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ABSTRACT 

The efforts of this dissertation are directed toward the development of a tech­

nique for understanding the dynamic response of structural elements governed 

by nonlinear partial differential equations. This technique is based on the con­

cepts of the eqiuvalent linearization method which relies on obtaining an 

optimal linear set of equations to model the original nonlinear set. 

In this method. the linearization is performed at the continuum level. At this 

level. the equivalent linear st.iffness and damping parameters are physically real­

izable and are defined in such a way that the method can be easily be incor­

porated into finite element computer codes. 

Three different approaches to the method are taken with each approach 

based on the minimization of a distinct difference between the nonlinear system 

and its linear replacement. Existence and uniqueness properties of the minimi­

zation solutions are established. 

The method is specialized for the treatment of steady-state solutions to har­

monic excitation and of stat.ionary response to random excitation. Procedures 

for solving the equivalent linearization are also discussed. 

The method is applied to three specific examples: one dimensional, hys­

teretic shear beams. thin plates governed by nonlinear equations of motion and 

the same nonlinear thin plates but with cutouts. Solutions via the equivalent 

linearization method using the stress difference minimization compare well with 

Galerkin's method and numerical integration. The last example is easily han­

dled by the continuum equivalent linearization technique, whereas other 

methods prove to be inadequate. 
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L INTRODUCTION 

Linear models of dynamic systems have enjoyed widespread use throughout 

the history of engineering analysis. Due to the relative simplicity of such models 

and the amount of attention given to this type of analysis, a vast amount of 

both qualitative and quant.itative information is available on the response of 

such systems. In fact, the Simplicity of linear analysis is often the sole impetus 

for using a linear model in the first place. 

However, the need for nonlinear analysis becomes particularly apparent when 

the dynamic systems experience large amplitudes of vibration. In particular, it 

is recognized that large scale civil engineering structures behave nonlinearly 

when excited by damaging earthquakes, wind loadings and wave loadings. Non­

linear, dynamic models are also needed for the analysis of aircraft and 

aerospace structural components when excited by strong acoustical loadings. 

The necessity for nonlinear structural models may arise from geometric con­

siderations, nonlinear elastic and inelastic material behavior and/or from the 

inadequacy of linear models in describing the energy dissipation in the struc­

ture. 

The difficulties of nonlinear analysis lie not so much in the lack of good 

mathematical models, but more in the inability to solve the equations of motion. 

Only in rare cases can exact solutions to the system equations be obtained, and 

generally, existing analytical techniques produce only qualitative information on 

the response. Therefore, recourse to numerical techniques or approximate 

analysis is generally made. Although purely numerical techniques provide 

detailed information on the response of specific systems, they tend to be expen­

sive and are not well suited to general studies. Hence, emphasis in this disserta­

tion will be placed on approximate analytical techniques. The inclusion of 
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purely numerical analysis will be limited to the provision of checks on the 

analytical solutions. 

Considerable attention has been given to the understanding of the response 

of nonlinear discrete systems. The discrete models originate either from sys­

tems where discrete dynamic components are physically apparent or from spa­

tial discretization of a continuous systems. The linearization procedures are 

then applied to the resulting ordinary differential equations of motion. 

A discussion of some commonly used techniques of nonlinear analysis 

directed toward use in earthquake engineering is presented in reference [20]. 

For the analysis of systems subjected to deterministic excitation, most of these 

approximate techniques rely on the assumption of a particular solution form. 

The solutions are written in terms of undetermined coefficients for which the 

approximate method produces solutions. The classical methods of harmonic 

balance. energy balance and equivalent linearization can be used to obtain 

first-order approximate solutions. for steady-state response of the system when 

excited by a harmonic input. Higher order approximations to such solutions 

can be obtained through the use of perturbation techniques, asymptotic 

methods [4] and Galerkin's method [27] by the inclusion of several terms in the 

approximation. The specification of the solution form in the above methods 

precludes transient solutions. nor can stability information on steady-state 

solutions can be obtained. The method of slowly varying parameters [20] does, 

however. permit such analysis. 

A number of these approximate techniques used on systems described by the 

discrete, deterministic theory have been adapted for use on the nonlinear, sto­

chastic vibration problem. A complete review of these methods can be found in 

references [20] and [7]. Three of the most widely used methods are the previ-
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ously mentioned perturbation and equivalent linearization techniques along 

with the Fokker-Planck equation approach. The latter approach is one in which 

the joint probability density functions of the displacements and velocities are 

obtained. either exactly or through an approximate technique. from the 

corresponding Fokker-Planck equation. 

When a nonlinear continuum model is used to describe the dynamic system, 

complexities are introduced in that the model now contains a spatial domain as 

well as the temporal domain present in a discrete model. Existing studies deal 

with the nonlinear analysis of structural elements such as beams, strings, 

plates, membranes and shells. Three rather comprehensive surveys of existing 

work with these nonlinear structural elements can be found in references [41]. 

[42J and [11]. In most studies of these types of nonlinear continua, the partial 

differential equations of motion are first spatially discretized by an approximate 

technique such as modal decomposition, Galerkin's method or the finite element 

method. Then the previously described approximate discrete techniques are 

directly applicable to the resulting set of nonlinear, ordinary differential equa­

tions. 

The approach taken in this dissertation for the analysis of nonlinear con­

tinua is to perform the linearization priOT to the spatial discretization of the 

partial differential equations. In particular, the nonlinear system is replaced by 

a linear auxiliary system containing undetermined, spatially distributed damp­

ing and stillness parameters. These parameters are then determined in such a 

way as to model the amplitude dependent energy dissipation and stiffness pro­

perties of the nonlinearity in the original system. The solution to the auxiliary 

system can then be established in terms of the equivalent linear parameters. 

This is a continuum analog to the discrete equivalent linearization method that 

has been previously mentioned. 
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It is recognized that the finite element method is widely used in structural 

analysis, especially for structural members' with complicated boundary condi­

tions and spatially distributed material properties. The motivation for defining 

the equivalent linear syst.em at the continuum level is for t.he ease of implemen­

tation into finite element computer codes. Analysis presented in this disserta­

tion has been directed toward such an implementation. 

In Chapter 11. a set of general equations of motion are defined for a line ariz­

able system for which zero-mean solutions exist. A brief survey of existing tech­

niques for solving such a system is presented. For later use, the Galerkin 

method and a Ritz technique are described in detail. The formulation for 

equivalent linearization method f.or discrete systems is presented t.o provide a 

basis for the new continuum equivalent linearization approach. 

The general formulation for t.he continuum equivalent linearizat.ion met.hod is 

developed in Chapter III. Three different formulations of the method are 

presented and discussed. The existence and uniqueness of solutions for the 

equivalent linear parameters are investigated for the three problem formula­

tions. Considerations of t.he finite element discretization of the linear. auxiliary 

system are also presented. 

The general equivalent linearization relations from Chapter 1II are specialized 

in Chapter IV for two types of analysis: steady-stat.e solutions for harmonic exci­

tation and stationary response to random excitation. Mechanizat.ion of the 

method is discussed for both types of analysis. The free vibration, amplitude­

frequency relations can be obtained as a special case of the steady-state, har­

monic analysis, and a technique is presented for solving the equivalent linear 

equations. A met.hod for obtaining resonant response of the harmonically 

excited syst.em is also introduced. 
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In Chapter V three example studies of steady-state. harmonic response is 

presented. In each study, the fundamental nonlinear response mode is investi­

gated using the continuum equivalent linearization method, and results are 

compared with those from other existing techniques. 

The response of a one-dimensional shear beam composed a hysteretic yield­

ing material is investigated in section 5.1. The convergence of the equivalent 

linear solution with refinement of the mesh for the spatial domain is discussed. 

Results from the equivalent linearization analysis are compared with those from 

Galerkin's method. 

Section 5.2 contains· the nonlinear analysis of Kirchhoff plates described by 

the Berger formulation of the Von Karman nonlinear equations of motion. The 

linear auxiliary equation 'is discretized using the Bogner-Fox-Schmidt shape 

functions in the finite element formulation. The results from the three 

equivalent linearization problem formulations are compared with those from 

Galerkin's method and numerical integration of the equations of motion. 

In section 5.3, a further example of the nonlinear plate of section 5.2 is 

treated: the response of a rectangular plate with cutouts. The matching of the 

additional boundary conditions at the hole makes analysis by standard tech­

niques difficult, while usage of the finite element-equivalent linearization tech­

niques can be as routine as for the plate without a hole. The effect of the hole 

size on the resonant frequencies and forced response has been determined by 

the equivalent linearization technique, and results are compared with those 

found using a Ritz formulation of the nonlinear problem. 
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n. GOVERNING EQUATIONS AND REVIE1f OF SOME EXISTING SOWTlON TECHNIQUES 

2.1 Introduction 

The first section of this chapter deals with the definition of the class of non­

linear continuous systems that will be investigated in this and subsequent 

chapters. The wide variety of vibration problems encountered in engineering 

practice makes the definition of an all-encompassing system of equations 

difficult. if not impossible. In spite of this obstacle. an attempt will be made to 

cover as many nonlinear problems as possible. while retaining a sufficient 

amount of conciseness to permit some general statements concerning their 

solutions. 

Limitations placed on the system operators, boundary conditions, etc.. as 

presented in section 2.3, should be viewed in the spirit of conciseness and not so 

much as being necessary conditions to obtain solutions to a specific problem. 

For example. the familiar property of self-adjointness of the differential opera­

tor in a eigenvalue problem is sufficient for the useful property of eigenfunction 

orthogonality. but some systems which are not self-adjoint can surely be solved. 

In section 2.4. a number of existing techniques for solving nonlinear vibration 

response of continua are discussed. The list of methods is not intended to be 

all-inclusive; only those techniques that will be explored in later chapters are 

reviewed. These techniques. typical of all those encountered by the author. are 

formulated in such a way that the system is first spatially discretized, and the 

resulting time dependent relations are then linearized. This contrasts with the 

new technique to be presented in Chapter 111 in which the linearization is per­

formed in the continuous domain. followed by the spatial discretization. 
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2.2 Governinl Equations 

A number of dynamic systems can be described by partial differential equa­

tions (PDE's) in which the independent variables are space and time. A subclass 

of the PDE's are those in which the PDE is approximately linear for small 

motion. For larger amplitude of motion, the nonlinear effect becomes more pro­

nounced with the degree of nonlinearity depending on the size of subsequent 

motion. Herein. consideration will be given to a further subclass of equations in 

which the nonlinearities are independent of inertial stresses and will depend 

only on dissipative and restoring stresses of the system. Let .I9(x) and B .19 (x) 

represent the spatial domain and boundary of the spatial domain. respectively. 

described by spatial coordinates x. and the time parameter be represented by t. 

Consider a continuous system in .I9(x} described by the set of partial differential 

equations: 

v . .,L( a, w) + V . .,N (Co w. w) + QL(b. w) + m (x)ir = p(x. t ) (2.1) 

where a dot above a variable (or operator) denotes differentiation with respect 

to t. V . ( ) is the divergence operator with respect to the spatial coordinates x. 

and 

• w = w(x.t) is the dependent variable representing "displacements" 

• a. b. c are sets of 'material" and 'geometry" properties of the sys-

tem and are functions only of x 

• m{x) is the "mass" distribution of the system 

• p(x. t) is the applied 'load" 

• .,L is a linear "stress" operator working only on the displacements 

wand ''stiffness'' parameters a 

• -,N is an operator (or functional) which is nonlinear in displace­

ments and/or velocities. if and involves the nonlinear "stiffness" 
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parameters b 

• ct is a linear "damping" operator working on the displacements If 

and damping parameters c 

On every point on the boundary. a ~(x), let either of the following hold: 

W(w} = 0 

J3ft(w) = 0 

(2.2) 

(2.3) 

where W(lf) and an(w) are sets of geometric and natural boundary conditions, 

respectively, which are linear homogeneous operators containing derivatives 

normal to and along a .l9(x). 

Before continuing the discussion of the nonlinear system of equations, a 

few remarks need to be made on notation and terminology: 

1. The bold terms in equations (2.1) thru (2.3) represent sets of indexed 

elements. The number and range of indices depend on the given sys­

tem under investigation. For example. the linear "stress" operation -rL 

may be a scalar -rL, a vector -rf or a two tensor -rli ' depending on the 

number of indices needed to describe the stress field. The boldface 

notation was chosen here for the sake of generality. 

2. The terms enclosed in quotes in the text following equation (a.1). such 

as "stress", should be thought of as generic descriptions. For different 

systems, .,L. for example, may have different physical meanings. but in 

each case .,L would have the character of stress. In further discussion, 

the generic name will be used without being restricted to any physical 

interpretation. 

3. In order for the mathematical statement of the nonlinear problem, 

equations (2.1) - (2.3). to be well-posed. appropriate initial conditions 
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need to be specified for wand -fr. However. attention will be focused 

mainly on obtaining steady stat.e solutions when p is harmonic in time 

or on stationary solutions for a temporally random p. For these types 

of analysis. the periodicity or stationarity conditions will alleviate the 

need for specifying initial conditions. 

2.3 System Properties 

The following restrictions will be placed on the nonlinear continuous system 

described by equations (2.1) - (2.3). These propert.ies will be used to simplify 

analysis in order that specific statements can be made about the response of 

the system. 

2.3.1 Linearizability of the system 

Most existing techniques. along with the technique to be presented in the 

next chapter. for solving nonlinear systems of the type introduced in the 

preceding section assume that the system response is nearly linear for small 

amplitudes of motion. In fact. the response of this linear system is often used 

for a first. a approximation to the nonlinear response. The linearizability has 

already been partially satisfied by the statement of the problem in equations 

(2.1); that is. the restoring stress has been written in a linear part • .,t. and a 

nonlinear part • .,N. It only remains that the qualitative "effect" of .,L be predom­

inant over .,N as the amplitude of vibration becomes small. The idea of line ariz a­

bility is dependent on the approximate method used. and therefore detailed dis­

cussion of this point will be deferred to later discussion of the specific tech­

niques. whenever possible. In all furt.her discussion. the linearized system will 

be taken to be equations (2.1) with .,N omitted. or 

v . .,L + QL + m (x)w = p(x. t ) (2.4) 
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2.3.2 Positive definiteness and seU-adjointness of linearized system 

Definition - Inner product 

For general variables, or operators. a, Is and c, the scalar inner product 

( ). ( ) is defined to have the following properties: 

1. a·b = b'a 

2. a'a> 0 ifa~ 0 and a'a=O ifia=O 

3. (a + b}'c = a'c + b'c 

Definition - Positive Definite 

For a differential operator L{a. u) and for a and u defined on the spatial 

domain ~(X), L is said to be positive definite if 

J u·L(a, u) d d...x) > 0 

S 

and for a ;lit O. t.he int.egral is zero for u = O. The integral can vanish for u;l! 0 iff 

a= O. 

Definition - Self Adjoint 

For L and u described above and for v also defined on S(x), L is said t.o be 

self- a.d.joint if 

J uoL(v} d .l.V{x) = f TL{U) d .l.V{x) 
£; .l.V 

It should be noted that whether or not an operator is positive defini.te and self-

adjoint can be established by integration by parts. 

According to the definitions presented above. the divergence of the linear 

stress operator. V·.,.L, will be required to be both positive definite and self 
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adjoint in all further discussion of the nonlinear system (2.1). In addition, the 

mass distribution m{x) will be required to satisfy 

m(x) > 0 (2.5) 

Consider the eigenvalue problem of the undamped. linearized system in 

equation (2.4): 

v . .,L{u,.) = r.,.m{x)u,. (2.6) 

where A,. and u,. are the rth eigenvalue and rth set of eigenfunctions. As can be 

found in a number of vibrations texts, for example reference [34], the above 

properties for V . .,L and m (x) permit the following relationships for the eigen-

values of (2.6): 

1. The eigenvalues are positive. 

A,. > 0 ; r = 1, 2 •... (2.7) 

2. For distinct eigenvalues A,. and As. u,. and Us are orthogonal and can be 

normalized in such a way that 

{ 
1 ifr=s J m(x} u,.·us d ~ (x) = 0 if r¢ s 

J9 

for r.s = 1.2'00' 

(2.8) 

3. A Galerkin discretization of the eigenvalue problem in equation (2.6) 

will produce symmetric. positive definite "mass" and "stiffness" 

m.atrices. 
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2.3.3 Form of damping operator 

The damping operator QL(w) wilL be assumed to be from the cLass of RayLeigh 

damping operations. where cr- can be written as a linear combination of V·.,1-

and m(x)w. or 

(2.9) 

with 11 and 12 being constant coefficients. 

Again referring to the eigenfunctions U r and eigenvalues r.,. of the linearized 

equation (2.6) and using properties 1 and 2 from section 2.3.2. the following 

orthogonality relations can be established for the Rayleigh damping operator of 

equation (2.9): 

f ur.nL(t'L) d () _1A.r1'1 +1'2 ifr=s 
IIIC- -s x - 0 if r~ s (2.10) 

provided Ar;e As for r ~ s; r. s = 1. 2,... Furthermore. since <i is a linear combi-

nation of V . .,1- and m (x)w. a Galerkin discretization of the linearized equation 

will produce a symmetric. positive definite damping matrix. 

2.3.4 Symmetry of nonlinear stress operator - steady-state harmonic response 

Definition - Symmetric Operator 

If u(x. t) is a periodic function of period T in time, then the operation ,.N(u} is 

said to be symmetric if 

T 

J ,.N(u) dt = 0 (2.11) 
o 

Consider the case of the nonlinear system of equations (2.1) - (2.3) where the 

right hand side of equation (2.1) is harmonic in time. Then. 

V·.,1- + V·.,N +QL + m(x)ii = r(x)cosc.Jt (2.12) 
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W(w) = 0 (2. 12a) 

(2.12b) 

If a steady-state solution of (2.12) exists. let the solution. w. be sought which is 

periodic of period T. where T = 211' . 

'" 
Since w(x. t) is periodic in time. it can be expanded in a temporal Fourier 

series [52] 

(2.13) 

where 8.n(x) and bn(x) ; n=1.2, ... , are the Fourier coefficients of w. Then. if .,N is 

symmetric and V . .,.L is positive definite, it can be shown that bo(x) = o. 

In all further discussion of the steady-state solution of equation (2.12). it will 

be assumed that the nonlinearity is symmetric. The significance of this, as 

shown above, is that it will not be necessary to include a constant (in time) 

offset function in the approximate solution for the steady-state, periodic solu-

tions of the nonlinear system. The inclusion of the offset function will generally 

involve more complexities in ~he analysis. as can be seen in the treatment of 

non-symmetric nonlinearities of discrete systems in reference [45]. 

2.4 Review of Existing Solution Techniques 

Exact solutions to the class of nonlinear systems described in equations (2.1) 

- (2.3) are generally not available. Therefore, recourse to approximate tech-

niques is usually made. Existing techniques fall into three general 

classifications: those which are purely numerical, those which are purely analyt-

ical and'those which are both analytical and numerical in character. Methods 

which are purely numerical are generally quite expensive, and generalities to 

solutions of the same system using different parameters are lost. Therefore, 
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further discussion will be focused only on purely analytical and numerical-

analytical methods. except when purely numerical techniques are desired to 

serve as a check on other solution procedures. 

A different techniqu.e is generally used to solve the temporal portion of the 

problem than is used to solve the spatial part. The method chosen for each part 

of the problem will depend on the type of analysis to be performed (stability, 

steady-state response, etc.), on the boundary conditions to be satisfied or on 

simply a personal preference of the analyst. Table 2.1 lists a number of publica-

tions that deal with the nonlinear vibration of continua by purely analytical or 

numerical-analytical methods. An attempt has been made in the table to 

include methods representative of current and past work, but it is by no means 

inclusive of all work. 

In the following section, three methods will be discussed in detail: Galerkin's 

method applied to both spatial and temporal problems, a Ritz approximation in 

space and Hamilton's principle in time, and spatial discretization followed by 

the method of equivalent linearization on the temporal problem. 

2.4.1 Galerlcin's method (perio~c solutions) 

Consider the nonlinear system given by equation (2.12) which is forced by a 

load that is harmonic in time with period T = 2n. Let a set of functions !Pi(X) ; 
Co) 

i=1. 2, ... ,N , be comparison functions, where a comparison function has the fol-

lowing properties: 

1. !Pi(X}; i=1,2, ... ,N, satisfy aU the boundary conditions of (2.12); i.e. 

2. !Pi(X); i=l, 2, ... ,N, are linearly independent and represent the first N 

of a group of functions !Pi(X) i=1. 2, ... ,N, ... which is complete in the 



Type of 
System 

planar 
string 

planar string 
non autonomous 

l-D rod 
hysteretic 

non-planar 
bending beam 

bending 
beam 

bending 
beam 

bending 
beam 

plate 

plate 

plate 

plate on 
elastic 
foundation 

plate with 
initial stress 

plate 

cylindrical 
shell 

2-D 
plane strain 
hysteretic 

Table 2.1 
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Type of Spatial Temporal 
Analysis Method Method 

forced modal equivalent 
random analysis linearlization 

forced modal 
periodic analysis perturbation 

traveling harmonic 
waves perturbation balance 

stability of 
forced, periodic Galerkin perturbation 

sub-harmonics modal 
forced, periodic analysis Galerkin 

free modal 
vibration analysis exact 

stability of finite 
forced, periodic elements perturbation 

free Ritz- finite 
vibration Kantrorovitch difference 

forced Lagrange's equivalent 
periodic equations linearization 

forced multiple 
periodic exact scales 

free 
vibration Galerkin exact 

forced 
periodic Galerkin Galerkin 

free Hamilton's 
vibration perturbation principle 

forced Lagrange's harmonic 
periodic equations balance 

forced finite equivalent 
random elements linearization 

Summary of Existing Work on the Nonlinear 
Vibration of Continua 

Ref. 

(10) 

(33) 

[9] 

[171 

[50] 

[53] 

[6] 

[18] 

(31) 

[46] 

[14] 

[12) 

[40) 

[15] 

[43) 
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given region. 

Furthermore, since solutions are sought which are periodic with period 211'. 
c.J 

let fi(t) be a set of functions which are periodic with a period 211'. Since the set. 
c.J 

of functions [ sinc.Jt, COSc.Jt ] form a basis for such periodic functions. let 

(2.14) 

Using these properties of ii and 1-.. the solution w(x, t) will be approximated 

by w(x.t). where 

N , 
w(x,t) = L: ii(X)fi(t) (2.15) 

i.=1 

Since w is not an exact solution. substitution of w into the equations of motion 

leaves a non-vanishing residual. E •. where: 

E = V ·-rL(w) + V .,Jl(w.~) + it + m(x)-ii - r(x)cosc.Jt (2.16) 

With if defined as in equation (2.19). Galerkin's method says that the best 

solution for 'LLi and Vi; i=l. 2 .... ,N. is given by the solution to the following set. 

of equations (see reference [27]): 

T a-f fe, ~ dx dt = 0 
o aUk 

~ 

(2.17) 

T a-I fe· iJw dx dt = 0 
o v" 
~ 

for k =1. 2 ..... N. 

Inserting equations (2.15) and (2.16) into equations (2.17) and performing 

the integrations gives: 

N n 
1: [-Co)2M& + Kg] Uj + Co) 1: B#vj + 'J& = if (2.16) 
j=1 j=1 



where 

M8 = jm(X)~i'~i d S(x) 

S 

B8 = jO!(~i)·~i d S(x) 
I} 

K8 = j[V ·-rL(~i)}~i d S (x) 
S 

"J 8" = j[V . C(u, v)}.p, d ~ (x) 

"J Hi = j[V . S( u, V)}.pi d ~ (x) 
~ 

1 21f 

C(u. v) = - f .,N(u, v. 'fJ)cos'fJ d'fJ 
7T 0 

1 21f 

S( U. v} = - J .,N (u, v. 'fJ) sin'fJ d 'fJ 
7T 0 

If = !r(x} . .p" d ~ (x) 
~ 

f)= c.Jt 
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(2. 18a) 

(2.18b) 

(2.18c) 

(2. 18d) 

(2.18e) 

(2.18f) 

(2.18g) 

(2. 18h) 

(2. 18i) 

Recall the properties of the nonlinear sT-3tem given in section (2.3), particu-

larly those of positive definiteness, self-adjointness and Rayleigh damping. Now 

suppose that ~k; k =1. 2 ..... N. are the first N sets of eigenfunctions to the 

linearized problem. or 

(2.19) 

where Ai represents the corresponding kth eigenvalue. Using (2.19). the ortho-

gonality property of equation (2.8), and the Rayleigh damping definiton , the 

matrices of equations (2.18a) - (2.18c) become 
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(2.20) 

where ("1. is the damping coefficient of the ith. linear mode and 

All future references to the Galerkin solution for the periodic nonlinear prob-

lem will be solutions to the nonlinear algebraic equations of (2.18). (2.18d) -

(2.18h) and (2.20). Note that by using the linear eigenfunctions for comparison 

functions. the linear portion is uncoupled. thus leaving only the nonlinear vec-

tors 3' 8 and 3' g to couple the equations (2.18). 
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2.4.2 Ritz method (periodic solutions) 

The Ritz method will. proceed from the 1Jo:ria.tiona.l form of the nonlinear 

problem, whereas the preceding Galerkin method started with the system being 

described by a differential equation. Let the generalized Lagrangian, 1. of the 

system {2.12} be written as: 

L = T-U+JY (2.21) 

where T is the kinetic energy. U the potential energy and W the virtual work done 

on the system by non-conservative forces. The generalized Hamilton's principle 

[16] says that from time h to time t 2 , a point in the system will follow a path 

which extremizes the integral of L over time from t 1 to t 2. or 

{2.22} 

In the Ritz method, the solution will be approximated by a function 

N 
W(x. t) = L; t,(:x)[ 'UiCOSc.lt + 1JiSinc.lt] (2.23) 

':=1 

where here, t,;; i=1,2, ...• N, are a.dmissabZe functions. Admissable functions 

are similar to comparison f.unctions except that they need only satisfy the 

geometric boundary conditions; that is, for the system of equations (2.12), only 

the following need be satisfied: 
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Surely trial functions which satisfy all of the boundary conditons could be 

used. but the use of admissable functions enlarges the class of fUDctions from 

which to choose. In fact. the satisfaction of geometric boundary conditions is 

not necessarily required to effect a solution when dealing with the variational 

form of the problem. Discussion of this can be found in references [48] and 

[34]. 

The variation in equation (2.22) is accomplished by setting 

2~ 
a ~ 

- J(T - U + W) d.t = 0 
Bu" 0 

2!!. 
B ~ - J (T - U + W) d.t = 0 

ihJ" 0 

The kinetic energy for the system in equations (2.12) is given by 

T(w) = 'h.J m(x)i;·i; d ~(x) 
~ 

Suppose that the potential energy U can be written as: 

u = UL + UNL 

= t;;.fTL·iL d ~(x) + UNL 

~ 

(2.24) 

(2.25) 

(2.26) 

where UL is the potential energy in the linearized problem. 'TL and ,&L are linear 

operations of If and UNL is the contribution to the potential energy bY.,N. 

Using the linearity of TL and i L. along with equations (2.23). (2.25) and (2.26). 

the Ritz equations can be written as: 

(2.27) 



where 

'l1I.lJ = fm(x)~i.'~; d. 49{x} 
Ii 

21 

}(./J = *fpTL(~i)'iL{~i) + TL(~j}£,L(.i)] d ~ (x) 
49 
1 a 21f J& = --j[W(w) - UNL{w)] d19 
1TOu,:O 

(2.27a) 

(2.27b) 

(2.27c) 

(2.27d) 

(2.27e) 

If the system investigated is conservative and linear, that is if W and UNL are 

omitted from (2.27c) and (2.27d), the system of equations reduce to the eigen-

value problem: 

(2.2S) 

It can be shown that the matrices 7l(R and ;}-CR in (2.27a) and (2.27b) are identi-

cal to those one would obtain by directly applying the well-known Rayleigh-Ritz 

method to the linear. conservative system. Therefore, this method of perform-

ing a Ritz approximation to Hamilton's principle can be shown equivalent to a 

well established method for linear problems. 

2.4.3 Spatial discretization and equivalent linearization 

Let attention be returned to the general nonlinear system of equations given 

by (2.1) - (2.3). The first step of this method is to discretize the spatial portion 

by any acceptable technique, such as via the finite element method, Galerkin's 

method, or modal expansion in terms of the linearized eigenfunctions. This will 
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generally lead to a set of ordinary differential equations in time oftbe form: 

Md + C(b)d + K(a)d + ~(c, d, d) = f{t) (2.29) 

where d = d(t) are discretized NQvector displacements. M, C and K are the mass. 

damping and stiffness matrices of size NxN. resulting from the linear operators 

in (2.1). while f(t) represents the discretized forcing term. 3' (b, d ci) is an N-
. 

vector which is nonlinear in displacements d and velocities d and originates 

from the discretization of the nonlinear operator V·.,N. Recall that a, band c 

are stiffness. damping and nonlinearity parameters. respectively. in the original 

nonlinear system. The explicit form of the matrices and vectors in (2.29) will 

depend on the method of discretization. 

By way of obtaining appproximate solutions to equations (2.29). let an auxili-

ary set of linear equations be given by: 

Md + (C +c')ci + (K +Ke)d = l(t) (2.30) 

where C' and Ke are matrices independent of time. As will be seen later in this 

section, these matrices will be adjusted in a prescribed manner such that the 

difference between the nonlinear equations of (2.29) and the auxiliary. or 

equivalent linear, equations in (2.30) will be minimized. 

Let d· be a vector function of time and a member of a class of functions 

containing the solutions to the linear. auxiliary equations (2.30). Let t1 

represent the difference between the original nonlinear system and the linear 

auxiliary system both operating on the same function d·(t). or 

(2.31) 

The central idea of equivalent linearization. as applied to equations (2.29). is 

to minimize the difference term t1 over all functions d· belonging to C. The 

usual procedure is to first average over time the Euclidean norm of t1. Then the 
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minimization of!J.. is stated as 

for all d· E C (2.32) 

where t:. T denotes the transpose of t:. and G. is a linear. time invariant opera-

tion. 

The minimization is then accomplished by extremizing G. (!J..Tt:.) with respect 

to all elements of CI and K'. If Cli and KlJ; i,j=1,2 •...• N, represent the ele-

ments of Ce and K e, the extremization is expressed as: 

(2.33) 

(2.34) 

Since d·(t) belongs to the class' of functions which satisfy the linear auxiliary 

equations. there exists an implicit relationship between the solution d of auxili-

ary equations (2.30) and the equivalent linear matrices Ce and K e in equations 

(2.33) and (2.34). These equations are then solved in an iterative fashion for 

d.C e andKe• 

For the sake of brevity. the above description of the generalized equivalent 

linearization method for ordinary differential equations is by no means com-

plete. A more thorough treatment of the method can be found in references 

[45] and [21]. One result, from the investigation reported in [45] on the inverti-

bility of relations (2.33) and (2.34), deserves comment at this point. It was 

shown that when the dimension of the solution space described by equaled or 

was greater than 2N, the relations in (2.33) and (2.34) became singular. There-

fore, if solutions for Ce and K e exist, they are not unique. However. it was 

demonstrated that the non-uniqueness does not affect the quality of the sol.u-

tions in that aU values of Ce and K e which satisfy the singular relationships do 



24 

an equally good job of minimizing GeATA). It should be noted, however, that in 

the mechanization of the general method. one encounters the task of solving a 

singular set of equations. This singularity of equations (2.33) and (2.34) will 

create numerical difficulties. The ideas of existence and uniqueness of the 

minimization relationships resulting from the extension of equivalent lineariza­

tion to partial differential equations will be investigated in Chapter III. 

2.5 Remarks 

The class of nonlinear partial differential equations that will be investigated 

has been presented in equations (2.1) - (2.3). Simplifying assumptions of linear­

izability. positive definiteness, self-adjointness, form of damping to be con­

sidered, and symmetry of the nonlinearity have been stated and discussed. 

A brief survey of existing techniques for solving nonlinear continua problems 

that are either purely analytical or numerical-analytical has been presented. 

Galerkin's method. the Ritz approximation to Hamilton's principle and the 

method of equivalent linearization applied to the spatially discretized problem 

have been discussed in further detail. These methods reduce the original non­

linear partial differential equations to a set of of nonlinear algebraic equations 

for which general solution techniques exist. The algebraic equations developed 

via Galerkin's method (2.18) and the Ritz method (2.27) will be used to obtain 

solutions to particular problems for comparison with solutions generated by the 

new equivalent linearization technique to be developed in Chapter III. It should 

be noted that the striking difference between the Galerkin and Ritz method is 

that the Ritz method is applied to the variational form of the system, while the 

Galerkin method starts with the problem stated in the differential form. The 

variational statement of the problem permits the usage of admissable functions 

instead of the comparison functions that are needed for Galerkin's method. 
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This difference gives the edge to the Ritz method on problems in which satisfying 

the natural boundary conditions becomes difficult, if not impossible. 
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m. EQUIVALENT UNEARlZATlON FOR CONTINUOUS SYSTEMS 

3.1 Introduction 

The concept of equivalent linearization was introduced in Chapter II in the 

application of the method to a set of nonlinear ordinary differential equations. 

The principle of the method was first presented in reference [4] for the case of a 

single ordinary differential equation with harmonic excitation. Although this 

original work derived the equivalent linear relationships through the methods of 

power balance and harmonic balance. the relationships are now typically 

developed by the residual minimization procedure discussed in Chapter II. The 

method was then extended to stochastic equations in references [5] and [8]. and 

a generalization to multi-degree-of-freedom systems has been presented in 

reference [21]. For the most part. equivalent linearization has been used 

exclusively for determining periodic solutions and for stationary random solu­

tions. One exception to this is recent work in reference [45] in which the 

method was applied to transient response of nonlinear single-degree-of-freedom 

systems. 

In this chapter. the idea of 'equivalent linearization is be extended to the class 

of nonlinear systems by equations (2.1) - (2.3). This method difi'ers significantly 

from the discretization-equivalent linearization technique described in section 

2.4.3. in that here. the linearization is performed before the spatial discretiza­

tion. More specifically. the auxiliary system for this method is a set of partial 

differential equations containing dissipative and stiffness parameters to be 

determined in such a way that a difference between the original nonlinear sys­

tem and the linear auxiliary is minimized. The difference term here is not only a 

function of time but also a function of space. Therefore, its minimization 

involves complexities not encountered in its discrete analog. 



27 

This chapter deals with the mechanics of constructing such an equivalent 

linear solution and the properties of their solutions. The first sections are con­

cerned with the definitions of the linear auxiliary system, system difference 

t.erms and the averaging operators to be used on the difference terms. Following 

this in section 3.5, the minimization of the equation difference terms is dis­

cussed. Discretization of the resulting equivalent linear system and properties 

of the equivalent linear solutions are discussed in sections 3.6 and 3.7. 

3.2 Class of Auxiliary Systems 

Let the linear auxiliary system for the equivalent linearizaton method be 

defined as: 

v ·.,L(a.w) + V .,.L(a, w) + QL(b. w) + QL(P. w) + m(x)ii = p(x. t) (3.1) 

W(w) = 0 (3.2) 

W(w) = 0 

where V . .,L{a. w}, it{b. w}, m {x}, p. H' and B'" are as defined in section 2.2. a{x) 

and (l(x) are the equivalent linear stiffness and damping paramet.ers. respec­

tively, for the auxiliary system. 

The form of the equivalent linear damping QL«(l. w) is more restrictive than 

for QL{b. w}. QL«(l. w) is limited to strain related damping; that is, in the Rayleigh 

damping definition of equation (2.9), 71 = 0 or 

o!(P. w) = V • .,L«(J. w) (3.3) 

It is clear that the form of the linear auxiliary system arises from the 

replacement of the nonlinear operation V . .,N in the nonlinear equation (2.1) by 

the linear operation V ·.,L(a. w) + o;(f/. w). Then if equation (3.1) is to model the 

response of equation (2.1). V·.,L and QL must model the response dependent 
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stillness and dissipation properties of V . .,N in some prescribed way. 

3.3 Definition of Equation Differences 

Let w· = w·(x,.t) be a set of functions belonging to a class of functions C to 

which solutions of (3.1) belong. The difference terms defined in this section are 

differences between given nonlinear operations of the system (2.1) and given 

linear operations of the auxiliary (3.1). both operating on the function w·, Three 

difference terms. constituting what are referred to as problem formulations I. II 

and 1ll. are defined as the following. 

Definition - Differential Stress Difference (Formulation I) 

Since w-(x. t) is not necessarily a solution of either the nonlinear system or of 

the auxiliary system. substitution of w· into equations (2.1) and (3.1) will leave 

non-vanishing residual terms. The difference of these residual terms, ~l. is 

written as 

(3.4) 

Definition - Energy Difference (Formulation n) 

Let 3 (If-) be a linear spatial operation on w· such that for w· ~ 0 

ifia=O 

Then the difference term for formulation II, ~Il, is defined as; 

(3.5) 

where the ( ). ( ) scalar inner product is a defined in section 2.2. 

Definition - Stress Difference (Formulation m) 

For formulation IIJ, let the system difference term, llJ1l, be defined as : 
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1l0l == ~(c. w"W) - .,L(a. we) - tL({J. iv') (3.6) 

For the sake of clarity. a few observations should be made on the preceding 

defintions. 

1. III for formulation I is directly analogous to the equation difference 

term for ordinary differential equations (2.31). 

2. If '(we) is interpreted as the strain operator and if the system is elas­

tic. then fl.11 would represent the difference in the strain energy density 

of ~ and -,L operating on the same function w·. Although inelastic sys­

tems are not to be excluded from the analysis, ll.II will still be referred 

to as an "energy" difference. 

3. Note that III and fl.II are functionally related to IlIII. III is simply the 

divergence of the stress difference term 1l1II, while I1II is equivalent to 

fl.!!] . 3 . 

3.4 Averaaill£ Operators 

In establishing an equivalent linear solution, one is left with the task of 

minimizing a given difference, 11. between the nonlinear system and the 

equivalent linear system. Minimizing on a point by point basis will generally 

engender too many constraints on the solution to make a solution possible. One 

alternative is to minimize some measure of the difference: for example. its aver­

aged value over time and space. That precisely is the approach taken here. 

For a given difference term. fl.. let its scalar inner product. as defined in sec­

tion 2.3.2. be given by ll. . 11. Then the averaged value of 11 . 11 will be given by 

ut%(11 . fl.). with Gt%( ) defined as below 
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Definition-Ave~ncOperator 

For a given scalar function, U = u(x,t}, let Gt:(u} be defined as follows: 

where 

uz{u) = Ju d A9{x) 
£; 

and u t(u) has the following properties 

1. Time invariance:! G,(u) 

2. Linearity: Ut(u+v) = Ut{u) + u,{v) 

3. Positive definiteness: Gt {u 2) > 0 for u~ 0 and Ge{O) = 0 

3.5 System Difference Minimization 

(3.7) 

(3.S) 

In order to determine the equivalent linear stiffness and damping 

parameters. a(x} and fl(x). it is necessary to minimize the averaged system 

difference between systems (2.1) and (3.1). Let A represent one of the system 

differences defined in section 3.3 and G ts{A . A) be the averaging operation 

defined in section 3.4. Formally. this minimization can be stated as the exlremi-

zation of G tz (A . A) over all functions a{x) and flex), or 

o Gt:(A(a, fl. w·) . fl(a, fl. 1ft» = 0 for all 1ft E C 
U1. r. t. a. f3 

(3.9) 

One approach in effecting the extremization in equation (3.9) would be the 

use of direct analytical variation via calculus of variation. For example, con-

sider the system difference defined for formulation III. Using the property of 

the inner product operator ( ). { } given in section 2.3.2 and the linearity of 
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Uk and -1-, the variation with respect to a can be written as: 

The variation with respect to (J can be written in a similar way. Therefore the 

extremizaton in (3.9) can be written as 

(3.10) 

(3.11) 

Integration by parts over Jl)(x) of (3.10) and (3.11) will produce a set of 

Euler equations in a and (J with x being the independent variable. The Euler 

equations for a and (J will generally be partial differential equations for which 

general solutions are not readily available. Therefore the exact minimization 

has not significantly simplified the solution procedure for the original nonlinear 

partial differential equations. In what follows. an approximate method for per-

forming the extremization of (3.9) will be explored which will produce algebraic 

relationships for the minimizing stiffness and damping parameters. 

Suppose the equivalent linear parameters a{x) and (J(x) are approximated by 

the following functions 

11 
a(x) R:I l:V'i(x)ai (3.12) 

i=l 

(3.13) 

where ai and it are unknown constants and V'i{:X:); i=1.2 •...• M. are linearly 

independent functions of x. 
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Sufficient conditions for the minimization of Gt%(A' A) with respect t.o the 

approximations to Q and (1 given in (S.12) and (S.lS) are 

(3.14) 

(3.15) 

The question of whether the ii and i that satisfy (3.14) and (3.15) truly minim-

ize ut:(A' A). and not. marimi26s utz(ll' ll). will. be examined in a later sec-

tion. 

Let attention be focused on developing the minimizing relations (3.14) and 

(3.15) for the specific problem formulations. Up to this point, the equivalent 

linear paramet.ers Q and {J were assumed t.o be sets of parameters for the sake 

of generalit.y. To expedite the developing of the minimizing relationships. let it 

be assumed that a and fJ are sets of one pararneter each. or simply a and (3. 

Similar relationships to those in the following sections can be established for 

larger sets of a and (J. 

3.5.1 Formulation I minjmi:ra.tiOD 

For problem formulation I, the di.fl'erential stress difference Al was defined as 

(S.lS) 

Since .,L is a linear operation. 

(3.17) 

where -rf is a shorthand notation for .,L{rpjl .... ). Similarly. -rH{ ..... w·) will be 

WT'itten as .,N, with the operation on w" and i, implied. 

Using (3.16) and (3.17) and the linear property of Ut: in t.he first minimizing 
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relation (3.14) gives: 

(3.18) 

Equation (3.18) can be written in matrix form as: 

(3.19) 

where 

(3.20) 

cl = Ut% ([V • .,N] • [V • -rf]) 

.... - (- .... )T (- ... )T a. (J = ex 1, • . • , a Ji and (J I. . • • • (J II (3.21) 

Similiarly, the minimization relation (3.15) becomes 

(3.22) 

where 

D~ = Ut:r:([V .-rf] . [V ·Tt]) 

(3.23) 

HI = Gtz([V . .,N] . [V ·if]) 

Equations (3.19) and (3.22) can simplified further by observing the form of 

matrices CI and DI along with properties of the operator ut:r:. First note that 
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(3.24) 

where (DI)T is the transpose of the matrix DID For any two functions u(x.t) and 

v(x.t) on ~(x), and since Ub(} is linear and time invariant. 

:t Ub(U'V) = G. t:(li:v) + ut:(u. i) 

=0 

Therefore 

G.t=(U:V) = - t=(u·v) 

Looking at equations (3.20) and (3.23). it is clear that (3.25) implies 

Cl = _(DI)T 

Equations (3.24) and (3.26) together say that 

C'ij = D'i,j = 0 ; i,j=1. 2 ..... M 

(3.25) 

(3.26) 

(3.27) 

Therefore the equations for the formulation I parameters ii and ii are uncou­

pled from each other. 

3.5.1 Formulation II minjmiption 

The system difference for formulation II, the scalar t::,u, was defined to be 

tJ.II = [.,N - ,.L(a) - :,L(~)] . g 

Using (3.14) and the shorthand notation of g for g (w·) , the minimization rela­

tions (3.14) and (3.15) can be written as : 

AIla + Clip = GIl (3.28) 

(3.29) 

where 
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(3.30) 

As was true for the formulation I minimization relations, the matrix DII is the 

transpose of ell, or 

DII = el.! ", ", 
(3.31) 

However ell and DII are not null matrices, as was the case for formulation I. 

Consequently, the equations for a and P remain coupled for a general system. 

As will be seen in section 3.8, the uncoupling of the equations is sufficient condi­

tion to guarantee the existence of unique solutions for a and p. 

There does exist, however, at least one special definilon of the strain opera-

tion, 3, and of the basis functions, 'Pi(X), which permit an uncoupling of the 

minimization equations (3.28) and (3.29). It can be shown that. if 

'Pi (X) ; i=l. 2 .... ,M are such that ell and Dil are diagonal matrices and the 

operation g is proportional to .,L, ell and Dll vanish identically, thereby uncou-

pIing the minimization relations. 

3.5.3 Formulation m minimization 

The formulation III system difference was given by 
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!J. = .,N - .,L(a) - ¥«(1) (3.32) 

In the same manner as for formulations I and II. the minimization relations can 

be shown to give the following equations for fi and p: 

(3.33) 

(3.34) 

where 

elP = Gtz(Tf·.,f) (3.35) 

for i,j=l,2, ... ,M 

Here again (3.35) shows that 

(3.36) 

Equation (3.36) and the time invariance of Gtz ( ) implies that 

Cw = DJ!l = 0 ''; ';-1 2 M ..,.., , '1J - , .... , 

which uncouples the equations for fi and ji. as was the case with formulation I. 
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3.6 Examination of the Minimum 

In determining the values of the equivalent linear parameters a and P which 

made the averaged system difference an extreme value, there is no guarantee 

that the extreme value is truly a minimum and not actually a maximum. It will 

be shown in this section that the values of a and P established from equations 

(3.14) and (3.15) do in fact make the averaged system difference term Gu(~·~) 

a minimum. 

Again let ~ represent the general system difference term from either formu-

lation I, II or III. and Utz have the properties specified in section 3.4. Recall the 

definitions of ~ for the three problem formulations given in section 3.3. All 

three definitions can be written in the following general form, when the approxi-

mations to Cl and (1 of (3.12) and (3.13) are considered: 

M M 
~ = IN(W; w) - L; J:(w)ale - L; J :(ir)P Ie (3.37) 

1e=1 1c=1 

where ''IN, is a nonlinear operation on If and ir. J: and :J:: k=1. 2, ... ,M are 

linear operations on wand w. 

Then ~.~ is a scalar, qucidratic polynomial in the parameters ii and p. 
Therefore its mixed partial derivatives with respect to ale and Pie ; k=l, 2, .... M , 

of order higher than 2 vanish. With a and p satisfying the extremization rei a-

tionships of (3.14) and (3.15). let another set of parameters ii' and P' be defined 

as: 

(3.38) 

Using the shorthand notation of ~·=~(ii·. p.) and A=~(ii. p). the averaged 

inner product ut%(~" ~.} can be expanded in a Taylor series expansion about a 
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and p as 

(3.39) 

But, from (3.14) and (3.15). 

(3.40) 

The higher order derivatives can be written. with the use of (3.40) as: 

(3.41) 

02 U U O/). i}IJ. 
~Q {)ii tz(6'6} = 2 t:r ~m '-;;rp 
upm PP Up Up 

(3.42) 

(3.43) 
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Using equations (3.40) - (3.43) in (3.39) and simplifying through the linearity 

of Utz gives 

(3.44) 

where 

The positive definite properties of Gtz and ( }.{ ) prescribes that 

for f(oa. op) ~ 0 I 
(3.45) 

and 

iff f(oa. oji) = 0 I (3.46) 

Hence 

(3.47) 

In words. equation (3.47) says that for parameters a and p that make 

G"(.~·~} an extremum, the corresponding extreme value is no larger than any 

other parameters ii' and P'. Therefore ut2:(A(a. P )·A(a. fi» is a global 

minimum. Note. however. that this does not preclude the possibility of more 

than one set of a and fi which minimizes utz(A·A). If non-unique solutions do 

exist. then relation (3.46) implies a linear dependence of the operations 'J:" and 

'J~ ; m=l, 2 •...• M. with the form of 'J:i and 'J~ of course depending on the 

problem formulation. The existence and uniqueness of the solutions for a and 
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P will be investigated in a later section for the t.hree problem formulations. 

3.7 Spatial Discretization of the Auriliary Equations 

In solving the type of equations given by the linear auxiliary system (3.1). 

approximate techniques are usually employed. This is especially true when the 

problem contains inhomogeneous material properties and/or has complex 

boundary conditions that need to be satisfied. The former will always be true 

for the equivalent linearization method due to the manner in which the linear 

parameters are discretized. 

The finite element method enjoys widespread usage in solving the types of 

problems described by (3.1). The underlying principle of the method is the sub­

division of the total spatial domain. ~(x), into subdomains, or elements ~e(x). 

Within each element the displacements are discretized in such a way that they 

can be written in terms of linearly independent basis. or ''shape''. functions of 

the spatial coordinates, or 

w(x,t) =N('lt)d(t) (3.48) 

where N is a matrix of a set of shape functions v (x) and d is a set of time depen~ 

dent nodal coefficients. A Galerkin procedure. with If defined as in (3.48). can be 

then be used to approximate the solution to (3.1). This procedure leads to the 

following discretized equation 

71( d(t) + Cd(t) + ~d(t} = f(t) (3.49) 

where the vector f and the matrices 7t'1, c and X are integral functionals of the 

shape functions i' and their derivatives. 

The striking difference between the equations (3.49) from the finite element 

method, and an analogous set derived from the general Galerkin formulation. 

lies in the shape functions 'IJt. The basis functions used for the finite element 
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m.ethod are simple polynomials which are defined over only one element. With 

such a compact support. boundary conditions are easier to impose locally. along 

the edge of an element, rather than globally along a more complicated boun­

dary. The accuracy of the method is increased by a refinement of the subdivi­

sions, and not by the classical Galerkin method of including more complex basis 

functions. The advantage of this is in the ease of implementation into a com­

puter code; that is, the computer instructions remain nearly the same as the 

mesh is refined. 

In order to determine suitable shape functions for a particular problem, the 

convergence properties of the finite element method must be considered. Con­

vergence of the method. as the mesh of elements is refined. depends on the con­

tinuity of the shape functions used. In particular, the stiffness matrix li: in 

equation (3.49) will generally be the strain-energy integral for the system, which 

will involve a number, say m, of derivatives of the shape functions. Then. if the 

m-l derivatives are continuous across the elements, the integrand is finite and 

the strain-energy integral exists. This is a simplified explanation of one cri­

terion of convergence, which is sufficient continuity of the shape functions [54]. 

The use of shape functions which do not satisfy this continuity requirement 

does appear in the literature ( for example [49] ), but attention here will only be 

given to shape functions which satisfy continuity. 

Another requirement for convergence of the finite element method is 

mathematical completeness. From a physical standpoint. completeness implies 

that the finite element mesh must be capable of modeling a constant strain con­

dition throughout the domain. Completeness can be established for iso­

parametric elements ( see [54] ): that is, elements which use the same shape 

functions on the spatial coordinates as on the displacement field. For the case 

of non-isoparametric elements, the constant strain condition can be established 
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through an element ''patch test" ( reference [48] ). 

Continuity of the shape functions is also a consideration in the minimization 

procedure for determining the equivalent linear parameters a{x) and fJ(x). For 

example, in the formulation III minimization relations of equations (3.33) ~ 

(3.35). a typical integration that must be performed is: 

(3.50) 

From (3.50). it is seen that .,L must be continuous in the mean square sense for 

derivatives of .... up to n-1. where n is the number of spatial derivatives of .... in .,t. 

Generally n will be greater than m. where m has previously been defined as the 

number of derivatives in the strain energy integral. Therefore. continuity 

requirements of the displacement field imposed by equivalent linearization tend 

to be more restrictive than those of the finite element method. 

3.8 Existence and Uniqueness of Equivalent Linear Parameters 

In section 3.5. a set of relationships were established between the equivalent 

linear parameters and the solution of the linear auxiliary system such that the 

difference between given properties of the nonlinear system a~d the auxiliary 

system are minimized. The preceding section dealt with the spatial discretiza­

tion of the auxiliary system. which produces a second set of relations between 

the equivalent linear solution and the equivalent linear stiffness and damping 

parameters. Before these ideas are applied to specific problems. some con­

sideration must be given to whether this technique is capable of producing rea­

sonable solutions. Therefore this section deals with the question of whether the 

minimization technique yields equations for which solutions exist and. if solu­

tions exist. whether they are unique. 
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The equations for the equivalent linear parameters fi and P which minimized 

the system differences for problem formulations I, II and III can be written in 

the general form (see equations (3.19). (3.22). (3.28). (3.29). (3.33) and (3.34»: 

(3.51) 

where ~he matrices A. Band C and the vectors G and H depend on the problem 

formulation and are functions of the auxiliary equation solutions. 

As shown in section 3.5.1 - 3.5.3. the matrix C always vanishes for formula­

tions I and III. Therefore, for the case of uncoupled equations. the existence of 

unique solutions for a and p depend on the invertibility of matrices A and B. 

The question of whether a matrix is non-singular can be answered by showing 

that it is sign definite; that is. if all the eigenvalues of a matrix tend away from 

zero, then its determinant will never vanish. 

The following claims will show that the matrices A and B for all three problem 

formulations are positive definite according to the definition: 

Definition - Matrix Positive Definiteness 

A matrix T of size M xM will said to be positive definite if for an M - vector r 

rTT r > 0 ; if r ~ 0 

rTTr = 0 : iff r = 0 

where ~ is the transpose of r. 

Claim - Positive Definitene8l!l of AI and BI 

(3.52) 

For matrices Al and BI defined in equations (3.20) and (3.23) with w ~ 0, 

ir;lf 0 for all x and t. Al and BI are positive definite. 
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Proof 

Recall that for formulation I. Al and BI were derived to be 

Then 

(3.53) 

11 
where r = :E ~i{x)ri' Note that the linearity of Gtz and .,L were used in obtain­

t=l 

ing (3.53). Taking into account the positive definitenes of G tz and the inner 

product operation. equation (3.53) says that: 

j 
(3.54) 

Forming the inner product of wand V .,L, integrating over ~(x). and using 

the last equation in (3.54) gives 

(3.55) 

Since V . -,L{r I w) is positive definite according to section 2.3.2. equation (3.55) 

can be satisfied for w iJf; 0 iff 

JI 
r = ~ ~i(x)ri = 0 (3.56) 

i=1 

The basis functions ~i{X) ; i=l. 2 •...• M. are linearly independent. Hence 
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r = [Tl,T2' ..• ,T.w]T = 0, and therefore Al is positive definite. 

Now looking at Bl, 

and by the same arguments as with A I, 

rTBIr ~ 0 

I 
r is a linear operation. Therefore ;J-(T I w) = r(T I w), and with (3.57) 

fir· [v ·-rL(r, ir)] d S{x} = 0 

(3.57) 

(3.5B) 

Again for positive definite V .-1-, ir ~ 0 and linearly independent. 'i. r == 0 if (3.57) 

holds, and BI is positive definite. Q.E.D. 

Claim 

The matrices All and Ell developed for formulation II are positive definite. 

Claim 

The matrices A III and BlIJ developed for formulation III are positive definite. 

The proofs for the preceding two claims are quite similar to the proof for for­

mulation I and therefore are not included here. 

In conclusion, solutions for the formulation I and III equivalent parameters 

always exist for non-zero displacements and are unique. For the special case 

described in section 3.5.2 in which the equations for Ii and P uncouple. unique 

solutions for formulation II parameters exist.. Unfortunately. attempts to show 

existence and uniqueness of the general formulation II minimization solutions 

have not been successful. 
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IV. SPECIAL CASES OF THE GENERAL APPROACH 

Chapter m dealt with the development of the general equivalent linearization 

approach for nonlinear continuous systems. The relationships between the 

equivalent linear nodal parameters, a and p and the displacements 'W which 

belong to the class of functions C were established. Describing C are the basis 

functions which are solutions to the linear auxiliary system given by equations 

(3.1) and (3.2). In this chapter. the equivalent linear parameter relationships 

are specialized for two types of excitation. g (t). for the nonlinear system of 

equations (2.1) written in the form 

v . -rL(a) + V .,.H( c) + it(b) + m (x) .. = p(x)g (t) (4.1) 

The linear auxiliary equations are written as 

v ·-rL(a) + V ·,.L(a) + it(b) + V .ti-«(3) + m(x)if = p(x)g(t) (4.2) 

where, as before. the functional dependence of -rL • .,.N and qL on w and it is under­

stood. For the excitation g (t) in (4.1) and (4.2). attention is focused on the 

cases of monofrequency harmonic and stationary Gaussian excitation. 

Interest in harmonic response often arises when rotating machinery serves 

as the excitation of the structural element, or when adjoining structural ele­

ments filter the excitation to a single frequency input. In addition to this. the 

forced vibration tests of structural elements to determine stiffness and energy 

dissipation properties frequently use harmonic excitation. Therefore, steady­

state response of a nonlinear system has significant relevance to engineering 

problems. 

The random nature of excitations due to earthquakes and acoustical noise is 

also of engineering importance. If the analyst considers a large number of 

independent records of the random process where no one record's contribution 
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is more significant than the others. the central limit theorem says that prouess 

can be considered normal. or Gaussian. If the average and second moments of 

these records can be a:ssumed to be good substitutes for the actual records of 

the process, then the use of a Gaussian excitation would appear to be a good 

approach to these engineering problems. 

For simplicity of notation. the displacements w(x. t) will be assumed to be 

simply a scalar function w (x. t ). The examples to be considered in the next 

chapter will fit into this category. Therefore use of relations developed can be 

applied to the examples in a straight forward manner. Extension of the results 

of this chapter can be made to problems requiring a vector representation of 

displacements but only,at the expense of notation. 

4.1 Steady-State Harmonic Response 

Consider the case where g(t) = cosc.Jt in the nonlinear equation and auxiliary 

linear equation in (4.1) and (4.2). The nonlinearity. -rIV, of equation (4.1) has 

been assumed to be symmetric in accordance to the definition of section 2.3.4. 

Therefore. if the linear auxiliary system of equations (4.2) is to model the non­

linear system, the steady-state. linear solution can be expanded in the first 

terms of its Fourier series as 

w(X,t) = U(x)cosc.Jt + V(x)sinc.Jt (4.3) 

Hence. the set of basis functions for steady-state harmonic response is 

[COSc.Jt, sinc.Jt] . 

In discretizing the auxiliary system. the functions U(x) and Vex) from equa­

tion (4.3) will be approximated by 

N 
U(x)r:.:: ~1Pi(X)~ (4.4) 

i=l 
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N 
V(%)~ ~ '¢'i(X)Vi (4.5) 

i=J 

where 7{!" is a set of N spatial basis functions and 14 and V( are undetermined 

coefficients for i=1,2 •... ,N. Then the discretization can be carried out through 

the finite element method, Gaterkin's method. modal analysis, etc. Equating the 

coefficients of the sine and cosine functions will give a set of matrix algebraic 

equations for u and v in terms of the equivalent linear parameters a and pas: 

(4.6) 

(4.7) 

where 77(. C and Ji are the mass, damping and stifi'ness matrices, respectively. 

f is the discretized excitation term. The form of the matrices and vector will 

depend on the method used for discretization. Equations (4.6) and (4.7) can 

then be soLved for the 'in-phase" and "quadrature" (w.r.t. the excitation) solu­

tions u and v, respectively, once the stiffness and damping parameters Ii and P 
are known. 

The system difference minimization procedure produces a set of relations for 

a. and 1i in terms of the auxiliary equation solution w. as were developed in secb 

tion 3.5. These equations were written in terms of the general temporal averag~ 

ing operator Ut. Since the steady-state solution for the auxiliary system (4.2) 

with g(t) harmonic is periodic with period 

T = 21T. 
Col 

a logical choice of U t which satisfies the properties of Ut in section 3.4 is 

r 
C4 (. ) == I(' ) dt 

o 

Using this definition of G.t • the minimization relations 

(4.8) 

(4.9) 
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(4.10) 

for k=1.2 •...• M. will be specialized for steady-state harmonic analysis for the 

three problem formulations. 

Recall first that the equations (4.10) could be written in the general matrix 

equation form of: 

(4.11) 

where the form of matrices A,B and C and vectors e and H depend on the prob-

lem formulation. In fact. for formulations I and III. the matrix C vanishes. 

These matrices will be discussed in the following sect.ions. 

4.1.1 Formulation I - steady-state harmoniC response 

Equations (3.20) and (3.23) give the form of A I ,B I , el and HI for formulation 

I. Since -I- is a linear operat.ion and with w defined in (4.3). the linear stress 

operator becomes: 

;f(w) = ;f(U}cosc,;t + Tf(V)sinc,;t (4.12) 

Using (4.9). (4.12). the definition of Uz and the orthogonality of sinc,;t and 

cos",t over one period of oscillation gives 

= : J{[V ·;f(U)]· [V ·.,-f(U)] + [V ·-rf(V)]· [V • .,-f(V)]}d ~(x) 



'Ii ..- 1 = -Aij 
CJ 

.... 1 = 1I'c.JA ~:J 
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(4.13) 

(4.14) 

= : J{[V ·C(1)(U.V)]· (V ·;f(U)] + (V ·S(1)(U. V)]· (V 'Tf(V)]}d ~(X) 

rr ... 1 
= -C" 

CJ 

where 

1 21f 
C(1)(U,V) = - I ~(Ucos~Vsin19) cos19d19 

11' 0 

1 211 

8(1)( U, V) = - I ~ (U cos~ V sin19) sin19d '6 
11' 0 

19 = c.Jt 

The formulation] equations for a and p can then be written as 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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(4.19) 

(4.20) 

A few observations are pertinent to the above expressions for a and if: 

1. The solutions a and if depend on the first Fourier coefficients of the 

nonlinearity -rH as seen by equations (4.17) and {4.16}. A number of 

other approximate methods including Galerkin's method (see equa-

tions (2.16f) and (2.16g)} also require the evaluation of such 

coefficien ts. 

2. In solving for a and ii, only one matrix.A 1 needs to be computed and 

inverted. Thus a saving of computation effort has appeared for 

steady-state harmonic analysis. 

3. With A 1 and iF not being explicit functions of c.J, equation (4.20) shows 

that the effect of the equivalent linear damping, ii. will diminish with 

higher frequencies. 

4.1.2 Formulation n - steady-state harmonic response 

For the steady-state solutions of w given by (4.3), the stress and strain opera-

tions can be written as 

,f(w) = ,f(U)cosc.Jt + T/'(V)sinc.Jt (4.21) 

g (w) = S(U)cosc.Jt + g(V)sinc.Jt (4.22) 

where -ri'(w) = .,L(~i'W). With the above relations, the general matrices and vec-

tors for the formula ton II minimization take on the following special form for 

steady-state solutions: 
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All = A,f(U)·S(V) + T/'{V)·S{U)][rj(U)- S{V) + Tj{V)·S(U)] 

+ [,f(U)· S(U)][3Tj{U):3 (U) + Tj(V) " 3{V)] 

+ [ri'(V) - 3{V)][ 7j(U)' S(U) + 3,-j'{V).· 8(V)]} d ~(x) (4. 23a} 

elf = ",J{-[-r{-(U).g (U) - -ri'(V)·S (V)][-rj(U)·S (V) + -rj(V}- S(U)] 

- [;f{U); S(V)][Tj(U)"S(U) + 3Tj(V)'S{V}] 

(4.23b) 

(4.23c) 

Elf = ",2J{[-rf{U)- S(U) - -rf(V}:S (V)][Tj(U)' g (U) - ,-f(V)- S (V)] 

+ [,.f(U) '-5(V)][3Tj(U)· S (V) - ,-f(V)·g{U}] 

- [,-fey}· 3 (U}][Tf(Ul'S(V) -1j(V)- S(U)]}d ~(x) (4.23d) 
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ell = J [cCl)og (U)][3-ri'(U)·g(U) + .,f(V)· g{V)] 

+ [C(3). g(U) + 8(3). g(V)][,f(U)·g(U) - .,f(V)·g (V)] 

+ [S(1).g{V)][,f(U)- g(U) + 3,f(V)' g{V}] d ~(X) 

H{l = CJJ -[C(1).g(U}][T/'(U)·g(V) - 3,.f(V)·~U)] 

where 

1 21r 
0 3) = - I .,N(U, V. ~}cos3~d~ 

1T 0 

1 21r ' 
g(3) = - I -rN(U, V. ~)sin3~d~ 

1T 0 

and 0 1) and S{l) are as defined in (4.17) and (4.18). 

(4.23g) 

(4.23h) 

It should be noted that the formulation II minimization requires not only the 

(4.23e) 

(4.23f) 
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first Fourier coefficients dl) and' 8(1), as did formulation I. but also the third 

coefficients d 3) and S{3). It appears then that this formulation extracts more 

information from the nonlinearity than formulation 1. 

4.1.3 Formulation In - steady-state harmonic response 

Looking back at the general minimization relations for formulation I. (3.20) 

and (3.23). and for formulation III. (3.30). one can see that the matrices and 

vectors A Ill, BIll, ClII and HIll are the same as those for formulation I if the V .-1' 

operation is replaced by -1'. Using this equivalence, the minimization relations 

for steady-state harmonic response with formulation III can be written directly 

using those of formulation 1. equations (4.13) - (4.20). That is 

(4.24) 

A IIIji = J.. HIlI 
Co) 

(4.25) 

where 

G {II = J[C(1)· ,-f(U) + s(I). Tr(V)] d (x) (4.26) 

fj {II = J[c(l)· Tr(V) - S(I). Tf(U)] d (x) 

with eel) and S(I) as defined in (4.17) and (4.18). 
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4.2 Stationary Random Response 

For the case of 9 (t) in equation (4.1) being a stationary, Gaussian excitation. 

stat.ionary solutions to (4.1) with zero mean value will be sought. Since the 

replacement. auxiliary system is linear and the input is Gaussian, it is well known 

that the response w will also be Gaussian. 

Because w (x. t) is a random process, the temporal averaging operator for this 

type of analysis must be a stochastic average. If the process is also ergodic the 

st.ochastic operator may be written as an ensemble average, or 

(4.27) 

where E [. ] is the mathematical expectation operator. 

Before the minimizaton relations are developed for stationary random 

response, the solution will be expanded in terms of deterministic spatial basis 

functions 1/Ik and stochastic coefficients dk(t) ; k =1. 2 ..... N • as 

N 
w(x.t) = ~1/Ik(x)dk(t) (4.28) 

1e=1 

If Land M represent linear operators on w, then, with (4.28). the following can 

be written: 

(4.29) 

N 
E[L(w)'M(w)] = ~ L(1/I1e)'M(1/Iz)E[dkdd 

.l:,Z=l 

Recall that w has a zero mean in time. Therefore 

and since the 1/I1e are linearly independent 
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E[dk ] = 0 ; k=1.2'60.,N, (4.30) 

The zero mean property of d along with the properties of stationarity and 

normality permit further statements to be made about certain averaged values 

of d. It can be shown that for a stationary random vector d(t) which is 

differentiable 

(4.31) 

The normality of d with (4.30) can be used to show that for a function q = q (y) 

(reference [lD: 

E[yq(y)] = ECYT]E[V rJ(y)J (4.32) 

where V '7 = [_O_,-!--. ... • -1-]T These properties can also be used to show 
8Yl uY2 UYN 

that the higher order moments of d can be expressed in terms ·of the second 

order moments [30]. In particular. 

(4.33) 

Using the discretized form of w{x,t} given by (4.28). the linear auxiliary equa-

tion (4.2) can be spatially discretized via a number of methods to produce a set 

of stochastic differential equations for d in the form of 

77(d + C (P)d + :U(a)d = fg (t) (4.34) 

where as before the matrices 77(. C and :u and the vector f depend on the 

discretization method. 

The relationships (4.31) for a stationary random vector permits the discre-

tized auxiliary equation to be written in terms of its correlation matrices as (see 
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reference [51]): 

AX+XA T= B (4.35) 

where 

-/ J 
77(-1 C (p) 

where 0 and / are the null and identity matrices. respectively. 

If 9 (t) is white noise. i.e. having a constant spectral density. the matrices 

E[fdT] and E[fdT
] on the right hand side of (4.35) can be written as: 

J 

(4.36) 

where W is the spectral density of 9 (t ). 

Therefore the stationary random solutions to the linear auxiliary equations 

with Gaussian excitation can be written in terms of the correlation matrices 

E[dd1']. E[dd1j and E[dd1j where these matrices are related to the equivalent 

linear parameters a and (1 through (4.35). The minimization relationships will 

now be expressed in terms of these correlation matrices. 
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4.2.1 Formulation I - stationary random response 

The coefficient matrix, A I , for the equivalent linear stiffness parameters Ii 

were given in equation (3.21) as 

where, again .,f(w) = ,.L()Di'W) and )Di(X) are the basis functions for a and (1. 

With w{x,t) spatially discretized as 

N 
w{x,t) = 2:;,¢,,,{x)d,,{t) 

k=1 

the divergence of the linear stress operator ,.L can be written as 

Then for stationary random response Gt {) = E[ ] and 

A4 = f EklJ[V 'T/'('¢'k)]' [V '-r!'('¢'l)]d .l9(x) 
k.f=1 

(4.37) 

Similarly the coefficent matrix for the damping parameters P. B I , along with 

the right hand side vectors CI and HI for both fi and pare: 

(4.38) 

(4.39) 

Ht = f JE [(V ·.,N(w,w»· (V ·,f('¢'k »etk] d .l9 (x) (4.4-0) 
"=1 
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From the property given in equation (4.32) for a Gaussian vector d with a 

zero mean 

Therefore (4.39) can be written as 

(4.41) 

and in a similar way (4.40) becomes 

HI= f Ei:i .fE[ ~(V . .,N{". d, d»]' (V . .,f{'I/I/c» d ~(x) 
k,L=l odl 

(4.42) 

Generally the nonlinearity V . .,N can be written in a power series of d and d as 

v .-li = 
17\ 1,17\ a .•• 
~ 1'" a ... 

which says that E (oOd (V·.,N)] and E [ ~(V . .,N)] can be expressed in terms of 
l Odl 

the higher order moments of the jointly distributed Gaussian vectors d and d. 

From reference [30], it can be shown that such higher order moments of Gaus-

sian processes can always be expressed in terms of second order moments, for 

example equation (4.33) of this chapter. Hence the formulation I minimization 

relationships for stationary. Gaussian response can be written in terms of the 

correlation matrices for the response of the linear auxiliary solutions. 

4.2.2 Formulation II - stationary random response 

Using a similar specialization as performed in the last section. the formula-

lion 11 minimization for stationary random response can be written as: 
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where 

DIJ = Gfl 

4.2.3 Formulation m - stationary random response 

In section 4.1.3, the formulation III minimization equations for steady- state 

harmonic response were obtained from the corresponding formulation I reI a-

lions by replacing V . .,N and V . .,.L by.,N and .,1-, respectively. Again this similarity 
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between the two formulations is used to obtain the formulation III relations. 

Replacing V·.,N and V·.,L in equations (4.37). (4.38). (4.41) and (4.42) by 

-,N an d -,L give s 

(4.43) 

(4.44) 

where 

(4.45) 

Remarks made in section 4.2.1 are herein applicable. 
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4.3 Discussion of Solution Proc;edwes 

This chapter has dealt with the development of two sets of equations descri.b-

ing the response of a nonlinear dynamic system via the equivalent linearization 

technique for the two special cases of steady-state periodic solutions and sta-

tionary random response. The first set of these equations arise from the minim-

ization of a given system difference with respect to the equivalent linear stiffness 

and damping parameters a and (J • respectively. The second set results from the 

spatial discretization of the auxiliary linear system. These two sets of equations 

are interrelated through a and (J and the linear displacements w. This suggests 

that such equations will have to be solved in an iterative fashion. Techniques for 

solving different types of vibration problems described by the equations 

developed in this chapter will now be discussed. 

4.3.1 Free vibration response 

Consider the case of a nonlinear. conservative system excited only by 

prescribed initial displacements. Since the system is conservative, the response 

W (x, t) will continue to oscillate at a frequency, say"'. Then the linear auxiliary 

response wll be governed by the singular matrix equation 

[_",2 7!i. + lC(a. ci)]u = 0 (4.46) 

which is constrained by the minimization equations 

A (u)ci = G(u) (4.47) 

where 

N 
• W (x, t) = (l: 1/Ik (X)Ulc:> cos",t 

i=1 

• iJ7., K are the mass and stiffness matrices, respectively. for the discre-

tized auxiliary equation 



63 

• a is the stiffness parameter of the linearized equation 

N 
• a(x) = I; q1,(X)CXk is the equivalent linear stiffness parameter 

(=1 

• A (u) and G(u) depend on the problem formulation used 

If the constraint between cx and u in equation (4.47) is not imposed, equation 

(4.46) is simply a linear eigenvalue problem in c.J and u, and therefore the fre-

quency of vibration is independent of the amplitude of the response. However 

the inclusion of this constraint introduces the well known dependence of fre-

quency on the amplitude of vibration. To determine this dependence, an iter a-

tive scheme will be introduced. 

Let c.Jo be the lowest value of c.J which satisfies (4.46) with ii.= 0 ( i.e. the 

linearized problem) and eo the corresponding eigenvector. Let c be a measure 

of the amplitude of response, and define the first approximation of u be equal to 

Ul = ceo· {4.4B} 

Using (4.48), the first approximation to ii can be obtained from (4.47) 

(4.49) 

Substituting (4.49) into (4.46) gives the next approximation to c.J: 

This iteration continues with 

(4.50) 

until the nonlinear frequency on the leU!. step, c.Jj: , converges to prescribed accu-

racy or the mode shape ek satisfies some convergence criterion, where 

(4.51) 
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(4.52) 

This method can be extended to higher modes of nonlinear vibration. As in 

the case of the first mode. the complete eigenvalue problem of (4.51) need not 

be solved. A number of approximate eigenvalue/eigenvector techniques allow 

for the extraction of the first few modes without having to solve for the higher 

ones. 

4.3.2 Forced response to harmonic excitation 

As described in section (4.1), the equivalent linear response w{x,t) is given by 

the solutions to 

[

[ _",2 7l( + :t. (a. Ii)] 

• [-'" c(b. PH 
and constrained by 

\: 
f 

= (4.53) 

o 

[
A(U'V} C(u.V)] I~l= IGI (4.54) 

CT(u, v} B (u. v) (J . H 

where WeI, t) = 'I/ITu cos",t + "Tv sin",t. The rest of the terms in {4.53} and (4.54) 

are as defined before. 

A "secant" method" method might appear to be a logical way to solve equa-

tions (4.53) and (4.54). That is, for a given value of '" and an initial guess for 

u and v, a and P are determined from {4.54}. This approximation is then used 

to obtain a next approximation for u and v in (4.53) and so on until u and v con-

. verge according to a prescribed criterion. It has been found, however that such 

a scheme is unstable. especially for the case of small damping. In this case, the 

coefficient matrix for u and v in (4.53) can become nearly singular for", near a 

natural frequency of the linearized response. 

Equations (4.53) and (4.54) together are nonlinear in u, v, Ii and P . Hence 
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the well established Newton-Raphson method for nonlinear algebraic equations 

can be used to obtain a nonlinear frequency response curve. In the case where 

good initial guesses for u, v. a and P are difficult to obtain. a hybrid technique 

such as the Levenberg/Marquardt method (see references [38] and [39]) might 

be used. This method. which combines features of both Newton's method and 

the method of steepest descent. has convergence properties less dependent on 

the initial guess. 

If u and v are N - vectors and a and P are M - vectors. solution via the above 

two methods will require the solution of a 2{N +M) x 2(N +M) system of equa­

tions a number of times for only one point on the response curve. For large 

problems, such a number of inversions may prove to be prohibitively expensive 

in computing a nonlinear frequency spectra. It is often the case that only the 

resonant response of say the first nonlinear mode of response is desired for a 

given applied load. A new method will now be presented for establishing a rela­

tionship between applied load in the forced problem and the response of the sys­

tem under free vibration. This method will be restricted to systems with conser­

vative nonlinearities. 

In equation (4.53). let the excitation vector f on the right hand side be 

written as 

f = Pe CJ. (4.55) 

where Pe can be thought of as a spatially constant applied pressure. Since 

(4.53) is a linear system. resonance occurs when the response is nearly 90° out 

of phase with the excitation ( Le. u I:: 0 ) provided the frequencies are well­

separated and the damping is small. With P = O. for a conservative nonlinearity 

in the original system, equations (4.53) and (4.54) reduce to 



66 

(4.56) 

(4.5'7) 

A (v)a = G{v) (4.58) 

But equations (4.5'7) and (4.58) are simply the equivalent linear free vibration 

problem of {4.46} and (4.47). Premultiplying (4.56) by vT and solving for Pe gives 

(4.59) 

Equation (4.59) can be thought of as a system power balance relationship at 

resonance. Here the input power Pe("'vTj 3 is balanced by the dissipated power 

Consequently, the damped resonant response can be obtained once the free 

vibration response is known. The steps for such a method are as follows: First 

the free vibration is solved for v using (4.5'7) and (4.58) through the method in 

section 4.3.1. Then the applied load required for the system to resonate at '" 

with displacement. v and damping given by C can be found by using equation 

(4.59). This will be considerably more cost efficient than solving equations (4.53) 

and (4.54) directly. 

4.3.3 Forced response to stationary random excitation 

The equivalent linear equations for stationary random response to Gaussian 

excitation were written in the form of equation (4.35) and the minimization rela-

tions developed in sections 4.2.1 - 4.2.3. These equations can be solved itera-

tively by a secant method such as the one described in section 4.3.2. The auxili-

ary system equation of (4.35) is the familiar Liapunov matrix equation which 

often arises in stability theory of linear systems. References [25] and [35] dis-

cuss some computationally efficient algorithms for solving Liapunov's equation. 
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v. EXAMPLE STUDIES 

5.1 Response of a One-Dimensional Yielding Continuum 

Many tall structures can be modeled by a continuous shear beam where the 

base of the beam is excited by a prescribed function of time. Such a system is 

shown in figure 5.1.1. For large amplitude of response, the need may arise for a 

mathemat.ical model which includes nonlinearities due to geometric considera­

tions and/or the behavior of the material. 

Consider the case of nonlinear material behavior in the beam. Le~ the spatial 

domain ~(x) of the beam be x E:[O, 1] and the boundary a ~(x) be at x=O and 

x =1. If the bending effects are negligible compared to the effects of shearing 

strains, the equation of motion and boundary conditions for the harmonically 

excited beam of figure 5.1.1 may be written as 

-ii; + ;x [a(x) ~~ ] + ;x [,.N(w,w)] = rcos'"'t 

w(O.t) =0 

:~ (l,t) + .,N(w(l.t). w(l,t» = 0 

(5.1.1) 

(5.1.2) 

(5.1.3) 

in which w = w (x, t) is the deflection of the beam from its unstrained equili­

brium position at a distance x from the base. .,N is a nonlinear stress 

function/functional of the strain and possibly strain rate, a(x) is the linear 

stiffness and r is the amplitude of the excitation. The boundary conditons in 

equations (5.1.2) and (5.1.3) are those of a beam fixed at the base and stress 

free at the top. 

The linear auxiliary equation to be used in solving (5.1.1) - (5.1.3) is written in 

the following form: 
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... 
, w(x.t) 

-_ .. - r coswt 

Figure 5.1.1 Shear Structure with Harmonic Base 
Excitation 
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-iiJ + ~[a(x) Ow] + ~[a(x) Ow] + ~[P(x) ow] = r cosc.Jt 
ax ax ax ax ax ax 

(5.1.4) 

where a(x) and p(x) are the equivalent linear stiffness and damping parameters, 

respectively. The other terms in (5.1.4) are as defined for (5.1.1) and the boun-

dary conditions of (5.1.2) and (5.1.3) also apply to (5.1.4). 

It should be noted that equations (5.1.1) and (5.1.4) are simply special cases 

of the nonlinear and linear auxiliary systems of equation (2.1) and (3.1). The 

positive definiteness and self-adjointness of ~~ = :x [a{x) !~] can be shown 

using the boundary conditions staled in (5.2) and (5.3). The stress operations, 

-rL and ~ and the displacements are scalar quantities. which implies that the 

dot product defined in Chapter II is simply a scalar multiplication. 

The equivalent linearization approach developed in Chapters III and IV can be 

applied directly to this problem. The use of problem formulation III for this 

nonlinear system will be detailed in the following sections. 

5.1.1 Minimization relations and discretization of the auxiliary equations 

The relationships for a(x) and p(x) which minimize the system difference 

term for steady state harmonic solutions in formulation II1 were developed in 

section 4.1.3 and are given by equations (4.24) - (4.26). Recall that for the one-

dimensional continuum model of equation (5.1.1). the linear stress operation 

(5.1.5) 

where fIJi ; i =1. 2, .... M • are the linear independent basis functions for the 

equivalent linear parameters a{x) and fl(x) , as specified in equations (3.12) and 

(3.13). 

Let the spatial domain of the beam be subdivided into "elements" 



70 

e-l e 
.l9.{x}: x E {--xr-' M} for e=l. 2 ..... M. Furthermore let the basis functions be 

defined as 

sPe{X) =( ~ (5.1.6) 

Therefore the basis functions are defined in such a way that a(x) and p(x) are 

constant within each element but discontinuous across the element boundaries. 

Substituting (5.1.5) and (5.1.6) into (4.24) - (4.26) gives the following explicit 

relations for the elemental equivalent linear parameters of formulation III in 

terms of the equivalent linear solution w (x, t ): 

where 

f[C(U. V)u'1I! + S(U, V)V:II!Jdx 
.l9i iii = -=-=------------

J[U.~ + v:~] dx 
A 

J[C(U. V) v: II! - S (U, V)U,II!] dx 
.... .l9, 
Pi = ..::.:...-----------

Co) J[ U,~ + V,~] dx 
.l9. 

w {x, t} = U (x) cosCo)t + V{x) sinCo)t 

U V - au av 
,II!' ,II! - ax' ax 

1 2n 
C(U, V) = - J .,N(U, V, ~)cos~d~ 

7f 0 

1 2n 
S(a. V) = -1 .,N(U, V.19)sin~d~ 

7f 0 

(5.1.7) 

(5.1.8) 



71 

Let l'i(Z) and ~2 ; i=l, 2,... be the eigenfunctions and eigenvalues of the 

linearized form of equation (5.1.1). The auxiliary linear system will now be 

discretized in terms of the N eigenfunctions; t.hat. is 

N 
U(x) = Ll',{X)ut =yTu (5.1.9) 

,=1 

N 
V(x) = L'¢'i{X)V, = tTy (5.1.10) 

\=1 

Substituting (5.1.9) and (5.1.10) into (5.1.4), premultiplying by y{x) , integrating 

over it (x) using orthogonalit.y properties of y(x) , and equating coefficients of 

cos",t and sin",t gives the modally discretized form of the linear auxiliaryequa-

tion as 

Au+ Au+ Bv=rf {5.1.11} 

Av+ Av- Bu=O (5.1.12) 

where 

A =[Ad (5.1.13) 

Ai. = A;.2 - CtJ2 (5.1.14) 

Jl 

A = L ale J y tI:: dz 
1:=1 ~ 

{5.1.15} 

B = '" f Pie! 11:=dx 
k=1 ~ 

(5.1.16) 

f= Jld i); {x} (5.1.17) 

(5.1.18) 

It will be assumed that the linearized form of equation {5.1.1} has spatially 

constant stiffness properties, i.e. a ~ a(x}. Then its eigenvalues and normalized 

eigenfunctions t.ake on the form: 



A.t = 2I.(2i-1).,J; 
2 
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J 

(5.1.19) 

for i=1.2,o.o 0 The spatial basis functions. t . used in all further analysis will be 

written as in(5. 1. 19) unless olherwise stated. 

The solution of the equivalent linearized problem is the solution to the set of 

equations given in (5.1.7). (5.1.8). (5.1.11) and (5.1.12). These can be solved once 

the nonlinear stress functional -Il is specified. In the next section. a form of .,.N 

will be introduced to model a yielding material behavior in the one-dimensional 

beam. 

5.1.2 Specification of the yielding model 

In reference [24]. a model for yielding behavior in one dimension has been 

presented which consists of an infinite collection of ideal elastic-plastic ele-

ments with continuous distributed yield levels. The same author. in reference 

[23]. extended t.his yielding model to cyclic loading for a yielding level distribu-

tion which is constant for strains up to a level. say W:~ and zero for strains levels 

above W:~ where 

1 
~=~ , v3J.1. 

(5.1.20) 

and J.l. is a constant specifying the nonlinearity of the mat.erial. The resulting 

cyclic stress functional. as given in [23], is an integral relationship in t.erms of 

the strain level w:% . This stress-strain relationship is shown in figure 5.1.2 for 

J.1. = 0.2. 

A solution of the nonlinear vibration problem using the above yielding model 

has been obtained in reference [23] by the application of Galerkin's method. In 

developing a solution. the same Fourier coefficients C (U, V) and S (U, V) as in the 
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equivalent linear parameter relations in (5.1.7) and (5.1.8) of this chapter were 

evaluated as 

8 

C(U V) = -~IJ [U2 + V2]2 .Z' .: 16 r- ,z .: (5.1.21) 

1 

for W:z ~ ~ and where W:z = [U.~ + v.~f2. The relationships for C and S become 

more complicated when W:: > ~. Therfore. as in reference [23]. only strain 

levels satisfying W.: ~ w:'i will be considered herein. 

Substituting (5.1.21) into (5.1.7) and (5.1.8) with the use of the expansions of 

U(x) and Vex) in (5.1.9) and (5.1.10) give the following relations for the discre-

tized equivalent linear parameters: 

(5.1.22) 

(5.1.23) 

where 

N 
J: (i) = L: (UkU~ + vkvd J'ifJk.z'ifJI.Z dx 

~l=l ~, 
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5.1.3 Convergence of equivalent linear parameters 

Recall from Chapter III that the equations for the discretized equivalent 

parameters Ii and p were established by an approximation to the exact minimi-

zation in equation (3.9). The question may arise as to how well the approxima-

tions 

(5.1.24) 

(5.1.25) 

compare with the values of ex and P that satisfy (3.9). In this section, it will be 

shown for the basis functions fIJi ; i=l. 2, ...• M , defined in (5.1.6) how the approx-

imate values for ex and P approach their exact counterparts as M -. co. For the 

special yielding nonlinearity specified in the last section, the convergence rate 

will also be given. 

The formulation III stiffness parameters ai for the one-dimensional problem 

of this chapter were shown to be (equation (5.7) ): 

where 

!f(x) dx 
.... ~;. 
ai=~---

!g(x)dx 
.i\), 

f(x) = C(U.V)U.% + S(U,V)V:: 

g (x) = [] 2 + V 2 .% .% 

(5.1.26) 

If the minimization of (3.9) is carried out exactly for the formulation III equa-

tion difference, it can be shown that a{x) must satisfy the relationship: 
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a(x) = ~t: ~ (5.1.27) 

Recall that the displacement functions U(x) and V(x) were expanded in 

terms of the basis functions 1f;.(x} ; i=l. 2, .... N • as shown in equations (5.1.9) 

and (5.1.10). Suppose that the functions 1f;.(x} are such that f (x) and g (x) are 

continuous except at say the boundaries of ~,,(x). where they may be discon-

tinuous but finite. These types .of discontinuities may arise if, for example, the 

functions 'lfr;.(x) are finite element shape functions and f(x) and g (x) are 

differential functions of 'lfr;.(x). Let xi. ; i=l, 2 •... ,M I be the equally spaced COO1"-

dinates of the possible discontinuities. Then ex at the discontinuities will be 

defined to be 

(5.1.28) 

where Xi- = lim(x;. - e) and xt = lim(xi + e ) . 
/:->0 , ... 0 

Since f(x) and g(x) are continous on x E (X;.. X;.+t) • the mean value theorem 

can be applied to ii;. in (5.1.26) to show that 

(5.1.29) 

and 

(5.1.30) 

1 
where h = xi+l-X;. = Xi -x;'-l = M' Therefore. from (5.1.28) - (5.1.30) 

(5.1.31) 

Equation (5.1.31) says tbat the approximate equivalent linear stiffness 
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parameters a converge as h ~ 0 to their exact counterpart ex in an "average" 

sense across a discontinuity of the functions f{x} and g{x}. If no discontinui-

ties exist. it is clear that f ext} = f {x.t} and g ext) = g (x.;, -) • implying that iii 

converges exactly to ex(Xi) or 

Similar statements can be made about the convergence of ~i to fl{x.;,) 

Consider now the equivalent linear parameter relations (5.1.22) and (5.1.23) 

for the yielding nonlinearity. with U (x) and V(x) expanded in terms of only one 

mode of the linearized problem. That is. from (5.1.9). (5.1.10) and (5.1.19). U 

and Vare written as 

v (x) = [F2 sin ; x] V 1 

The equivalent linear parameters then reduce to 

(5.1.32) 

(5.1.33) 

where 
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1 
II. { 1f )2 (2 2)2 [ 15 2] C6 = -2..c:. - Ul +V 1 -V 1 - -Ut 
'" 2 16 1f 

The exact minimization of the formulation m equation difference with 

respect to a and f3 gives: 

(5.1034) 

(5.1.35) 

Let e be defined as the mean square value of the error between a(:c) and its 

Jl 
approximation a(x) Rj ~ ~i (x )a, . or 

i=1 

M 
The rate of convergence of ~ ~;.(x )8i -+ a will be determined by investigating 

i=1 

how EJI -+ 0 as M -+ co • Figure 5.1.3 shows the relationship of log (~) VB. logEJ(. 

For large values of M • the slope of this curve is about 2; therefore, the error 

decreases at a nearly quadratic rate as ~ -+ O. 

Jl ... 
From (5.1.33) and (5.1.35) it is clear that the convergence of ~ ~;.{x )Pi -+ p{x) 

i=1 

as M -+ 00 is governed by the same error function EJI. Therefore the approxi-

mate equivalent linear damping parameters also converge at a quadratic rate. 
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Parameters 



80 

5.1.4 Numerical results 

In this section, a one term expansion onw (x. t) will be used to calculate the 

response of the yielding shear beam by means of the equivalent linearization 

technique and Galerkin's method. The equivalent linearization equations to be 

solved are equations (5.1.11), (5.1.12), (5.1.22) and (5.1.23) with N = 1 while the 

Galerkin equations can be found in reference [22]. 

W 
Figure 5.1.4 shows the base shear strain ratio w.; obtained from the 

,% 

equivalent linearization method with M = 10 and Galerkin's method in terms of 

the dimensionless excitation frequency n . where 

(5.1.36) 

These response curves are shown on a somewhat expanded scale in order that 

the characteristics of the two types of solutions can be seen in detail. As can be 

seen, with M = 10 the equivalent linearization technique predicts a slightly lower 

level of response and lower resonant frequency than Galerkin's method. This 

difference is more pronounced for larger levels of excitation R where 

(5.1.37) 

Figure 5.1.5 shows the effect of mesh subdivision for the equivalent linear 

parameters on the peak response of the beam. In the last section. it was shown 

that as M -+ DO , the equivalent linear parameters obtained by the approximate 

minimization technique converged to their counterparts obtained by the exact 

minimization technique. An interesting result is that when the exact linear 

parameters are used in the one term expansion of the auxiliary linear equa-

tions. the equivalent linear solutions are exactly the same as the one term 

Galerkin solution. This is displayed in figure 5.1.5 by the coincidence of the 
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M -+ DO equivalent linearization curve with the Galerkin response. Therefore, for 

this special case, there appears to be an equivalence between the two methods. 
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5.2 Steady-State Harmonic Response of a Nonlinear Plate 

A typical assumption used in the vibration of thin plates governed by the 

Poisson-Kirchoff theory is that the amplitude of response is small in comparison 

to the thickness of the plate. This assumption permits the use of a linear equa-

tion of motion for describing the response of the plate. Whenever the deflection 

becomes of the same order of magnitude as the thickness. geometric nonlineari-

ties arise from the coupling of the membrane and bending stresses. In this case 

a linear model of the response of the plate would not be appropriate. 

The nonlinear theory used in this example is based on the so-called Berger 

approximation to the coupled nonlinear Von Karman equations for static 

analysis. Berger's analysis. which originally appeared in reference [2]. is essen-

tially based upon neglecting the strain energy due to the second invariant of the 

middle surface. This assumption permits the nonlinear equations for the in-

plane and transverse displacements to become uncoupled. The work presented 

in reference [36J extended the Berger approximation to the dynamic equations 

of motion. 

5.2.1 Equations of motion 

The nonlinear equations of motion can be derived through the application of 

the generalized Hamilton's principle (see section 2.4.2) which states that 

te 
«5 f (T+ W-U)dt = 0 

tl 
(5.2.1) 

where T, U, and Ware the kinetic energy, potential energy and non-conservative 

virtual work of the system. respectively. Let the spatial domain of the plate be 

defined for rectangular coordinates x = (x 1. X2) on ~ (x) and the boundary 

a ~(x). Then if the in-plane kinetic energy is negligible compared to that due to 

transverse motion. the kinetic energy can be written as: 



T = 'h J p1i; 2 d ~(x) 
t 
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and the work done by an externally applied, harmonic load is 

w = -[Jp (x)w d ~(x)] COSC'.1t 

~ 

(5.2.2) 

(5.2.3) 

where w = w (x, t) is the t.ransverse displacement. of the plate for which w = :' 

P is t.he mass per unit area and p {x} is the distributed applied load. From refer­

ence [2], the potential energy of the plate which neglects the second invariant of 

strain energy can be written for a non-homogeneous elastic material as: 

(5.2.4) 

where the summation convention is implied on 7,6=1.2 and 

M 11 = D (W.ll + IIW.22) 

e = 'U, 1 + V, 2 + *.W. (JW, a 

= the first invariant of the strains at the midplane surface 

1.L, v = in-plane displacements of the plate 

in the :I: 1 and :1:2 directions. respectively 

11 = Poisson's ratio for the material 

h = thickness of the plate 
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Eh 3 

D = 12 (1-v2) = flexural rigidity of the plate 

E = modulus of elasticity for the material 

OW 
'W =-­. ., ox 

7 

Using the energy relations (5.2.2) - (5.2.4) in the variational equation (5.2.1) 

and integrating (5.2.1) by parts produces the following set of equations of 

motion for the plate: 

(5.2.5) 

(5.2.6) 

Equation (5.2.5) states that the quant.ity 12f e is not a function of the spa­
h 

tial coordinates. Therefore, the integration of 12f e over the domain ii (x) 
h 

gives: 

or 

f l:f e d J9(x) = 12f e f d aIJ(x) 
~ h ~ 

12D e = N(w) 
h 2 (Area.) 

12D = -2-e (Area) 
h 

where Area. is the surface area of the plate and 

J 12D 
N{w) == -2 e d ~(x) 

~ h 

(5.2.8) 

(5.2.9) 
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It should be noted that if D ;I! D(x). h ;I! h(x). and if the inplane displacements 

vanish at the boundaries of the plate, N (w) becomes a functional involving only 

the transverse displacemen ts, or 

12DJ N(w) = -2 e d .l9{x) 
h .l9 

= ~~ fW. 7W. 7 d ~(x) 
~ 

(5.2.9a) 

Substitution of (5.2.8) with (5.2.9a) into equation of motion (5.2.6) gives 

M 70. 76(D. w} - I'-[f W. 7W. 7 d .l9(x) ]w. 77 + pW = p (x) COSc.Jt 

.l9 
6D where I'- == ----:;.~--=­

(Area )h2 ' 

(5.2.10) 

Equation (5.2.10) is the dynamic analog to the uncoupled form of Berger's 

equations discussed in reference [2]. The damped response of the plate will be 

given by the solution to (5.2.10) with the addition of an absolute, or ''mass pro-

portional", damping term ow (x, t ) where b = b (x). 

5.2.2 Equivalent linear system 

The linear auxiliary equation of motion which serves as a replacement for the 

damped form of the nonlinear equation of motion (5.2.10) is defined to be: 

(5.2.11) 

where a = a(x) is the equivalent linear flexural rigidity of the plate and all other 

terms are as defined before. 

Referring to the notation used in chapters II and III, it can be seen by inspec-

tion that the stress operators for the nonlinear and linear auxiliary plate equa­

tions are are vector operations. Specifically -rH and .,L can be written as 
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.,N = (-rf • .,f)T 

) 
(5.2.12) 

.,L = (-rf. -rt)T 

where 

-r: = -p,w.? fW.4 W .4d .l9{x) 

) 
(5.2.13) 

.l9 

r!; = M-y6. 6 

for 7 = 1,2 . 

Recall that problem formulation n defined in Chapter m required the use of a 

strain-type function S(w). For the analysis of the plate response using formu-

lation II •. a(w) will be a vector operation defined as 

(5.2.14) 

where 

(5.2.15) 

The nonlinearity in the equation of motion (5.2.10) influences the stiffness of 

the plate and not the energy dissipation. It should therefore be expected that 

the inclusion of the equivalent linear damping parameter (3 will not be neces-

sary. By not including (3 in the minimization relations. the approximation for 

the equivalent linear flexural rigidity a 

M 
a{x) F::: I; 9'i(x)a i 

,=1 

must satisfy the following minimization relationship: 

ACi = G (5.2.16) 

where a = (a 1. a 2 •••.• ex 1I)T. The form of the matrix A and vector G will 

depend on the problem formulation used and are given in section 4.1 for the 
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steady-state response of the general system. It should be observed that in sec­

tion 3.8 the matrix A was shown to be invertible for all three problem formula­

tions. and henceforth unique solution for a andfi always exist. 

Let attention now be focused on developing the specific form of A and G in 

(5.2.16) for problem formulations I. II and III. The linear operations .,L • V·.,L 

and from (5.2.13) and (5.2.15) are expressed as: 

where 

-r;('Pi.W} =M~~6(U)COSc.lt +M~~6(V}sinc.lt 

V ·.,L{'Pi.W) = MW,.6{U)COS c.lt + MW"cl{V)Sin c.lt 

g 7( w) = U . ., cos",t + V:" sinc.lt 

W (x. t) = U (x) cos",t + V (x) sinc.lt 

M W (U) == M "o( 'Pi, U) 

(5.2.17) 

(5.2.18) 

(5.2.19) 

(5.2.20) 

(5.2.21) 

The time integrals C~l) • C~3) • S~l) and S~3) ; 7 = 1.2 , defined in equations 

(4.17). (4.18). (4.23g) and (4.23h). respectively. can be written for the plate prob­

lem as: 

C~l) (U. V) = -1- [37/ (U.U) + 7/(V, V)]U." + 2 7/ (U. V)V:" (5.2.22) 

(5.2.23) 

C~3) (U. V) = - ~ [7/ (U, U) - 7/ (V, V)]U.,. - 2 7( (U, V)V:,. (5.2.24) 

S ~3) (U, V) = - ~ 2 7/{U, V)U." + [7/ (U, U) - 7/ (V, V)]V:" (5.2.25) 

where 



7i. (U. V) = JU.,v'4d. ~(x) 
£; 
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(5.2.26) 

The preceding relations. (5.2.17) c (5.2.26) are then used to derive the matrix 

A and vector G for the three problem formulations, as shown below. As before, 

repeated Greek subscripts will imply summation on indices from 1 to 2. 

Formulation 1 

cl = -*{[3 'J1(U,U) + 'rl (U,V)]!MW.,,(U}U.ffd ~(x) 
~ 

Formulation n 

+ 2 'rl(U, V)JMJ~74(U)V. u + M~~74(V}U.ffd ~(x) 
~ 

+ [ n(U, U) + 3 n (V. V)]!MJ\>.,,(V)V:ud. ~ (x) } 
£, 

(5.2.27) 

(5.2.28) 

(5.2.29) 

(5.2.30) 
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Formulation m 

AlP = J[M~~iS(U)MW,,(U) +M~ViS(V)M~~,,(V)] d ~(][) 
£ 

CfIl = -~{[3 7( (U,U)+ 7( (V, V)JJM~~!iS(U)U.,d ~(][) 
~ 

+ 27l (U, V)J[M~ViS(U)V:1 +MW6(V)U. 7 ] d ~{][} 
~ 

+ [7l{U,U)+3 7(V,V)]!MWiS(V)v:,d ~(][)} 
~ 

5.2.3 Finite element analysis of the auxiliary equations 

(5.2.31) 

(5.2.32) 

The finite element method was briefly discussed in Chapter m. A more com-

plete discussion of the mechanics of constructing the finite element equations 

can be found in a number of finite element textbooks. Only the results of the 

discretization will be ·presented here. 

Recall from equation (5.2.11) that the auxiliary equation for the thin plate 

problem was chosen to be: 
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M 7~ 76(D. w) + M 76. 7i a. w ) + btU + pW = P COSGJt (5.2.33) 

where repeated Greek subscripts imply summation of the indices from 1 to 2 

and with all other terms and notation are as.before. If the displacements ware 

written as 

N 
w(x,t) = LW;(x)dj(t) ,. (5.2.34) 

;=1 

then the finite element equations can be written as: 

7l(d(t)+ Cd(t)+ Xd(t) = :Jcosc.Jt (5.2.35) 

where 

(5.2.36) 

(5.2.37) 

(5.2.38) 

:J i = fp (X)Wi d ~ (x) (5.2.39) 

(5.2.40) 

[

(D+a) v· 0 ] 
R = v (D+a) 0 

o 0 2(1-v)(D +a) 
(5.2:41) 

and Vj,(x) and d;,(t) ; i=l. 2 ..... N • being the shape functions and nodal "dis-

placements", respectively. 

The domain of the plate is to be divided into Net' four-node quadrilateral ele-

ments with each element having nodal points as x = xa ; a=l, 2, 3, 4 . Consider 

a transformation from a set of local coordina.tes t = (h f2) to the global set :x: 

given by 

4 

x({) = L: N a(f)xa 
a=l 

(5.2.42) 
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where 

and the local coordinates of the nodes r ; a=l, 2, 3,4 • are as shown in figure 

5.2.1. The shape functions for the displacement w will now be defined in terms 

of the local coordinates, with the understanding that the transformation of the 

shape functions to global coordinates is accomplished through (5.2.42). 

Recall from section 3.7 that one sufficient condition for convergence of the 

finite element method is the continuity of the m-1 derivatives of the shape func-

tions, where m is the highest order derivative in the strain energy integral 

(5.2.38). From (5.2.40) it is clear that m=2 for Kirchoff plates, and consequently 

the shape functions must have continuous first derivatives across the element 

boundaries. A set of shape functions developed in reference [3] constructed 

from Hermite cubic functions satisfies this requirement. Using these shape 

OW functions, the unknown para.meters at each node are w, -.:::1-, 
uXl 

aw a2w 
8X2' 8Xl0X2 

which leads to a total of 16 degrees-of-freedom/element. Let a a ; a=l, 2, 3,4 

be defined as 

Then the set of nodal parameters de : e=l. 2, ...• N el will be ordered as 

T (~ .... .... A.)T 
~ = d 1, d 2> d 3, d 4 

With this. the shape functions in local coordinates from reference [3] are as 

shown in table 5.2.1. 



94 

;4 ==(-1,1) 
-

;2==(1,-1) 
-

Figure 5.2.1 Domain of Plate Element in Local Coordinates 
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ta 

~1{~1) Vl(~2) 

~S(tl) Vl(~2) 

vl(h) ~S{~2) 

VS(tl) ~3(2) 

~2al) ~la2) 

~4(h) ~1({2) 

~2al) ~3(~2) 

V,,(t 1) ~3(t2) 

~2al) ~2(~2) 

~4(~1) ~2{~2) 

1i2<E(1) 1i4a2) 

~"ad ~4(~2) 

. Vl(~l) ~2(~2) 

1isal) ~2a2) 

11al) ~4(~Z) 

1i3(~1) ~4(f2) 

where 

~l(Z) = (z -1)2 (2+z )/4 

~2(Z) = (z+1)2 (2-z)/4 

~3(Z) = h. (z+1) (z-1)2/8 

~4(Z) = h. {z +1)2{z-1)/8 

Table 5.2.1. The Bogner-Fox-Schmidt Shape Functions 
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The finite element discretization of plates governed by the Kirchoff theory ·has 

an inherent difficulty in modeling curved boundaries. As mentioned in reference 

[19]. such modeling of a simply-supported. curved boundary boundary will 

impose a "clamped" boundary condition as the mesh is refined. Consequently. 

analysis will be restricted to plates having straight edges and , in particular, 

only rectangular elements will be used. 

5.2.4 Convergence considerations for equivalent linear parameters 

For the previous example of the one-dimensional shear member, the conver­

gence of the equivalent linear parameters with mesh refinement was readily 

established. In this example of the nonlinear response of thin plates, complexi­

ties arise which do not permit such a simple analsysis. Recall from the last sec­

tion that the finite element analysis of the auxiliary linear equation was per­

formed using bi-cubic shape functions in which their first derivatives were con­

tinuous across the element boundaries. But from the minimization relations of 

formulation III. for example, in equations (5.2.16). (5.2.31) and (5.2.32). it can be 

seen that continuity of the second derivatives of the displacements are required. 

Otherwise the terms containing three spatial derivatives such as M~~6 will pos­

sess singularities at the element boundaries which are not square integrable. 

The technique used herein to avoid this difficulty is to compute the integrals 

within each separate element. and then simply add together the results, thus 

ignoring the contribution of the interelement discontinuities. 

Using this type of construction of the minimization equations. one should be 

concerned with how the omission of the singularities on the element boundaries 

affects the solution. This is also a concern in the finite element area when ''non­

conforming" elements are used (reference [48]). In this latter case, a 'patch 

test" of elements can be used to determine the completeness convergence cri-
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terion of the element. If the element passes such a test, it is then concluded 

that the discontinuities in the "non-conforming" elements do not contribute to 

the strain energy. For the minimization equations, it is not clear whether such 

a test would be applicable, and therefore the convergence of such a scheme has 

not been resolved. 

In spite of these uncertaintities. the minimization relations will be formed at 

the element level, as mentioned above, for all three problem formulations. 

Investigation of how these considerations affect the convergence of the melhod 

will be deferred to further investigations. 

5.2.5 Numerical results 

This section will deal with the symmetric, steady-slate, harmonic response of 

a simply supported rectangular plate governed by the nonlinear theory intro-

duced in section 5.2.1. The numerical results from the equivalent linearization 

technique will be compared with those from Galerkin's method described in sec-

tion 2.4.1. 

Let the domain of the rectangular plate ~ (x) be defined as 

The simply supported boundary conditions are therefore given by: 

W(Xl. -b.t) = W(Xl' b,t) = 0 (5.2.43) 
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That is. the displacements and tangential moments must vanish on the boun-

dary of the plate. If the material properties are constant throughout the plate. 

the symmetric eigenfunctions q,k(X) and corresponding eigenvalues >"k for the 

linearized problem with the boundary conditions of (5.2.4-3) are 

(5.2.4-4-) 

(5.2.45) 

Let the applied load to the plate be due to a spatially constant pressure Po. 

and define the following dimensionless parameters 

W 
WE: 

h 

If the nonlinear plate solutio,n is expanded in terms of the first N eigenfunctions 

of the linearized problem. the non-dimensinal form of the general Galerkin 

equations (2.18) is: 

(5.2.46) 

where for i.j=1.2 •...• N 
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Pob" P=------
Eh"[l + {E. )2]2 

a 

N 
w = I; ipi[i1& cos",t + Vi sin",t] 

(=1 

and (", is the damping ratio in the i th linear mode. E and rI are the elastic 

modulus and Poisson's ratio of lhe malerial , respectively. 

Therefore, the steady-state Galerkin response is governed by a set of non­

linear algebraic equations ill the "in-phase" and "quadrature" ( with respect to 

the forcing term ) components of displacement, u and v, respectively. Il is 

interesting to note that for the equations written in the normalized form of 

(5.2.4-S) that the plate dimensions a, b and h enter in only through the forcing 

term. Consequently, the normalized free vibration response of the plate can be 

presented independent of its aspect ratio or thickness. 

5.2.5.1 Free vibration response 

If the undamped, unloaded nonlinear plate is given an initial prescribed dis-

placement, it should be expected that the frequency of response will depend on 

the amplitude of the resulting motion. This contrasts with the linear theory in 
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which the frequency is independent of the amplitude of response. 

For free vibration response that. can be modeled sufficiently well by the first 

mode of the linearized problem, the normalized frequency of response, n. given 

by Galerkin's method takes on the rather simple form of 

(5.2.47) 

where Ui is the normalized amplitude at the center of the plate. This one-mode 

Galerkin response is shown in figure 5.2.2. 

The equivalent linear free vibration response is governed by the free vibration 

form of the discretized auxiliary equation (5.2.35) and the minimization rela-

tions of (5.2.27) - (5.2.32) for the three problem formulations. Solutions to 

these equations have been effected through the use of the matrix iteration 

method detailed in section 4.3.1. Results for the the first nonlinear mode of 

vibration are presented in figure 5.2.2 for a finite element mesh with 9 degrees-

of-freedom ( OaF's) and in figure 5.2.3 for a 49 OaF mesh. 

In order to determine the validity of the equivalent linear solutions, a direct 

numerical integration procedure was applied to the discretized form of the ori-

ginal nonlinear equation (5.2.10). The discretization was accomplished by using 

the finite element bi-cubic shape functions in section 5.2.3, which produces a set 

of nonlinear, ordinary differential equations in terms of the nodal displace-

ments. With prescribed initial displacements, these differential equations were 

solved by a Runge-Kutta time integration algorithm. The frequency-amplitude 

results are given in figures 5.2.2 and 5.2.3 for finite element meshes with 9 and 

49 DOF's. 
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Figure 5.2.2 Free Vibration Response of Simply Supported 
Rectangular Plate (for 9 DOF finite element mesh) 
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Figure 5.2.3 Free Vibration Response of Simply Supported 
Rectangular Plate (for 49 DOF finite element mesh) 
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5.2.5.2 Forced response 

The forced response to the one mode Galerkin equations are given by 

(5.2.48) 

where 

1 

A 1 = [ilf +1if ]2' 

and the normalized pressure, P is as given following (5.2.46). A plot of 0 versus 

A in (5.2.48) is given in figure (5.2.4) for j5 = ! and ! . Also in figure (5.2.4) is 

the formulation III forced response. 

5.2.6 Discussion 

From figure 5.2.2, it can be seen that solutions from both Galerkin's method 

and formulation III (stress minimization) of equivalent linearization compare 

well with the results of direct integration, even for a somewhat "crude" finite ele-

ment mesh having 9 DOF's. The difference between formulation III and numeri-

cal integration becomes somewhat more pronounced at larger amplitudes of 

vibration. The other two problem formulations. I and II (differential stress and 

energy difference minimization, respectively), on the other hand, predict a 

"stiffer" response. That is, for a given amplitude, the frequency of oscillation 

given by the two methods is significantly higher than that given by numerical 

integration. 

The results from using a more refined finite element mesh are as presented 

in figure 5.2.3. The difference between formulation III equivalent linearization 

and numerical integration solutions are less pronounced at larger amplitudes 

than in figure 5.2.2. Formulation II solutions were not significantly affected by 
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the change in finite element meshes. 

On the other hand. the formulation I approach to the equivalent linearization 

method behaves rather erratically for the 49 DOF model. The results show that 

the equivalent linear parameters become small. which in effect makes the free 

vibration results nearly linear. as can be seen in figure 5.2.3. The reason for 

such an erratic response could lie in the shape functions used in the finite ele­

ment model. Recall from section 5.2.2 that the integrands in the equations for 

the formulation I equivalent linear stiffness parameters are singular at the ele­

ment boundaries for the bi-cubic shape functions. These singularities are more 

severe than those encountered by the other t.wo formulations. Therefore the 

poor performance of formulation I is not particularly surprising. 

In conclusion. formulation III appears to be the most attractive of the three 

approaches to equivalent linearization. The results from formulation III agree 

with those form direct integration and compare well with free and forced solu­

tions of Galerkin's method. The fact that the one term Galerkin expansion of 

this simple example produced simpler expressions for the solutions than that 

given for equivalent linearization is noteworthy. In the next example. however. 

it can be seen that the simpler Galerkin approach (and the similar Ritz method) 

can not handle a problem with somewhat more complicated boundary condi­

tions as well as the finite element-equivalent linearization technique. 
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5.3 Steady-State Barmonic Response of a Nonlinear Plate with a Bole 

In this section. the nonlinear response of a plate with somewhat more com­

plex boundary conditions will be investigated. The simply supported rectangular 

plate of the last section will again be dealt with. but here the effect of a rec­

tangular cutout centered in the plate will be of interest. 

The geometry of the problem is as shown in figure 5.3.1. Let 0 ~o(:x) be the 

outer boundary of the plate and B it /(x) be on the perimeter of the cutout. Sim­

ply supported conditions are to be imposed on B ito • and on B ~lo moment and 

shear free conditions exist. It should be noted. however, that in order for the 

nonlinear theory to be applicable to this problem. the inplane displacements of 

the plate must be constrained at the hole. Therefore a membrane stress will 

exist on B ~I although B ~I is free of bending stresses. 

5.3.1 Ritz method 

For the continuous plate (that is. a plate without cutouts) a Galerkin method 

has been used in the analysis. This was possible because of the availability of 

trial functions which satisfied all of the boundary conditions. i.e. comparison 

functions. However. the presence of the hole. and its associated boundary con­

ditions. create difficulties in finding usuable comparison functions. As can be 

recalled from section 2.4.1. the class of trial functions that can be used with the 

Ritz method need only satisfy the geometric boundary conditions. Thus the field 

of candidates for use with the Ritz method is larger than that which can be used 

with Galerkin's method. 

The use of the linear mode shapes of the continuous plate for analysis of a 

plate with a cutout is suggested in reference [29]. Reference [26] used a set of 

trial functions which modeled the appropriate singularities within the hole. For 

a square plate. the trial functions used in [26] are 
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Figure 5.3.1 Geometry of Rectangular Plate with 
Centered Rectangular Cutout 
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(5.3.1) 

{5.3.2} 

(5.3.3) 

where 

(5.3.4) 

Both types of trial functions will be used in later analysis. 

Substitution of the energy and virtual work expressions for the undamped, 

nonlinear plate into the Ritz equations of section 2.4.2 gives the following nor-

malized relations 

where 

[- ",2 m + Ji ]u + ;1 (u) = f 

7li. ii = Jrp,rpj d S(x) 
~ 

l{,ij = ~ J[{1-II)rp;'-1~j.76+ ~;'77ti.cJ6]d .19 (x) . 
~ 

a bad 

J(. )d ~(x) = J f (. )dX l dx2 - J J (. )dX t dx2 
-a -b -0 -d 

(5.3.5) 
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and repeated Greek subscripts imply summation of indices from 1 to 2. 

5.3.2 Fundamental natural frequency 

For low levels of amplitude. the response of the nonlinear plate should be 

expected to approach that of the linearized response. Before investigating the 

nonlinear. free vibration of the plate with a hole. its linearized response should 

be understood. The satisfaction of the free boundaries at the hole creates 

difficulties in obtaining exact solutions for the linearized natural frequencies. 

In this section, the fundamental frequency of a square plate governed by the 

linear theory will be investigated by three methods: (1) Rayleigh-Ritz method 

with the mode shapes for the plate without a hole. (2) Rayleigh-Ritz method with 

the singular trial functions of (5.3.1) - (5.3.4) and (3) the finite element element 

method. 

Recall from section 2.4.2 that the Ritz method reduces to the Rayleigh-Ritz 

eigenvalue formulation. equation (2.28). for a linear conservative system. The 

mass and linearized stiffness matrices. 1li and lC • for the Ritz method are given 

in equation (5.3.5). Substitution of the first eigenvalue and eigenfunction of the 

continuous plate into the expressions for 7i( and ;rc give the following relation­

ship for the non-dimensional natural frequency. I. 

(5.3.6) 

where 
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1 [ c 1. c][d 1. d] - - --SLn1T- - - -SLn1T-
a 1T a b 1T_ b 

F = ------------------------~----
1 [ c+l. c][d+l. d] - - -Sln1T- - -sm1T-

a 1T a b 1T b 

and ~ and ANN are the fundamental natural frequencies of the linear plate with 

and without a hole, respectively. The use of the three singular trial functions of 

(5.3.1) - (5.3.4) in the Rayleigh-Ritz equations produces a 3x3 eigenvalue prob-

lem. The solution for the lowest eigenvalue for a square plate with a square 

cutout is shown in figure 5.3.2 for the full range of hole sizes. Equations (5.3.a) 

with a = b and c = d is also plotted in figure 5.3.2. The fundamental eigenvalue 

for the finite element formulation of the linear plate has also been determined 

using typical element meshes of figure 5.3.3 are also shown in figure 5.3.2. 

It can be seen from figure 5.3.2 that the Rayleigh-Ritz frequencies are always 

as large as those obtained via the finite element method. In fact. for hole-

width-to-plate-width ratios less than ~ 0.34 • the finite element frequencies are 

actually lower than those of the plate without a hole. Reference [48] provides a 

proof that eigenvalues from the finite element method are an upper bound for 

the actual eigenvalues. Consequently, it should be assumed from figure 5.3.2 

that the finite element frequencies are belter estimates of the actual frequen-

cies than those of either of the t.wo Rayleigh-Ritz formulations. 

5.3.3 Nonlinear free vibration response 

Substitution of the first eigenfunction of the linear. continuous plate from 

equation (5.2.44) into the Ritz equations (5.3.5) for a square plate with a square 

cutout gives the following amplitude-frequency relationship: 

(5.3.7) 

where 
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and w mu is the maximum displacement in the plate. A is the Rayleigh-Ritz fun-

damental frequency of the plate given in (5.3.6) for a = b and c = d. If c = 0 , i.e. 

no hole, both A in (5.3.6) and J.L in (5.3.7) are equal to one, and the amplitude 

frequency relationship (5.3.7) reduces to that derived by Galerkin's method, 

equation (5.2.47). This is consistent with the fact that the Ritz method is 

equivalent to Galerkin's method when comparison functions are used (reference 

[34]). 

In the same manner as for the continuous plate, the free vibration response 

using the formulation III equivalent linearization technique has been deter-

mined for a range of moderately sized holes. The results are presented in figure 

5.3.4 along with the Ritz relationship (5.3.7). Also shown in figure 5.3.4 is the 

free vibration response fo a hole size of ..£ = 0.5 obtained by numerical integra­
a 

tion technique described in section 5.2.5.1. 

The effect of hole size on the nonlinear resonant frequency shift of the plate 

can be seen by looking at a given level of strain, say max{ ~~} ,rather than for 

a given level of displacement, as before. Recall that the nonlinear stiffness in 

the plate is related to the total midplane stretch, which is in itself a functional 

of the strain and not the displacement. In figure 5.3.5, the difference in the 

linear and nonlinear resonant frequencies . ao .is plotted versus hole size for 
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Figure 5.3.5 Effect of Hole Size on Resonant Frequency 
Shift for Simply Supported Square Plate 
with Square Hole, v = 0.3 
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two normalized levels of strain. u:% . where 

- a (Ow) 
'U.% = h max ax 

and AH , as before. is the linear. fundamental natural frequency of the plate 

without a hole. 

5.3.4 Nonlinear forced response 

As with the analysis of the continous plate, the nonlinear response of the 

cutout plate to a temporally harmonic and spatially constant pressure load will 

be investigated. Here the emphasis will be on establishing a relation between 

the size of the hole and the resonant response experienced by the plate. 

In section 4.3.2, a method was introduced to determine the relationship 

between applied pressure and the resonant amplitude of response of a lightly 

damped system via the equivalent linearization technique. The method esta-

bUshed a rather simple relationship. equation (4.59). between the applied load 

and resonant response, once the free vibration 'backbone" curve had been cal-

culated. 

Results of the analysis are shown in figure 5.3.6 for a damping ratio of 

(' = 0.03 and for a range of moderately sized holes. If the linear theory for the 

vibration of plates were used. a linear relationship would exist between the 

applied load and the resonant amplitude. This linear relation is also shown in 

figure 5.3.6 and. as consistent with the usual hypothesis implied by the use of 

the linear theory. is tangent to the nonlinear curve at small amplitudes. 
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Figure 5.3.6 Effect of Applied Pressure on Resonant Response 
of Simply Supported Square Plate 
with Square Hole, v = 0.3, t; = 0.03 
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5.3.5 Discussion 

As shown in section 5.3.2. the finite element method provided a means of 

obtaining a better estimate of the eigenvalues than by the Rayleigh-Ritz 

approach. In particular. the finite element method was able to model an initial 

decrease in the fundamental frequency with an increase in hole size. This 

phenomena is qualit.at.ively similar to that experienced by a circular. simply sup­

ported plate with a concentric circular hole , as reported in [26]. where. for 

hole-width-to-plate-width ratios up to 0.4. the fundamental frequency was less 

that that of the same plate without a hole. The inability of the Ritz procedure to 

accurately determine the linear eigenvalues will introduce an artificial fre­

quency shift when considering nonlinear analysis for even small amplitudes of 

response. 

In section 5.3.3. the nonlinear free vibration response has been reported in 

two different ways. The physicaUy appealing maximum displacement-frequency 

response has been shown in figure 5.3.4 while in figure 5.3.5. a mathematically 

appealing maximum strain amplitude-frequency response has been presented. 

It can be seen from figure 5.3.4 that t.he equivalent. linearization predicted a fre­

quency shift in displacements due to the nonlinearity for hole sizes of cj a = 0.2 

and 0.3 to be less than the frequency shift for the plate without a hole. For all 

hole sizes, the nonlinear frequency shift predicted for displacement response by 

the Ritz approach is always larger than t.hat given by equivalent linearization. 

In figure 5.3.5. the frequency shift in the maximum strain response has been 

normalized by the fundamental natural frequency of the cutout plate. Here 

both methods show that the frequency shift monotonically increases up to a 

maximum value with increasing hole size. and then decreases. The difference 

between the two methods is that the Ritz frequency shift for the cutout plate is 
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always larger than that for the continuous plate, whereas with the equivalent 

linearization method, the frequency shift for large holes is less than for the con­

tinuous plate. Hence the two methods predict significantly different type of 

behavior in the vibration of a plate with a hole. 

Figure 5.3.6 shows that for small holes, say c/ a = 0.2. the nonlinear forced 

response remains nearly linear for larger amplitudes than for the same plate 

without a hole. However, for hole sizes of at least cia = 0.5, the need for non­

linear analysis becomes more apparent. even for lower amplitudes of response. 
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VI. CONCLUDING REMARKS 

The analysis presented in this dissertation has been focused on the type of 

nonlinear dynamic system introduced in Chapter II. The system described there 

was one for which the limiting behavior for low level response can be 

represented by a linear model. This linear model was prescribed to be one of 

which the restoring stress operation was positive definite and self-adjoint. 

The line ariz ability of the nonlinear system has been the foundation of the 

new continuum equivalent linearization method presented in Chapter III. That 

is, it was felt that th.e behavior of the nonlinear system could be modeled 

sufficiently well by a replacement. auxiliary linear system. The auxiliary system 

was determined three ways by the minimization of differences between three dis­

tinct quantities of the nonlinear and auxiliary linear systems. These difference 

quantities were: 

1. differential stress difference (formulation I) 

2. energy difference (formulation II) 

3. stress difference (formulation III) 

At this point. the new continuum equivalent equivalent linearization method 

became significantly different from its well-established equivalent linearization 

counterpart for discrete systems .. Since the auxiliary system was defined at the 

continuum level. the system difference was not only a function of time, as with 

the discrete method, but also a function of the spatial coordinates. Hence the 

equivalent linear parameters were expanded in terms of trial functions (of the 

spatial coordinates), and the minimization between the system difference terms 

was performed with respect to the equivalent linear parameters. 

It was shown in section 3.8 that, through the use of the positive definiteness 
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and self-adjointness of the stress operation in the auxiliary system,'the minimi­

zation relationships for the equivalent linear stiffness and damping parameters 

were always invertible for formulations I and III. For formulation II. the inverti­

bility was established for special systems. This contrasts with the minimization 

relations for discrete equivalent linearization. As pointed out in section 2.4.3. if 

the nonlinear syst.em is discretized first followed by linearization of the resulting 

ordinary differential equations. the invertibility of the minimization relations is 

guaranteed for only a small number of degrees-of-freedom. Therefore. an 

advantage has been established for the continuum approach to the equivalent 

linearization over its discrete counterpart. 

The above minimization procedure delineates one set of relations between the 

equivalent linear parameters and~ solutions to the auxiliary equations. Another 

set of relationships arise from the spatial discretization of the auxiliary equa­

tions. The finite element method to be used in the spatial discretization has 

been described in section 3.7 in terms of its convergence requirements. Of 

importance was the fact that c.ontinuity requirements on the displacement 

shape functions are generally: more restrictive for the minimization relations 

than for the discretization of the auxiliary equations. Therefore consideration 

of the linearization technique must be made in choosing the displacement shape 

functions. 

In Chapter IV. the general equivalent linear relationships from Chapter III 

were applied to the specific analysis of steady-state response to harmonic input 

and st.ationary response to stochastic excitation. For harmonic input, the 

minimization relations have been written in terms of the in-phase and quadra­

ture components of the auxiliary equation solutions, whereas for random 

response the relations are written in t.erms of the covariance matrix of t.he 

discretized auxiliary system. 
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The continuum equivalent linearization technique was applied to the steady­

state, harmonic analysis of three specific types of structural elements governed 

by nonlinear models. The first, the one-dimensional shear beam, was included 

to clarify the concepts and mechanics of one formulation of the method" The 

second and third examples, both pertaining to the nonlinear vibration of thin 

plates, were used to compare the results from the three problem formulations 

to solutions from existing methods and to demonstrate the applicability of the 

new method to problems to which 'standard techniques are not well suited. 

In section 5.1, the response of a one-dimensional shear beam composed of a 

hysteretic material was investigated. Convergence of the formulation III 

approach was established. Single mode solutions were obtained for the 

equivalent linearization method and compared with results obtained from 

Galerkin's method. It was found that. in the limit as the mesh forthe equivalent 

linear parameters is further subdivided, the formulation III solutions were pre­

cisely those of Galerkin's method. For finite subdiviso~s of the mesh, it was seen 

that the peak response underestimated the Galerkin solution. 

The second example, found, in section 5.2. was the vibration of a thin plate in 

which nonlinear coupling exists between the ,membrane and bending stres,ses. 

Use of the Poisson-Kirchhoff theory of thin plates dictated that the displace­

ment shape functions have continuous first derivatives. Therefore Hermite bi­

cubic shape functions were chosen. However, the minimization relations in sec­

tion 5.2.2 required the use of displacements that had continuous second deriva­

tives (formulations II and III) and third derivatives (formulation I). In lieu of 

using displacement fields with higher levels of continuity, it was decided that the 

resulting inler-elemenl singularities would be discarded in the formation of the 

minimization equations. 



123 

Results from section 5.2 showed that the problem formulation I did not per­

form well in the analysis of nonlinear plates, and that the poor performance 

could possibly be attributed to- the previously mentioned singularities in the 

minimization relations. The formulation III results compared well with the 

numerical integration solutions while formulation II consistently predicted a 

stiffer response. Formulaion III was therefore chosen to be the best approach 

for fUrther investigation. 

Section 5.3 dealt with the further examination of the nonlinear plat.e from 

section 5.2, whereas in section 5.3 the plate was permitted to have a concentri­

cally located cutout. The Ritz procedure described in section 2.4.2 was not capa­

ble of satisfying the stress free boundary conditions at the hole. This resulted in 

an artificial frequency shift in the-nonlinear response. 

A finite element linear eigenvalue analysis of the cutout plate showed that for 

a range of small hole sizes, the fundamental natural frequency is less than that 

of the plate with no cutout. The use of the finite element-equivalent lineariza­

tion technique predicted a similar. more flexible response of the nonlinear dis­

placements for small holes than for the same plate without a hole. 

In conclusion, it is felt that the continuum approach to equivalent lineariza­

tion holds promise for use in the nonlinear analysis of structural members. The 

formulation of the method is· such that. the method can easily be incorporated 

into existing finite element computer codes. The const.ruction of t.he method 

has been such that an understanding of t.he solution properties has been possi­

ble in this dissertation. Most importantly, the stress difference formulation has 

been successfully applied to structural elements in which bot.h stiffness and 

energy dissipation properties are response dependent. 
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