>
</tr>
<tr>
<td>$f_y = 40.0 \text{ ksi}$ ϕ included</td>
<td>237.9</td>
<td>199.4</td>
</tr>
<tr>
<td>TEST</td>
<td>228.7</td>
<td>230.7</td>
</tr>
<tr>
<td>Difference %</td>
<td>-4%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Table 2.4

SECTION STRENGTHS (PLASTIC MOMENTS) USED IN ELASTO PLASTIC ANALYSIS
MODEL

<table>
<thead>
<tr>
<th>Plastic Hinge No.</th>
<th>Load Multiplier λ</th>
<th>SHEAR (kips)</th>
<th>DISPLACEMENT (inches)</th>
<th>DRIFT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td>1</td>
<td>4.103</td>
<td>16.66</td>
<td>8.45</td>
<td>.189</td>
</tr>
<tr>
<td>2</td>
<td>4.672</td>
<td>18.97</td>
<td>9.62</td>
<td>.231</td>
</tr>
<tr>
<td>3</td>
<td>4.785</td>
<td>19.43</td>
<td>9.86</td>
<td>.243</td>
</tr>
<tr>
<td>4</td>
<td>5.251</td>
<td>21.32</td>
<td>10.82</td>
<td>.387</td>
</tr>
<tr>
<td>5</td>
<td>5.366</td>
<td>21.79</td>
<td>11.05</td>
<td>.477</td>
</tr>
</tbody>
</table>

TEST STRUCTURE

<table>
<thead>
<tr>
<th>Plastic Hinge No.</th>
<th>Load Multiplier λ</th>
<th>SHEAR (kips)</th>
<th>DISPLACEMENT (inches)</th>
<th>DRIFT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td>1</td>
<td>4.019</td>
<td>16.32</td>
<td>8.28</td>
<td>.163</td>
</tr>
<tr>
<td>2</td>
<td>4.541</td>
<td>18.44</td>
<td>9.35</td>
<td>.197</td>
</tr>
<tr>
<td>3</td>
<td>4.971</td>
<td>20.18</td>
<td>10.24</td>
<td>.236</td>
</tr>
<tr>
<td>4</td>
<td>5.564</td>
<td>22.59</td>
<td>11.46</td>
<td>.401</td>
</tr>
<tr>
<td>5</td>
<td>5.609</td>
<td>22.77</td>
<td>11.55</td>
<td>.417</td>
</tr>
</tbody>
</table>

TABLE 2.5

STORY SHEARS, DISPLACEMENTS AND DRIFTS OBTAINED FROM ELASTO-PLASTIC ANALYSIS. CASE I: LOWER BOUND OF SECTION STRENGTH
MODEL

<table>
<thead>
<tr>
<th>Plastic Hinge No.</th>
<th>Load Multiplier</th>
<th>SHEAR (kips)</th>
<th>DISPLACEMENT (inches)</th>
<th>DRIFT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td>1</td>
<td>2.746</td>
<td>11.15</td>
<td>5.66</td>
<td>.127</td>
</tr>
<tr>
<td>2</td>
<td>2.897</td>
<td>11.76</td>
<td>5.97</td>
<td>.138</td>
</tr>
<tr>
<td>3</td>
<td>3.096</td>
<td>12.57</td>
<td>6.38</td>
<td>.158</td>
</tr>
<tr>
<td>4</td>
<td>3.401</td>
<td>13.81</td>
<td>7.01</td>
<td>.253</td>
</tr>
<tr>
<td>5</td>
<td>3.409</td>
<td>13.84</td>
<td>7.02</td>
<td>.255</td>
</tr>
<tr>
<td>6</td>
<td>3.421</td>
<td>13.89</td>
<td>7.05</td>
<td>.260</td>
</tr>
</tbody>
</table>

TEST STRUCTURE

<table>
<thead>
<tr>
<th>Plastic Hinge No.</th>
<th>Load Multiplier</th>
<th>SHEAR (kips)</th>
<th>DISPLACEMENT (inches)</th>
<th>DRIFT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td>1</td>
<td>2.436</td>
<td>9.89</td>
<td>5.02</td>
<td>.099</td>
</tr>
<tr>
<td>2</td>
<td>2.616</td>
<td>10.62</td>
<td>5.39</td>
<td>.111</td>
</tr>
<tr>
<td>3</td>
<td>2.804</td>
<td>11.38</td>
<td>5.78</td>
<td>.127</td>
</tr>
<tr>
<td>4</td>
<td>3.114</td>
<td>12.64</td>
<td>6.41</td>
<td>.157</td>
</tr>
<tr>
<td>5</td>
<td>3.119</td>
<td>12.66</td>
<td>6.43</td>
<td>.158</td>
</tr>
<tr>
<td>6</td>
<td>3.183</td>
<td>12.92</td>
<td>6.56</td>
<td>.187</td>
</tr>
<tr>
<td>7</td>
<td>3.299</td>
<td>13.39</td>
<td>6.80</td>
<td>.351</td>
</tr>
</tbody>
</table>

TABLE 2.6

STORY SHEARS, DISPLACEMENTS AND DRIFTS OBTAINED FROM ELASTO-PLASTIC ANALYSIS. CASE II: UPPER BOUND OF SECTION STRENGTH
<table>
<thead>
<tr>
<th></th>
<th>BOTTOM STORY</th>
<th></th>
<th>TOP STORY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td>16.66</td>
<td>.189</td>
<td>21.79</td>
<td>.477</td>
</tr>
<tr>
<td>RCF2</td>
<td>16.32</td>
<td>.163</td>
<td>22.77</td>
<td>.417</td>
</tr>
<tr>
<td>Difference</td>
<td>-2%</td>
<td>-14%</td>
<td>5%</td>
<td>-13%</td>
</tr>
<tr>
<td>CASE I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td>11.15</td>
<td>.127</td>
<td>13.89</td>
<td>.260</td>
</tr>
<tr>
<td>RCF2</td>
<td>9.89</td>
<td>.099</td>
<td>13.39</td>
<td>.351</td>
</tr>
<tr>
<td>Difference</td>
<td>-11%</td>
<td>-22%</td>
<td>-4%</td>
<td>35%</td>
</tr>
</tbody>
</table>

TABLE 2.7

COMPUTATION OF STORY DRIFT DUCTILITIES
(ELASTO PLASTIC ANALYSIS)
<table>
<thead>
<tr>
<th>CASE II</th>
<th>MAX AXIAL FORCE IN COLS (kips)</th>
<th>MIN AXIAL FORCE IN COLS (kips)</th>
<th>MAX SHEAR FORCE IN COLS (kips)</th>
<th>AXIAL FORCE IN GIRDER (kips)</th>
<th>MAX SHEAR FORCE IN GIRDER (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Col.</td>
<td>Top Col.</td>
<td>Bottom Col.</td>
<td>Top Col.</td>
<td>Bottom Col.</td>
</tr>
<tr>
<td>MODEL</td>
<td>15.95</td>
<td>6.30</td>
<td>4.33</td>
<td>2.44</td>
<td>5.45</td>
</tr>
<tr>
<td>RCF2</td>
<td>15.41</td>
<td>5.71</td>
<td>3.27</td>
<td>1.61</td>
<td>5.69</td>
</tr>
<tr>
<td>Difference</td>
<td>-3%</td>
<td>-9%</td>
<td>-25%</td>
<td>-34%</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CASE I</th>
<th>MAX AXIAL FORCE IN COLS (kips)</th>
<th>MIN AXIAL FORCE IN COLS (kips)</th>
<th>MAX SHEAR FORCE IN COLS (kips)</th>
<th>AXIAL FORCE IN GIRDER (kips)</th>
<th>MAX SHEAR FORCE IN GIRDER (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Col.</td>
<td>Top Col.</td>
<td>Bottom Col.</td>
<td>Top Col.</td>
<td>Bottom Col.</td>
</tr>
<tr>
<td>MODEL</td>
<td>13.84</td>
<td>5.55</td>
<td>6.44</td>
<td>3.19</td>
<td>3.47</td>
</tr>
<tr>
<td>RCF2</td>
<td>12.81</td>
<td>4.89</td>
<td>5.88</td>
<td>2.43</td>
<td>3.54</td>
</tr>
<tr>
<td>Difference</td>
<td>-7%</td>
<td>-12%</td>
<td>-9%</td>
<td>-24%</td>
<td>2%</td>
</tr>
</tbody>
</table>

TABLE 2.8

SHEAR AND AXIAL FORCES IN ELEMENTS AT COLLAPSE
(ELASTO-PLASTIC ANALYSIS)
FIG. 2.1 PROTOTYPE OFFICE BUILDING DIMENSIONS
FIG. 2.2 TEST STRUCTURE AND TEST ARRANGEMENT ON SHAKING TABLE
FIG. 2.3 IDEAL MODEL VS. TEST STRUCTURE: DIMENSIONS AND LOADS
SLAB REINFORCEMENT:
4"x4" WIRE MESH ON TOP & BOTTOM
AREA=0.020 in²/ft² IN EACH DIRECTION,
EACH LAYER; f WIRE = 0.225 in.
FIG. 2.5 SECTION CHARACTERISTICS OF IDEAL MODEL AND RCF2
FIG. 2.6 LONGITUDINAL VIEW OF THE IDEALIZED FRAMES - ELASTIC ANALYSIS

IDEAL MODEL

TEST STRUCTURE

W_0 = 0.0135 k/in.

M_T = 0.0352

W_0 = 0.0468 k/in.

M_B = 0.0618

5.69"

79.37"

76.37"

4.24"

M_T = 0.04815

w_0 = 0.0135 k/in.

W_0 = 0.0490 k/in.

RIGID ZONE

M_B = 0.0572

5.69"

73.31"

144.25"

144.25"
FIG. 2.7 BENDING MOMENT DIAGRAMS DEAD LOAD ONLY - ELASTIC ANALYSIS (KIP INCHES)
35

MODE

1st MODE
T_1 = 0.23 sec.

2nd MODE
T_2 = 0.079 sec.

MODEL

MASS MATRIX

\[
\begin{bmatrix}
T & B \\
0.04515 & 0.00 \\
0.00 & 0.618
\end{bmatrix} \text{ (in/sec^2)}
\]

LATERAL FLEXIBILITY MATRIX

\[
\begin{bmatrix}
T & B \\
0.02095 & 0.01054 \\
0.01054 & 0.00896
\end{bmatrix} \text{ (in/k)}
\]

TEST STRUCTURE

1st MODE
T_1 = 0.20 sec.

2nd MODE
T_2 = 0.075 sec.

FIG. 2.8 DYNAMIC PROPERTIES OF IDEAL MODEL AND RCP2
FIG. 2.9 IDEALIZED LONGITUDINAL FRAMES - ELASTO-PLASTIC ANALYSIS
FIG. 2.10 AXIAL FORCE - BENDING MOMENT INTERACTION DIAGRAMS FOR COLUMNS OF IDEAL MODEL AND RCF2
\[\frac{\delta_u}{\delta_y} = \frac{v \cdot \delta_u}{v_y \cdot \delta_y} = \mu_\delta \]

FIG. 2.11 DEFINITION OF DRIFT DUPLICITY
FIG. 2.12 BOTTOM STORY SHEAR VS. DRIFT FROM ELASTO-PLASTIC ANALYSIS.
IDEAL MODEL AND RCF2
FIG. 2.13 TOP STORY SHEAR VS. DRIFT FROM ELASTO-PLASTIC ANALYSIS.
IDEAL MODEL AND RCF2
FIG. 2.14 COLLAPSE MECHANISMS AND SEQUENCE OF PLASTIC HINGE FORMATION
(FROM ELASTO-PLASTIC ANALYSIS)
FIG. 2.15 DISTRIBUTION OF BENDING MOMENTS AT COLLAPSE. ELASTO-PLASTIC ANALYSIS, CASE I
FIG. 2.16 DISTRIBUTION OF BENDING MOMENTS AT COLLAPSE. ELASTO-PLASTIC ANALYSIS, CASE II
3. EVALUATION OF THE INPUT MOTIONS

3.1 Preliminary Observations

The first reinforced concrete structure (RCF1) tested on the shaking table was subjected to a series of seismic excitations with increasing intensity\(^1\), consequently, it was significantly damaged before being subjected to the strongest simulated earthquake. For the second structure, RCF2, it was decided to study the behavior of an essentially undamaged structure under a strong seismic excitation, which seemed more representative of typical field conditions. This test concept also provided the opportunity to evaluate the effect of strong previous shaking on the response of reinforced concrete structures.

The signal selected as basic input for the shaking table system, was the N69W accelerogram recorded at Taft during the Arvin-Tehachapi earthquake of July 21, 1952, because it had been used with satisfactory results for the tests performed on RCF1. In order to simulate ground motions with different intensities, the acceleration values of the record were scaled by appropriate factors, which were selected according to the experience gained in the previous tests. However, as in the case of RCF1, the earthquake time scale remained unchanged; hence, the required similitude relations between model and prototype (see Table 2.2) were not satisfied.

The consequence of not time scaling the Taft acceleration record, is that the frequency content of the model test table excitation no longer corresponds to a prototype motion equivalent to that recorded at Taft. Instead, the seismic excitation of the test structure simulates a ground motion in prototype scale with different frequency content. The aim of this chapter is to determine if the shaking table inputs used to excite the test structure are representative of possible earthquake induced ground motions in the field.
3.2 Description of Test Motions

As mentioned in the previous section, the aim of the RCF2 experiments was to simulate the effect of a strong earthquake on a practically undamaged structure. In order to start with a degree of cracking representative of normal field conditions, it was decided to subject the test structure to a preliminary mild seismic excitation having a peak acceleration of about 10 percent of gravity. The structure then was excited with the main strong seismic input, and this earthquake was followed by a simulated aftershock of comparable intensity. After these tests the structure was repaired by epoxy injection and the test sequence was repeated in order to observe the effect of the repairs on the structural performance.

Table 3.1 lists the shaking table control "span" setting with the respective peak table acceleration obtained for each "run." The input table accelerations for the unrepaired structure can be compared with the Taft accelerogram in Fig. 3.1. In addition, elastic response spectra have been computed for selected table motions and for the Taft record using the computer program SPECEQ[17]; the results are shown in Figures 3.2 and 3.3. The spectral values are computed over the range 0.1 to 0.9 seconds since the natural periods of the structure varied between those limits during the tests (see Table 3.2). It can be seen that the spectral shapes corresponding to the table excitations are reasonably similar to that of the Taft record, demonstrating the capability of the shaking table to simulate the selected ground motion.

3.3 Effect of Time Scaling

It has already been noted that the accelerogram recorded at Taft was used as a basic input for the shaking system, modifying the acceleration amplitudes to simulate various seismic intensities but with time scale remaining unchanged.
However, according to the similitude laws, if the length ratio between model and prototype is λ_L, and the acceleration ratio is maintained equal to one, different time scales should be used with the two structures.

The required time ratio can be deduced as follows:

If

$$\lambda_A = \frac{\text{acceleration of model}}{\text{acceleration of prototype}} = 1.0$$

then

$$\frac{L_M T_M^{-2}}{L_P T_P^{-2}} = 1.0$$

hence

$$\lambda_T = \frac{T_M}{T_P} = \left(\frac{L_P}{L_M}\right)^{-1/2} = \left(\frac{L_M}{L_P}\right)^{1/2} = \lambda_L^{1/2}.$$

Since the length ratio λ_L is 0.707, the corresponding time ratio is $\lambda_T = \sqrt{0.707} = 0.8409$. Consequently, the shaking table excitation simulates a ground motion in the field (i.e. in prototype time-scale) with a larger content of long periods, because

$$\left(\frac{T_P}{T_M} = \frac{1}{\lambda_T} = 1.189\right).$$

The pseudovelocity and pseudoacceleration spectra of the original Taft record and of the ground motion in prototype scale simulated by runs W1 (Taft 100) and W2 (Taft 8501(1)) are shown in Figures 3.4 and 3.5, to illustrate the effect of the time scaling on the test signal. It can be seen that the peak spectral values corresponding to the prototype time scale are shifted relative to those of the Taft earthquake. Consequently, the simulated prototype ground
motions have a different frequency content than the Taft earthquake.

The spectra of the test structure and the corresponding prototype excitations are compared in Figures 3.6 and 3.7, in which the range of variation of the fundamental period of both structures during each test is shown. The prototype natural periods have been computed from those of the test structure, assuming that they satisfy the similitude time ratio (which is a reasonable assumption, according to the findings of Chapter 2.) It can be observed that the pseudoacceleration spectral values for both structures are the same for each test, which corroborates the assumption of unit acceleration ratio between model and prototype, and points out the similarity of the excitations for both structures. Figure 3.8 shows the acceleration time histories for run W2 and the corresponding time scaled prototype ground motion.

The question that remains to be answered is whether the ground motion simulated by the tests are representative of possible actual earthquake motions in the field.

3.4 The Prototype Ground Motions

From the point of view of structural engineering, the most relevant parameters of a strong ground motion induced by earthquakes are the spectral shape, the maximum ground acceleration and the duration of the event. In this section the ground motions (in prototype scale) simulated by the shaking table tests are analysed with respect to the first two of these parameters. Duration is not evaluated because it is thought that the slight time scaling of the present case does not have a significant effect in this parameter.

Only run W2(Taft 850(1)) will be analyzed, because run W1 corresponds to a very mild earthquake, and run W3 has the same general characteristics as W2. A first approach (perhaps the most obvious) to evaluate the ground motion simulated by run W2, denoted as time-scaled Taft 850(1), is to compare its response spectra with those of several recorded actual earthquake ground motions.
Four records of different earthquakes were selected for this comparison. Figures 3.9 and 3.10 show their respective response spectra together with that of the time-scaled Taft 850(1) test. The most significant characteristics of the four records used are listed in Table 3.3. A spectral intensity parameter has been computed as the area under the pseudovelocity response spectrum over a region comprising the range of variation of the first mode period of the prototype, as an additional parameter of comparison.

It can be seen in the mentioned figures that the spectra of time-scaled Taft 850(1) do not show any striking difference from those of the other records. Moreover, its pseudovelocity and pseudoacceleration spectra are reasonably close to those of the Pacoima Dam and Managua records, and its spectral intensity is bounded by that of these two records. Hence, a ground motion such as the time scaled Taft 850(1) record apparently could be generated by a seismic event.

However, the spectra shown in Figures 3.9 and 3.10 correspond to ground motions recorded at stations located in regions with different geological and soil conditions (in particular, the Pacoima Dam record was obtained in a very unusual site, not likely to be the location of a reinforced concrete building); hence, with the information provided by these figures it seems difficult to ascertain under which conditions a ground motion such as the time scaled Taft 850(1) could act on a typical building.

It is recognized that the site soil conditions have a significant influence on the character of the ground motions induced by a given earthquake. Seed et al.18 obtained average acceleration spectra (normalized with respect to maximum ground acceleration) for different soil conditions, from a large number of records; these are shown in Figure 3.11. Figure 3.12 shows the correlation of the Taft 850(1) (run W2) spectrum curve, which is similar to that of the Taft record, with the average normalized spectrum for stiff soil conditions (the Taft record was obtained at an alluvium site); it can be seen that the Taft
spectrum lies reasonably within the range defined by the mean plus or minus one standard deviation. Comparing the spectral shape of the time-scaled Taft 850(1) (corresponding prototype motion) with the average spectral curves for different sites, it is observed that a similar correlation is established with the average normalized spectrum for sites underlain by deep cohesionless soils (see Figure 3.13), particularly in the period range of interest for this study (0.1<T<1.0 sec).

It is apparent, then, that the consequence of not having performed the required time scaling on the Taft signal, is that the test excitations correspond in an average sense, to a ground motion which would be obtained under different site conditions ("softer" soil) than those on which the original ground motion was recorded.

It is also necessary to determine if the levels of acceleration produced in the tests (and hence those which would correspondingly occur in prototype scale) could be caused by a seismic event. Since the peak accelerations of the test and prototype excitations are similar (Figure 3.7), but they correspond to ground motions occurring in sites with different soil conditions, they will also correspond to earthquakes of different magnitude (assuming that these movements correspond to sites located at the same distance of the causative fault).

In order to estimate the magnitude of the earthquakes which could induce the strong ground accelerations produced in the shaking table tests and the corresponding prototype excitations it is necessary to use site-dependant attenuation laws. Trifunac and Brady (1976) have proposed attenuation laws for different soil conditions, which relate peak displacement, velocity and acceleration, with earthquake local magnitude, epicentral distance, and direction of ground motion (horizontal or vertical.) These have been taken from Reference [19], and used to determine the earthquake local magnitude corresponding to Taft 850(1) (run W2 on the test structure) and the corresponding time-scaled signal (prototype ground motion.)
The relationships presented by Trifunac and Brady are of the form

\[\log a = M + \log A_0(R) - \log y_0(M, p, s', v') \]

where

\[\log y_0 = a' + b'M + c' + d's' + e'v' + f'M^2 \]

in which
- \(a = \) peak ground acceleration (cm/sec)
- \(M = \) local magnitude
- \(R = \) epicentral distance (km)
- \(P = \) confidence limit (0.5 for mean)
- \(s' = \) side coefficient (equal to 0 for stiff sites and 1 for "intermediate" sites)
- \(v' = \) direction of ground motion (equal to zero for horizontal components)

and

\[a' = -0.898; b' = -1.789; c' = 6.217; d' = 0.060; f' = 0.186 \]

Using those relationships and assuming that the prototype and test structure are located at a distance (R) of 20 km from the epicenter, the following values are obtained:

1) Prototype ground motion:

\[a = 0.572g = 561 \text{ cm/sec}^2 \]

\[-\log A_0 = 1.833; a' = 1 \text{ (intermediate site)}\]

then

\[\log y_0 = 5.823 - 1.789M + 0.186M^2 \]

and

\[\log 561 = M - 1.833 - (5.878 - 1.789M + 0.186M^2) \]

which leads to

\[M = 7.0 \]

1) Table motion (run W2)

\[s' = 0 \text{ (stiff site); } a = 561/\text{cm/sec}^2 \]
in this case
\[\log y_0 = 5.768 - 1.789M + 0.186M^2 \]
and
\[\log 561 = M - 1.833 - (5.768 - 1.789M + .186M^2) \]
from which
\[M = 6.75 \]

Hence, the ground motion in prototype scale corresponds to an earthquake with a slightly larger local magnitude than that of the shaking table tests.

3.5 Conclusions

From the rather simple analysis described in the preceding sections it may be concluded that the shaking table excitations imposed on the test structure simulate ground motions which could possibly occur in the field due to a seismic event. The diverse modifications performed in the records from which the table input signals are obtained, such as scaling the acceleration values and changing the time scale, can be used to simulate ground motions induced by earthquakes of different magnitude, and affecting sites with different soil conditions.
<table>
<thead>
<tr>
<th>TEST STRUCTURE CONDITION</th>
<th>RUN NO.</th>
<th>GROUND MOTION ACCELEROMETER RECORD</th>
<th>SHAKING TABLE SPAN SETTING</th>
<th>SCALED PEAK ACCELERATION</th>
<th>RUN IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH CONCRETE BLOCKS</td>
<td>1</td>
<td>TAFT(1)</td>
<td>100</td>
<td>0.097g</td>
<td>W1</td>
</tr>
<tr>
<td>WITH LATERAL BRACING</td>
<td>2</td>
<td>TAFT</td>
<td>850</td>
<td>0.57g</td>
<td>W2</td>
</tr>
<tr>
<td>REPAIRED WITH CONCRETE BLOCKS WITH LATERAL BRACING</td>
<td>3</td>
<td>TAFT</td>
<td>850</td>
<td>0.65g</td>
<td>W3</td>
</tr>
<tr>
<td>REPAIRED WITH CONCRETE BLOCKS WITH LATERAL BRACING</td>
<td>4</td>
<td>TAFT</td>
<td>50</td>
<td>0.07g</td>
<td>R1</td>
</tr>
<tr>
<td>REPAIRED WITH CONCRETE BLOCKS WITH LATERAL BRACING</td>
<td>5</td>
<td>TAFT</td>
<td>850</td>
<td>0.78g</td>
<td>R2</td>
</tr>
<tr>
<td>REPAIRED WITH CONCRETE BLOCKS WITH LATERAL BRACING</td>
<td>6</td>
<td>TAFT</td>
<td>850</td>
<td>0.82g</td>
<td>R3</td>
</tr>
</tbody>
</table>

(1) TAFT = TAFT, JULY 21, 1952 N69W COMPONENT

TABLE 3.1 EARTHQUAKE SIMULATOR TEST PROGRAM
<table>
<thead>
<tr>
<th>TEST NUMBER</th>
<th>LAST RUN BEFORE TEST</th>
<th>CONCRETE BLOCKS</th>
<th>NATURAL PERIOD (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st Mode</td>
</tr>
<tr>
<td>1</td>
<td>NONE</td>
<td>NO</td>
<td>.152</td>
</tr>
<tr>
<td>2</td>
<td>NONE</td>
<td>YES</td>
<td>.263</td>
</tr>
<tr>
<td>3</td>
<td>W1</td>
<td>YES</td>
<td>.319</td>
</tr>
<tr>
<td>4</td>
<td>W2</td>
<td>YES</td>
<td>.493</td>
</tr>
<tr>
<td>5</td>
<td>W3</td>
<td>YES</td>
<td>.532</td>
</tr>
</tbody>
</table>

Table 3.2

Variation of Natural Periods of Test Structure Through Test History (From Reference [21])
<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Recording Station</th>
<th>Horizontal Distance (km)</th>
<th>Magnitude</th>
<th>Component</th>
<th>Max. Ground accel. (g's)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Fernando California</td>
<td>Pacoima Abutment</td>
<td>3 (to fault)</td>
<td>6.5</td>
<td>S74W</td>
<td>1.075</td>
<td>Small building on rocky spine adjacent to dam abutment. Highly jointed diorite gneiss</td>
</tr>
<tr>
<td>02/9/71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managua Nicaragua</td>
<td>Esso Refinery</td>
<td>5 (to fault)</td>
<td>6.2</td>
<td>N-S</td>
<td>0.34</td>
<td>Alluvium</td>
</tr>
<tr>
<td>12/23/72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Centro California</td>
<td>El Centro</td>
<td>6 (to fault)</td>
<td>6.5</td>
<td>N-S</td>
<td>0.32</td>
<td>2-story heavy reinforced concrete building, with massive concrete engine pier. Alluvium</td>
</tr>
<tr>
<td>05/18/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kern County California</td>
<td>Taft (to epicenter)</td>
<td>40 (to epicenter)</td>
<td>7.7</td>
<td>N69W</td>
<td>0.18</td>
<td>In service tunnel between buildings. Alluvium</td>
</tr>
<tr>
<td>07/21/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3.3

CHARACTERISTICS OF SELECTED EARTHQUAKES

(Partially obtained from Reference [16])
FIG. 3.1(a) TAFT 1952 N69W ACCELERATION RECORD
FIG. 3.1(b) HORIZONTAL TABLE ACCELERATION, RUN W1: TAFT 100
FIG. 3.1(c) HORIZONTAL TABLE ACCELERATION. RUN W2: TAFT 850(1)

FIG. 3.1(d) HORIZONTAL TABLE ACCELERATION. RUN W3: TAFT 850(2)
FIG. 3.2 PSEUDO VELOCITY RESPONSE SPECTRA (2% DAMPING) MODEL (TEST STRUCTURE) TIME SCALE. TAFT 1952 N69W AND RUNS W1 and W2
FIG. 3.3 PSEUDO ACCELERATION RESPONSE SPECTRA (2% DAMPING) MODEL (TEST STRUCTURE) TIME SCALE.
TAFT 1952 N69W AND RUNS W1 AND W2
FIG. 3.4 PSEUDO VELOCITY RESPONSE SPECTRA (2% DAMPING) PROTOTYPE TIME SCALE.
TAFT 1952 N69W AND TIME-SCALED RUNS W1 AND W2
FIG. 3.5 PSEUDO ACCELERATION RESPONSE SPECTRA (2% DAMPING) PROTOTYPE TIME SCALE. TAFT 1952 N69W AND TIME-SCALED RUNS W1 AND W2
FIG. 3.6 PSEUDO VELOCITY RESPONSE SPECTRA (2% DAMPING) MODEL AND PROTOTYPE TIME SCALES. TAFT 1952 N69W (UNSCALED) AND RUNS W1 AND W2
FIG. 3.7 PSEUDO ACCELERATION RESPONSE SPECTRA (2% DAMPING) MODEL AND PROTOTYPE TIME SCALES. TAFT 1952 N69W (UNSCALED) AND RUNS W1 AND W2
FIG. 3.8 EFFECT OF TIME SCALING ON THE ACCELERATION RECORD OF RUN W2: TAAFT 850(1)
FIG. 3.9 PSEUDO VELOCITY RESPONSE SPECTRA (2% DAMPING) TIME-SCALED RUN W2: TAFT 850(1) AND SELECTED RECORDED SEISMIC EVENTS
FIG. 3.10 PSEUDO ACCELERATION RESPONSE SPECTRA (2% DAMPING) TIME-SCALED RUN W2: TAFT 850(1) AND SELECTED RECORDED SEISMIC EVENTS
Total number of records analysed: 104 Spectra for 5% damping

- SOFT TO MEDIUM CLAY AND SAND - 15 RECORDS
- DEEP COHESIONLESS SOILS (>250 ft.) - 30 RECORDS
- STIFF SOIL CONDITIONS (<150 ft.) - 31 RECORDS
- ROCK - 28 RECORDS

FIG. 3.11(a) AVERAGE ACCELERATION SPECTRA FOR DIFFERENT SITE CONDITIONS (FROM REFERENCE [18])

Total number of records analysed: 104 Spectra for 5% damping

- SOFT TO MEDIUM CLAY AND SAND - 15 RECORDS
- DEEP COHESIONLESS SOILS (>250 ft.) - 30 RECORDS
- STIFF SOIL CONDITIONS (<150 ft.) - 31 RECORDS
- ROCK - 28 RECORDS

FIG. 3.11(b) 84 PERCENTILE ACCELERATION SPECTRA FOR DIFFERENT SITE CONDITIONS (FROM REFERENCE [18])
FIG. 3.12 NORMALIZED ACCELERATION SPECTRA FOR STIFF SOIL CONDITIONS AND RUN W2: TAFT 850(1)
(BASED ON 31 RECORDS)
FIG. 3.13 NORMALIZED ACCELERATION SPECTRA FOR SITES UNDERLAIN BY DEEP COHESIONLESS SOILS AND TIME-SCALED RUN W2: TAFT 850(1) (BASED ON 30 RECORDS)
4. EVALUATION OF THE DESIGN OF THE TEST STRUCTURE

4.1 Preliminary Considerations

In order to complete the evaluation of the RCF2 test procedure undertaken by this study, it is necessary to determine if the test specimen under consideration corresponds to a normal structure designed for adequate performance in a region of high seismic activity.

The structural design of the ideal model of the prototype two story office building, described in Chapter 2, is examined in the following sections with respect to provisions of the Uniform Building Code, 1979 Edition \(^{[11]}\), to determine if it complies with the requirements for ductile moment-resisting space frames (DMRSF) located in zones of the highest seismic activity in the USA (Seismic Zone 4.) The decision to examine the structural design of the model rather than that of the prototype structure and/or the test structure, is based on the results of this study presented in Chapter 2, where it is shown that the test structure and the ideal model have basically the same structural characteristics. Hence, if it is determined that the ideal model can be qualified as a DMRSF meeting the Code requirements, it will be evident that the test structure (and, of course, the prototype building) are also adequately designed according to the Code philosophy. The ideal model is therefore used as a "link" between the prototype structure and the test specimen, as it was in the previous chapters.

The prototype structure has been designed to meet the requirements provided in the UBC 1970\(^{[9]}\) and ACI 1971\(^{[10]}\) Codes. The design procedure is presented in Appendix A. For the purpose of determining the design loads corresponding to the current (1979) Uniform Building Code, the distribution of gravity loads in the model has been derived from that used for the design of the prototype, applying the appropriate scaling ratios (Table 2.2); however, the seismic
lateral loads do not correspond to those originally employed, due to a differ-
ent estimate of the total weight of the prototype and to the different expres-
sion used in the 1979 UBC to compute the seismic base shear. Furthermore, the
load combinations used to produce the ultimate design loads recommended by the
current code are slightly different from those used in the original design. As
a result, the ultimate design loads used in this study to verify the adequacy
of the design of the model do not correspond to those used in the design of the
prototype building. Since it is not within the scope of this study to evaluate
the effect of the change of Code requirements on the seismic-resistant design
of reinforced concrete buildings, these differences will be pointed out only
when it is considered convenient for clarification purposes.

4.2 Determination of Seismic Lateral Forces

1) Total base shear

The minimum total lateral force specified by the 1979 UBC, Section 2312(d)
to be used for the seismic resistant design of any structure is given by

\[V = Z I K C S W \]

In which

\[Z = 1.0 \quad \text{for buildings located in Seismic Zone 4} \]

\[I = 1.0 \quad \text{is the occupancy importance factor corresponding to} \]

\[\text{office buildings (non essential facility)} \]

\[K = 0.67 \quad \text{for buildings in which the total lateral force is} \]

\[\text{resisted by a DMRSF} \]

\[C = \frac{1}{15 \sqrt{T}} \quad \text{Where } T \text{ is the fundamental period of the structure in} \]

\[\text{the direction under consideration} \]

\[S \quad \text{is a numerical coefficient for site - structure resonance,} \]

and

\[W \quad \text{is the total dead weight (including partitions) of the} \]

\[\text{building.} \]

Hence, in this case
\[V = 1.0 \times 1.0 \times 0.67 \times CS \times W = 0.67CSW \]

In addition, \(CS \leq 0.14 \)

and \(C \leq 0.12 \)

The fundamental period \(T \) has been computed in the elastic analysis described in Chapter 2; its value is

\[T = 0.23 \text{ sec.} \]

In addition, the Code provides two formulas to estimate the natural periods of buildings:

a) \(T = \frac{0.05 h_n}{\sqrt{D}} \)

Where \(h_n \) is the height of the building (ft), and \(D \) its base dimension in feet in the direction parallel to the seismic forces, thus

\[T = 0.05 \times \left(\frac{2 \times 76.37}{12} \right) \times \frac{1}{\sqrt{144.25}} = 0.18 \text{ sec.} \]

b) \(T = 0.1 N \), for DMRSF where \(N \) is the number of stories, hence

\[T = 0.2 \text{ sec.} \]

The highest value of the seismic coefficient \(C \) corresponds to the lowest estimate of \(T \), hence, the value \(T = 0.18 \) will be used to estimate conservatively this factor, although the code permits the value obtained by analysis to take precedence.

For \(T = 0.18 \),

\[C = \frac{1}{15 \sqrt{18}} = 0.157 \]

but \(C \leq 0.12 \); hence \(C = 0.12 \) is used

The coefficient \(S \) is taken to be 1.5, since the natural period of the soil underlying the site is unknown.

Consequently,

\[CS = 0.12 \times 1.5 = 0.18 \]
but CS ≤ .14, hence CS = .14 is used.

The total weight of the prototype has been estimated as 82.61 kips. The weight of the model is consequently

\[W = 0.5 \times 82.61 = 41.305 \text{ kips}, \]

leading to the total seismic base shear

\[v = 0.67 \times 0.14 \times 41.305 = 3.875 \text{ kips}. \]

This corresponds, in prototype scale, to a total lateral force of 7.75 kips.

The seismic base shear used to design the prototype building, required by the 1970 UBC, was 4.7 kips (about 40% less than the load required by the 1979 UBC.)

2) Distribution of lateral forces along height.

The UBC specifies (Section (2312(e)))

\[F_x = \frac{(V-F_i)w_i h_i}{\sum_{i=1}^{n} w_i h_i} \]

Where

- \(F_x \) = lateral force at level \(x \)
- \(w_x, w_i \) = weight corresponding to levels \(x, i \)
- \(h_x, h_i \) = height above the base of levels \(x, i \)

and

\[F_t = 0 \text{ since } T < 0.7 \text{ sec}. \]

The forces thus calculated for each level are presented in the table below.

The values of the story weights and heights can be seen in Figure 4.1.

<table>
<thead>
<tr>
<th>STORY</th>
<th>WEIGHT (kips)</th>
<th>HEIGHT (ft)</th>
<th>(w_i h_i)</th>
<th>(F_x) (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>17.445</td>
<td>12.77</td>
<td>221.90</td>
<td>2.301</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>23.86</td>
<td>6.36</td>
<td>151.75</td>
<td>1.574</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41.305</td>
<td>373.65</td>
<td>3.875</td>
<td></td>
</tr>
</tbody>
</table>

In order to compare the design earthquake loads with the lateral strength computed in Chapter 2, and the inertia forces developed in the test structure
during the dynamic tests, it was decided to compute the lateral load corresponding to each level as being proportional to the inertia forces associated with the first mode of vibration. This procedure is allowed by the Code (Section 2312(i)). The computation of the ratio between the lateral forces at each level is presented in Appendix C. The lateral forces associated with the Code base shear are listed in the following table

<table>
<thead>
<tr>
<th>STORY</th>
<th>LOAD MULTIPLIER</th>
<th>LATERAL FORCE (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>1.03(\lambda)</td>
<td>1.965</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>1.00(\lambda)</td>
<td>1.91</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.03(\lambda)</td>
<td>3.875</td>
</tr>
</tbody>
</table>

Where \(\lambda\) is determined as follows:

\[
\text{for } V = 3.875 \text{ kips } = 2.03\lambda,
\]

\[
\lambda = \frac{3.875}{2.03} = 1.9088
\]

A broad comparison with the loads computed using the formula provided by the Code suggests that in this case a uniform distribution of lateral forces (as used in the original design) seems more rational than the "triangular" distribution provided by the Code formula.

4.3 **Determination of Gravity Loads on Girders**

The loads acting on the girders due to gravity forces were obtained from those derived in Reference [1], applying the corresponding ratios to reduce them to model scale. It should be noted that the loads due to the two-way action of the floor slabs have been computed using Method 3 in the 1963 ACI recommendations\(^8\) which is not included in the current ACI Code. The equivalent frame method (1979 UBC Section 2613(e)) has also been used to compute the distribution of the slab loads along the girders; a brief discussion of the discrepancies of the two methods mentioned is presented in Section 4.6. Another
assumption worth mentioning is that the live loads have been considered acting in full, i.e. no reduction was made, although the UBC recommendations allow for it (Section 2306).

The distribution of dead and live loads on the longitudinal and transverse girders assumed for the model is shown in Figure 4.1.

4.4 Elastic Analysis

In order to determine the required strength for the girders and columns of the ideal model, an elastic analysis using the computer program ETABS[13] was performed using the gravity and seismic loads computed in the previous sections. The assumptions used to idealize the structure have been described in Section 2.5, and the dimensions and loads are summarized in Figure 4.1.

The ultimate design loads were obtained from the following combinations of dead, live and seismic loads, according to UBC Sections 2609(d) and 2626(a)

\[U_1 = 1.4D + 1.7L \]
\[U_2 = 1.4D + 1.4L + 1.4E \]
\[U_3 = 1.4D + 1.4L - 1.4E \]
\[U_4 = 0.9D + 1.4E \]
\[U_5 = 0.9D - 1.4E \]

The results of the elastic analysis for each load condition are summarized in Table 4.1. Only the results concerning the longitudinal frames are presented. The weight of the columns is considered in the computation of the axial loads.

In the next sections, the most relevant Code requirements from the point of view of the structural seismic behavior are examined. Figure 4.2 shows the geometric characteristics and the location and amount of the steel reinforcement. Unless otherwise specified, and in accordance with the assumptions made for the static analysis, the specified material properties \((f_c' = 4.0 \text{ ksi} \text{ and } f_y = 40.0 \text{ ksi})\)
are used. Numbers within parenthesis refer to the appropriate 1979 UBC sections. The notation used corresponds to that of the 1979 UBC.

4.5 Code Requirements for Columns

1) Dimensional limitations (2626(f)1)

a) Minimum column thickness ≥ 0.4

Maximum column thickness in this case

\[
\frac{5.66}{8.49} = 0.67 > 0.4 \text{ OK.}
\]

b) minimum column dimension ≥ 12 in.

This requirement is not satisfied. In prototype scale, the minimum dimension of the column is 8 in. However, this fact does not have any significant consequence in the structural behavior of the prototype (or the model) and can be disregarded.

2) Vertical reinforcement limitations

a) $0.01 < \rho = \frac{A_s}{bd} < 0.06$ (2626f2)

the columns have $A_s = 0.60$ in.2

\[b = 5.66 \text{ in.}, \ d = 6.86 \text{ in.}\]

hence

\[\rho = \frac{0.60}{5.66 \times 6.86} = .0155\]

which is within the required limits.

b) $\rho < 0.75 \rho_b$ corresponding to zero axial load. (2610d2)

\[\rho_b = \frac{0.85 b_1 f'_c}{f_y} \times \frac{87000}{87000 + f_y}\]

hence

\[\rho_b = \frac{0.85 \times 85 \times 4}{40} \times \frac{87000}{87000 + 40000} = .0495\]

and

\[\rho = 0.0154 < 0.75 \rho_b = .0371 \text{ OK.}\]
3) Approximate evaluation of slenderness effects (2610(1))

These effects will be evaluated in the longitudinal direction only. Since the columns are not braced against sideways, the slenderness effects should be accounted for if the ratio \(\frac{kL_u}{r} \) is larger than 22, where

\[L_u = \text{unsupported length} = 70.72 \text{ in.} \]
\[r = \text{radius of gyration} = 0.3 \times h = 0.3 \times 8.49 = 2.55 \text{ in.} \]
\[k = \text{effective length factor} \]

This latter factor depends on the end restraints of the column, and the flexural rigidity of the column and of the restraining members. Since the bottom story and top story columns have different restraint conditions, their effective lengths are different, and must be computed separately. The flexural stiffness of the sections \((EI)\) are computed using the expressions proposed by Winter[20], namely

\[
\frac{(EI) \text{ beams}}{(EI) \text{ columns}} = \frac{E_c I_{ct}}{E_c I_{ct} + E_s I_{se}}
\]

where

\[E_c = \text{elastic modulus of concrete} = 57000 \sqrt{f_c'} \]
\[= 3605 \text{ ksi (2608(c))} \]
\[E_s = \text{elastic modulus of reinforcing steel} \]
\[= 29000 \text{ ksi (2608(c))} \]
\[I_{ct} = \text{average moment of inertia of the transformed cracked sections of the girders, corresponding to curvature in opposite senses} \]
\[I_g = \text{moment of inertia of the column reinforcing steel about the centroidal axis of the section} \]
\[I_{se} = \text{moment of inertia of the column reinforcing steel about the centroidal axis of the section} \]
For the computation of the moment of inertia of the transformed cracked section, a modular ratio \(n = \frac{E_s}{E_c} \) is taken for both the tension and compression reinforcement. The contribution of the slab reinforcement is neglected. See Appendix C.

a) Bottom story column

The average moment of inertia of the transformed cracked section of the bottom story girder is

\[
I_{ct} = I^+_{ct} + I^-_{ct} = \frac{347.1 + 262.4}{2} = 304.75 \text{ in.}^4
\]

hence

\[
\frac{E I_{ct}}{\ell_n} = \frac{3605 \times 304.75}{135.77} = 8100 \text{ k-in.}
\]

where \(\ell_n \) is the clear height of the girder in inches

The geometric properties of the column are

\[
I_g = 288 \text{ in.}^4
\]

\[
I_{se} = 2 \times 0.6 \times \left(\frac{5.23}{2} \right)^2 = 8.21 \text{ in.}^4
\]

hence

\[
EI_c = \frac{3605 \times 288}{5} + 2900 \times 8.21 = 446000 \text{k-in.}^2
\]

and

\[
\frac{EI_c}{\ell_u} = \frac{446,000}{70.72} = 6310 \text{ k-in.}
\]

for the bottom column, and

\[
\frac{EI_c}{\ell_u} = \frac{446,000}{65.05} = 6860 \text{ k-in.}
\]

for the top column

The end restraint of the column is measured by the coefficient

\[
\psi = \frac{\sum (\frac{EI}{\ell})_{\text{columns}}}{\sum (\frac{EI}{\ell})_{\text{beams}}}
\]

which gives for the top end of the column

\[
\psi_{\text{top}} = \frac{6310 + 6860}{8100} = 1.63
\]
For the bottom end, ψ_{bottom} is taken equal to zero, assuming fixed-end conditions.

Using the Jackson and Moreland alignment chart for frames unbraced against sidesway, taken from Reference [20], the effective length factor of the bottom story column is found to be

$$k = 1.23$$

Then, the effective height of the column is

$$k l_u = 1.23 \times 70.72 = 87.0 \text{ in.}$$

and the slenderness coefficient becomes

$$\frac{k l_u}{r} = \frac{87.0}{2.55} = 34.1$$

which is larger than 22.

Therefore the slenderness effects must be accounted for, by magnifying the column design moments by a factor δ given by

$$\delta = \frac{c_m}{1 - \frac{p_u}{\phi F_c}} \quad \text{(2610.15)}$$

where

$$c_m = 1.0$$

Since the frame is unbraced against sidesway:

$$p_c = \frac{\pi^2 E I}{(k l_u)^2}$$

$$\frac{E I}{5} \frac{d_g + E I_s}{1 + \beta_d}$$

and β_d is the ratio of the maximum design dead load moment and the maximum design total moment.
For this case:

\[\beta_d = \frac{1.4 \times 18.21}{90.52} = 0.28 \]

where the value of the maximum dead load moment of the column has been taken from Figure 2.7. Consequently,

\[EI = \frac{446000}{1+0.28} = 348400 \text{ k·in.} \]

and the Euler critical load, \(P_c \), results:

\[P_c = \frac{\pi^2 \times 348400}{(870)^2} = 454 \text{ k} \]

Hence the moment magnification factor for the bottom column is found to be

\[\delta = \frac{1.0}{1.0 - \frac{20.65}{0.7 \times 454}} = 1.07 \]

This value has been computed for the maximum design axial load and for \(\phi = 0.7 \), and will be used for all load conditions, to be conservative. The capacity reduction factor \(\phi \) has been taken equal to 0.7 since

\[P_u = 20.65 > 0.10 A f'_c = 19.22 \text{ k} \]

\[\frac{h-d'-d_s}{h} = \frac{8.49 - 1.63 - 1.63}{8.49} = 0.62 < 0.7(2609(c)) \]

b) Top story column.

In this case

\[I_{ct} = \frac{I^+ + I^-}{2} = \frac{260.0 + 185.5}{2} = 222.75 \text{ in.}^4 \]

then

\[EI_b \frac{1}{I_n} = \frac{3605 \times 222.75}{135.77} = 5910 \text{ in.}^4 \]

Hence, using the values for \(EI_b \frac{1}{I_n} \) computed for the bottom story column and girder, the end restraint factors become

\[\psi_{top} = \frac{6860}{5910} = 1.16 \]
and

\[\psi_{\text{bottom}} = 1.63 \]

Hence

\[k = 1.40 \]

and

\[k \ell_u = 1.40 \times 65.06 = 91.08 \text{ in.} \]

hence

\[\frac{k \ell_u}{r} = \frac{91.08}{2.55} = 35.7 > 22 \]

Again it is necessary to take into account the slenderness effects.

Proceeding as for the bottom column, the following values are obtained:

\[\beta_d = \frac{1.4 \times 41.49}{103.71} = 0.56 \]

\[EI = \frac{446000}{1+0.56} = 286000 \text{ k·in.} \]

\[P_c = \frac{\pi^2 x 286000}{(91.08)^2} = 340 \text{ kips} \]

For

\[P_u = 7.96 < 0.10A f'_c = 19.22 \]

\[\phi = 0.7 + (0.9-0.7) \times \frac{19.22-7.96}{19.22} = 0.82 \]

Hence

\[\delta = \frac{1.0}{1 - 0.82 \times 340} = 1.03 \]

i.e., the column design moments of the top story column must be amplified by 1.03

4) Required flexural strength

The design ultimate loads for the bottom and the top story columns, along
with their corresponding amplified moments are presented in Table 4.2. These
load conditions have been plotted in a bending moment-axial force coordinate
system, along with the interaction diagram of the columns, computed according
to the requirements of the Code (Fig. 4.3). It is clear that since all the
points representing the design load condition lie inside the "safe" regions
bounded by the interaction curves, the column is strong enough to withstand all
the prescribed load condition.

Moreover, it can be seen that the column core by itself is able to develop
the necessary strength to avoid failure under the design load conditions.

5) Required shear strength

a) Minimum reinforcement (2611(b))

The minimum area of transverse reinforcement in square inches is
given by

\[A_v = \frac{50b_w s}{f_y} \]

Where \(b_w \) is the width of the section, and \(s \) the spacing of the trans­
verse reinforcement. Hence, the maximum spacing of stirrups is:

\[s_{\text{max}} = \frac{A_v f_y}{50b_w} \]

The prototype column transverse reinforcement consists of stirrups
made of 3/8" diameter deformed steel, with a transverse area of
0.11 in.\(^2\). Correspondingly, the transverse reinforcement of the model
has an area of 0.055 in.\(^2\), and

\[s_{\text{max}} = \frac{2 \times 0.055 \times 40000}{50 \times 5.66} = 15 \text{ in.} \]

The transverse reinforcement of the prototype has a spacing of 4 in. in
the central region, and of 2 in. in the end zones of the column. These
spacings correspond to 2.88 in. and 1.44 in. respectively for the
model structure, and are significantly smaller than the maximum
spacing allowed by the Code.

b) Required transverse reinforcement

The required area of shear reinforcement is given by

\[A_v = \frac{(V - V_u) b_s s}{f_y} \]

hence the required spacing becomes

\[s = \frac{A_v f_y}{(V - V_u) b_s w} \]

where

\[V_u = \frac{V}{\phi b_w d} \]

and, conservatively

\[V_c = 2\sqrt{f'_c} \text{ psi} \]

The maximum shear on the columns due to the different load conditions imposed on the structure occurs in the top story left column, for load condition 3, 1.4(D+L-E), and for the right column for load condition 2, 1.4(D+L+E), being

\[V_u = 3.10 \text{ kips} \]

Hence, for \(\phi = 0.85 \) (2609(c)), the maximum shear stress in the columns is

\[V_u = \frac{3.10}{0.95 \times 5.66 \times 6.86} = 0.094 \text{ ksi} = 94 \text{ psi} \]

The stress carried by the concrete, \(V_c \), is conservatively given by (2611(e))

\[V_c = 2\sqrt{f'_c} = 2\sqrt{4000} = 200 \text{ psi} > V_u \]

Therefore the concrete alone is strong enough to withstand the maximum shear stress induced by the design load conditions.

However, in order to be considered as a DMRSF in Zone 4, the design of the frame has to comply with the requirements of Section
In particular, the required spacing of the transverse reinforcement should satisfy

\[s = \frac{A_f d}{V_{uc} \phi} \]
(from formula 26.7)

where \(V_u \) corresponds to the maximum possible shear in the column. This maximum value is the shear developed in the columns when plastic hinges form at both ends of the columns; therefore it ensures that failure in shear is avoided. Since the collapse mechanism of the model involves formation of plastic hinges at the ends of all the columns of the bottom story, the fulfillment of this requirement is essential to guarantee ductile behavior of the structure.

The column ultimate moment capacities were determined from the interaction diagram constructed considering a reinforcing yield strength 25 percent larger than the specified yield, and without considering the capacity reduction factor \(\phi \). The axial load \(P_e \) considered to determine the ultimate moment capacity of the columns is taken as the largest design axial load (for the bottom column).

Hence, for \(P_e = 20.55 \) kips, the moment capacity of the column is

\[M_{ec} = 234 \text{k-in.} \]

and

\[V_u = \frac{2M_{ec}}{\ell_u} = \frac{2 \times 234}{70.72} = 6.62 \text{kips} \]

Also, since

\[\frac{P_e}{A_g} = \frac{20.65}{566 \times 0.49} = 0.43 \text{ ksi} < 0.12f'_c = 0.48 \text{ ksi} \]

\(V_c \) must be considered zero

Consequently, the required spacing is found to be
\[s = \frac{A_v f_d d}{(V_u/\phi)} \]

where \(d\) is the dimension of the column core in the direction of \(V_u\) and \(\phi = 0.85\). Hence for \(A_v = 0.11 \text{ in.}^2\),

\[s = \frac{0.11 \times 40 \times 6.36}{6.62 \times 0.85} = 3.50 \text{ in.} \]

The actual spacing in the test structure is 2.83 in., which is smaller than required; thus the columns are adequately protected against shear failure.

6) Special transverse reinforcement

During a strong earthquake, large compressive forces can be induced in the columns as a result of overturning effects; these forces can produce spalling of the concrete cover of the columns. In order to increase the strain capacity of the remaining core, and to avoid buckling of the reinforcing steel, it is necessary to provide adequate confinement to the section by means of closely spaced stirrups. The intended result of this condition is to guarantee that the spalled section has strength equivalent to that of the complete (unspalled) section, and also has the necessary rotation capacity to develop this strength without suffering severe, irreparable damage.

The minimum required spacing of the special transverse reinforcement must satisfy the following expressions (2626(f))

\[s_h \leq \frac{A_{sh}}{0.30 h_c f'_{tc} (\frac{A_g}{A_{ch}} - 1)} \quad \text{(from formula 26.5)} \]

and

\[s_h \leq A_{sh} \frac{f'_{yc}}{0.12 h_c f'_{tc}} \quad \text{(from formula 26.6)} \]

\[s_h \leq 4 \text{ inches} \]
where \(A_{sh} \) is the total cross-sectional area of hoop reinforcement, having a spacing of \(s_h \), and crossing a section with a core dimension of \(h_c \), expressed in inches, and \(A_{ch} \) is the area of the confined core measured out-to-out of the hoop, in square inches.

In this case

\[
A_{sh} = 0.11 \text{ in.}^2
\]

\[
A_y = 48.0 \text{ in.}^2
\]

\[
A_{ch} = 6.36 \times 3.54 = 22.51 \text{ in.}^2
\]

\[
h_c = 6.36 \text{ in.}
\]

and

\[
f'_c = 4.0 \text{ ksi}, \quad f_{yh} = 40.0 \text{ ksi}.
\]

hence the requirements are

\[
s_h \leq \frac{0.11}{0.30 \times 6.36 \times 4.0 \left(\frac{48.0}{40.0} - 1 \right)} = 0.51 \text{ in.}
\]

\[
s_h \leq \frac{0.11 \times 40}{0.12 \times 6.36 \times 4.0} = 1.44 \text{ in.}
\]

and

\[
s_h \leq 4 \text{ in.}
\]
The provided spacing is 1.41 in. (2 in. in the prototype structure.) Consequently the last two requirements are satisfied, but the first requirement is not. However, the Code specifies that formula 26.5 need not be complied with if the column design is based on the column core only. This exception is based on the fact that the purpose of formula 26.5 is to guarantee that the spalled section has the same capacity as the complete section.

Hence, if it is demonstrated that the core has the necessary capacity to withstand all design load conditions, this requirement is not essential. Figure 4.3 shows the P-M interaction diagram for the column core, and it can be seen that all load conditions lie within the interaction curve, consequently the core has enough strength to withstand all load conditions, and the spacing provided for the transverse reinforcement is adequate.

The special transverse reinforcement has to be provided in the end regions of the columns, over a length l_c satisfying the following requirements

\[l_c \geq \text{maximum column dimension} = 8.5 \text{ in.} \]

\[l_c \geq \frac{1}{6} \text{clear height of the column} = \frac{1}{6} \times 70.72 = 12 \text{ in.} \]

and

\[l_c \geq 18 \text{ in. from either face of the joint.} \]

The confined length provided in the prototype structure is 18 in. which satisfies the third requirement; the equivalent length in the model structure is about 13 in. hence the two other requirements are also satisfied.

The Code also requires that the special transverse reinforcement has to be placed in the region where the capacity of the column is less than the sum of the shears (V_u) corresponding to formation of plastic hinges in the girders framing into the column above the level of consideration.

For each beam, V_u is computed from:

\[V_u = \frac{M_A + M_B}{L_{AB}} + 1.1 \left(\omega_d + \omega_L \right) \times \frac{L_{AB}}{2} \]
where A, B are the hinge locations. The ultimate capacities M_A, M_B, are computed without the ϕ factor, assuming a reinforcement yield strength 25 percent larger than the specified value.

The most likely collapse mechanism involving formation of plastic hinges in the girders would be similar to that shown in Figure 4.4, according to the results of the elasto-plastic analysis performed previously (Chapter 2). The distribution of bending moments in the most heavily loaded columns can be obtained approximately assuming that the effect of the finite size of the joints and the inelastic region (plastic hinges) is small and can be neglected, and that the plastic moment at the end of the bottom story girder is equally distributed between the top and bottom columns. The position of the plastic hinge in the central region of the girders can be determined by means of an elasto-plastic analysis; for the purpose of the present calculations it will be assumed that the plastic hinges form at a distance of about 90 in. from the right end of the girders (from the results of the elasto-plastic analysis performed previously.) The moment capacity of the column is obtained from the interaction diagram corresponding to the specified material properties, with a conservatively chosen capacity reduction factor ϕ of 0.7.

The region which has to be adequately confined can be identified comparing the moment capacity of the column (for the axial load $P_u = \sum u$) with the bending moment distribution associated with the assumed collapse mechanism. This process is depicted in Figure 4.4. It can be seen that the column capacity is exceeded at both ends of the top column (especially in the upper 13.1 in.), and in the lower end of the bottom column, where a plastic hinge is formed. The length of special transverse reinforcement that has been provided is 13 in.; thus, all zones of possible plastification are adequately confined.
4.6 Code Requirements for Girders

1) Dimensional limitations (2626(e))

a) \(\frac{\text{width}}{\text{depth}} \geq 0.3 \)

In this case

\[
\frac{5.66}{11.32} = 0.5 > 0.3 \quad \text{OK}
\]

b) \(\text{width} \geq 10 \text{ in.} \)

In model scale, this requirement becomes

\(\text{width} \geq 7.07 \text{ in.} \)

The girders have a width of 5.66 in., thus, this requirement is not met.

As in the case of the columns, it is thought that this violation has no significant influence on the structural behavior.

b) \(\text{width} \approx \text{width of column} + \frac{3}{4} \text{ depth of girder} \)

\[
\leq 5.66 + \frac{3}{4} \times 11.32 = 14.15
\]

or

\[
5.66 \leq 14.15 \quad \text{OK}
\]

d) T-beam requirements. (2608(g))

The contribution of the slab considered in the elastic analysis to quantify the T-beam action must conform to the following requirements:

i) effective flange width \(\leq \frac{1}{4} \text{ space length} = \frac{1}{4} (144.25) = 36 \text{ in.} \)

The effective flange width of 36 in. meets this requirement

ii) overhanging width \(\leq 8 \times \text{ thickness of slab} \)

\[
= 8 \times 2.83 = 22.64 \text{ in.}
\]

iii) overhanging width \(\leq \frac{1}{2} \times \text{ clear distance to next beam} \)

\[
= \frac{1}{2} \times (101.82-5.66) = 48.08 \text{ in.}
\]

In this case, the overhanging width is

\[
\frac{1}{2}(36-5.66) = 15.17 \text{ in.}
\]

which meets the above requirements.
Similarly, for the transverse girders, which have a flange in one side only:

i) effective overhanging flange $< \frac{1}{2}$ span length

\[= \frac{1}{12} \times 101.82 = 8.49 \text{ in.} \]

ii) effective overhanging flange $\leq 6 \times$ thickness of slab

\[= 16.98 \text{ in.} \]

and

iii) effective overhanging flange $\leq \frac{1}{2}$ clear distance to next beam

\[= \frac{1}{2} \times (144.25 - 8.49) = 67.88 \text{ in.} \]

Accordingly, a overhanging flange width of 8.49 in. was considered in the analysis.

2) Longitudinal reinforcement limitations (2626(e))

The longitudinal reinforcement ratio for top and bottom reinforcement must lie within the following limits

\[\frac{200}{f_y} \leq \rho \leq 0.025 \]

or, for $f_y = 40000$ psi,

\[0.005 \leq \rho \leq 0.025 \]

where

\[\rho = \frac{A_s}{b_d} \]

The reinforcement ratios provided for the bottom story girder are:

Bottom reinforcement $\rho = \frac{0.60}{5.66 \times 9.68} = 0.011$

Top reinforcement $\rho = \frac{0.60}{5.66 \times 9.83} = 0.017$

and for the top story girder:

Bottom reinforcement $\rho = \frac{0.44}{5.66 \times 9.73} = 0.008$
Top reinforcement \(\rho = \frac{0.40}{5.66 \times 9.83} = 0.007 \)

using the width of the stem of the T-beams (2610(f)) to compute the reinforcement ratios. It can be seen that the provided reinforcement ratios satisfy the Code limitations.

In addition, \(\rho \leq 0.75 \rho_b (2610(d)) \) where \(\rho_b = 0.0495 \) for \(f_y = 40 \) ksi and \(f_c = 4.0 \) ksi. Obviously, this requirement is met.

Reinforcement must be provided such that the positive moment capacity at the face of the columns is at least 50 percent of the negative moment capacity (2626(e)).

For the bottom story girder,
\[
M_u^+ = 232.9 > \frac{1}{2} \frac{1}{2} M_u^- = \frac{1}{2} \times 199.4 = 99.7 \text{ k-in.}
\]
and for the top story girder
\[
M_u^+ = 171.3 > \frac{1}{2} \frac{1}{2} x 139.0 = 69.5 \text{ k-in.} \quad \text{OK}
\]

3) Required flexural strength

The bending moment envelopes obtained from the elastic analysis for the bottom and top story girders are shown in Figures 4.5 and 4.6, respectively. The envelopes represent the required flexural capacity for the girders to withstand all load conditions. Since the frame is not braced against sidesway, the moments at the face of the columns have been magnified by the appropriate factor \(\delta \), obtained from the analysis of slenderness effects on columns (2613(e)). In the case of the top story girder, the magnification factor \(\delta \) has been taken equal to the value obtained for the top story column. For the bottom story girder, \(\delta \) has been taken equal to the average of the magnification factors obtained for the top and bottom columns.

Thus,
\[
\delta_{\text{Top Girder}} = \delta_{\text{Top Column}} = 1.03
\]
\[
\delta_{\text{Bottom Girder}} = \frac{1}{2} (\delta_{\text{Top Column}} + \delta_{\text{Bottom Column}})
\]
\[
= \frac{1}{2} \times (1.03 + 1.07) = 1.05
\]
In addition, the bending moment distribution due to gravity loads (1.4D + 1.7L) computed using the equivalent frame method (2613(e)) is also plotted, for comparison with the results of the "standard" elastic analysis results.

Figure 4.5 shows that the provided flexural strength ϕM_n is adequate for all load conditions, at every section along the span of the top story girder. Furthermore, the bending moment distribution for gravity loads obtained from the elastic analysis and the equivalent frame method show good agreement in the girder midspan, (the maximum positive moment from elastic analysis is 106.12 k-in., and that obtained with the equivalent method is 105.39 k-in.). However, the elastic analysis yields a larger negative moment (97.34 k-in.), hence, at least for this case it is more conservative.

With respect to the bottom story girder, the flexural capacity provides for positive curvature, $(\phi M^+_n = 232.92$ k-in. is much larger than is required $M^+_u \text{ max } = 132.08$ k-in. from the elastic analysis or 139.72 k-in. from the equivalent frame method.) However, the strength provided at the face of the column, $\phi M^-_n = 199.35$ k-in. is about 12% lower than is required, $\delta M^-_u \text{ max } = 226.26$ k-in., hence resulting in a slightly unsafe design.

On the other hand, the negative moment at the face of the column obtained from the equivalent frame method for load condition 1: 1.4D + 1.7L (115.64 k-in.) is about 36% smaller than the corresponding moment obtained from the elastic analysis (157.56 k-in.), and since the moment produced by gravity loads (D+L) in load condition 2: 1.4(D+L+E) is about 70% of the total moment, the flexural strength required at the face of the column would be as much as 20% less than that given by the elastic analysis. Therefore, the design of the bottom story girder might be considered adequate.

In addition, it should be noted that no reduction of live load has been
considered (2306) to determine the ultimate design loads, and that the prototype has been designed for ultimate lateral loads (total base shear of 4.7 kips) significantly smaller than those determined for the present study (total base shear of 7.75 kips.)

From these considerations, it is reasonable to assume that the girders have adequate flexural strength.

4) Required shear strength

a) Minimum reinforcement (2611(b))

As for the case of the columns, the maximum spacing of the transverse reinforcement, with a total area in square inches A_v, is

$$s_{\text{max}} = \frac{A_v f_y}{50 b_w}$$

Since the reinforcement that is provided has an area of 0.01 square inches this requirement results in

$$s_{\text{max}} = \frac{0.01 \times 40000}{50 \times 5.66} = 15 \text{ in.}$$

The spacing provided at the midspan of the girders is 4.24 in. (Figure 4.2), which is significantly smaller than the maximum allowed spacing.

b) Required transverse reinforcement

The maximum shear force due to the design loads occurs at the right end of the bottom story girder, for load condition 2: 1.4(D+L+E), as shown in Figure 4.7. Hence,

$$v_u = 8.88 \text{ kips}$$

and consequently, the shear stress is

$$v_u = \frac{v_u}{\phi b_w d} = \frac{8800}{0.85 \times 5.66 \times 9.83} = 186 \text{ psi}$$

(2611c)
The stress carried by the concrete, v_c, is conservatively given by

$$v_c = 2\sqrt{f'_c} = 126.5 \text{ psi}$$

Hence, the required spacing for the transverse reinforcement is

$$(2611(g)):

s = \frac{A_{v_f}}{(v_u - v_c)b_w} = \frac{0.11 \times 40000}{(186 - 126.5) \times 5.66} = 13 \text{ in.}$$

which is larger than the spacing provided at any location along the girders, and shear failure is avoided.

Additional requirements with respect to spacing of transverse reinforcement are (2626(e)):

i) $s \leq \frac{d}{2} = \frac{9.83}{2} = 4.92 \text{ in.}$

throughout the length of the girders, and

ii) $s \leq \frac{d}{4} = \frac{9.83}{4} = 2.46 \text{ in.}$

iii) $s \leq 8 \text{ bar diameters} = 8 \times 0.707 \times (\frac{1}{2}) = 2.83 \text{ in.}$

corresponding to the smallest bar diameter used in the prototype structure (#4),

iv) $s \leq 24 \text{ stirrup-tie diameters} = 24 \times \frac{3}{8} = 9 \text{ in.}$

at critical location such as the ends of the girders, along a distance of at least 2d, (20 in.) or wherever plastic hinges may be developed or wherever compression reinforcement is required.

The spacing provided at the girder midspan is 4.24 in., hence requirement (i) is satisfied. The spacing has been reduced to 2.14 in. within 24 in. of the column faces, therefore the other requirements are met. Note that the compression reinforcement that has been provided is not required for strength purposes, and the likelihood of formation of plastic hinges at midspan of the girders is very small, as determined by the elasto-plastic analysis presented in Chapter 2. This demonstrates that the collapse mechanism to be expected in the
model structure is of the panel type, involving plastic hinge formations at the ends of the columns.

4.7 Requirements for Joints

As required by the 1979 UBC (2626(g)), special transverse reinforcement has been provided through the entire beam-column connection. In order to determine if the transverse reinforcement provides adequate shear strength in the joints, an approximate analysis based on the shear panel analogy has been performed.

Figure 4.8 shows the assumptions used to determine the shear stresses at the bottom and top story beam-column joints.

Hence, for the top story joint

\[V_u = A f_y = 0.40 \times 40000 = 16000 \text{ lb.} \]

and the required spacing, assuming that the concrete does not contribute in resisting the shear stresses, is (from formula 26.7)

\[s = \frac{A f_y d}{V_u} = \frac{0.11 \times 40000 \times 6.36}{16000} \frac{16000}{0.85} \]

\[= 1.49 \text{ in.} \]

The spacing provided is 1.41 in., which is smaller than required, and therefore the joint is properly reinforced.

For the bottom story joint

\[V_u = A f_y - V_{col} \]

The shear force, \(V_{col} \), coming from the top story column was computed assuming formation of plastic hinges at both ends of the column, while the maximum earthquake design axial load was acting.

For load condition 3: \(1.4(D+L-E) \), the axial force at the left column is

\[P_c = 7.96 \text{ kips} \]
The moment capacity of the column corresponding to P_e, for $f_y = 1.25 f_y$ specified, and without capacity reduction ϕ, from the corresponding interaction diagram (Figure 4.3) is

$$M_{ec} = 202 \text{ kip-in.}$$

Hence

$$V_{col} = \frac{2M_{ec}}{P_u} = \frac{2 \times 202.0}{65.05} = 6.21 \text{ kips}$$

Therefore

$$V_u = 0.60 \times 40 - 6.21 = 17.79 \text{ kips}$$

and the required spacing of the transverse reinforcement through the joint is found to be

$$s = \frac{0.11 \times 40000 \times 6.36}{17790 / 0.85} = 1.34 \text{ in.}$$

which is 5% smaller than the 1.41 in. spacing provided. Since the shear panel analogy yields conservative estimates for the shear stresses in the joints, the reinforcement that has been provided is considered adequate.

4.8 Strong Column-Weak Girder Design

The UBC requires that at any beam-column connection where $P_e/A \geq 0.12 f'_c$, the sum of the moment strengths of the columns under the design earthquake loads must be greater than the sum of the moment strengths of the framing beams (2626(g)). This requirement is intended to minimize the possibility of formation of plastic hinges at the column ends, and to ensure that most of the inelastic deformation takes place at the critical regions of the beams.

From the analysis for the required transverse reinforcement for the columns:

$$\frac{P_e}{A_y} = 0.43 \text{ ksi} < 0.12 f'_c = 0.48 \text{ ksi}$$
In consequence, the behavior of the columns is predominantly flexural and the strong column-weak girder requirement is not applicable.

4.9 Drift Limitations

The maximum allowable interstory drift due to the design lateral forces is

$$\delta_{\text{max}} = 0.005 h \quad (2312 (h))$$

where h is the interstory height.

The interstory drift computed from the elastic analysis of the structure should be multiplied by the factor

$$\frac{1}{K} = \frac{1}{0.67} = 1.49 > 1$$

To determine the maximum drift.

The results obtained for the model structure are summarized in the following table

<table>
<thead>
<tr>
<th>Story</th>
<th>Displacement (in.)</th>
<th>Drift(δ) (in.)</th>
<th>Height(h) (in.)</th>
<th>δ_{Kh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>0.0853</td>
<td>0.0324</td>
<td>76.37</td>
<td>0.0006</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>0.0529</td>
<td>0.0529</td>
<td>76.37</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

The displacements shown above have been obtained by computing the flexural stiffness of the sections assuming gross area sectional properties. This assumption leads to a somewhat larger structural stiffness compared with that obtained assuming cracked sections. However, noting that the calculated under-story drifts are much smaller than the maximum allowable, it may be concluded that the structure complies with the code drift requirements.

4.10 Conclusions

Through the analyses performed in the previous sections it has been demonstrated that the ideal model of the prototype structure satisfies the Uniform Building Code requirements for earthquake resistant design of reinforced concrete
moment-resisting space frames located in Seismic Zone 4.

The fact that the actual test structure also can be regarded as a ductile moment-resisting space frame is based on the following findings from Chapter 2:

1) The model and the test structure have similar overall dynamic characteristics.

2) The detailing of the reinforcement of the model and the test structure are essentially similar. The fact that undeformed #2 bars were used as transverse reinforcement in the test structure is not of great consequence in its dynamic performance, since its behavior is controlled by flexure. As a result the strength and deformation capacities (stiffness and ductility) of the ideal model and test structure are very similar.

3) In spite of the fact that the model and the test structure have different distributions of section forces due to gravity loads (and hence due to design ultimate loads) the test structure can withstand (remaining in elastic condition) lateral loads significantly larger than the ultimate lateral loads specified by the Code for the model structure, and consequently its strength is more than adequate.

As a consequence, it is possible to conclude than the test structure is also a ductile moment-resisting frame, as defined by the Uniform Building Code; therefore, its behavior under seismic excitations should be "adequate" in the sense dictated by the design philosophy on which the Code requirements are based.
<table>
<thead>
<tr>
<th>LOAD CONDITION</th>
<th>BOTTOM STORY TOP STORY</th>
<th>COLUMN (left)</th>
<th>COLUMN (left)</th>
<th>COLUMN (left)</th>
<th>COLUMN (left)</th>
<th>COLUMN (left)</th>
<th>COLUMN (left)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.4D+1.7L</td>
<td>20.23</td>
<td>1.33</td>
<td>-27.95</td>
<td>7.97</td>
<td>82.76</td>
<td>-84.77</td>
<td></td>
</tr>
<tr>
<td>2 1.4(D+L+E)</td>
<td>20.66</td>
<td>1.78</td>
<td>7.16</td>
<td>7.16</td>
<td>27.11</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>3 1.4(D+L-E)</td>
<td>20.65</td>
<td>1.78</td>
<td>7.16</td>
<td>7.16</td>
<td>27.11</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>4 0.9D+1.4E</td>
<td>7.71</td>
<td>1.00</td>
<td>26.96</td>
<td>43.72</td>
<td>3.42</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>5 0.9D-1.4E</td>
<td>10.58</td>
<td>-1.71</td>
<td>-59.73</td>
<td>-61.39</td>
<td>4.23</td>
<td>-1.77</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOAD CONDITION</th>
<th>BOTTOM STORY TOP STORY</th>
<th>GIRDER</th>
<th>GIRDER</th>
<th>GIRDER</th>
<th>GIRDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.4D+1.7L</td>
<td>157.56</td>
<td>-157.56</td>
<td>-97.34</td>
<td>-97.34</td>
<td>-97.34</td>
</tr>
<tr>
<td>2 1.4(D+L+E)</td>
<td>-75.51</td>
<td>-215.49</td>
<td>-64.52</td>
<td>-119.56</td>
<td>-64.52</td>
</tr>
<tr>
<td>3 1.4(D+L-E)</td>
<td>-215.49</td>
<td>-75.51</td>
<td>-119.56</td>
<td>-64.52</td>
<td>-70.93</td>
</tr>
<tr>
<td>4 0.9D+1.4E</td>
<td>12.63</td>
<td>127.35</td>
<td>-70.93</td>
<td>-15.98</td>
<td>-15.98</td>
</tr>
<tr>
<td>5 0.9D-1.4E</td>
<td>12.63</td>
<td>127.35</td>
<td>-70.93</td>
<td>-15.98</td>
<td>-15.98</td>
</tr>
</tbody>
</table>

TABLE 4.1 SECTION FORCES AT MEMBER ENDS FROM ELASTIC ANALYSIS OF IDEAL MODEL (kips, in.)
TABLE 4.2

DESIGN LOAD CONDITIONS FOR IDEAL MODEL COLUMNS

(1) For each axial load, the largest moment in the column has been selected.
FIG. 4.1 IDEAL MODEL DIMENSIONS AND LOADS FOR ELASTIC ANALYSIS

I - 0.0468 k/in. 4.24" (typ.) 2.83" (typ.)

W_D = 0.0194 k/in.
W_L = 0.0012 k/in.

F_B = 190 kips

F_B = 1965 kips

F_A = 144.25"

TRANSVERSE FRAME

LONGITUDINAL FRAME

RIGID ZONE

W_D = 0.0074 k/in.
W_L = 0.0074 k/in.

W_D = 0.00194 k/in.
W_L = 0.00194 k/in.

W_D = 0.0490 k/in.
W_L = 0.0336 k/in.

W_D = 0.0490 k/in.
W_L = 0.0336 k/in.

W_D = 23.86 kips

W_D = 17.445 kips

C

D

E

F
FIG. 4.2 SECTION DIMENSIONS AND PROVIDED REINFORCEMENT. IDEAL MODEL

- **Top Story Girder**
 - Slab reinforcement not shown.
 - Transverse reinforcement:
 - As = 0.060 in² (TOTAL)
 - A' = 0.60 in² (TOTAL)

- **Bottom Story Girder**
 - Effective half-flange:
 - 18 in.
 - As = 0.060 in² (TOTAL)

- **Columns**
 - A's = A's = 0.60 in²

- **Columns and Provided Reinforcement**
 - b = 3.54 in
 - d = 6.86 in
 - b = 5.66 in
 - h = 8.49 in
 - h' = 6.38 in
 - 5.23 in
 - 5.66 in

- **Girders**
 - b = 3.54 in
 - d = 6.86 in
 - 5.23 in
 - 5.66 in
FIG. 4.3 P-M INTERACTION DIAGRAM FOR IDEAL MODEL COLUMNS

DESIGN LOAD CONDITIONS
- BOTTOM STORY LEFT COLUMN
- TOP STORY LEFT COLUMN

COLUMN CORE
- WITH NO $f_c = 4.0$ ksi, $f_y = 40.0$ ksi
- NO $f_c = 4.0$ ksi, $f_y = 50.0$ ksi
- NO $f_c = 4.0$ ksi, $f_y = 50.0$ ksi

TOTAL SECTION
- $f_c = 4.0$ ksi, $f_y = 50.0$ ksi
- $f_c = 4.0$ ksi, $f_y = 50.0$ ksi

CAPACITY REDUCTION FACTOR ϕ INCLUDED
- 0.10 $A_g' = 19.22$ kips
Special transverse reinforcement is required where $M_{\text{mech.}} \geq M_u$ (moment capacity of the column) is computed from the column interaction diagram for $f' = 4.0$ ksi, $f_y = 40$ ksi, δ included.

1) Top story column:
 a) Top end

 $V_T^u = V_T^{\text{uT}} = 7.69$ kips

 $M_T^u = 126.37$ k/in.

 < 187.90 k/in. = M_T^u

 within $d_c = 14.5$ in.

 $= 13.1$ in. from face of joint

2) Bottom story column
 b) Bottom end

 $V_B^u = V_B^{\text{uB}} = 7.69 + 10.67 = 18.36$ kips

 $M_B^u = 153.62$ k/in.

 > 135.60 k/in. = $M_B^u / 2$

 within $d_c = 2.2$ in.

 $= 0.8$ in. from face of joint

FIG. 4.4 DETERMINATION OF REQUIRED CONFINEMENT LENGTH FOR IDEAL MODEL COLUMNS (SECTION 2626f - UBC79)
FIG. 4.5 FLEXURAL STRENGTH REQUIREMENTS FOR IDEAL MODEL BOTTOM STORY GIRDER
FIG. 4.6 FLEXURAL STRENGTH REQUIREMENTS FOR IDEAL MODEL TOP STORY GIRDER
FIG. 4.7 SHEAR DISTRIBUTION IN GIRDERS. IDEAL MODEL ELASTIC ANALYSIS
FIG. 4.8 SHEAR PANEL ANALOGY TO DETERMINE SHEAR STRESSES AT JOINTS

TOP STORY CONNECTION

$V_u = \frac{A_s \cdot f_y}{\phi A_{\text{CORE}}}$

SPECIAL TRANSVERSE REINFORCEMENT THROUGH BEAM-COLUMN CONNECTION

BOTTOM STORY CONNECTION

$V_u = \frac{A_s f_y - V_{\text{COL}}}{\phi A_{\text{CORE}}}$
5. GLOBAL RESPONSE OF RCF2 DURING TESTS

5.1 Motivation

In the previous chapters of this report, it has been shown that the test structure, RCF2 is representative of a typical low-rise reinforced concrete building, whose design is in accordance with the latest code specifications for earthquake-resistant-construction, and that the excitations to which it was subjected on the shaking table realistically simulate possible seismic ground motions.

The next step in the evaluation process is to examine the actual response of the specimen during the dynamic tests. The motivation for performing such studies arises from the fact that the experiments performed provide an opportunity to verify not only the adequacy of the seismic behavior of the test structure but also the reliability of the analytical techniques on which the design procedure is based.

The overall performance of RCF2 during each "run" in the first phase of the testing sequence (unrepaired structure) is examined in the following sections, with emphasis on correlating the observed behavior with that inferred from the analyses performed previously. A detailed description of the test results, complemented with analytic verifications based on several mathematical models, can be found in Chapter 4 of Reference [2].

5.2 Run W1: Taft 100.

The Taft N69W acceleration was scaled "down" in amplitude to generate a horizontal table motion with peak acceleration of about 0.1 g, which is considered a "mild" excitation, with the purpose of inducing in the virgin structure a level of cracking representative of "normal" service conditions.
The response of the structure to this table motion can be characterized by the time histories of floor displacements with respect to the table. These are plotted in Figure 5.1, in which the dashed line corresponds to the top, and the continuous line to the bottom floor level.

A brief examination of this graph reveals important information about the characteristics of the response of RCF2 during this run. The motion of each floor can be described as a sinusoid with slowly varying amplitude and phase. This type of response is characteristic of resonant-prone systems (like linear elastic, slightly damped structures) to excitations with a wide-band frequency spectrum (such as seismic ground motions)\[21\]. Also, it is evident that both floors oscillate in phase, following similar patterns. This indicates that the structure is responding basically in the first mode of vibration.

In order to confirm these observations it is necessary to examine the actual force-deformation relationship developed by the structure during the test. This information is available in a global sense since the horizontal floor accelerations were measured during the experiment, permitting the computation of the inertia forces induced at the floor levels, from which the inter-story shears could be found. (The force transducers located at the column midheights also provided indications of the shear forces in the column, but since these do not agree with those obtained from acceleration records, they seem to be unreliable, and they have not been used in this investigation.)

The motion of the top floor with respect to the bottom floor level (top story drift) is presented in Figure 5.2, and the bottom and top story shears in Figures 5.3 and 5.4, respectively. These graphs show basically the same characteristics of linear elastic behavior as those in Figure 5.1.

The interstory shear-drift relationship shown by the structure during the test under consideration is plotted in Figures 5.5 and 5.6 for the bottom and top stories, respectively. From a "practical" point of view it can be said
that the behavior of RCF2 during this test was basically linear, however, some nonlinearities were present.

It seems evident that since the main reinforcement in the elements was stressed well below its yield point (the strain in the reinforcement at critical points was monitored) the main cause for the mild nonlinear, hysteretic behavior by the structure was the development of cracks in the concrete and their subsequent opening and closing as the structure oscillated around its equilibrium configuration. This observation suggests that the overall stiffness of the frame had to decrease during the test, from that corresponding to a virgin, uncracked specimen, to that of an elastic but moderately cracked structure.

In order to confirm the previous statement, the interstory shear-drift relationship shown by the structure during consecutive 5 second time intervals has been plotted in Figures 5.7 and 5.8 (a) through (e), which show that basically, the nonlinear effects (and thus the cracking) were significant mainly in the first story members, and that the most noticeable change in stiffness took place in the time interval from 5 to 10 sec after the beginning of the test.

In summary, the response of RCF2 to this mild first excitation can be described as that of an elastic, underdamped, single-degree-of-freedom system.

The findings of the analyses performed in the initial stage of this study (Chapter 2) are substantially in accordance with the experimental results. The effective modal masses \[22\] associated with the vibratory parameters (mass and flexibility matrices, mode shapes and frequencies) presented in Figure 2.8, for the test structure, are

\[
\begin{align*}
M_{e1} &= 0.92 \, M_{TOT} & \text{for the first mode} \\
M_{e2} &= 0.08 \, M_{TOT} & \text{for the second mode of vibration}
\end{align*}
\]

\[(M_{TOT} \text{ is the total mass of the structure)}\]

This result indicates that the response of RCF2 should be highly "dominated" by
the first mode of vibration, as was observed.

The maximum level of lateral forces which the structure can withstand in an elastic regime, as predicted by the elastoplastic analysis, correspond to a horizontal ground acceleration of about 0.46g; this result agrees with the observed "elastic" behavior shown by the structure when subjected to a (dynamic) excitation with peak acceleration of about 0.10g.

It seems worth noting that, as is widely accepted, the stiffness predicted under the assumption of "gross section" geometry and elastic modulus given by the Code formula is unrealistically large with respect to the actual structural stiffness. This is dramatically demonstrated in Figure 5.9 (a) and (b) where the predicted lateral stiffness can be compared with the initial stiffness corresponding to a practically uncracked structure—and the "average" stiffness developed by the structure during a 5-second interval. The gross section—and the "code" elastic modulus-formulation to compute stiffness is clearly very unrealistic, and should not be used as a basis for prediction of structural displacements. This formulation was used in Chapter 2 because of its computational convenience and because the analytical results were to be used in a "relative" way, to compare the characteristics of two structures.

5.3 Run W2: Taft 850(1).

The objective of this test was to study the effects of a violent seismic base motion on a well-built structure without significant previous seismic history. For that purpose, the Taft signal was amplified to yield a table motion with peak acceleration of 0.5 to 0.6g, which according to the experience gained with the first structure tested would be strong enough to produce significant damage on the specimen.

The lateral floor displacement response of the structure during this test is presented in Figure 5.10. It shows noticeable differences from the
displacement response during the previous run, indicating the presence of significant nonlinear behavior.

The most relevant feature of the behavior of the frame revealed by this graph is that in this case the structure did not oscillate with respect to a fixed position ("equilibrium" configuration.) The position of the "center" of oscillation varied during the first half of the test, but it stabilized about 15-seconds after the beginning of the base excitation, showing that the bottom story suffered a permanent deformation with respect to its original position on the shaking table. The fact that, as in the previous run, both floors oscillated in phase, following similar displacement patterns shows that the nonlinear effects occurred mainly in the first story members, and that the structure can still be considered (globally) as a single degree of freedom system.

In addition, it is possible to observe an increase in the period of the oscillations at the end of the test with respect to the initial period, which is evidence of significant stiffness deterioration.

In order to study the actual force-deformation developed by the specimen during this test, the time histories of the second story drift (the first story drift is the displacement of the first floor with respect to the table) and the interstory shears have been computed and plotted.

Figure 5.11 shows the variation of the second story drift during the test. It can be described as an "irregular" oscillatory motion (compared with a sinusoid, or with the drift response of the structure during run W1.) There is no indication of significant displacement of the center of the oscillations, therefore no permanent drift was produced. However, the irregularity of the time history curve indicates the nonlinearity of the response.

The interstory shear time histories can be seen in Figures 5.12 (bottom story) and 5.13 (top story). The top story shear curve seems to have more
high frequency components than the corresponding bottom story curve. A possible explanation for this phenomenon is that the small second modal component (if it is still possible to describe the system in these terms) is more noticeable in the acceleration response than in the displacement response.

The interstory shear versus drift relationships developed by the specimen have been plotted on Figures 5.14 and 5.15 for the bottom and top stories, respectively. They show, as expected, a significant nonlinear hysteretic behavior, especially in the first story. In order to observe with greater detail the force-deformation response of the structure, these curves have been presented in consecutive five second intervals for the whole duration of the test, and then for 1-second intervals during the "strongest" part of the shaking (in Figures 5.16 and 5.17(a) through(f) for the bottom story and in Figures 5.18 and 5.19(a) through(f) for the top story.)

The behavior of both stories can be compared in Figure 5.20, which shows their shear-drift relationship during the time interval 5 to 10 seconds after the beginning of the test.

The main features of the response of the specimen are clearly demonstrated in the mentioned figures. For example, it is evident that the frame suffered a significant lateral stiffness degradation, caused by the occurrence of a few cycles of large inelastic deformation during the first 10 seconds of shaking. Afterwards, its behavior became more regular, ("almost" linear) but with "pinched" force-deformation curve indicative of the occurrence of undesirable phenomena (in earthquake resistant construction) such as deterioration of bond between steel reinforcement and concrete, which is responsible for the slippage of the rebars as the cracks on the surrounding concrete open and close.

It is also evident that most of the energy input to the structure through the shaking table motion was dissipated by the bottom story members, as demonstrated by Figure 5.20 and by the distribution of structural damage after the
test: the steel reinforcement of the first story columns was strained beyond its yield point near the columns end zones; noticeable flexure cracks appeared at both ends of the first story columns, the bottom end of the second story columns, and in the longitudinal girder near the column joints. Minor cracking was also observed on top of the first floor slab; and, of course, the permanent drift of the first story was evident.

Now the performance of the test structure will be evaluated in terms of the "adequacy" of its seismic behavior. This seems a difficult task, in the sense that there is not an universally accepted quantifiable parameter to measure quality of structural response. However, the fact that the structure "survived" a test comparable to a major seismic event not only without collapsing, but remaining in a "repairable" condition even after a similarly strong "aftershock" is the best proof of the adequacy of its performance and therefore of its design.

Some other factors can be pointed out which also show that the test specimen had indeed desirable structural characteristics, like, for example, its ability to dissipate seismic energy through stable hysteretic behavior, and its capacity for developing large inelastic deformation. With respect to the last concept, a rough attempt to quantify it is presented in Figure 5.21. This graph shows that the maximum lateral bottom story drift is about three times the "yield" drift (as defined in Figure 2.11); similarly, the maximum top story drift is about two times this "yield" drift. The parameter "inter-story drift ductility" $\mu_3^{[23]}$ reached a value of about 3 for the bottom story and about 2 for the top story. These numbers represent in a very crude (but very popular) way a lower bound for the capacity of the frame to withstand lateral inelastic deformations, and, from a practical point of view, they are representative of "adequate" design.

The correlation between expected and observed performance, and between design and "actual" seismic excitations is summarized in Figures 5.21 and 5.22.
in which the interstory shear-drift relationships as predicted by the elasto-
plastic analysis can be compared with the envelopes of the actual story shear-
derift relationship developed by RCF2 during the test under consideration. The
levels of "ultimate" interstory shear corresponding to the 1970 UBC (used in
the design of RCF2) and the 1979 UBC Codes (1.4E) are also shown, for compari-
son with the analytical ("collapse") and experimental story shears experienced
by the structure. As a reference for stiffness comparison, a straight line
representing the initial lateral stiffness of the frame also is drawn in these
figures.

The main conclusions that can be drawn from these figures are:

1) The strength of the structure computed using specified material
properties and Code-related procedures is substantially below the capacity shown
by the structure during the test.

2) The design ultimate lateral loads (1.4E) are disproportionately low
with respect to the inertia forces induced over the structure by the dynamic
base excitation. The lateral loads proposed by the Code are in this case,
totally unrealistic, in the sense that if the shear capacity provided to the
structure had been equal to the design ultimate shears, the behavior of
the structure would have been highly unsatisfactory under the (simulated)
seismic excitations.

3) As expected from results of previous tests, the lateral stiffness of
the structure, corresponding to gross section geometry and elastic modulus com-
puted using the formula proposed by the Code, is unrealistically large, as
compared with the stiffness shown by the structure, even at the initial stages
of the test.

These results appear as a consequence of the assumptions and limitations
of the analytical techniques and of the design philosophies involved in the
design process. For example, it is obvious that the computation of stiffness
based on gross section is inconsistent with the very nature of reinforced con­crete behavior; therefore the discrepancy in the analytical and experimental lateral stiffness values are not surprising. In the case of the prediction of lateral strength, the "upper bound" found using the code formulations (specified concrete strength, 25% increase over specified reinforcement strength, and no capacity reduction factor) proved to be significantly lower than the capacity demonstrated by the structure during the test (which is in turn a lower bound for the actual structural capacity.) This fact demonstrates the conservatism in the design procedures, and thus their limitation for accurate prediction of structural strength.

Finally, the fact the structure showed a large overcapacity with respect to the design ultimate loads can be due to the conservatism of the design tech­niques (which produces members with larger strength than the "target" design value) and to the fact that the design ultimate gravity forces are "dominating" in the computation of the section capacity demand, therefore when actual (non­magnified) gravity loads are acting there is a "reserve" of structural capacity.

Before presenting the concluding remarks, the performance of RCF2 during the "aftershock" shaking table test is examined in the next section.

5.4 Run W3: Taft 850(2)

A severe "aftershock" was simulated in this test, by repeating the shaking table motion with the same "span" setting as in the previous run. The resulting base excitation was slightly stronger than in the previous case (peak acceleration of 0.65g versus 0.57g) but with the same general frequency and duration characteristics.

The response of the structure is presented in Figures 5.23 to 5.33, which are arranged in the same sequence as for run W2 (Figures 5.10 to 5.20.) In addition, Figures 5.34 and 5.35 show the response of the test specimen (as
characterized by its force-deformation curves) to the last two tests (runs W2 and W3), in five-second intervals, to facilitate comparison.

The information contained in these figures can be summarized briefly, by comparing the response of the test specimen to these similar excitations.

In general, the response of RCF2 during run W3 has the same characteristics as in the previous run: the structure suffered several cycles of significant inelastic deformation at the beginning of the test, mainly in the bottom story, followed by a more "regular" type of response. Therefore the structure, even after having been significantly damaged by the first strong test, showed that its strength and deformation capacities were not diminished. It should be mentioned however, that due to the fact that the structure was already damaged before test W3, its degradation in lateral stiffness was not so dramatic as compared to that in run W2 (it did not have as much stiffness to lose.) Also the effect of shear cracking, bond deterioration, and concrete spalling were more important this time. These undesirable phenomena contributed to the more pronounced "pinched" characteristics of the force-deformation relationship shown by the structure in this test.

Another interesting fact is that the top story behavior was similar in both runs (Figure 5.35), since most of the damage (source of nonlinearities) was concentrated in the bottom story members.

To summarize, the performance of the test structure during this second very strong excitation was satisfactory, since it showed a great capacity to dissipate energy through ductile behavior.

5.5 Conclusions

The information obtained during the earthquake simulator experimentation proved to be extremely useful for the study of the seismic performance of the test specimen. It provided significant insight on the limitations and
reliability of "standard" analytical techniques and the accepted philosophies involved in design of a seismic-resistant structural system.

The most important conclusion that can be drawn from the test results is that even though the Code requirements for seismic safety of framed reinforced concrete structures contain inconsistencies with respect to the specification of the (design) seismic excitation, the resulting design proves to be effective. This is due, of course, to the very strict reinforcement detailing requirements, which guarantee ductile, flexural behavior of the structural members, as was observed during the experiments.

Another important point that deserves to be mentioned is that in order to predict with satisfactory accuracy the dynamic behavior of reinforced concrete structures, it is necessary to utilize more sophisticated and realistic analysis and modelling techniques than those employed in the "standard practice" of structural design.
FIG. 5.1 DISPLACEMENT RESPONSE OF RCF2 DURING RUN W1 (RELATIVE TO TABLE)
SOLID LINE - BOTTOM FLOOR; DASHED LINE - TOP FLOOR

RELATIVE DISPLACEMENT (IN.)

TIME (SEC.)

RCF2 RUN W1 TAFT 100

25.0 20.0 15.0 10.0 5.0
FIG. 5.3 BOTTOM STORY SHEAR (FROM ACCELERATION RECORDS). RUN W1
FIG. 5.4 TOP STORY SHEAR (FROM ACCELERATION RECORDS). RUN W1
FIG. 5.5 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP. RUN #1
FIG. 5.6 TOP STORY SHEAR VS. DRIFT RELATIONSHIP. RUN W1
FIG. 5.7 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W1
FIG. 5.8 TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W1
FIG. 5.9 ACTUAL VS. "GROSS SECTION" LATERAL STIFFNESS. RUN M1

(a) Bottom Story Drift (in.)
Time = 10.0 - 15.0 sec.
RCF2 RUN M1 TAFT100

(b) Top Story Drift (in.)
Time = 10.0 - 15.0 sec.
RCF2 RUN M1 TAFT100

AFigure 5.9 shows a comparison of actual lateral stiffness with the "Gross Section" formulation. The graphs depict the bottom and top story drifts with shear in kips, highlighting the differences between average and initial stiffness values.

Top Story Shear (kips):
- AVERAGE
- GROSS SECTION
- INITIAL

Bottom Story Shear (kips):
- AVERAGE STIFFNESS
- FROM "GROSS SECTION" FORMULATION
- INITIAL STIFFNESS
FIG. 5.10 DISPLACEMENT RESPONSE OF RCF2 DURING RUN W2 (RELATIVE TO TABLE)

SOLID LINE - BOTTOM FLOOR;
DASHED LINE - TOP FLOOR.
FIG. 5.11 TOP STORY DRIFT. RUN W2
FIG. 5.12 BOTTOM STORY SHEAR (FROM ACCELERATION RECORD). RUN W2.
FIG. 5.13 TOP STORY SHEAR (FROM ACCELERATION RECORDS). RUN W2
FIG. 5.14 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP. RUN W2.
FIG. 5.15 TOP STORY SHEAR VS. DRIFT RELATIONSHIP, RUN W2
FIG. 5.16 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W2
FIG. 5.16(Cont.) BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W2
FIG. 5.16 (CONT.) BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS: RUN W2
FIG. 5.17 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING STRONGEST SHAKING OF RUN W2
FIG. 5.18 TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W2
FIG. 5.18 (CONT.) TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W2
FIG. 5.1B (CONT.) TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W2

RCF2 - RUN W2 TAFT 950(1)

TIME = 20.0 - 25.0 SEC.

TIME = 25.0 - 30.0 SEC.
FIG. 5.19. TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING STRONGEST SHAKING OF RUN W2
FIG. 5.20 COMPARISON BETWEEN BOTTOM AND TOP STORY BEHAVIOR DURING PART OF RUN W2
FIG. 5.21 TEST RESULTS VS. EXPECTED PERFORMANCE. BOTTOM STORY. RUN W2
FIG. 5.22 TEST RESULTS VS. EXPECTED PERFORMANCE. TOP STORY. RUN W2

STORY SHEAR-DRIFT ENVELOPE FOR RUN W2 (TAFT 850(1))

- \(V_{\text{max}} = 14.46 \text{k} \)
- \(V_u = 11.55 \text{k} \)
- \(V_u = 1.4E + 1.645 \text{k} \)
- \(V_u = 1.4E + 2.75 \text{k} \)

- **UBC 1979** \(V_u = 1.4E + 2.75 \text{k} \)
- **UBC 1979** \(V_u = 1.4E + 1.645 \text{k} \)
- **UBC 1979** \(V_u = 1.4E + 1.645 \text{k} \)
- **UBC 1979** \(V_u = 1.4E + 1.645 \text{k} \)

FROM ELASTO-PLASTIC ANALYSIS

- \(f_c = 4.0 \text{ psi} \)
- \(f_y = 4.0 \text{ psi} \)

LATERAL STIFFNESS BEFORE RUN W2

TOP STORY DRIFT (INCHES)

TOP STORY SHEAR (KIPS)
FIG. 5.23 DISPLACEMENT RESPONSE OF RCF2 DURING RUN W3 (RELATIVE TO TABLE)

SOLID LINE - BOTTOM FLOOR; DASHED LINE - TOP FLOOR

RELATIVE DISPLACEMENT (IN.)

RCF2 RUN W3 TAFT 850(2)

TIME (SEC.)

30.0 25.0 20.0 15.0 10.0 5.0

0 1 2 3 4 5 6 7 8 9 10

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0
FIG. 5.24 TOP STORY DRIFT. RUN W3

RCF2 RUN W3 TAFT850(2)
FIG. 5.25 BOTTOM STORY SHEAR (FROM ACCELERATION RECORDS). RUN W3
FIG. 5.26 TOP STORY SHEAR (FROM ACCELERATION RECORDS). RUN W3
FIG. 5.27 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP, RUN W3
FIG. 5.28 TOP STORY SHEAR VS. DRIFT RELATIONSHIP. RUN W3
FIG. 5.29 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
FIG. 5.29 (CONT.) BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
FIG. 5.29 (CONT.) BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
FIG. 5.30 BOTTOM STORY SHEAR VS. DRIFT RELATIONSHIP DURING STRONGEST SHAKING ON RUN W3

a) TIME = 5.0 - 6.0 SEC.
b) TIME = 6.0 - 7.0 SEC.
c) TIME = 7.0 - 8.0 SEC.
d) TIME = 8.0 - 9.0 SEC.
e) TIME = 9.0 - 10.0 SEC.

BOTTOM STORY DRIFT (IN.)

BOTTOM STORY SHEAR (KIPS)
FIG. 5.31 TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
FIG. 5.31 (CONT.) TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
RCF2 RUN W3 TAF 850(2)

TOP STORY DRIFT (IN.)
TIME = 10.0 - 15.0 SEC.

TOP STORY DRIFT (IN.)
TIME = 15.0 - 20.0 SEC.

TOP STORY SHEAR (KIPS.)

TOP STORY SHEAR (KIPS.)
FIG. 5.31(CONT.) TOP STORY SHEAR VS. DRIFT RELATIONSHIP DURING 5-SEC INTERVALS. RUN W3
FIG. 5.33 COMPARISON BETWEEN BOTTOM AND TOP STORY BEHAVIOR DURING PART OF RUN W3
FIG. 5.34 RCF2 BOTTOM STORY PERFORMANCE DURING RUNS W2 AND W3
FIG. 5.34 (CONT.) BCF2 BOTTOM STORY PERFORMANCE DURING RUNS W2 AND W3
FIG. 5.35 (CONT.) RCF2 TOP STORY PERFORMANCE DURING RUNS W2 AND W3
6. SUMMARY OF CONCLUSIONS

6.1 Initial Remarks

In accordance with the objectives of this investigation, the different phases of a particular research program on the seismic response of reinforced concrete buildings were critically evaluated. As a result, a number of significant conclusions were obtained, and presented at the end of each chapter.

In order to provide an overall view of what has been learned through the different studies, these conclusions are restated and summarized in the next sections. However, it is important to emphasize that caution must be exercised in the interpretation of the results presented, since in many cases they are a consequence of the particular characteristics of the structural system under study, and therefore, they are applicable only to systems with similar characteristics. For example, test findings about the response behavior of RCF2 cannot be freely extrapolated to predict behavior of structures in which non-structural elements could play an important role in the response, even if all the other conditions are similar.

Finally, the results presented are used to point out areas in which more research needs to be done, to increase the "state of the art" knowledge on seismic response of structural systems.

6.2 Restatement of Conclusions

The most important findings of this investigation, which were listed in preceding chapters of this report, have been selected and restated in the following paragraphs.

6.2.1 Design of Test Specimen

In this study the objective was to simulate a "real life" building, designed in accordance with the current seismic resistant Code specifications.
Due to physical limitations in the testing equipment, to economic considerations, and for testing convenience and safety, important modifications had to be made on the prototype building to obtain the actual test specimen.

In spite of these modifications, it was possible to maintain in the test structure the most significant structural characteristics of the prototype. In particular the global stiffness, strength, and vibratory properties were satisfactorily preserved, thus guaranteeing that the response of the test structure adequately reflected that of the prototype.

6.2.2 Selection of Seismic Excitation

There exist many possibilities of simulating seismic excitation using the shaking table system. In this study, it has been shown that by adequate, modification (by scaling in time and/or amplitude) of existing seismic records, it is feasible to generate table input signals which are representative of ground motions corresponding to seismic events of specified intensity on a diversity of local soil conditions.

However, it is necessary to be aware of the limitations imposed by the earthquake simulator system, such as, for example, the fact that only one horizontal direction of motion can be simulated together with the vertical, and that the table-specimen interface obviously affects the way in which the seismic energy is input into the structure.

6.2.3 Structural Response

The data obtained during the shaking table tests provide extremely valuable information about the response of the structural specimen under study, but it must be acknowledged that its quality and usefulness is directly related to the data acquisition characteristics and the instrumentation set-up on the specimen. This is a point which has not been thoroughly discussed in this study, but it is nevertheless worth mentioning.
In addition, as already expressed, it is very important to take into account that the results obtained from such data are representative of the structural system under study, when subjected to the conditions simulated on the shaking table. In other words, the extrapolation of results to other structural configurations and/or other excitations is a very delicate operation, and should be done with special care.

6.2.4 Experimental Results versus "State of the Practice"

In the case under study, the test specimen, whose design complied with strict Code requirements for seismic safety, showed excellent behavior during a succession of very strong simulated seismic motions. However, some of these Code requirements proved to be inconsistent with the seismic experience. In particular, the ultimate design lateral forces specified by the Code were shown to be disproportionately low, as compared with the inertia forces developed on the specimens during the tests. The "good" performance of RCF2 was due to the reinforcement detailing requirements of the Code which exclude the possibility of non-ductile behavior.

Similarly, the calculated results obtained using standard, Code-related analysis techniques, proved to be conservative and simplistic, with respect to the corresponding test results. This is particularly evident in the estimation of structural strength, stiffness and deformation capacity (ductility) which are the most critical factors in the seismic response of structures.

6.3 Final Remarks

The results obtained during the earthquake simulator testing proved to be extremely valuable for the realistic study of the seismic behavior of structural systems under seismic excitation. The importance of this kind of experiments resides in the fact that they constitute a test not only of the specimen under study but also of all the techniques and philosophies involved in its
development and of the available theories to explain its behavior.

In the case of RCF2, the test results pointed out important drawbacks of widely used techniques to predict structural performance under lateral loads, and deficiencies in the current Code specification of the seismic demands on the structure.

The complexity of the response of reinforced concrete buildings when subjected to earthquake loads was also evident from the experimental results. Clearly, there is no simple answer to the problem of prediction of seismic response of reinforced concrete structures, and a considerable effort should be made in the study of important aspects of this problem, like the action-deformation characteristics at the section, member, and structural levels, in terms of realistic descriptions of the material properties and of the seismic excitation.
LIST OF REFERENCES

8. American Concrete Institute, "Building Code Requirements for Reinforced Concrete, (ACI 318-63)," Detroit, Michigan, June 1963.

10. American Concrete Institute, "Building Code Requirements for Reinforced Concrete (ACI 318-71)," Detroit, Michigan, 1970.

APPENDIX A

DESIGN OF ORIGINAL TEST STRUCTURE (PROTOTYPE)
A.1 Analysis

A.1.1 Loads

Assume the weight of reinforced concrete to be 0.150 kip/cu.ft.

a) Dead Load

<table>
<thead>
<tr>
<th>Description</th>
<th>Bottom Story</th>
<th>Top Story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab 4 in. thickness</td>
<td>0.050 kip/sq.ft.</td>
<td>0.050 kip/sq.ft.</td>
</tr>
<tr>
<td>Ceiling (10 lb./cu.ft. x 1.2 in.)</td>
<td>0.001 kip/sq.ft.</td>
<td>0.001 kip/sq.ft.</td>
</tr>
<tr>
<td>Floor (10 lb./cu.ft. x 1.2 in.)</td>
<td>0.001 kip/sq.ft.</td>
<td>---</td>
</tr>
<tr>
<td>Roofing</td>
<td>---</td>
<td>0.010 kip/sq.ft.</td>
</tr>
</tbody>
</table>

Exterior walls (on transverse girders*)

- Hollow brick wall: 0.200 kip/ft.
- Glass: 0.007 kip/ft.

Permanent partitions (on longitudinal girders*)

- 0.140 kip/ft.

Weight of columns and girders for both stories:

Assume for both stories: 9.50 kips

b) Live Load

<table>
<thead>
<tr>
<th>Description</th>
<th>Bottom Story</th>
<th>Top Story</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.050 kip/sq.ft.</td>
<td>0.020 kip/sq.ft.</td>
</tr>
</tbody>
</table>

The live load at the top story will not be considered in the vertical load to be acting at the same time as the earthquake loads.

c) Earthquake Loads

Consider the total dead load

Top story: 0.061 kip/sq.ft. x 17 ft. = 24.9 kip

* The term transverse girders will be used to denote the girders along the axes perpendicular to the ground motion direction. Longitudinal girders will be the ones along the axes parallel to the ground motion direction.
Bottom story 0.052 kip/sq.ft. x 17 ft. x 24 ft. = 21.2 kip
0.207 kip/ft. x 24 ft. x 2 = 9.9 kip
0.140 kip/ft. x 17 ft. x 2 = 4.8 kip

Columns and girders

Base Shear \(V = ZKCW \)

\(Z = 1 \) Zone No. 3

\(K = 0.67 \) Ductile moment frame resisting the total required lateral force

\(C = 0.10 \) Two-story building

\[V = (0.67)(0.10)(70.3) = 4.7 \text{ kips} \]

\(V = 2.35 \text{ kips per frame} \)

Uniform distribution = 1.175 kips Top story

1.175 kips Bottom story

d) Distribution of loads on the girders

Use ACI 318-63 Appendix A. Method 3

\(\frac{A}{B} = 0.70 \quad w_A = 0.95 \, w \)

\(w_B = 0.05 \, w \)

Uniform distributed load on each longitudinal girder

\[w_L = 0.95 \, w \times 12 \, \text{ft} = 11.4 \, w \]

On each transverse girder

\[w_T = 0.05 \, w \times 8.5 \, \text{ft} = 0.425 \, w \]

but this load shall not be less than that of an area bounded by the intersection of 45° lines from the corners. The equivalent uniform load per linear
\[w_T = \frac{w \times 12 \text{ ft.}}{3} = 4w \]

However this value will not be used since the building will be analyzed in the direction of the ground motion only.

i) Uniformly distributed loads on the longitudinal girders.

Assume a 8 in. x 16 in. section (slab thickness included)

\(w \) (own weight) = 0.150 \(\times \frac{8 \times 12}{144} \) = 0.100 kip/ft.

Bottom Story

Dead load \(w_D = 11.4 \times 0.052 + 0.14 + 0.10 = 0.832 \) kip/ft.

Live load \(w_L = 11.4 \times 0.050 \) = 0.570 kip/ft.

Top Story

Dead load \(w_D = 11.4 \times 0.061 + 0.10 \) = 0.794 kip/ft.

Live load \(w_L = 11.4 \times 0.020 \) = 0.228 kip/ft.

When live load is present at the same time as earthquake loads

\(W_{LE} = 0 \) kip/ft.

ii) Uniformly distributed loads on the transverse girders (only to compute the additional axial load acting on the columns)

Assume a 8 in. x 16 in. section (slab thickness included)

\(w \) (own weight) = 0.100 kip/ft.

Bottom Story

Dead load \(w_D = 0.425 \times 0.052 + 0.207 + 0.10 = 0.329 \) kip/ft.

Live load \(w_L = 0.425 \times 0.050 \) = 0.021 kip/ft.

Top Story

Dead load \(w_D = 0.425 \times 0.061 + 0.10 = 0.126 \) kip/ft.

Live load \(w_L = 0.425 \times 0.020 \) = 0.0085 kip/ft.
When live load is present at the same time as earthquake loads

\[w_{LE} = 0 \text{ kip/ft.} \]

e) Load cases to be considered

Dead Load (D)

Live Load (L)

Live Load combined with Earthquake Load (LE)

Earthquake Load (E)

A.1.2 Moment Diagrams

To compute the relative stiffnesses assume 8 in. x 12 in. sections for the columns.
\[I_{\text{COL}} = \frac{1}{12} (8) (12)^3 = 1152 \text{ in.}^4 \]

\[K_o = \frac{I}{L} = 10.7 \text{ in.}^3 \]

For the girder let us consider a T-beam action. The maximum flange width allowed by the ACI Code (ACI 318-71 Section 8.72) is one fourth of the span length, that is 51 in.

\[y^* = \frac{(43)(4)(2) + (8)(16)(8)}{(43)(4) + (8)(16)} = 4.56 \text{ in.} \]

\[I_{\text{GIR}} = \frac{1}{12} (43)(4)^3 + (43)(4)(2.56)^2 + \frac{1}{12} (8)(16)^3 + (8)(16)(3.44)^2 = 5602 \text{ in.}^4 \]

\[K_G = \frac{I}{L} = 27.5 \text{ in.}^3 \]

Therefore

\[K_G = 2.57 K_o \quad \frac{1}{2} K_G = 1.29 K_o \quad \frac{3}{2} K_G = 3.87 K_o \]

The moment diagram values were computed using moment distribution. Values are expressed in ft-kip and the moments indicated in the diagram on the following page are assumed to be positive.
A.1.3 Combination of Loads for Required Strength

The ACI Code (Sec. 9.3) requires the design to be made for the following ultimate strength conditions

\[U_{A1} = 1.4D + 1.7L \]

\[U_{A2} = 0.75(1.4D + 1.7LE + 1.87E) \]

\[U_{A3} = 0.9D + 1.43E \]
The UBC Code (Sec. 2630) requires

\[U_{\text{Bl}} = 1.40 \, (D + LE + E) \]

\[U_{\text{B2}} = 0.9 \, D + 1.25 \, E \]

When these values were computed \(U_{\text{Al}} \) and \(U_{\text{Bl}} \) proved to govern the design for strength, and are shown below for the different sections.

a) Flexural Moments. (Values in Ft-kip; sign as indicated in A.1.2)

<table>
<thead>
<tr>
<th></th>
<th>COLUMNS</th>
<th>GIRDER</th>
<th></th>
<th>COLUMNS</th>
<th>GIRDER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>BA</td>
<td>BC</td>
<td>CB</td>
<td>BD</td>
</tr>
<tr>
<td>(U_{\text{Al}})</td>
<td>6.88</td>
<td>13.73</td>
<td>20.09</td>
<td>19.64</td>
<td>33.84</td>
</tr>
<tr>
<td>(U_{\text{Bl}})</td>
<td>14.50</td>
<td>19.90</td>
<td>20.60</td>
<td>19.55</td>
<td>40.60</td>
</tr>
</tbody>
</table>

b) Shear Force. (Values in kips; sign corresponds to positive flexural moments)

<table>
<thead>
<tr>
<th></th>
<th>COLUMNS</th>
<th>GIRDER</th>
<th></th>
<th>COLUMNS</th>
<th>GIRDER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
<td>Top Story</td>
<td>Bottom Story</td>
</tr>
<tr>
<td>(U_{\text{Al}})</td>
<td>2.29</td>
<td>4.52</td>
<td>18.14</td>
<td>12.75</td>
<td></td>
</tr>
<tr>
<td>(U_{\text{Bl}})</td>
<td>3.82</td>
<td>4.35</td>
<td>17.85</td>
<td>9.93</td>
<td></td>
</tr>
</tbody>
</table>
c) **Axial Force.** (Values in kips; positive values denote tension, negative denote compression)

In these computations the shear transmitted by both the longitudinal and transverse girder has been considered.

<table>
<thead>
<tr>
<th></th>
<th>COLUMNS</th>
<th>GIRDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Story</td>
<td>Top Story</td>
</tr>
<tr>
<td>UL</td>
<td>-39.14</td>
<td>-15.04</td>
</tr>
<tr>
<td>UB</td>
<td>-35.78</td>
<td>-12.05</td>
</tr>
</tbody>
</table>

A.2 **Design for Strength Conditions**

A.2.1 **Basic Assumptions**

Materials Intermediate Grade Steel $f_y = 40$ ksi
$E_s = 29000$ ksi

Concrete $f'_c = 4$ ksi
$E_c = \frac{57000}{\sqrt{4000}} = 3610$ ksi

Sections Columns 8 in. x 12 in.
Girders 8 in. x 16 in. (14 in. slab included)

A.2.2 **Bottom Story Column**

Slenderness effect (ACI Section 10.11). Consider most unfavorable direction (transverse direction)

$$l_u = 9 \text{ ft}, \quad k = 1.4, \quad r = 0.30 \text{ (8 in.)} = 2.4 \text{ in.}$$

$$\frac{kl_u}{r} = 1.4 \left(\frac{9(12)}{2.4}\right) = 63 > 22$$

c = 1.0 \quad M \text{ (dead load alone)} = 7.0 \text{ ft-kip}

\beta_d = \frac{7.0}{19.90} = 0.351

I_g = \frac{1}{12} (12) 8^3 = 512 \text{ in.}^4

EI = \frac{E_c I_g}{2.5} \cdot \frac{1}{1 + \beta_d} = \frac{3610 \times 512}{2.5 \times 1.351} = 549 \times 10^3 \text{ in.}^2 \cdot \text{kip}

P_c = \frac{\pi^2 EI}{(k L_u)^2} = \frac{\pi^2 \times 549 \times 10^3}{(1.4 \times 9 \times 12)^2} = 238 \text{ kip}

\phi \text{ factor: } \frac{h - d' - d_s}{h} = \frac{12 - 4.8}{12} = 0.60 < 0.70

Then \phi = 0.70

\delta = c_M / (1 - \frac{P_u}{\phi P_c}) = 1 / (1 - \frac{39.14}{0.70 \times 238}) = 1.31

Balance Condition

P_B = \phi(0.85 f'_c b k l c_b)

P_B = 0.70 (0.85)^2 12 \times 8 \frac{87000 \times (9.6)}{127000} = 106 \text{ kips} > 39 \text{ kips}

Therefore the ultimate capacity is controlled by tensile yielding of the steel.

Design for U_B1

M = 19.90 \text{ ft-kip} \quad M_c = 1.31 \times 19.90 = 26.1 \text{ ft-kip}

P = 35.78 \text{ kip}
\[P_u = \phi \left[0.85 \frac{f_c'}{c} \left(-p + 1 - \frac{e'}{d'} + \sqrt{(1 - \frac{e'}{d'})^2 + e_p (m' - \frac{d'}{d} + \frac{e'}{d})} \right) \right] \]

\[e = \frac{26.10}{35.78} \quad 12 = 8.75 \text{ in.} \quad e' = 3.60 + 8.75 = 12.35 \text{ in.} \]

\[d = 9.6 \text{ in.} \quad d' = 2.4 \text{ in.} \quad b = 8 \text{ in.} \]

\[m' = m - 1 = \frac{f_y}{0.85 \frac{f_c'}{c}} - 1 = 10.76 \]

Limits of reinforcement (ACI Section A.6.1)

Minimum \(A_s = 0.01 \cdot bd = 0.768 \text{ in.}^2 \)

Maximum \(A_s = 0.06 \cdot bd = 4.61 \text{ in.}^2 \)

Consider 4#7 \(A_s = A'_s = 1.20 \text{ in.}^2, \quad p = \frac{A_s}{bd} = 0.0156 \)

\(p_u = 56.6 \text{ kips} \quad > 35.78 \text{ kips} \)

In fact, 2#6 are enough, but the top story column will need 2#7 and it is preferable to design the bottom story column with at least the same strength as the top story.
Check for U_a Condition

\[M = 13.73 \text{ ft-kip} \]
\[M_c = 1.31 \times 13.73 = 18 \text{ ft-kip} \]
\[P = 39.14 \text{ kip} \]
\[
\begin{align*}
e &= \frac{18}{39.14} = 0.46 \text{ in.} \\
e' &= 3.60 + 5.52 = 9.12 \text{ in.}
\end{align*}
\]
\[P_u = 85.27 \text{ kips} > 39.14 \text{ kips} \]

Check Condition U_{A3}: large moment and small axial load

\[U_{A3} = 0.9 D + 1.43 E \]
\[M = 11.47 \text{ ft-kip} \]
\[M_c = 1.31 \times 11.47 = 15.05 \text{ ft-kip} \]
\[P = 19.05 \text{ kip} \]
\[
\begin{align*}
e &= \frac{15.05}{19.05} \times 12 = 9.50 \text{ in.} \\
e' &= 13.1 \text{ in.}
\end{align*}
\]
\[P_u = 49.85 \text{ kips} > 19.05 \text{ kips} \]

It has to be mentioned that since
\[P_e \leq 0.4 P_B = 42.4 \text{ kip} \]

this column could have also been designed as a flexural member (ACI)

Design for Shear (ACI Chapter 11)

\[\phi = 0.85 \quad V = 3.82 \text{ kip} \quad M = 19.90 \text{ ft-kip} \quad P = 35.78 \text{ kip} \]

Minimum web reinforcement for columns (UBC 2630, ACI A.6)

Minimum bar size: #3

Maximum spacing: 4 in. \#3 @ 4 in.

Nominal shear stress
\[
\begin{align*}
v_u &= \frac{V_u}{\phi bd} \\
v_u &= \frac{3820}{0.85 \times 8 \times 9.6} = 58.5 \text{ psi}
\end{align*}
\]
Shear carried by concrete

\[\rho_w = \frac{A_s}{b_d} = 0.0156 \]

\[M = M_u - N \frac{4h-d}{8} = 19.90 \times 12 - 35.78 \frac{48-9.6}{8} = 67 \text{ in.-kip} \]

\[v_c = 1.9 \sqrt{\frac{4000}{48-9.6}} = 141.5 \text{ psi governs} \]

or \[v_c = 3.5 \sqrt{\frac{4000}{48-9.6}} = 221 \text{ psi} \]

or \[v_c = 2 \left(1 + 0.0005 \times \frac{35780}{8 \times 12} \right) \sqrt{4000} = 150 \text{ psi} \]

or \[v_c = 3.5 \sqrt{\frac{4000}{1 + 0.002 \times \frac{35780}{8 \times 12}}} = 292 \text{ psi} \]

Therefore

\[v_u < 0.50 v_c \]

and according to ACI Code we would not need to use shear reinforcement. However we will use the minimum quantity prescribed by UBC Section 2630.

Within 18 in. from the face of each joint, the spacing of the stirrups will be reduced to 2 in.

A.2.3 Top Story Column

Slenderness effect

\[\frac{k_{lu}}{r} = 63 > 22 \]

\[M \text{ (dead load alone)} = 12.06 \text{ ft-kip} \]

\[\beta_d = \frac{12.06}{20.60} = 0.587 \]

\[EI = 549 \times 10^3 \frac{1.35}{1.59} = 465 \times 10^3 \text{ in.}^2\text{-kip} \]

\[p_c = 238 \frac{1.35}{1.59} = 202 \text{ kips} \]
\(\phi = 0.70 \quad P_u = 15.04 \text{ kips} \)

\[\delta = 1/(1 - \frac{15.04}{0.70 \times 202}) = 1.12 \]

Balanced Condition \(P_B = 106 \text{ kip} > 15 \text{ kips} \)

Then the ultimate capacity is controlled by tension.

Limits of reinforcement

Use 4#7 \(A_s = A'_s = 1.20 \text{ in.}^2 \) \(p = 0.0156 \)

Design for \(U_{A1} \)

\[M = 20.09 \text{ ft-kip} \quad M_c = 1.12 \times 20.09 = 22.5 \text{ ft-kip} \]

\(P = 15.04 \text{ kip} \)

\[e = \frac{22.5}{15.04} \times 12 = 18 \text{ in.} \quad e' = 21.6 \text{ in.} \]

\(P_u = 19.9 \text{ kips} > 15.04 \text{ kips} \)

Check for \(U_{B1} \)

\[M = 20.60 \text{ ft-kip} \quad M_c = 1.12 \times 20.60 = 23 \text{ ft-kip} \]

\(P = 12.05 \text{ ft-kip} \)

\[e = \frac{23}{12.05} \times 12 = 23 \text{ in.} \quad e' = 26.6 \text{ in.} \]

\(P_u = 13.5 \text{ kips} > 12.05 \text{ kips} \)

Check Condition \(U_{A2} \)

\[U_{A2} = 1.05 \text{ D} + 1.28 \text{ LE} + 1.4E \]

\[M = 17.21 \text{ ft-kip} \quad M_c = 1.12 \times 17.21 = 19.3 \text{ ft-kip} \]

\(P = 9.18 \text{ kip} \)
\[e = \frac{19.3}{9.18} \times 12 = 25.2 \text{ in.} \quad M_c = 1.12 \times 17.21 = 19.3 \text{ ft-kip} \]

\[P_u = 12.6 \text{ kip} > 9.18 \text{ kip} \]

Design for Shear

\[\phi = 0.85 \quad V = 4.52 \text{ kip} \quad M = 20.09 \text{ ft-kip} \quad P = 15.04 \text{ kip} \]

Minimum web reinforcement \#3 @ 4 in.

Nominal shear stress

\[v_u = \frac{4520}{0.85 \times 8 \times 9.6} = 69.2 \text{ psi} \]

Shear carried by concrete

\[M_m = 20.09 \times 12 - 15.04 \times 4.8 = 169 \text{ in.-kip} \]

\[v_c = 1.9 \sqrt{4000 + 2500 \times 0.0156 \frac{4.52 \times 9.6}{169}} = 130 \text{ psi governs.} \]

Therefore \(v_u < v_c \) and we can use the minimum shear reinforcement

\[A_v = 50 \frac{b \cdot s}{f_y} = 50 \frac{8 \times 4}{40000} = 0.040 \text{ in.}^2 \]

The #3 bar specified is enough

Within 18 in. from the face of each joint, the spacing of the stirrups will be reduced to 2 in.

A.2.4 Bottom Story Girder

Midspan

\[U_{A1}: \quad M = 43.40 \text{ ft-kip} \quad V = 0 \quad P = 23 \text{ kip (tension)} \]

Column face

\[U_{A1}: \quad M = 33.84 \text{ ft-kip} \quad V = 18.14 \text{ kip} \quad P = 2.23 \text{ kip (tension)} \]

\[U_{B1}: \quad M = 40.60 \text{ ft-kip} \quad V = 17.85 \text{ kip} \quad P = 0.53 \text{ kip (tension)} \]
\(\phi \) factor (axial tension) \(\phi = 0.90 \)

Influence of axial tension

\(A_g \) (T beam) = \(8 \times 16 + 43 = 300 \) in.\(^2\)

stress = \(\frac{2330}{300} = 7.8 \) psi small enough to be neglected

Limits of reinforcement (ACI Section A.5)

Minimum

\[
A_s = 0.005 \times 8 \times 13.6 = 0.543 \text{ in.}^2
\]

Maximum

Balanced Condition

\[
A_s = 0.50 \times 0.0495 \times 8 \times 13.6 = 2.69 \text{ in.}^2
\]

Midspan

Depth of neutral axis

\[
y^* = 1.18 \frac{A_s f_y}{k_1 b f'_c}
\]

Assume 2\#7, \(A_s = 1.20 \) in.\(^2\)

\[
y^* = 1.18 \frac{1.20 \times 40}{0.85 \times 51 \times 4} = 0.33 \text{ in.} < 4 \text{ in.}\]
Top reinforcement

\[A = \frac{2 \times 2.4 \times 51}{4} = 61.2 \text{ in.}^2 \quad f_s = 24 \text{ ksi} \]

Design for shear

\(\phi = 0.85 \)

Minimum web reinforcement \#3 @ 6 in.

Nominal shear stress

\[\nu_u = \frac{12750}{0.85 \times 8 \times 13.6} = 138 \text{ psi} \]

Shear carried by concrete

\[\nu_c = 2\sqrt{4000 \left(1 + 0.0005 \frac{4520}{8 \times 16}\right)} = 129 \text{ psi governs} \]

Shear reinforcement

\[A_v = \frac{(138 - 129) \times 8 \times 6}{40000} = 0.011 \text{ in.}^2 \]

Therefore the minimum reinforcement is enough.

Within 34 in. from the face of the columns, the spacing of the stirrups will be reduced to 3 in.

A.3 Serviceability Requirements

Use ACI Section 9.5

Minimum thickness of girders \(\frac{17 \times 12}{16} = 12.75 \text{ in.} \)
\[\phi = 0.90 - \frac{4.52}{51.2} 0.20 = 0.88 \]

Influence of axial compression (UBC 2619 b)

\[P_B = \phi \left[0.85 f' c \ b \ k_1 \frac{87000 \ d}{f_y} \right] \]

\[k_1 = 0.85 \quad b = 8 \text{ in.} \quad d = 13.6 \text{ in.} \]

\[P_B = 189 \text{ kip} > P_u = 4.52 \text{ kip} \]

Then the axial compression effect may be disregarded.

Limits of reinforcement

Same as for the bottom story girder

Midspan

The depth of the neutral axis is smaller than the slab thickness. Use same procedure as in the bottom story girder.

Consider 2#6 as bottom reinforcement \(A_s = 0.88 \text{ in.}^2 \)

\[M_u = 34.8 \text{ ft-kip} > 34.53 \text{ ft-kip} \]

Column face

Neglect compression steel; besides \(A_s \) is approximately equal to \(A'_s \).

Consider 4#4 as top reinforcement \(A'_s = 0.80 \text{ in.}^2 \)

\[M_u = 30.5 \text{ ft-kip} > 19.64 \text{ ft-kip} \]

Distribution of flexural reinforcement

Bottom reinforcement. Same as for bottom story girder

\[z = 86 \text{ kip/in.} < 175 \text{ kip/in.} \]
Minimum bar size: #3

Maximum Spacing: \(\frac{d}{2} \), Use 6 in. #3 @ 6 in.

Nominal shear stress

\[
v_u = \frac{V_u}{\phi b_w d} = \frac{18140}{0.85 \times 8 \times 13.6} = 196 \text{ psi}
\]

Shear carried by concrete (axial tension is present)

\[
v_c = 2\sqrt{4000} \left(1 - 0.002 \times \frac{2230}{8 \times 16}\right) = 122 \text{ psi}
\]

Shear reinforcement

\[
A_v = \frac{(v_u - v_c) b_w s}{f_y} = \frac{74 \times 8 \times 6}{40000} = 0.089 \text{ in.}^2
\]

Then the minimum reinforcement is enough.

Within 34 in. from the face of the columns, the spacing of the stirrups will be reduced to 3 in.

A.2.5 Top Story Girder

Midspan

\(U_{Al} : M = 34.53 \text{ ft-kip} \quad V = 0 \quad P = 4.52 \text{ kip (comp.)} \)

Column face

\(U_{Al} : M = 19.64 \text{ ft-kip} \quad V = 12.75 \text{ kip} \quad P = 4.52 \text{ kip (comp.)} \)

\(U_{Bl} : M = 19.55 \text{ ft-kip} \quad V = 9.93 \text{ kip} \quad P = 4.35 \text{ kip (comp.)} \)

\(\phi \text{ factor (ACI Section 9.2.1.2)} \)

\[
\frac{h - d' - d_s}{h} = \frac{16 - 4.8}{16} = 0.70
\]

\[
0.10 \frac{f'}{c} A = 0.10 \times 4 \times 128 = 51.2 \text{ kips}
\]
Then a rectangular beam with width \(b = 51 \) in. can be considered. Compression steel. Consider \(p - p' = 0 \) and the compression steel not to reach \(f_y \) at ultimate moment. Therefore the effect of compression steel will be neglected.

\[
M_u = \phi \times A_s \times \frac{f_y}{2} (d - \frac{A_s f_y}{2 x 0.85 f'_c b})
\]

\(\phi = 0.90, \quad f_y = 40000, \quad f'_c = 4000, \quad d = 13.6 \) in., \(b = 51 \) in.

Consider 2#7 as bottom reinforcement, \(A_s = 1.20 \) in.\(^2\)

\[
M_u = 48.5 \text{ ft-kip} > 43.40 \text{ ft-kip}
\]

Column face

Neglect compression reinforcement and use same formula as above with \(b = 8 \) in.

Consider 6#4 as top reinforcement \(A'_s = 1.20 \) in.\(^2\)

\[
M_u = 45.9 \text{ ft-kip} > 40.60 \text{ ft-kip}
\]

Distribution of flexural reinforcement (ACI Section 10.6)

Bottom reinforcement

\[
A = \frac{2 \times 2.4 \times 8}{2} = 19.2 \text{ in.}^2, \quad f_s = 0.60 \times 40 = 24 \text{ ksl}
\]

\[
z = 24 \sqrt[3]{2.4 \times 19.2} = 86 \text{ kip/in.} < 175 \text{ kip/in.}
\]

Top reinforcement

\[
A = \frac{2 \times 2.4 \times 51}{6} = 40.8 \text{ in.}^2, \quad f_s = 24 \text{ ksl}
\]

\[
z = 24 \sqrt[3]{2.4 \times 40.8} = 111 \text{ kip/in.} < 175 \text{ kip/in.}
\]

Design for shear

\(\phi = 0.85 \)

Minimum web reinforcement for girders
APPENDIX B

DESIGN OF TEST STRUCTURES RCF1 AND RCF2
B.1 Reduction of Size

The original test structure size was reduced using a length scale equal to 0.707.

If the term "prototype" is used to designate the original test structure and "model" the actual one, the following ratios between model and prototype apply:

<table>
<thead>
<tr>
<th>Ratio Type</th>
<th>Ratio Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length ratio</td>
<td>0.707</td>
</tr>
<tr>
<td>Area ratio</td>
<td>0.50</td>
</tr>
<tr>
<td>Strain ratio</td>
<td>1.0</td>
</tr>
<tr>
<td>Stress ratio</td>
<td>1.0 (Assumed)</td>
</tr>
<tr>
<td>Concentrated force ratio</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravity ratio</td>
<td>1.0 (Assumed)</td>
</tr>
<tr>
<td>Acceleration ratio</td>
<td>1.0 (to have inertia forces scaled by 0.50)</td>
</tr>
</tbody>
</table>

Therefore, the model dimensions are obtained by multiplying the prototype dimensions by 0.707. The reinforcing steel areas should be reduced by 0.50. This reduction is achieved in the following way

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td># bar</td>
<td># bar</td>
</tr>
<tr>
<td></td>
<td># bar</td>
</tr>
<tr>
<td>A_s (in.²)</td>
<td>A_s (in.²)</td>
</tr>
<tr>
<td>7</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>5</td>
<td>0.31</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Since the reduction is not exact, the strength of the different members has been checked in B.3.

The slab and the transverse girders at both stories were not designed for the prototype. The slab thickness for the model was scaled by the factor 0.707 but its reinforcement was designed directly for the actual test conditions (the slab carried no extra load but its own weight in the actual test structure.) The same can be said for the transverse girders. The final dimensions and reinforcement used in the test are shown in Figures 2.2 and 2.3.

B.2 Loads to be added in the actual test structure to reproduce original conditions

The actual test structure did not include the walls, partitions, roofing, ceiling, floor and other non-structural elements that contribute to the dead load. Besides the distance between the two longitudinal frames was made as short as possible without affecting the T-beam action in the floor diaphragm. As has been noted before (See A.l.2) the contributing width of the slab is 51 in. for the prototype which corresponds to 36 in. in the model. Therefore, the distance between the frames in the model was 3 ft.

Due to these facts it was necessary to add mass at each floor in the actual test structure; this was accomplished by attaching concrete block that transmitted their weight directly to the longitudinal girders. The evaluation of these masses follows. It was carried out without considering the mass of the columns.

Original Test Structure

Top story dead load

Slab, ceiling, roofing 0.061 x 24 x 17 24.89 kip
Girders: longitudinal 0.100 x 18 x 2
transverse 0.100 x 22.67 x 2 8.13 kip

Total = 33.02 kip
Top story live load

Bottom story dead load

Slab, ceiling, floor \(0.052 \times 24 \times 17\) 21.22 kip

Girders 8.13 kip

Walls \(0.207 \times 22.67 \times 2\) 9.38 kip

Partitions \(0.140 \times 16 \times 2\) 4.48 kip

Total = 43.21 kip

Bottom story live load

0.050 \times 24 \times 17 20.40 kip

Actual Test Structure. Each story

Slab \(0.24 \times 6 \times 12.71 \times 0.15\) 2.75 kip

Girders: longitudinal \(0.34 \times 12.71 \times 0.15 \times 2\) 1.81 kip

transverse \(0.34 \times 5.04 \times 0.15 \times 2\)

Total = 4.56 kip

It was originally decided to reproduce in the model all the dead load plus 25% of the live load at the bottom story. Then the following masses would have to be added

Top story: \(0.50 (33.02) - 4.56 = 11.95\) kips

Bottom story: \(0.50 (43.21 + 0.25 \times 20.40) - 4.56 = 19.60\) kips

Then, concrete blocks weighing 4 kips (8 in. x 5 ft x 8 ft) were designed and constructed. Three of these blocks would be attached to the top floor and five to the bottom floor.

However it was afterwards decided to reduce the number of concrete blocks to two at the top story and four at the bottom; this final condition of loads is shown in Figure 2.2. Considering the measured weights of the blocks (8.25 kip at the top story and 16.16 kips at the bottom story) this condition was equivalent to consider no live load in the actual test structure and the
following reductions in the dead load:

<table>
<thead>
<tr>
<th></th>
<th>Top story</th>
<th>Bottom story</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$8.25 + 4.56$</td>
<td>$16.16 + 4.56$</td>
</tr>
<tr>
<td></td>
<td>0.50×33.02</td>
<td>0.50×43.21</td>
</tr>
<tr>
<td></td>
<td>$= 0.78$</td>
<td>$= 0.96$</td>
</tr>
<tr>
<td></td>
<td>22% reduction</td>
<td>4% reduction</td>
</tr>
</tbody>
</table>

B.3 Strength design verification

a) Bottom and top story columns

Prototype has 4#7 $A_s = A'_s = 1.20 \text{ in.}^2$

Model has 4#5 $A_s = A'_s = 0.62$. This corresponds to $A_s = A'_s = 1.24 \text{ in.}^2$ in the prototype.

For the shear strength a reduction from #3 bars ($A_s = 0.11 \text{ in.}^2$) to #2 bars ($A_s = 0.05 \text{ in.}^2$) will be used. Since the shear reinforcement was decided from a minimum requirement which exceeded by a considerable amount the quantity necessary according to the Code formulas, no problem is presented by this reduction. The same is valid for all the following sections.

b) Bottom story girder

Midspan

Prototype has 2#7 $A_s = 1.20 \text{ in.}^2$

Model has 2#5 $A_s = 0.62 \text{ in.}^2$. No problem

Column face

Prototype has 6#4 $A'_s = 1.20 \text{ in.}^2$

Model has 6#3 $A'_s = 0.66 \text{ in.}^2$. This is equivalent to have 1.32 in.2 in the prototype.

c) Top story girder

Midspan

Prototype has 2#6 $A_s = 0.88 \text{ in.}^2$
Model has 2#4 $A_s = 0.40 \text{ in.}^2$. This corresponds to $A_s = 0.80 \text{ in.}^2$ in prototype. Check for condition U_A gives

$$M_u = 31.7 \text{ ft-kip} < 34.53 \text{ ft-kip}$$

Therefore this condition represents a slightly under-reinforced model.

Column face

Prototype has 4#4 $A_s' = 0.80 \text{ in.}^2$

Model has 4#3 $A_s' = 0.44 \text{ in.}^2$. This is equivalent to $A_s' = 0.88 \text{ in.}^2$ in the prototype.
APPENDIX C

IDEAL MODEL: DERIVATION OF ANALYTICAL CHARACTERISTICS
C.1 General

The different properties assigned to the ideal model for analysis purposes have been derived from those of the prototype structure applying the appropriate scaling ratios. These are shown in Table 2.2.

The units employed throughout the appendix are:

- force: kips
- length: inches
- time: seconds

C.2 Geometry

1) Overall dimensions:

They are shown in Figures 2.1 (Prototype) and 2.3 (Ideal model).

2) Section properties:

The flange widths of the girders comply with the ACI and UBC Code requirements. The rotational moment of inertia J has been computed using

$$J = \sum \beta_i b_i c_i^3$$

where b_i and c_i are the longest and shortest dimension of rectangular component i, and β_i is a shape factor obtained from Reference [24]. The dimensions of the prototype and of the ideal model (within parenthesis) are shown.

a) Column

```
+---------------------------+---------------------------+
|                           |                           |
|                           |                           |
| 8" (5.66")               | 12" (8.49")              |
|                           |                           |
|                           |                           |
|                           |                           |
|                           |                           |
```

<table>
<thead>
<tr>
<th></th>
<th>PROTOTYPE</th>
<th>IDEAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (in.2)</td>
<td>96.0</td>
<td>48.0</td>
</tr>
<tr>
<td>I_{xx} (in.4)</td>
<td>1152.0</td>
<td>288.0</td>
</tr>
<tr>
<td>I_{yy} (in.4)</td>
<td>512.0</td>
<td>128.0</td>
</tr>
<tr>
<td>J (in.4)</td>
<td>1230.0</td>
<td>307.5</td>
</tr>
</tbody>
</table>
b) **Longitudinal girders**

![Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th>Prototype</th>
<th>Ideal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300.0</td>
<td>150.0</td>
</tr>
<tr>
<td>I_{xx}</td>
<td>5602.0</td>
<td>1400.0</td>
</tr>
<tr>
<td>J</td>
<td>2200.0</td>
<td>550.0</td>
</tr>
</tbody>
</table>

c) **Transverse girders**

![Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th>Prototype</th>
<th>Ideal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>176.0</td>
<td>88.0</td>
</tr>
<tr>
<td>I_{xx}</td>
<td>3406.0</td>
<td>851.5</td>
</tr>
<tr>
<td>J</td>
<td>1536.0</td>
<td>384.0</td>
</tr>
</tbody>
</table>

The shear area for the girders has been taken as the area of their web,
$A_v = 8 \times 16 = 128 \text{ in.}^2$ for prototype and 64 in.^2 for model.

C.3 **Inertial properties**

The unit weight of the concrete is assumed to be 0.15 kip/ft^3. The contribution of the girders and columns is taken into account in the computation of the translational and rotational mass of each floor. No live load is considered acting on the structure.
<table>
<thead>
<tr>
<th>Weight (k)</th>
<th>BOTTOM STORY</th>
<th>TOP STORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROTOTYPE</td>
<td>IDEAL MODEL</td>
</tr>
<tr>
<td>47.72</td>
<td>23.86</td>
<td>34.89</td>
</tr>
<tr>
<td>.123</td>
<td>.0618</td>
<td>.090</td>
</tr>
<tr>
<td>1033.</td>
<td>258.</td>
<td>1557.</td>
</tr>
</tbody>
</table>

C.4 Elastic modulus

According to the ACI and UBC Codes, \(E_c = 57000\sqrt{4000} = 3605 \text{ ksi} \) for both the prototype and the ideal model.

C.5 Section cracking moments

The cracking moments \(M_{CR} \) corresponding to the girders and columns of the structure are computed using

\[
f_R = \frac{M_{CR}}{I_g} \cdot y_t - \frac{P}{A_g}
\]

therefore

\[
M_{CR} = (f_R + \frac{P}{A_g}) \cdot \frac{I_g}{y_t}
\]

where

- \(f_R \) = tensile strength of concrete = 7.5\(\sqrt{f'_c} \) (psi)
- \(I_g \) = gross central moment of inertia of the section
- \(A_g \) = gross area
- \(y_t \) = central distance of most stressed fiber (in tension)
- \(P \) = axial load on section (compression is positive), correspond- to dead load. It is neglected for the girders.

Therefore, for \(f_R = 7.5\sqrt{4000} = 474 \text{ psi} = .474 \text{ ksi} \) the following values are obtained
C.6 Transformed cracked properties of longitudinal girders

The moment of inertia of the transformed cracked sections are computed according to the following scheme:

\[
\begin{align*}
\text{b} \cdot \frac{(kd)^2}{2} + (n-1) A'_s (kd-d') - nA_s (d-kd) &= 0 \\
I_{ct} &= \frac{1}{3} b (kd)^3 + (n-1) A'_s (kd-d')^2 + nA_s (d-kd)^2 \\
\text{for } n &= \text{INT} \left(\frac{29000}{3605} \right) = 8
\end{align*}
\]
and the section characteristics shown in Figure 2.5, the following values are obtained, where positive curvature corresponds to compression of the top fibers.

<table>
<thead>
<tr>
<th>Bottom Story</th>
<th>PROTOTYPE</th>
<th>IDEAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girder + (in.²)</td>
<td>1388.4</td>
<td>347.1</td>
</tr>
<tr>
<td>I₀</td>
<td>1049.6</td>
<td>262.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top Story</th>
<th>Girder</th>
<th>PROTOTYPE</th>
<th>IDEAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I +</td>
<td>1040.0</td>
<td>260.0</td>
<td></td>
</tr>
<tr>
<td>I₀</td>
<td>742.0</td>
<td>185.5</td>
<td></td>
</tr>
</tbody>
</table>

C.7 Lateral loads for elastoplastic analysis

The distribution of lateral loads along the height of the structure(s) is assumed to be proportional to the inertia forces associated with the first mode of vibration.

Thus, if the first mode shape is

\[\phi_1 = \begin{bmatrix} \phi_{1T} \\ \phi_{1B} \end{bmatrix} \]

the associated inertia force vector would be

\[f(t) = \begin{bmatrix} f_T(t) \\ f_B(t) \end{bmatrix} = \begin{bmatrix} m_T \phi_{1T} \\ m_B \phi_{1B} \end{bmatrix} p(t) \]

where \(p(t) \) is a scalar function of time.

Therefore, if the force acting on the bottom story level is \(f_B \), the corresponding force on the bottom floor is

\[f_T = \frac{m_T \phi_{1T}}{m_B \phi_{1B}} \cdot f_B \]

For the approximate value
\[\phi_1 = \begin{bmatrix} 1.0 \\ 0.6 \end{bmatrix} \]

and for \(m_B = 0.0572 \text{ k-sec}^2/\text{in.} \); \(m_T = 0.0352 \) the following relationship is obtained.

\[f_T = 1.03 f_B \]

C.8 Equivalent concentrated gravity loads for elastoplastic analysis.

The distributed loads acting on the girders of the ideal model had to be replaced by equivalent concentrated loads, since this is the only type of loading that can be handled by the program ULARC.

The criterion used to determine the equivalent loads consists in replacing the distributed loads by a statically equivalent system of concentrated forces which produce the same collapse load as the distributed load.

The plastic moment of the girders is assumed to be uniform along the length; and the location of the equivalent concentrated loads correspond to the position of the concrete block supports on the test structure.

The load factor for a fixed-end beam subjected to uniform loadings is determined as follows.

\[W_c = \lambda w \]

\[W_E = \frac{1}{4} w_c L^2 \theta \]

\[W_I = 4M \theta \]
and from $E W = W_I$, it is obtained,

$$w = \lambda w = \frac{16 M}{w c L^2}$$

and the load multiplier is

$$\lambda = \frac{16 M}{w c L^2}$$

For the case of the concentrated loads the procedure is similar:

To have statically equivalent loading

$$2P_c + 2F_c = w_c L$$

then,

$$P_c = \frac{w_c L - 2F_c}{2} \frac{w_c L}{2} (1 - 2\beta)$$

At collapse,

$$W_E = 2F_c \cdot \alpha L \theta = 2\alpha \beta c^2 L^2 \theta$$

$$W_I = 4M \theta$$

equating external and internal work

$$W_{coll} = \lambda w = \frac{2M}{w \alpha \beta L^2}$$
Therefore

\[\lambda_F = \frac{2M}{\alpha \beta wL^2} \]

Hence, in order to have the same collapse load than in the distributed load case

\[\lambda_F = \lambda_w \]

or

\[\frac{16M}{P} = \frac{2M}{wL^2} \]

from where

\[\alpha \beta = \frac{1}{8} \]

\(\alpha \) is selected according to the geometric characteristics of the test structure

\[\alpha L = \frac{144.25 - 36}{2} = 54.125 \text{ in.} \]

then

\[\alpha = \frac{54.125}{144.25} = 0.375 \]

therefore

\[\beta = \frac{1}{3 \alpha} = \frac{1}{8} \]

hence

\[F = \frac{1}{3} wL \]

and

\[P = \frac{1}{2} (1 - \frac{2}{3}) wL = \frac{1}{6} wL \]

The equivalent loads used in analysis were obtained from the distributed loads shown in Figure 2.5, taking into consideration the column's own weight.
APPENDIX D

TEST STRUCTURE: DERIVATION OF ANALYTICAL CHARACTERISTICS
D.1 General

The methods employed to idealize the test structure for analytical purposes are the same as those used in the case of the ideal model (Chapter 2 and Appendix C.)

D.2 Geometry

The overall dimensions of RCF2 are shown in Figure 2.2, the section characteristics in Figure 2.5. The section geometric properties are listed below.

a) Columns

\begin{align*}
 A & = 48.88 \\
 I_{xx} & = 294.27 \\
 I_{yy} & = 134.66 \\
 J & = 313.5
\end{align*}

b) Longitudinal girders

\begin{align*}
 A & = 152.56 \\
 I_{xx} & = 144.36 \\
 J & = 588.7
\end{align*}

c) Transverse girders

\begin{align*}
 A & = 78.037 \\
 I_{xx} & = 905.73 \\
 J & = 378.55
\end{align*}
D.3 Inertial properties

Assuming a unit weight for the concrete of 0.15 kip/ft3, the weight of the different components is:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>WEIGHT (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab (each)</td>
<td>2.75</td>
</tr>
<tr>
<td>Longitudinal girder</td>
<td>0.576</td>
</tr>
<tr>
<td>Transverse girder</td>
<td>0.305</td>
</tr>
<tr>
<td>Columns (per unit length)</td>
<td>.00425 kip/in.</td>
</tr>
<tr>
<td>Concrete blocks and attachments</td>
<td></td>
</tr>
<tr>
<td>bottom story</td>
<td>16.32</td>
</tr>
<tr>
<td>top story</td>
<td>8.42</td>
</tr>
</tbody>
</table>

Based on these values and on the geometry of the specimen, the inertia properties result:

<table>
<thead>
<tr>
<th></th>
<th>BOTTOM STORY</th>
<th>TOP STORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT (k)</td>
<td>21.98</td>
<td>13.51</td>
</tr>
<tr>
<td>TR. MASS (k-sec2/in.2)</td>
<td>0.0572</td>
<td>.0351</td>
</tr>
<tr>
<td>ROT. MASS (k-sec2-in.)</td>
<td>92.01</td>
<td>61.94</td>
</tr>
</tbody>
</table>

D.4 Loads on girders (dead load only)

From ACI 318-63, for the dimensions of the slab

\[A = 3 \text{ ft}; \quad B = 12.02 \text{ ft}, \]

\[\frac{A}{B} = 0.25, \text{ and the slab behaves in one-way action,} \]

transmitting all its weight to the longitudinal girders.

The distributed loads (using center-to-center dimensions) on the girders result then:

<table>
<thead>
<tr>
<th>girders</th>
<th>(w) (k/in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitudinal girders</td>
<td>0.0135</td>
</tr>
<tr>
<td>transvers girders</td>
<td>0.0085</td>
</tr>
</tbody>
</table>
In addition, the concrete blocks produce "concentrated" loads, in each support, of 4.1 kips for the bottom story girder, and 2.1 kips for the top story girder.

D. 5 Section cracking moments

Using the same expression as for the prototype and the ideal model, the following values are obtained:

Longitudinal girders:

\[M^+_{CR} = 84.17 \text{ (k-in.)} \]
\[M^-_{CR} = 209.38 \]

Columns:

Bottom story \(M_{cr} = 46.04 \)
Top story \(M_{cr} = 38.0 \)
NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB --- ---) and remittance must accompany each order. Reports without this information were not available at time of printing. Upon request, EERC will mail inquirers this information when it becomes available.

EERC 68-1 Unassigned

EERC 68-2 "Inelastic Behavior of Beam-to-Column Subassemblies Under Repeated Loading," by V.V. Bertero - 1968 (PB 184 888)A05

EERC 69-1 "Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)All

EERC 69-7 "Rock Motion Accelerograms for High Magnitude Earthquakes," by H.B. Seed and I.M. Idriss - 1969 (PB 187 940)A02

EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and V.V. Bertero - 1969 (PB 190 662)A10

EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by V.V. Bertero, B. Brooker and H. Ming Liao - 1969 (PB 202 942)A07

EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfuleian and H.B. Seed - 1969 (PB 191 023)A03

EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J.G. Bouwkamp - 1969 (PB 190 663)A06

"Static and Dynamic Analysis of Inelastic Frame Structures," by E.L. Wilson and G.H. Powell - 1971 (PB 210 115) A06

"Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V.V. Bertero and E.P. Popov - 1971 (PB 211 338) A14

"Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and H.K. Dovey - 1972 (PB 213 100) A05

"Accelerations in Rock for Earthquakes in the Western United States," by P.B. Schnabel and H.B. Seed - 1972 (PB 213 100) A03

"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero and H. Krawinkler - 1972 (PB 214 559) A05

"Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.K. Dovey - 1972 (PB 222 438) A06

"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V.V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520) A08

"Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by E.L. Wilson, K.-J. Bathe, J.E. Peterson and H.H. Dovey - 1972 (PB 220 437) A04

"Optimal Seismic Design of Multistory Frames," by V.V. Bertero and H. Kamal - 1973

EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G.H. Powell 1973 (PB 221 260)A08

EERC 73-10 "Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer 1973 (PB 227 179)A08

EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Bertero, J. Hollings, O. Kistu, R.M. Stephen and J.G. Bouwkamp 1973

EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V.V. Bertero 1973 (PB 235 986)A06

EERC 73-20 "Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W.S. Tseng and J. Penzien 1973

EERC 73-23 "Earthquake Engineering at Berkeley - 1973," (PB 226 033)A11

EERC 73-24 Unassigned

EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.G. Collins 1973 (PB 235 104)A12

EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler and E.P. Popov 1973 (PB 234 172)A06

EERC 74-5 "Sensitivity Analysis for hysteretic dynamic systems: Applications to earthquake engineering," by D. Ray
1974 (PB 231 213)A06

EERC 74-6 "Soil-structure interaction analyses for evaluating seismic response," by H.B. Seed, J. Lysmer and R. Huang
1974 (PB 236 519)A04

EERC 74-7 Unassigned

EERC 74-10 "Applications of reliability-based, global cost optimization to design of earthquake-resistant structures," by S. Vitiello and K.S. Pister - 1974 (PB 237 231)A06

EERC 74-11 "Liquefaction of gravelly soils under cyclic loading conditions," by R.T. Wong, H.B. Seed and C.K. Chan
1974 (PB 242 042)A03

EERC 74-12 "Site-dependent spectra for earthquake-resistant design," by H.B. Seed, C. Ogus and J. Lysmer - 1974
(PB 240 953)A03

(PB 241 944)A13

(for set of EERC 75-1 and 75-2 (PB 259 406))

EERC 75-3 "Seismic risk analysis for a site and a metropolitan area," by C.S. Oliveira - 1975 (PB 246 134)A09

EERC 75-10 "Static and dynamic analysis of nonlinear structures," by D.P. Mendikar and G.H. Powell - 1975 (PB 242 434)A08

EERC 75-11 "Hysteretic behavior of steel columns," by E.P. Popov, V.V. Bertero and S. Chandramouli - 1975 (PB 252 365)A11

EERC 75-12 "Earthquake engineering research center library printed catalog," - 1975 (PB 243 711)A26

EERC 75-14 "Determination of soil liquefaction characteristic by large-scale laboratory tests," by P. De Alba, C.K. Chan and H.B. Seed - 1975 (NUREG 0027)A08

EERC 75-16 "Hysteretic behavior of ductile moment resisting reinforced concrete frame components," by V.V. Bertero and E.P. Popov - 1975 (PB 246 388)A05

EERC 75-17 "Relationships between maximum acceleration, maximum velocity, distance from source, local site conditions for moderately strong earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 246 172)A0

EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov - 1975

EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and C.K. Chan - 1975 (Summarized in EERC 75-29)

EERC 75-27 "Identification of Research Needs for Improving Asaismic Design of Building Structures," by V.V. Bertero - 1975 (PB 246 136) A05

EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H.B. Seed, I.N. Idris, P. Makkadi and N. Banerjee - 1975 (PB 252 635) A03

EERC 75-32 "TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer and H.B. Seed - 1975

EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien - 1975 (PB 248 130) A03

EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D.P. Mondkar and G.H. Powell - 1975 (PB 252 386) A08

EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1975 (PB 256 781) A03

EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, P.I. Makkadi & C.-Y. Chang - 1976 (PB 292 065) A06
EERC 76-5	"Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell - 1976 (PB 252 220)
EERC 76-6	"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo and J. Pensien - 1976 (PB 260 556)
EERC 76-8	"Cyclic Shear Tests of Masonry Piers, Volume 1 - Test Results," by R.L. Mayes, Y. Oroote, R.W. Clough - 1976 (PB 264 424)
EERC 76-10	"Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and J.R. Booker - 1976 (PB 255 820)
EERC 76-11	"Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by G.H. Powell and D.C. Bow - 1976 (PB 271 409)
EERC 76-14	"Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976
EERC 76-16	"Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Results," by R.L. Mayes, Y. Oroote and R.W. Clough - 1976
EERC 76-22	"Response of the Olive View Hospital Main Building during the San Fernando Earthquake," by S. A. Mahin, V.V. Bertero, A.K. Chopra and R. Collins - 1976 (PB 271 425)
EERC 76-24	"CAPPLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during Cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)
EERC 76-26	"Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge Structure," by K. Kawashima and J. Pensien - 1976 (PB 263 388)
EERC 76-32	"Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and V.V. Bertero - 1976 (PB 265 992)

"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 C17)A14

"Inelastic Beam-Column Elements for the ANSR-I Program," by A. Riahi, D.G. Row and G.M. Powell - 1978

"Damageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978

"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira - 1978

"Optimal Design of an Earthquake Isolation System," by M.A. Bhatti, K.S. Pister and E. Polak - 1978 (PB 294 733)A06

"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978

UCB/EERC-80/03 "Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by S.W. Zagajeski and V.V. Bertero - Jan. 1980 (PB80 164 635)A06

UCB/EERC-80/04 "Effects of Amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinforced Concrete Walls," by R. Iliya and V.V. Bertero - Feb. 1980 (PB80 122 525)A09

UCB/EERC-80/05 "Shaking Table Research on Concrete Dam Models," by A. Nilo and R.W. Clough - Sept. 1980 (PB81 122 168)A06

UCB/EERC-80/07 "Inelastic Torsional Response of Structures Subjected to Earthquake Ground Motions," by Y. Yamasaki - April 1980 (PB81 122 337)A08

UCB/EERC-80/12 "Hydrodynamic Pressure and Added Mass for Axisymmetric Bodies," by F. Nilrat - May 1980 (PB81 122 343)A08

UCB/EERC-80/14 "2D Plane/Axisymmetric Solid Element (Type 3 - Elastic or Elastic-Perfectly Plastic) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980 (PB81 122 350)A03

UCB/EERC-80/16 "Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin - June 1980 (PB81 124 888)A10

UCB/EERC-80/22 "3D Solid Element (Type 4 Elastic or Elastic-Perfectly-Plastic) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980 (PB81 123 242)A03

UCB/EERC-80/23 "Gap-Friction Element (Type 5) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980 (PB81 122 265)A03

UCB/EERC-80/24 "U-Bar Restraint Element (Type 11) for the ANSR-II Program," by C. Oughourlian and G.H. Powell - July 1980 (PB81 122 295)A03

UCB/EERC-80/26 "Input Identification from Structural Vibrational Response," by Y. Hu - August 1980 (PB81 152 308)A05

UCB/EERC-80/27 "Cyclic Inelastic Behavior of Steel Offshore Structures," by V.A. Zayas, S.A. Mahin and E.P. Popov - August 1980

UCB/EERC-80/28 "Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response," by M.G. Oliva - October 1980 (PB81 154 304)A10

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCB/EERC-80/40</td>
<td>"Inelastic Buckling of Steel Struts Under Cyclic Load Reversal,"</td>
<td>R.G. Black, W.A. Wenger, and E.P. Popov</td>
<td>October 1980</td>
<td>(PB81 154 312)A08</td>
</tr>
<tr>
<td>UCB/EERC-80/41</td>
<td>"Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Earthquake,"</td>
<td>P. Repetto, J. Arango, and H.B. Seed</td>
<td>Sept. 1980</td>
<td>(PB81 161 719)A05</td>
</tr>
<tr>
<td>UCB/EERC-80/42</td>
<td>"Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete Frame,"</td>
<td>J.M. Blondet, R.W. Clough, and S.A. Mahin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>