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ABSTRACT

Strong shaking of structures during large earthquakes may result in

some cases in partial separation of the base of the structure from the

soil. This phenomenon of uplifting, which can affect the dynamic

behavior of the structure significantly, even if the amount of uplift

is small, is examined in this thesis. First the case of a rocking rigid

block is investigated and then more complicated, flexible superstruc

tures are introduced. Two foundation models which permit uplift are

considered: the Winkler foundation and the much simpler "two-spring"

foundation. Several energy dissipating mechanisms are also introduced

into these models. It is shown that an equivalence between these two

models for the foundation can be established, so that one can always

work with the much simpler two-spring foundation. In this way complete

analytical solutions can be derived in most cases. Moreover, simple

approximate methods for the calculation of the apparent fundamental

period of the rocking system are developed and simplified methods of

analysis are proposed.

In general, uplift leads to a softer vibrating system which behaves

nonlinearly, although the response is composed of a sequence of linear

responses. As a result, the apparent fundamental resonant frequency of

the uplifting system is always less than the fundamental resonant fre

quency of both the soil-structure interacting system, in which lift-off

is not allowed, and the superstructure itself. The second and higher

resonant frequencies of the superstructure, however, are not affected

significantly by lift-off. For damped foundations, the ratio of
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critical damping associated with the apparent fundamental mode

decreases, in general, with the amount of lift-off. These effects of

uplift on the dynamic properties of the rocking system can alter the

response of the structure significantly during an earthquake. Never

theless, it cannot be said a priori whether they are favorable to the

behavior or not; this depends on the parameters of the system and the

time history of the excitation.
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CHAPTER I

INTRODUCTION

The phenomenon of partial separation (lift-off) of the base of a

structure from its foundation during strong ground shaking has been ob-

served in many earthquakes. For example, during the Arvin-Tehachapi,

California earthquake of July, 1952, a number of tall, slender, petroleum

cracking towers stretched their anchor bolts and rocked back and forth on

their foundations.[l] After the Alaska earthquake of March, 1964, ice was

found under some oil tanks, evidence that lift-off occurred during the

earthquake. [2] During the Asam, India earthquake of June, 1897, indica

tions of rocking of some monuments and tombstones were evident;[3] in

many cases, the rocking was so strong that it resulted in overturning of

these small structures. In Figure 1.1, two examples of lift-off from

the recent Imperial Valley, California earthquake of October 15, 1979,

are shown. In Figure l.la the stretched grounding cable of the oil tank

indicates that uplift of the tank happened during the ground shaking.

From the position of this grounding cable it can be estimated that the

uplift was at least 5 to 6 inches. In Figure l.l.b lift-off of the tank

is indicated by the cracked asphalt around the pipeline which was

connected with the tank. The fact that partial lift-off has not yet

been clearly observed for buildings-does not imply that this phenomenon

is impossible for such structures. It is possible that the lack of such

observations is caused by the difficulty in finding evidence of the

small amounts of uplift expected for buildings. Analysis of the behavior

of buildings during earthquakes indicates that partial lift-off may
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(a)

(b)

Fig. 1.1. Evidence of lift-off during the El Centro,
California earthquake of October, 1979.
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happen in some cases; for example, in the case of Veterans Hospital

Building 41 during the San Fernando earthquake.[4]

A significant amount of work has already been done on the limiting

case of tipping of bodies on a rigid foundation, especially for rigid

superstructures (for example see references 1,5-13). The motive for

most of this research was the prevention of overturning of objects such

as tombstones, furniture or other equipment installed in buildings

during earthquakes. An interesting review of the investigations done

on this problem is presented by Ishiyama in reference 13. Of special

interest is the work reported by Aslam, et al.,[ll] who performed ex-

periments and a computer analysis. He concluded that the rocking

response of a rigid block is very sensitive to the boundary conditions,

the impact coefficient of restitution, and the ground motion details.

A probabilistic approach of the problem was done by Vim, et al.,[12]who

also applied their results to the estimation of the intensity of ground

shaking from its observed effects on tombstones, monumental columns,

and other similar objects.

Housner[l] was the first to relate the problem of tipping of bodies

with the good performance of some apparently unstable structures during

strong ground shaking. His work was motivated by the fact that several

"go lf-ball-on-a-tee" types of elevated water tanks survived the ground

shaking of the Chilean earthquakes of May, 1960, while' other more stable

appearing reinforced concrete elevated water tanks were severely damaged.

In his analysis, Housner derived an expression for the amplitude

dependent period of a rocking block and developed a formula to estimate

the dissipation of energy which occurs during the rocking. Since the
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foundation is assumed rigid, energy is lost in the impact that happens

every time the pole of rotation changes from one corner of the base to

the other. The beneficial effect of tipping to the earthquake response

of structures was also described by Beck and Skinner[14] in their

dynamic analysis of the South Rangitikei Rail Bridge pier, in New

Zealand, which was designed to step. The first analytical investigation

of the response of a flexible superstructure rocking on a rigid founda

tion was reported by Meek,[15] who examined the rocking of a single

degree-of-freedom oscillator. Meek concluded that the foundation tipping

leads to a favorable reduction in the maximum transverse deformation.

As it was pointed out, however, in a discussion of Meek's paper made by

Sexton [16J, th is reducti on does not necessarily happen for all excita-

tions.

For the case of a structure supported by a sufficiently flexible

foundation, the deformabil ity of the ground affects the behavior of the

superstructure and cannot be neglected. The importance of this dynamic

coupling between the structure and the foundation (soil-structure

interaction) to the dynamic response of the system has been realized in

recent years and has attracted attention from many investigators (e.g.,

see references 17-24). These studies, however, do not take under con-

sideration the possibility of partial lift-off, which is present for

very strong ground motions. Efforts have been directed lately toward

this subject, trying to understand the phenomenon and its effects on the

sei smi c response of the structures (see references 26-38).

Although very little analytical work has been done on this problem,

some experimental work and some studies on the computer have been
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performed. First, in 1960, Muto and his associates[25], in an effort to

examine the possibilities of overturning of a single mass vibrating on

a rigid or flexible foundation, conducted experiments on the rocking of

such a structure under earthquake excitation.

The effect of partial lift-off of a multistory building was first

examined during experiments performed at the University of California,

Berkeley by Huckelbridge and Clough.[26-30] They did shaking table

tests on steel frame models of buildings and concluded that allowing

the structure to lift-off may result in reduced requirements for the

strength and ductility of the frame. The fact that uplift may markedly

change the behavior of the system was also pointed out by Morris,[31]

who performed experiments on the earthquake response of a rigid tower

using a centrifuge. During these tests, the soil under the tower was

able to deform and the tower was allowed to lift-off.

Priestley and his associates[32,33] proposed a simplified trial

and error method of predicting the maximum displacement of rocking for

a single-degree-of-freedom superstructure by use of displacement

response spectra. An extension of Housner's analysis for the rocking

block on a rigid foundation[l] was developed to establish an equivalent

elastic representation of the rocking system. This method is approxi

mate and does not take into account the elastic characteristics of the

superstructure except in its initial stage. A more refined technique

using time-history analysis was proposed in reference 33. Both methods

were verified by experimental shaking table results for simple models.

A study of the effects of lift-off on the seismic behavior of

structures using finite element techniques was done by Wolf[34,35]
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and Wolf and Skri kerud[36] . Although these ana lyses were made for the

case of a nuclear reactor, the results can be extended to other struc-

tures. They concluded that allowing the structure to lift-off leads to

a reduction of the total horizontal acceleration, the overturning moment

and the lateral displacement within the structure, in comparison to the

results of the standard soil-structure interaction theory in which lift-

off is not allowed. Because of the resulting beneficial reduction in

the strength requirements of the structure, they concluded that there is

no need to prevent lift-off but, on the contrary, it is desirable to per

mit it. Similar results were obtained by Singh[37] who used a computer

model to analyze a six-story split K-braced frame with foundation con

ditions allowing lift-off. A technique to handle the nonlinear effect

of uplift in numerical studies was also presented by Bervig and Chen[38].

In this thesis, we present an analytical investigation of the

effects of lift-off on the dynamic behavior of structures, along with

simplified methods of analysis which permit the designer to take these

effects under consideration. First the case of a rigid superstructure is

examined and then a multistory building is considered. The foundation

is elastic, with damping, and two different cases are studied: the

Winkler model, commonly used in soil mechanics, and the simplified two-

spring foundation in which the structure is supported by only two

springs (in a two-dimensional representation). It is assumed that the

springs cannot take tension, therefore, lift-off happens when the upward

displacement of a portion of the base is greater than the static deflec-

tion.
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The coefficients of the foundation models are assumed constant,

independent of amplitude or frequency. It has been proven (~.g., see

reference 39) that a representation of the elastic half-space by springs

and dashpots implies frequency dependent coefficients. However, it

seems permissible in many cases to use representative, constant values

for these coefficients. Similarly, a linear model for the soil is used

for simplicity, with dissipation modeled by viscous damping. The

advantage of this approximate method is that it leads to differential

equations of motion with constant coefficients. It should be mentioned

that the determination of the appropriate foundation parameters is by no

means trivial and requires a careful investigation. Since this is one

of the main problems of soil-structure interaction theory, it attracted

the attention of several investigators and much research has been done

on this subject (for example, see references 17, 19, 21-22, 39-47).

Posing the problem in this way, two different regimes of the

response can be distinguished: (i) the case of full contact, during

which the base of the structure is in full contact with the foundation.

In this regime, the equations of motion are linear for small displace

ments and the classical theory of soil-structure interaction can be

applied, (ii) the case after lift-off, during which partial separation

of the base from the foundation has occurred. For this case, and for

the two-spring foundation, linearized equations of motion can be derived;

in constrast, the equations of motion corresponding to the Winkler

foundation are highly nonlinear, because of the varying degree of contact

between the body and the foundation. However, even for the two-spring

foundation, the overall response of the system is nonlinear because the
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system continuously changes from one linear regime to the other. As a

result, the principle of superposition does not hol.d for the overall

response.

The amount of lift-off, which depends on the excitation and the

parameters of the structure and the foundation, dramatically affects the

response of the system. For an impulse excitation, this quantity is

measured by the so-called "normalized impulse," which is denoted by S

and is equal to the ratio of the maximum angle of tilting which would

occur if lift-off were not allowed, divided by the angle of rotation at

which uplift occurs in the absence of vertical oscillations. Impulse

excitations are used extensively in this study, first because an

impulse is the simplest excitation that captures some of the dynamic

features of the earthquake problem, and second because it provides in

formation for the determination of the apparent resonant frequency of

the system as a function of the amount of lift-off. The word "apparent"

is used, since the uplifting system does not possess resonant frequencies

in the classical sense.

For the dynamic behavior of a building supported by an elastic

foundation, it was shown by Jennings and Bielak[19] that the effect of

the horizontal translation of the base is usually negligible in com-

parison to the effect of the rocking, especially for tall buildings. In

this analysis, the horizontal translation is neglected and the assump-

tion that no slipping is permitted between the base and the foundation

is employed. It should be mentioned that these assumptions may not be

applicable for very short structures, for which the horizontal movement

might be significant. Such structures, however, are not the main concern
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in this thesis; the principal emphasis is on more slender structures.

In Chapter II, the dynamics of a rigid block supported by an

elastic foundation are examined. No dissipation of energy is considered.

This simple case, apart from its usefulness because some structures can

be represented this way, aids the understanding of the phenomenon of

lift-off for flexible structures. It is shown in this chapter that the

simple two-spring foundation can be defined in such a way that it can

model the rocking response of the much more complicated Winkler founda

tion. Although many results employ an impulse excitation, they can be

extended to apply for other, more complex excitations.

In Chapter III, three different energy dissipative mechanisms are

introduced into the foundation models of Chapter II and they are

examined individually. The superstructure is again a rigid block.

These mechanisms model the energy dissipation in the foundation, wich

results from inelastic behavior of the soil and/or radiation of energy

in the form of stress waves. An equivalence between the Winkler and

the two-spring model is also established in this case.

The effect of lift-off on the dynamic response of a flexible super

structure is investigated in Chapter IV. The cases of a simple shear

oscillator and a more general model of a multistory building are con

sidered. In the latter case, it is assumed that the building possesses

classical normal modes. Although the analysis is restricted to the two

spring foundation, the results can be extended to the Winkler model,

and hence to practical problems, by use of the equivalence defined in

Chapter III. It is shown that a small amount of lift-off may

dramatically affect the behavior of the structure, compared to the
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response without uplift. An approximate method of analysis, wbich

allows the use of response spectra for the calculation of the maximum

deformation, is also proposed in this chapter.

A summary of the results obtained in this thesis is presented in

Chapter V, along with conclusions and recommendations for future study.
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CHAPTER II

DYNAMICS OF A RIGID BLOCK

2.1. INTRODUCTION

The dynamics of a rigid block rocking on a rigid foundation were

first studied by Housner,[lJ and a review of this work is given in

section 2.2. In section 2.3 an analysis is made of a block supported

symmetrically by two elastic springs. The springs are not permitted

to take tensile forces and thus, separation of the block from one of

the springs may occur for strong excitations. This simple system

illustrates many of the important features of the dynamics of elastically

supported tipping structures. A more realistic model for the foundation

is examined in Section 2.4, where the block is supported by an elastic

foundation, modeled by continuous elastic springs (the familiar Winkler

model). Lift-off of the block from the base, with the amount of separa

tion of the base from the foundation dependent on the rotation and dis-

placement of the block, can occur in this case, too.

The equations of motion for the IItwo-spring ll case can be linearized

and closed-form expressions for the motion of the block are presented.

In contrast, the Winkler foundation leads to complicated nonlinear

equations because of the varying amount of contact at the foundation.

In Section 2.5, an equivalence between the two models is established so

that for many engineering purposes, one can use the equivalent IItwo-

spring ll model to approximate the effects of a continuous elastic founda-

tion.
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2.2. RIGID BLOCK ON RIGID FOUNDATION

George W. Housner[l] was the first to analyze the dynamic response

of a rigid block rocking on a rigid foundation. This work was motivated

by the response of inverted pendulum-type structures during the Chilean

earthquake of 1960. A review of Housner's analysis is presented here.

The block shown in Fig. 2.2.1 will vibrate about the poles of rota

tion 0 and O~ when it is set to rocking; it is assumed that the block

cannot slip horizontally. Let a and b be the width and height of the

block respectively, m its mass and 10 the moment of inertia about the

points 0 and O~. If ep is the angle of tilting of the block, measured

from the vertical, the equation of free vibrations is

Io~ + mgr sin(e-ep) = 0 (2.2.1)

where r = ~ja2 + b2
, e = tan-1 (%) and g is the acceleration of qravity.

For small vibrations of tall, slender blocks, having the angles e and ep

less than about 20°, small angle approximations permit this equation to

be written as

I o¢ - mgr ep - - mgr e (2.2.2)

Assumi ng i niti a1 conditi ons 1> =CPo < e and ¢ = 0 at t = 0, whi ch repre

sent the block released from rest with initial displacement <Po, equation

(2.2.2) has the solution:

<p(t) = e - (e - CPo) cosh pt

where p2 = mgr/l o and a ~ ep ~ epa.

(2.2.3)
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Equation (2.2.3) describes the rotation of the block about the

point 0 as it falls back to the vertical position. If there is

negligible energy loss during impact, the block will rotate about the

point o~ to an angle ¢ = -¢o and then back to the vertical position, et~

Thus, the motion is periodic and the time required for the block to fall

from ¢ = ¢o to ¢ = 0 equals one quarter of the period. For ¢ = 0 and

t =f equation (2.2.3) gives

T ~ 4 j ::r cosh-
1 (1 ~ <it) (2.2.4)

T being the period of the vibrations. A graph of this equation is shown

in Figure 2.2.2, where it is seen that the period is strongly dependent

on the amplitude. The period is long for ¢o close to e and short for ¢o

close to zero.

During the rocking, however, there will be dissipation of enE~rgy

every time the block hits the base and changes its pole of rotation.

If the impact is assumed to be inelastic, the rotation continues smoothly

about the opposite pole. Let ¢l and ¢2 be the angular velocities of

the block before and after impact, respectively, and assume that the

pole of rotation before impact is O. Equating the moment of momentum

about O~ immediately before and after the impact, Housner found the

following relation:

(2.2.5)

The reduction of kinetic energy during impact is

(
1 • 2) /( 1 • 2) (¢2) 2Q = "2 I 0 ¢ 2 "2 10 ¢l = ¢1
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which, because of equation (2.2.5), reduces to

Q = [1 - ~~2 (1 _ cos 28) ] 2

For slender blocks this relation may be written as

(2.2.6)

Thus, the fractional reduction of the kinetic energy depends only

on the parameters of the block and not on the initial conditions.

Using the expression for the response as given by equation (2.2.3)

and recalling that ~2 = jQ <PI' Housner found that the amplitude of the

response, following the nth impact is given by the following expression:

= (2.2.7)

A graph of this equation for Q = 0.7 is presented in Fig. 2.2.3, where

the decrease in amplitude for successive n is shown for several values

of the intial displacement. The successive half periods of vibration

during free rocking are given by

(2.2.8)

According to the foregoing results, the amplitude of the oscilla-

tions decreases significantly with each impact, especially for large

initial displacements. As the number of the oscillations increases,

however, the frequency of vibrations increases indefinitely. Since the
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conditions at impact assumed in this analysis are idealized, the limiting

behavior of real blocks is somewhat different. As can easily be con

firmed by a simple desk-top experiment, a freely rocking block will

show an increasing frequency as the amplitude decreases, but will come to

rest rather quickly. The number of impacts is about six to ten for most

cases, with more for slender blocks.

2.3. TWO-SPRING FOUNDATION

2.3.1. Sxstem Considered and Assumptions

As the next step in complexi.ty, let us assume that the foundation

is no longer rigid, but deformable. The simplest case, where the block

is supported by two elastic springs will be examined here. Figure 2.3.1.a

shows the three dimensional configuration for ground motion in the x and

y-directions. The springs are placed symmetrically in the z-direction,

a distance ~ from the central line MM~of the base, and k1 is the stiff

ness per unit length. The dynamic problem is reducible to the two

dimensional configuration shown in Figure 2.3.l.b. The stiffness of the

springs is now k = k1 • d, where d is the depth of the block.

It is assumed that there is no slipping between the block and the

foundation, therefore the system possesses only two degrees of freedom:

vertical motion, denoted by the vertical displacement, y, of the center

of mass measured from the position at rest, and rotation, measured by

the angle of tilting, ~, from the vertical.

In order to model the inability of soil to carry tensile stresses,

it is assumed that the block is just resting on the springs, without

any bond between them and the block. In this way, whenever the upward
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displacement of point a or O~ is greater than the static deflection, the

block will separate from one of the springs. It should be mentioned

here that complete separation of the block from both springs is possible

for sufficiently strong excitations. However, this represents a special

case, generally encountered for short blocks, stiff springs and ex

tremely strong excitation, as will be shown in Section 2.3.6.

2.3.2. Equations of Motion

The equations of motion will be derived by use of Newton1s second

law of motion. The two cases, before and after lift-off, will be treated

separately. A free body diagram for the case of full-contact is shown

in Figure 2.3.2. After lift-off, the picture is similar, except that

F2 , which is due to the left spring, vanishes. The ground accelerations,

~G and YG, are assumed to act horizontally and vertically, respectively,

and, by D1Alembert's principle, can be represented by forces -mxG and

-mYG applied at the center of mass of the block. Since the horizontal

displacement of the block is prevented at the base, a horizontal force

RA, positive as shown, acts between the block and the foundation. We

will assume that this force is acting at the right corner of the base

(for positive angles of tilting). In any case, changes in the point of

application of RA along the base of the block introduce only second

order changes in the equations of motion.

Let x and y be the horizontal and vertical displacements of the

center of mass respectively, measured from the position of static

equilibrium, and ¢ be the angle of tilting, measured from the vertical.

Assuming that the corner A can move vertically, we can express x in

terms of ¢ (see Fig. 2.3.3) as
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x r sin e - r sin (e-¢)

where r = jh 2 +(tY and e = tan-1 (2ah)' Using the geometric relations

a = 2r sin e and h = r cos e, the above equation results to

x = a a h .2 - 2 cos ¢ + . 51n ¢ (2.3.1)

Let 0 be the static deflection, given by

o = !!ill.2k (2.3.2)

and Yo and Yo~the vertical displacements of poi.nts 0 and O~ respectively.

From Fig. 2.3.3 we get

Yo = YM- ~sin¢

Yo YM+ ~ sin ¢ I (2.3.3)

where YMis the vertical displacement of the middle point of the base,

M, and can be expressed in terms of Y and ¢ by the equation

YM = Y + h(l - cos ¢) (2.3.4)

Then, for positive angles of rotation, the spring forces, F1 and F2 ,

acting on the block, are

F1 = -}mg - ky - kh(l - cos ¢) + k~sin ¢ (2.3.5)

\
t mg - ky - kh(l - cos ¢) - k~ sin ¢, before lift-off

F2 =
o , after lift-off

(2.3.6)
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The horizontal force, RA, can be determined by applying Newton's second

law in the x-direction, which gives

(2.3.7)

in which x is given by (2.3.1).

The two equations of motion, in the rocking and vertical directions,

then, are

Full contact

my +2ky + 2kh(1 cos ep) = -mYG (2.3.8)

ICM¢ - [t mg - ky - kh(l-cos ep) - k~ sin epJ[r sin (e + ep) - (t- ;) cos ep ]

+ [t mg - ky - kh(l - cos ¢) + k i; sin epJ ~ sin(e-ep) - (I- i~)COS epJ

+ (mx + mxG) r cos (e-¢) = a (2.3.9)

After 1i ft-off

my + ky + kh (1 - cos ¢) - k i; sin ep = - tmg - myG ( 2.3.10)

ICM¢+[}mg-kY-kh(l - cos¢)+ki;sin epJ[r sin (e-ep) - (I- ;)cos epJ

+ (mx + mxG) r cos (e-ep) = a (2.3.11 )

where ICM is the moment of inertia of the block about the center of mass.

These equations are valid only for positive angles of rotation.

For tilting in the opposite direction, the equations of motion can be

rederived, or they can be found by changing the system of coordinates.

For the second approach, the y-axis remains the same, but the x-axis is
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reversed and ep is taken positive counterclockwise. In the new system,

~G will be negative, but otherwise, equations (2.3.10) and (2.3.11) apply

as they are.

2.3.3. A Limiting Case: k -+ 00,
a

~ -+ "2

When the foundation springs are very stiff, the block is expected

to behave as if it were rocking on a rigid foundation. In the limiting

case, therefore, as k -+ 00 and i; -+ ~, equations (2.3.10) and (2.3.11),

which describe the motion after lift-off, should reduce to equation

(2.2.1), which Hausner derived for the rocking block on a rigid founda

tion. Let us assume that ep is positive and xG = YG = O. Then, for

~ =~, equations (2.3.10) and (2.3.11) reduce to:

1 1mY + ky + kh(l - cos ep) - "2 ka sin ep = -"2 mg

and

ICM¢+ [~mg - ky - kh( 1 - cos ep) +~ ka sin epJ r sin (e-ep) + m~ r cos (e-ep) = 0

Substituting from the first equation into the term in brackets in the

second equation yields

ICM ¢+ (mY + mg) r sin (e-ep) + m~ r cos (e-ep) 0
(2.3.12)

For k -+ 00, the vertical displacement of point 0 goes to zero, and thus,

Equation (2.3.4), then, gives

y = ~ sin ep - h(l - cos ep)
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Substituting this equation into (2.3.1Z) and using expression (2.3.1)

finally produces

(2.3.13)

Since IeM + mr2 = 10 , the moment of inertia about point 0 (for s:= %),
equation (2.3.13) is the same as equation (2.2.1).

2.3.4. Linearized Equations of Motion

If the displacements are expected to be small, the equations of

motion can be greatly simplified. First, for small angles of rotation,

sin <p can be replaced by <p and cos <p by 1. Equations (2.3.1), (2.3.3)

and (2.3.4), then, reduce to:

x = h¢

Yo = Y - ~¢

Yo = Y + ~<p

('~.3.l4)

After these simplifications and elimination of the non-linear terms, the

following linearized equations of motion can be obtained from equations

(2.3.8), (2.3.9), (2.3.10) and (2.3.11):

Full contact

After lift-off

my + 2ky = - myG

my + ky =t= k~<p = - 1 mg - my2 G

(2.3.15 )

(2.3.16)

(2.3.17)
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.. 1 ( )IM<P +"2 2kS;2 - mgh <P T k~y h·· 1 ?:-m xGT "2 mg."
(2.3.18)

where 1Mis the moment of inertia about the midpoint of the base, M,

given by

Whenever a double sign appears in the above equations, the upper one

corresponds to the block tilting to the right and the lower one to the

left. In both cases, the positive directions of the angles and displace-

ments are as shown in Figs. 2.3.2 and 2.3.3.

The nonlinear terms that were omitted are in the forms ¢¢, y¢ and

¢2. Also, the term t maxG¢, which comes from the assumption that RA
acts at the corner of the base, was dropped for simplicity in the deriva

tion of equations (2.3.16) and (2.3.18). For jxGI < g and h >~, this

term is always smaller than the term mgh¢ and, for values of the spring

constant expected in earthquake engineering applications, is much smaller

than the term kl;2¢.

The rocking of a block on a two-spring foundation for small displace-

ments consists, therefore, of a sequence of linear problems. Assuming

that the block is initially at rest, it starts vibrating according to

equations (2.3.15) and (2.3.16). If the excitation is strong enough,

lift-off occurs and equations (2.3.17) and (2.3.18) are the governing

equations of motion from uplift until contact is re-established.The

displacements and velocities at the time of lift-off are used as initial

conditions for the latter equations, etc. Continuing in this way, one

can calculate the sequentially linear response, which, however, shows
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nonlinear characteristics overall; for example, the period is amplitude

dependent and the principle of superposition does not hold.

Equation (2.3.15) implies that for horizontal excitation, th,;:

vertical motion of the system is not excited initially. However, since

equations (2.3.17) and (2.3.18) are coupled, the vertical motion is ex

cited after lift-off happens. When the block comes back and gains

contact with both springs again, it will, in general, continue to

oscillate in both the rocking and the vertical modes. Typically, there-

fore, the only case in which the block is not moving vertically, is

before the first lift-off under horizontal excitation only.

Another interesting point, which comes from equation (2.3.16}, is

that the value of (2k?;;2 - mgh) may be negative for very soft springs.

In that case, equation (2.3.16) has a hyperbolic solution. Using equa

tion (2.3.2), the condition for this to happen may be expressed as

~2

o > 11 C:~.3.19)

But, f = tan 81 (see Fig. 2.3.3), and for slender structures, inequality

(2.3.19) reduces to

(;~. 3.20)

By definition, lift-off occurs when the vertical displacement of point

0'" becomes equal to the static deflection, o. Using equations (2 .. 3.14),

we find that the angle ¢ , at which uplift occurs for a horizontal excr
citation for the first time, can be given by

epcr (l~.3.2l)
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Comparing (2.3.20) and (2.3.21) we conclude that, in the case under con

sideration, the required angle of rotation for lift-off is bigger than

81, which means that overturning of the block occurs before lift-off;

that is, the system is statically unstable and buckles elastically before

lift-off. For this situation to occur requires extremely soft springs

and is unlikely to be encountered in applications. It is therefore ex

cluded from further consideration.

Solution of the Eguations of Motion

In the case of full contact, the two equations of motion are un-

coupled and their solution can be written as,

y( t)

t

= y(O) cos Pzt + y~~) sin Pzt - ~z f YG(T)
o

sin Pz(t-T)dT

(2.3.22)

hcp(t) =

t

hcp(O) cos P1 t + h¢p~O) sin P1 t - Im;p
z
1 f XG(T) sin P1 (t-T)dT

o (2.3.23)

where,
P1 z = 2kc;.:Z - mgh

1M
and

pzz 2k
m

(2.3.24)

(2.3.25)

Recall that hcp gives the horizontal displacement of the center of mass

of the block.

After lift-off, the equations of motion are coupled; however, they

can be solved exactly by a number of techniques. In the following pages,

a solution of these equations via the Laplace transform will be given.
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For simplicity, let us consider that ~ is positive and keep only

the upper sign in equations (2.3.17) and (2.3.18). For ~ negative, a

similar analysis can be carried out. Using relations (2.3.24} and

(2.3.25) the equations of motion are

.. 1 2 1 .. 2 ~ (h) = 1 ..y + "2 p2 Y - "2 p2 h _. ~ . - "2 g - YG

Making the transformation: x = h~, and taking the Laplace transform

of the above equations produces,

(:2.3.26 )

where s is the Laplace variable and a bar over a function indicates the

Laplace transform. The initial conditions in the above equations are

assumed to be the displacements and velocities at the time of lift-off.

The solution of the system of equations (2.3.26) and (2.3.27) can be

written in the form

y( s) =

-YG- ~ + sy(O) + y(O)

L\( s)

-~
2h

(2.3.28)
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in which,

x(s) =

kh ~

-1M

- YG - fs + sy(o) + yeO)

t.(s)
(2.3.29 )

2 _ P2 2 ~S2 + £L
2 2h

t.(s) = (2.3.30)
_ kh ~

2
S2+ P2

1M

The zeros of the function t.(s) are poles for the functions :Y(s) and

x(s) (s = 0 is another pole) and will be used for the inversion of the

Laplace transform. Using equations (2.3.24) and (2.3.25) we find that

the zeros of (2.3.30) are given by the roots of the equation:

(2.3.31)

This is the characteristic equation for the system. A real root of this

equation corresponds to a hyperbolic type of response and an imaginary

root to a harmonic response. Let

8.!illb.
1M

(2.3.33)

Then the four roots of equation (2.3.31) can be written as
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s = ± PI and s = ± i P2

From expressions (2.3.28) and (2.3.29) we get

Y (s) Y ($) + Y (s) + YxG(s) = Y
y(s) -fuj- + x + [J~) YG(s)= t,( s) sZTsT t,( s) XG(s)

X (s) X (s) X (s) XxG(s} _ X G _
x(s) = -fuj- + x + sZTsT + t,( s ) XG(s) +~ YG(s)6(S)

wherein

Yy( s) = (S2 + P2
2

) [sy(O) + y(O)J

Yx(s) = P22 f;; [sx(O) + x(O)]2h

YP(s) = _.9.. (s2 +~ + mp 22 f;;2 )
2 2 2I M

YxG (s) = - ~Mf;; • YyG (s) = - (s 2 + P2
2

)

X (s) = ktf;; [sy(O) + y(O)Jy
M

X (s) = (S2 + p22) [s X ( 0) + x(0)]x

Xp(s) = -~~:Hs' + Pz') + kJ

XxG(S) mh
2

(2 P22) kh S= - --r;- s + -2- • XyG (s) = -r;-

and 6(S) can be expressed in the form

The inverse Laplace transform of equations (2.3.35) is

(2.3.34)

(:~. 3.35)

(2.3.36)

(2.3.37)
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+_l_.J[YXGY +~Y]estds
2/T1 8. G 8. G

r

y(t)

X(t)

= 2~i f ±(vy+

r

:: 1 J 1 (X + X +~) estds2/Ti 8. Y x s
r

+ 2;i J
r

[
XXG = + XyG =] std8. xG 8. YG e s

(2.3.38)

where r is a suitable Bromwich contour~ such that all the poles are

included. Using the convolution property of the Laplace transform, the

last integrals in the above expressions can be written as

1 J YxG = std
t

J YxG(t-T)XG(T)dT2/Ti -z- xGe s ::

r 0

Y t

2;i J
p -;;- std :: J yyG(t-T)YG(T)dT8. YGe s

r 0
(2.3.39)

X
t

2;i J
xG = std J XxG(t-T)XG(T)dT-z- xGe s ::

r 0

t

f XyG(t-T)YG(T)dT
o

where YXG~ yyG~ xxG' xyG are the corresponding Green's functions,

given by
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2;i J
y

YxGCt) = xG estds
f..

r

yyG Ct ) = 2;i J ~ estds
f..

r (2.3.40)

x
xxG(t) = 1 J ~ estds2ni f..

r

Substituting expressions C2.3.36) and (2.3.37) in (2.3.38) and using

(2.3.39) and (2.3.40), the following expressions for the solution are

obtained by application of the residue theory at the poles s = ±P1 ,
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y( t) = (PI': P, 'l![Pz' I; ~(O) +~02 ' +P, ')Y(O) - ~(P2' +P, ' +\~)] cosh P, t

+ [ p22 I;¢ (0) + (p~/ + PI 2) ; (0) ] sin~ I PIt

_[~z' I;~(O) +(P2' - p")Y(O) +~ (pz' - p,' +\~)Jeos P,t

- [~ I;¢(O) +(~ - P 2);(0)J sin P2t I+ 21;2 - !D.9.
2 2 2 P2 h 2k

t
khS; Jx (T)[sinh PI (t-T) - sin P2(t-T) -J dT

1
M

(PI 2 + P22) 0 G PI P2

(P,' + p,') [~I' + ~2')/ YG(T) sinh ~: (H) dT

+ (p" - P2') / YG(T) sin Pp,;t-T) dT]

(2.3.42)

x(t) = hq,(t) = 1 Jrf~+ PI 2)h<P(0) + khsy(O) _ (2k+mPI 2)ghsl coSh PIt
(PI 2 + P2~lL\ 2 1M 21

M
PI 2 J

+ [(pf +P, ')h~(O) + ktMI; y(O)] sin~,P, t

_ [(P2
2

2
_ P2 2)h<P(0) + khsy(O) + (2k - mp 22

)ghl; ]cos P2t
1M 21 P 2M2

- [(p z' - P,~ h~ (0) + ktMI; Y( 0) ] s i ~ 2 Pot I+ 2 I;

t
- mh

2
[(PI 2 + P2

2
) J x (T) sinh PI(t-T) dT

I (P 2 + P 2) 2 G PI
M I 2 0

t

+ ~22 - P2
2

) J XG(T) sin ~~(t-T) dT]

o
t

khs J YG(T) [sinh ~~ (t-T)
1M(P 1

2 + P22) 0
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For tall slender structures, equations (2.3.32) and (2.3.33) for

the characteristic frequencies after lift-off can be greatly simplified.

First, using expressions {2.3.24} and {2.3.25}, one can write

(2.3.43)

where 10 is the moment of inertia about the points 0 and O~, given by

10 =

For slender blocks, m~ « IM, therefore, I o - IM• Then, equation

(2.3.43) reduces to

( P1 2 +P2 2) +8kgh :: (2k _ mgh)2 +~ = (~+ mgh)2
IM m IM IM m 1M

Using this relation and equations (2.3.24) and (2.3.25), expressions

(2.3.32) and (2.3.33) give

P1 2 = mgh
21 M

P2 2
P22 = -2-

(2.3.44)

(2.3.45)

2.3.5. A Further Simplification for Small Rotations

The moments of the external forces about the center of mass, which

affect the rocking equation of motion of the system, can be given by

the following expression, for positive angles of tilting (see Fig. 2.3.2)

(2.3.46)



-35-

For small angles of rotation, one can neglect the term h¢ in comparison

with i; and the term ~¢ in comparison with h, in expression (2.3.46).

Note that the second simplification was implicitly used in deriving the

linearized equations of motion, since the term ~¢ produced a nonlinear

term when multiplied by RA. After these approximations, the equations

of motion become:

Full contact

my + 2ky = -myG

IM~ + 2ki;2¢ = -mhxG

After 1i ft-off

my + ky =f ki;¢ 1
mYG= "2 mg

IM~=fk~y + kS;2¢ = h" 1 £:-m x =f - mgG 2

(2.3.47)

(2.3.48)

(2.3.49)

(2.3.50)

As before, in the double signs, the upper sign corresponds to positive

angles of rotation and the lower one to negative angles.

Comparison of these equations with the equations of motion derived

in the previous sectiDn shows that the approximations considered here

produce simplified coefficients of the ¢-terms in the rocking equations.

More precisely, the term mgh has been neglected in comparison with the

term 2ki;2. Note that the critical angle, ¢cr' at which lift-off happens,

for a horizontal excitation, is

¢cr = = ~
2k i;
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and the second critical angle, 81, at which overturning occurs is

(see Fig. 2.3.3)

=

for tall structures. Then, writing

<Per
a = (2.3.51}

81

one observes that the ratio~ is equal to a. The approximation con
2kt;2

sidered in this seciton, therefore, is acceptable if the critical ratio,

a, is negligible in comparison to unity. This assumption is believed to

be generally valid for applications, except for the case of extremely

soft spri ngs .

The notation of equations (2.3.24) and (2.3.25) reduces to

PI 2
2k ~2

1M
P22

2k= -m

(2.3.52)

(2.3.53)

and the solution during full contact is given by equations (2.3.22) and

(2.3.23).

For simplicity, the solution after lift-off will be developed for

positive angles of rotation only. The case of <p < 0 proceeds similarly.

It is convenient to introduce the transformation

y FA - y (2.3.54)

where Y is the vertical displacement of point 0, measured from the
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position at rest and being positive downwards (~ee Fig. 2.3.31. Sub

stituting in equations (2.3.49) and (2.3.50) and eliminating y, finally

reduces to

The solution of equation (2.3.55) can be written as

C2.3.55)

C2. 3.56)

Y(t)

where

= [V(O) - c(2/0M - 1)] cos P,t + y~~) sin P,t

+ o(21M_1) _-' Jt (mh s x (-r) - y (1"))
10 P2 1M G G

o (2.3.57)

(2.3.58)

and Y(O) = s¢ (0) - y(O) , Y(O) = E,;¢ (0) - Y(O). In these equa-

tions, the origin of the time is taken at the onset of lift-off. Ex

pression (2.3.58) can also be derived from equation (2.3.33), with Pl

given by (2.3.51) and the term 8~gh being omitted, which is consistent
M

with the approximation considered here.

Double integration of equation (2.3.56) gives

where

h¢(t) = mE,;h [Y(t) _.!!x (t) - y (t) -.9.e + Clt + C2J
10 s G G 2

(2.3.59)
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C1 = 19-. eP(O) ~(O) + ~ iG(O) + ;G(O)

Ims
(2.3.60 )

C2 = 19-. <p(0) YCO) + ~ xG(O) + YG(O)
m~

and xG(t), xG(t), yG(t), yG(t) are the ground displacements and veloci

ties in the horizontal and vertical direction, respectively.

Once Y(t) and <p(t) have been found, the vertical displacement, y(t),

of the center of mass is found from equation (2.3.54).

The main difference of this solution from equations (2.3.41) and

(2.3.42) is that the hyperbolic part of the response, which appears in

equations (2.3.41) and (2.3.42), is approximated here by a parabola.

The expressions for the characteristic frequencies of the system are

also simplified.

As an example, let us examine the limiting case of k -+ 00 and ~-+ t
(rigid block on rigid foundation), and consider free oscillations,

resulting from a horizontal impulse. Let ePo be the initial angular

velocity. Then, Y(t) vanishes and equation (2.3.59) reduces to

~ = - t Cpt) 2 + t~ (pt) (2.3.61)

in which p2 = ~~r and e = :r (see Fig. 2.2.1). According to Housner's

solution (section 2.2), the angle of rotation for this problem can be

given by

tl.U =e
.

1 - cosh pt + ~ sinh ptpe

Note that one of the assumptions made here is that h¢« ~, i.e.,
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Also, the above expressions for the response are valid for
Tfirst half period, only, so 0 ;;;; t ;;;; 2' Under these assumptions,

¢
max« 1e .

the

and as can be verified from Fig. 2.2.2, pt is expected to be small er

than unity. Expanding cosh pt and sinh pt in Taylor series, Housner1s

solution reduces to

1Ul -1(pt)2 + ~~ (pt) + O[(pt) 3Je

Comparing this equation with (2.3.61) it is seen that the approximate

solution derived in this section is good to O[(pt) 3.] for the limiting

case of a rigid block rocking on a rigid foundation, which is acceptable

for engineering purposes.

2.3.6. Some Further Observations for the Case of Free Oscillations

Let us now consider the simplified system of section 2.3.5 under-

going free oscillations in response to a horizontal impulse. Let I h be

the magnitude of the impulse, which is assumed to act at the center of

mass. Applying the principle of conservation of angular momentum about

the middle point of the base, M, which is the pole of rotation at time

•t = 0, the initial angular velocity, <Po. can be found:

= (2.3.62)

Since all other initial conditions vanish, equations (2.3.22) and

(2.3.23) reduce to:

yet)

<p(t)

= 0

= m
C sin PI t'Ymax

] (2.3.63)
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where ~c is the maximum angle of tilting, which would occur if liftmax
off was not allowed (i.e., if the springs could take tension), given by

= ePo
Pl

(2.3.64).

Equations (2.3.63) are valid only for the case of full contact. If

mC is greater than the critical value'f'max

(2.3.65).

lift-off will happen at some time, to' such that

where,

(2.3.66)

13 = (2.3.67)

The ratio, 13, can be viewed as a measure of the excitation and the re-

sulting amount of lift-off. For 13 large, ~c »¢ ,and lift-off willmax cr
happen for a relatively long time, compared to the rocking period. On

the other hand, if 13 is close to unity, the block lifts-off only for a

short time. For values of 13 less than one, lift-off does not occur.

Since lift-off is of primary concern here, we will assume that

13 > 1

After lift-off, the response is given by equations (2.3.57) and

(2.3.59), which, for the case of free oscillations, reduce to:
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Vet) = 0[12+~ cos P2 t + J l~A (S2-1) sin P2t + i~~ ]
(2.3.68)

<p(t) s(l\A) [A sin (P 2t + y) - ~ e + ~0Plt+0(i-+i~~)J
(2.3.69)

where A is the amplitude of the harmonic oscillations of V, y is a phase

correction, t is measured from lift-off and

(2.3.70)

in which rMis the radius of gyration about point M. The following

initial conditions were used for the derivation of equations (2.3.68)

and (2.3.69)

yeO)

0(0)

cS YeO) oP10

~(O) = ~Pl~

The apparent rocking frequency of the system after lift-off is ex-

pected to be smaller than PI, the rocking frequency during full contact,

since the system becomes more flexible after uplift. On the other hand,

the frequency of the vertical vibrations, which start after lift-off, is

P2. The ratio Pl/P2 can be expressed in terms of A only as

(2.3.71)

therefore, this ratio is less than one for A < 1 and decreases as A

decreases.
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For most applications in practice, A. is expected to be smaller than

unity, except for the case of short, wide structures. For example,

assuming that the mass of the block is uniformly distributed, the ratio

A can be expressed in terms of the dimensions of the block and the

di stance ~ as

A. =
3(¥y

1+ 4(~) 2

C2.3.72}

In Fig. 2.3.4, A. is plotted versus the aspect ratio ~ ,for different

values of~. It is seen from this plot that A. quickly approaches zero

as ~ increases. Even for the limiting case of g; = t' A. is less than

one for aspect ratios greater than ~

The frequency of the rocki ng asci 11 ati ons is, therefore, expected

to be smaller than the frequency of the vertical vibrations and the

rocking response of the system after lift-off consists of a harmonic

function superimposed upon a parabolic one, as shown in Fig. 2.3.5. It

is reasonable, then, to assume that a quarter of a period has ellapsed

when the parabolic term attains its maximum value, which happens at

time, t 1 , after uplift, such that

(2.3.73)

Using equations (2.3.66) and C2.3.73), the rocking period, T, of free

vibrations can be approximated by

(2.3.74)
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Fig. 2.3.5. Response of a freely rocking block with uplift.
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If lift-off was not allowed, the rocking period, Tc ' would be

27T
PI

The increase in the period because of the uplift is then

(2.3.75)

(2.3.76 )

It is seen that the elongation of the period depends only on the nor

malized impulse, B. In Fig. 2.3.6, a plot of equatibn (2.3.76) is shown;

it is evident that the increase in the period is very significant for

large values of S, for which TT is essentially proportional to S.
c

From equation (2.3.68), the amplitude, A, of the harmonic part of

the vertical oscillations, Y, can be written as

(2.3.77)

and the maximum value, B, of the parabolic terms (the last three) in the

bracket of equation (2.3.69) as

(2.3.78)

In Fig. 2.3.7, the r~tio (A/B) is plotted versus S, for different values

of \. It is seen that for small values of \, A is much smaller than B,

therefore, the harmonic part in equation (2.3.69) can be neglected. If

\ is not small compared to unity, A can be neglected in comparison with

B only for large values of S. In such cases, however, complete separa-
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tion of the block from both springs is very likely to happen. Since Y

measures the downward vertical displacement of point 0, measured from

the equilibrium position, complete separation will happen if Y< -0 ,

that is

A - 0 (.l.:l) > 01+.\ (2.3.79)

Substituting from equation (2.3.77), this criterion can be expressed in

terms of Sand .\ only, as

(2.3.80)

In this inequality, S is a measure of the size of the impulse and the

right-hand side is a geometrical factor depending on the dimensions of

the block and the position of the springs.

Figure 2.3.8 shows the combinations of .\ and S which cause complete

separation according to inequality (2.3.80) and the condition that S >

for lift-off. It is interesting to note that for values of .\ greater
12than one (e. g., a uniform block with aspect rati 0 1ess than 2)' complete

separation happens for all S > 1. For these values of.\, the block

finally separates from both springs for all impulses strong enough to

cause 1i ft-off .

As it was discussed earlier, however, .\ can be near to or greater

than unity only for short, wide structures; in these cases, complete

separation from the foundation is likely to happen during strong excita-

tions, provided that the reaction force, RA, is in fact, generated.

Interestingly, the phenomenon of complete separation has occasionally

been inferred from earthquake response in regi ons of very strong shaki ng
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(e.g., see Bolt[48] and Morrill[49J). The analysis made in this thesis,

however, is based on the more common condition that the value of ~ is

small compared to unity. The possibility of complete separation, there-

fore, is remote. In the following, it is assumed that the values of ~

and S are such that complete separation does not happen.

When A can be neglected in comparison to B, i.e., when vertical

oscillations are negligible, one can find the maximum angle of rotation

by calculating the value of the parabolic term in equation C2.3.69} at

time t = t 1 • This gives

(2.3.81)

In this case, then, the rocking response of the block to a horizontal

impulse consists of a sequence of harmonic functions during full contact

and parabolic functions during lift-off. The total response, howeve.r,

resembles a sine function of period T and amplitude ¢max. It can,

therefore, be approximated by the response, ~(t), of a similar linear

system, in which the rocking period during full contact is T and lift

off is not allowed, with the amplitude modified by the following correc-

tion factor, CF

CF = (2.3.82}

This factor is required so that the amplitudes are matched for the same

impulse.
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Unfortunately, this result cannot be extended to treat the response

to a horizontal ground excitation, in general,because the equivalent

linear system depends on the magnitude of the impulse. Considering the

continuous excitation to be a summation of pulses, a different linear

system would be required for each impulse. In spite of this fact, the

above results can be used for the estimation of the response to those

ground motions in which a single large pulse determines the maximum

response of structures over a wide range of periods. Such dominant

pulses have been recorded on some earthquake records, e.g. the Pacoima

Dam record from the San Fernando earthquake of 1971 ,[50J the Romanian

earthquake of 1977,[51J and the record obtained at Cholame Shandon,

station no. 2, in the Parkfield earthquake of 1966.[52J In such cases,

the response can be estimated as follows:

1.

2.

Find the angle ¢c for the selected ground motion using equationmax

(2.3.23). If a response spectrum is available, ¢~ax can be found by
mhmultiplying the displacement corresponding to frequency PI by y-.
M

Find the corresponding value of S using equation (2.3.67). If

S < 1 lift-off does not happen and ¢c is the actual maximum
~x

amplitude of the response.

3. For S > 1, find the rocking period, T, as given by equation (2.3.74).

This is the period of free oscillations excited by an impulse which

will produce the same ¢cmax
4. Consider the equivalent linear system, for which the foundation con-

ditions are modified so that the natural rocking period during full

contact is T. Find the response of this system for the excitation
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under consideration, without allowing lift-off. If the maximum

amplitude is desired, the response spectrum can be used to find the

maximum angle of rotation, ~ corresponding to period T, similarmax,

to the determination of ~~ax in step 1.

5. Multiply this response by the correction factor, CF, to determine

the response of the original problem 1.n which uplift occurs.

Although this simple method cannot be expected to g·ive good results

if the ground motion is not dominated by a large pulse, it might still

produce some useful characteristics of the response, if high accuracy

is not required.

2.4. WINKLER FOUNDATION

2.4.1. System Considered and Assumptions

The two-spring foundation, which was examined in the previous 'sec

tion, is simple to analyze and illustrates many of the dynamic features

of rocking bodies; however, the foundation is oversimplified for applica-

tions, except for the case of spring-mounted equipment. For most

purposes, a continuous elastic foundation, ~.g., a Winkler model)

provides a better representation of the supporting conditions. The

behavior of a rocking block on a Winkler foundation is examined in this

section.

In Figure 2.4.1 the two-dimensional configuration of a rocking

block, supported bya continuous elastic foundation, is shown. The

dimensions of the spring constant, ko , are [F/L 2 J. The assumptions that

the block cannot slip on the foundation and that the springs cannot

take tension are again employed. For ground motions acting in the
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x and y-directions, the system possesses only two degrees of freedom:

vertical displacement, which is measured by the vertical displacement,

y, of the center of mass, and rotation, measured by the angle of tilting,

¢, from the vertical.

For sufficiently strong excitations the block will start lifting

off, with the length of the base which remains in contact with the

foundation dependent on the amount of uplift and being, therefore, a

function of time. Complete separation of the block from the foundation

may also occur for some geometries and for strong excitations, but is ex-

eluded from this analysis.

2.4.2. Equations of Motion

As in the two-spring foundation, the equations of motion can be

derived using Newton's second law of motion. For small angles of rota-

tion and tilting to the right, the resulting equations are

Full contact

(2.4.1 )

(2.4.2)

After 1ift-off

mYG

{2.4.3}
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1 ",f.,+ "2 maxG't' (2.4.4)

in which 0 is the static deflection given by

o = ..!!!9
koa (2.4.5)

For the derivation of equations of motion after lift-off, the following

expression for the length of contact, S, was used

(2.4.6)

As it can be seen from equation {2.4.1), a block, initially at rest

r and subjected to horizontal excitation, does not move in the vertical

direction before lift-off happens. However, as in the case of two-spring

foundation, vertical motion is excited after lift-off.

Since the angles and displacements were assumed to be small, the

non-linear terms that appear in equation (2.4.2) can be deleted. Then,

the response of the block for the full contact case can be written as

t
y( 0) cos pz \ + Y(2) sin * 1

* JyG(-r)
*yet) pz t sin pz (t-T)dT

Pz pz 0
(2.4.7)

t
* h¢(O) * mh z r *h<jJ ( t) = h<jJ(O) cos Pl t + sin Pl t J xG(T) si n Pl (t-T) dT

* *Pl IMPl 0
(2.4.8)

in which
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* 2
(PI ) (2.4.9)

= koa
m (2.4.10)

and the following inequality was assumed to hold

(2.4.11)

If the springs are very soft, so that (2.4.11) does not hold, the homo

geneous equation that corresponds to (2.4.2) (after linearization)

possesses a hyperbolic solution. In contrast to the two-spring founda-

tion, where a hyperbolic solution of the homogeneous equations of motion

duri ng full contact imp1i es static i stabi 1ity (overturni ng) before 1ift

off, in this case, if (2.4.11) does not hold static overturning may

happen before or after lift-off depending on whether the overturning

angle,

is greater or less than the critical angle,

(2.4.12)

epcr =
28
a (2.4.13)

After lift-off, the equations of motion are coupled and highly non

linear because of the geometrical complexity. The only way they appear

to be solvable is by use of numerical methods. The complexity of these

equations comes from the varying length of contact, which, as can be
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seen from (2.4.6), depends on both y and cp. Material nonlinearities in

the foundation would complicate the problem even more.

2.5. EQUIVALENCE BETWEEN WINKLER AND TWO-SPRING FOUNDATION

2.5.1. General Principles

Although the Winkler foundation often provides an acceptably

accurate model of the flexibility of the foundation, it leads to com

plicated equations of motion after lift-off, which make it difficult to

apply in practice. On the other hand, the two-spring foundation is not

such a realistic model, except for special cases such as spring-mounted

equipment or small buildings supported by footings aligned at the corners

of the base. However, the two-spring model leads to simple equations of

motion, which can be easily solved analytically. From the engineering

viewpoint it would be valuable to establish an equivalence between the

two models. In other words, we would like to determine the parameters

of the two-spring foundation in such a way that the response of a block

supported by two springs nearly equals that for a given Winkler founda

tion. The simpler, equivalent system could then be used in solving

practical problems.

The parameter which characterizes the Winkler model is the stiff

ness per unit length, ko, of the springs. For the two-spring foundation

there are two characteristic parameters: the stiffness, k, of the springs

and their distance from the center of the base, measured by~. Assuming

that the value of ko corresponding to the foundation under consideration

is known, the parameters k and s for the two-spring model are to be

found so that the two foundations lead to similar response for a given
block .



-58-

Since there are two distinct regimes of response, before and after

lift-off, it is logical first to determine two sets of equivalent values

for k and ~, corresponding to these two cases. Moreover, it turns out

that a generally equivalent set of k and Ecan be established, which

combines the two cases and wbich can be used to estimate the complete

time history of the response.

Since the rocking block possesses two degrees of freedom, vertical

displacement and rotation, its response depends only upon the vertical

forces and upon the moments about the center of mass. Thus, establishing

relations between the parameters of the two foundatinn models, such that

the vertical forces and the moments about the center of mass are the

same, the governing equations of motion for either type of foundation

will be equivalent. During full contact, this leads to a system of two

algebraic equations for the determination of the two unknown parameters,

k and 1;. After 1i ft-off, however, the procedure is not so straight

forward because of the varying length of contact between the block and

the foundation. Some further assumptions must be made in that case.

2.5.2. Equivalence During Full Contact

The total vertical force from the foundation, F2s ' and the moment

about the center of mass, M2s ' for the two-spring foundation during full

contact, are

=

F2s = -2ky + mg (2.5.1)

(2.5.2)

where RA is the hori zonta 1 force acti ng at the corner of the base (see

Fig. 2.3.2), given by
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(2.5.3)

For the Winkler foundation, the corresponding forces and moments, FWand

MW' are

F = -koay + mgW (2.5.4)

(2.5.5)

in which RA is again given by (2.5.3). The principles of equivalence

between the two systems, therefore, require that

k =
koa
2

and

t;
a/3

= -6-

(2.5.6)

(2.5.7)

The response during full contact of a block sitting on a two-spring

foundation, in which the values of k and s are as given by equations

(2.5.6) and (2.5.7), is then expected to be the same as the response of

the Winkler model. The equivalence, of course, is not valid after the

block lifts-off. However, if uplift happens for only a short time,

relative to the period of rocking vibrations, the two responses should

be similar for the whole time history. But, if uplift occurs over longer

intervals of time, this equivalence is not expected to give satisfactory

results.

It should be mentioned that, although equation (2.5.6) assures the

same static deflection for both models, lift-off will not happen at

exactly the same time. In the case of the Winkler foundation Wnd for a

horizontal excitation) uplift occurs when the angle of rotation reaches
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the value a~2 ' whereas the critical angle for the two-spring foundation

is 1. It is possible, therefore, that an excitation can be strong

enough to cause lift-off from the Winkler foundation, but not be able to

produce lift-off from the equivalent two-spring system.

2.5.3. Equivalence After Lift-Off

The resultant vertical forces from the foundation in this case are

kz'"

1
FW = "2 koSz

(2.5.8)

(2.5.9)

for the two-spring and the Winkler model, respectively, in which (see

Fi g. 2.5.1)

and z'" can be expressed as

z a
= 8-y + "2 cp (2.5.10)

z ... (S-r) z (2.5.11)S

where
s'" a

~ (2.5.12)"2-

Equation (2.5.11) is based on the assumption that the angle of rotation,

cp, and the vertical displacement, y, are the same in the two models.

Since Fwand the position of its application depend on the length

of contact, S, application of the principles of equivalence would

produce expressions for the parameters k and ~, which would be functions

of S. But, as it can be seen from equation (2.4.6) and Fig 2.4.1.b,

S changes with time. This is shown in more detail in Fig. 2.5.2, where

the dimensionless quantity ~ is plotted versus time for the case of free
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oscillations of the block. Four values of the normalized impulse,

S = ¢c / ¢ ,are illustrated, where ¢c is the maximum angle of rota-max cr max

tion which would happen if lift-off were not allowed and ¢cr is given

by (2.4.13). For these plots, equation (2.4.6) was used for the calcula-

tion of S, in which the values of ¢ and y were found by numerical

integration of equations (2.4.3) and (2.4.4). More details about the

procedure followed and the values of the parameters used for this

example are presented in section 2.5.6.

It is seen that a complete equivalence after lift-off between the

two models would require the values of k and ~ to be functions of time.

Of course, this is not desirable because the simplicity of the two

spring foundation would then be lost. In order to overcome this

-difficulty, S is replaced by a representative value, S, which is kept

constant during the time of uplift. In thJs way, unique values of k and
~

~ can be determined. One representative value of S is the average, over

time, of the length of contact. In Appendix I, a parametric analysis

of the exact response is made, for the case of free oscillations, in

order to estimate this average; the result of this analysis is

S
a

/s (2.5.13)

i.e., ~ is inversely proportional to the square root of the normalized
a

impulse, S. Although equation (2.5.13) was derived for a horizontal

impulse, it can be used to estimate S for other horizontal ground

motions. In that case, the value of ¢~ax in the expression for S should

be calculated for the given excitation.
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Changing S to S in equations (2.5.9) and (2.5.11) and equating F
2s

with Fwproduces
3 

k = 4" ko S (2.5.14)

Using this equation and the fact that RA is the same for both systems,

one can find the equation for £ by equating the distances from the

points of application of F
2s

and FWto the corner A. This gives

a S£ = "2 - "3 (2.5. 15)

Although equations (2.5.14) and (2.5.15) were derived for equiva-

lence during lift-off only, they can be used in general for large values

of S, when the time of full contact is small compared to the rocking

period.

2.5.4. General Equivalence

In the previous two sections, relations between the parameters of

the two-spring and the Winkler model were established so that the two

models are equivalent for the two cases of full contact and uplift.

However, if the rocking block vibrates in both states for significant

portions of the response, neither of these sets of expressions is ex-

pected by itself to give good matching between the responses of the

two models. It is needed, therefore, to combine the two cases, if

possible, and find relations which can be used in general.

For a general equivalence of this type, a measurement of the ex-

pected amount of lift-off is needed. Since the ratio, S, (corresponding

to the Winkler model) is the only quantity affecting the normalized

average 1ength of contact duri ng 1itt-off and, in additi on, can be
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regarded as a measurement of the e.xcitation, it is reasonable to employ

this quantity for this purpose. Then, using equations (2.5.6), (2.5.7),

(2.5.14) and (2.5.15), the parameters of an approximately equivalent

two-spring model to the Winkler foundation can be given by

k = ~2 (i k0 a ) + (1 - ~2 ) (t k0S) (2.5.16)

S = _1 (/3 a ) + (1 __1 )(~ _ i) (2.5.17)
62 6 13 2 2 3

When lift-off happens for only a short time compared to the rocking

period, 13 is close to one and the values of k and s resulting from equa

tions (2.5.16) and (2.5.l7) are close to the ones calculated by expres

sions (2.5.6) and (2.5.7). Similarly, when lift-off dominates in the

response, 13 is much greater than one and in the limiting case, in which

13 ~ 00, equations (2.5.161 and (2.5.17) reduce to (2.5.14) and (2.5.15).

The fact that S is raised to the second power in equations (2.5.16)

and (2.5.17) is arbitrary; tbe reason for choosing a quadratic depen-

dence is to force the values of k and s to reach their limiting values

faster when S is very large than is achieved by a linear function.

2.5.5. Estimation of the Rocking Period of Free Oscillations
for the Winkler Model

As an example, let us try to estimate the rocking period of free

vibrations of a block sitting on a Winkler foundation, using the equiva

lent two-spring model. Recall that for the two-spring system and a

horizontal impulse excitation, the rocking period was found in section

2.3.6 and, according to equation (2.3.74), is given by
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(2.5.18)

in which PI is the natural rocking frequency during full contact and S2s

is the normalized impulse. For distinction, the normalized impulse cor-

responding to the two-spring foundation is denoted by S2s and the value

corresponding to the Winkler model by S. In order to calculate the

rocking period of the Winkler foundation, one has to find the values of

Pl and S2s which correspond to the equivalent two-spring model and then,

apply equation (2.5.18) directly.

First, recall that the simplified expressions for the natural

rocki ng frequenci es duri ng full contact (Jar sma 11 angles of rotati on)

for the two-spring and the Winkler foundation are

(2.5.19)

and

(2.5.20)

respectively. Using equations (2.5.16) and (2.5.17), the ratio of these

frequencies can be written as

(2.5.2l)

in which, S is the normalized impulse for the Winkler foundation and ex-

pression (2.5.13) was used for the estimation of S. On the other hand,

substituting the expressions of equivalence into (2.3.65) and using

(2.4.13), the ratio of the critical angles at which lift-off first
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happens for a horizontal excitation can be expressed as

tP(2s)
cr

tP(W)
cr

=

(2.5.22)

Also, if lift-off were not allowed, the ratio of the amplitudes of the

free oscillations for the two models would be

c
tPmax (2~ _

c
tPmax(W)

*E.L
PI

(2.5.23)

From equations (2.5.21), (2.5.22) and (2.5.23), the normalized impulse,

82s ' for the equivalent two-spring foundation can then be written in

terms of 13 as

(2.5.24)

This equation implies that 82s < 1 for 1 < 8 < 1.65. For these

values of B, the two-spring model does not lift-off although the Winkler

system does. Note that the general equivalence, as defined by equations

(2.5.16) and (2.5.17), is based on a combination of the equivalences

during the two individual cases, in which both models are in full contact

or lift-off. For 1 < 13 < 1.65, therefore, equations (2.5.16) and (2.5.17)

cannot be used, since the expressions for the equivalence during lift-

off do not hold. Equations (2.5.6) and (2.5.7) are more appropriate

to be used in this situation. In the following calculations we will

assume that B > 1.65. Equation (2.5.24) is plotted in Fig. 2.5.3.
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Fig. 2.5.3. Relation between the normalized impulse ratios, Sand Szs,
of the Winkler and the equivalent two-spring model.
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Fig. 2.5.4. Increase of the free rocking period of the Winkler model,
as a result of uplift.



-69-

Substituting PI from equation (2.5.21) into (2.5.18), the rocking

period of the Winkler model can be estimated by

T =Tc
13 > 1.65

(2.5.25)

where 132s is given by (2.5.24) and Tc is the natural rocking period for

full contact given by

the two-spring foundation
TFor 13 < 1.65, the formul a for Tc can be extended

TThe ratio , which measures the fractional increase of the rocking
T~

period because of lift-off, is plotted versus 13 in Fig. 2.5.4. It is

seen that for large values of 13, 1- is essentially proportional to 6.Tc
Recall that a similar result was found for

(see Fig. 2.3.6).

linearly down to unity as

T
Tc

1 + (13- 1)
0.65 1::;;13::;;1.65

or, putting (l) =
\Tc 1.65

1.063 one gets

TT
C

= 0.903 + 0.09713 :s; 13 ::;; 1 .65 (2.5.26)
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2.5.6 Numerical Example

As an example, let us consider Robert A. Millikan Memorial Library,

which is located on the campus of the California Institute of Technology

in Pasadena, California. For purposes of illustration we assume no

deformations in the superstructure, i.e., that the building behaves like

a rigid block. Millikan Library is a nine-story building, 69 x 75 feet

(21.03 x 22.86 m) in plan and 144 feet (43.89 m) in height above grade

and 158 feet (48.16 m) above the basement level. A plan view and a N-S

section of the building are shown in Fig. 2.5.5. Assuming all the

masses concentrated on the floors, the following weights of the floors

may be used: roof, 2.6 x 10 6 lbs. (l.18 x 103t); floors 9-3, 1.95 )( 106

lbs. (0.88 x l03t); floor 2,2.43 x 10 6 lbs. (1.10 x 103 t); floor 1,

2.28 x 106 lbs. (1.03 x 10 3 t); base, 7.0 x 10 6 lbs. (3.18 x 10 3 t).

With this distribution of the masses, the center of mass is located at

height, h, equal to 59 ft (18 m) from the base, and the moment of inertia

about the center point of the base, M, for rocking in the N-S direction

is 5.5 x 10 9 lbs. sec. 2 ft (7.6 x 10 5 t • sec 2
• m). More details about

the building can be found in reference 23.

Using Veletsos ' analysis,[21 J Foutch[23J calculated that the

rocking stiffness of the foundation in N-S direction can be modeled by

a rotational spring of stiffness, K~, given by

r 2 K = 3.5 x 1012 ft-lbjrad
e ~

(2.5.27)

where re is the radius of the equivalent circular base, equal to 41 feet

for Millikan Library. A 28% increase of the theoretical value is

included in (2.5.27) to account for embedment[47]. Assuming that the
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B

Fig. 2.5.5. fvIillikan Library Building: (a) foundation plan
and N-S section; (b) typical floor plan;
(c) a N-S section view; (d) view of building
looking Northwest. (From reference 23).
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buil di ng does not 1i ft-off and equati ng the base moments about poi nt M

for the Winkler foundation with the moment resulting from the rotational

spring, for the same angle of tilting, the following relation can be

found for the Winkler model

ko = (2.5.28)

which results to ko = 1.3 X 10 8 1bs/ft2 (6.2 x 10 5 t/m2
). The correspond

*ing static deflection is 0.04 in (l mm).

Figures 2.5.6, 2.5.7, 2.5.8 and 2.5.9 show the free vibrations of

the model for S = 2, 4, 6 and 8, respectively. According to equations

{2.3.62) and {2.4.8) and the definition of S, these values of Bcor

respond to pulses: 0.15,0.30,0.46 and 0.61 m/sec per unit mass,

respectively. For comparison, the maximum pulse in the SOOE component

of the E1 Centro earthquake of May 18, 1940 is 0.525 m/sec (see ref

erence 53). For the Winkler response, equations {2.4.7) and (2.4.8)

were used during full contact; after lift-off. the nonlinear equations

(2.4.3) and (2.4.4) were integrated numerically, using a Runge-Kutta

method for the solution of a system of nonlinear, first order, ordinary

differential equations. The time-step for the numerical integration was

0.001 sec. For the equivalent two-spring models, the response was

obtained using equations (2.3.22) and (2.3.23) during full contact and

equations {2.3.41) and (2.3.42) after lift-off. Note that the over-

turning angle, e, in this example is 0.41 rads, i.e., more than two

orders of magnitude greater than <Pmax for S = 8; dramatically stronger

excitation would be required for overturning.

(*) Although the rotational stiffness of this model agrees with experi
mental data, the resulting static deflection is very small and seems
unrealistic.
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These plots illustrate that the two-spring model, defined byequa

tions (2.5.14) and (2.5.15) (general equivalence) can estimate very well

the response of the Winkler system for practically all values of 8.

Equations (2.5.6) and (2.5.7) (equivalence during full-contact only),

on the other hand, do not give very satisfactory results, especially for

large values of S.

It is interesting to notice that the matching between the responses

of the two systems is much better in the rocking direction than the

vertical one. From the engineering point of view, however, one is

normally more interested in the rocking response of the system, rather

than the vertical motion. Under this assumption, the results of the

general equivalence are very satisfactory.

The response of the two systems, initially at rest, to a horizontal

harmonic excitation is shown in Fig. 2.5.10. The ground acceleration in

this example was

XG = -0. 5g )( sin (t~2 t) (2.5.29 )

where t is in seconds. In order to calculate the appropriate value of S,

the following expression for ¢~ax was used

(2.5.30)

in which Wo is the frequency of the exciting acceleration and ao is

its amplitude. Equation (2.5.30) actually gives the first maximum

value of ¢(t), which would happen if lift-off were not allowed
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(Winkler foundation). General equivalence again gives good results,

especially for the rocking response.

Finally, the significance of lift-off on the behavior of the system

is illustrated in Figs. 2.5.11,2.5.12 and 2.5.13 where the effect of

lift-off on the angle of rotation and the horizontal, relative roof

acceleration (=b~) is shown. The Winkler model was used for these

examples. The dotted lines were found using equation (2.4.8) for all

times. The harmonic excitation used in the results shown in Fig. 2.5.13

is defined by equation (2.5.29). It seems that uplift tends to decrease

the rocking acceleration, but the rotation can be larger or smaller,

depending on the excitation.
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CHAPTER III

ENERGY DISSIPATING FOUNDATION MODELS

3.1 INTRODUCTION

During the earthquake response of buildings and other structures

there is always some energy dissipated in the foundation because of

inelastic behavior of the soil and radiation of energy through wave

propagation. In very strong shaking, the energy dissipated in the

foundation may in some cases be one of the more important factors in

the overall response. For example, it seems that the effect of non-

linear soil behavior was one of the main reasons for the successful

performance of building 41 during the San Fernando earthquake of 1971

(see Ref. 3). Furthermore, the phenomenon of radiation damping can

occur for a linear or nonlinear material and is a well-established con-

cept. The relative importance of radiation damping, in comparison to

other mechanisms of energy dissipation in earthquake response, is not

yet clearly understood, but there appear to be conditions under which

the effect can be very large.[54]

In the simple case of a rigid block rocking on a rigid foundation,

energy is dissipated every time that the pole of rotation changes from

one corner of the base to the other, because of the assumed inelastic

impact (see section 2.2). In contrast, the idealized models supported

by elastic springs, which were used in the previous chapter to model

the effects of flexible foundations, do not allow dissipation of energy

and are different in this regard. In this chapter, some energy dissi

pating mechanisms are added to these models and their effect on the
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response of the block is examined.

The first way to dissipate energy, which is studied in section

3.2, is by introducing dashpots into the models. Although viscous

damping often does not have a direct physical meaning in structural

dynamics, it is an attractive approach because of its simplicity and it

is extensively used for modeling the hysteretic behavior of materials

(e.g., equivalent viscous damping). In this first analysis, dashpots

are connected in parallel with the springs for both the Winkler and the

two-spring model. It should be mentioned here that the problem of

assigning realistic numerical values to the spring and dashpot constants

is by no means trivial and requires a careful analysis. Even for the

simplest case, in which the soil is modeled by an elastic half-space,

modeling by springs and dashpots implies frequency dependent coeffi

cients (for example, see Ref. 39). In many applications, however, it

seems acceptable to use representative, constant coefficients rather

than coefficients depending on frequency; the resulting advantage is

constant coefficients in the differential equations of motion. In the

analysis that follows, the parameters of both the springs and dashpots

are assumed constant and known.

Another way to introduce dissipation of energy in the foundation

is by incorporating inelastic behavior into the springs. Conceptually,

such an approach is probably the best way to consider the hysteretic

behavior of the soil. However, its implementation involves many diffi

culties and it does not seem to be an attractive approach for use in

design. Even the simplest case of an elastic, perfectly plastic, two

spring foundation, which is examined in section 3.3, appears unattractive
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because of the many cases which should be taken under consideration.

Finally, in section 3.4 an impact mechanism is introduced into

the spring foundation models which dissipates energy each time that

full contact is reestablished after lift-off. As was mentioned earlier,

energy is dissipated in this way during the limiting case of the rocking

of a block on a rigid foundation. In addition, if the foundation were

an elastic half-space, each impact would generate a pulse radiating

away from the foundation toward infinity. The impact mechanism dis

cussed in this section is introduced into the spring models of the

foundation in an effort to simulate this radiation damping. Although a

simple impact mechanism can be introduced without much difficulty, it

seems that the effect can be modeled well by the simpler dashpot mech

anism of the proceeding section.

3.2 VISCOUS DAMPING

3.2.1 Two-Spring Foundation

In Fig. 3.2.1a a rocking block on a viscously damped two-spring

foundation is shown. All the assumptions used in the previous chapter

(undamped case) also apply here. For the case of full-contact, the

linearized equations of motion can be written as

my + 2cy + 2ky = -mYG

., 2· (2 ) ..1McjJ + 2cE; cjJ + 2kE; - mgh cjJ = -mhxG

The solution of these equations is

(3.2.1 )

(3.2.2)
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(3.2.3)

(3.2.4)

in which Pl and P2 are the undamped natural frequencies given by expres

sions (2.3.24) and (2.3.25), respectively, and

(3.2.5)
I 2VI (2k~ - mgh)

~1

cS =--
2 /2km

(3.2.6)

(3.2.7)

(3.2.8)

Comparing the damping coefficients for rocking, sl' and vertical

motion, s2' one can write
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(3.2.9)

where A = m~2/IM and a = ~cr/81' ~cr being the critical angle at which

lift-off happens in the absence of vertical oscillations and 81 being

the critical angle at which overturning occurs. As was discussed in

section 2.3.6, A diminishes as the aspect ratio b/a increases and

becomes much less than one for slender blocks (see Fig. 2.3.6). Also,

a « 1, except for unrealistically soft springs. Therefore, equation

(3.2.9) implies that the fraction of critical damping in rocking is

significantly smaller than that for vertical vibrations, i.e., the

damping in the foundation affects the rockinq response of the block

much less than the vertical vibrations.

After lift-off, the linearized equations of motion can be writ

ten in matrix form as (for positive angles of rotation)

in which

[M]r + [C]r + [K]r = F

[: o ][M] =
IM/~2

[C] = {~ -: ]

t; -1 ]
[K] =

l-a

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)
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.. 1

{

-mYG - 2" mg }
F =

h·· 1
-m ~ xG - 2" mg

r = {: l
(3.2.l4)

(3.2.l5)

In the general case, in which a cannot be neglected in compari-

son with unity, uncoupling of the equations using principal coordinates

is not possible (for a general criterion see [56]). In this case, the

Laplace transform could be used for the solution of equation (3.2.l0).

However, for a wide range of the values of the parameters expected to

be encountered in practice, a simpler approximate solution can be found

as follows.

Let ~l and ~2 be the eigenvalues of the matrix [M]-l[K] given

by

(3.2.16)

and let n{l) and n(2) be the corresponding eigenvectors which can be

written as

( i)n = , i = 1,2 (3.2.17)



-90-

in which

~. = 1l./{k/m)
1 1

and the normalization

= 0 ..
lJ

i = 1,2 (3.2.18)

(3.2.19)

has been used, 0.. being the Kronecker delta. Equation (3.2.10) can
lJ

then be written as

(3.2.20)

where [IJ is the unit matrix, [N] is the modal matrix defined by

(3.2.21)

and r = [N]q. The damping matrix in this equation can be expressed as- -

[

cll
[N]T[C] [N] = ~c

-c 12

= AC
m

Jp + (1 -~1)2] [A + (1 -~2)
2

]

-2
11 2

(3.2.22 )
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. In Figs. 3.2.2 and 3.2.3, the ratios cll /c12 and c12/c22 are plotted

versus a for several values of A. The maximum value of a was taken

equal to one, since overturning happens before lift-off for a > 1. It

is clear from these plots that cll » c12 and c12 » c22 for most com

binations of A and a, therefore, one can write,

[N]T[C] [N] ~ AC
m

~2

fll o

o

(3.2.23)

In this case, the solution of the matrix equation (3.2.20) can be writ-

ten as

-[ P t-r 2
= e

(3.2.24)

and

1 J Am Jt [.. ~ h·· ( ( ~l)]--P ~ 2 YG(T)+(l-fll)~xGT)+.l-Tg
2d A+(l-fll) 0

-r,; P (t-T)
x e r 2 sin P

2d
(t-T) dT
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where
(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

and the origin of the time corresponds to the onset of lift~off. After

the vector q has been found, the response of the system can be deter-

mined by

r(t) = [N] q(t)- - (3.2.30)

A much simpler solution can be given in the special case in which

a can be neglected in comparison with one. In that case, it is con-

venient to use the downward displacement, V, of point 0 (see Fig. 3.2.1ah

measured from the equilibrium position and given by

V = t;¢ - y (3.2.31)

instead of y. The equations of motion after lift-off can then be

written in terms of ¢ and V as

I I ( I).. co· + ~ ---!2. V mht; ...• 0
V + mr; Y m I

M
= - 1M xG + YG + 9 1 - 2I

M
(3.2.32)
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('3.2.33)

The solution of equation (3.2.32) may be written as

+ 1

Jl~A - s~

Y(t) - ~ S2P2(l+A)t~( (l-A)) (l+A) j 2 2
= e ~Y(O)-8 (l+A) cosP2 2 T+I-s2 t

(~;fnA) + 1;2Y(O))Sin P2 (1;1.) )1;1. - 1;~ t]

x (1 +A)
sinP2 2 (3.2.34)

while double integration of equation (3.2.33) gives

m~[h g 2 ]¢(t) = - Y(t) - - xG(t) - yG(t) - -2 t + Clt + C2I o ~

in which

(3.2.35)

I
Cl = m~ ¢(O) - Y(O) + ~ xG(O) + YG(O)

I h
C2 = m~ ¢(O) - Y(O) + I xG(O) + YG(O)

} (3.2.36)

As was discussed in-section 2.3.6, wherein the free oscillations

of the corresponding undamped case were studied, the bracketed term in

the right hand side of equation (3.2.34) can be neglected for many

applications when Y(t) is substituted in equation (3.2.35). Then, for

the free oscillations of the block, equation (3.2.35) implies that the
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rocking response can be again approximated by an inverted parabola.

Since the vertical oscillation has been neglected in the rocking motion,

the motion after lift-off does not generate significant forces in the

one dashpot that is still engaged. As a result, the effect of damping

on this solution arises only in the initial rocking velocity (at the

time of lift-off), ~(O), which affects the value of the coefficient (1.

A more detailed analysis may be performed in this case, similar to the

one done in section 2.3.6, and the apparent ratio of critical damping in

rocking may be determined. This is done in the following analysis, to

first order accuracy.

Let us assume that sl is small, so that terms including powers of

sl greater than one can be neglected. Then one can write

and for a horizontal impulse excitation, equation (3.2.4) reduces to

-S P t
¢{.t) = ¢c e llsinpt

max 1 (3.2.37)

in which ¢~ax ¢(O)/Pl· The time, to' at which lift-off first happens

can then be given by the solution of equation

-S P t
e llo inp t = 1s loB (3.2.38)

in which S = ¢~a/¢cr and ¢cr = IS/f;. The angular velocity at that

time is

(3.2.39)

Substituting into equations (3.2.36), the angle of rotation after lift-
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off can be expressed as

which comes from equation (3.2.35) after the harmonic part of Y(t) was

neglected. This function obtains its maximum value at time, t 1, given

by

(3.2.41)

Substituting into (3.2.40), the maximum value of the angle of rotation

can be determined by

[

-2, p t I -2, pt' ]S2e 11 o_2' YS 2e 110_ 1 +1
ep _ ep 1 + ;\(1-;\)

max - cr 2(1+;\) . (1+;\)2
(3.2.42)

Recall that for the undamped case it ·was found that the apparent

rocking response can be expressed as

where

~ 2 ]~u _ ~ 13 +1 + ;\(1-;\)
max - cr 2(1+;\) (1+;\)2

(3.2.43)

(3.2.44)

and p = 2n/T is the apparent rocking frequency.

given by equation (2.3.76).

An expression for T is

Now,for the damped case, let, be the apparent fraction of criti-

cal damping. Assuming that, is small, one can write
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-I:;pt
¢(t) = <P~ax e sin pt

This function attains its maximum value when

-1(1)pt = tan ~

(3.2.45)

(3.2.46)

Substituting into (3.2.45) and comparing with (3.2.42), the following

equation in I:; can be obtained

(
2 -21:;1Pl t o I 2 -21:;1P l t o )

S e - 21:; 1 ~S e - 1 + 1
=

(S2+1)(l+A) + 2A(l-A)
(3.2.47)

The solution of this equation, which can be obtained by trial and error,

will determine the value of the apparent ratio of critical damping. The

effect of lift-off on this coefficient is shown in Fig. 3.2.4, where the

ratio 1:;/1:;1 is plotted versus the normalized impulse, S, for A= 0.05 and

1:;1 = 0.05. After a small increase, which may be an error in the approxi

mation, it is seen that the apparent damping decreases rapidly with

amplitude.

This analysis can be applied to establish an equivalent linear

system, similar to the one discussed in section 2.3.6. For this system

lift-off is not allowed and the foundation stiffness and damping are

such that the undamped rocking period is equal to T, which is given by

equation (2.3.76), and the ratio of critical damping is 1:;. Then the

overall rocking response of the system to a horizontal excitation can

be approximated by the rocking response of the equivalent linear system
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multiplied by the correction factor, CF, given by (2.3.82).

3.2.2 Winkler Foundation

For the Winkler model, the dashpots are introduced in the founda-

tion in parallel with the springs as shown in Fig. 3.2.lb. As in the

undamped case, the equations of motion after lift-off are highly non

linear and coupled and, apparently, they can only be solved numerically.

Because of this complexity, the Winkler model is not an attractive

model for simplified analyses. The linearized equations of motion dur-

ing full contact and the fully nonlinear equations after lift-off are:

Full contact

After lift-off

~ (
2 2 2~ ].. a 0 y. a 0 oy .

my + Co (2 + ¢ - ¢")y - 8" - 2ep2 + ep2 - ~ ep

(
2 2 2)a a 0 oy y 1 ..

+ ko 2Y- 8" ep - 2ep + ._¢ - 2ep =- 2 mg - mYG

(3.2.48)

(3.2.49)

(3.2.50)

(3.2.51)
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in which k and c are the spring and dashpot constants, respectively.o 0

The equations after lift-off, as given above, are valid only for posi-

tive angles of rotation.

For the full contact case, the equations of motion are uncoupled

and can be solved directly. The undamped natural frequencies in rocking

and vertical directions, p; and p;, are given by equations (2.4.9) and

(2.4.10) and the corresponding damping coefficients are

c a2
1;;* 0 a=
~

ko1~i(~~- hO)
1

* Co
Jk:m1;;2 = 2

The ratio of these coefficients is

*1;;2

j12 ma 2
- =
* *1;;2 1M(1 - 3a )

(3.2.52)

(3.2.53)

(3.2.54)

in which
¢cr

a* =-e

28
~ = - is the critical angle at which lift-off happens in the absence't'cr a

of vertical oscillations and

applications a* « 1 and for

e = :h is the overturning angle.
2slender structures, rna «121M,

For many

Under

these conditions, equation (3.2.54) implies that the vertical oscilla

tions during full contact are much more damped than rocking motions.

Recall that the same conclusion was drawn for the two-spring foundation.
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3.2.3 Equivalence between the Winkler Foundation and the Two-Spring

Model

As in the undamped case, although the Hinkler foundation is a

commonly used model for the soil, it involves many difficulties when it

is applied to the rocking of structures, because of the complicated

equations of motion resulting from the varying area of contact. The

two-spring foundation, on the other hand, leads to much simpler equa-

tions which can be solved analytically. An equivalence established

between the two models, therefore, would allow using the two-spring

model instead of the complicated continuous elastic foundation. As was

discussed in the previous chapter, one seeks relations between the

parameters of the two foundation models, such that the resultant ver-

tical forces from the foundation and their points of application are

the same in the two cases. For the damped problem, however, the

forces resulted from the springs and the dashpots have to be distin

guished and treated separately. In this way, three equations can be

found for the determination of the three unknown parameters of the two-

spring foundation, k, c, and ~, in terms of the geometry of contact and

the Winkler constants, ko and co' Two different sets of relations can

be found for the two regimes, before and after lift-off. The final

expressions are:
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Equivalence during full contact

c = c~a

~ _ a/I
s - -6-

Equivalence after lift-off

3 k = - k S4 0

3 c = - c S4 0

(3.2.55)

(3.2.56)

(3.2.57)

(3.2.58)

(3.2.59)

(3.2.60)

-where S is the average length of contact during uplift for the

Winkler foundation. In Appendix I, an empirical formula for

the estimation ofS was found for the case of undamped free oscil

lations [see equation (I.6)J. When damping exists, however,

this formula cannot be applied directly because it is not clear which

va1ue of ¢~ax shoul d be used. Under impulse loading, with damping,

the average length of contact over each half cycle increases with
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time, and eventua lly becomes equal to a (no 1ift-off) . The

uncerta i nty of the appropri ate value of cPcis even 1a rger formax

a continuous random excitation. It is c1ear, however, from the

example of section 2.5.6, that the equivalent two-spring model

of the Winkler foundation is not very sensitive to the value of

S. Also, from the engineering viewpoint, one is often primarily

interested in the maximum amplitude of the response. Therefore,

the maximum angle of rotation which would happen if lift-off

were not allowed is suggested for the calculation of S. This

value can be thought of as an estimate of the average length

of contact during the half cycle at which this maximum rocking

amplitude occurs. In this way, S can be estimated by equation

(I.6) with cP~ax calculated by the solution of equation

(3.2.49) or, directly, by means of response spectra.

General equivalence

For a general equivalence, the expression found for the two

different regimes of full contact and upl ift can be combi ned,

similarly to the undamped case, i.e.,
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k = _1 (1 k a) + (1 - l)(l k s)
(32 2 0 (32 4 0

c = _1 (1 c a) +(1 - _1.)(1 c s)
(32 2 0 (32 4 0

1; = _1.(al3 )+ (1 _ l)(~ _i)
(32 6 (32 2 3

3.2.4 Numerical Example

(3.2.61)

(3.2.62)

(3.2.63)

As an example, let us again consider the free oscillations of a

rigid block the size of Millikan Library, with the motion generated by

a horizontal impulse. A description of the building and the values of

the parameters were presented in section 2.5.6. The only new parameter

is the damping coefficient of the Winkler foundation, co' which can be

estimated by using Veletsos· analysis[21J; the procedure is similar to

the determination of the spring constant, ko. For Millikan Library

and (3e = 0.2 (see [21J), the damping coefficient, C~, of the rotational

dashpot is found to be

2 10r e Ccp = 1.58x 10 ft-lb-sec/rad (3.2.64)

where r is the radius of the equivalent circular base. The value of
e

c can then be found by equating the foundation moments about point Mo
for the Winkler foundation and the rotational spring-dashpot system,

which gives

Using (3.2.64), this equation gives Co

(3.2.65)

= 5.77 x 105 lbs-sec/ft2
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(2.82 x 103 t-sec/m2). The corresponding ratios of critical damping

during full contact, as defined by expressions {3.2.52} and {3.2.53},

are s~ = 5.7% and s~ = 22.7%.

Figures 3.2.5 and 3.2.6 show the free oscillations of the example

for S = 4 and S = 8, respectively. The physical significance of these

values of S is given in section 2.5.6. The value of ¢~ax was approx

imated by using the solution of equation (3.2.49), i.e.,

(3.2.66)

in which ¢ is the initial angular velocity. The response of theo
Winkler system was calculated numerically {after lift-off}; for the two-

spring foundation, the response was obtained via equations {3.2.3} and

{3.2.4} during full contact and equations {3.2.24}, (3.2.25), and

{3.2.30} after lift-off. It is evident from these plots that the two-

spring model, defined by the relations of the general equivalence, can

match the response of the Winkler system very well, especially for small

time. The matching between the two responses worsens with time, but

this behavior was expected, since S was calculated using as ¢~ax the

value of the maximum angle of rotation, which happens during the first

half-period. From the engineering viewpoint, however, one is mainly

interested in the response of the larger amplitudes, therefore, the

results of the general equivalence are satisfactory.
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3.3 TWO-SPRING FOUNDATION WITH ELASTIC-PERFECTLY

PLASTIC SPRINGS

Inelastic action of the soil is one of the main mechanisms by

which energy is dissipated in the foundation during the rocking of

structures under very strong shaking. This behavior can be considered

in the foundation models used earlier (Winkler or two-spring founda

tion) by assuming that the springs are behaving inelastically. Of

course, this would introduce additional complications into the equations

of motion, and the added complexity may limit the use of the model. In

this section, the simplest case of a two-spring foundation with elastic

perfectly plastic springs is examined.

In Fig. 3.3.1 the force-displacement behavior of the springs is

shown. We assume that the block has been rocking for some time, so

. that the springs at points 0 and· 01 have already experienced plastic

deformations, Y~ and Y~, respectively. Because of the different pos

sible states of the two springs, there are five different cases which

should be considered. The corresponding linearized equations of motion

for these five cases are:

(a) Full contact - Elastic region

my + 2ky = - mYG - k(Y~ + y~)

IM ¢ + (2k~2 - mgh)¢ = -mhxG + k~(Y~ - Y~)

(b) Full contact - Right spring in plastic region

my + ky + k~¢ = -mYG + F0 - t mg - kY~

(3.3.1)

(3.3.2)

(3.3.3)
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-111-

(c) Full contact - Both springs in plastic region

my = -my + 2F - mg
G 0

(d) After lift-off - Spring in elastic region

.. .. 1
- kY~my + ky - ks~ = -my - - mgG 2

.. ( 2 1 ) .. 1
ksYPIM~ + ks -"2 mgh ~ - ksY = -mhxG- 2" mgs + 1

(e) After lift-off - Spring in plastic region

..
-my + F - mgmy = G 0

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

in which Fo is the yield force of the springs and the angle of tilting

was assumed positive. For negative ~, similar equations hold.

Although each of the above equations can be solved analytically,

the calculation of the response of the block is complicated because the

system repeatedly changes from one regime to another. Hence, one not

only has to monitor the transition from full contact to lift-off and

vice versa but also the states of yielding and unloading for both

springs. Therefore, even the simplest case of elastic, perfectly-plastic

springs does not appear to be attractive for practical applications. The

difficulties are expected to increase if more complex force-displacement

relations are introduced. Yielding foundation models are not examined
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further in this thesis, although further research in this direction is

certainly possible.

3.4 DISSIPATION OF ENERGY DURING IMPACT

Energy dissipation from impact is expected to occur in actual

situations where lift-off happens. For rocking of a rigid block on a

rigid foundation, Housner[l] found that energy is dissipated every

time that the block hits the base and changes its pole of rotation

from one corner of the base to the other. In this case, the assumed

kinematics of the problem require dissipation of energy, which is

described by the coefficient Q (see section 2.2). All the other

foundation models introduced so far do not permit dissipation of energy

upon impact.

In this section, an analysis is first made assuming that an

impact is generated when the block regains full contact with the base.

Then, in section 3.4.2, a mechanism is introduced which generates this

kind of impact. Such a mechanism can be used together with dashpots or

e1astop1astic springs with both the Winkler and two-spring foundations.

3.4.1 Analysis

Consider a block rocking on a two-spring foundation and look

particularly at the time when the block reestablishes contact with the

left spring, after having uplifted. The simplest way to introduce

dissipation of energy from impact is by assuming that the vertical

velocity of point 0' is suddenly reduced by some impact mechanism (see

Fig. 3.4.1). This implies that ¢ and yare also changed. Let ¢1 and
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Yl be the corresponding values before impact, and ~2' Y2 after it.

Since the velocity of point A· is, to first order, (y + .;~), one can

write

(3.4.1)

where € is a coefficient of restitution which satisfies the inequality

(3.4.2)

For the limiting case of € = 1 no energy is dissipated, while for € = a

the maximum possible amount of energy is lost because of the impact

against a (momentarily) rigid support.

Let I be the vertical impulse generated at point O' and IA be the

resulting horizontal impulse at point A. Application of the impulse

momentum principle to vertical, horizontal and rocking (about the

center of mass) motions and elimination of IA finally reduces to

(3.4.3)

and

(3.4.4)

Substituting in equation (3.4.1), the impulse I can be expressed in

terms of € and the initial velocities as

(3.4.5)

in which 1
0

is the moment of inertia about the point a or a'.
Since the angle of rotation, ¢, is assumed to be small, the term

mh';¢ can be neglected in comparison with 1
0

in the above equation.
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Substituting back into equations (3.4.3) and (3.4.4) one gets the fol-

lowing expressions for the velocities after impact

(3.4.6)

(3.4.7)

The energy dissipated is equal to the difference of the kinetic

energies before and after the impact, which gives

The maximum dissipation of energy occurs for € = 0 and is

I
1 M (. .)2

(,~E)max = 2 m-I Yl + s<P lo

(3.4.8)

(3.4.9)

In order to interpret these results for the calculation of the

response of the system it is necessary to use the reduced values of the

velocities, as given by equations (3.4.6) and (3.4.7) as initial veloc-

ities for the full contact case. For a Winkler foundation, the value

of S should be taken equal to aj2.

Comparison with Housner's results

As an example, let us consider the limiting case of a rigid

a afoundation, in which s =2' y = 2<P and € = O. Then, the energy loss

during the impact, according to equation (3.4.8), is

(3.4.10)

According to Housner's results (see equation (2.2.5))
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therefore, the energy dissipated is

1 2 ( ml) ·2
~E =2 ma I - 41

0
¢l

Since in this case,

a2
I = I - ml Mo· 4

equation (3.4.11) is identical to equation (3.4.10)

3.4.2 An Impact Mechanism

(3.4.11)

In this section, an impact mechanism which reduces the velocity of

point 0' according to equation (3.4.1) is presented. A dashpot of con-

stant c* is connected in series, on the top of the spring, k, and the

dashpot, c, as shown in Fig. 3.4.2a. We assume that c* is large, and

in the limit c* + 00. Because of its large coefficient, the dashpot

forms an essentially rigid link and, as shown in Fig. 3.4.2a, does not

affect the response of the system except during impact.

At the time of impact, however, we assume that the dashpot, c*, is

locked as shown in Fig. 3.4.2b, for a small time, ~t, which in the limit

goes to zero. The time ~t can be viewed as the time for the dashpot

plunger to move a distance ~z, unlocking the dashpot at the end of its

travel. During that time, the spring, k, and the dashpot, c, are not

activated, and the response is affected by the impact dashpot only. As

a result, the velocity of point O' is reduced. After time ~t, the

impact dashpot is unlocked, and its effect on the response ceases.
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(0) Unlocked

(b) Locked

Fig. 3.4.2. Impact mechanism.
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Let us now look analytically at the behavior of the block during

the time 6t. The vertical forces from the foundation are

The governing equations of motion then, are

at point 0

at point 0'

my + (c* + c)y + (c* - cH:¢ + ky - k~<p =- ~g - myG (3.4.12)

Let Yl' <P l , Yl' ¢l be the displacements and velocities at the

onset of contact. One can then write,

(3.4.14)

Substituting in equations (3.4.12) and (3.4.13) and taking under con

sideration that Yl,<Pl satisfy equation (3.2.10), yields

(3.4.15)

I M6¢ + c*~Yl + (c* - C)~6Y + c*~2¢1 + (c* + c )~26¢ + (k~2 - m~h)6<P - k~6Y= 0
(3.4.16)

Since c* + 00 and ~t + 0, the impact mechanism is expected to affect the

velocities significantly, but not the displacements. It is reasonable,

therefore, to assume

6Y = ~<P = 0 (3.4.17)
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Also, c can be neglected in comparison with c*. Equations {3.4.15} and

{3.4.16} then reduce to

{3.4.18}

{3.4.19}

which give

{3.4.20}

At t = 0, 6y + ~6~ = 0, therefore, the solution of {3.4.20} can be

written as

{3.4.21 }

The final velocity of point 0' at time t=6t is

{3.4 .22}

Making the final assumption that c* + 00 and 6t + 0 in such a way that

C*6t is constant, we can put

_(I O C*6t)
E = e IM m

Equation (3.4.22) can be written as

{3.4.23}

which is the same as equation (3.4.1). The unlocking impact dashpot,

therefore, is equivalent to a coefficient of restitution, E, which
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depends on the ratio IoIIN, the mass, m, of the block, and the constant

c*~t, which is a property of the dashpot. For (c*~t) + 0, € + 1, and

there is no energy dissipated during the impact. For c*~t + 00, € + 0

and the maximum possible amount of energy is lost. The equivalence

can be checked by calculating the energy lost during the impact. This

energy is equal to the work done by the impact dashpot, i.e.,

~t I

f (. .)2 1 M( 2 )(. .)2
~E = c* Y+ l;¢ dt = 2" m-I 1 - € Yl + tAl

\ ao

which agrees with equation (3.4.8).

3.4.3 Numerical Example

(3.4.25)

The effect of the dissipation of energy during impact on the

response of the block is illustrated in Fig. 3.4.3 for the same example

based on Millikan Library that was used in section 3.2.4. The two

spring model (general equivalence) was used instead of the Winkler

foundation. The two extreme cases of € = 0 (maximum possible dissipa-

tion of energy) and € = 1 (no loss of energy) are plotted with solid

and fine dashed lines, respectively. It is evident that the dissipation

of energy during impact may be significant for values of € close to zero.

However, the response of the block for .€ = 0 has the same

appearance that is produced by simply adding more damping to the founda-

tion. As it is shown in Fig. 3.4.3, the response for € = 0 can be

closely matched by a 130% increase of the dashpot constant, c, and

neglecting the impact. This suggests that in many cases viscous damp

ing in the foundation may adequately model the effect of dissipation

of energy upon impact. Considering the nature of the other assumptions
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made in the analysis of tipping bodies, the simple modeling of energy

dissipation from impact by means of additional foundation damping would

appear to be justified in most applications.

The amount of the necessary increase in the value of the damping

coefficient would have to be established, however. One way to do this

would be by equating the energy dissipated per cycle. The equivalent

linear system established in section 3.2.1 could be used for an approxi

mate solution.



-123-

CHAPTER IV

DYNAMICS OF FLEXIBLE SUPERSTRUCTURES

4.1 INTRODUCTION

In this chapter, the dynamics of a flexible structure rocking on

a flexible foundation are examined. For simplicity, the two-spring

foundation is considered. It is assumed that the equivalence between

the Winkler foundation and the two-spring model, established for the

case of a rocking rigid block, can again be used. The system is

excited by horizontal and vertical ground accelerations, xG and YG'

respectively. These are strong enough to cause separation of the

structure from one of the foundation springs, but not from both. No

slipping between the base and the foundation is allowed, therefore,

the dynamic coupling between the superstructure and the ground results

in two extra degrees of freedom for the system, in addition to the

degrees of freedom of the superstructure itself.

First, the simple case of a single-degree-of-freedom structure

with concentrated mass is examined in section 4.2. The rocking of

this simple oscillator on a rigid foundation was first examined by

Meek[15]; a comparison between that solution and the response for a

flexible ground is presented in section 4.2.5. The more general case

of a multidegree of freedom structure rocking on a two-spring founda

tion is studied in section 4.3.
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4.2 DYNAMICS OF A SINGLE DEGREE OF FREEDOM

SUPERSTRUCTURE

4.2.1 System Considered

The system considered herein is shown in Fig. 4.2.1. The super

structure consists of a concentrated mass, m, placed at height, h, and

connected with the base through a massless rod of stiffness, K, and

damping constant, C. The foundation is modeled by two springs of stiff

ness, k, and damping, c, placed symmetrically at the corners of the

base, which has length, 2~, and is assumed rigid and massless. The

horizontal and vertical ground acceleration are denoted by xG and YG,

respectively, and the assumption of no slipping between the structure

and the foundation is applied. Formulated this way, the system possesses

three degrees of freedom, namely, rotation in the plane of motion,

denoted by ¢, vertical displacement of the mass, denoted by y, and

horizontal displacement of the mass relative to the base, excluding

rotations, measured by the shear deformation, u.

The system may be viewed as a highly simplified model of a single

story building or other structure, or as the equivalent simple oscilla

tor modelling a mode of vibration of a more complex vibrating system.

In the latter case, the values of m, h, K, and C should be calculated

by the standard earthquake engineering methods, applied for fixed-base

response (e.g., see Ref. 55). The foundation parameters, k, c, and

the length, ~, can be obtained from the equations of equivalence

between the Winkler and the two-spring foundation, as defined in sec

tion 3.2.3. Note that the value of S, which enters these equations,
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should be calculated for the flexible superstructure. It should be men-

tioned, moreover, that the response of a multi-degree-of-freedom inter-

acting system calculated by this method will be approximate, primarily

because the effect of lift-off on the response is nonlinear and there

fore the total response cannot be obtained by the superposition of the

responses of the individual modes.

4.2.2 Equations of Motion

Free body diagrams for the mass and the system are shown in Figs.

4.2.2a and b. Applying Newton1s second law, and assuming displacements

small enough that sin{¢ + *) can be replaced by (¢ + *) and cos{¢ + *)
by unity, the following equations for the mass can be derived

.. ...
N = mg + myG + my

which finally reduce to the equation

in which

(4.2.1 )

(4.2.2)

(4.2.3)

x = h¢ (4.2.4)

2 K (4.2.5)w - -m

1;;s =_C. (4.2.6)
21RiTI

The external forces acting on the system, which are shown in Fig.

4.2.2b for positive angles of rotation, are
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F1 = c(-y + t¢) + k(o-y+~¢)

F = {-c(y+~¢} + k(o-y-~cP}

2 a

before 1i ft-off

after lift-off

Then, in addition to equation (4.2.3), the other two equations of motion

(in the vertical and rocking directions) are

Full contact

(4.2.7)

(4.2.8)

.[
2

(4.2.9)

x+ii ± ;2 (XG+ii+x) x +1;2P2[(~f x :;. b+C~U)y :;. ~ (X~U)X]

2 2 2 2
+ Pl (~l x- ~(X~u) + ~2 (~)y + ~2 (X~U)y +Pl (~)(X~U)x

in which

= -x + ~
G 2h

(4.2.10)
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(4.2.11)

(4.2.12)

Whenever a double sign appears in these equations, the upper one cor

responds to positive angles of rotation and the lower one to negative

ones. In this first presentation, all the nonlinear terms were kept.

4.2.3 Undamped Case

For simplicity, let us first consider the case in which there is

no damping in the foundation or the superstructure. The equations of

motion can then be greatly simplified.

Full contact

Subtracting equation (4.2.3) from equation (4.2.8), using (4.2.7),

and dropping the nonlinear terms from the resulting expression, one

gets
2

't;)2 P2
u = ~h 2 x

w
(4.2.13)

which means that the variables u and x are not independent but linearly

related to each other. Using equation (4.2.13) as a constraint, the

problem reduces to the solution of two uncoupled differential equations.

Let us defi ne

v{t) = u{t) + x{t) (4.2.14)

Recall that x{t) measures the horizontal displacement of the mass,

which results from the rotation, and u{t) the shear distortion.
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Therefore, v(t) measures the total horizontal displacement of the mass.

Equations (4.2.13) and (4.2.14) reduce to the following relations

x(t) =( 2 W~2 2 )V(tl
OJ + a. P2

(
a2p~ )

u(t) = 2 ~2 2 v(t)
OJ + a. P2

Ci=I
h

(4.2.15)

(4.2.16)

(4.2.17)

Note that the value of tan-la determines the overturning angle. Sub-

stituting into (4.2.3) and dropping the nonlinear terms, one finally

gets

(
~2 2 2 ~a. OJ p.. 2.9. _ ..

v + 2 ~2 2 - h v - - xG
OJ + a. P2

(4.2.18)

The square root of the quantity in parenthesis in the above equa

tion will determine the natural frequency, w, of the soil-structure

interacting system, i.e.,

~2
OJ

~2 2 2
a OJ P2 _.9..

2 ~2 2 h
OJ + a. P2

(4.2.19)

The solution of the equations of motion can then be written as

y(t) = y(O) cos P t + i~in
2 P2



u(t)

x(t) = M(t)
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t

[v(O) cos wt + v~O) sin wt -bJ
W W a

= w
2

[v(O)coswt+'y~O)sinwt2 ~2 2
w + a P2 w

t

~ J xG(T)sinw(t-T)dT]
a

(4.2.21)

(4.2.22)

For many practical applications, the term g/h can be neglected

in equation (4.2.19). Then

(4.2.23)

In this case, equation (4.2.21) implies that the earthquake response of

the simple oscillator-foundation system, during full contact, is

equivalent to the response of a one-degree-of-freedom oscillator of

natural frequency w, resting on a rigid foundation and subjected to
~ 2 ..

effective ground acceleration equal to (w/w) xG(t). This behavior

was also reported by Jennings and Bielak.[19]

On the other hand, one can write

(4.2.24)

where Pl is the approximate rocking frequency during full contact of

the corresponding rigid superstructure. Then, equation (4.2.22)

implies. that the rocking response of the system can also be given by

the response of the equivalent oscillator, if the latter is subjected

1 ~ )2 .. ( )to ground acceleration equal to h (w/Pl xG t .
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It is evident from equation (4.2.23) that ~ is smaller than both

wand Pl' Therefore, the dynamic coupling between the structure and

the foundation results in a system which is softer than either the sys-

tern of the structure on a rigid foundation or the system of the rigid

structure on a flexible foundation.

After lift-off

For simplicity let us consider the case of positive angles of

rotation. Substituting equation (4.2.9) into (4.2.3), subtracting the

resulting equation from (4.2.10), and dropping the nonlinear terms

reduces to

-2 2 - 2 2 - ( )a P2 x - aP2Y - 2w u + ga = 0 4.2.25

which again is a constraint between the variables x, y, and u. In

contrast to the case of full contact, however, the vertical displace-

ment of the system is now coupled with the rotation and the shear

deformation.

Making again the transformation v(t) = u(t) + x(t), one gets

x(t)

u(t) =

a.p~ y(t) + 2w2v(t) - ga.
2 -2 2

2w + a P2

- 2 ( ) -2 2 () -- aP2 Y t + a P2 v t + ga
2 -2 2

2w + a P2

(4.2.26)

(4.2.27)

and the governing equations of motion reduce to
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~
2 ~2 2 )w + a P2

- g 2 2 2
2w +a P2

(4.2.28)

~ 2 2
aw P2

2 ~2 2 Y =
2w + a P2

~ 2
aw

- g 2 ~2 2
2w + a P2

(4.2.29)

The characteristic equation of this system of equations is

(4.2.30)

This equation has two real and two imaginary roots, which can be writ

ten as ±nl and ±i~2' where Ql and ~2 are real and positive. The real

roots lead to the expected hyperbolic functions in the solution.

For slender structures, a is a small quantity, therefore a2 can

be neglected in comparison to unity. In this case, approximate values

for Ql and Q2 can be found from equation (4.2.30), which are

(4.2.31)

(4.2.32)

J 2 ~2 2
2w + a P2

The system of equations (4.2.28) and (4.2.29) can be solved by

standard methods. The final expressions for the response are
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(4.2.33)
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The origin of time in these equations is at the onset of lift-off.

After y(t) and v(t) have been found, ¢(t) and u(t) can be determined by

equations (4.2.26) and (4.2.27).

General response

In order to calculate the total response, one has to determine at
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each time step whether the system is in the state of full contact or

uplift, and then apply the appropriate set of equations. When the sys

tem changes from one state to the other, the final conditions of the

first case should be used as initial conditions for the next one.

A much simpler solution can be derived by neglecting the gravity

terms in the left-hand side of the equations of motion, which is a good

approximation for small angles of rotation. Then, the response after

lift-off is given by the superposition of a parabolic and a harmonic

term. Since this solution is derived as an approximate, first-mode

solution for the response of a multistory structure (see section 4.3.3),

it is not presented here.

4.2.4 Damped Case

If damping exists in the superstructure and the foundation, equa

tions (4.2.13) and (4.2.25) are not valid. With damping, x and u are

not linearly dependent but are related through a first-order differen

tial equation. After lift-off, y is coupled with x and u also.

Therefore, one has to solve a system of two differential equations in

x and u during full contact, and a system of three differential equa

tions in x, u, and y after uplift. This problem can be treated as a

special case of the n-story superstructure, which is examined in sec

tion 4.3.

4.2.5 Example

As an example, let us consider the simple oscillator which models

the first mode of Millikan Library. If n is the first eigenvector, one
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can write (according to Ref. 55)

[ 10
m.n J2 10

ifl
I m.h·n·

1 1 i=l 1 1 1

and h =m= 10
2 10

I m·n· I m·n·
i=l 1 1 i=l 1 1

For Mi 11 i kan Library, these expressions reduce to m= 0.66 x 1O\-sec2/m

and h = 32.6 m. Also, w = 1.88 Hz. For the foundation take:

k = 6.56 x 106 tIm and ~ = 6.07 m. (These values were found from the

Winkler stiffness used in section 2.5.6, considering the equivalent

two-spring model during full contact.) Then, a = 0.186, P2= 22.4 Hz,

and Pl =aP2 = 4.17 Hz.

In Figs. 4.2.3 and 4.2.4 the rocking response and shear distor-

tion are shown for a horizontal impulse excitation. The value of B was

3, which corresponds to an initial horizontal velocity equal to 507mm/s.

It is evident from these plots that lift-off greatly affects the

response of the system, since both the fixed base response (not shown)

and the response for the flexible foundation in which lift-off is not

allowed are much different from the solution obtained from this analy

sis. On the other hand, the solution obtained by Meek[15] for the

rocking of the structure on a rigid foundation gives good results. It

should be mentioned, however, that the foundation was quite stiff in

this example; softer foundations may not yield such good agreement.

4.3 DYNAMICS OF A MULTIDEGREE OF FREEDOM STRUCTURE

4.3.1 System Considered and Equations of Motion

The system under investigation is shown in Fig. 4.3.1. The
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superstructure consists of n+l rigid masses, concentrated at the floor

levels and connected with massless, viscously damped members, so that

there is one degree of freedom per floor. The building is supported

by a two-spring foundation with springs of stiffness k and dashpots of

constant c, placed symmetrically, a distance s from the center of the

base, M. The system, initially at rest, is subjected to horizontal

and vertical ground accelerations, xG and YG respectively, and no

slippage is allowed between the base and the foundation. Formulated

this way, the building-foundation system possesses n+2 degrees of- free-

dom, namely, rotation of the structure in the plane of motion, measured

by the angle~, vertical translation measured by the vertical displace-

ment of the center of mass, y, and displacement of the superstructure

at the i th floor relative to the base, excluding rotations, denoted by

up i=1,2,···,n.

For the special case of a superstructure deforming only in shear,

the equations of motion for the building-foundation interactive system

are derived in Appendix II. In general, for small displacements, the

equations of motion can be written as

[M] u+ [C] U+ [K] u = - [t1] (h¢ - 1 g~ + ~ xG)

and

Full contact

.. . 2 ..
Y + 2r;2P2Y + P2 Y =- YG

n n mh1 \". . 2 ~ \' c·'
~ + -r L. m.h.u. + 2r;lPl~+Pl¢ - r L. m.u. =--r- xGMi=l 1 11 Mi=l 11 M )

(4.3.1 )

(4.3.2)

(4.3.3)
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(4.3.4)

(4.3.5)

2
1 n 1;;lPl. Pl k; -.JL n

¢ + -I I m.h.u. + S1Pl 1> - -/:"- Y + -2 ¢ - -I Y- '? I I m· u. =
M i=l ", S M - M i=l ' ,

mh
= _ mg; __c X

21M 1M G

In these equations, u = {u.} and h = {h.} are column vectors; 1, _ ,
is the column vector with unit elements; h. is the height of the i th,
floor measured from the base level, and hc is the height at which the

center of mass is located; m. is the mass of the i th story, and m is
n'

the total mass, i.e., m = I m., m being the base mass; 1Mis the
i=O' 0

total moment of inertia about the middle point of the base, M, and can

be written as

I =
M

n
I

i=O
1. +,

n

I
i =1

2m.h., , (4.3.6)

in which Ii is the centroidal moment of inertia of the i th mass; Pl'

P2' 1;;1' and 1;;2 are defined by equations (2.3.24), (2.3.25), (3.2.5),

and (3.2.6), respectively, and are the characteristic frequencies and

ratios of critical damping during full contact for rocking and vertical

motions of the corresponding rigid superstructure; [M], [CJ, and [K]

are the mass, damping, and stiffness matrices of-the superstructure,

calculated for fixed base response.

The matrix [M] is diagonal and the matrices [K] and [C] are sym

metric and positive definite. For a shear structure, [K] and [C] are
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tri-diagonal but this property does not hold, in general, if bending

deformation is also taken under consideration. Let w be the r th eigen
r

value of the matrix [M]-l[K], n(r) the corresponding eigenvector, and

[N] the modal matrix defined by

The eigenvectors can be normalized so that

[N]T U1] [N] = [I]

and

(4.3.7)

(4.3.8)

(4.3.9)

where [I] is the identity matrix. Then, making the transformation,

u(t) = [N] q(t) (4.3.10)- -
and substituting into equation (4.3.1) with premultiplication by [N]T,

one finds

If the superstructure admits decomposition into classical normal

modes, the matrix [N]T [C][N] will be diagonal (see Caughey and

0'Kelly[56] for conditions for this to occur). It is assumed here that

classical normal modes exist, since buildings seem to possess such modes

over a significant range of amplitudes.

Equation (4.3.11) reduces then to a system of n uncoupled differ-

ential equations which can be written in the form
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(4.3.12)

in whi ch 2l;s w is the r th di agona 1 term of the rna tri x [N]T[C] [N] and
r r

l;s is the ratio of critical damping associated with the r th mode of the
r

superstructure. The function f r is the r th component of the forcing

function in the right-hand side of equation (4.3.11) and can be written

as

f = - A ~ + B 9cP - BrxGr r r

where
n (r)A = L m.h·n·r i=l 1 1 1

n
m.n~r)B = Lr i =1 1 1

(4.3.13)

(4.3.14)

(4.3.15)

In the above expressions, ni r ) is the i th component of the r th eigen

vector.

Equation (4.3.12) can be solved for q (t) in terms of cP(t),
r

~(t), and xG(t). Substitution in equations (4.3.3), (4.3.4), and

(4.3.5) using (4.3.10), however, would reduce the problem to the solu-

tion of an integrodifferential equation for the case of full contact,

or a system of two integrodifferential equations after lift-off. To

avoid this, a solution by use of Laplace transform is proposed.

Taking the Laplace transform of equations (4.3.12) and (4.3.13),

2 - :-:-
/:; (s) q (s) =- (A s - B g)cP(s) - B xG(s) + s[Ar<P(O) +qr(O)]r r r r r

(4.3.16)
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(4.3.17)

In this equation, and subsequently, s is the complex Laplace variable

and a bar over a function denotes the Laplace transform.

From equation (4.3.10)

Uo{s) = I n~r) q (s)
1 r=l 1 r

Taking the Laplace transform of equation (4.3.3), (4.3.4), and (4.3.5)

and using (4.3.16) and (4.3.18), the following equations can be derived.

Full contact

(A s2 _ B g) 2 ]
r r (jl{ s)

!:.r(s)

( 2 ) ]nBAs-Bg -
= _1[L r r r - mh x (s )

1M r=l !:.r(s) c G

1 n
- r I

Mr=l

+ [<I>{O) +-11 I moh.uo{o)ls+ f<p{O) + 2s1 Pl <l>(0) +-11 I mohou.{O)]
Mi=l 1 1 1 J ~ Mi=l 1 1 1

(4.3.19)
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After 1i ft-off

(52+ c2P25 + pn Y( 5) = (C2P25 + P2~)1; ;P(5) - YG(5) - ts

1 [ n= - I
1M r=l

(4.3.20)

+ {~(O) m.h.u.(00
1 1 1 'J

x
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1 n mg~
+ -I L m.h.u.(O) - -21 -

M i =1 1 1 1 MS
(4.3.21)

The Laplace transform of equation (4.3.2) was not taken, since this

equation can be solved directly by means of Duhamel's integral.

It should be mentioned here that although the system is initially

at rest, all the terms in these equations involving initial conditions

should be kept. This is because the system continuously changes from

the state of full contact to lift-off, or vice-versa, and the final

conditions of one state are used as initial conditions for the other.

For the inversion of the Laplace transform by residue theory, the

zeroes of the terms in brackets in the left-hand side of equations

(4.3.19) and (4.3.21) must be determined. This procedure requires the

determination of the roots of an (n+1)th order algebraic equation in s2

in the case of equation (4.3.19) and an (n+2)th order equation in the

case of equation (4.3.21), which, in general, can only be done numeri

cally. However, approximate values of the poles of these transfer func-

tions can easily be found, as is discussed in the next section.

4.3.2 Qualitative Investigation of the Behavior of the System

For simplicity, let us first consider the undamped case. For the

case of full contact, it is convenient to define the functions
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( 2) ·22)Gl s - - (S + Pl (4.3.22)

(4.3.23)

Note that G2 depends on the parameters of the superstructure only,

while the foundation parameters appear in the expression of G1. If one

plots the functions G1 and G2 versus s2, the values of s2 at the inter

sections of these two curves locate the zeroes of the bracketed expres

sion in the left-hand side of equation (4.3.19). Let s=± iwk,

k= 1,2,'" ,n+l be those zeroes. The values of (Ok define the n+l

resonant frequencies of the building-foundation system. The functions

Gl and G2 are plotted versus s2 in Fig. 4~3.2a for the example based on

Millikan Library (presented in section 4.3.3) with the two-spring

foundation defined by the equations of equivalence during full contact

(see section 2.5.2). An expanded view of the plot near the origin is

shown in Fig. 4.3.2b.

First, note that the function G2 is smooth with apparently constant

slope, except for narrow regions around the values s2= -Ul~, k= 1,2,"',n,

where its slope suddenly approaches infinity. As a result, the values

of wk' k= 1,2,···,n are expected to be close to Ulk and, at least for

the higher frequencies, the relative difference between Ulk and Ulk is

negligible. For w1' however, this difference may be important, as

can be seen from Fig. 4.3.2b. It is evident that w1 is always smaller

than Ul1 and it decreases as the foundation stiffness decreases. It can

be concluded, therefore, that the higher frequencies of the building are
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not affected significantly by the interaction of the structure with the

ground and the effect is primarily shown on the fundamental frequency,

which is always reduced. These results have also been reported by other

investigators of soil-structure interaction (e.g., see Jennings and

Bielak[19]).

In Fig. 4.3.3, the first three terms of the series in the expres-

sion for G2 are plotted individually. It is evident that apart from

narrow regions around s2= -W~, k= 2,3,···,n, the first term of the

series is the dominant one. Because of this behavior, equating the

functions Gl and G2 reduces to

which is a second order equation in s2. Let s~ and s~ be the roots of

this equation, which are both negative, and let !s~l < Is~l. One can

then write: wl ~ iS l and wn+l ~ is 2. The remaining n-l resonant

frequencies of the system can be approximated by the corresponding

frequencies of the building, i.e., wk ~ wk' k= 2,3,··· ,no

For base excitation, the contribution of the higher modes to the

response of the system decreases as the value of the corresponding

eigenfrequencies increase, so the importance of the (n+l)th mode

depends on the relative value of wn+l in comparison to the other reson

ant frequencies of the system. It can easily be concluded from Fig.

4.3.2a that wn+l increases with the foundation stiffness and in the

limit, wn+l + 00 for rigid foundations. Also, since the slope of Gl is

-1 and the slope of G2 for large Is 2
1 is - A~/IM' the value of wn+l

increases as Ai approaches 1M. Note that both Al and 1Mdepend on the
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properties of the building, and A~ is always less than IM.

Let us now examine the behavior of the system after lift-off. In

this case we are seeking the zeroes of the transfer function which

appears in the left-hand side of equation (4.3.21). Let us define the

functions

(4.3.25)

A 2s4 3 2 1 2 2
G
4

(s2) 1 n - -- A B gs +- B 9
= - -1 ~

r 2 r r 2 r (4.3.26)
s2 + w2Mr-l .r

With this notation, the zeroes of the transfer function can be found

from the points of intersection of functions G3 and G4, when the latter

are plotted versus s2. This plot is shown in Fig. 4.3.4a for the same

example of Figs. 4.3.2 and 4.3.3; an enlarged view around the origin is

shown in Fig. 4.3.4b.

It is interesting to notice that one of these points of intersec

tion corresponds to a positive value of s2. As a result, the response

of the system consists of n+l harmonic terms combined with a hyperbolic

term. A hyperbolic term was expected in view of the results for a

rigid superstructure. The existence of the real pole can be demon

strated if one keeps only the first term of the series in the expres-

sion for G4, which again is the dominant one, except for narrow regions
2 2around s = -wk, k = 2,3, ... ,n. Then, three of the zeroes of the trans-

fer function can be approximated by the roots of the equation
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(4.3.27)

which is a third order equation in s2. The product of the three roots

of this equation is equal to the negative of the ratio of the constant

term to the coefficient of s6, and can be written as

Since IM- A~ > 0, this is a positive number and thus one of the roots of

equation (4.3.27) must be positive.

Let s = ±iQk' k= 1,2,···,n+l and s = ±i1o be the zeroes of the

bracketed expression in the left-hand side of equation (4.3.21). One

can write Qk '" (Uk for k=2,3,···,n, while ?21, ?2n+l , and?2o can be cal

culated by the roots of (4.3.27). As a result of the real poles s=±~,o
the system does not possess resonant frequencies in the classical sense.

Looking at the free oscillations, however, one can identify an apparent

fundamental frequency, which depends on the amplitude of the response.

This apparent fundamental frequency is determined by the hyperbolic term

of the response, upon which the harmonic terms are superimposed. Since

the system becomes softer after lift-off, the apparent fundamental fre

quency is expected to be smaller than wl . An approximate method of

estimating this frequency by considering only the first mode of the

superstructure is presented in section 4.3.3.c.
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Let us now consider the damped case. During full contact, let
~

1:;k' k= 1,2,···,n+1 be the ratios of critical damping of the soil-struc-

ture interacting system. As it was shown, the eigenfrequencies of the

second to nth modes of the superstructure are not significantly affected
~ s

by the interaction with the soil, therefore, one can write 1:;k = 1:;k for
~ ~

k= 2,3,···,n. The values of 1:;1 and 1:;n+1 can be found approximately by

keeping only the first term of the series which appears in the left-hand

side of equation (4.3.19). We want to determine ~)I,' )1,= 1,n+1, so that

the values

satisfy approximately the equation

)I, =1,n+1 (4.3.28)

(4.3.29)

Substituting and keeping only the first-order terms in 1:;)1,' one finds

(4.3.30)

'and

)I, = 1,n+1

(4.3.31)

Equation (4.3.30) is a second-order equation in w~ and the two

roots will determine the values of w1 and w n+1' After the w)I,t s are

found, the corresponding ratios of critical damping can be estimated
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~o first order) by equation (4.3.31).

After lift-off, one can again assume that the damping coeffici

ents, Zk' associated with the higher modes of the system, are close to

the corresponding ratios of critical damping of the superstructure,
. - sl.e., Zk !:! sk for k = 2,3,'" ,no For the remaining modes, one considers

again only the first term of the series in the left-hand side of

equation (4.3.21) and assumes that the zeroes of the transfer function

can be approximated by the values

s = ~.Q,(-ZQ, ± jl - zi), .Q, =1,n+l, and s = ±rlo (4.3.32)

Working similarly, the values of Z.Q,'s can be derived.

Note that equation (4.3.30) gives the same values for wl and

wn+l as equation (4.3.24).

In general, it can be concluded that soil-structure interaction

results in a reduction of the fundamental resonant frequency of the

structure, while the higher resonant frequencies are not affected sig-

nificantly. If the excitation is strong enough to cause lift-off, the

system becomes softer and the apparent fundamental frequency decreases

even more. Since the system is now nonlinear, this frequency depends

on the excitation and decreases as the amplitude of the excitation

increases. Because of this behavior, the earthquake response of the

uplifting system may be significantly different from the response

without lift-off. The difference between the two responses, however,

depends on the parameters of the structure and the foundation, and on

the nature of the excitation. These features also determine whether

lift-off is favorable or not to the structure.
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4.3.3 Approximate Solution for Response of the First Mode

4.3.3.a Undamped case

As was done for the rocking rigid block (see section 2.3.5), the

gravity terms in the left-hand side of the equations of motion can be

neglected for small angles of rotation. Noting that

n
I

i""l
m.h.u.

1 1 1

n
"" I

i ""1
A.q.

1 1

(4.3.33)

m.u.
1 1

n

"" I
i =1

B.q.
1 1

and keeping only the first term of the series in the right-hand side of

these relations (first mode approximation), the undamped equations of motion

reduce to

Full contact

.. 2 ..
y+py""-y2 G

(4.3.34)

(4.3.35)

(4.3.36)

After lift-off
p2

.. + 2
y "2 Y

p22 q ..
- "2 ~¢ = - 2 - YG (4.3.37)

(4.3.38)

In general for buildings, 1M~ Ai and mhc ~ A,B,; these relations are
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exact if the centroidal moments of inertia of the floor masses are

neglected and the first mode shape is a straight line. Then, for the

case of full contact one can write

and the solution of the equations of motion is

(4.3.39)

y( t) = y(O) cos P2t + ycO) sin P2 t
P2

1
P2

sin P2(t-T)dT

(4.3.40)

<jJ(t)

t

JxG(T)sin WI (t-T)dT
a

in which
- 2
WI =

(4.3.41)

(4.3.42)

and equations C2.3.52), (2.3.53) can be used for the calculation of PI

and P2. The normalized displacement, qllt), can be calculated by equa-

tion C4.3.39).

After lift-off, equations C4.3.34) and (4.3.38) give

(4.3.43)

It is convenient again to use the downward displacement of point 0, Y,

defined by (see Fig. 4.3.1)

Y ~ 4> - y (4.3.44)
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With this substitution, the equations of motion reduce to

m~2in which A = --- and P1 2 = AP2 2. The solution of these equations can be1M
written as

+ 8 (1-A)
(1+A) -

A [( K) h
- ~ t' + C, t + C~<p(t) = ~( 1+A) 1 - 2Wl 2 Y(t ) - ~ xG(t) - yG(t)

~

where, (4.3048)

. 2 WI 2P22(1+A) (4.3.49)P2 =
2W1 2 + AP2 2

and
(1 +A)

(1 - ~) YeO)
h

C1 = ~ <p(O) - +~ xG(O) + YG(O)A 2Wl 2, ~

C2 = ( 1+A) ~ <p ( a) - (1 - ~) Y(a)
A 2 2WI

After Y(t) and <p(t) have been calculated, y(t) and ql(t) can be found by

equations (4.3.44) and (4.3.43). Recall that this solution is valid for
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positive angles of rotation only and that the origin of the time is at

the onset of lift-off.

When the system changes from full contact to uplift or vice-versa,

the final conditions of the one regime should be used as initial condi-

tions for the other one. At that time, the constraints given by equa-

tions (4.3.39) and (4.3.43) both hold. Differentiation of these

equations, however, gives constraints upon the velocities which cannot

hold simultaneously. This inconsistency, which is due to the approxima

tions considered, has only a local effect and does not affect the overall

response. The appropriate values of the initial velocities which should

be used can be calculated using the principle of conservation of

momentum as follows.

Assume that the system changes from full contact to uplift and that

the final velocities for the full-contact regime are ¢o, qIo and Yo.
Assuming that the horizontal momentum does not change, one can write

(4.3.52)

Matching of the vertical momenta before and after lift-off requires that

;(0) = ;0. Then, using (4.3.39) and (A.3.43), (4.3.52) reduces to

¢( 0) =

For Y(t), one should take

2(WI 2+PI 2)¢0 + P12 yo

(2Wl 2+P1 2) ( 2Wl 2+P1 2) f;
(4.3.53)

Y(O) = (4.3.54)
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Now, assume that the building goes from uplift to full contact and

that <Po and Yo are the final velocities for the uplift regime. Working

similarly, the initial velocities, <p(0) and yeO), for the case of full

contact are

and

<p(0) ==

yeO)

(4.3.55)

(4.3.56)

It should be noted that under the assumptions considered here

(i.e., zero centroidal moments of inertia of the floor masses and linear

first mode) conservation of the horizontal and vertical momenta during

lift-off or contact implies conservation of the kinetic energy, too.

4.3.3.b Damped Case

For the case of full contact, again considering the approximate

solution, we can assume for small damping that ql and ~ are related

according to equation (4.3.39). The fundamental ratio of critical

damping, ~1, can be found by equation (4.3.31), which for the approxima

tions considered here reduces to

,(WI WI) + SS(WI ~I )1--- 1--

~I ==
(1)1 WI PI WI (4.3.57)WI + PI -I-

2mhcg
-.~

IMWI PIPI WI

Then, the solution can be written as
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1
P2

t

J e-~2P2(t-T)YG(T)

o
(4.3.58)

After lift-off, we can again assume that equation (4.3.43) holds

for small damping. The differential equation for Y(t) in this case is

expected to be

h
= J(1-:\) -:\ ~ xG + YG

(4.3.60)

Note that a similar behavior was found for the rigid superstructure in

section 3.2.1. Then,

Y(t) = e-z,P,t[(y(O) - Ii H:~l) cos P,t + (Y~~) + Z,Y(O)) sin P,tJ

x sin P2(t-T)dT (4.3.61)
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in which
(4.3.62)

The angle of rotation, ¢(t), can be again calculated by equation (4.3.48).

4.3.3.c. Estimation of the Fundamental Period

Let us consider the undamped free oscillations of the system, ex-

cited by a horizontal impulse. In this case, the vertical oscillations

are not excited before the building lifts off for the first time, which

happens at time, to, given by

(4.3.63)

In this equation, 13 is the normalized impulse and it is equal to the

ratio of the maximum angle of rotation, ¢~ax' which would occur if uplift

were not allowed, over the critical angle, ¢ ,at which lift-offcr
happens in the absence of vertical oscillations.

At time t = to, the angular velocity, ¢o, can be written as

.
¢o (4.3.64)

Using equations (4.3.53) and (4.3.54) to calculate ¢(O) and Y(O) and

substituting in (4.3.50) one finally gets

(4.3.65)

As can be seen from equation (4.3.48), the angle of rotation after

lift-off consists of a harmonic function of frequency P2 superimposed
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upon a parabola. This parabolic term attains its maximum value at time

C1tl = 9 , i.e.

(4.3.66)

It is reasonable to assume that a quarter of the apparent fundamental

period, T, has ellapsed at this time. Therefore, one can write

(4.3.67)

in which Tlc = 2n is the fundamental period of the interacting system
W1

when 1itt-off is not a11 owed. It is seen that the apparent fundamenta 1

period increases rapidly with the value of the normalized impulse, and

for large values of S, ~ is essentially proportional to S. Recall
Tl c

that the same behavior was found for the case of the free oscillations

of a rocking block [see equation (2.3.76)J. A plot of equation (4.3.67)

is shown in Fig. 2.3.6.

Let Tl be the fundamental period of the building for fixed-base

response. In this case, (4.3.67) becomes

T = )1
~

2
+~

Pl 2

(4.3.68)

Since Pl can be thought as a measure of the foundation stiffness, it

can be concluded from this equation that the apparent period, T,

increases as the foundation becomes softer.
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4.3.4. Example

As an example, let us consider again a simplified model of the

Millikan Library building. The dimensions and masses of the floors are

given in section 2.5.6. For the calculation of the stiffness matrix,

[KJ, the procedure used by Foutch[23J was employed. According to this

method, the flexibility matrix of the model was first calculated by

applying unit loads separately at each floor level and computing the re-

sulting floor displacements. These displacements were found using the

plane stress solution for the displacement of the centerline of a rec

tangular cantilever beam with a concentrated load applied at the end

(e.g., see [57]). The resulting flexibility matrix was then inverted

to obtain the stiffness matrix, [KJ. As proposed by Foutch, the total

moment of inertia of the east and west shear walls was taken equal to

6.64 x 10 4 ft 4 and Young's modulus (for 4,000 psi concrete) was

3.6 x 106 psi.

The eigenfrequencies and the corresponding eigenvectors of the

fixed-base model were then calculated from the matrix [MJ-1[KJ. The

resulting values for the five first eigenfrequencies are given in Table

4.3.1 together with the corresponding values of Ai's and Bi 's [see

equations (4.3.14) and (4.3.15)J. The normalized values of the five

first eigenvectors are given in Table 4.3.2.

The ratios of critical damping for the superstructure were taken

equal to 6.5% for the first mode and 5% for the others. The values

for the first two modes were suggested by MCVerry[58J and are based on

the response of the building during the San Fernando earthquake of

February, 1971. Since no information was available for the values of
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TABLE 4.3.1

Calculated Values of the First Five Eigenfrequencies
and Corresponding Values of Ai and Bi for the

Fixed-Base Model of Millikan Library

No. Eigenfrequency Ai/lOOO BillOOO(Hz)

1 1.88 26.55 0.814

2 7.81 -2.89 -0.462

3 16.0 0.709 0.228

4 23.7 -0.174 -0.136

5 31.0 0.102 0.099

TABLE 4.3.2

First Five Normalized Eigenvectors (xllOOO) for
the Fixed-Base Model of Millikan Library

Floor 1 2 3 4 5
Level

1 0.067 -0.469 0.917 -1. 173 1.453

2 0.192 -0.984 1.498 -1 .183 0.415

3 0.336 -1.300 1.245 0.069 -1.200

4 0.507 -1.437 0.470 1.256 -'1.085

5 0.697 -1 .359 -0.481 1.342 0.596

6 0.901 -1.065 -1 .178 0.259 1.452

7 1.112 -0.588 -1.302 -1.027 0.269

8 1.326 0.012 -0.788 -1 .372 -1.260

9 1.537 0.659 0.147 -0.454 -0.944

10 1.743 1.270 1.103 0.944 0.787
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the fractions of critical damping for the other modes, they were

arbitrarily taken equal to 5%.

For the foundation (Winkler model), the stiffness and damping con

sidered were: ko = 6.24 X 105 t/m2 and Co = 2.82 X 10 3 t c sec/m.

These values are equal to the ones calculated in sections 2.5.6 and 3.2.4.

The S16E component of the accelerogram recorded at Pacoima Dam

during the San Fernando earthquake (~L = 6.31 was used as the ground

acceleration. The first 15 seconds of this record are shown in Fig.

4.3.5. The peak acceleration is -11.48 m/sec 2 l= 1.17g) and the peak

velocity is -1.13 m/sec.

The equations of motion were integrated numerically using the Runge

Kutta method and a time step of 0.001 seconds. Only the first five modes

were included in the calculation. First, the continuous, full contact

case was solved by using the equivalent two-spring model for the

Winkler foundation (see section 3.2.3). The value of <P~ax was calculated

and the corresponding value of B was found to be 3.96. For distinction,

here, S denotes the equivalent normalized impulse corresponding to the

Winkler model and S2S the one corresponding to the two-spring foundation.

[For a relation between S2s and f3 see (2.5.24)J. After B was estimated,

a new two-spring model, based On the equations for general equivalence,

was defined. For this model, k = 5.05 ,x 10 6 tim, c = 2.28 X 10 4 t· sec/m,

~ = 6.93 m and S2s = 2. The resulting characteristic frequencies of the

foundation were: PI = 4.02 Hz and P2 = 14.1 Hz, and the corresponding

ratios of critical damping: ~I = 5.7% lin rocking) and ~2 = 20% (in

vertical). The critical angle at which lift-off occurs is 0.187 x 10- 3

rad, which corresponds to a rigid body movement of 0.8 cm at the roof
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level. This model was then subjected to the same ground acceleration,

allowing lift-off. The resulting response is presented in Figs. 4.3.6 

4.3.12. For comparison, the response without allowing lift-off and the

approximate, first-mode solution are also shown.

In Figs. 4.3.6 and 4.3.7, the deflections of the 5th and lOth Croof)

floors relative to the base, excluding rotations, are sbown. It is

evident that lift-off significantly affects the deflection history of

the building, although the amplitude is not much affected in this

example. The first-mode solution is very close to the total response,

which means that the response of the structure is dominated by the first

mode. The higher frequency components, which are apparent in the exact

and approximate solutions, but not in the response without lift-off, are

due to the dynamic coupling of the deformation with the vertical oscilla

tions.

Similar observations hold for the absolute accelerations of the

5th and lOth floor levels, which are shown in Figs. 4.3.8 and 4.3.9,

respectively. It is seen that uplift results in somewhat higher ac

celerations, compared to the case without lift-off. The approximate

solution includes all the main features of the response except the bigh

frequency components which are due to the contribution of the bigher

modes.

In Fig. 4.3.10, the angle of rotation is shown. The first lift-off

at 2.5 seconds can be correlated with the large pulse in tbe accelero

gram at this time. It is seen that tbe angle of rotation is increased

tremendously by the uplift, compared to tbe response without lift-off.

It should be noted, however, that this response was calculated for a
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very strong ground shaking and stiff foundation conditions. Also, the

restraining effects of embedment and foundation details were not con-

sidered (except for the calculation of the foundation stiffness). The

amplitude of the rocking response changes nonlinearly with the amplitude

of the excitation and decreases significantly for smaller excitations.

This behavior is illustrated in Fig. 4.3.13, in which the rocking

response for 80% of the Pacoima record is shown. It can be seen that a

20% reduction in the excitation caused an 85% reduction in the amplltude

of ¢. In contrast to the behavior of the angle of rotation, the nonlinear

effect of lift-off is not as evident in the deflection of the building

model, as can be verified by comparison of Figs. 4.3.7 and 4.3.14.

The vertical displacement of the center of mass is shown in Fig.

4.3.11 for the exact and the approximate solutions. Since y = ~I¢I - y

and Y is small (of the order of magnitude of the static deflection, 8),

this displacement is essentially proportional to the angle of rotation.

In Fig. 4.3.12, the ,ratio of the base shear force to the weight

of the building is shown. This force was calculated by the equation

(see Appendix II)

in which N1 is the base axial force, given by

Since this shear force mainly depends on the absolute accelerations of
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the floors, the same comments made for the accelerations apply here. It

is seen that the amplitude of the base shear force for the uplifting

system is slightly higher than for the case without lift-off. This

conclusion, however, should not be generalized and, as it was mentioned

in the analysis, rocking on the foundation and uplifting mayor may not

be favorable for the building, depending upon the characteristic

parameters of the structure and upon the nature of the ground shaking.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

The principal result of this thesis is a detailed presentation of

the dynamic behavior of simplified structures supported by flexible

foundations which permit uplift. Some approximate models for founda

tions allowing uplift, suitable for design calculations, have been

presented also. The analysis was limited to two types of foundations:

the continuous elastic foundation (the well-known Winkler model) and a

two-spring foundation in which the structure is supported by two springs

symmetrically placed under the base. The structure was not allowed

to slip horizontally on the foundation; therefore, in addition to the

degrees of freedom of the superstructure, the system possessed two

more degrees of freedom in rocking and vertical motions.

In general, the equations of motion for the two-spring model are

much simpler than the corresponding equations for the Winkler founda

tion. Based on this observation, relations between the parameters of

the two models were derived so that the responses are similar. In this

way, the equivalent two-spring model can be used instead of the Winkler

foundation. The Winkler foundation is commonly used in soil mechanics,

but leads to quite complicated equations when uplift is permitted.

Since the behavior of the uplifting systems is nonlinear, the equations

of equivalence depend on the expected amount of lift-off, which is

measured by the "normalized impulse. II This quantity is proportional

to the maximum angle of rotation which would occur under pulse loading

if lift-off were not allowed. Although the equations of equivalence
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were derived for a rigid superstructure and a horizontal impulse exci

tation, the results can be extended to account for flexible superstruc

tures and other types of dynamic loading.

For the case of a rigid superstructure and an undamped two-spring

foundation, the equations of motion were solved analytically for any

horizontal and/or vertical ground motion. Sim~ler approximate solu

tions were also developed. The response after lift-off is dominated by

hyperbolic functions; these exponential terms can be approximated by a

parabola for many applications. Using the approximate solution, the

apparent rocking period of free oscillations was determined. Then, an

equivalent linear system was defined; this system is not allowed to

uplift and its parameters depend on the normalized impulse. The advan

tage of this approximate method is that it greatly simplifies the solu

tion and it even permits the use of response spectra for the estimation

of the maximum angle of rotation. Note that the value of the normalized

impulse can also be calculated from response spectra.

In an effort to introduce dissipation of energy into the foundation

to account for the inelastic behavior of the soil as well as the radia

tion of energy in the form of stress waves, three different mechanisms

were examined. First, viscous damping was introduced by placing

dashpots in parallel with the springs. For the two-spring foundation,

the equations of motion were solved analytically, while the corres

ponding equations for the Winkler model were highly nonlinear and were

solved numerically. The equations of equivalence between the two

models were extended to take the damping into consideration. For the
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two-spring foundation, simple, approximate solutions were also derived,

similar to those for the undamped case.

As a second way to dissipate energy in the foundation, springs with

inelastic behavior were considered. The simple case of elastic-perfectly

plastic springs and the two-spring foundation was examined. Although

the equations of motion for each regime of the response can be linearized

and solved analytically, the many conditions of possible contact and

yielding which must be considered make this method unattractive for

design purposes.

Finally, the disssipation of energy caused by the inelastic impact,

which occurs when the block regains full contact with the foundation,

was also examined. Since the elastic springs, even with dashpots in

parallel, do not permit this kind of energy dissipation, an impact mecha

nism was developed which can be used with both the two-spring and the

Winkler model, along with other energy dissipating mechanisms. The

impact mechanism causes a reduction in the velocities during the impact

and can be easily implemented.

The equations of equivalence between the two-spring and the Winkler

foundation, which were derived for the rigid block, hold for flexible

superstructures, too, provided only that the base of the structure be

rigid. The analysis for flexible superstructures was therefore limited

to a viscously damped, two-spring foundation. First the response of a

simple shear oscillator was examined and then a multi-degree-of-freedom

structure was considered. For the case of the multistory structure, it

was assumed that the fixed-base response admits decomposition into

classical normal modes. An approximate, first-mode solution was also
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derived. Like that for the rocking rigid block, the solution of the

equations of motion after lift-off includes exponential terms.

Conclusions

In general, it can be said that lift-off results in a softer

vibrating system which behaves nonlinearly, overall, although the

response is composed of a sequence of linear responses. For the case of

the rocking rigid block, the apparent rocking period of the system

increases with the amount of lift-off and for large amplitudes of the

response the increase is essentially proportional to the normalized

impulse. For the case of a flexible superstructure, the effect of uplift

is mainly shown in the apparent fundamental period of the system which

also increases in the same way, compared to the period before lift-off.

Note that the latter period is always larger than the fundamental period

of the fixed-base response of the superstructure, because of the deforma

bility of the foundation. In contrast to the first mode, the second and

higher modes of the superstructure are not affected significantly by

either the soil-structure interaction or the uplift.

Another effect of lift-off on the response is that vertical oscilla

tions are excited even for purely horizontal excitation. Although for

many potential applications, including the response of buildings, the

vertical vibrations are of relatively minor interest, they may sometimes

be important for very strong excitations since complete separation is

possible. The possibility of complete separation increases with the

value of the normalized impulse and with the width-to-height ratio of

the structure. For very short and wide structures, if horizontal
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slipping can, in fact, be prevented, complete separation is possible for

any horizontal excitation strong enough to cause partial lift-off.

For a rigid block rocking on a Winkler foundation, the length of

contact between the base and the foundation decreases as the amount of

lift-off increases. A parametric analysis showed that the average length

of contact, with respect to time, is inversely proportional to the square

root of the normalized impulse.

When damping is included in the foundation, the apparent ratio of

critical damping in rocking has a general tendancy to decrease with the

amount of lift-off. It should be noted that introduction of damping

into the foundation results in sigificantly more damping for vertical

motion than for rocking. As a result, the possibility of complete

separation reduces in this case.

Considering our present level of understanding of response with

lift-off, it seems that for engineering purposes viscous damping is the

simplest and most efficient method to account for energy dissipation in

the foundation. Inelastic springs are conceptually better for modeling

the hysteretic behavior of the soil but, as was mentioned earlier, this

approach does not appear to be attractive for applications. On the

other hand, several numerical examples showed that an increase in the

dashpot coefficients is sufficient to account approximately for the

dissipation of energy during impact.

Because of the significant reduction of the fundamental frequency

of the system caused by lift-off, the dynamic behavior of a structure

allowed to uplift. may be very different from the response without lift

off. For the rigid superstructure, lift-off tends to decrease the
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rocking acceleration while the angle of rotation may be larger or smaller.

For flexible superstructures~ it seems that uplift always increases the

angle of rotation but the effects on the deflection and the resulting

stresses are not clear. In general, it cannot be concluded whether

uplift is beneficial to the structure or not~ since this depends on the

parameters of the system and the characteristics of the excitation.

There is an important limitation in the analysis for flexible

superstructures~ if the results are to be applied for the calculation

of the response of buildings. In this case~ the details of the founda

tion design, the degree of embedment and the deformability of the base

may need to be considered. These factors may significantly affect the

dynamic characteristics of the foundation~ particularly at the large

amplitudes of response associated with possible lift-off.

An analysis of the problem with other models of the foundation is

certainly an attractive subject for future research. As a first step~

modeling of the soil by an elastic half-space should be considered.

Next, nonlinear but more realistic models of the soil could be examined.

Further research could be conducted for buildings with embeded founda

tions and with flexible bases. Of course, these considerations would

complicate the formulation of the problem significantly and would

probably require numerical solutions~ e.g., by finite element methods.

The analyses may not be attractive for practical applications but could

guide simpler approaches to the problem. In addition, such investiga

tions would lead to a clearer understanding of the phenomenon of uplift

and its effect on the response of structures.
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APPENDIX I

ESTIMATION OF THE AVERAGE LENGTH OF CONTACT BETWEEN THE BLOCK

AND THE UNDAMPED WINKLER FOUNDATION DURING FREE OSCILLATIONS

Assuming that the mass of the block is uniformly distributed, there

are only six parameters involved in the response of the block, namely:

the mass, m; the height, h, at which the center of mass is located; the

width of the base, a; the stiffness of the springs of the Winkler founda-

tion, ko; the acceleration of gravity, g; and the initial angular velocity,

¢o, caused by the horizontal impulse. Instead of the last quantity,

however, the maximum angle of rotation, ¢c , which would happen ifmax
lift-off were not allowed, is used in the following. As equation l2.4.8}

implies, these quantities are related to each other by the expression

c
¢max = *

Pl

*in which Pl is the rocking frequency during full contact.

(Ll)

The advantage

of using ¢~ax is that the results can then be extended to other horizon

tal excitations, also.

Let S be the average length of contact during uplift. Then,
-

according to Buckingham's II-theorern,E59] the dimensionless quantity Sa
can be expressed as a function of three other dimensionless quantities,

ITl, IT 2 and IT 3, whi ch here are chosen to be

IT l = h (1. 2)a

IT z
<5 ---.!D.L (1. 3)= =
a koa z
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(1.4 )

The function which relates
~

S
a with the ITi·s can be found by examining

the dependence of ~ on each of these dimensionless quantities while

the other two are kept constant.

The results of such an analysis are shown in Fig. 1.1 (isolated

points). The response of the system was found using equations (2.4.7)

and (2.4.8) during full contact and equations (2.4.3) and (2.4.4) after

lift-off. The latter equations were integrated numerically, via Runge

Kutta method for the solution of a system of first order, nonlinear,

ordinary differential equations. The value of the length of contact, S,

at each time step during uplift, was calculated according to equation
~

(2.4.6) and S was taken equal to the numerical average of these values.

The values of the parameters used and the numerical results are shown

in Tables 1.1, 1.2 and 1.3. In these tables, the values of the maximum

angle of rotation, ¢max' and the rocking period, T, are also presented

and compared with the corresponding values, which would occur if lift

off were not allowed, ¢c and T , respectively.max c
From the first plot of Fig. 1.1, it is seen that ~ is independenta

of h ; Figs. I.l.b and I~l.c imply thata

where C1 , C 2 , Ci1 and Ci2 are constants, whi ch have to be determi ned. For
~

the limiting case, however, of a rigid foundation, both 0 and S reach

zero, therefore, C1 must vanish. The values of C 2 , Ci1 and Ci2 were found



TAB'=LJ~

Variation of ~ with TIl

ko 1 = _1>er
(TI Jl (TI2 )

(TI 3) 1>max 1>maxa h m (jIcr Te
~

TS- T
(m) (m) ~t.~e(2) C2) (rad) (3 e (sec) h -.!!!9_ Te

e-- e a (sec) (rad)1>max a koa2 1>max 1>max

10. 4. 40. 8,000. 9.81 x 10-" 0.13333 0.265 0.4 4.905 x 10-' 7.3575 x 10- 3 0.33057 0.677 2.551 1.268 x 10-2 1.724

10. 6. 60. 12,000. " " 0.6 " " complete
separati on

10. 8. HO. 16,000. " " 0.475 0.8 " " 0.34361 1.095 2.319 1.338 x 10- 2 1.818

10. 10. 100. 20,000 " " 0.581 1.0 " " 0.36664 1.324 2.279 1.363 x 10-2 1.853

10. 12. 120. 24,000. " " 0.691 1.2 " " 0.35204 1.571 2.273 1.364 x 10-2 1.85/1

10. 14. 140. 28,000. " " 0.803 1.4 " " 0.36488 1.818 2.265 1.368 x 10- 2 1.859

10. 16. 160. 32,000. " " 0.914 1.6 " " 0.35557 2.071 2.265 1.379 x 10-2 1.874

10. 18. 180. 36,000. " " 1.027 1.8 II II 0.36346 2.327 2.266 1.386 x 10- 2 1.884

10. 20. 200. 40,000. " " 1.139 2.0 II " 0.35622 2.586 2.270 1.389 x 10-2 1.888

10. 25. 250. 50,000. " " 1.422 2.5 " " 0.35732 3.247 2.283 1.400 x 10-2 1.903

10. 30. 300. 60,000. " II 1.707 3.0 II " 0.25819 3.929 2.302 1.410 x 10-2 1.916

10. 35. 350. 70 ,000. " " 1.993 3.5 " " 0.35518 4.625 2.321 1.420 x 10- 2 1.9:\0

10. 40. 400. 80,000. " " 2.279 4.0 " " 0.35566 5.344 2.345 1.431 x 10-2 1.945

10. 50. 500. 100,000. II II 2.856 5.0 " " 0.35230 6.838 2.394 1.453 x 10-2 1.975

10. 60. 600. 120,000. " " 3.436 6.0 " " 0.34979 8.421 2.451 1.477 x 10- 2 2.007
---

I
......
-..0
-..J
I



TABLE 1. 2

Variation of l with li2

a h 10 ko <Per <Per
(1h) ( TI 2) (TId T ¢max

<Pmax1 _ Te S T
<P~la-;(10) (10) (t.~ec2) (10: )

(rad) j3- -e- h ....!!!9-.. c a (sec) Te
x 10 3 <P max (sec) a koa2 <P max (rad)

10. 5. 50. 4,000. 2.452 0.981 0.499 0.5 1.23 x 10- 3 0.0025 0.99417 0.502 1.007 0.0025 1.000

10. 5. II 5,000. 1.962 0.785 0.446 II 0.98 x 10- 3 II 0.91996 0.453 1.017 0.00251 1.003

10. 5. II 6,000. 1.635 0.654 0.407 II 0.82 x 10- 3 II 0.85516 0.424 1.043 0.00253 1.012

10. 5. II 7,000. 1.401 0.560 0.376 II 0.70 x 10- 3 II 0.79596 0.406 1.079 0.00257 1.026

10. 5. II 8,000. 1.226 0.490 0.352 II 0.61 x 10- 3 II 0.74081 0.396 1.125 0.00261 1.043

10. 5. II 9,000. 1.090 0.436 0.332 II 0.54 x 10- 3 II 0.69113 0.392 1.182 0.00265 1.061

10. 5. II 10,000. 0.981 0.392 0.315 II 0.49 x 10- 3 II 0.64790 0.390 1.240 0.00270 1.081

10. 5. " 12,000. 0.817 0.327 0.287 II 0.41 x 10- 3 II 0.57856 0.391 1.362 0.00280 1. 121

10. 5. II 14,000. 0.701 0.280 0.266 II 0.35 x 10- 3 II 0.53032 0.394 1.482 0.00290 1.161

10. 5. II 16,000. 0.613 0.245 0.249 II 0.31 x 10- 3 II 0.50208 0.396 1.593 0.00300 1.201

10. 5. " 18,000. 0.545 0.218 0.234 II 0.27 x 10- 3 " 0.46654 0.402 1. 715 0.00321 1.282

10. 5. " 20,000. 0.490 0.196 0.222 " 0.25 x 10- 3 II 0.43447 0.410 1.844 0.00356 1.423

10. 5. " 25,000. 0.392 0.157 0.199 " 0.20 x 10- 3 " 0.39236 0.429 2.158 0.00394 1.577
._-

I
......
-..0
00
I



TABLE 1. 3

Variation of ~ with n3

a h m ko 4>cr
(ntl (Hz) (n 3) 4>max 4>max

1 4>cr Tc
T

(t.~CZ) C~ ) h S- T (rad) c
(m) (m) (rad) (3= -c- (sec) -.!!!£L c (sec) <Pmax

<Pmax a koa z <Pmax a Tc
x 10- 3

x 103

10. 5. 50. 10,000. 9.81 X 10- 4 0.981 0.315 0.5 4.905 x 10- 4 1.00 0.99558 0.320 1.017 1.000 1.000

10. 5. " " " 0.785 " " " 1. 25 0.92077 0.322 1.023 1.254 1.003

10. 5. " " " 0.654 "II " " 1.50 0.85643 0.329 1.046 1.518 1.012

10. 5. " " \I 0.561 \I " " 1. 75 0.79694 0.340 1.081 1.7955 1.026

10. 5. " " " 0.491 " " " 2.00 0.74066 0.355 1.128 2.086 1.043

10. 5. " " " 0.392 " " " 2.50 0.64790 0.390 1.240 2.7025 1.081

10. 5. " " " 0.327 \I \I \I 3.00 0.57974 0.429 1.364 3.363 1.121

10. 5. " \I " 0.280 " " " 3.50 0.53341 0.465 1.478 4.067 1.162

10. 5. " " " 0.245 " " " 4.00 0.50145 0.501 1.592 4.808 1.202

10. 5. \I " " 0.218 " \I " 4.50 0.46533 0.539 1.713 5.796 1.288

10. 5. " " " 0.196 " " \I 5.00 0.43272 0.580 1.843 7.145 1.429

10. 5. " " " 0.178 " " " 5.50 0.40999 0.622 1.977 8.4205 1. 531

10. 5. \I " " 0.164 \I \I \I 6.00 0.39549 0.661 2.101 9.468 1.578

10. 5. \I " " 0.140 " " " 7.00 0.37737 0.726 2.30B 10.311 1.473

10. 5. " " " 0.123 " " " 8.00 complete
separation

I.....
'-0
'-0
I
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Fig. 1.1. Dependence of (!) on: (a) ~ , (b) ~ , (c) <P~ax
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by a least square analysis and are

C2 = 1.27

a1 = a.51

a2 = -0.54

Noting that C2 =12 and that a1 - -a2 =t ' the following simple formula

can be written

~

Ifs =a

where
c

B = ¢max
<P cr

(1.6)

(1.7)

In equation (1.7), <P cr is the critical angle at which lift-off happens

in the absence of vertical oscillations, given by

(1.8)

The fitting of formula (1.6) with the calculated data is good, as

it can be seen from the plots of Fig. 1.1, where expression (1.6) is

plotted with a solid line. In Fig. 1.2, all these data, plus more

points corresponding to other combinations of the dimensionless param-

eters, are plotted together with equation (1.6). It seems that this
~

simple equation accurately estimates the value of S.

Although the empirical expression (1.6) cannot be proven
~

analytically, it can be shown that the value of ~ is close to thea
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Fig. 1.2. Variation of the average length of contact with the normalized impulse, S.
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value predicted by (1.6). To do that, let us first recall that the pole

of rotation, P, before lift-off is located at the middle-point of the

base, M. After lift-off and for positive angles of rotation, P is

moving to the right. In the following, it is assumed that P lies on

line L-L and the distance, 9" depends on the amount of lift-off (see

Fig. 1.3). The following expression can then be written

~ = epcr (1 _!L) +!L
a ep a a

(1. 9)

The maximum angle of rotation, epmax' and the rocking frequency, p,

can be estimated by the response of the equivalent two-spring model

(equivalence during full contact), which is defined by equations (2.5.6)

and (2.5.7). Using equations (2.3.81) and (2.3.74), one can write,

n, = n,(2S)[1 + A (Q2 _ 1) + 1 ]
~max ~cr 2 ~2s

7T

in which ep(2s) and i3 are the corresponding values of the criticalcr 2s
angle and the normalized impulse for the two-spring foundation, and

Equations (2.5.6) and (2.5.7) imply that

ep(2s) = ff ep
cr cr

(1.10)

(I.ll)

0.12)

(1. 13)



-204-

!
I

/
b

r
/

h

Fig. 1.3. Length of contact and pole of rotation after lift-off for a
rocking block on a Winkler foundation.
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(1.14)

Si nee 132s < 1 for 13 < 13, the two-spri ng model does not 1ift-off for

1 ~ 13 ~ 13. In that case, the following expressions apply

(1.15)

p = PI (1.16)

For simpleity, let us assume that A «1. Then, one can write

S¢crsinpt l~S~13

¢(t) = (1.17)

13 ¢ (13
2

+ 1) si n pt (3 ~ 13
2 cr 3

~

Substituting in (1.9) and taking the average of S from the timea
of lift-off, to' to t = ;p (i.e. t = f) gives

s =
a

(1.18)

1
S

in which

and

G, =f
lff (~+ 1)

S~/3
(1.19)
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{'f (s; + 1)
+ Is2 - 1 1 ~S~/3

G2 =

+t~32 + ly - 1 S~/3

(1. 20)

In these expressions, to was calculated from equation

(1.21)

as equation (1.17) suggests.

The rocking equation of motion can be written as

(1. 22)

where Ip is the moment of inertia about the pole, P. Neglecting the

term mgh ep and putting Ip :: I r1 (for small A), the rocking frequency can

be expressed as

(1.23)

~

in which S was substituted by Sand 11 was assumed constant, equal to

some average value. Using equations (1.11), (1.12), (1.16) and (1.23)

one can write

(1. 24)

where
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2
___~~------:1J._~_~=--

+n-'(/f) +pJ'
( 1. 25)

El imi nating ~l

can be obtained

~

from (1.18) and (1.24), the following equation for ~a

G1 f!m. G2
] _ ~3 = 0

sin-1G 1 - G1 f!m. G2

(I. 26)

The real root of this equation is plotted versus S in Fig. 1.4. In

the same plot, the corresponding values of equation (1.6) are shown.

Although the agreement of the two curves is only approximate, it can be

concluded that the behavior of ~. is similar to l/;S-, taking under

consideration the many approximations used in the derivation of equation

(1.26).



-208-

real root of equation (1.26)
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Fig. 1.4. Comparison of the approximate analytical values of (~) with
the results of equation (1.26).
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APPENDIX II

EQUATIONS OF MOTION FOR A ROCKING n-STORY

SHEAR STRUCTURE (TWO-SPRING FOUNDATION)

Let us consider a system of coordinates (x ,y ,z ) applied at
o 0 0

the center of mass, eM, as shown in Fig. II.l, and rotating with the

structure, with angular velocity w with respect to the reference sys
-0

tern (x,y,z). Let~. be the relative angular velocity of the mass m.
-1 1

with respect to the system (x ,y ,z). Then, the angular momentum, H.,o 0 0 -1

of this mass with respect to its center of mass can be written in matrix

form as

{H.} = [I.J {w } + [I.J {~.}
1 1 0 1 1

or, in vector form as

H. = H~ + H'.'
-1 -1 -1

(ILl)

(II.2)

where H~ and H~ are angular momenta associated with the velocities w
- 1 _1 -0

and ~., respectively, and [I.J is the inertia matrix of mass m..
-1 1 1

Similarly, the total angular momentum of the system with respect to the

center of mass, CM, is

H = H' + H"CM CM CM (II.3)

Let (v.) be the velocity of the center of mass of the i th mass,
-1 r

relative to the system (xo,yo,zo)' Then

n n
= I W +.I p. xm.(w xp.)

i=O -1 1=0 -1 1 -0 _1
(II.4)
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and
n n

HC
ll

M = L HI! + L p. x m. (v. )
- i =0 - 1 i =0 _1 1 _1 r

But, ;n our case,

( O)
w = \ O.
-0 \

i.... - <P

and

(11.5)

(I1.6)

~. = 0_1

which implies that

;=0,1,2,···,n

i=0,1,2,"',n

(IL7)

(IL8)

Since there is rotation about the z-axis only, we consider the

equations associated with this axis only. Equations (If.4) and (11.5)

give

n
HeM = - L (r. + m. p~ ) ¢

i =0 1 1 1
(11.9)

H" =-eM
n
L m.p.(u.-u)

i =0 1 1 1 C
(I1.10)

where ui and Uc are the shear deformations of the i th story and the cen

ter of mass, respectively (see Fig. 11.2).

Applying the equation of motion:

(IL11)

the following equation can be obtained
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n ..
-MCM = I CM ~ + I m.p. u.

i =0 1 1 1
(II. 12)

in which MCM and I CM are the moment of the external forces and the

moment of inertia about the center of mass, respectively, and the iden-

tities

n
I m.p. = 0

. 0 1 11=
(IL13)

(IL14)

were employed.

Application of Newton's second law in the horizontal direction

gives

(IL15)

n
where m = I m. is the total mass. Then two of the equations of

. 0 11=

motion for the system can be found from equation (II.12) and application

of Newton1s second law in the vertical direction. For tilting to the

right and neglecting the nonlinear terms, one gets

Full contact

my + 2cy + 2ky = -mYG (II.16)

n n
IM¢+ I m.h.ii.+2Ci;2<p+ 2(ki;2_-21 mgh )~-g L m.u. = -mhcxGi =0 1 1 1 C i = a 1 1

(ILl7)

After lift-off

" " 1··
my + cy - ci;<P + ky - kl;<P =- "2 mg - myG (IL18)
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n
9 \'-- I.. m.u. =
2 i =0 1 1

- -21 mg~ - mh Xc G (II.19)

where 1Mis the moment of inertia about the middle-point of the base,

M, given by

(I I. 20)

The following expressions were also used for the derivation of equa-

tions (II.l?) and (II.19)

n
L m.u. = mu. a 1 1 C1=

n
L m.u. =mu

. 0 1 1 C1=

h. = h + p.
1 C 1

(I 1. 21)

(II.22)

(II.23)

..
Note that for the mass rna, Uo = Uo = Uo = O.

The remaining n equations of motion can be found by examining each

mass separately. A free-body diagram of the i th mass (i = 1,2,···,n-l)

is shown in Fig. 11.3. The equation of motion in the vertical direction

can be written as

i=1,2,···,n-l (II. 24)

(
u. -Ui_l) (U· l -

in which the terms Qi sin h~ _ h
i
_
l

and Qi+l sin h~:l-

neglected as of second order. For i = n, the corresponding

u.)
h~ were

equation is
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(I1.25)

For i = n-l,

N 1 = N + m 1(9 +YG+y) = (m 1 + m )(9 + YG +y)n- n n- n- n

As can be easily verified by induction, the following formula can be

used in general:

(II. 26)

Then, the equation of motion in the horizontal direction is

(
ui - Ui _1) (n ) (U i - Ui _1 Ui +1 - Ui ) "

-m. 9 H - L mn 9 H - --;H'-:---C---'- = -m. XG1 i ~= i+1)(, i i+1 1

(I 1. 27)

for i =1,2,···,n-1, where H. =h. - h. 1 and 6. is assumed small, so that
1 1 1- 1

one can write

cos e. ~ 1
1

and
u. - u. 1

sin e. ~ ¢ + 1 H 1-
1 .

1

(I 1. 28)

The corresponding equation for the nth mass has to be derived

independently and is



-215-

m(h¢+u)+C(u-u ,)+K(u-u,)-n n n n n n- n n n-

(
u - u )n n-l ..- m g<l> - m 9 =- m xn n Hn n G (I I. 29)

The equations of motion derived here were verified by rederiving

them using lagrange's equations. The author expresses his sincere

thanks to Mr. Dirceu Bothelo, who did this derivation.

Equations (11.27) and (11.29) can be written in matrix form as

where

(I I. 30)

u = {u.} i=l,"',n (I I. 31)
1

h = {hi} i=l,"',n (I1.32)

m = {m.} i=l"",n (II. 33)- 1

[M] = [- mi -] i=l"",n (II. 34)

and [C] = [C .. ], [K] = [K .. J
lJ lJ

are tridiagonal matrices, defined by

Ci + Ci+1 , i = j = 1, ... ,n-l

C. , i = j = n
1

C.. = -C. j = i-1 (I I. 35)
lJ 1

-Ci+1 , j = i+1

a , otherwise
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* *)mi mH1K. + Ki +1 - g~i +Hi+l , i=j=1,···,n-1,
*m.g

K. ' - i = j = n, -Hi
*K.. m.g

= -K. + -'- j = i-1 (I 1. 36)'J , Hi
,

*mi +19
j = i+1-K + ,

H1 HH1

a , otherwise

in which
n

* l: (I 1. 37)m; = m.Q.
.Q.=i

and

Hi = h.-h. 1 , i=l,···,n (I 1. 38), ,-


