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ABSTRACT 

This thesis sets forth a dynamic model, designed to absorb 

infinitely radiating waves in a finite, computational grid. The analysis 

is primarily directed toward the problem of soil-structure interaction, 

where energy propagates from a region near a structure, outward toward 

the boundaries. 

The proposed method, called the extended-paraxial boundary, is 

derived from one-directional, wave theories that have been propounded by 

other authors. In this thesis, the theory is presented from a more 

general viewpoint and is studied for its stability properties. This 

work suggests some modifications to the method as it was first pre

sented. Innovations are also put forward in the boundary's implementa

tion for finite element calculations. These alterations render the 

boundary an effective wave absorber. 

The extended-paraxial boundary is then compared, both analytically 

and numerically, with two other transmitting (or silent) boundaries 

currently available -- the standard-viscous and unified-viscous 

methods. The analytical results indicate that the extended-paraxial 

boundary enjoys a distinct advantage in cancelling wave reflections; 

actual numerical tests revealed a small superiority over the viscous 

approaches. 

Various issues are also discussed as they relate to the silent 

boundaries. These include Rayleigh waves, spherically symmetric and 

axially symmetric waves, nonlinear waves, anisotropic media, and 

numerical stability. 
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CHAPTER 1 

I. INTRODUCTION 

The general motivation behind this thesis is to develop improved 

methods of analyzing problems in "soil-structure interaction." This 

term refers to how soil deformations affect the motions of buildings 

being subjected to a dynamic loading,l In this thesis, we address our-

selves to one of the major difficulties posed by such an analysis -

the phenomenon of waves which are radiating outward from the vibrating 

structure, toward infinity. In numerical calculations, only a finite 

region of the foundation medium is analyzed. Unless something is done 

to prevent the outwardly radiating waves from reflecting from the 

region's boundaries, errors are introduced into the results. The present 

work concerns itself with the study of such effects, using the finite

element method, and an artificial, transmitting boundary at the edge of 

the computational grid. The reasons for studying infinitely-radiating 

waves, and for using this particular approach to a solution, have been 

documented. A background of the analysis of soil-structure interaction 

is included now in order to clarify the objective of this thesis. 

Researchers have developed two major techniques for dealing with 

this phenomenon: 1) the continuum method, (3,7) and 2) the finite

element method. (82) The central feature of the continuum method is the 

lFor example, nuclear power plants, which are heavier and stiffer than 
most other structures, may "interact" with the relatively softer, 
underlying soil. In this case, we cannot assume that the building 
shakes on a rigid base; we must account for the flexibility of the 
soil. 
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assumption of a rigid foundation resting on an elastic medium. In 

perhaps the most common approach, one finds the relationship between 

F , the forces and moments which the foundation exerts on the ground; 
~s 

and u , the foundation displacements and rotations relative to the 
~O 

ground. (8) Therefore, 

= 

where [~sJ ;s called the impedance matrix. The second part of the 

analysis calculates Es*' the forces and moments caused by the seismic 

excitation. Hence, 

(1) 

(2) 

where ~s* contains the relative displacements and rotations caused by 

seismic waves. By superposition, the total displacement of the founda-

tion is: 

u = u + U * 
~ ~o ~s 

(3) 

Once the generalized forces or displacements of the foundation have been 

computed, many different methods can be used to calculate the superstruc-

ture's response. For example, either a lumped mass model or the finite

element method could be employed to estimate the structure's motion. (2,5) 

The principal advantages of the continuum approach are its accuracy 

and its relative simplicity and low cost. In performing this type of 

analysis, one probably gains more physical insight into the problem 

than results from doing a comparable amount of finite-element computa-

tions. The continuum method, however, is severely limited in that it 

can only treat linearly-elastic, or visco-elastic soils. The technique 
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is also restrictive in the range of foundation geometries it can analyze, 

being limited to simple shapes, such as circles and rectangles. This 

method also runs into complications when confronted by embedded struc

tures. (4,6) For these reasons, we focus our attention on the finite-

element method. Although the application of finite-element techniques 

to soil-structure interaction problems is burdened by its own con-

siderable difficulties, as we discuss below, the continuous upgrading 

of computer technology, and the method's geometrical advantages, make 

it a promising approach. 

The reader can refer to Zienkiewicz(82) for details of the finite-

element method. Suffice it to say that it is conveniently able to 

handle geometrical irregularities and material nonlinearities. The 

method's major drawback, for soil-structure interaction problems, is 

that present computer hardware is unable to manage the enormous storage 

and computational requirements of a full-scale, three-dimensional 

transient calculation. Attempts to reduce the problem's scale can often 

produce large errors in the solution. For example, if the boundaries of 

the finite element mesh are situated too near a source of wave radiation, 

then spurious boundary reflections will significantly distort the solu-

tion. Likewise, making the element size too large filters the motions 

of the higher frequencies which participate in the response. 

Researchers have proposed a number of ideas to reduce the computa

tional demands. One of the most important has been the use of artifi-

cial boundaries, which allow radiating energy to exit from the system. 

Ideally, with the use of these mechanisms, one can obtain the same 

solution by employing a relatively small number of elements, as one 
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does when using a much larger mesh. The resulting economy in computa

tional effort would then be considerable. Unfortunately, most of the 

boundary schemes with this aim suffer from significant drawbacks, or 

they are not applicable for this type of problem. Recent works on this 

subject are summarized in Section II. 

Analysts have also attempted to utilize two-dimensional models in 

the solution of three-dimensional problems. Some work(25,62) indicates 

that this simplification causes an underestimation of the building 

response. Other errors in estimation may also result. 

The substructuring(64) of the system is another method of reducing 

the problem's size. Here, the structure and the soil are analyzed 

separately, so that two smaller problems are solved instead of having 

to solve the original coupled system. This procedure may be viable when 

many analyses are to be performed. 

Another problem is that the material properties of soils are both 

highly variable and highly nonlinear, and they have proved to be diffi

cult to model correctly.(59) Often, crude approximations of soil beha

vior are used, (60,61) and it is not ~lways clear how this oversimplifi-

cation affects the system's general response. 

At present, an ignorance of the variation of seismic motion with 

depth, and distance, impedes soil-structure interaction studies. The 

current dearth of underground seismic data prevents a truly accurate 

representation of the input to the system. Analysts must postulate 

seismic inputs(63) which will produce reasonable approximations of 

accelerograms obtained at a point on the surface of the ground. 
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In summary, we have reviewed several of the more important limita

tions to soil-structure interaction analysis. As is evident, much can 

be done to improve the state-of-the-art of these techniques. In this 

thesis, we focus our attention on one of these problems, the transmitting 

or silent boundary, and attempt to make additions to the current metho-

dology. 

II. REVIEW OF PAST WORK ON TRANSMITTING BOUNDARIES 

Several different methods for the treatment of absorbing boundaries 

have been proposed and employed with varying success. We comment on 

several of them here, and list others. In all cases, the object of the 

work has been to make the artificial boundary behave, as nearly as 

possible, as if the mesh extended to infinity. In particular, since 

economy dictates that the boundary be near the central field of the 

mesh, the methods all try to avoid large, direct reflections of energy. 

The resulting techniques, or boundary elements, are variously known 

as transmitting boundaries,' absorbing boundaries, or silent boundaries. 

These terms .are used interchangeably in this thesis. 

Lysmer and Kuhlemeyer(47) conceived of using viscous damping 

forces, which act along the boundary, as a means of absorbing, rather 

than reflecting, the radiated energy. The method, being directly 

analogous to the use of viscous dashpots, is relatively easy to imple

ment, and it appears to treat both dilatational and shear waves with 

acceptable accuracy in many applications. The viscous forces, or 

dashpots, enjoy a third advantage, in that they do not depend upon the 

frequencies of the transmitted waves. This technique is thus suitable 

for transient analysis. 
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It is commonly believed ([11], [33], [34], [44J, [47J) that one 

drawback to the viscous boundary is its inability to transmit Rayleigh 

waves as effectively as it does the body waves. A special viscous 

boundary was devised,(47) in which dashpots, which are suitable for the 

transmission of Rayleigh waves, have coefficients that depend upon the 

frequency of the waves. The accuracy of this Rayleigh-wave boundary ;s 

not well established. It has been noted(44) that in order to avoid 

inaccuracies, the computational mesh may have to be especially refined 

near the ground surface. This is because one of the dashpot's parameters, 

at a point somewhat below the surface, goes to infinity. In addition, 

there have been few comparisons between the standard- and Rayleigh

viscous boundaries, except for one axisymmetric problem which was dis

cussed in [47J. The use of a standard-viscous boundary, for problems 

which involve Rayleigh waves, should not necessarily be ruled out. 

Unlike the Rayleigh boundary, it is independent of frequency and is much 

easier to implement. For example, Haupt,(15) using the standard-viscous 

boundary along with some of his own boundary innovations, achieved good, 

steady-state, Rayleigh-wave solution. Another Rayleigh-wave example ;s 

presented in Chapter 4. 

White, Valliappan, and Lee(57) attempted to improve upon Lysmer and 

Kuhlemeyer's scheme, and also to broaden the theory to include aniso-

tropic materials. To do this, they selected, and then minimized with 

respect to Cij , a certain norm, Iij , where 

I .. = f(B .. +C .. )2cos2ede 
lJ . lJ lJ 

(4) 

e 



7 

i = the number of stress components and j = the number of displacement 

components; e is the angle of incidence of the wave. Cij is the desired 

damping matrix that is used to cancel the stresses, [B]{u}, of the 

incoming waves. Therefore, I .. is a measure of residual stress, or 
lJ 

energy, that ;s not removed by the boundary terms, and will cause 

reflected waves. 

After the minimization of I .. to find C .. is completed, this C .. ;s 
lJ lJ lJ 

used as a starting point to iterate for more "energy efficient" values 

of Cij . This second minimization ;s performed on the energy ratio, 

Ereflected/Eincident' which is calculated by using harmonic wave forms 

and the previous values of Cij . 

The benefit to this approach is that anisotropic materials having 

infinite dimensions can be modeled. The authors have not clarified, 

however, just how efficient this boundary is for such materials. For 

the isotropic case, the method offers virtually no improvement upon the 

Lysmer/Kuhlemeyer boundary, and is more complicated to implement. 

Claerbout(83) devised the idea of creating equa~ions which transmit 

waves in only one direction. He derived these equations, termed 

paraxial approximations, for the two-dimensional, scalar-wave case. 

Clayton and Engquist(39) later expanded Claerbout's ideas to include 

elastic waves, and conceived the notion of applying it as an energy

absorbing boundary. In their approach, one takes the triple Fourier 

Transform (two spatial and one temporal) of the following two-dimensional, 

elasticity equations in plane strain. 
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c2 2 2 c~ 0 Utt - u (cd - CS)WXZ 
uzz = d xx 

(5) 

Wtt - 2 
Cs wxx 

2 2 
(Cd - Cs)Uxz 

2 0 cd wzz = 

where cd = the dilatational wave speed, Cs = the shear wave speed, and 

u and ware the respective horizontal and vertical displacements; x and 

z represent the spatial coordinates, and t = time. 

The authors use the scalar-wave, paraxial equations "to provide a 

hint as to the general form of the paraxial approximation Jl for elasti

city. They then take the Fourier transform of this general paraxial 

form, and "fit the coefficients by matching to the full, elastic wave 

equation. II Using these derived coefficients, the general paraxial form 

becomes the governing equation for the boundary. 

The authors implemented these equations using a finite-difference, 

numerical technique and, in the cases they presented, they obtained good 

body-wave transmission. The method, however, suffers from several diffi

culties. First, the technique, as formulated, does not lend itself to 

finite-element utilization. A straightforward, finite-element analysis 

divides the domain into two parts: the interior, where the regular 

equations of elasticity hold, and the boundary, where the paraxial equa

tions are valid. The interface between the two discretized regions 

(elastic and paraxial) does not permit smooth wave transmission, and 

waves which do arrive in the paraxial area do not propagate correctly. 

A significant part of the wave energy is reflected into the elastic 

medium. 
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The effectiveness of the finite-element paraxial boundary, 

developed in this thesis, was notably improved by our utilization of 

some upwinding techniques suggested by Hughes,(73) and by our introduc

tion of an interface element. The details of thi s approach are presented 

in Chapter 3, along with some comparisons between this boundary and 

others. 

Another major difficulty with the earlier paraxial technique is that 

when Poisson's ratio is greater than 1/3, a negative stiffness term is 

introduced into the paraxial equations. This term clearly leads to 

instabilities; the boundary erroneously causes the displacements and 

stresses to grow in time. This problem is discussed in Chapter 2. 

In a series of papers [Lysmer, (48) Lysmer and Waas, (49) and Lysmer 

and Drake(26)], a boundary was developed in order to transmit either 

Love waves or Rayleigh waves. The boundary was especially designed for 

a layered medium. 

The method first assumes that a wave of a certain frequency is 

propagating in a certain layer. If another finite element having width 

h were present beyond the boundary, then its displacements would be 

e- ikh (k equals the wave number) times those of the last element at the 

boundary. They then calculate the stiffness contribution of the supposed 

elements and put them into the equations of motion for the lumped masses 

at the boundary. Therefore, 

MU + Ku - k2K*u = 0 (6) 

2 If the frequency, w, is known, and having set C = w M + ~, 

equation (6) becomes 
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(7) 

k, the wave number, is different for each of the various layers, so the 

eigenvalue problem (7) must be solved. The impinging wave (shear or 

Rayleigh) causes stresses at the boundary. The idea is to apply oppo

sitional forces to effectively nullify them. For the shear wave 

example, these stresses are proportional to both the displacements at 

the boundary and to the wave numbers (eigenvalues) solved in equation 

(7). This enables the authors to find the matrix, R, which relates the 

nullifying forces to be applied at the boundary to the displacements at 

the boundary. Ru serves as the boundary force contribution to the 

finite-element equations of the interior. 

Although suitable for transmitting periodic, surface waves, this 

method is highly restrictive. First, the boundary terms are frequency 

dependent, meaning that one cannot generally perform a transient analysis 

in the time domain. If the governing equations of the interior region 

are linear, one can perform a transient analysis in the frequency domain. 

This approach, however, raises several questions. What are the costs of 

doing frequency-domain analysis, compared to doing an analysis in the 

time domain? Secondly, how effective can this approach be, if the 

interior equations are nonlinear? This technique is also restrictive 

in that only shear waves or Rayleigh waves can be transmitted. Other 

boundary methods are broader in scope. Finally, this transmitting 

boundary is more difficult to implement than are most other boundary 

schemes. 

Smith(55) proposed the adding together of wave solutions having 

different boundary conditions, in order to eliminate reflections. In a 
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one-dimensional example, the reflection of a wave striking a free boun-

dary cancels that of a wave striking a fixed boundary, when they are 

added to each other. 

Two lubricated-rigid boundary conditions are imposed for two 

dimensions: 

and 

= 00 I 
T = 

u2 = 0 

0=0 I 

(8) 

(9) 

u1 and u2 are the respective normal and tangential displacements at the 

boundary, and 0 and T are the respective normal and tangential stresses 

there. For the three-dimensional case, the plane of the boundary is 

either lubricated or fixed, and the normal displacement is conversely 

fixed or left free. 

Smith demonstrates that this boundary method eliminates all reflec

tions, regardless of frequency or angle of incidence. It also handles 

all types of waves, including body, Rayleigh or Love waves. The only 

drawback to this method, and it is an inescapable one, is that two solu

tions are required for each possible wave reflection. For example, if 

we have a two-dimensional corner, then two solutions for each boundary 

side are needed. The problem must be solved four times to cancel the 

wave reflections. Likewise, if there is enough time for a wave to 

reflect from one boundary, strike another, and then return, then the 

number of calculations must be doubled. Therefore, 2n is equal to the 
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number of complete solutions, where n is the number of possible reflec

tions. If one performs the calculations over a long period of time, the 

number of required solutions increases very rapidly. This method does 

not appear as attractive as other approaches, except for one-dimensional 

problems and problems with very short, characteristic times. 

Cundall, et al., (40) have recently introduced a cost-saving scheme 

that attempts to retain the advantages of the Smith boundary. Their 

idea is to set up a small boundary region, in which equations are formed 

and solved for each of the above-mentioned boundary conditions. Smith's 

idea of adding the two solutions is implemented at every fourth time 

step. Thus, the boundary area, which is four elements deep, requires 

two solutions at each step, while the interior region needs only one 

solution. 

The authors encountered some practical difficulties with this 

incremental approach. They solved them by using two pairs of constant 

stress and constant velocity conditions at the boundary, instead of the 

fixed and fr·ee conditions that Smith presented. Wave-reflection theory 

clearly shows how the reflections are eliminated in the Smith model by 

adding the "fixed" and "free" solutions. With constant velocity, and 

stress boundary conditions, it is not obvious as to how the reflections 

are controlled. The authors, however, have observed that these condi-

ti ons perform we 11 and reduce the "numeri ca 1 shocks" that are caused by 

the adding of the fixed and free boundary solutions. 

The main question about this incremental ("superposition") approach 

is its practicability. It effectively adds a layer of eight elements, 

which have to be formed and calculated at each step. In addition, the 
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constant velocity, and constant stress conditions, at the boundary must 

be stored for all times. It would be cheaper, and less cumbersome, to 

simply add a layer of eight elastic elements and to employ either the 

viscous, or paraxial, boundary conditions. However, the comparative 

accuracy of the superposition method and the latter schemes is unknown. 

Tseng and Robinson(54) and Robinson (51 ) investigated wave propaga

tion using another transmitting boundary proposal. This method relies 

on the separation of Sand P waves by the potentials, ~ and~. First, 

the transmitting condition for two-dimensional, plane waves is obtained. 

For example, 

Then a correction is added for cylindrical waves. Although equations 

(10) are written in terms of potentials, they appear to be similar to 

h . f h f· . 1 .. (42,83) h b 1 t e equatlons 0 te lrst paraXla approXlmatlon sown e ow. 

(11 ) 

Equations (10) and (11) are derived for waves oriented in the positive-x 

direction. 

The authors demonstrate the method's superior transmission of cylin

drical waves but, so far, the benefit does not appear to be significant 

enough to clearly justify this boundary's use over other techniques. 

Still another idea was proposed by ISenberg(l7) and later by 

Zhen-peng, Pai-puo, and Vi-fan. (58) At the nth time step, they use the 

known displacements of all points on or near the boundary to predict 
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the boundary's motion at the (n+l) step. The rest of the displacements 

in the interior are then solved. 

In order to develop a predictor for the boundary, one needs the 

frequency and wave number of the impinging wave. In this way, this 

method could be effective for steady-state problems. One would probably 

have to resort to Fourier analysis to model the transient waves. 

Isenberg(45) suggested an alternative, frequency-independent, pre

dictor method. In this proposal, the preliminary step would be to apply 

unit forces at the nodes adjacent to the boundary, and to calculate the 

boundary's reaction to each of these loads. This information would be 

stored for use during the main calculation. The effects of the various 

nodal loadings are scaled and then superimposed on each other~ in order 

to predict the boundary's response for the next time step. 

No one has, as yet, implemented this idea, so its feasibility and 

accuracy are unknown. It has only recently come to attention and would 

seem to deserve an investigation. Apparently, a significant effort to 

set up such a boundary is required, but the concept may have the poten

tial to solve infinite-domain problems. 

Researchers(4l,56) have also investigated the boundary integral 

method, where the interior displacements of a region are found by 

evaluating integrals along the region's boundary, The boundary is dis

cretized into segments, and the integrations are performed numerically. 

As yet, the technique has not been completely satisfactory. Not only 

does taking integrals along the boundary depend upon the linearity of 

the interior equations, it also leads to nonsymmetric matrices. For 

large problems, it could be computationally expensive. 
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In still another attempt to simulate the effects of wave radiation, 

analysts(25) have incorporated material damping into their models. 

Alternately, one could employ numerical damp;ng(70) to account for the 

transmitted energy. While these damping procedures are conceivable, 

how one could practically implement them ;s not clear. Just how much 

damping should be put into the system, and where should it be applied? 

Can this damping discriminate the effects of wave radiation from the 

actual physical dissipation taking place within the model? 

A systematic approach to the usage of damping in various systems is 

not available. Luco, et al.,(25) demonstrated some of the pitfalls of 

this method. They compared analytical solutions of wave propagation to 

the calculations of a finite element model which used some plausible 

damping estimates. In general, the material damping did a poor job of 

duplicating the radiation effect. At this stage, the proper application 

of damping to account for radiation effects seems to be more of an art 

than a science. 

Another relatively simple idea, which was proposed by Haupt,(15) can 

be applied for repetitive analyses of certain systems which can be split 

into interior and exterior parts. The interior is altered for each 

analysis (e.g., each interior geometry or load history could be differ

ent), but the exterior region remains constant. One initially sets up 

an extensive mesh of the entire system, but then he condenses those 

degrees-of-freedom that are in the outlying region. Each successive 

problem could be solved by utilizing just the small interior mesh and 

the force contribution from the condensed equations. This substruc

turing method reduces the computational expense for these special cases. 
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Finally, investigators(9,12,19) have experimented with extensive 

meshes, and have determined where the boundary should be placed in order 

to produce aCGeptably small reflections. Day(12) found that by succes

sively increasing the size of outlying elements by a factor of 1.1, he 

could prevent undesirable reflections. This growth factor of 1.1 pro

vides some help in reducing the number of required elements, but the 

computational costs remain prohibitive, especially for three-dimensional 

calculations. 

In review, each of the proposed transmitting boundary schemes has 

been shown to be effective for selected wave problems. The basic criti-

cism of all of these methods is that, to one degree or another, none has 

been extensively verified. For example, there are available few compari

sons between the results of using a truncated mesh having a transmitting 

boundary and of calculations with an extended mesh. Some of these ideas, 

such as the viscous damping mechanism, have been incorporated into pro

grams for other purposes.~11,27,30,34) This has generated a degree of 

qualitative confidence in their use, but their accuracy is not well 

known. 

III. ORGANIZATION 

The object of this study is to develop a transmitting boundary which 

can be applied to transient analysis in the time domain. It is also 

desirable that this boundary be applicable to as many situations where 

nonlinear behavior is important, as possible. 

In Chapter 2, theories of some absorbing boundaries are outlined. 

Since the boundaries are supposed to remove energy from the system, we 

discuss several of the forms which these mechanisms might take. Next, 
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assorted, transmitting boundary ideas are analyzed. The basic paraxial 

idea(83) is studied in a different light, and is developed and modified 

to improve its energy-absorbing character. The viscous-boundary pro-

posals are also presented. Through the equilibrium equations, their 

underlying precepts are shown to be equivalent to those of the paraxial 

boundary. The unified- ("optimized- II
) version of the viscous boundary 

is also set forth. The various boundary methods are then compared, 

using standard, wave-reflection analysis. We also discuss the boun

daries' ability to transmit Rayleigh waves and suggest some special, 

frequency-independent, Rayleigh-wave boundaries. Lastly, the extension 

of silent boundaries to spherical and cylindrical coordinates is con-

sidered. 

Chapter 3 primarily deals with the numerical implementation of the 

boundary schemes discussed in Chapter 2. In Sections I and II, we point 

out some of the practical considerations of implementing a silent boun-

dary. The boundary methods should be designed so that the practical 

limitations, such as the time-step size, are no greater than are those 

which other considerations impose. 

We then propose some procedures which facilitate the paraxial 

method's practicality for finite elements. These include the lIupwinding" 

of certain paraxial terms and a nodal assembling procedure to eliminate 

a finite-element "interfacing" effect. In the next section, numerical 

stability limits are determined for the various boundaries. Lastly, 

the numerical procedures are verified with a singular-loading problem, 

Lamb's problem. 
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Chapter 4 contains most of the extensive results and comparisons 

of the boundary methods. These examples include a radial-dilatational 

pulse, horizontal- and vertical-pulse loadings, and a Rayleigh-wave 

excitation. The working of these problems illustrates the primary 

strengths and drawbacks of the various methods and leads to some improve

ments, such as the application of numerical damping. 

In the final chapter, we present our conclusions and proffer 

recommendations in the use of the silent boundaries. 
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CHAPTER 2 

I. INTRODUCTION 

In these next Chapters, 2, 3, and 4, we investigate, implement, and 

compare several silent-boundary methods. As noted in Chapter 1, we are 

seeking a suitable boundary for nonlinear, transient, finite-element 

analysis. This rules out most of the transmitting boundary ideas pre

viously discussed. The exceptions are the paraxial, superposition, and 

viscous boundary proposals. 

The parameters of the transmitting boundary should be not only 

independent of frequency, they also should employ only information from 

nearby regions of the mesh. These requirements allow the interior mesh 

equations to be nonlinear; only the outer-region equations (those near 

the silent boundary) need remain linear. In addition, it is desirable 

to have the method be easily implemented and understood. We would also 

hope to establish a stabi1ity criterion and a measure of the boundary's 

accuracy. Lastly, the boundary should be capable of handling all types 

of incoming waves, and of proving its reliability over a wide range of 

different conditions. For example, it should place no significant 

restriction on the material properties which are being modeled. All of 

these issues are explored in this chapter. 

In Section II, we consider basic energy requirements and some 

general forms which transmitting boundaries might take. We then move 

on to a few specific proposed boundaries. In Sections III, IV, and V, 

their fundamental precepts are stated and analyzed. Some tentative 
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comparisons are established among the different boundaries, and in the 

next chapters, we investigate their performance numerically. 

II. ENERGY FORMS 

In constructing an absorbing boundary, the absorbing mechanism must 

be made dissipative. In other words, the change of total energy in the 

system with respect to time (excluding the effect of work done on the 

system) must be negative. 

d~ (energy) < a 

One can meet this energy condition in many different ways. Here, we 

present some general energy forms for the wave equation and the equa-

tions of elasticity. 

In the simplest example, one adds a boundary contribution term, 

h(x,t), to the one-dimensional wave equation; thus 

2 PUtt - pc uxx + h(x,t) = a 

( 1 ) 

h(x,t) = a when Xl::;; x <\ (2) 

h(x,t) 1 a when xb ::;; x ::;; x2 

c = the wavespeed, P = density, x = the spatial variable, and t = time. 

This one-dimensional system is depicted in Figure 1, using the elastic 

bar as an example. If we multiply equation (2) by ut ' integrate over 

the interval Xl to x2' and integrate the second term by parts, then 
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Xl Xb X2 
I~------------------------------.'------~! 

, 
I 
J 
I 

Figure 1. Simple absorbing boundary for one-dimensional wave 
propagation. 
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[

XX 
a 1 2 2 1 2 

at 2 J PUt dx + 2 J 
Xl Xl 

= 

h(x,t)ut dx (3a) 

or 

adt [KE + PE] = ( 3b) 

KE = kinetic energy, PE = potential energy. 

In equation (3), either the displacements, u, or the stresses, ux ' 

are prescribed at the boundaries. If no external forces do work at the 

boundaries (x = Xl or x = x2), then either u or Ux must equal zero. 

Having u be equal to zero for all time implies that the velocities, ut ' 

also equal zero for all time. With no work being done on the system, 

u = a or u = a at all times. 
t ' x Thus, the first term on the right equals 

zero. The second term on the right determines whether the total energy 
" 

is decreasing with time. The energy requirement dictates that 

x2 
J h(x,t)ut dx > a 

Xb 

Letting h be proportional to ut in the boundary region is an obvious 

choice for satisfying equation (4), but some alternatives exist. For 

example, if h is proportional to -u t ,then having xx 

(4) 
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(Sa) 

also satisfies equation (4). The integrated term involving UtxUt 
vanishes for reasons noted above. Similarly, by letting h be propor-

tional to utx ' 

x2 
1 21x2 

J utxUt dx = > 0 2 ut 
xb xb 

(5b) 

if 

lu t (x2)1 > lut(xb)1 

In this case, h becomes a convective term, which passes energy in the 

positive-x direction and eventually out of the system. These choices 

have physical interpretation. The taking of h as proportional to ut ' 

or utxx ' corresponds to absolute damping and strain rate damping, 

respectively. 

Analyzing the boundary problem from this energy standpoint exposes 

many possible avenues of attack. It does not indicate, however, whether 

these boundary terms are removing all of the energy as it impinges on 

the boundary. For this, we make a detailed examination of the paraxial 

and viscous models. 

III. THEORY OF PARAXIAL BOUNDARIES 

In this section, we present the paraxial boundary from a different 

viewpoint than did Clayton and Engquist,(39) who originally applied the 
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paraxial equations to a silent boundary. We believe that our alternate 

approach gives better insight as to how and why the paraxial method may 

work. Also, a stability analysis which was performed indicates that the 

paraxial equations must be modified from their original form. 

In the derivation herein, the paraxial boundary idea ;s best intro-

duced by means of the one-dimensional wave equation, 

(
_oo<x<oo) 
o ~ t < 00 

(6) 

It has the solution 

u = p(x - ct) + q(x + ct) (7) 

in which u = u(x,t), and x, t, and c are the same as they are in equa

tion (2); p(x - ct) represents an arbitrarily-shaped wave moving in the 

positive-x direction, q is another arbitrarily-shaped wave moving in the 

negative-x direction. To change the equation into that of a paraxial 

boundary, we seek a similar, partial differential equation whose solu

tion only allows waves to travel in the positive-x direction. This 

equation will then govern a boundary region which only transmits waves 

in the positive-x direction. 

Several partial differential equations produce this solution, 

u = p(x - ct). One of these was presented by Clayton and EngqU;st:(39) 
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(

_00 < x < (0) 
o ~ t < 00 

(8) 

solution: u = uo(x - ct) 

However, we choose to analyze another, related equation with this same 

solution: 

u(x,O) 

t 

(

_00 < x < (0) 
O~t<oo 

= u (x) o 

solution: u = I v(x - c~) d~ + Uo(X) 

° 

(9) 

Waves, p(x - ct), which impinge on a medium governed by equations (8) or 

(9), continue to propagate through the medium. This is established by 

setting uo(x) = p(x) and vo(x) = -Cpl(X). Unlike equation (8), equation 

(9) is dimensionally consistent with the original wave equation. It 

also more closely rese~bles the paraxial equations that we intend to 

use for two- and three-dimensional problems. In these more complicated 

cases, we study equation (9) for the purpose of developing the numerical 

technique. 
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For the one-dimensional e~ample, we have all of the solutions to 

the differential equation, so we can select the correct para~ial equa

tion. Multi-dimensional equations, however, often do not have known 

solutions. This necessitates a different approach, whereby the equations 

of the boundary regions are constructed to accommodate one-directional, 

plane, harmonic waves. For the purposes of simplicity, this different 

method is illustrated with the one-dimensional example. 

For most practical problems, the boundary conditions to equation (6) 

are such that solutions are of the form: 

u = A exp [i(k~x - wt)J (10) 

in which kx = the wave number (21T/wave1ength), and w = the frequency of 

the wave. One example of such a boundary condition is the requirement 

that u be finite, as x goes to infinity. This precludes either hyper

bolic or linearly increasing solutions (u = Ax + B) for equation (6). 

or 

If we substitute equation (10) into equation (6), then 

k~ = + 1 
w - c (11 ) 

In equation (10), if k /w is positive, then u represents only positive-x
~ 

traveling waves. We now seek a differential equation which, upon sub-

stitution of the desired solution represented by equation (10), produces 

kx = + 1 
w c 
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It happens that both equations (8) and (9) meet this condition. They 

each possess the harmonic solution (9) and have the positive k /w . x 
requirement. For applications to higher dimensions, we now utilize this 

procedure in the development of other differential equations which have 

only positive-x-traveling wave solutions. 

IV. TWO-DIMENSIONAL SCALAR WAVE EQUATION 

In this section, as an introduction to the development of a silent 

boundary for the equations of elasticity, we present an analysis of the 

two-dimensional, scalar-wave equation. Having just one unknown, it is: 

c2(u + u ) (~< x < ~) 
Utt - = 0 xx zz 

_00 < z < 00 

(12 ) 
u = f(x,z) at t = 0 

(0 :;;; t < (0) 
ut = g(x,z) at t = 0 

Once again, the goal is to find a differential equation which allows 

only positively moving waves. To this end, Claerbout(83) developed a 

"paraxial" method. If the solution of equation (12) has the form, 

u = A exp [i(k x + k z - wt)] x z (13 ) 

then (12) becomes 

( 14) 

Factoring equation (14), 
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Equation (15) furnishes the two II roo ts" of ck/w in equation (14); 

(ckx/w)l is positive, (ckx/w)2 is negative (with ckz/w < 1). If we sub

stitute the positive ckx/w root into equation (13), then this equation 

represents waves traveling in the positive-x direction. Conversely, a 

negative ckx/w signifies negatively traveling waves. 

We consider the positive-ckx/w relation, 

ck x --w = a 

Expanding the square root term, equation (16) becomes 

(16 ) 

( 17), 

We can determine the differential equation which corresponds to the first 

three terms of equation (17) by inspection of equation (13) and its 

deri vati ves: 

c2 
U + cu - -- u = a tt tx 2 zz (18 ) 

Equation (18) has a solution in the form of equation (13), but with 

ckx/w defined by the first three terms of equation (17). Further expan

sions of equation (17) to higher orders in (ck /w) have been carried out z 
by Clayton and Engquist. (39) 

Equation (18) represents an approximation of an equation which 

would only transmit positive-x-directed waves. The nature of this 

approximation is shown with the help of Figure 2. The plane harmonic 
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WAVE 
FRONT 

BOUNDARY 

Figure 2. Orientation of wave used in the scalar-wave, and 
elasticity analysis. 

wave illustrated in this figure has the form: 

u = A exp [i ( ~ COSel X + ~ s i na z - wt) ] 

In this case, ckz/w = sin a, where a is the angle of incidence. The 

first three terms of equation (17) best approximate equation (16) when 

ckz/w is small. Hence, we expect the differential equation (18) to 

perform best with small values of a, that is, with waves which are nearly 

normal to the boundary. As a grows larger, the paraxial approximation 

is less effective in transmitting positively traveling waves. 
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v. BOUNDARY APPROXIMATIONS FOR TWO-DIMENSIONAL, LINEAR ELASTICITY 

The analysis using the elasticity equations follows along lines 

similar to the previous cases. We are determining here the appropriate, 

paraxial-boundary equations for the following equation of e 1 as ti city for 

plane strain, which is illustrated in Figure 3. 

2 E c2u E c2u 0 (19 ) ~tt - ~11 c ~xx - = -12 -xz -22 -zz 
where 

u' = I: I ~11 = 1 [c~2 c:2
] 

2" c 

1 2 2 [
0 :] 1 h2 o ] ~12 = 2" (cd - Cs ) ~22 = 2" 2 . 

c 1 c cd 

u and ware the two-dimensional displacements which act in the respec-

tive x and z coordinate directions shown in Figure 3; cd = the dilata

tional velocity and Cs = the shear velocity; c, which has the dimensions 

of a wave speed, is included in equation (19) in order to render several 

quantities as dimensionless. The equations and their solutions are 

independent of c, as is seen in the way equation (19) is formed; t 

represents the time derivative. 

Solutions to (19) are assumed to be of the form: 

(20) 
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u,x 

I 
w,z 

Figure 3. Displacements and c~ord.inate axes utilized in the 
plane-strain, elastic problems. 

After substituting equation (20) intp (19), we find that 

(21) 

Equations (20) and (21) describe plane waves propagating in the elastic 

medium under consideration. In the first of three analogies with the 

scalar-wave example, we examine the "ro,ots" of ck/w, which are obtained 

by the approximate factoring of equation (21). 
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[ 
k c k c 

I --25....._ B _ B _z __ 
~ w ~l ~2 w 

(22) 

We are solving for the matrices Bj . In equation (22), either of the two 

roots, ck/w, satisfies equation (21). If we substitute the first root, 

= B + B k z c + B (k z c )2 
~l ~2 w ~3 w 

into equation (21), we obtain: 

(23) 

+ [- ~22 + ~ll ~2 - EBB - EBB - E B 2J (Ckz)2 (24) --- ~11~1~3 ~11~3~1 ~11~2 w 

Setting the coefficients of (Ckz/w)O equal to zero, 

1 0 

~l ± 
cd 

c (25) = 
0 1 

Cs 

A second analogy to the scalar-wave case is that the positive root of ~l 

leads to a positive-x-direction, paraxial boundary. Now setting the 

(Ckz/w)l and (ckz/w)2 coefficients equal to zero, 



33 

0 1 

~2 = -(c - c ) 
cd (26) d s , 
0 

Cs 

Cs 
cd 

0 -y 
1 

~3 = - ~ (27) c c 
0 s 

cd - T 

The substitution [from equation (22)J of the second root of (ckz/w) into 

equation (21) produces 

(28) 

If one puts these B matrices into equation (22) and mu1tiplies the terms, 

equation (21) and some third and fourth order terms of (ckz/w) result. 

The approximate factoring given by equation (22) is most accurate for 

small values of ckz/w. (Recall that ckz/w = sin a, where a = the angle 

of wave incidence.) From this analysis, it can also be seen that §, is 

the zeroth order term and, therefore, is the most important part of the 

paraxial approximation. The inclusion of ~2 and ~3 renders closer 

agreement between the elasticity equations (21) and the factored paraxial 

equations (22). 

If we use equation (23) with the calculated B matrices, then 

rearrange all of the terms, we find that: 
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_[: ~]i + [COd : ] 'xw + (cd - cs) [~ : hW 

s 

cd (Cs - ~d) 0 

I ~ I k 2 Q (29) + = 
C (C _ Cs) z 

0 s d 2 

The third analogy to the scalar-wave case is that the paraxial differen

tial equations can now be derived. If the harmonic solution (20) is 

substituted into the desired differential equation, then equation (29) 

is the product. By this inverse logic, the desired equation is: 

[1 0] [Cd 
o 1 ~tt + 0 o ] ~tx + 

Cs 
(cd - Cs)[~ :]~tz 

cd (Cs _ ~d) 0 

Cs (Cd - ~s) 
u = 0 -zz 

0 

(30) 

Equation (30) produces approximately the same harmonic wave solution in 

the positive-x direction as the elasticity equations (19) do. If one 

employs equation (28), the paraxial equations for the negative-x direc-

tion are: 

[1 0] [ cd 0] (Cd - cs) [~ :]~tz o 1 ~tt - 0 u --tx 
Cs 

cd (Cs - ~d) 0 

u = 0 (31) 

Cs (Cd - 1) -zz 
0 
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Clayton and Engquist(39) derived equations which were the same as those 

above, except for a change of sign in their §2 and §4 matrices. They did 

this through a method based on Fourier analysis. It was not clear how 

Fourier analysis would lead to one-directional equations. It seems 

more logical to derive the paraxial boundary equations on the basis of 

transmitting harmonic waves. The two analyses, however, are parallel 

and lead to nearly the same results. 

We can immediately identify some characteristics of equations (30) 

and (31). These equations have the same mass term as the original elas-

ticity equations. The other paraxial terms, however, bear little resem

blance to those of their parent equations. ~tx and ~tz are ostensibly 

damping-like terms, but an energy analysis reveals that these terms are 

not necessarily dissipative. The u term constitutes a transverse -zz 
stiffness which can be negative if 

(32) 

Because this derivation is based on the kinematics of the desired 

solution, it is difficult to understand what makes the paraxial equa

tions represent a boundary that absorbs energy. This is with the excep-

tions of the ~tx and ~tt terms, which were also found in the paraxial 

equations for the one- and two-dimensional scalar-wave cases and were 

shown to be dissipative (under certain conditions) in Section II. In 

fact, the negative-stiffness term raises the question of whether the 

paraxial equations are stable. 

In three dimensions, the paraxia1 equations are derived by the same 

method. The three-dimensional elasticity equations are: 
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E C2u 2 2 E c2u !:!tt - - E C u - E c u -
~ 11 -xx -22 -yy -33 -zz -12 ~xy 

E c2u E c2u = a (33) -13 -xz -23 -yz 
where 

2 a a 2 a a Cd c s 

~11 = 1 0 2 a ~22 
1 a 2 a 2" Cs = 2" Cd 

c 2 c 2 a 0 Cs a a Cs 

c 2 a a 
(c/ - Cs

2
) [I ~] 

s 

~33 = 1 0 2 0 ~12 a 2" Cs = 2 c 2 C a 0 a Cd 

c 2 - 2 r a 

~] (c/-c/) [~ 
a 

r] g'3 
d Cs a g23 a = 2 a = 2 

c 1 a c 1 

When, as before, we assume an harmonic solution: 

u = A exp [i(k x + k y + k z - wt)] x y z 

(34) 

Then, by substituting it into equation (33) and solving for the roots 

of ckx/w, we find 
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1 0 0 cd 0 0 0 0 

0 1 0 ~tt + 0 Cs 0 ~tx + (cd - cs ) 0 0 0 ~tz 
0 0 1 0 0 Cs 1 0 0 

0 1 0 0 0 0 

+ (cd - c
S

) 1 0 0 u --ty (cd - cs ) 0 0 1 u -yz 
a 0 a a 1 a 

cd (Cs _ ~d) a a 

a Cs (Cd - i) a u -yy 

a 0 
Cs 
"2 

cd(CS 
_ ~d) 0 a 

0 
Cs 0 ldzz = 0 "2 (35) 

a Cs (Cd - ~s) 

Equations (35) govern a medium which transmits waves only in the 

positive-x direction. A rotational transformation on the finite-element 

boundary terms is all that is required for orienting the boundary in 

other directions. 

The overall behavior of equations (35) would appear to be the same 

as that of the two-dimensional paraxial equations. If 
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then u y and u have terms indicating negative stiffnesses. The other -y -zz 
paraxial terms in the three-dimensional version are also similar to 

their two-dimensional counterparts: ut represents the zeroth-order - x 
term; Uty and utz are the first-order terms; and u ,u y' and u z are - - -yz -y -z 
the higher-order contributions. The order of the terms refers to the 

powers of kylw or kz/w that result, when equation (34) is substituted 

into equation (33). 

The above technique for deriving one-directional equations also 

seems to be applicable to anisotropic materials. Equations (33) would 

be somewhat altered due to the anisotropy, but one would assume that 

the harmonic-wave forms (34) are still valid. Equations (34) would then 

be sUbstituted into the governing, anisotropic equations, and the fac

toring, and solving, for ck/w would be performed as before. 

VI. STABILITY ANALYSIS 

The stability characteristics of the paraxial equations can be 

identified through an energy analysis. A paraxial region, which is 

designed to transmit rightward-traveling waves, is illustrated in 

Figure 4. 

If we put equation (30) into matrix form, premultiply it by ~~, and 

integrate it over the boundary region ~b' then: 

(36) 
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Figure 4. Schematic representation of a paraxial boundary 
for plane strain. 
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where 

( 37) 

o 

o c (c -~) s d 2 

1 r t b 
The paraxial domain, ~b' and its boundaries, rx ' rx ' rz • and rz • are 

depicted in Figure 4. 

We modify equation (36) and set either ~ = 0, or u = 0, at the -- -z 

boundaries, rt and rb. z z 

(38a) 
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or 

(38b) 

Energy Flux (x-direction) + Energy Flux (z-direction) 

For most problems, the orientation of the boundaries is such that 

the flux is mainly perpendicular to the long axis of the boundary 

region. Therefore, the accumulated energy within the system is repre

sented primarily by the energy flux in the x-direction. If no energy is 

flowing into the boundary region via rl, then the rr integral dominates· x x 
the right-hand side. l eX is diagonal, with positive elements, so 

Therefore, we conclude from equation (38) that if ~b and ~b are positive

definite matrices, then I~I is bounded. Mb is always positive-definite, 

but ~b is only positive-definite for the range of shear velocities, 

Cs > ci2. For Cs < cd/2 (i .e., Poisson's ratio greater than 1/3), 

instabilities may result in the use of the paraxial equations. 

Another, more specific way to evaluate the paraxial instability is 

to assume that an harmonic wave is impinging on the paraxial boundary. 

lIf the energy flux in the z-direction is integrated by parts, it 
becomes (cd - cs}Jutwtdrz. This energy term is neither positive- nor 
negative definite, Dut it is assumed to be small because rz is small 
and because the primary direction of the flux is in the x-direction. 
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(Refer to Figure 2.) The wave is represented by equations (39): 

u = U exp [i K Ccosa){ + sina z - ct)] 

w = W exp [i K (cosa x + s;na z - ct)] 
(39 ) 

where a = the angle of incidence and K = the wave number, which is 

assumed to be real. We wish to determine the value of c in equation 

(39). If it has a negative, imaginary component, then u and ware 

growing exponentially in time, and therefore are unstable. The substi

tution of equations (39) into the paraxial equations (30) gives: 

2 c - c(cd cos a) + 

I Uw I = 0 ,( 40a) 

or 

IT u = 0 (40b) 

For a nontrivial solution of equations (40), the determinant of the 

matrix, Q, must vanish. 

IQ"I = 0 (41) 

The taking of the determinant of Q results in a quartic equation for c. 

The computed soutions of this quartic, for various angles of incidence 

and Poisson's ratios, are plotted in Figure 5. 
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Figure 5. Stability regions for the paraxial equations, for 
different material properties and angles of incidence. 
(v = Poisson's ratio.) 
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One can see that for Poisson's ratios of less than 1/3 (cs/cd < .5), 

the paraxial equations are always stable. They are also stable for 

waves which impinge almost normally on the boundary. There exists, how-

ever, a large unstable zone for Poisson's ratios of greater than 1/3. 

We conducted several numerical tests using points inside the unstable 

region, and our results confirmed the existence of the instability. In 

transient and nonlinear problems, we cannot guarantee that the waves 

striking the boundary will always be normal to it. Guided by the 

approximate nature of the paraxial equations, our practical solution to 

this problem is to set the negative stiffness term, cd(cs - cd/2), equal 

to zero, if Poissonls ratio is greater than 1/3. The justification for 

this simple solution is that the stiffness terms are the least important 

element of the paraxial approximation, as was noted in the derivation of 

the paraxial equations. A similar stability analysis of the revised 

paraxial equations revealed no instabilities. 

The second set of equations (42) could serve for all Poisson's ratios, 

but when v < 1/3, the first set of (42) would be slightly more accurate. 
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VII. THEORETICAL COMPARISONS OF PARAXIAL TO VISCOUS BOUNDARIES 

VII.A. The Viscous Boundary 

The basic idea of a viscous boundary was proposed by Lysmer and 

Kuhlemeyer, (47) and is illustrated in Figure 6 for plane strain. One 

applies boundary str.esses, a and T, to an otherwise free boundary. These 

stresses cancel the stresses which are produced at the boundary by 

incoming waves, or 

o. + °bd == 0 

1 
1n ( 43a) 

Tin + Tbd == 0 

(T --
Wave 

t, 
Front __ u 

t, 
.X _u 

T 

Z 

__ u 

t, 
u 

f.li4e(J.et4 1fT 
d(J.et It eta"" 

Figure 6. Schematic representation of a viscous boundary. 
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in which ain and Tin are the incident stresses, and abd and Tbd are the 

applied boundary stresses. Thus, the zero-traction condition at this 

free bounda ry , 

. ) (43b) 

causes arf and Trf to be zero, where arf and Trf are stresses caused by 

reflected waves. 

One set of applied boundary stresses is defined by equations (44): 

. ) (44) 

as was proposed by Lysmer and Kuhlemeyer. (47) These applied stresses 

are clearly dissipative. Their taking of energy from the system is 

illustrated in Section II ·of this chapter. 

White, Valliappan, and Lee(5?) proposed a "unified" viscous boundary, 

where 

(45) 

The parameters, a and b, vary according to the material properties of the 

medium. The authors performed two minimization processes in order to 

obtain the optimum values of a and b. We compare, in Chapter 4, the 
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wave-absorbing characteristics of this boundary to those of the original 

viscous boundary. 

VII.B. Relationship Between Paraxial and Viscous Boundaries 

Although the concepts of the paraxial and viscous boundaries seem 

to be completely different, they can be related through the equilibrium 

equations using the following, heuristic analysis. In Figure 7, an 

element is shown, which contains mass density, p, and stresses, ° and L. 

If the element in Figure 7 were elastic, then the stresses would be pro

portional to the strains, and we would arrive at the usual elasticity 

equations. However, if the element is such that 

(46) 

and LZX and 0zz are constant through the element in the z-direction, 

then the equilibrium equa~ions in the x and z directions, respectively, 

are: 2 

and (47) 

Equations (47) happen to be the zeroth-order, paraxial equations for a 

medium which transmits waves in the positive-x direction. [See equations 

(42).J 

2The equations of rotational equilibrium are not considered in this 
approximate comparison. 
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The similarity between the paraxial and viscous approaches can be 

seen with the help of these equations and of Figure 7. The stresses, 

which are developed in the paraxial element, are proportional to the 

product of the element thickness, ~, and the x-direction gradients of 

the velocities, ut and wt . The viscous boundary directly applies the 

ut and wt values to the left side of the element. In other words, the 

paraxial method applies dashpots across the width of an element, while 

the viscous technique attaches dashpots from the boundary nodes to a 

rigid base. Since both of the boundaries utilize the nodal velocities 

in a similar manner, it appears that they are performing essentially 

the same function. It is not a coincidence that the viscous coeffi-

cients, pCd and pes' are also found in the paraxi~l equations (47). 

Thus, the paraxial technique is seen to be one way to extend the 

viscous-boundary idea. This generalization, with the help of Figure 7, 

helps link the physical idea of using viscous dash pots for absorbing 

energy to the paraxial method of fitting solution forms. The paraxial 

technique, with its introduction of the higher-order terms, ~tz and ~zz' 

potentially could lead to a more efficient, energy-absorbing boundary. 

VILC. Theoretical Comparison of the Paraxial and the Viscous Boundaries 

In this section we perform a standard analysis of wave-reflection 

coefficients. For more details on this procedure, see Miklowitz. (86) 

We assume that plane-harmonic, elastic waves are impinging upon a 

boundary strip, as is shown in Figure 8. The problem is again that of 

plane strain. 
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Figure 8. Schematic illustration of dilatational and shear 
waves reflecting from a boundary. 

potentials, which satisfy the governing equations of motion, 

<1>1 exp [ i w ( . cdt) ] = c SlnaX - COSaz -
d 

<1>2 exp [i w ( . cdt) ] = c slnax + cOsaZ -
d 

'1'3 = exp [i ~(sinsx - cosSZ cst) ] Cs (48) 

'1'4 = exp [i ~(s inS-x + cosSz - cst) ] ' Cs 

<I> = Ip<l> 1 + Ap<l> 2 

'1' = Is'1' 3 + AS '1' 4 
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where cd = the dilatational wave speed, Cs = the shear wave speed, 

Ip = 1 for a~ incident P-wave, Is = 1 for an incident S-wave, Ap = the 

amplitude of the reflected P-wave, and As = the amplitude of the 

reflected S-wave. 

We can now calculate the reflection coefficients for the paraxial 

boundary. For an incident P-wave, Is is set equal to zero. The 

elastic wave is described by Lame's solution, 

u = 
~ _ a'¥ 
ax az 

w = Ef + a'¥ 
az ax 

(49) 

The substitution of the potentials in equations (48) into equations (49) 

produces the elastic displacements which propagate in the elastic region. 

This wave strikes the paraxial-boundary region, which is governed by 

equations (42). After substituting the elastic-displacement solution 

into equations (42), we ~ave two equations for the solution of the 

reflected-wave amplitudes, Ap and As' These reflected waves also exist 

in the elastic medium. 

The viscous-boundary scheme applies a stress condition to the 

boundary. Instead of setting the stresses equal to zero, as would be 

done at a free boundary, they are set equal to the viscous stresses. 

Again, we assume that we have potential solutions which lead to: 

A 
ozz = -2 CPtt + 211 (cpzz + '¥ xz) = -apcdwt 

, 1 
Cd 

LZX = j.l ['¥tt/cs 
2 

+ 2(cpxz - '¥zz) ] = -bpcsu t 

(50) 
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in which A and ~ are Lame's elastic parameters. The velocities, ut and 

wt ' are determined by using Lame's solution, (equation (49)). The 

constants, a and b, are positive in equations (50). In the standard 

viscous boundary, 

a = b = 1 (51) 

For the unified viscous boundary, however, a and b are set equal to the 

"optimized" values, which were set forth by White, Valliappan, and 

Lee. (57) The wave-reflection amplitudes, Ap and As' which may be 

complex, are computed for the various angles of incidence. The absolute 

values of the amplitudes, for different values of Poisson's ratio, are 

plotted in figures 9 through 16. The three different silent boundaries 

are labeled as follows: 

Standard-Viscous Boundary 
Unified-( "Optimi zed") Vi scous Boundary 
Modified-Paraxial Boundary 

There are four sets of curves: 

1 ) P-reflections from an incident P-wave 
2) S-reflections from an incident P-wave 
3) P-reflections from an incident S-wave 
4) S-reflections from an incident S-wave. 

We should note a few points before interpreting 

- V 
- 0 
- P. 

the wave-reflection 

figures. First, the reflection amplitudes for low angles of incidence 

are more important than are those for high angles of incidence. Waves 

which strike a silent boundary at high angles will usually hit one or 

more boundaries before returning to the interior. In addition, one 

usually knows in advance the source of wave radiations, and consequently 
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can orient the silent boundaries toward that source. Therefore, the 

fact that most of the incoming energy is reflected, when incident angles 

are nearly equal to 90°, does not necessarily reduce the boundary's 

efficiency by a significant amount. 

Secondly, the assumptions which govern the wave-reflection calcula

tions are not strictly the same as are those that, by necessity, govern 

our finite-element representation of the boundary. The finite-element 

method spatially discretizes the boundary equations, and the boundary 

contributions are calculated for the outermost set of nodes. In 

contrast, the above theoretical analysis employs an infinitesimal 

boundary strip, from which the boundary effects are calculated. 

When we consider the first set of curves, the reflected P-wave 

amplitudes caused by incident P-waves, (figures 9 and 10), we can see 

that all of the boundaries are nearly equal in their reflection 

amplitudes. Near-to-perfect absorption is attained for those incident 

waves which are almost normal to the boundary. Conversely, total re

flection occurs for the waves which impinge at 90° angles. As 

Poisson's ratio decreases, the absorption characteristics of all three 

silent boundaries improve. The one exception to this trend is the 

optimized-viscous boundary where Poisson's ratio is nearly equal to zero. 

It performs less effectively for this condition. 

The viscous-boundary curves dip near 60° for cs/cd ~ .55. These 

abrupt interruptions in slope are due to changes in the reflected 

amplitudes' signs. The reflected, paraxial amplitudes retain the same 

sign for all angles of incidence, and therefore display no dips. 
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Figure 9. Absolute amplitudes of reflected waves for various 
angles of incidence (plane strain). 
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The reflected $-wave amplitudes, caused by incident P-waves, are 

shown in Figures 11 and 12. All three boundary methods show negligible 

reflections when Poisson's ratio is near to one half. The modified

paraxial magnitudes are so small that they all are nearly zero. In ad

dition, the quiet boundaries are almost as effective for materials with 

lower Poisson's ratios, as they are for higher ones. 

The illustrations of those reflected, S-wave magnitudes arising 

from incident $-waves, Figures 13 and 14, depict larger differences 

among the three boundary schemes than do the previous figures. In this 

test, the modified-paraxial boundary clearly outperforms its competitors. 

For all Poisson's ratios, the optimized-viscous boundary produces 10-15 

percent reflections of normally-incident waves. It should also be 

noted, however, that with high Poisson's ratios, the incident $-wave 

curves are somewhat misleading. In this case, the shear-wave propaga

tion speed is only a small fraction of the dilatational speed. The 

S-wave reflections will pe traveling slowly, and therefore, may not 

significantly influence the response in the interior region. Again, 

the dips or kinks, which are evident particularly for the optimized 

viscous boundary, are caused by changes in the amplitudes ' signs. 

The last set of comparisons, (figures 15 and 16), describes P-wave 

reflections due to incident $-waves. These curves are influenced by 

the critical-angle phenomenon. If the incident, shear-wave angle is 

larger than a certain angle called the critical angle, then the re

flected, dilatational wave becomes a surface wave which travels along 

the boundary. In each of the plots in Figures 15 and 16, one can 

detect the critical angles by the abrupt changes in the slopes of the 
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Figure 11. Absolute amplitudes of reflected waves for various 
angles of incidence (plane strain). 
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Figure 12. Absolute amplitudes of reflected waves for various 
angles of incidence (plane strain). 
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angles of incidence (plane strain). 
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reflection curves. This occurs in the region of from 0° to 45° , 

depending on Poisson's ratio. As the shear-wave speed decreases, (thus 

Poisson's ratio increases), so does the critical angle decrease. 

In this analysis, we are dealing with an incident, plane, harmonic 

wave which extends infinitely in the x-z plane. (See Figure 2.) 

Hence, it contains infinite energy. Likewise, the reflected body waves 

extend infinitely in x-z space. The reflected surfave wave, however, 

which is created when the shear-wave angle is greater than the critical 

angle, is confined to a region near the boundary. Theoretically, this 

surface wave contains only a finite amount of energy. Therefore, in 

Figures 15 and 16, the fact that P-wave amplitudes are large for those 

incidence angles which are greater than the critical angle, is probably 

not seriously detrimental. In fact, previous authors(47,57) eliminated 

these amplitudes from comparison when they multiplied them by the wave 

speed times cos ex. (ex. :: angle of incidence.) This new quantity measured 

. the energy flux at the boundary; energy propagating along the boundary 

was assumed to be confined there. 

In general, by considering all of the wave-reflection curves, we 

conclude that each of the boundary schemes produces acceptable results. 

All of them generally perform well when the incident angles are less 

than 40 degrees. With high Poisson's ratios, however, shear waves may 

cause some difficulties, particularly for the viscous boundaries. 

The modified-paraxial boundary appears to be generally superior to 

the viscous schemes. It outperforms the others on every curve shown, and 

it demonstrates significant improvement for those reflected, shear-wave 

amplitudes which are produced by incident shear waves. 
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As it was first formulated,(39) the paraxial boundary (the one that 

includes the potentially negative stiffness terms) causes reflection 

amplitudes to be greater than one, when Poisson's ratios are greater 

than 1/3. These are illustrated in Figure 17. For an incident shear 

wave, the reflected-shear and reflected-dilatational amplitudes become 

increasingly large as Poisson's ratio approaches 1/2. These curves 

highlight the instability caused by the negative, paraxial stiffness 

term. 

VIII. RAYLEIGH WAVES 

In the soil-structure interaction problem, all types of waves may 

be generated. In a typical case, the energy radiating toward the 

boundaries could be simultaneously composed of Rayleigh, Love, and body 

waves. In many instances, such as for the Rayleigh-wave case, the waves 

have not completely formed. The energy would then be in a transition 

state, and it could be propagating at different speeds. Therefore, it 

is desirable to install a transmitting boundary which can handle all of 

the different wqve motions. 

The previous, wave-reflection analysis, however, is not valid in 

the case of Rayleigh waves. 2 Therefore, it is difficult to assess the 

various boundaries' effectiveness in transmitting these waves. 

2Viktorov(88)presents some experimental data for Rayleigh waves striking 
a free boundary (in effect, a corner). These results show that about 
40% of the incoming energy is transmitted around the corner as Rayleigh 
waves, 35% is reflected as Rayleigh waves to the interior and the 
remainder is converted to body waves, which propagate radially from 
the corner. 
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In the paraxial approach, special equations are constructed in 

order to satisfy a particular harmonic solution. For positively

directed Rayleigh waves, shown in Figure 18, these solutions are: 

¢ = A exp (-Krz) exp IiK(x-cRt)J 

l{1 = B exp (-KSZ) e.xp riK(x-cRt)J 

u 

Wave 

: 1 

x 

z 

Boundary 

Figure 18. Schematic diagram of a Rayleigh wave approaching 
a boundary. 

(52) 
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CR = the Rayleigh wave speed, cd = the dilatational wave speed, 

Cs = the shear wave speed, w = the frequency of the wave, K = the wave 

number = wICR' r = ~-(cR/Cd)2, and s = ~-(cR/cs)2. The displacements 

are given by equations (49): 

or, 

u = 

w = 

2f _ d'¥ 
Clx elz 

u = AiK exp [-KrzJ exp [iK(x-cR t)J 

+ BKS exp [-KSZJ exp IiK(x-cRt)] 

w = -AKr exp [-Krz] exp IiK(x-cRt)] 

+ BiK exp [-KSZJ exp [iK(x-cRt)] 

(53) 

A and B are related to each other through one of the free boundary con

ditions at z = O. cR is ,calculated by using the other free boundary 

condition. Miklowitz(86) discusses these solutions in more depth. 

One set of paraxial equations which has equations (53) as a solu-

tion can be determined: 

Utt + cR Utx = 0 

Wtt + cR wtx = a : I 

A boundary region governed by equations (54) is theoretically 

capable of transmitting these Rayleigh waves. However, it cannot 

absorb body waves as effectively as does the paraxial region using 

(54) 
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equations (42). Therefore, we wish to assess the ability of the "body 

wave ll paraxial equations to ab?orb Rayleigh-wave motion. 

One way to do this is to determine the degree of modification 

required to change the paraxial equations into absorbers of Rayleigh 

waves. Beginning with equations (42), the paraxial equation for Rayleigh 

waves can be written as: 

(55) 

~b' ~x' ~z, and ~b are the constant-coefficient matrices as defined by 

equations (37). L is an added linear operator which allows equations 

(55) to be satisfied in the case of Rayleigh waves. 

If one substitutes the solution (53) into equations (55), he can 

determine the magnitudes of the respective terms in (55). 

(Rttl + Rxt1 + Rztl + Rzzl + RL1) exp (-Krz) 

+ (sttl + sxtl + Sz~l + Szzl + RL1 ) exp (-KSZ) = 0 

(Rtt2 + Rxt2 + Rzt2 + Rzz2 + RL2) 
(56) 

exp (-Krz) 

+ (stt2 + sxt2 + szt2 + Szz2 + SL2) exp (-KSZ) = 0 

where Rtt , Rxt , Rzt , RZz; and stt, sxt, szt, SZZ are the normalized co

efficients of Utt , utx ' ut ' and u respectively. - - - z -zz 
RL and SL are the 

coefficients necessary to make equation (56) valid. These terms are 

produced by the operator, k. The numerical values of the resulting co

efficients for v = 0 and v = .45 are listed in Tables 1 and 2. 
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~tt ~tx ~tz ~zz L -
R1 -.619 1 -.181 -.206 .006 

$1 -.380 .614 - .180 -.048 -.006 

R2 .486 -.555 -.230 .357 -.058 

$2 -.789 .901 .087 -.219 .020 

Table - \J = a 

~tt ~tx ~tz ~zz L -
R1 -.287 -.642 - .071 

$1 -. 156 .545 - .381 -.008 

R2 .275 -.289 -.669 .785 - .102 

$2 -.501 .526 .119 -.152 +.008 

Table 2 - \J = .45 

The values of the coefficients for other Poisson's ratios are in the 

same range as those presented in Tables 1 and 2. 

In order to render the modified-paraxial equations (55) into 

perfect Rayleigh-wave absorbers, we would need to determine the 

operator,~. However, it is clear from Tables 1 and 2 that L makes only 

a small contribution to equations (55). The other terms in these equa

tions account for almost all of the Rayleigh-wave behavior suggesting 

that it is permissible to neglect the second-order effects of L. This 

is not a proof that the modified-paraxial boundary can transmit 
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positively-directed Rayleigb waves. It does indicate, however, that the 

boundary can absorb these waves just as it largely absorbs body waves. 

An example of Rayleigh-wave transmission is presented in Chapter 4. 

The efficacy of the standard viscous boundary in the transmission 

of Rayleigh waves is largely untested. Lysmer and Kuhlmeyer(47) pointed 

out that because of the waves' exponential decay in the Z direction, the 

formerly constant parameters, a and b, should also be functions of z. 

The authors' plots of the required coefficients, as a function of the 

normalized depth, KZ, are reproduced in Figure 19. 

Figure 19. 
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As can be seen from Figure 19, these viscous coefficients vary with 

K, and therefore, they are frequency dependent. One must know in 

advance the frequency of the incoming waves and implement the correct 

values for a(Kz) and b(Kz) accordingly. Thus, the boundary may be 

applied for steady-state problems, but it is not suitable for transient 

analysis. The frequency-dependent coefficients are also more cumbersome 

to apply than are the constant coefficients designed for body waves. 

In a practi~al sense, it is not clear that the use of the variable 

coefficients would improve the absorption of Rayleigh waves. It would 

be extremely difficult, by employing a finite element mesh, to approxi

mate the variation in a(Kz) from _00 to +00 (which is illustrated in 

Figure 19). Further, as will be pointed out in Chapter 4, the behavior 

of the viscous boundaries ;s relatively insensitive to changes in a and 

b. 

Another set of boundary stresses, which cancel exactly the stresses 

induced by Rayleigh waves are: 

2 

°xx = 
-pcd ut + A Wz cR 

(57) 
2 

= 11 Uz 
pcs j '{"xz - --w cR t 

in which ~ and A are Lame's elastic parameters. Equations (57) were 

derived by first substituting the wave potentials, equations (52) into 

the stress equations (50), and then cancelling these terms with the ad-

dition of ut ' wt ' uz ' and Wz terms. 
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The advantage of using the boundary equations (57) is that their 

effectiveness, in theory, is independent of frequency just as the 

standard-viscous boundary is independent of frequency. Upon 

implementing them, we found, however that certain numerical procedures 

have to be modified in order to render the scheme workable. The boundary 

causes a significant reduction in the critical time step for the explicit 

part of the solution algorithm (which is described in Chapter 3). For 

the implicit part, the Uz and Wz terms lead to nonsymmetrical matrices, 

hence, a nonsymmetrical equation solver is required. These particular 

restrictions violate the silent-boundary criteria that we shall set forth 

in Section II.A of Chapter 3. For this reason, the Rayleigh-wave 

boundary (57) was not pursued. However, if the above considerations are 

relatively less important, then the boundary stresses (57) may be useful 

for Rayleigh-wave applications. 

IX. OTHER SILENT-BOUNDARY APPLICATIONS 

IX.A. Spherically Symmetric Case 

The paraxial, and viscous boundaries, can be easily derived for 

this one-dimensional system. The spherically symmetric equation of 

elasticity is: 

(58) 

wherein u is the radial displacement, and r is the radial coordinate. 

The solution to equation (58), expressed in terms of a potential ¢, 

is:(86) 
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U = .£1 
Clr 

If we consider only outwardly radiating waves, 

u = - ~ f(r - cdt) + ~ f'(r - cdt) 
r 

(59) 

(60) 

(61) 

One, partial differential equation which has equations (61) as its 

approximate solution is: 

c 
Utt + cdutr + ~ ut = 0 (62 ) 

The substitution of equations (61) into (62) produces a residual term, 

-f'(r-cd) cd
2 , which grows smaller as r increases (assuming that 

r3 

f'(r-cdt) is bounded for large r). Equation (62) appears to be a 

suitable paraxial approximation for outwardly (positive-r) radiating 

waves, and it may be useful for spherically symmetric problems. 

The corresponding viscous boundary employs the boundary stress, 

(63) 

Castellani(38) discusses this version of the viscous boundary. He offers 

a method for evaluating its effectiveness, which we believe can 

be adapted to the paraxial equation (62). It compares stresses not 
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canceled by the viscous boundary to those stresses created by the 

incident wave. The author begins with the assumption that 

(64) 

but a broader spectrum of problems is covered by equations (61), after 

which we may apply his analysis. It turns out that both the paraxial, 

and viscous boundaries are frequency dependent. Using a given r, they 

behave more capably for high frequency motion. 

IX.B. Axially Symmetric Waves 

We present a preliminary investigation of the viscous boundary's 

effectiveness for the axially symmetric case. The derivation and imple

mentation of the paraxial boundary, though not pursued here, follows 

from this analysis and the procedures outlined earlier in this chapter. 

The displacements, which are axially symmetric about the z-axis, 

are represented by: 

u = u(r,z,t) w = w(r,z,t) 
(65) 

v = 0 and a as = 0 

in which u = the radial displacement, w = the displacement in the z 

direction, and v = the qisplacement in the e direction. 

Using equation (65), the elastic, displacement-potential relations 

are [see Miklowitz,(86) pg. 220J: 

u = <Pr + nrz 
(66) 

- --r T)rr 
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and 

(67) 

where JO is the zeroth-order Bessel function, nd = ~ cos a, 
cd 

n = __ w cos S, a and S are the angles of incidence, K = the wave number = 
s Cs c 

2rr/L, L = the wavelength, and Ld = cd L. 

If ndr and nsr are "large", t~en the potentials (67) become: 

A 
<P = 172 exp 

r 
cos a r + sin a z t)] 

cd cd 

cos S r + sin S z _ t)] 
Cs Cs 

(68) 

B 
n = 172 exp 

r 

with 

A = 

(69) 

B = 

The Bessel function, JO(x), along with the function, 

f(x) = 1 [cos x + sin xJ 
(rrx)1/2 

(70) 

is plotted in Figure 20. The two functions are nearly equivalent for 

x ~ 1, but they part company near the origin. In the range, 1 ~ x ~ 5, 

the approximation (70) is equal to JO(x) up to 1 or 2 decimal places; 

for 5 ~ x ~ 20, equation (70) gradually approaches 3 place accuracy. 

When cos x and sin x in equation (70) are replaced with eix and e- ix , 
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the outwardly (+x), and inwardly moving waves can be distinguished. 

Thus, the potentials (68) result from the approximation of the 

potentials (67). 

If we assume that the approximation (68) holds, then the potentials 

for incident and reflected waves, shown in Figure 21, are: 

and 

= I r- l / 2 exp [iW(COS a. r + sin a. z 
P cd cd 

CPR = A r -1/2 exp [iW (_ cos a. r + sin a. z 
p cd cd 

I r-1/ 2 exp [iW( cos 8 r + sin 8 z 
. s Cs Cs 

t)] 

-t) J 

t )] 

n = A r- l / 2 
R s 

exp[iW(- ..;:...co;:...;;s~S sin S )] C
s 

r + C
s 

z - t 

(71) 

(72) 

Ip and Ap are labeled as "P" wave coefficients: Is and As are called 

"S" wave amplitudes. This is analogous to the wave-reflection analysis 

in Section 7. 

The elastic stresses at the boundary shown in Figure 21 are: 

a rr 

(
nr nrr ) 

a = 2).lcp +).In + ).l -2 - - - nrrr rz rz rzZ r r 

(73) 
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Figure 21. Illustration of waves reflecting from an axially 
symmetric boundary. 
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If one would employ a free boundary, these stresses would be set equal to 

zero. For the standard-viscous boundary, however, the boundary stresses 

are defined as: 

Orr = -pcdut 

°rz = -pcswt 

(74 ) 

The substitution of the displacement-potential relations (66) into the 

viscous stresses (74) produces: 

° =. rr (75) 

The stresses (73) are set equal to those in equations (75). If one now 

substitutes the potentials (69) and (72) into equations (73) and (75), 

he obtains two equations for the solutions of the two unknowns, Ap and As' 

For purposes of comparison to the plane-strain case, we can deter

mine the amplitudes of the potential, ~, used in the analysis in Section 

VII. The vector potential, ~, is related to n by equation (76), 

111 = V' x n z (76) 

in which V' x ;s the symbol for the curl of a vector, and z ;s the unit 

vector in the z direction. In our case. 

When 

then 

-n r 

ljJ = A r- 1/ 2 exp [iW(- cos 8 r + sin 8 z - wt)] 
ljJ Cs Cs 

[ 
1 i w ( R ) ] (As) A~ = 2" + C

s 
cd Ld cos 8 r 

(77) 

(78) 

(79) 

The results for an incident lip" wave (I1 = 1, Is = 0) are illustrated 
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in Figures 22 and 23; the "Sf' wave reflections are shown in Figures 24 

and 25. The numerals '.5 1 and 12.5 1 in the figures denote the reflection 

coefficients calculated with R/Ld = .5, and R/Ld = 2.5, respectively. 

R is the distance from the axis of symmetry to the viscous boundary. 

Several preliminary conclusions can be gathered from the results in 

the figures. Unlike the plane-strain case, the axially symmetric, 

viscous boundary depends on R/Ld' and is therefore frequency dependent. 

Although the boundaryls accuracy is greater for higher frequency waves, 

it does not significantly downgrade in the range of R/Ld shown. This 

result would seem to be corroborated in [57J. 

One may also notice that the axially symmetric amplitudes, with 

R/Ld = 2.5, are nearly identical to the corresponding, plane-strain 

results in Section VII. 3 As R/Ld is decreased, the differences become 

perceptible. The curves with R/Ld = .5 intimate a trend of increased 

reflections for smaller ratios of R/Ld. One must be aware, however, 

that at certain values of R/Ld.and a, the argument in the Bessel func

tion (67), 2n COsa R/Ld' becomes too small for the approximation (68) to 

adequately represent the elastic-wave solutions. This error is mani-

fested in Figure 25. Here, the fact that some reflection amplitudes 

exceed one, when a is close to 90°, is a consequence of using the sim-

plification (68). 

Some authors have implemented the viscous boundary for axially 

symmetric waves and have attained mixed results. Lysmer and 

Kuhlemeyer, (47) having discovered the energy-absorbing potential of 

3We review the characteristics of the plane-strain curves in Section VII. 
That discussion explains the large reflections observed in Figure 23, 
and the kinks in the curves of Figures 21,22, and 24. 
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the standard-viscous boundary for plane waves, proceeded to apply the 

boundary to axially symmetric problems. The boundary was situated at 

R/LR = .75 and R/LR = 1.50, which correspond to R/Ld = .35 and R/Ld = 

.69, respectively. (LR = the Rayleigh wavelength, Poisson's ratio = 

1/3.) The authors' results indicate good agreement with analytical 

solutions when R/Ld = .69, but the boundary with R/Ld = .35 acquits 

itself only fairly. These test results appear to be consistent with 

the reflection curves in Figures 22-25. 

Baladi(37) also scrutinized the standard-viscous boundary in an 

axially symmetric setting. His boundary was aligned parallel to the 

r axis, so that it absorbed waves travelling in the z-direction. (The 

transmission of waves in the r direction was analyzed above.) The 

author found generally satisfactory agreement between the silent-boundary 

results and those produced with an extended mesh. 

In summary, it appears that the standard-viscous boundary is 

suitable for axially symmetric waves. What limited data are available 

in the literature tend to confirm this suposition. 
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CHAPTER 3 

I. INTRODUCTION 

The analyses of Chapter 2 suggest that the previously-discussed 

boundary schemes could reproduce most of the effects of an infinite 

domain. There are, however, a number of practical limitations to their 

usage which one must consider. For example, we need to appraise the 

boundary's numerical stability. If a silent boundary demands a smaller 

critical time step than does the interior region, it may engender larger 

computer costs. Also, problems in accuracy may arise in the numerical 

treatment of the boundary terms. 

Our chosen numerical algorithm is described in this chapter. We 

discuss the problems of employing a paraxial boundary, and then the 

implementation of the two viscous boundaries. After this, the numerical 

stability of the boundaries is evaluated. Finally, in the last section, 

we compare some numerical solutions to analytical ones. This is done in 

order to validate our numerical procedures and their implementation. 

II. FINITE-ELEMENT PROCEDURES 

II.A. Implicit-Explicit Algorithm 

Our time-domain solution method, which was developed by Hughes and 

Liu,(76) is called the Implicit-Explicit method. The basic procedure is 

outlined in Appendix B and more of its properties are discussed in 

references [77J and [78J. 

The algorithm enjoys considerable versatility in coping with 

transient problems. One can effectively divide the domain of analysis 

into "implicit" and "explicit" regions, thus capitalizing on the 
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advantages of each scheme. For example, a nonlinear region could be 

treated explicitly in order to save factorization costs. On the other 

hand, implicit elements have superior, numerical-stability properties, 

and would function well for relatively stiff elements. 

II.B. Finite-Element Implementation of the Paraxial Boundary 

II.B.l General Considerations 

We recall the one-dimensional, paraxial equation -- equation (9) 

of Chapter 2. 

Utt + cUtx = a (1) 

Appendix (A) briefly shows how the application of finite-element 

procedures to the utx term leads to a nonsymmetrical matrix. The equa

tion of motion, including both interior and boundary contributions, is: 

(2a) 

C is the matrix which is derived from the boundary term, utx ; ~ is a 

nonlinear operator in the interior. Equation (2a) may be solved with a 

variety of numerical algorithms, all of which lead to 

(2b) 

in one form or an~ther. Inl denotes the time step number, and Ijl is an 

* iteration counter. ~ may include components derived from M, C, K, or N. 
...... ....,..... ..... 

If the contributions from ~, ~, and ~ are symmetrical matrices, 

then the use of a nonsymmetrical boundary matrix, ~, would require a 

doubling of the storage on the left-hand side. It would also demand a 
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nonsymmetrical equation solver, which needs twice the time to reduce a 

given matrix than does a symmetrical solver. An explicit, paraxial

boundary scheme does not suffer from the above difficulties and is 

therefore chosen. The explicit algorithm, however, does limit the 

allowable time step (see Section IV of this chapter for a discussion of 

numerical stability). 

II.B.2 Upwinding 

As was noted above, the finite-element treatment of the Utx term 

leads to a nonsymmetrical matrix, C. In other problems which generate 
'Y 

nonsymmetrical matrices, it has been observed that spurious oscillations 

can occur in, for example, a large range of fluid-dynamics problems. 

In many respects, the paraxial equations are similar to the equations of 

fluid mechanics. In our case, utx serves as a convective mechanism for 

transporting energy across a domain. 

We can evaluate the behavior of the extended-paraxial equations, 

for a one-dimensional mesh which is drawn in figure 1. 

I 

ttl 
. I 
I I 

/ 
/ 

/ 

/-----

I- h ·1 

r---; 

I 

el 
i+l - ~ ----
// 

Figure 1. Schematic diagram of an elastic bar which is 
discretized into a one-dimensional mesh. 
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From Appendix A: 

1 

. cab = c J NaNb,xdx = 2cNa(El)Nb,~(~1) 
-1 

c = 

( 3) 

(4) 

~1 is the location of the integration point in ~-space, as is shown in 

figure 2. 

If we rewrite the Implicit-Explicit algorithm (Appendix B) in 

terms of an explicit calculation for the velocity, ~n+l' we find that 

1 "'1 1 M- C-
~ty ~ ~n+l = ~ty - ~n+l - - ~n+l ( 5) 

At a given time step, with the help of equations (3), (4), and (5), 

the equations for the paraxial nodes, i and i+1, are assembled. 



I 
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Figure 2. A one-dimensional, finite element shown in 
global and local coordinates. 
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1 0 vi 
h 2" 

= yflt i+l 
0 1 v 

(~t~2 + C'£) 
(l-~Q,)c -i 

2 v 

= 0 (6 ) 

(l+~Q,) h (l+~~)c -i+l c 2 My - 2 v 

The above algorithm performs optimally for the parameter y = 1/2, 

and for the critical time step, 

h flt = -c 

For these particular values, we have 

-C2'£) 
(~- ~£) 

(7) 

(8) 

~ represents the predicted velocities at this time step, and they are 

calculated from the velocities and accelerations of the previous step. 

In our case, for a velocity pulse traveling in an elastic material. 

vi = 1 ai = 2 I th , 
i+l a i+1 

(n-l) step (9)" 
v = 0 = 0 , 

. . + 1 
in which a' and a' are accelerations for nodes i and i+l. One finds 

the nth step predictors using the algorithm equations in Appendix B: 
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vi = vi + 6t(1-y)a i = 2 

vi+l = 0 
, I nth step . (10) 

Equations (9) and (10) result when the critical parameters of equation 

(7) are employed. Here, we assume that this wave has somehow entered 

the paraxial region at node i. For the chosen values of h, c. and 6t, 

the wave (9) should arrive at the next node, i+l. Hence, if the material 

were elastic, the correct solution for the nth step is: 

vi == °1 I i+1 v 
(11) 

The solution of the paraxial equations (8) is: 

i (1-~ )v
i C-2"£) vi +] v = £ 

(12 ) 

v i+ 1 = ~ C+2~£) vi + (l- ~£) vi
+] 

For this optimal case, the choosing of ~£ = 1, in equation (12), pro

duces the desired solution, (11). As ~£ is moved to the left, less and 

less of the wave is transmitted to the right. The location of ~£' 

therefore, determines the character of the solution. 

Hughes(73) demonstrates how this same quadrature idea applies to 

the steady, advection-diffusion equation in one-dimension. 

aUt a [ aUt] 
11 - = - k(x)-ax ax ax (13) 

The paraxial equation is a transient version of equation (13) [that is, 
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Utt is added to equation (13), but k, the diffusivity coefficient in 

(13), equals zero.] Hughes(73) established that the integration point's 

location, ~~, goes to one as k approaches zero. 

The above examples illustrate the effect of quadrature upwinding. 

This technique is one way of "weighting" the finite element integration 

in the direction of the flow. Other "upwind" methods include the 

Petrov-Galerkin approach(67,68) and streamline upwinding. (74) 

The Petrov-Galerkin method employs specially weighted functions, 

V, in the finite-element discretization. For example, in [66], 

J Utt v dx + c J utx v dx = J f v dx 
~ ~ ~ 

(14 ) 
k u Vx 

v = v + 
u2 

where v is the weighting function of Appendix A, and k is the numerical 

diffusivity coefficient. Brooks and Hughes(66) used it for an equation 

which is similar to the paraxial equation and obtained very good 

results. One reason we did not attempt to implement the boundary in 

this form is because it leads to a nonsymmetrical mass matrix. This not 

only leads to a more complicated elasticity/paraxial interface, it also 

rules out our preferred explicit boundary form. 

Streamline upwinding(74) adds a numerical, diffusion term to the 

paraxial equations. It turns out that for this case, streamline and 

quadrature upwinding are identical. The latter technique is a little 

easier to implement. 
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In two- and three-dimensional cases, the paraxial equations are 

designed to be one-directional in the following sense. The ut term was - x 
created in order to transmit energy in the general flow direction, as 

is shown in Figure 3, whereas ut and u z are the lower-order correc-
- z -z 

tions for the angle of incidence. Hence, the quadrature points for ~tx 

are located where shown in Figure 3. 

There exist, for other two- and three-dimensional problems, upwind 

procedures which more accurately account for flows at different angles 

of incidence. The Petrov-Galerkin approach and streamline upwinding, 

Figure 3. 

General 

Flow 

Direction .. 
.. 

Location of the integration points. ~ and ~2' with 
respect to the general flow direction! 
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both described above, are two such proposed methods. Which of all is the 

best technique is not clear, and research (66) is continuing in this 

area. In the above silent-boundary problem, however, this angle-of-

incidence error is already "built-in" to the paraxial theory. Energy 

propagating at angles inclined to the boundary will be partially 

reflected regardless of the upwinding scheme. Therefore, an attempt to 

correct the flow errors that are caused by the discretization and inte-

grating procedures may not render the boundary more efficient. We did 

experiment with adding artificial diffusion terms, but they did not have 

a significant effect on our results. 

The ut term is also integrated at the points shown in Figure 3. 
- z 

Because this quadrature scheme is symmetrical in the z direction, it· 

does not upwind ~tz. This term could be integrated with the standard 

2x2, or lxl, Gaussian quadrature. The two-point integration method, 

however, seems to provide slightly better accuracy. The paraxial stiff

ness term, u ,was integrated using standard 2x2 quadrature. The -zz 
quadrature method used for ut and u ,however, does not significantly 

- z -zz 
affect the boundary's efficacy because they are the lower-order, paraxial 

terms. 

II.B.3 Assembling Procedure 

The algorithm we employed in our transient calculations (see 

Appendix B for details) performs well for waves in either the elastic 

medium or the paraxial medium. We found, however, that an interfacing 

effect inhibits elastic waves from smoothly proceeding into the paraxial 

area. The method developed to circumvent this problem, an element

assembly procedure, is portrayed in Figure 4. 
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Interior Elements

l 

Interface 

Element 

Boundary Element 

Figure 4. Schematic diaqram of the interface elements. The top 
row of nodes are elastic while the bottom row are in 
the paraxial region. 

The finite-element equations for node 2 are written as if there are 

interior elements present on each side of it, while the equations for 

node 3 are formulated as if it were bracketed by boundary elements. In 

other words, the ith element, shown in the picture, contributes regular

wave terms to node 2 and boundary terms to node 3. The mass matrix is 

unaffected because it remains uniform for all of the elements. 

The reason for adopting this procedure is due to the apparent 

success of the finite difference solution, used by Clayton and 

Engquist. (39) The finite-element method of assembling contributions on 

an element basis simply did not work at the interface. Therefore, we 
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attempted to "finite difference" these interface nodes. The latter pro

cedure allows the respective elastic and paraxial nodal equations to be 

assembled independent'ly of each other. In the former approach, elastic 

and paraxial contributions were being added together in the same set of 

nodal equations. This led to the difficulty. 

In two and three dimensions, the interface nodes are assembled in 

the same manner as is described above and shown in Figure 4. 

We experimented with other ideas, such as employing a different 

algorithm for each of the two regions, or multiplying the paraxial 

equations by a factor which minimized the wave impedance. Although these 

methods were also successful, the above-described assembly procedure 

seemed to erase the interface effect most completely. 

II.C. Numerical Implementation of the Viscous Boundary 

The viscous stresses are applied continuously along the boundary, 

as is depicted in Chapter 2, Figure 6. Their contributions are assembled 

at the nodes through the ~se of one-dimensional, finite-element, shape 

functions (as shown in Figure 5, wherein linear shape functions are 

employed). 

Nl = N4 = 0 (15) 

1 , I N2 = 2 (l-s) 

N3 = t (l+s) 

(16) 

. . 
where s is the natural coordinate (-1 ~ s ~ 1), and u2 and u3 are the 

nodal velocities. 
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s= 1 

T L • s= 0 h 

1 
x 

s=-l 
pc

d
N

2
u

2 

Figure 5. Distribution ~f the viscous stresses applied to 
a boundary element. 

The boundary force, Fa' acting at node a is defined as: 

Y3 

Fa = J Na0(y)dy' 

Y2 

= where a = 2,3. 

t' 

( 17) 

d he 
If we substitute into equation (17) both ~ = -- and the above defined 

de: 2 

shape-function equations, N , we find that: a 

. = -c u (18 ) 
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Though we chose not to, it appears that one could "lump" the C matrix 

in the same way that mass matrices are lumped. That is, 

The boundary shear stresses are applied in the same manner as are 

the normal stresses. When the boundary parameters, a and b, are opti

mized, they multiply the appropriate terms in equation (18). 

One advantage of the viscous boundary is that equations (18) and 

(19) are symmetric. Thus, one can convert this boundary to fit either 

an implicit, or an explicit algorithm without any difficulty. For an 

implicit algorithm, the symmetrical C matrix enables us to easily . ~ 

determine the boundary's numerical stability. The boundary's simplicity 

lis another major advantage. The ~ matrix is explicitly defined by 

equations (18) and (19), so there is little additional cost in making 

these contributions to th~ boundary elements. 

III. NUMERICAL STABILITY OF THE EXTENDED-PARAXIAL AND. VISCOUS BOUNDARIES 

III.A. One-Dimensional Analysis (Paraxial Boundary) 

We first consider the one-dimensional equation, 

(20) 

The element mass and stiffness matrices, both derived from equation (20), 

are: 
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(21) 

(See Appendix A.) Next, the global matrices are assembled for the dis-

cretized, paraxial region shown in Figure 6. Energy. propagating from 

the elastic region into the paraxial region, is considered to be 

external to the system, for the purpose of analyzing the stability. 

The assembled matrices are: 

1 

M = h 

o 

1 

-1 

0 
c = c 

and 

K = 0 

a 
0 

-1 

a 

o 

1 1 
2" 

a 

a 

0 

-1 1 

(22) 
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Energy from the~--~--~--~I----~--+-~~ ____ ~ __ ~I __ ~ 
Elastic Region 1 I 2 I 3 I n-1 I 

--I .. _.e, el e: e: 
J--- ---J--- --J------ ---J--

/' "./ ,/ 
/' /' /' /' 

n e 

paraxial region 

Figure 6. One-dimensional, discretized paraxial region being 
analyzed for numerical stability. 

Hughes and Liu(76) write the algorithm equations, and the equations of 

motion, in terms of energy: 

T -A yT a_n+l a + K y - -n+l -n+l - -n+l 

B M _ lit C llt2 
= - -y K 

- 2- 2 -
(24) 

A = ~ + lit ( y -l) c 
2 -

• 
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[a_n] = a +1 - a -n -n 
(25) 

According to the stability theorem presented in [76J, if y ~ 1/2, B is 

positive definite, and C is positive semi-definite, then a and v are 
- -n -n 

uniformly bounded. 

Clearly, C is diagonally dominant, and so by Gershgorin's Theorem 

(Noble, p. 446), it is positive semi-definite. S takes the form: 

B= 

(h - c~t) 0 

c~t 
-2-

o 

(h _ c~t) 
2 

c~t (h _ c~t) 
-2- 2 

o c~t 

"2 

o 

o 

(~ _ c~t) 
2 2 

If we expand the quadratic form of S, then, 

= 

( CM). 2 h - --2-- x2 + ... + 

( h _ c~t) y,,2 + c~t x x + ( ~ _ c~t) x 2 
2 n-l 2 n-1 n 2 2 n 

(26) 

(27) 
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+ [-21 (h - Cllt) i + cllt x x + (h _ Cllt) x 2] (28) 2 n-1 2 n-1 n 2 2 n 

where ~ is an arbitrary vector composed of real components. Each set of 

terms (excluding the last set) is greater than, or equal to, zero if 

h _ cllt :::: cllt 
2 -2-

or 

For the last group, however, 

llt s; h 
c 

1 (h _ cll t ) x 2 + cll t x x + 1 (h _ cll t ) x 2 :::: 0 
2 2 n-1 2 n- 1 n 2 n 

if 

or 

Therefore, 

h - cllt :::: cllt -2-

2h 
llt s; 3c 

the algorithm is stable if y :::: 1/2, and if 

llt s; h (last node fixed) - , c 

llt s; 2h (last node free) 3c 
) 

(29) 

(30) 

(31) 
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A stability analysis for the one-dimensional wave equation produces 

the stability condition, 6t ~ h/c. Therefore, if the last (or nth) 

paraxial node is fixed, as it is in the calculations of this study, the 

explicit-paraxial boundary imposes no added time-step restrictions. 

III.B. Two-Dimensional Analysis and Its Extension to Three Dimensions 

The two-dimensional, modified-paraxial equation is: 

0] [Cd 
1 ~tt + 0 

1 ] u + K u o -tz - -zz 
= 0 

The element matrices are found analogously to those in Appendix A. 

1 1 

mab = I I NaNb J d~ d~ 
-1 -1 

1 1 

= ~ J J N Nb J d~ d~ a ,x 
. -1 -1 

1 1 

C~b = (cd - cs ) J J NaNb,z J d~ d~ 
-1 -1 

. (32) 

(33) 

(34) 

(35) 

Ix,~ x, 
J = det I ~ , and D is a matrix composed of the constants, cd and 

y,~ y,~ 

cs ' ; and ~ are the local coordinates, eX is the matrix formed from the 

~tx term, and eZ is formed from ~tz' If we evaluate equations (33) and 

(34), for the typical element depicted in Figure 7, we find that: 
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1 

1 
a 

1 

phxh z 1 
m = - 4 1 

(36) 

1 
a - 1 

a 0 a 0 0 0 0 0 

0 _0 a a 0 0 0 0 

-cd 0 . cd 0 0 0 0 0 

Cx ~ 0 -c 0 Cs 0 0 0 0 
= s (37) 2 0 0 0 0 0 0 0 0 

0 .0 0 0 0 0 0 0 

0 .0 0 0 -cd 0 Cd 0 

0 0 0 0 0 -c s 0 Cs 

At this point, if we use only the zeroth-order paraxial approxima

tion [that is, if we ignore the second two terms in equation (32)], then 

the stability limits can be explicitly obtained as follows. In this 

case, nodes 1 and 2 are related in the same way as they would be in 

one dimension. Thus, if we consider just the x degree-of-freedom for 

a string of nodes in the x direction, as in Figure 8, 
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4 3 x 

z 
h z 

2 

Figure 7. Two-dimensional, four-noded element used for deriving 
the mass, and paraxial damping matrices. 

z 
C = ph cd 

1 

-1 

o 

o 

1 

o 

1 

1 

o 

1 
"2 

o 

1 0 

-1 

(38) 

(39) 
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x t--h----of 

n 

z 

Figure 8. Row of paraxial nodes in a two-dimensional mesh 
used for the purposes of numerical stability. 

These are the same matrices that arise in the one-dimensional case. 

Hence, 

(last row fixed) 

(1 ast row free) 

(40) 

Likewise, by considering the z degree-of-freedom, for a string of nodes 

in the x direction, 



This is a less stringent condition than is equation (40). Thus, for two 

dimensions, the matrix derived from the ~tx term has the same stability 

properties as does its counterpart in one dimension. The analysis 

clearly extends to three dimensions. 

Now, if we consider the higher-order, paraxial approximations, that 

is, if we include the last two terms in equations (32), then the stability 

becomes somewhat more involved. Due to the assembly procedure which is 

used in the interface region, the ~tz and ~zz terms lead to nonsymmetri

cal matrices, which are not accounted for in the theorem [76J used in 

the previous analysis. In the numerical calculations that we have per

formed, these terms have not caused any difficulties. (The CZ matrix 

is, in fact, almost entirely antisymmetrical.) If problems of numerical 

stability were encountered in other applications, one could use only the 

zeroth-order, paraxial approximation, wherein the stability limits are 

clearly defined. 

III.C. Numerical Stability of the Viscous Boundary 

The stability characteristics of the viscous boundary also proceed 

from the stability theorem in [76J. An implicit, viscous boundary is 

unconditionally stable, if y ~ 1/2 and S ~ y/2. The numerical stability 

limits for the explicit, viscous boundary stem from equations (23) and 

(24). If S, in equation (24), is positive definite, and if y ~ 1/2, 

then ~n and ~n are uniformly bounded. S is a symmetric matrix, and its 
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eigenvalues can be easily determined after y, ~t and K have been selected. 

Thus, the stability properties of the explicit, viscous boundary can be 

defined for each specific case. The implicit, viscous boundary is more 

convenient for our purposes, because of its unconditional stability 

properties. However, this may not be true in other applications, and it 

is useful to have the explicit option. 

IV. VALIDATION GF NUMERICAL PROCEDURES 

We verified our implementation by comparing our program results to 

several stati c, anddynami c, ana lyti cal sol uti ons. In a 11 of these 

problems, and in the test examples of Chapter IV, the silent boundaries 

were implemented as they are shown in Figure 9. As the symbol for a 

silent boundary, we employed a thick black strip, which is illustrated 

on the left side of Figure 9. In the case of the viscous boundary, the 

black strip denotes a set of applied stresses, a and T ,which are xx xz 
applied to the boundary. For a paraxial boundary, it indicates a row 

of paraxial nodes which are adjacent to the interior region. 

The solution for one simple problem, a one-dimensional bar, is 

shown in Figures 10 and 11. A load is applied in the interior of the 

bar during the first time step and is then removed. The wave pulses are 

denoted by circles, whose diameters represent the magnitude and direction 

of the particle velocities. "superconvergence,,(77) is attained by 

utilizing the explicit algorithm and the following parameters: cd = 
wave speed = 1 element/second, y = .5, B = .25, ~t = 1 second, and 

Poisson's ratio = O. 

The circles, which remain at the paraxial boundary after step 

number 9, do so because of the fixing of the boundary nodes on the 
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-

UNOEF~RMEO MESH 

l-

I-

l-

I-

I-

EXT.-PARAXIAL 
BOUNDARY 

STEP NO. = 1 

STEP NO. = 5 

Figure 10. Top: Mesh used for a one-dimensional wave; 
:;1iddle: Energy and velocity plots at t = 5 seconds; 
Bottom: Ener9Y and velocity nlots at t = 9 seconds. 
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STEP NCl. = 9 

STEP NCl. = 13 

STEP NCl. = 17 

Figure 11. Energy and velocity plots at t = 9,13, and 17 
seconds, respectively. 
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right. All of the free nodes experience a certain displacement as the 

wave passes by them, but the right-sided nodes remain stationary. 

Therefore, these circles on the right indicate the displacement of the 

free nodes. In a global sense, the paraxial region acts as a dash pot -

it brakes the motion of the elastic bar, but in doing so, the bar under-

goes some permanent displacement to the right. 

Having checked the code with several simple, smooth analytical 

solutions, we test its ability to model discontinuous waves, generated 

by a delta-function load in both time and space. Our aim with 

this calculation is to help validate our implementation, and to test the 

limits of the finite-element discretization. A by-product from this 

example is that the results indicate the effectiveness of the silent-

boundary methods. 

The example, called Lamb's problem in plane strain, is illustrated 

in Figure 12. It represents a particularly difficult case for finite

element analysis. Miklowitz(86) presents a derivation, based on the 

Cagniard-DeHoop method, of Lamb's analytical solutions and plots them 

along the x and z axes. We compare these results to those produced by 

a mesh which is coarse in relation to the wave front. This mesh is 

depicted in Figure 13. Symmetrical boundary conditions are imposed on 

the left face of the region under consideration. 

In the fo 11 owi ng di agrams, the 1 ength of 4 elements = 1 "unit", 

cd = 1 unit/second, Cs = .57735 units/second, p = density = 1 (Poisson's 

ratio = .25), DT = .25 seconds, y = .51, and S = .255. Two different 

loadings, labeled Case 1 and Case 2, are sketched in Figure 14. Case 2 

more closely resembles the delta-function loading in the analytical 
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z 

Schematic diagram of the oroblem Dosed by 
Lamb [85J in 1904. 

x 
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LAMB'S PR~BLEM 

P(x,t) 

~ 
~ 

\ 

silent boundary 

Figure 13. Two-dimensional mesh and boundary conditions employed 
for Lamb's problem. 
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load 

CASE 1 

load 

CASE 2 

t 
sees. 

t 
sees. 

Figure 14. Oiscretized approximations to the delta-function load. 
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solution. We used both the extended-paraxial and the standard-viscous 

boundaries in this problem. They each produced nearly the same results, 

but for the final calculations, we employed the viscous boundary. The 

comparisons between the analytical solutions,and finite-element solutions 

using the implicit algorithm, are presented in Figures 15 and 16. 

Figure 15 illustrates, for Cases 1 and 2, the vertical displace

ments at the surface, x = 1.25 and z = 0.0. The analytical result 

depicts a Rayleigh singularity, where a negative infinite displacement 

changes instantaneously into a positive infinite displacement. The 

finite element method, with its bilinear basis functions, cannot possibly 

duplicate such behavior, so it "smooths" the singularity. It does manage 

to capture the long-term displacement. The Case 2 loading introduces 

slight numerical noise into the system. 

When we compare the analytical and finite element solutions in the 

interior (x = 0.0, z = 2.75), we obtain better agreement between the 

methods. The solution is less singular there, as is illustrated in 

Figure 16. The width of the initial wave pulse is still narrower than 

one element, but its magnitude is finite, unlike the displacement along 

the surface. Here, the loading of Case 2 leads to a more accurate peak 

amplitude than that which is produced by the smooth loading. On the 

other hand, the sharp loading causes significant numerical noise. 

The explicit algorithm was also used to solve Lamb's problem. It 

leads to slightly improved accuracy in the interior, but it adds spurious 

noise at the surface. 

In summary, Lamb's highly-singular solution tests the limits of 

the spatialy and temporal discretizations which are employed. The 
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function of time. 
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function of time. 
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method does reproduce the smooth part of the solution, and it duplicates, 

to varying degrees, the sharp wave fronts, depending on the idealization 

of the loading pulse and the coarseness of the mesh. The smooth loading 

of Case 1 eliminates most of the numerical noise which arises from the 

delta-like, Case 2 loading. 
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CHAPTER 4 

In order to assess the relative merits of the extended-paraxial, 

the standard-viscous, and the unified- (optimized-) viscous boundaries, 

we present in this chapter summaries of our numerical investigations. 

The main thrust of the work was aimed along the following lines: 

1. to evaluate and compare the boundaries' effectiveness in 

handling high-frequency waves ("high-frequency" refers to 

wavelengths which consist of only a few element lengths); 

2. to determine if the boundaries' efficiency is affected by 

material properties, particularly as Poisson's ratio 

approaches 1/2; 

3. to evaluate the boundaries' ability to transmit certain 

types of nonlinear waves; 

4. to test the boundaries' effectiveness in transmitting 

Rayleigh waves. 

While conducting these numerical investigations, a voluminous 

amount of information was generated for examination and comparison. 

We cannot reproduce all of it here, so representative graphs are 

selected. These illustrate what we consider to be the major charac

teristics of the various methods. 
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r.B. Description of the Numerical Procedure 

All of the examples in this chapter were solved by using the silent 

boundaries described in Chapter 3. Both the elastic and the boundary 

regions were discretized with four-noded elements which employ bilinear, 

isoparametric shape functions. The elastic stiffness is decomposed into 

a shear (~) part, and a lambda (A) component, where ~ and A are Lame1s 

constants. This separation is useful because each set of terms can be 

integrated with different, numerical-quadrature rules. The elastic

shearing stiffness is integrated with the standard 2x2 Gaussian quadra-

ture, while the lambda terms are evaluated by a l-point quadrature at 

the element1s center. This selective integration procedure is valid 

because the ~ and A stiffness terms are each invariant with respect to 

coordinate transformations.· (See Hughes, Cohen and Haroun, (75) Sect; on 

3.3.) We selected this integration rule because it avoids the IIlockupll 

difficulties(72) which are experienced when Poisson1s ratio goes to 1/2 

(that is, when lambda goes to infinity.) 

The captions to the figures in this chapter specify whether the 

lIinterior ll region is solved implicitly, or explicitly. The algorit~m 

parameters, y and S, and the time step, DT, are also defined in the 

figure captions. The viscous-boundary areas are always analyzed as 

implicit regions, in order to utilize the implicit algorithm1s uncondi-

tional stability,· The explicit method, however, is employed in the 
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extended-paraxial domain, for the reasons mentioned in Chapter 3. The 

mass matrices are lumped, regardless of the chosen algorithm. l 

I.C. Selection of Wave Problems 

The meshes used in this chapter are significantly coarser than those 

which one would normally use for practical engineering problems. In 

fact, most of the loadings of the following systems are applied over one 

or two elements and for only one time step. This input, similar to a 

delta function, generates much high-frequency motion in the solutions. 

We selected this approach because it subjects the silent boundaries to 

relatively severe test conditions. Since the boundaries are designed to 

absorb smooth, wave-like pulses, this transient, high-frequency excita

tion should challenge the limits of their capabilities. 

The purpose of these tests, then, is to evaluate and compare the 

silent boundaries using the above-described input. Because of the 

deliberate selection of coarse meshes, the resulting motion may not 

duplicate the correct solution in all of its details, but that is not 

really the concern here. The accuracy of the finite-element method, 

and its dependence upon the fineness of the mesh, is well understood. 

For our purposes, the IIcorrectli response is that which is produced by a 

mesh extensive enough to prevent the boundary reflections from reaching 

the lIinterior" zone. 

lThis lumping of the mass matrix was done in order to facilitate the 
calculations of energy. Krieg and Key [79] and Mullen and Belytchsko 
[81J discuss some of the beneficial and deleterious effects of using 
lumped mass matrices in conjunction with either implicit or explicit 
algorithms. 
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II. DIRECT INCIDENCE OF DILATATIONAL WAVES 

Figure 1 illustrates the case of direct incidence, where the wave 

strikes the boundary at an incidence angle of zero degrees. The basic 

problem is that of an axially symmetric, pulse loading of an infinite 

material in plane strain. It is, for example, a two-dimensional, 

idealized version of a bomb exploding underground. The symmetry of the 

loading allows one to reduce the problem to that of a conveniently 

solved, quarter-plane. Symmetrical boundary conditions were installed 

at the sides, and a dilatational pressure was applied for one time step 

and then removed. cd = 1 unit/second, Cs = .5345 units/second, one 

Ifunit lf = the distance that one element extends in the radial direction, 

DT = the time step = .9 seconds, and p = density = 1. The silent bound

aries are denoted by a thick black strip on the outer radial edge of 

the mesh. This symbol, and its meaning, are expressed in Figure 9 of 

Chapter 3. 

The circles on the graphs symbolize the total energy at a given 

node, and the arrows within the circles express the magnitude, and the 

direction, of the particle velocities. 

Figure 2 delineates the progress of the dilatational pulse through 

an elastic region and an extended-paraxial boundary. The pulse first 

strikes the boundary at the 12th time step; it is reflected and then it 

returns to its origin at the 23rd step. As js seen in Figure 2, these 

reflections appear to be negligible. 

The same problem is depicted in Figure 3 but for a standard-viscous 

boundary. This boundary absorbs almost all of the radiated energy, 

except for a small reflection that appears on the inner boundary, at 
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EXTENDED-PARAXIAL BOUNDARY, POISSON'S RATIO=.33 
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Figure 2. Illustration of energy and velocity at various 
times in the mesh. 
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STANDARD-VISCOUS BOUNDARY. POISSON'S RATIO=.33 
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Illustration of energy and velocity at various 
times in the mesh. 
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EXTENDED-PARAXIAL BOUNDARY, POISSON'S RATIO=.ij8 
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Figure 4. 
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Illustration of energy and velocity at various 
times in the mesh. 
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STANDARD-VISCOUS BOUNDARY, POISSON'S RATIO=.ij8 
STEP III •• 10 

STEP NO. • 16 STEP III. • 22 

STEP NO. • 28 STEP III. • 311 

G 
G 

Figure 5. Illustration of energy and velocity at various 
times in the mesh. 
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the 28th time step. We also tested the unified-viscous boundary and 

obtained results identical to those in Figure 3. 

Figures 4 and 5 depict the same wave ;n a material having Cs = .2 

units/second. The pictures of waves striking a unified-viscous boundary 

again duplicated those of the standard-viscous boundary. Our conclusion 

for this particular test is the differences in material properties do 

not seem to alter the efficiency of the respective boundaries. All 

three perform well and are nearly equal in effectiveness. 

Each of the above examples examines dilatational waves striking at 

a normal angle of incidence. In the next section, we will present 

other examples which indicate the absorption of shear waves. 

III. PULSE LOADINGS - GENERAL DISCUSSION 

With the following examples of pulse loadings, we compare the 

results produced by a small mesh having absorbing boundaries to those 

generated by an extended mesh. The respective, two-dimensional meshes 

are drawn in Figure 6. Time histories of the response are recorded at 

three points, labeled A, B, or C, in each of the meshes in Figure 6. 

The two excitations which are considered are a vertical pulse that 

mainly'generates dilatational waves, and a traction pulse that primarily 

generates shear waves. These are applied to the top surface near point 

A (see Figure 7). These loadings were selected because of their sim

plicity and their relevance to the vertical and horizontal loadings that 

occur ;n soil-structure interaction problems. In the vertical-pulse 

loading. the x degree-of-freedom is fixed along the left face of the 

mesh. These are the "symmetrical" boundary conditions which allow us 

to analyze a half space with a quarter mesh. Nodal forces at two nodes 
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are applied vertically over the first time step, and then they are 

abrogated. 

Another group of numerical experiments falls under the heading of 

horizontal-pulse loading. Figure 7 illustrates their loading and boun

dary conditions. With this applied-traction problem, we are not 

analyzing a half space because it does not meet the requirements of 

symmetry. The conditions of Figure 7, however, ensure that shearing 

waves impinge upon the horizontal, silent boundary. 

IV. HORIZONTAL-PULSE LOADING 

IV.A. Comparisons Among the Boundary Methods 

The first test problem shown is the horizontal-pulse loading in 

Figure 7. Cs = .5345 units/second, cd = unit/second, p = density = 

(Poisson's ratio = 1/3), DT = .85 seconds, and 1 unit = the width of 

one of the square elements. With these values, the dilatational waves 

reach the boundary of the smaller mesh in 9 seconds; the shear waves 

arrive at the same point in 16 seconds. y = .5, S = .25, and no material 

damping is present in the system. The interior region was solved using 

the explicit algorithm. 

The horizontal displacements, the main components of the motion, 

are plotted in Figures 8 through 11. Figures 8 and 9 report those dis

placements recorded near the side boundary (point B in Figure 6); the 

arrival of the main pulse is evident in all of the figures. Wave reflec

tions caused by a free boundary are clearly seen in Figure 8, while the 

paraxial and viscous boundaries largely succeed in eliminating this 

reflection. The extended-paraxial boundary is slightly more accurate 
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than are the other transmitting boundaries. On the other hand, both the 

standard-, and the unified-viscous boundaries produce nearly the same 

response (see Figure 9), 

Figures 10 and 11 demonstrate how well the silent boundaries simu

late the infinite domain at point A in Figure 6. Figure 10 shows the 

results for the extended-paraxial boundary, and Figure 11 illustrates 

the behavior of the viscous boundaries. These figures corroborate the 

slight edge in the paraxial boundary's performance as seen earlier. 

Oscillations of the horizontal displacement in Figures 10 and 11 

arise in all of the calculations, including the extended mesh. Each of 

the transmitting boundaries preserves the period of these high frequency 

motions, which arise from the coarseness of the mesh and the character 

of the loading. 

In the calculations of the displacements, as illustrated in Figures 

9 and 11, the unified- (optimized-) viscous boundary almost duplicates 

those results produGed by the standard-viscous boundary. The largest 

quantitative differences between the two methods appear in Figure 12. 

The vertical displacements that are recorded next to the side boundary 

(point B) indicate that the standard-viscous approach may be, to a small 

extent, the better alternative. The result for the paraxial boundary, 

corresponding to Figure 12, indicates a slightly better agreement with 

the extended mesh than does the viscous boundaries. 

In Figure 12, it may also be noted that the vertical wave arrives 

later than does the horizontal pulse shown in Figure 8. This later 

arrival seems to be composed mainly of a shear wave, which travels more 

slowly than does the horizontal, dilatational pulse. 
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IV.B. High-Freguency Waves 

One weakness of the silent boundaries is highlighted in Figures 13 

and 14. The numerical noise following the arrival of the main stress 

pulses (between 9 and 14 seconds) is the predominant feature seen in 

these figures. Both the extended and the small meshes, which provide 

reasonable solutions to the high-frequency displacements, are too coarse 

to accurately determine the stresses; these latter quantities are 

evaluated from the derivatives of the displacements. It is, therefore, 

understandable that none of the boundary schemes produce the same high

frequency oscillations of the stress, 022' that the extended mesh does. 

The paraxial boundary actually magnifies this numerical noise, These 

errors propagate to the interior, where they arrive after t = 30 

seconds. (See Fi gure 14.) 

They are also evident in the energy plots of Figure 15. The total 

energy is the sum of the kinetic and strain energies, which are contained 

in the "interior" region of Figure 7. For each time step, we computed 

this value by integrating the energy terms over the region (using one

point Gaussian Quadrature).2 The effects of this reflected, high

frequency energy, for the case of the extended-paraxial boundary, 

become apparent after t = 30 seconds. The paraxial boundary is respon

sible for a slightly larger error than is the viscous mechanism. 

2We should clarify why the energy level, even with the use of free boun
dary, declines in Figure 15. Some of the energy resides in a narrow 
band of elements, which is present outside of the "interior" zone. 
(This is the "exterior" zone shown in Figure 7.) Also, if numerical 
damping is present, then the high-frequency energy is reduced. In 
Figure 15, where no damping is used, the total energy in the free
boundary system is conserved after t = 20 seconds. 
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One technique for filtering high-frequency noise is to apply some 

numerical damping, which selectively attenuates the high-frequency motion 

of the mesh. We implemented this idea in order to eliminate the noise 

introduced by the silent boundaries. In the next group of illustration, 

Figures 16 to 18, y is set equal to .55, with S = .276. These parame

ters introduce some algorithm damping, which mainly affects the higher 

modes. Except for this change, Figure 16 depicts the same energy graphs 

as are in Figure 15. The damping's beneficial effect is clearly evident. 

It not only reduces the total energy for long times, it also annihilates 

the high-frequency errors in the total energy, including those associated 

with reflections from the silent boundaries. 

On a local level, the effect of numerical damping is demonstrated 

in Figure 17. The spurious, high-frequency oscillations are signifi

cantly reduced compared to those of Figure 13. The numerical damping is 

especially effective in reducing the high-frequency reflections from 

the paraxial boundary. 

For the lower modes, that is, the larger, wavelength components of 

the response, the algorithmic damping we applied has little effect, and 

the conclusions for the undamped case are also valid here. For example, 

in Figure 18, we plot the horizontal displacements near the side boun

dary (point B). As a function of time, the displacement curve appears 

to be a little smoother than does that for the undamped case in Figures 

8 and 9, but the amplitudes are almost identical. The extended-paraxial 

boundary, again, enjoys a slight advantage over the viscous boundary. 
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IV.C. Shear Waves 

Shearing motion dominates the solution at point C, near the bottom 

of the mesh. Figures 19 and 20, respectively, present the undamped 

shearing stresses and horizontal displacements at the lower measuring 

point. Both figures indicate that the viscous boundary causes a greater 

reduction in the shearing amplitudes than is shown by the extended mesh. 

This could be due to some destructive interference by the reflected 

waves. These illustrations, however, do provide some evidence of the 

boundaries'ability to transmit shear waves, as well as dilatational 

waves. 

V. VERTICAL-PULSE LOADING 

The computations of the response to the vertical loading were con

ducted without using numerical or material damping. The interior equa

tions were solved implicitly, and DT = .9 second. The material constants 

are the same as those above, and the load is applied for one time step. 

The loading and boundary conditions, as well as the locations of the 

points A, B, and C, are depicted in Figures 6 and 7. 

In Figure 21, we illustrate the total energy (kinetic and strain) 

for the interior region. The reflections from the free boundary are 

evident, while both of the silent-boundary schemes remove the outgoing 

waves. The absorbing mechanisms perform better for the high-frequency 

stresses here than they do in the horizontal-loading case. This is 

illustrated in Figure 22 for all near the side boundary (point B). 

Vertical displacements constitute the largest part of the response, 

and they are recorded at point B in Figure 23. Although both of the 

dissipative mechanisms are effective, the paraxial boundary is slightly 
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VERTICAL-PULSE L~AO, IMPLICIT, GAMMA=.50, (PT. C) 
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more accurate than its counterpart. The same conclusion holds true for 

vertical displacements at the bottom of the mesh, point C, as is shown 

in Figure 24. The long-term displacement~ which is observed in these 

figures, is similar to that which is found in Lamb's analytical solution. 

Overall, for the undamped, vertical-loading problem, the absorbing 

boundaries remove the major part of the outgoing energy. The viscous 

and extended-paraxial boundaries perform almost equally well for the 

stresses, but the paraxial boundary has superior accuracy for the verti-

cal displacements. 

VI. VERTICAL HALF-SINE PULSE 

Figures 25, 26, and 27 illustrate the progress of a half-sine pulse, 

applied overS elements, in the quarter mesh. The load is applied for 

one step, and is then removed. Cs = .5345 units/second, cd = 1 unit/

second, DT = .9 second, y = .55, and S = .276. The quarter mesh is 

drawn in Figure 6, and the boundary conditions are shown in Figure 7. 

This problem is identical 'to the previous, vertical-pulse examples, 

except for the half-sine loading. The purpose of this calculation is 

to show, qualitatively, the benefits of using the silent boundaries. 

These are used under conditions of relative mesh size which are more 

representative of practical applications. However, the pulse is 

"rapidly" applied, generating significant high frequency motion. 

In Figures 25 and 26, the velocity amplitudes, va' are plotted as 

ordinates on the planar, two-dimensional mesh, 

(1) 
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Figure 25. Absolute amplitudes of the velocities plotted as 
ordinates on a planar, two-dimensional mesh. 
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Figure 26. ~bsolute amplitudes of the velocities plotted as 
ordinates on a planar, two-dimensional mesh. 
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where vla and v2a are the two velocity components of node a. For the 

free boundary, there is added an outer ring of undeformed elements, in 

order to provide a clearer picture of the velocity amplitudes. 

The three-dimensional plots, in Figures 25 and 26, illuminate the 

qualitative behavior of the free and the extended-paraxial boundaries. 

The waves, generated by the loading, effectively propagate out of the 

system with the silent boundary, but energy is trapped within the mesh 

when it has only a free boundary. Figure 27 shows how much of the total 

energy remains in the interior region. 

VII. DISCUSSION OF NONLINEAR WAVES 

The analyses of Chapter 2, and the above results, are strictly valid 

only for waves in linear, elastic media. The interior of the mesh may 

be governed by nonlinear equations, but the region adjacent to the silent 

boundary must be linear. This assumption, that the governing equations 

are linear on the outer fringes of the computational mesh, is appropriate 

for many different problems. For example, in the soil-structure inter

action analyses that were described in Chapter 1, the soil·s strongly 

nonlinear behavior is mainly confined to an area near the structure. 

The wave motion which emanates from the interaction zone, and propagates 

to the outer boundaries, often can be represented adequately by linear 

models of the soil. 

In some problems, however, the nonlinearity of the wave motion at 

locations IIfar ll from the wave source, cannot be ignored. In these 

cases, a linear wave may be followed by slower-traveling, nonlinear 

waves. The silent boundaries, which are designed for only one set of 

wave speeds, may not effectively transmit the slower-moving waves. 
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The silent boundaries I ability to absorb waves depends on the 

parameters, aCd and bcs ' in equation (45) of Chapter 2. The standard

viscous- and extended-paraxial boundaries set both a and b equal to one. 

(a and b were not exp1iGitly defined for the paraxial equations, but the 

paraxial-viscous boundary comparison in Section VII, Chapter 2, shows 

that these parameters are equal to one.) The wave-reflection theory in 

Chapter 2, and the numerical examples in this chapter, both indicate 

that a = b = 1 is the foremost choice for linearly elastic waves. 

For waves traveling at a slower speed, a or b should be somewhat 

less than 1. These parameters should be "tuned" to the wave speed. 

Our experience with the unified- ("optimized-") viscous boundary 

indicates, however, that the viscous boundaries are relatively insensi

tive to the parameters, a and b. For the unified boundary, a ranges 

from .959 to 1. all, and b 1 i es between .740 and .773. The numeri ca 1 

results, using either the standard- or the unified-viscous boundary, 

are nearly identical. (Se'e Section IV.) This finding implies that the 

standard-viscous boundary might absorb waves traveling at different 

speeds. 

In order to test this hypothesis more thoroughly, we repeated some 

of the above, horizontal-loading examples, with la l varying from .6 to 

1.3. They were then compared to standard-viscous boundary results. 

We found that the use of the modified-viscous boundaries, instead of 

the standard-viscous boundary, produces virtually no differences in the 

stresses and vertical displacements. In the case of the horizontal dis

placements, the differences are approximately 5-10% of the errors 
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created by the use of a free boundary. Thus, letting 'a' range from .6 

to 1.3 has a generally minimal effect on the response. 

The overall conclusion is that the linear boundaries may be useful 

for absorbing the slower-moving, nonlinear waves. 3 The parameters, a 

and b, would be chosen as shown in equation (2), 

< a < 1 

, (2) 

cn2 < b < 1 

where cnl and cn2 are the speeds of waves which may be generated, for 

example, by plastic yielding. 

VIII. RAYLEIGH-WAVE EXAMPLE 

The previous calculations in this chapter shed light upon the boun

dary schemes' ability to transmit high-frequency, body-wave pulses. In 

this section, a Rayleigh wave is used to excite the system. The purpose 

of this test is twofold. We wish, first, to subject the boundary to a 

steady-state motion. A certain amount of reflection was observed for 

the pulse loadings, and this raises the question of whether the errors 

3The efficiency of the extended-paraxial boundary is dependent on ahe 
and bhe, where he is the width of the paraxial element. It was pointed 
out in Chapter 1 that maintaining a uniform mesh size reduces reflec
tions. Conversely, if large elements are placed adjacent to small 
elements, significant wave reflections will occur. After extensive 
testing, Day [12] found that when element sizes are kept within 90-
110% of each other, minimal reflections will occur. Since the paraxial 
elements transmit waves in the same manner as elastic elements do, 
presumably this guideline would also hold for them. 
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Figure 28. Finite-element mesh with absorbing boundary used 
for the Rayleigh-wave loadinq. 
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accumulate as the loading continues. Secondly, the ability of the silent 

boundaries to transmit Rayleigh waves needs to be evaluated. The 

analyses of Section VII, Chapter 2, indicate that the extended-paraxial, 

and a few other boundaries mentioned there, may be effective in this 

case. The efficiency of the standard-viscous boundary is uncertain. 

It often turns out that, in soil-structure interaction analysis, 

some of the energy propagating from the interaction zone is in transi-

tion from body waves to Rayleigh waves. Several wave motions, including 

shear and dilatational components, are superimposed, but they gradually 

assume a Rayleigh-wave form along the surface. In practical instances, 

a computational mesh will not extend far enough for Rayleigh waves to 

form completely. Therefore, the measuring of the reflections of this 

transitory motion is of interest. 4 

Figures 28 and 29 illustrate the test problem, in which plane-strain 

elasticity is used. The mesh is initially at rest, at time t equal 

zero. The horizontal and vertical dis~lacements along the left side of 

the mesh are prescribed, for all subsequent time, according to a known, 

Rayleigh-wave solution. The mesh is two wavelengths deep, and the bottom 

nodes are fixed. Due to reflections from the bottom boundary, it has 

been recommended(65) that the mesh depth extend to three or four wave

lengths. In our case, these reflections will propagate to the outer 

. areas of the extended mesh, so that the region adjacent to the input 

will not be significantly affected. For the small mesh in Figure 28, 

4Similar comments apply to Love waves, where layered media are con
sidered. 
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energy from the bottom can propagate to the surface, however, if it 

reflects from the mesh's right side. 

The excitation on the left generates transient waves at first, and 

then the motion settles down and approaches steady state. There exists 

a period when waves, having not taken on their final, Rayleigh-wave 

form, will impinge on the various boundaries. 

The displacements' on the left are prescribed as: 

u = D[exp (.8475 K~) - .5773 exp (.3933 K~)] sin (KRCRt) 

w = 0[-.8475 exp (.8475 K~) + 1.4678 exp (.3933 K~)] cos (KRCRt) 

Equations (3) represent the Rayleigh-wave solution for v = .25. (84) 

(3) 

w = .2781 radians/second, LR = the Rayleigh wavelength = 12 units, KR = 

.5236, cR = the Rayleigh-wave speed = .5312 units/second, Cs = .5774 

units/second, cd = 1 unit/second, and 1 unit = the length of one 

element. y = .51, and S = .255, so there is a negligible amount of 

numerical damping present in the system .. The equations were solved 

explicitly, with OT = .9 second. Energy first strikes the right 

boundary at t = 6 seconds; Rayleigh-wave components follow shortly 

after. 

We represent, in Figures 30 and 31, several comparisons among the 

various boundaries. Initial transient motion is evident in the first 10 

seconds, and then the response becomes more nearly periodic. It has not 

quite settled to steady-state. 

The silent boundaries generally prevent the reflection of energy. 

The vertical displacements in these figures exhibit a fairly close 

agreement between the extended-mesh results and those from using a silent 



166 

RAYLEIGH WAVE, EXPLICIT, GAMMA=.51, (PT. A) 
Q 
Q · -

• 
CL 
U1 
"- Q 
o~ 

0 
• I 

0:: 
W 
>0 

0 
• -I 
0.0 

0 
0 · -

CL 
U1 
"- Q 
o~ 

0 
• I 

0:: 
W 
>0 

0 
• -J 

0.0 

0 
0 · --

CL 
U1 
"- 0 
o~ 

0 · I 
0:: 
W 
>0 

0 -I 
0.0 

Figure 30. 

10.0 

10.0 

10.0 

I 
0' 

RESUL TS USING FREE BClUNDARY -
RESULTS USING EXTENDED MESH 

20.0 30.0 L!O.O 50.0 
TIMECSECS) 

RESULTS USING EXT.-PARAXIAL BO.-

RESULTS USING EXTENDED MESH 
~~ 

20.0 30.0 L!O.O 50.0 
TIMECSECS) 

RESULTS USING STD.-VISCOUS BO.-

RESULTS USING EXTENDED MESH 
/P-

// 
I 

20.0 30.0 L!O.O 50.0 
TIMECSECS) 

Vertical displacements at point A as a function of 
time. (Rayleigh-wave loading, slight damping.) 



167 

RAYLEIGH WAVE, EXPLICIT, GAMMA=.51, (PT. B) 
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boundary. Other measurements of stresses and displacements, which were 

taken at points A, B, and C, but are not displayed here, sugg~st that 

the same, or better, agreement exists then that found in Figures 30 and 

31. The distortions caused by a free boundary are most visible at point 

A, near the surface. 

Figures 30 and 31 illustrate most of the poorest agreement between 

the extended-paraxial boundary and the extended mesh. The largest dis

crepancies caused by the standard-viscous boundary are shown in Figure 

32, where the phase of the response appears to have been shifted. 

Since virtually no numerical damping is utilized in this problem, 

we might expect numerical noise to be present in the stresses. (This 

was observed in Section 4.) In this case, the only component exhibiting 

significant noise is 022' which is pictured in Figure 33. The results 

of the extended-paraxial boundary contain spurious noise superimposed on 

the general wave form, while the viscous boundary alters the period of 

the motions. Again, one can eliminate the noise through slight 

numerical damping. 

Figure 34 charts the total energy in the system. It is apparent 

that, when using the silent boundaries, the energy within the system 

remains at a fairly constant level. The boundary mechanisms eradicate 

energy at nearly the same rate as energy is generated on the mesh's 

left side. The small errors associated with the paraxial boundary are 

attributed to the numerical noise mentioned above. 

The Rayleigh mode shapes can also be used to estimate the accuracy 

of the transmitting boundaries. In these graphs, presented in Figures 

35 and 36, the solid-line curves represent the Rayleigh mode shape that 
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RAYLEIGH WAVE, EXPLICIT, GAMMA=.51, (PT. B) 
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excites the system. The dashed-line curves are the resulting displace

ments at x = 3 when t = 27 seconds. (The displacements at x = 3, t = 36 

, seconds yielded similar results.) These profiles were calculated with 

the various conditions at the right side of the mesh: a) extended mesh, 

b) free boundary, c) extended-paraxial boundary, and d) standard-viscous 

boundary. 

In the ideal case, the profile of the displacements at x = 3 will 

duplicate the input motion at x = O. However, due to the presence of 

transient waves and discretization errors, the displacement profiles 

differ somewhat. As can be perceived in Figures 35 and 36, the extended 

mesh and the silent boundaries each generate displacement configurations 

that are similar to the input. 

Overall, the boundary methods do not induce large distortions in 

the response, such as those that are observed in the free boundary case. 

The silent-boundary errors are of the same magnitude as are those intro

duced by the discretization and the transient motion. The two methods, 

extended-paraxial and standard-viscous, are again comparable in accuracy. 

If we consider all of the data accumulated in this problem, including 

deformed mesh plots not illustrated here, the paraxial results are 

slightly closer to those of the extended mesh .. 

As we mentioned in Chapter 1, several authors have pointed out that 

the viscous boundary may be ineffective in the case of Rayleigh waves. 

We determined that, at least in this one example, the viscous boundary 

appears to function in about the same manner as it does for body waves. 
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CHAPTER 5 

In this thesis, the general topic of silent boundaries, as they 

are applied to the soil-structure interaction problem, was explored. 

First, we surveyed a wide range of ideas that had been suggested in the 

past. Most of these proposals were discussed only briefly, mainly 

because they are not applicable to the class of problems we wish to 

solve, or because they appear to be relatively cumbersome, or 

costly, to implement. Many of these transmitting boundary schemes, 

though not considered in detail, may be useful in other applications. 

We restricted this study to the more easily implemented, silent bound

aries which can be directly employed in transient, time-domain analysis, 

and would be serviceable for many problems involving nonlinear materials. 

Two of the boundary methods, paraxial and viscous, which tender these 

qualities, were analyzed in detail in Chapters 2 and 3. 

The major innovations in this thesis center upon the adaptation, 

development, and testing of the paraxial-boundary approach as it applies 

to finite element calculations. First, the paraxial equations were 

derived for the purpose of transmitting elane, harmonic waves. These 

considerations, in turn, led to questions of stability and to a modifi

cation of the equations' original form. 

The revised paraxial equations were then compared to two viscous

boundary proposals. It was shown that the standard-viscous boundary 

apparently embodies the first-order terms of the paraxial equat~ons. 

A wave-reflection analysis illustrates the distinct superiority of the 

paraxial approach, and indicates its potential as an energy absorber. 

This analysis also implies that the use of the "opti.mized" 
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parameters as suggested in [57J does not improve the efficiency of the 

boundary. From this theoretical standpoint, the modified-paraxial bound

ary reflects waves of the 'smallest amplitudes, but the standard- and 

unified-viscous boundaries are also fairly effective. 

In Chapter 3, it was pointed out that a straightforward, finite

element implementation of the paraxial equations does ~l lead to a 

practicable transmitting boundary. Certain alterations in the numerical 

procedures are needed to upgrade the boundary's accuracy. 

The test examples presented in Chapter 4 furnish most of the data 

for an evaluation and comparison of the various boundaries. In the 

problems we studied, all of the silent boundaries produced from adequate 

to exceptional results. 

There are a number of features which should be emphasized. First, 

the viscous boundaries cause a permanent, "residual" displacement at 

almost all points in the mesh. This motion is, perhaps, 10% of that 

which results from the use of a free boundary. The extended-paraxial 

boundary largely eliminates this residual. On the other hand, the 

viscous boundaries do effectively absorb the correct amount of energy 

from the system. In most cases, the energy curves, which result from 

extended-mesh calculations, coincide exactly with those resulting from 

a viscous boundary. The extended-paraxial boundary is also competent 

in removing energy from the system, with the exception of eradicating 

noise from the solution. 

A second feature of all the silent boundaries is their relative 

inability to remove high-frequency, node-to-node oscillations. The 

extended-paraxial boundary is worse in this capacity because it aggravates 
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this noise and sends it to the interior. One solution to this problem 

is to apply slight numerical damping to the algorithm. In the problems 

studied, it was found that the setting of y = .55 eliminates most of the 

numerical oscillations, without distorting the solution of lower fre

quencies, and allows the silent boundaries to operate more effectively. 

Our experience indicates that the letting of y = .51 does not induce 

enough damping into the system. (y = .50 is the undamped case.) 

A third conclusion is that the standard- and unified-viscous bound

aries perform almost identically in all ways. Therefore, it would seem 

to be unnecessary to modify the parameters, a and b, in order to improve 

the boundaryls behavior (the two boundaries differ only in the selected 

values of a and b). In fact, in one example we tested, the doubling of 

the parameter la l causes little change in the absorption character of 

the viscous boundary. This insensitivity of the viscous boundary 

suggests that it may be suitable for special cases of nonlinear waves. 

This was discussed in Section VII of Chapter 4. 

Fourthly, the performance of the silent boundaries varies with the 

parameters being measured. By and large, the extended-paraxial boundary 

proffers a slight advantage in accuracy over the viscous schemes, 

although it does not achieve the superiority indicated by the wave

reflection theory of Chapter 2. The boundary adopted herein appears to 

be the best finite-element implementation of the paraxial idea, and we 

give some reasons for this, but it is possible that a different imple

mentation may yield more accuracy. 

Finally, the implementation of two silent boundaries, as con

sidered, is inexpensive. Both the viscous and paraxial damping matrices 
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can be easily calculated by hand, in terms of the element dimensions, 

hX and hZ. Hence~ the generation of these expressions entails virtually 

no costs on the computer. A slight expense is incurred in the formation 

and assembly of the paraxial stiffness, and in the solution of the 

paraxial degrees of freedom. The cost of this latter computation, 

always being done explicitly, is not significant. Overall, the extended

paraxial scheme is slightly more expensive to use than is the viscous 

boundary. 

In summary, the extended-paraxial boundary, as developed herein, 

possesses the following characteristics: 

It is founded upon a mathematical theory which indicates 

the method's capability to transmit wave energy. 

It is easily implemented and exacts a minimal computational 

expense. 

It sometimes projects numerical noise into the system, but 

this tendency is controlled by a slight amount of numerical 

damping. 

It enjoys some advantage in accuracy over other proposed 

silent boundaries (the standard-viscous and unified

viscous boundaries). 

It offers a broad scope in that it can be applied to 

Rayleigh waves and, presumably, to anisotropic materials. 
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It can be applied to many problems in which nonlinear, 

material effects are important. 

It does not adversely affect the numerical stability 

properties of one family of algorithms that we tested. 

In the course of our investigation, we also ascertained that the 

viscous boundary performed better than we had expected, and would be 

a suitable transmitting boundary in many applications. It is widely 

believed that this boundary acquits itself poorly when confronted by 

Rayleigh waves, but in the one example that we studied, the boundary 

seemed to absorb the waves to an acceptable degree, although it was 

somewhat less accurate than the extended-paraxial approach. 

We believe that, when taking into account all of the factors men

tioned above, such as cost, accuracy, ease of implementation, etc., the 

proposed extended-paraxial boundary technique is at least competitive 

with other transmitting boundary methods now available. More practical 

tests are needed to confirm this conclusion, and the next logical step 

would be to apply this boundary to the solution of soil-structure 

interaction problems. 
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APPENDIX A 

DERIVATION OF A ONE-DIMENSIONAL, PARAXIAL ELEMENT 

The basic finite element procedure, for a one-dimensional wave 

problem with a paraxial boundary, is sketched here. Two- and three-

dimensional analyses ensue in an analogous fashion, except that all of 

the integrals are evaluated over an area, or a volume, instead of a line. 

If we commence with the strong form of the initial-, and boundary

value problem, 

where 

2 
Utt - c uxx = f(x,t) 

u = the one-dimensional displacement, 

n. = the domain of the interior, 
1 

x E n. 
1 

x E ~by 

nby = the domain of the boundary, 

n = n. + nb 
1 y 

u = q(t) on anu = the boundary where displacements 

are specified, 

ux = p(t) on ant = the boundary where tractions are 

speci fi ed, 

(Al) 

(A2) 

(A3) 



181 

u(x,O) = h(x) for all x E Q 
(A4) 

for a 11 x E Q 

In order to derive the weak form of the problem, the following 

spaces are required: 

H6(Q) = {vlv: Q -+ lR 

H1(Q) = {ulu: Q -+ JR 

(A5) 

where lR represents the set of continuous and uniformly bounded func

tions. The functions belonging in the space Hl possess first derivatives 

which are square integrable. In other words, if u E Hl, then 

(A6) 

If we multiply equations (Al) and (A2) by v, where 1 let u E Hl v E HO' g' 

and integrate over Q, 

J uttvdx -
2 

J uxxvdx + f uttvdx + c J utxvdx J fvdx . (A7) c = 
Q. , Q. , Qby Qby Q. 

1 

After the second term of equation (A6) is integrated by parts, the weak 

form can be distinguished. Given that q, p, h, and g are all suffi

ciently regular, one finds u E H~ such that for all v E H6' 

(A8) 
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The matrix version of equation (A8) is formed by approximating u and v 

with uh and vh, respectively, where 

uh NN h = L Nbub b=l 
(A9) 

vh NN h = I Nava 
a=l 

(AlO) 

a,b = the node numbers; Na,Nb = the shape functions associated with node 
h h a or node b; ub ,va = the nodal values of uh and vh; and NN = the 

number of nodes. Next, one sUbstitutes equations (A9) and (A10) into 

equation (A8): 

NEN [NEN J h J h 2 J h I I N. Nbdx Ub tt + c N Nb .dx,ub t + c Na xNb xdx Ub a= 1 b= 1 a , a ,X, " 
Q Qby Qi 

= ffNdX+[C 2pNJ tJv
h 

(All) a a oQ a 
Q. 

1 

where NEN = the number of element nodes. Equation (All) is rewritten: 

(A12) 

The sum of the element contributions is described as: 

h h h 
~ ~tt + ~ ~t + K u = F 

(Al3) 
NE NE NE 

M = I m C = I c K = I k 



183 

in which NE = the total number of elements. M and K are evaluated in 
~ -

the standard fashion; the stiffness term is integrated analytically for 

this one-dimensional case. The matrices M and C can be determined for - -
a paraxial element of length h. After transforming the integrals [in 

equation (All)] into s-space, which is defined in Figure 2 of Chapter 3, 

we arrive at: 

m = !!f - 2 0 ~ ] (A14) 

[ - (l-i; ) (Ht ) ] c = 
c R, 

- 2" -(l+sR,) (1+sR,) 
(A15) 

where sR, is the integration point for the second term in equation (All). 
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APPENDIX B 

SUMMARY OF THE IMPLICIT-EXPLICIT ALGORITHM 

Below is an outline of the Implicit-Explicit transient algorithm, 

as developed by Hughes and Liu. (77) 

M a + CI + CE v + KI d E F v + ~ ~n+1 = _ -n+l - -n+1 - _n+l -n+l -n+1 (81) 

2 
~n+l = d + ~tv + ~~ (1-2S)a -n -n -n 

(82) 

v = v + t(l-Y)~n -n+1 -n 
(83) 

d = d + ~t2Ban+1 -n+1 -n+1 (84) 

~n+l = v + lltY~n+1 -n+l (85) 

~O = 0 (86) . 

~O = V (87) 

~O = -1 ) 
~ (~O - ~ ~O - ~ ~O (88) 

M = MI + ME (89) 

C = CI + CE (B10) 

K = KI + KE (811 ) 

F = FI + FE (812) 
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Their notation is as follows: "~t is the time step; d , v , and an are 
-n -n -

the approximations to d(tn), d(t ), and d(t ), respectively; Fn = F(t ); 
- -n -n - ~n 

y and S are free parameters which govern the accuracy and stability of 

the algorithm; and ~I, ~I, ~I, and ~I (respectively, ~E, ~E, ~E and ~E) 

are the assembled arrays for the implicit (respectively, explicit) 

groups. ME is assumed to be diagonal and M is assumed positive definite." 
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