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ABSTRACT

Strong shaking of structures during large earthquakes may result in
some cases in partial separation of the base of the structure from the
soil. This phenomenon of uplifting, which can affect the dynamic
behavior of the structure significantly, even if the amount of uplift
is small, is examined in this thesis. First the case of a rocking rigid
block is investigated and then more complicated, flexible superstruc-
tures are introduced. Two foundation models which permit uplift are
considered: the Winkler foundation and the much simpler "two-spring"
foundation. Several energy dissipating mechanisms are also introduced
into these models. It is shown that an equivalence between these two
models for the foundation can be established, so that one can always
work with the much simpler two-spring foundation. In this way complete
analytical solutions can be derived in most cases. Moreover, simple
approximate methods for the calculation of the apparent fundamental
period of the rocking system are developed and simplified methods of
analysis are proposed.

In general, uplift leads to a softer vibrating system which behaves
nonlinearly, although the response is composed of a sequence of linear
responses. As a result, the apparent fundamental resonant frequency of
the uplifting system is always less than the fundamental resonant fre-
quency of both the soil-structure interacting system, in which 1ift-off
is not allowed, and the superstructure itself. The second and higher
resonant frequencies_of the superstructure, however, are not affected

significantly by 1ift-off. For damped foundations, the ratio of



iv
critical damping associated with the apparent fundamental mode
decreases, in general, with the amount of 1{ift-off. These effects of
uplift on the dynamic properties of the rocking system can alter the
response of the structure significantly during an earthguake. Never-
theless, it cannot be said a priori whether they are favorable to the

behavior or not; this depends on the parameters of the system and the

time history of the excitation.
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CHAPTER 1

INTRODUCTION

The phenomenon of partial separation (1ift-off) of the base of a
structure from its foundation during strong ground shaking has been ob-
served in many earthquakes. For example, during the Arvin-Tehachapi,
California earthquake of July, 1952, a number of tall, slender, petroleum-
cracking towers stretched their anchor bolts and rocked back and forth on
their foundations.[]:| After the Alaska earthquake of March, 1964, ice was
found under some 0il tanks, evidence that 1ift-off occurred during the

[2]

earthquake. During the Asam, India earthquake of June, 1897, indica-
tions of rocking of some monuments and tombstones were evident;[3] in
many cases, the rocking was so strong that it resulted in overturning of
these small structures, In Figure 1.1, two examples of 1ift-off from
the recent Imperial Valley, California earthquake of October 15, 1979,
are shown. In Figure 1.la the stretched grounding cable of the oil tank
indicates that uplift of the tank happened during the ground shaking.
From the position of this grounding cable it can be estimated that the
uplift was at least 5 to 6 inches. In Figure 1.1.b Tift-off of the tank
is indicated by the cracked asphalt around the pipeline which was
connected with the tank. The fact that partial 1ift-off has not yet
been clearly observed for buildings-dces not imply that this phenomenon
is impossible for such structures. It is possible that the lack of such
observations is caused by the difficulty in finding evidence of the
small amounts of uplift expected for buildings. Analysis of the behavior

of buildings during earthquakes indicates that partial 1ift-off may



F

19‘

1.1.

st
T

s it

Bt

Tl

e e e e
L b

HRAE
E R

i

S
g N
S
feE

e

o .‘“

Evidence of Tift-off during the E1 Centro,
California earthquake of October, 1979.



-3-

happen in some cases; for example, in the case of Veterans Hospital
Building 41 during the San Fernando earthquake.[4]

A significant amount of work has already been done on the Timiting
case of tipping of bodies on a rigid foundation, especially for rigid
superstructures (for example see references 1,5-13). The motive for
mast of this research was the prevention of overturning of objects such
as tombstones, furniture or other equipment installed in buildings
during earthquakes. An interesting review of the investigations done
on this problem is presented by Ishiyama in reference 13. Of special

(1]

interest is the work reported by Aslam, et al., who performed ex-
periments and a computer analysis. He concluded that the rocking
response of a rigid block is very sensitive to the boundary conditions,
the impact coefficient of restitution, and the ground motion details.

A probabilistic approach of the problem was done by Yim, et a1.,[]21who
also applied their results to the estimation of the intensity of ground
shaking from its observed effects on tombstones, monumental columns,

and other similar objects.

[1]

Housner was the first to relate the problem of tipping of bodies
with the good performance of some apparently unstable structures during
strong ground shaking. His work was motivated by the fact that several
"golf-ball-on-a-tee" types of elevated water tanks survived the ground
shaking of the Chilean earthgquakes of May, 1960, while other more stable
appearing reinforced concrete elevated water tanks were severely damaged.
In his analysis, Housner derived an expression for the amplitude

dependent period of a rocking block and developed a formula to estimate

the dissipation of energy which occurs during the rocking. Since the



foundation is assumed rigid, energy is lost in the impact that happens
every time the pole of rotation changes from one corner of the base to
the other. The beneficial effect of tipping to the earthquake response
of structures was also described by Beck and Skinner[]4] in their
dynamic analysis of the South Rangitikei Rail Bridge pier, in New
Zealand, which was designed to step. The first analytical investigation
of the response of a flexible superstructure rocking on a rigid founda-

[15]

tion was reported by Meek, who examined the rocking of a single-
degree-of-freedom oscillator. Meek concluded that the foundation tipping
leads to a favorable reduction in the maximum transverse deformation.

As it was pointed out, however, in a discussion of Meek's paper made by
Sexton[]6], this reduction does not necessarily happen for all excita-
tions.

For the case of a structure supported by a sufficiently flexible
foundation, the deformability of the ground affects the behavior of the
superstructure and cannot be neglected. The importance of this dynamic
coupling between the structure and the foundation (soil-structure
interaction) to the dynamic response of the system has been realized in
recent years and has attracted attention from many investigators (e.g.,
see references 17-24). These studies, however, do not take under con-
sideration the possibility of partial 1ift-off, which is present for
very strong ground motions. Efforts have been directed lately toward
this subject, trying to understand the phenomenon and its effects on the
seismic response of the structures (see references 26-38).

Although very 1ittle analytical work has been done on this problem,

some experimental work and some studies on the computer have been
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performed, First, in 1960, Muto and his associates[25], in an effort to
examine the possibilities of overturning of a single mass vibrating on

a rigid or flexible foundation, conducted experiments on the rocking of
such a structure under earthquake excitation.

The effect of partial 1ift-off of a multistory building was first
examined during experiments performed at the University of California,
Berkeley by Huckelbridge and C1ough.[26_301 They did shaking table
tests on steel frame models of buildings and concluded that allowing
the structure to Tift-off may result in.reduced requirements for the
strength and ductility of the frame. The fact that uplift may markedly
change the behavior of the system was also pointed out by Morris,[31]
who performed experiments on the earthquake response of a rigid tower
using a centrifuge. During these tests, the soil under the tower was
able to deform and the tower was allowed to 1ift-off.

Priestley and his associatest32:33]

proposed a simplified trial
and error method of predicting the maximum displacement of rocking for
a single-degree-of-freedom superstructure by use of displacement
response spectra. An extension of Housner's analysis for the rocking

(1]

block on a rigid foundation was developed to establish an equivalent
elastic representation of the rocking system. This method is approxi-
mate and does not take into account the elastic characteristics of the
superstructure except in its initial stage. A more refined technique
using time-history analysis was proposed in reference 33. Both methods
were verified by experimental shaking. table results for simple models.

A study of the effects of Tift-off on the seismic behavior of

structures using finite element techniques was done by No]f[34’35]
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and Wolf and Skrikerud[36]. Although these analyses were made for the
case of a nuclear reactor, the results can be extended to other struc-
tures. They concluded that allowing the structure to 1ift-off leads to
a reduction of the total horizontal acceleration, the overturning moment
and the lateral displacement within the structure, in comparison to the
results of the standard soil-structure interaction theory in which 1ift-
off is not allowed. Because of the resulting beneficial reduction in

the strength requirements of the structure, they concluded that there is
no need to prevent 1ift-off but, on the contrary, it is desirable to per-

[37]

mit it. Similar results were obtained by Singh who used a computer
model to analyze a six-story split K-braced frame with foundation con-
ditions allowing 1ift-off. A technique to handle the nonlinear effect
of uplift in numerical studies was also presented by Bervig and Chen[38l
In this thesis, we present an analytical investigation of the
effects of 1ift-off on the dynamic behavior of structures, along with
simplified methods of analysis which permit the designer to take these
effects under consideration. First the case of a rigid superstructure is
examined and then a multistory buf]ding is consjdered. The foundation
is elastic, with damping, and two different cases are studied: the
Winkler model, commonly used in soil mechanics, and the simplified two-
spring foundation in which the structure is supported by only two
springs (in a two-dimensional representation). It is assumed that the
springs cannot take tension, therefore, 1ift-off happens when the upward

displacement of a portion of the base is greater than the static deflec-

tion.
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The coefficients of the foundation models are assumed constant,
independent of amplitude or frequency. It has been proven (e.g., see
reference 39) that a representation of the elastic half-space by springs
and dashpots implies frequency dependent coefficients. However, it
seems permissible in many cases to use representative, constant values
for these coefficients. Similarly, a linear model for the soil is used
for simplicity, with dissipation modeled by viscous damping. The
advantage of this approximate method is that it leads to differential
equations of motion with constant coefficients. It should be mentioned
that the determinatjon of the appropriate foundation parameters is by no
means trivial and requires a careful investigation. Since this is one
of the main problems of soil-structure interaction theory, it attracted
the attention of several investigators and much research has been done
on this subject (for example, see references 17, 19, 21-22, 39-47).

Posing the problem in this way, two different regimes of the
response can be distinguished: (i) the case of full contact, during
which the base of the structure is in full contact with the foundation.
In this regime, the equations of motion are linear for small displace-
ments and the c¢lassical theory of soil-structure interaction can be
applied, (ii) the case after 1ift-off, during which partial separation
of the base from the foundation has occurred., For this case, and for
the two-spring foundation, linearized equations of motion can be derived;
in constrast, the equations of motion corresponding to the Winkler
foundation are highly noniinear, because of the varying degree of contact
between the body and the foundation. However, even for the two-spring

foundation, the overall response of the system is noniinear because the
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system continuously changes from one linear regime to the other. As a
result, the principle of superpositicn does not hold for the overall
response.

The amount of 1ift-off, which depends on the excitation and the
parameters of the structure and the foundation,dramatically affects the
response of the system. For an impulse excitation, this quantity is
measured by the so-called "normalized impulse," which is denoted by B
and is equal to the ratio of the maximum angle of tilting which would
occur if 1ift-off were not allowed, divided by the angle of rotation at
which uplift occurs in the absence of vertical oscillations. Impulse
excitations are used extensively in this study, first because an
impulse is the simplest excitation that captures some of the dynamic
features of the earthquake problem, and second because it provides in-
formation for the determination of the apparent resonant frequency of
the system as a function of the amount of 1ift-off. The word “apparent”
is used, since the uplifting system does not possess resonant frequencies
in the classical sense.

For the dynamic behavior of a building supported by an elastic
foundation, it was shown by Jennings and B1‘elak[19:l that the effect of
the horizontal translation of the base is usually negligible in com-
parison to the effect of the rocking, especially for tall buildings. In
this analysis, the horizontal translation is neglected and the assump-
tion that no slipping is permitted between the base and the foundation
is employed. It should be mentioned that these assumptions may not be
applicable for very short structures, for which the horizontal movement

might be significant. Such structures, however, are not the main concern
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in this thesis; the principal emphasis is on more slender structures.

In Chapter II, the dynamics of a rigid block supported by an
elastic foundation are examined, No dissipation of energy is considered.
This simple case, apart from its usefulness because some structures can
be represented this way, aids the understanding of the phenomenon of
1ift-off for flexible structures. It is shown in this chapter that the
simple two-spring foundation can be defined in such a way that it can
model the rocking response of the much more complicated Winkler founda-
tion. Although many results employ an impulse excitation, they can be
extended to apply for other, more complex excitations.

In Chapter III, three different energy dissipative mechanisms are
introduced into the foundation models of Chapter II and they are
examined individually. The superstructure is again a rigid block.

These mechanisms model the energy dissipation in the foundation, wich
results from inelastic behavior of the soil and/or radiation of energy
in the form of stress waves. An equivalence between the Winkler and
the two-spring model is also established in this case.

The effect of 1ift-off on the dynamic response of a flexible super-
structure is investigated in Chapter IV. The cases of a simple shear
oscillator and a more general model of a multistory building are con-
sidered. In the latter case, it is assumed that the building possesses
classical normal modes. Although the analysis is restricted to the two-
spring foundation, the results can be extended to the Winkler model,
and hence to practical problems, by use of the equivalence defined in
Chapter III. It is shown that a small amount of Tift-off may

dramatically affect the behavior of the structure, compared to the
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response without uplift. An approximate method of analysis, which
allows the use of response spectra for the calculation of the maximum
deformation, is alsoc proposed in this chapter.

A summary of the results obtained in this thesis is presented in

Chapter V, along with conclusions and recommendations for future study.
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CHAPTER TI1I
DYNAMICS OF A RIGID BLOCK

2.1. INTRODUCTION

The dynamics of a rigid block rocking on a rigid foundation were

[1]

first studied by Housner, and a review of this work is given in
section 2.2. In section 2.3 an analysis is made of a block supported
symmetrically by two elastic springs. The springs are not permitted

to take tensile forces and thus, separation of the block from one of

the springs may occur for strong excitations. This simple system
illustrates many of the important features of the dynamics of elastically
supported tipping structures. A more realistic model for the foundation
is examined in Section 2.4, where the block is suppofted by an elastic
foundation, modeled by continuous elastic springs (the familiar Winkler
model). Lift-off of the block from the base, with the amount of separa-
tion of the base from the foundation dependent on the rotation and dis-~
placement of the block, can occur in this case, too.

The equations of motion for the "two-spring" case can be linearized
and closed-form expressions for the motion of the block are presented.
In contrast, the Winkler foundation leads to complicated nonlinear
equations because of the varying amount of contact at the foundation.

In Section 2.5, an equivalence between the two models is established so
that for many engineering purposes, one can use the equivalent "two-
spring" model to. approximate the effects of a continuous elastic founda-

tion.
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2.2. RIGID BLOCK ON RIGID FOUNDATION

George W. Housnerﬁ:| was the first to analyze the dynamic response
of a rigid block rocking on a rigid foundation. This work was motivated
by the response of inverted pendulum-type structures during the Chilean
earthquake of 1960. A review of Housner's analysis is presented here.

The block shown in Fig. 2.2.1 will vibrate about the poles of rota-
tion 0 and 0° when it is set to rocking; it is assumed that the block
cannot slip horizontally. Let a and b be the width and height of the
block respectively, m its mass and I, the moment of inertia about the
points 0 and 07, If ¢ is the angle of tilting of the block, measured

from the vertical, the equation of free vibrations is

Io$ + mgr sin(g-¢) = 0 (2.2.1)

where r =-%./ a® + b%, 8 = tan'l(%) and g is the acceleration of gravity.

For small vibrations of tall, slender blocks, having the angles 8 and ¢
less than about 20°, small angle appreximations permit this equation to

be written as
I¢¢ - mgr ¢ = - mgr 6 (2.2.2)

Assuming initial conditions ¢=¢o < & and ¢ = 0 at t = 0, which repre-
sent the block released from rest with initial displacement ¢o, equation

(2.2.2) has the solution:
¢{t) = 6 - (6 - ¢o) cosh pt (2.2.3)

where p* = mgr/l, and 0 < ¢ < ¢o.
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Equation {2.2.3) describes the rotation of the block about the
point 0 as it falls back to the vertical position. If there is
negligible energy loss during impact, the block will rotate about the
point 07 to an angle ¢ = -9, and then back to the vertical position, etc.
Thus, the motion is periodic and the time required for the block to fall
from ¢ = ¢o to ¢ = 0 equals one quarter of the period. For ¢ = 0 and
equation (2.2.3) gives

/ Lo
= —— -] ] If
T 4 T cosh (] - g9_) (2.2.4)

0

£

t =

T being the period of the vibrations. A graph of this equation is shown
in Figure 2.2.2, where it is seen that the period is strongly dependent
on the amplitude. The period is long for ¢, close to 8 and short for ¢
close to zero. |
During the rocking, however, there will be dissipation of energy
every time the block hits the base and changes its pole of rotation.
If the impact is assumed to be inelastic, the rotation continues smoothly
about the opposite pole. Let $, and ¢, be the angular velocities of
the block before and after impact, respectively, and assume that the
pole of rotation before impact is 0. Egquating the moment of momentum
about 0° immediately before and after the impact, Housner found the
following relation:

Igél - mra é] sin 8 = 10¢2 (2.2.5)

The reduction of kinetic energy during impact is

- () () - (2)
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Fig. 2.2.2. Period of block rocking with amplitude ¢,(after
Housner, 1963).

Number of impacts

Fig. 2.2.3. Amplitude ¢ _/© subsequent to nth

impact (after
Housner, 1983).



-16-

which, because of equation (2.2.5), reduces to

q = [1-51{;"(1-(:0529):{2

For slender blocks this relation may be written as

2n2
/q - q___._._Zm;"OG, (2.2.6)

Thus, the fractional reduction of the kinetic energy depends only
on the parameters of the block and not on the initial conditions.

Using the expression for the response as given by equation (2.2.3)
and recalling that &z = Vrﬁ'$1, Housner found that the amplitude of the

response, following the nth

%ﬂ - -[— Q”[] - (1 —%"—)2] (2.2.7)

A graph of this equation for Q = 0.7 is presented in Fig. 2.2.3, where

impact is given by the following expression:

the decrease in amplitude for successive n is shown for several values
of the intial displacement. The successive half periods of vibration

during free rocking are given by

T = 2 /ﬁlgﬂ‘; tanh™ ﬂ”[] - (1 - %0—)2] (2.2.8)

According to the foregoing results, the amplitude of the oscilla-

tions decreases significantly with each impact, especially for Tlarge
initial displacements. As the number of the oscillations increases,

however, the frequency of vibrations increases indefinitely. Since the
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conditions at impact assumed in this analysis are idealized, the limiting
behavior of real blocks is somewhat different. As can easily be con-
firmed by a simple desk-top experiment, a freely rocking block will

show an increasing frequency as the amplitude decreases, but will come to
rest rather quickly. The number of impacts is about six to ten for most

cases, with more for slender blocks,

2.3. TWO-SPRING FOUNDATION

2.3.1. System Considered and Assumptions

As the next step in complexity, let us assume that the foundation
is no Tonger rigid, but deformable. The simplest case, where the block
is supported by two elastic springs will be examined here. Figure 2.3.l.a
shows the three dimensional configuration for ground motion in the x and
y-directions. The springs are placed symmetrically in the z-direction,
a distance & from the central line MM~ of fhe base, and k; is the stiff-
ness per unit length., The dynamic problem is reducible to the two-
dimensional configuration shown in Figure 2.3.1.b. The stiffness of the
springs is now k = k; + d, where d is the depth of the block.

[t is assumed that there is no slipping between the block and the
foundation, therefore the system possesses only two degrees of freedom:
vertical motion, denoted by the vertical dispiacement, y, of the center
of mass measured from the position at rest, and rotation, measured by
the angle of tilting, ¢, from the vertical.

In order to model the inability of soil to carry tensile stresses,
it is assumed that the block is just resting on the springs, without

any bond between them and the block. In this way, whenever the upward
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displacement of point O or 0”7 is greater than the static deflection, the
block will separate from one of the springs. It should be mentioned
here that complete separation of the block from both springs is possible
for sufficiently strong excitations. However, this represents a special
case, generally encountered for short blocks, stiff springs and ex-
tremely strong excitation, as will be shown in Section 2.3.6.

2.3.2. Equations of Motion

The equations of motion will be derived by use of Newton's second
Taw of motion. The two cases, before and after 1ift-off, will be treated
separately. A free body diagram for the case of full-contact is shown
in Figure 2.3.2. After 1ift-off, the picture is similar, except that
F., which is due to the left spring, vanishes. The ground accelerations,
RG and yG, are assumed to act horizontally and vertically, respectively,
and, by D'Alembert's principle, can be represented by forces —mXG and
~myG applied at the center of mass of the block. Since the horizontal
displacement of the block is prevented at the base, a horizontal force
RA’ positive as shown, acts between the block and the foundation. We
will assume that this force is acting at the right corner of the base
{for positive angles of tilting). In any case, changes in the point of
application of RA along the base of the block introduce only second
crder changes in the equations of motion.

Let x and y be the horizontal and vertical displacements of the
center of mass respectively, measured from the position of static
equilibrium, and ¢ be the angle of tilting, measured from the vertical.
Assuming that the corner A can move vertically, we can express x in

terms of ¢ (see Fig. 2.3.3) as
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X = rsinég - rsin (8-¢)
_ 2 Ez _ _1_@_ . ’ . .
where r = / h +(2) and 6 = tan <2h> . Using the geometrxp relations
a =2r sin 8 and h = r cos 6, the above equation results to

cos ¢ + h sin ¢ (2.3.1)

=
n

ro| s
I

|

Let & be the static deflection, given by
§ = M (2.3.2)

and yo and yo~ the vertical displacements of points 0 and 0~ respectively.

From Fig. 2.3.3 we get

I

Yo Yy - £sin ¢

(2.3.3)

Yo~ yy t &sin ¢

where Yy is the vertical displacement of the middle point of the base,

M, and can be expressed in terms of y and ¢ by the equation
yy = ¥ *h(1 - cos ¢) (2.3.4)

Then, for positive angles of rotation, the spring forces, F; and F;,

acting on the block, are

Fo= 2mg - ky - k(1 - cos ) + k&sin ¢ (2.3.5)

mg - ky - kh(1 - cos ¢) - k& sin ¢, before 1ift-off

[ B G

, after lift-off
(2.3.6)
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The horizontal force, RA, can be determined by applying Newton's second

law in the x-direction, which gives

Ry = -m¥. - mX (2.3.7)

in which x is given by (2.3.1).
The two equations of motion, in the rocking and vertical directions,
then, are

Full contact

my +2ky + 2kh(1 - cos ¢) = —myG (2.3.8)

ICM$' [% mg - ky - kh(]-cos ¢)- kg sin ¢][r sin (8+¢) - (%— E) cos ¢]
+ 1 i i a_ .
gmg—ky—kh(l -cos¢)+ kEsin ¢of|r sin(8-¢) -(2- é,)cosq>

+  (mX + mXG) r cos (6-9) = Q (2.3.9)

After lift-off

my + ky + kh(1 - cos ¢) - KEsin ¢ = -%mg - myy  (2.3.10)
ICM$+[~3?- mg - ky - kh{1 - cos¢)+k& sin cp][r sin (6-¢) - (% - g)cos q:]

+ (mx + mXG) r cos (6-¢) = 0 (2.3.11)

where ICM is the moment of inertia of the block about the center of mass,
These equations are valid only for positive angles of rotation.

For tilting in the opposite direction, the equations of motion can be

rederived, or they can be found by changing the system of coordinates.

For the second approach, the y-axis remains the same, but the x-axis is
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reversed and ¢ is taken positive counterclockwise. In the new system,

XG will be negative, but otherwise, equations (2,3.10) and (2.3.11) apply

as they are.

2.3.3. A Limiting Case: k>, £+ 5

When the foundation springs are very stiff, the block is expected
to behave as if it were rocking on a rigid foundation. In the limiting
case, therefore, as k > = and & - %3 equations (2.3.10) and (2.3.11),
which describe the motion after 1ift-off, should reduce to equation
(2.2.1), which Housner derived for the rotking block on a rigid founda-
tion. Let us assume that ¢ is positive and XG = yG = 0. Then, for

£ =-%, equations (2.3.10) and (2.3.]1) reduce to:
my+ky+kh(]-COS¢)-1§kas1'n¢ = ——;—mg
and

ICM$+-[%n@-ky— kh(1 - cos¢)4~%ka sin¢] r sin (6-¢) + m¥ r cos (9-¢) = 0

Substituting from the first equation into the term in brackets in the

second equation yields

ICM$ + (my- + mg) r sin (A-¢p) + mX r cos (6-¢) = O
(2.3.12)

For k = «, the vertical displacement of point 0 goes to zero, and thus,

I - B
yM = 5 sin ¢

Equation (2.3.4), then, gives

y = %—sin d - h{1 - cos o)
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Substituting this equation into (2.3.12) and using expression (2.3.1)

finally produces

(ICM + mr2)$ + mgr sin (6-¢) = 0 (2.3.13)

Since ICM + mr® = I,, the moment of inertia about point O (for §r=-% ),
equation (2.3.13) is the same as equation (2.2.1).

2.3.4. Linearized Equations of Motion

If the displacements are expected to be small, the equations of
motion can be greatly simplified. First, for small angles of rotation,
sin ¢ can be replaced by ¢ and cos ¢ by 1. Equations {2.3.1), {2.3.3)
and (2.3.4), then, reduce to:

X hd
Yo y- & (2.3.14)

Yo~ yt &

After these simplifications and elimination of the non-linear terms, the
following linearized equations of motion can be obtained from equations

(2.3.8), (2.3.9), (2.3.10) and (2.3.11):

Full contact

myj o+ 2ky = -y, (2.3.15)

Lo+ (2ke* - mgh)¢ = - mh¥ (2.3.16)

G
After Tift-off

my + ky T k& = -%mgwm% (2.3.17)



_25-

IM$ + %-(2k£2 - mgh)¢ ¥ kgy = -mhX; ¥ % mgE
(2.3.18)
where IM is the moment of inertia about the midpoint of the base, M,
given by

I, = 1

2
M ey mh

Whenever a doubie sign appears in the above equations, the upper one
corresponds to the block tilting to the right and the lower one to the
left. 1In both cases, the positive directions of the angles and displace-
ments are as shown in Figs. 2.3.2 and 2.3.3.

The nonlinear terms that were cmitted are in the forms $¢, y¢ and
®”. Also, the term-% ma§G¢, which comes from the assumption that RA
acts at the corner of the base, was dropped for simplicity in the deriva-
tion of equations {(2.3.16) and (2.3.18). For |X.| < g and h > %, this
term is always smaller than the term mgh¢ and, for values of the spring
constant expected in earthquake engineering applications, is much smaller
than the term k&*¢.

The rocking of a block on a two-spring foundation for small displace-
ments consists, therefore, of a sequence of linear problems. Assuming
that the block is initially at rest, it starts vibrating according to
equations (2.3.15) and (2.3.16). [If the excitation is strong enough,
1ift-off occurs and equations (2.3,17) and (2.3.18) are the governing
equations of motion from uplift until contact is re-established. The
displacements and velocities at the time of lift-off are used as initial
conditions for the latter equations, etc., Continuing in this way, one

can calculate the sequentially linear response, which, however, shows
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nonlinear characteristics overail; for example, the period is amplitude
dependent and the principle of superposition does not hold.

Equation (2.3.15) implies that for horizontal excitation, the
vertical motion of the system is not excited initially. However, since
equations (2.3.17) and (2.3.18) are coupled, the vertical motion is ex-
cited after 1ift-off happens. When the block comes back and gains
contact with both springs again, it will, in general, continue to
oscillate in both the rocking and the vertical modes. Typically, there-
fore, the only case in which the block is not moving verticaily, is
before the first 1ift-off under horizontal excitation only.

Another interesting point, which comes from equation (2.3.16), is
that the value of (2k&* - mgh) may be negative for very soft springs.
In that case, equation (2.3.16) has a hyperbolic solution. Using equa-

tion (2.3.2), the condition for this to happen may be expressed as
2
§ > :‘;;— (2.3.19)

But,-% = tan 6 (see Fig. 2.3.3), and for slender structures, inequality
(2.3.19) reduces to

§ > £6 (2.3.20)

By definition, 1ift-off occurs when the vertical displacement of point
0~ becomes equal to the static deflection, §. Using equations (2.3.14),
we find that the angle ¢cr’ at which uplift occurs for a horizontal ex-

citation for the first time, can be given by

6 ,
bep = (2.3.21)
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Comparing (2.3.20) and (2.3.21) we conclude that, in the case under con-
sideration, the required angle of rotation for lift-off is bigger than
01, which means that overturning of the block occurs before 1ift-off;
that is, the system is statically unstable and buckles elastically before
1ift-off, For this situation to occur requires extremely soft springs
and is unlikely to be encountered in applications. It is therefore ex-

cluded from further consideration.

Solution of the Equations of Motion

In the case of full contact, the two equations of motion are un-

coupled and their solution can be written as,

t
y(t) = y(0) cos p,t + lé‘—jl sin pot - 512— JJG(T) sin p2(t-t)dr
0 (2.3.22)
L] 2 t
ho(t) = ho(0) cos pit + @p{@ sin pt - I”‘“pl f %s(t) sinps (£-1)de
M
0 (2.3.23)
where,
2
A (2.3.24)
M
and
022 = ?ﬁ:i (2.3.25)

Recall that h¢ gives the horizontal displacement of the center of mass
of the block.

After 1ift-off, the equations of motion are coupled; however, they
can be solved exactly by a number of techniques. In the following pages,

a solution of these equations via the Laplace transform will be given,
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For simplicity, let us consider that ¢ is positive and keep only
the upper sign in equations (2.3.17) and (2.3.18). For ¢ negative, a
similar analysis can be carried out. Using relations (2.3.24) and

(2.3.25) the equations of motion are

1 1
y+§pzy-]§pzzﬁg(,h¢) = -79-¥;
s, ] kh h? h

(th) + 2 P 2(h¢) = IME y = - mIM XG ng]:Mg

Making the transformation: x = h¢, and taking the Laplace transform

of the above equations preduces,

- . 2 _ 2 _ -
s2y - sy(0) - y(o) + 2=y - B2 - L,
(2.3.26)
2 2
v -5 Pty _khgo . _mhl 5 _mght
s?x - sx(0) - x(0) + 5 X I, y I, Xe ZIMS
(2.3.27)

where s is the Laplace variable and a bar over a function indicates the
Laplace transform. The initial conditions in the above equations are
assumed to be the displacements and velocities at the time of lift-off.
The solution of the system of equations (2.3.26) and {2.3.27) can be

written in the form

Ty - 5o+ sy(0) + 3(0) - b
2 __ 2
y(s) = i <
A(s)



2 —_ -
s+ P2 - Jg - 55+ sy(0) *+ y(0)
2 _ .
- T - T - g+ sx(0) + K(0)
;(S) - M M M
A(s)
(2.3.29)
in which,
2, P2° P2’k
T 2h
A(s) = (2.3.30)
- Eﬁg Sz-[- p_li
Iy

The zeros of the function A(s) are poles for the functions y(s) and
x(s) (s = 0 is another pole) and will be used for the inversion of the
Laplace transform. Using equations (2.3.24) and (2.3.25) we find that

the zeros of {2.3.30) are given by the roots of the equation:

st +

Mo} —

(P12 + Dzz) s2 - kgh g (2.3.31)
EIM

This is the characteristic equation for the system. A real root of this

equation corresponds to a hyperbolic type of response and an imaginary

root to a harmonic response. Let

2 kgh
P, = %/(P12+922)+/(P12+p22) +8"IS_

Then the four roots of equation (2.3.31) can be written as
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s = =P, and s = +* iP, (2.3.34)

From expressions (2.3.28) and (2.3.29) we get

Y (s) v.(s) v.(s) Y.,(s)
7)< AET *AnT eyt sler el %Tye
(2.3.35)
- X (s) X (s} X(s) ols) _
x(s) = Ay(s) * Ax(s) * sz(s 1(55 G %Tye
wherein
1) = (s + B )sv(0) + 0] s
v (s) = B2E [sx(0) + x(0)]
Tpls) = -§ (7 B v Ty gz)
kh 2 ) 2
Yals) T, Yogls) = - (S +R§") :
(2.3.36)
(s = 8 Lsy(0) + 5(0)]
K(s) = (57 B JBx(o) + %(0)]
Xp(s) = - %ﬁ[m(sz + ﬁ-) + k]
- h* [ . 2 _ _kh&
XxG(S) = - [—nm— (s +22-), XyG(s) = - I, |
and A(s) can be expressed in the form
Als) = (52 - Plz)(sz ¥ Pzz) (2.3.37)

The inverse Laplace transform of equations (2.3.35) is



p3
—
o+
——

il

eStds

eStds

(2.3.38)

where I' is a suitable Bromwich contcur, such that all the poles are

included.

last integrals in the above expressions can be written as

XG 7 o

st
o %ge

S

MO
=l|—-
\%\
>

X
1 yG = st
-—7J N Ygt ds

where Yoo ny, X6 XyG

given by

t
J ny(t—T)XG(T)dT
0
t
J ny(t-T)S/'G(T)dT

j gl )dn
0

Using the convolution property of the Laplace transform, the

(2.3.39)

are the corresponding Green's functions,



Y h
_ 1 xG st
Yglt) = z—ﬁf 5 e d
T
YyG 2 A
r \ (2.3.40)
X
= 1 [ Tx6 st
Xalt) = 2m'f A e ds
r
(t) = __.].._ _)Elg_estds
*vG 2 A )
.

Substituting expressions (2.3.36) and (2.3.37) in (2.3.38) and using
(2.3.39) and (2.3.40), the following expressions for the solution are
obtained by application of the residue theory at the poles s = %P,

s = xiPrand s = 0
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e e B o (e
. N 2 2P12( 5 +P12+~I%1—):{ cosh Pyt
p2? . 2
[ a0 + (B plz)y(o)]s_w'n.gﬁ_;
p2” Py 1
B} [2 £0(0) + (—lé— - Pz?-)y(o) + _L(P_li p.2 4 K& '
- Po% o+ 2=
2P, * 2 IM)]COS Pat
el g 2 i
[ 7 wl0) +(P§— - Pzz)&(m} sin Pot |, 28 mg
‘ P2 h 2k
t
- k?‘g ]x (1) [sinh P, (t-1) _sin Po(t 1
IM(P]' + PZZ)O G P1 - P:_ -T) J dt
o) ’ o
12+ . sinh P -
(Plz + Pzz) 2 O[ YG<T) Pi(t ) dr
2 2 t
+ (Pg - E'l?*') j' “yG(T) m d
P2 T
. (2.3.41)
ho(t) = 1 “:(Pzz 2
; 2t >h¢(0)+‘iﬁé {2k +wP, 2
{Pr 2 +P;9 IM y(0) o1 ;lzghg:]COSh Pit
M
P .
! [(T + Py 2)h¢(0) + -‘%"léy’m)] B
1
- E.%i - p,2 kh
A 2“Vhe{0) + -T-g_y(o) + (2k - mP»2)ght
M ZIMP22 cos Pyt
- [(PE?— _ P22>hq.3(0) + khE c( :Is'fn P.t
i) 2
_ mh? [:( 52 D,2 ¢ .
IM(P12 +P,?) 1o 2 )0[ KG(T) sinh gi(t-T) dt
b -2) |
.,.pf__g,_)[ sin P,(t-
2 . XG(T) ——‘-—']‘Dfi——l)— d"c:\
-ﬁﬁ_kﬁ_g.—____[t--()ffinhp(t)
V(T 1 ~T i -
IM(plz + P?_Z) O G [ Pl - SN gi(t T)] dT

(2.3.42)
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For tall slender structures, equations (2.3.32) and (2.3.33) for
the characteristic frequencies after 1ift-off can be greatly simplified.
First, using expressions (2.3.24) and (2.3.25), one can write

2 2
o} 8 () o o

IM mIM IM IM

where I, is the moment of inertia about the points 0 and 0”, given by

I() = IM + mgz

For slender blocks, m& << IM’ therefore, Iy = IM‘ Then, equation

(2.3.43) reduces to

2 2
(p12 + pp?) + 8kgh ~ (2k _ mgh ' 8kgh _ gg,+ mgh
IM m IM IM m IM

Using this relation and equations (2.3.24) and (2.3.25), expressions

(2.3.32) and (2.3.33) give

p2 = Mgh (2.3.44)
21,
2

Pyt = p% (2.3.45)

2.3.5. A Further Simplification for Small Rotations

The moments of the external forces about the center of mass, which
affect the rocking equation of motion of the system, can be given by

the following expression, for positive angles of tilting (see Fig. 2.3.2)

Moy = FolE+ho) - (g~ he) + Rylh +5e)  (2.3.46)
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For small angles of rotation, one can neglect the term h¢ in comparison
with & and the term %wp in comparison with h, in expression (2.3.46).
Note that the second simplification was implicitly used in deriving the
linearized equations of motion, since the term %«b produced a nonlinear
term when multiplied by RA. After these approximations, the equations

of motion become:

Full contact

my + 2ky = -mye (2.3.47)
IMé + 2k&?y = -mth (2.3.48)
After lift-off
my + ky ¥ kép = -~ ]gmg - My (2.3.49)
10 7 key + o = iy * 5 Mg (2.3.50)

As before, in the double signs, the upper sign corresponds to positive
angles of rotation and the lower one to negative angles.

Comparison of these equations with the equations of motion derived
in the previous section shows that the approximations considered here
produce simplified coefficients of the ¢-terms in the rocking equations.
More precisely, the term mgh has been neglected in comparison with the
term 2k&*. Note that the critical angle, bcpr @t which 1ift-off happens,

for a horizontal excitation, is

- S8 o mg
¢cr £ 2k &
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and the second critical angle, 8;, at which averturning occurs is

)g

(see Fig. 2.3.3)

=l
vy

9, = tan‘l(

for tall structures. Then, writing

o
a = =L (2.3.51)
81

one observes that the ratio l&ﬂ%. is equal to . The approximation con-
2k &

sidered in this seciton, therefore, is acceptable if the critical ratio,
o, is negligible in comparison to unity. This assumption is believed to
be generally valid for applications, except for the case of extremely
soft springs.

The notation of equations (2.3.24) and (2.3.25) reduces to

(2.3.52)

Pt = K (2.3.53)

and the solution during full contact is given by equations (2.3.22) and
(2.3.23).

For simplicity, the solution after 1ift-off will be developed for
positive angles of rotation only. The case of ¢ < 0 proceeds similarly,.

Tt is convenient to introduce the transformation
Y = & -y (2.3.54)

where Y is the vertical displacement of point 0, measured from the
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position at rest and being positive downwards (see Fig. 2.3.3). Sub-

stituting in equations (2.3.49) and {2.3.50) and eliminating y, finally

reduces to
v pzzlu — mhg - o Iy
y+ 22y = JRS R 4§ o+ gf1 - 5L (2.3.55)
ZIM IM G G ( ZIM)
I3 = mgy - mhi. - MEY, - mgE (2.3.56)

The solution of equation (2.3.55) can be written as

21 s
Y(t) = [Y(O) - S(T—M - {)]cos P,t + X%%l sin P,t

Ly
21M ] : mh &£
+ 6«73— -17 - 7, / (~T;r XG(T) - yG(r)) sin Py (t-t)dt
0 (2.3.57)
where
P,? = p;;“ (2.3.58)
M
and Y(0) = £¢(0) - y(0) , ¥{0) = £¢(0) - y(0). In these equa-

tions, the origin of the time is taken at the onset of lift-off. Ex-
pression (2.3.58) can also be derived from equation (2.3.33), with p;

given by (2.3.51) and the term §%9b-be1ng omitted, which is consistent
M

with the approximation considered here.

Double integration of equation (2.3.56) gives

ne(t) = BRI v(e) - Bxple) - yglt) - 82 v tat v ca ]

(2'3'59),

where
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%% $(0) - V(o) + %G(O) + §G(O)
(2.3.60)

=

C: = 3% 0(0) - Y(0) + B x(0) + yg(0)

and xa(t), iG(t), velt)s §G(t) are the ground displacements and veloci-
ties in the horizontal and vertical direction, respectively.

Once Y(t) and ¢(t) have been found, the vertical displacement, y(t),
of the center of mass is found from equation (2.3.54).

The main difference of this solution from equations (2.3.41) and
(2.3.42) is that the hyperbolic part of the response, which appears in
equations (2.3.41) and (2.3.42), is approximated here by a parabola.
The expressions for the characteristic frequencies of the system are
also simplified.

As an example, let us examine the Timiting case of k = « and £;+-%
{rigid block on rigid foundation), and consider free oscillations,
resulting from a horizontal impulse. Let ég be the initial angular
velocity. Then, Y(t) vanishes and equation (2.3.59) reduces to

*

o{t) o _ (pt)? + %% (pt) (2.3.61)

8

™ —

in which p* = %%F— and 8 = é%»(see Fig. 2.2.1). According to Housner's
solution (section 2.2), the angle of rotation for this problem can be
given by

Q%;l = 1 - cosh pt + %%—sinh pt

Note that one of the assumptions made here is that h¢ << &, i.e.,
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f%35-« 1. Also, the above expressions for the response are valid for
the first half period, only, s0 0 < t < %u Under these assumptions,
and as can be verified from Fig, 2.2.2, pt is expected to be smalier
than unity. Expanding cosh pt and sinh pt in Taylor series, Housner's

solution reduces to

$E - T (p0)? + 25 (pr) + O[(pt) ]

Comparing this equation with (2.3.61) it is seen that the approximate
solution derived in this section is good to O[{pt)?>] for the limiting
case of a rigid block rocking on a rigid foundation, which is acceptable
for engineering purposes.

2.3.6. Some Further Observations for the Case of Free Oscillations

Let us now consider the simplified system of section 2.3.5 under-
going free oscillations in response to a horizontal impulse. Let Ih be
the magnitude of the impulse, which is assumed to act at the center of
mass. Applying the principle of conservation of angular momentum about
the middle point of the base, M, which is the pole of rotation at time

t = 0, the initial angular velocity, éo, can be found:

(2.3.62)

Since all other initial conditions vanish, equations (2.3.22) and

(2.3.23) reduce to:

1]
<

y(t)
¢(t)

(2.3.63)

1]

¢max sin ;pt
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where ¢;ax is the maximum angle of tilting, which would occur if 1ift-

off was not allowed (i.e., if the springs could take tension), given by

c - g
‘max = oy (2.3.64)

Equations (2.3.63) are valid only for the case of full contact. If

c . .o
¢max is greater than the cr1t1ca] value
bep = % (2.3.65)
1ift-off will happen at some time, to’ such that
£ o= 1 sin'l(l) (2.3.66)
0 P B . '
where,
®max
g = (2.3.67)
¢cr

The ratio, R, can be viewed as a measure of the excitation and the re-
sulting amount of 1ift-off. For g large, ¢;ax > G and 1ift-off will
happen for a relatively long time, compared to the rocking period. On
the other hand, if g is close to unity, the block Tifts-off only for a
short time. For values of B less than one, 1ift-off does not occur.

Since lift-off is of primary concern here, we will assume that
B> 1

After lift-off, the response is given by equations (2.3.57) and

(2.3.59), which, for the case of free oscillations, reduce to:
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_ 27 2X . 1-A
Y(t) = S[T;f cos Pot + /‘T;r(ﬁz-ﬂ sin Ppt + T:X-]

(2.3.68)

o(e) = LA sin (Pt +7) - F 2+ 5 /g2 p1t+s(%+%l—§)]
(2.3.69)

where A is the amplitude of the harmonic oscillations of Y, y is a phase

correction, t is measured from 1ift-off and
2
A= @I—g-— = (£> (2.3.70)
M

in which " is the radius of gyration about point M. The following

initial conditions were used for the derivation of equations (2.3.68)

and (2.3.69)
Y(o) = & , VY(0) = sp./ g%
s(0) = & . 9(0) = e/ E

The apparent rocking frequency of the system after lift-off is ex-
pected to be smaller than p,, the rocking frequency during full contact,
since the system becomes more flexible after uplift. On the other hand,
the frequency of the vertical vibrations, which start after 1ift-off, is

P.. The ratio p,/P. can be expressed in terms of X only as

B JEA (2.3.71)

therefore, this ratio is less than one for A < 1 and decreases as A

decreases.
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For most applications in practice, A is expected to be smaller than
unity, except for the case of short, wide structures. For example,
assuming that the mass of the block is uniformly distributed, the ratio
A cah be expressed in terms of the dimensions of the block and the

distance ¢ as

A= a (2.3.72)

In Fig. 2.3.4, X is plotted versus the aspect ratio % » for different

values of & It is seen from this plot that A quickly approaches zero
as %- increases. Even for the limiting case of &= %, A is less than

Ve

one for aspect ratios greater than 5

The frequency of the rocking oscillations is, therefore, expected
to be smaller than the frequency of the vertical vibrations and the
rocking response of the ;ystem after 1ift-off consists of a harmonic
function superimposed upon a parabolic one, as shown in Fig. 2.3.5. It
is reasonable, then, to assume that a quarter of a period has ellapsed

when the parabolic term attains its maximum value, which happens at

time, t;, after uplift, such that

- L /g
th = p1 g--1 (2.3.73)

Using equations (2.3.66) and (2.3.73), the rocking period, T, of free

vibrations can be approximated by

- -;’T[sin'l(%)"' /521 J (2.3.74)
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0.0 1.0 20 3.0 40 50 6.0 7.0 8.0
b/a

Fig. 2.3.4. Variation of A with the aspect ration b/a.
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Fig. 2.3.5. Response of a freely rocking block with uplift.
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If 1ift-off was not ailowed, the rocking period, T _, would be

. 2r
T, 3 (2.3.75)

The increase in the period because of the uplift is then

T 2. S
T Tr|is1n (B)+ B ]] (_2.3.76)

It is seen that the elongation of the period depends only on the nor-
malized impulse, 8. In Fig. 2.3.6, a plot of equation {2.3.76) is shown;
it is evident that the increase in the period is very significant for
large values of 8, for which %t is essentially proportional to R.

From equation (2.3.68), the amplitude, A, of the harmonic part of

the vertical oscillations, Y, can be written as

Lo /2 (2 2)
A = ¢ m(Hkﬂug-] (2.3.77)

and the maximum value, B, of the parabolic terms (the last three) in the

bracket of equation (2.3.69) as

= §|e (g2 12

B 6[& (B%+1) + 1+x] (2.3.78)
In Fig. 2.3.7, the ratio (A/B) is plotted versus B, for different values
of A. It is seen that for small values of A, A is much smaller than B,

therefore, the harmonic part in equation (2.3.69) can be neglected. If

A is not small compared to unity, A can be neglected in comparison with

B only for large values of 8. In such cases, however, complete separa-



S50 rF

4.0

30+ NO

T/ T UPLIFT

2.0

_9?_

00 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Fig. 2.3.6. Increase of the free rocking period with uplift, as a function of the normalized impulse, 8.



UJ|]>

/I\
0.5 l‘ 47
0.4
COMPLETE
03+~ SEPARATION
A=0.50
NO
UPLIFT

02 L 0.45

0.40

0.35

SEPARATION 0.30
0.1 F FROM ONLY
ONE SPRI 0.25
0.20
0.15
0.0
| i | ] I -
pd
0.0 i.0 2.0 3.0 4.0 5.0 6.0 7.0
B

Fig, 2.3.7. Variation of the ratio A/B of the amplitudes of the harmonic
and parabolic terms of the rocking response, respectively,
with g and A,



-48-

tion of the block from both springs is very ljkely to happen. Since Y
measures the downward vertical displacement of point 0, measured from

the equilibrium position, complete separation will happen if Y < -6 ,

that is

1-A
A-3§ (m) > 8 . (2.3.79)

Substituting from equation (2.3.77), this criterion can be expressed in
terms of B8 and X\ only, as

a2 > 2_;& (2.3.80)

In this inequality, B is a measure of the size of the impulse and the
right-hand side is a geometrical factor depending on the dimensions of
the block and the position of the springs.

Figure 2.3.8 shows the combinations of A and 8 which cause compiete
separation according to inequality (2.3.80) and the condition that 8 > 1
for lift-off. It is interesting to note that for values of A greater
than one (e.g., a uniform block with aspect ratio less than é?), complete
separation happens for all 8 > 1. For these values of A, the block
finally separates from both springs for all impulses strong enough to
cause 1ift-off.

As it was discussed earlier, however, X can be near to or greater
than unity only for short, wide structures; in these cases, complete
separation from the foundation is 1ikely to happen during strong excita-
tions, provided that the reaction force, RA’ is in fact, generated.
Interestingly, the phenomenon of complete separation has occasionally

been inferred from earthquake response in regions of very strong shaking
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(e.g., see Bo]t[48] and Morri11[49]). The analysis made in this thesis,
howaver, is based on the more common condition that the value of A is
small compared to unity. The possibility of complete separation, there-
fore, is remote. In the following, it is assumed that the values of A
and B are such that complete separation does not happen.

When A can be neglected in comparison to B, j.e., when vertical
osciltlations are negligible, one can find the maximum angle of rotation
by calculating the value of the parabolic term in equation {2.3.69) at

time t = t;. This gives

_ B2+1
Pmax ~ Yer [2(1+A) ¥

A1-2)

1+ )2] (2.3.81)
In this case, then, the rocking response of the block to a horizontal
impulse consists of a sequence of harmonic functions during full contact
and parabolic functions during Tift-off. The total response, however,

resembles a sine function of period T and amplitude ¢ It can,

max”
therefore, be approximated by the response, &(t), of a similar linear
system, in which the rocking period during full contact is T and Tift-
off is not allowed, with the amplitude modified by the following correc-

tion factor, CF

[BZH N M_]-A)]
CE = o 208) 0 (w2 (2.3.82)
28 :
[S'En‘l(g)"- 62-1]

This factor is required so that the amplitudes are matched for the same

impulse,
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Unfortunately, this resuit cannot be extended to treat the response
to a horizontal ground excitation, in general,because the equivalent
linear system depends on the magnitude of the impulse. Considering the
continuous excitation to be a summation of pulses, a different Tinear
system would be required for each impulse. In spite of this fact, the
above results can be used for the estimation of the response to those
ground motions in which a single Targe pulse determines the maximum
response of structures over a wide range of periods. Such dominant

pulses have been recorded on some earthquake records, e.g. the Pacoima

Dam record from the San Fernando earthquake of ]971,[50] the Romanian
earthquake of ]977,[5]] and the record obtained at Cholame Shandon,

[52]

station no. 2, in the Parkfield earthquake of 1966, In such cases,

the response can be estimated as follows:

1. Find the angle ¢;ax for the selected ground motion using equation
(2.3.23). If a response spectrum is available, ¢;ax can be found by
multiplying the displacement corresponding to frequency p; by %h.

2. Find the corresponding vaiue of B using equation (2.3.67). If "
B< T Tift-off does not happen and ¢;ax is the actual maximum
amplitude of the response.

3. For R > 1, find the rocking period, T, as given by equation (2,3.74).
This is the period of free osciilations excited by an impulse which
will produce the same ¢;ax'

4. Consider the equivalent linear system, for which the foundation con-

ditions are modified so that the natural rocking period during full

contact is T. Find the response of this system for the excitation
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under consideration, without allowing lift-off. If the maximum
amplitude is desired, the response spectrum can be used to find the

" maximum angle of rotation, ¢ corresponding to period T, similar

max,

to the determination of ¢C in step 1.

max

5. Multiply this response by the correction factor, CF, to determine
the response of the original problem in which uplift occurs.
Although this simple method cannot be expected to give good results

if the ground motion is not dominated by a large pulse, it might still

produce some useful characteristics of the response, if high accuracy

is not required.

2.4, WINKLER FOUNDATION

2.4.1. System Considered and Assumpticns

The two-spring foundation, which was examined in the previous sec-
tion, is simple to analyze and illustrates many of the dynamic features
of rocking bodies; however, the foundation is oversimplified for applica-
tions, except for the case of spring-mounted equipment. For most
purposes, a continuous elastic foundation, (e.g., a Winkler model)
provides a better representation of the supporting conditions. The
behavior of a rocking block on a Winkler foundation is examined in this
section,

In Figure 2.4.1 the two-dimensional configuration of a rocking
block, supported by a continuous elastic foundation,is shown. The
dimensions of the spring constant, ko, are [F/L?]. The assumptions that
the block cannot slip on the foundation and that the springs cannot

take tension are again employed. For ground motions acting in the
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x and y-directions, the system possesses only two degrees of freedom:
verfical displacement, which is measured by the vertical displacement,

y, of the center of mass, and rotation, measured by the angle of tilting,
$, from the vertical.

For sufficiently strong excitations the block will start lifting
off, with the length of the base which remains in contact with the
foundation dependent on the amount of uplift and being, therefore, a
function of time. Complete separation of the block from the foundation
may also occur for some geometries and for strong excitations, but is ex-
cluded from this analysis,

2.4.2. Equations of Motion

As in the two-spring foundation, the equations of motion can be
derived using Newton's second law of motion. For small angles of rota-

tion and tiiting to the right, the resulting equations are

Full contact

my + k,ay = —myG (2.4.1)

i 1 . a? T . _ .
IM¢ +-§ maheg + kga(TE'- hé) o] +-§ maxG¢+ koahyd = -mth
(2.4.2)

After Jift-off

82 1 ey b 1o
i kga“¢ + 5 keay = - 7Mmg - mys

(2.4.3)

My - 3 ko L+ kos L - kg
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I"+]—mahfﬁ+]—ka9~2~-hc‘5>¢+lkah¢-k a s
A A R A 7 Rodhye - Kolg y
3 2 3
1 Ko §° .1 koS L— + 1 koS2 X + 1 ko L - 1 kohy? 1 koaZho?
& 2 2 2 2 2 6 2 2 8
¢ ¢ ¢ ¢
A mak.¢ = - 1y S(Ei-- hé ] - mhX (2.4.4)
2 G 2 "\ G U

in which 8§ is the static deflection given by

§ = Emfg (2.4.5)

For the derivation of equations of motion after lift-off, the following

expression for the length of contact, S, was used

- &,.8 ¥
R A (2.4.6)

As it can be seen from equation (2.4.1), a block, initiaily at rest
" and subjected to horizontal excitation, does not move in the vertical
direction before 1ift-off happens. However, as in the case of two-spring
foundation, vertical motion is excited after 1ift-off.

Since the angles and displacements were assumed to be small, the
non-linear terms that appear in equation (2.4;2) can be deleted. Then,

the response of the block for the full contact case can be written as

t
y(t) = y(0) cos p, t + ,y(_gl sin ps t - ﬂ]—; [yG(r) sin ps (t-1)dr
P, Pz g
(2.4.7)
- 2 rt
! * * *
h¢(t) = he(0) cos pi t + h (2) sin p; t - mh - J XG(T)sin p1 (t-T)dt
P IMpl 0
(2.4.8)

in which
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*, 2 17~ - mgh
(pr ) = 1 (2.4.9)
M
*, 2 kKoa
(p2 ) = =~ (2.4.10)

and the following inequality was assumed to hold

2

(S< ._[a_h_ (2.4.]])

If the springs are very soft, so that (2.4.11) does not hold, the homo-
geneous equation that corresponds to (2.4.2) (after linearization)
possesses a hyperbolic solution. In contrast to the two-spring founda-
tion, where a hyperbolic solution of the homogeneous equations of motion
during full contact implies static istability (overturning} before 1ift-
off, in this case, if (2.4.11) does not hold static overturning may
happen before or after Tift-off depending on whether the overturning

angle,

5 = tan-l(;—h) = 4+ (2.4.12)

is greater or less than the critical angle,

28
a

¢ = (2.4.13)

cr

After 1ift-off, the equations of motion are coupled and highly non-
linear because of the geometrical complexity. The only way they appear
to be solvable is by use of numerical methods. The complexity of these

equations comes from the varying length of contact, which, as can be
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seen from (2.4.6), depends on both y and ¢. Material nonlinearities in

the foundation would complicate the problem even more.

2.5. EQUIVALENCE BETWEEN WINKLER AND TWO-SPRING FOUNDATION

2.5.1. General Principles

Although the Winkler foundation often provides an acceptably
accurate model of the flexibility of the foundation, it leads to com-
plicated equations of motion after Tift-off, which make it difficult to
apply in practice. On the other hand, the two-spring foundation is not
such a realistic model, except for special cases such as spring-mounted
equipment or small buildings supported by footings aligned at the corners
of the base. However, the two-spring model leads to simple equations of
motion, which can be easily solved analytically. From the engineering
viewpoint it would be valuable to establish an equivalence between the
two models. In other words, we would like to determine the parameters
of the two-spring foundation in such a way that the response of a block
supported by two springs nearly equals that for a given Winkler founda-
tion. The simpler, equivalent system could then be used in solving
practical problems.

The parameter which characterizes the Winkler model is the stiff-
ness per unit length, kg, of the springs. For the two-spring foundation
there are two characteristic parameters: the stiffness, k, of the springs
and their distance from the center of the base, measured by & Assuming
that the value of k, corresponding to the foundation under consideration
is known, the parameters k and & for the two-spring model are to be

found so that the two foundations lead to similar response for a given
block.
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Since there are two distinct regimes of response, before and after
lift-off, it is logical first to determine two sets of equivalent values
for k and &, corresponding to these two cases. Moreover, it turns out
that a generally equivalent set of k and & can be established, which
combines the two cases and which can be used to estimate the complete
time history of the response.

Since the rocking block possesses two degrees of freedom, vertical
displacement and rotation, its response depends only upon the vertical
forces and upon the moments about the center of mass. Thus, establishing
relations between the parameters of the two foundation models, such that
the vertical forces and the moments about the center of mass are the
same, the governing equations of mofion for either type of foundation
will be equivalent. During full contact, this leads to a system of two
algebraic equations for the determination of the two unknown parameters,
k and & . After lift-off, however, the procedure is not so straight-
forward because of the varying length of contact between the block and
the foundation. Some further assumptions must be made in that case.

2.5,2. Equivalence During Full Contact

The total vertical force from the foundation, F25’ and the moment
about the center of mass, Mzs’ for the two-spring foundation during full
contact, are

Foe = -2ky + mg (2.5.1)

My = -2kE¢ + mgh -2khye + RA(h + %d:) (2.5.2)

where RA is the horizontal force acting at the corner of the base (see

Fig. 2.3.2), given by
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pow)
il

A -mXp - mhg (2.5.3)
For the Winkler foundation, the corresponding forces and moments, Fw and

M,,, are

W
Fy = -koay + mg (2.5.4)

a

M, = 1 ke a’¢ + mghd - kyahyo + RA (h ) ¢) (2.5.5)

W T2
in which RA is again given by {(2.5.3). The principles of equivalence

between the two systems, therefore, require that

[N (2.5.6)

and -
ay'3
6

(2.5.7)

The response during full contact of a block sitting on a two-spring
foundation, in which the values of k and E are as given by equations
(2.5.6) and {2.5.7), is then expected to be the same as the response of
the Winkler model. The equivalence, of course, is not valid after the
block Tifts-off. However, if uplift happens for only a short time,
relative to the period of rocking vibrations, the two responses should
be similar for the whole time history. But, if uplift occurs over longer
intervals of time, this egquivalence is not expected to give satisfactory
results.

It should be mentioned that, although equation (2.5.6) assures the
same static deflection for both models, Tift-off will not happen at
exactly the same time, In the case of the Winkler foundation (and for a

horizontal excitation) uplift occurs when the angle of rotation reaches
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the value 5%?" whereas the critical angle for the two-spring foundation

15-% . It is possible, therefore, that an excitation can be strong
enough to cause 1ift-off from the Winkler foundation, but not be able to
produce 1ift-off from the equivalent two-spring system.

2.5.3. Equivalence After Lift-0ff

The resultant vertical forces from the foundation in this case are

Fés = kz~ (2.5.8)

- 1
Fw = 3 keSz (2.5.9)
for the two-spring and the Winkler model, respectively, in which (see

Fig. 2.5.1)

z = Sy +t5o (2.5.10)
and z~ can be expressed as
20 = ii§—§—)z (2.5.11)
where a
g) = i- E (2.5.]2)

Equation (2.5,11) is based on the assumption that the angle of rotation,

¢, and the vertical displacement, y, are the same in the two models.
Since Fw and the position of its application depend on the length

of contact, S, application of the princip]es'of equivalence would

produce expressions for the parameters k and &, which would be functions

of S. But, as it can be seen from equation (2.4.6) and Fig 2.4.1.b,

S changes with time. This is shown in more detail in Fig. 2.5.2, where

the dimensionless quantity §<1s plotted versus time for the case of free
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oscillations of the block. Four values of the normalized impulse,

c

- 4C :
R = ¢max / ¢cr,are illustrated, where ¢max

is the maximum angle of rota-
tion which would happen if 1ift-off were not allowed and ¢cr is given

by (2.4.13). For these plots, equation {2.4.6) was used for the calcula-
tion of S, in which the values of ¢ and y were found by numerical
integration of equations (2.4.3) and (2.4.4). More details about the
procedure followed and the values of the parameters used for this

exampie are presented in section 2.5.6.

It is seen that a complete equivalence after 1ift-off between the
two models would require the values of k and &£ to be functions of time.
0f course, this is not desirable because the simplicity of the two
spring foundation would then be lost. In order to overcome this
difficulty, S is replaced by a representative value, §, which is kept
constant during the time of uplift. In this way, unique values of k and
g can be determined. One representative value of S is the average, over
time, of the length of contact. In Appendix I, a parametric analysis

of the exact response is made, for the case of free oscillations, in

order to estimate this average; the result of this analysis is

§ = & (2.5.13)
VB
i.e., g is inversely proportional to the square root of the normalized
impulse, B. Although equation (2.5.13) was derived for a horizontal

impuise, it can be used to estimate S for other horizontal ground
motions. In that case, the value of ¢;ax in the expression for B should

be calculated for the given excitation.
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Changing S to § in equations (2.5.9) and (2.5.11) and equating FZS

with Fw produces

K = %ko S (2.5.14)

Using this equation and the fact that RA is the same for both systems,
one can find the equation for £ by equating the distances from the

points of application of FZs and Fw to the corner A. This gives

(2.5.15)

w2

£ = 5-

Although equations (2.5.14) and (2.5.15) were derived for eguiva-
lence during 1ift-off only, they can be used in general for large values
of B8, when the time of full contact is small compared to the rocking
period.

2.5.4. General Equivalence

In the previous two sections, relations between the parameters of
the two-spring and the Winkler model were established so that the two
models are equivalent for the two cases of full contact and uplift.
However, if the rocking block vibrates in both states for significant
portions of the response, neither of these sets of expressions is ex-
pected by itself to give good matching between the responses of the
two models. It is needed, therefore, to ccmbine the twe cases, if
possible, and find relations which can be used in general.

For a general equivalence of this type, a measurement of the ex-
pected amount of 1ift-off js needed. Since the ratio, B8, {corresponding
to the Winkler model)} is the only quantity affecting the normalized

average length of contact during 1ift-off and, in addition, can be
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regarded as a measurement of the excitation, it is reasonable to employ
this quantity for this purpose. Then, using equations (2.5.6), (2.5.7),
(2.5.14) and (2.5.15), the parameters of an approximately equivalent

two-spring model to the Winkler foundation can be given by
- B () (-1
B® B
s (F ) (- -
62

BZ

-~

og) (2.5.16)

wljwn e

) (2.5.17)

When 1ift-off happens for only a short time compared to the rocking
period, B is close to one and the values of k and & resulting from equa-
tions {2.5.16) and (2.5.17) are close to the ones calculated by expres-
sions (2.5.6) and (2.5.7). Similarly, when Tift-off dominates in the
response, B is much greater than one and in the 1imiting case, in which
B + o, equations (2.5.16) and (2.5.17} reduce to (2.5.14) and (2.5.15).

The fact that g is raised to the second power in equations (2.5.16)
and (2.5.17) is arbitrary; the reason for choosing a quadratic depen-
dence is to force the values of k and &£ to reach their 1imiting values
faster when 8 is very large than is achieved by a Tinear function.

2.5,6, Estimation of the Rocking Period of Free Qscillations
for the Winkler Model

As an example, let us try to estimate the rocking period of free
yibrations of a block sitting on a Winkler foundation, using the equiva-
lent two-spring model. Recall that for the two-spring system and a
horizontal impulse excitation, the rocking period was found in section

2.3.6 and, according to equation (2.3.74), is given by
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N 2 PUReST B 2 _
T = 5, [san (B )+ / 625 1 ] (2.5.18)

2s

in which p; is the natural rocking frequency during full contact and 823
is the normalized impulse. For distinction, the normalized impulse cor-
responding to the two-spring foundation is denoted by BZS and the value
corresponding teo the Winkler model by 8. In order to calculate the
rocking period of the Winkler foundation, one has to find the values of
p, and 823 which correspond to the equivalent two-spring model and then,
apply equation (2.5.18) directly.

First, recall that the simplified expressions for the natural
rocking frequencies during full contact (for small angles of rotation)

for the two-spring and the Winkier foundation are

o= A (2.5.19)

M
and

(2.5.20)

respectively. Using equations (2.5.16) and (2.5.17), the ratio of these

frequencies can be written as

%’i . — i e (2.5.21)
1 1 62_] _ ______) 1 Bz_.‘l _.3_
[” )( @]f” ey

in which, 8 is the normalized impulse for the Winkler foundation and ex-
pression (2.5.13) was used for the estimation of g. On the other hand,
substituting the expressions of equivalence into {2.3.65) and using

(2.4.13), the ratio of the critical angles at which 1ift-off first
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happens for a horizontal excitation can be expressed as

2s
¢£r ) _ 3R

q>8“f) ) [1 + (82-1) f%] [/§ + (62-1)(3 - ;%)]

(2.5.22)
Also, if 1ift-off were not allowed, the ratio of the amplitudes of the

free oscillations for the two models would be

C

¢maxg2§l_ - E:_ (2.5.23)
C p T
¢max(w) 1

From equations {(2.5.21), (2.5.22) and (2.5.23), the normalized impulse,
825’ for the equivalent two-spring foundation can then be written in

terms of & as

By, = %+ L (2.5.24)
This equation implies that 625 < 1 for 1< 8< 1.65. For these
values of B, the two-spring model does not 1ift-off although the Winkler
system does. Note that the general equivalence, as defined by equations

(2.5.16) and (2.5.17), is based on a combination of the equivalences
during the two individual cases, in which both models are in full contact
or Tift-off. For 1 < B < 1.65, therefore, equations (2.5.16) and (2.5.17)
cannot be used, since the expressions for the equivalence during 1ift-
off do not hold. Equations (2.5.6) and (2.5.7) are more appropriate

to be used in this situation. In the following calculations we will

assume that g > 1.65, Equation (2.5.24) is plotted in Fig. 2.5.3.
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Substituting p» from equation (2.5.21) into (2.5.18), the rocking
period of the Winkler model can be estimated by

1
3 3=l - 2
T 2 [5”‘ (B_z_s)W Bog™! ]

= i s B > 1.65

e JTE +—(32-1)(/§ --;ésﬂM/1 + (g2-1)

S
2/8 (2.5.25)

where Bog is given by (2.5.24) and TC is the natural rocking period for

full contact given by

The ratio %; , which measures the fractional increase of the rockﬁng
C
period because of 1ift-off, is plotted versus g in Fig. 2.5.4. It is

seen that for large values of B8, %L- is essentially proportional to 8.
c
Recall that a similar result was found for the two-spring foundation

(see Fig. 2.3.6). For 8< 1.65, the formula for %; can be extended
c

linearly down to unity as

o (-1 |{ T
T;- = 1+ 555 [(T—> - 1] , 1 <B=x<1.65

or, putting (%L> = 1.063 one gets
C/1.65

%L- = 0.903+0.0978 , 1<8=]1.65 (2.5.26)
C
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2.5.6 Numerical Example

As an example, let us consider Robert A. Millikan Memorial Library,
which is located on the campus of the California Institute of Technology
in Pasadena, California. For purposes of illustration we assume no
deformations in the superstructure, i.e., that the building behaves 1like
a rigid block. Millikan Library is a nine-story bui]ding, 69 = 75 feet
(21.03 x22.86 m) in plan and 144 feet (43.89 m) in height above grade
and 158 feet {48.16 m) above the basement level, A plan view and a N-S
section of the building are shown in Fig. 2.5.5. Assuming all the
masses concentrated on the floors, the following weights of the floors
may be used: roof, 2.6 x 10° ibs. {1.18 x 10%t); floors 9-3, 1.95 x10°
Tbs. (0.88 x10°); floor 2, 2.43 x 10° Tbs. (1.10 x 10® t); floor 1,
2,28 x10° 1bs. (1.03 x10° t); base, 7.0 x 10° 1bs. (3.18 x10% t).
With this distribution of the masses, the center of mass is located at
height, h, equal to 59 ft (18 m) from the base, and the moment of inertia
about the center point of the base, M, for rocking in the N-S direction
is 5.5 x10° 1bs. sec.? ft (7.6 x 10° t - sec® - m). More details about
the building can be found in reference 23.

Using Veletsos' analysis,[21] Foutch[23"I calculated that the
rocking stiffness of the foundation in N-S direction can be modeled by

a rotational spring of stiffness, K, , given by

¢

réK¢ = 3.5 x 10'? ft-1b/rad (2.5.27)

where Fa is the radius of the equivalent circular base, egual to 41 feet
for Millikan Library. A 28% increase of the theoretical value is

included in (2.5.27) to account for embedment[47]. Assuming that the
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building does not 1ift-off and equating the base moments about point M
for the Winkler foundation with the moment resulting from the rotational
spring, for the same angle of tilting, the following relation can be

found for the Winkler model

ko = ——0 (2.5.28)

which results to ko = 1.3 x 10% 1bs/ft* (6.2 x 10® t/m®). The correspond-
ing static deflection is 0.04 in (1|mn)f

Figures 2.5.6, 2.5.7, 2.5.8 and 2.5.9 show the free vibrations of
the model for B = 2, 4, 6 and 8, respectively. According to equations
{2.3.62) and (2.4.8) and the definition of B, these values of § cor-
respond to pulses: 0.15, 0.30, 0.46 and 0.61 m/sec per unit mass,
respectively. For comparison, the maximum pulse in the SOOE combonent
of the E1 Centro earthquake of May 18, 1940 is 0.525 m/sec (see ref-
erence 53). For the Winkler response, equations (2.4.7) and (2.4.8)
were used during full contact; after Tift-off.the nonlinear equations
(2.4.3) and (2.4.4) were integrated numerically, using a Runge-Kutta
method for the solution of a system of nonlinear, first order, ordinary
differential equations. The time-step for the numerical integration was
0.007 sec. For the equivalent two-spring models, the response was
obtained using equations (2.3.22) and (2.3.23) during full contact and
equations (2.3.41) and (2.3.42) after 1ift-off. Note that the over-
turning angle, 6, in this example is 0.41 rads, i.e., more than two

orders of magnitude greater than ¢ for B = 8; dramatically stronger

max
excitation would be required for overturning.

(*) Although the rotational stiffness of this model agrees with experi-
mental data, the resulting static deflection is very small and seems
unrealistic.
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These plots illustrate that the two-spring model, defined by equa-
tions (2.5.14) and (2.5.15) (general equivalence) can estimate very well
the response of the Winkler system for practically all values of B,
Equations (2.5.6) and (2.5.7) (equivalence during full-contact only),
on the other hand, do not give very satiéfactory results, especially for
large values of B.

It is interesting to notice that the matching between the responses
of the two systems is much better in the rocking direction than the
vertical one. From the engineering point of view, however, one is
normally more interested in the rocking response of the system, rather
than the vertical motion. Under this assumption, the results of the
general equivalence are very satisfactory.

The response of the two systems, initially at rest, to a horizontal
harmonic excitation is shown in Fig. 2.5.10. The ground acceleration in

this example was

= -0.5g x sin(jz% t) (2.5.29)

X5 0

where t is in seconds. In order to calculate the appropriate value of g,

the following expression for ¢C was used

max
R Jha ;sin(—-———mzw‘) *) (2.5.30)
I (wo = p1 ) \wo + py

in which wy is the frequency of the exciting acceleration and aog is
jts amplitude, Fquation (2.5.30) actually gives the first maximum

value of ¢(t), which would happen if 1ift-off were not allowed
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(Winkler foundation). General equivalence again gives good results,
especially for the rocking response,

Finaily, the significance of 1ift-off on the behavior of the system
is illustrated in Figs. 2.5.11, 2.5.12 and 2.5.13 where the effect of
Iif%—off on the angle of rotation and the horizontal, relative roof
acceleration {=bd) is shown. The Winkler model was used for these
examples., The dotted Tines were found using equation (2.4.8) for all
times. The harmonic excitation used in the results shown in Fig. 2.5.13
is defined by equation (2.5.29). It seems that uplift tends to decrease

the rocking acceleration, but the rotation can be larger or smalier,

depending on the excitation.
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CHAPTER III
ENERGY DISSTPATING FOUNDATION MODELS

3.7 INTRODUCTION

During the earthquake response of buildings and other structures
there is always some energy dissipated in the foundation because of
inelastic behavior of the soil and radiation of energy through wave
propagation. In very strong shaking, the energy dissipated in the
foundation may in some cases be one of the more important factors in
the overall response. For example, it seems that the effect of non-
linear soil behavior was one of the main reasons for the successful
performance of building 41 during the San Fernando earthquake of 1971
(see Ref. 3). Furthermore, the phenomenon of radiation damping can
occur for a linear or nonlinear material and is a well-established con-
cept. The relative importance of radiation damping, in comparison to
other mechanisms of energy dissipation in earthquake response, is not
yet clearly understood, but there appear to be conditions under which
the effect can be very large.[54]

In the simple case of a rigid block rocking on a rigid foundation,
energy is dissipated every time that the pole of rotation changes from
one corner of the base to the other, because of the assumed inelastic
impact (see section 2.2). In contrast, the idealized models supported
by elastic springs, which were used in the previous chapter to model
the effects of flexible foundations, do not allow dissipation of energy

and are different in this regard. In this chapter, some energy dissi-

pating mechanisms are added to these models and their effect on the
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response of the block is examined.

The first way to dissipate energy, which is studied in section
3.2, s by introducing dashpots into the models. Although viscous
damping often does not have a direct physical meaning in structural
dynamics, it is an attractive approach because of its simplicity and it
is extensively used for modeling the hysteretic behavior of materials
(e.g., equivalent viscous damping). In this first analysis, dashpots
are connected in parallel with the springs for both the Winkler and the
two-spring model. It should be mentioned here that the problem of
assigning realistic numerical values to the spring and dashpot constants
is by no means trivial and requires a careful analysis. Even for the
simplest case, in which the soil is modeled by an elastic half-space,
modeling by springs and dashpots implies frequency dependent coeffi-
cients (for example, see Ref. 39). In many applications, however, it
seems acceptable to use representative, constant coefficients rather
than coefficients depending on frequency; the resulting advantage is
constant coefficients in the differential equations of motion. In the
analysis that follows, the parameters of both the springs and dashpots
are assumed constant and known.

Another way to introduce dissipation of energy in the foundation
is by incorporating inelastic behavior into the springs. Conceptually,
such an approach is probably the best way to consider the hysteretic
behavior of the soil. However, its implementation invelves many diffi-
culties and it does not seem to be an attractive approach for use in
design. Even the simplest case of an elastic, perfectly plastic, two-

spring foundation, which is examined in section 3.3, appearsunattractive
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because of the many cases which shouid be taken under consideration.
Finally, in section 3.4 an impact mechanism is introduced into
the spring foundation models which dissipates energy each time that
full contact is reestabiished after 1ift-off. As was mentioned earlier,
energy is dissipated in this way during the 1imiting case of the rocking
of a block on a rigid foundation. In addition, if the foundation were
an elastic half-space, each impact would generate a pulse radiating
away from the foundation toward infinity. The impact mechanism dis-
cussed in this section is introduced into the spring models of the
foundation in an effort to simulate this radiation damping. Although a
simple impact mechanism can be introduced without much difficulty, it
seems that the effect can be modeled well by the simpler dashpot mech-

anism of the proceeding section.

3.2 VISCOUS DAMPING

3.2.1 Two-Spring Foundation

In Fig. 3.2.1a a rocking block on a viscously damped two-spring
foundation is shown. All the assumptions used in the previous chapter
(undamped case) also apply here. For the case of full-contact, the

linearized equations of motion can be written as

my + 2cy + 2ky = —myG - (3.2.1)

Iy § +2ce% + (2ke? - mgh)e = -mhi (3.2.2)

G

The solution of these equations is



N

x

N

-9%8~
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“L4Dst v z
y(t) = e 22 |y(0) cos Doyt + y(0) , 2 y(0)}sin p, t
Pod 2 2d
\/] - Cz

t
“T,P,(t-T)
p] je 2"2 (t) sin pg(tr) dr (3.2.3)
2d

0

-zqppt : c
(t) =e 1] [MO)cosp1dt+(2(0)+ ] <MO))sin]%dt
&y
¢
mh j “Eypq(teT) .
-— e x~(1) sin p, (t-1) dt (3.2.4)

in which Py and p, are the undamped naturai frequencies given by expres-

sions (2.3.24) and (2.3.25), respectively, and

N ct? (3.2.5)
JIM(Zng-xngh)

Z, = /zéa (3.2.6)

Prg = Pyl 2§ (3.2.7)

bog = Py 1~ 15 (3.2.8)

Comparing the damping coefficients for rocking, Ty and vertical

motion, cz, one cah write
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o= y/ } - (3.2.9)

where A = mEZ/IM and o = 6_ /8y, 6_ being the critical angle at which

C
1ift-off happens in the absence of vertical oscillations and e] being
the critical angle at which overturning occurs. As was discussed in
section 2.3.6, A diminishes as the aspect ratio b/a increases and
becomes much less than one for slender blocks (see Fig. 2.3.6). Also,
o << 1, except for unrealistically soft springs. Therefore, equation
(3.2.9) implies that the fraction of critical damping in rocking is
significantly smaller than that for vertical vibrations, i.e., the
damping in the foundation affects the rocking response of the block
much less than the vertical vibrations.

After 1ift-off, the linearized equations of motion can be writ-

ten in matrix form as {for positive angles of rotation)

(M]¢ + [Clr + [KIr = F (3.2.10)
in which
™ m 0
[(M] = (3.2.11)
2
L0 Iy/E
1 -1
[c] =¢ (3.2.12)
-1 1
1 -1
[X] =k (3.2.13)



g -7 ™M
F = (3.2.14)
~ . 1
-mng - E*mg
Y
r= (3.2.15)
Ed

In the general case, in which & cannct be neglected in compari-
son with unity, uncoupling of the equations using principal coordinates
is not possible (for a general criterion see [56]). In this case, the
Laplace transform could be used for the solution of equation (3.2.10).
However, for a wide range of the values of the parameters expected to
be encountered in practice, a simpler approximate solution can be found
as follows.

Let Hy and Mo be the eigenvalues of the matrix [M]'][K] given

by

1,2 7 é% {? +a(1-a) £ JIT+(1-0)1° + 40®2® } (3.2.16)

2)

and let n(1) and n( be the corresponding eigenvectors which can be

( A
ﬁ[?\’r (1-§i,)°]

NP b L =12 (3.2.17)

written as

~ A
1=
. “‘)/mwn-ﬂi)zj /
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in which

iy

i = W/ (k/m) , i=1,2 (3.2.18)

and the normalization

g(i)T[M]Q(j) - 5y (3.2.19)

has been used, 81j being the Kronecker delta. Equation (3.2.10) can

then be written as

[13G+ [NITLCTINIG + [=w; <Jq = [NIT F (3.2.20)
where [I] is the unit matrix, [N] is the modal matrix defined by
IN] = [g(]) 3(2)] (3.2.21)

and r = [N]q. The damping matrix in this equation can be expressed as

-~

[vIT[CT INg = A8 e
€12 Ca2
[ ﬁ? Mty }
Ny TRESE Jor A0 0417
N i E
L/D (145)7100+ (15,)° v (1) J

(3.2.22)
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In Figs. 3.2.2 and 3.2.3, the ratios CH/C]2 and c]zlczz are plotted
versus o for several values of A. The maximum value of o was taken
equal to one, since overturning happens before lift-off for o > 7. It
is clear from these plots that €11 >> €12 and Cig >> Coy for most corm-

binations of A and o, therefore, one can write,

~2
_
1] : ) )
A+ (1'11'[)
(] [CT[N] =4S .. (3.2.23)
b
0
Jor 0-ipAns i)

In this case, the solution of the matrix equation (3.2.20} can be writ-

ten as
-z Pt q, (0) z
q.(t) =e " 2 q(0) cos P, ,t+ 1 + r q,(0)])sinP, t
1 1 2d p - 2d
2d J] 2
-Z;r
¢ i
- 5 M [ g0 + (141 ng<T>+(l-7l)g]
2d A-#{]-ui) 0
'Crpz(t"T)
x e sin P, (t-7) dr (3.2.24)
and

(0)

q
_ 2% )
qz(t) = q2(0) cosh P,t + P sinh Pt

1
L ~ N
Vo Lm yTn+ (-5 “I00+ (1-10) ]
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: /————Rm [ya<—r>+m-a2>%*e“)*(“gz?-)g] st Py (t-1) d
A )

~ 2
(1 (3.2.25)
where

2 _
P] = ~u2 (3.2.26)

2 _
P2 = iy (3.2.27)

CA ﬁ?

.= (3.2.28)

2w Do (1)

(3.2.29)

Az
Pog = Po ¥1-12,

and the origin of the time corresponds to the onset of 1ift-off, After
the vector q has been found, the response of the system can be deter-

mined by

r(t) = [N] q(t) (3.2.30)

-~

A much simpler solution can be given in the special case in which
a can be neglected in comparison with one. In that case, it is con-
venient to use the downward displacement, Y, of point 0 (see Fig. 3.2.1a),

measured from the equilibrium position and given by

Y =& -y (3.2.31)

instead of y. The equations of motion after lift-off can then be

written in terms of ¢ and Y as

Iy .
I—Y+

I

I
O y = . MNg % v R
» _ﬁ Y = T Xg + _yG+g(] ZIM) (3.2.32)

3|

Y o+

Elle}
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IO¢ = mgY - mh¥. - mEYs - Mg E (3.2.33)

The solution of equation (3.2.32) may be written as

- 3 5aPp(11)E] (1-2) (1) [Z 2
Y(t) = e (Y(O) -8 W)COS p2 —2—— Tr?\_- Cz t

1 2Y(0) . 1) [7 7
i [z <D2(1+X7 ¥ CZY(O))S’" DZ'LT?_l T 52 t]

AT R

t ]
-5 L,P, (1+A)t . .
- 2 J e 2272 (mhg XG(T)-YG(T))

I
2 M
Po(1A) J7ix-%p O

. (1+)) , 1-2
x sinp, {1 /ﬁzfcg(t-w)dr*—é(m) (3.2.38)

while double integration of equation {3.2.33) gives

_MmE| h g .2
¢(t) = I [Y(t) -F X%t -yg(t) -3 gt cz] (3.2.35)
in which
I
Cp = =2 8(0) - ¥(0) + & kg(0) + 4(0)

(3.2.36)

>

I
C, = % 9(0) - ¥(0) + = x,(0) + y.(0)

As was discussed in-section 2.3.6, wherein the free oscillations
of the corresponding undamped case were studied, the bracketed term in
the right hand side of equation (3.2.34) can be neglected for many
applications when Y(t) is substituted in equation (3.2.35), Then, for

the free oscillations of the block, equation (3.2.35) implies that the
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rocking response can be again approximated by an inverted parabola.
Since the vertical oscillation has been neglected in the rocking motion,
the motion after 1ift-off does not generate significant forces in the
one dashpot that is still engaged. As a result, the effect of damping
on this solution arises only in the initial rocking velocity (at the
time of 1ift-off), $(0), which affects the value of the coefficient C1.
A more detailed analysis may be performed in this case, similar to the
one done in section 2.3.6, and the apparent ratio of critical damping in
rocking may be determined. This is done in the following analysis, to
first order accuracy.

Let us assume that 4 is small, so that terms including powers of

21 greater than one can be neglected. Then one can write

Pla = M
and for a horizontal impulse excitation, equation (3.2.4) reduces to

; ¢ ThPt .
oft) = o, e sinpt (3.2.37)

in which ¢If]ax = $(0)/py. The time, t_, at which 1ift-off first happens

can then be given by the solution of equation

-Z.pqt
e "7 sin p]to = -% (3.2.38)
in which 3 = ¢§ax/¢cr and ¢cr = §/E. The angular velocity at that

time is

. -2rypt
o(ty) = 9. p1(- 2 +/82 e 110y ) (3.2.39)

Substituting into equations (3.2.36), the angle of rotation after 1ift-
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off can be expressed as

>-"|Oo

-5 Pt -
R N N

(3.2.40)

6(t) = aﬁﬂ[ $4% 4

which comes from equation (3.2.35) after the harmonic part of Y(t) was
neglected. This function obtains its maximum value at time, t], given

by

2T pit
t, =-§— - J% e 170 4 (3.2.41)

Substituting into (3.2.40), the maximum value of the angle of rotation

can be determined by

-20P,t -2z.pyt
gle 1170 2C1‘J;2e Moy o
Pmax " ¢cr 2(1+))

A{1- 1)
(1+k)

(3.2.42)

Recall that for the undamped case it was found that the apparent

rocking response can be expressed as

oU(t) = ¢;ax sin pt (3.2.43)
where
2
T A A Y 2 12
Omax ¢cr{%(1+k) ¥ (1+k)2} (3.2.44)

and p = 27/T is the apparent rocking frequency. An expression for T is
given by equation (2.3.76).
Now,for the damped case, let z be the apparent fraction of criti-

cal damping. Assuming that ¢ is small, one can write
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-zpt

o(t) = ¢;ax e sin pt (3.2.45)

This function attains its maximum value when

pt = tan'T(%) (3.2.46)

Substituting into (3.2.45) and comparing with (3.2.42), the following

equation in z can be obtained

el ()]sl ()]

-2;.p,t -2z.p.t
| (BZe L °- 2, ‘/sze o _y +1) (142 ) + 22(1-2)
= 5 (3.2.47)
(BE+1)(1+2) + 2x(1-1)

i

The solution of this equation, which can be obtained by trial and error,
will determine the value of the apparent ratio of critical damping. The
effect of lift-off on this ccefficient is shown in Fiqg. 3.2;4, where the
ratio c/z;1 is plotted versus the normalized impulse, 8, for A=0.05 and
C] = 0.05. After a small increase, which may be an error in the approxi-
mation, it is seen that the apparent damping decreases rapidly with
amplitude.

This analysis can be applied to establish an equivalent linear
system, similar to the one discussed in section 2.3.6. For this system
lift-off is not allowed and the foundation stiffness and damping are
such that the undamped rocking period is equal to T, which is given by
equation (2.3.76), and the ratio of critical damping is z. Then the
overall rocking response of the system to a horizontal excitation can

be approximated by the rocking response of the equivalent Tinear system
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muttiplied by the correction factor, CF, given by (2.3.82).

3.2.2 Winkler Foundation

For the Winkler model, the dashpots are introduced in the founda-
tion in parallel with the springs as shown in Fig. 3.2.1b. As in the
undamped case, the equations of motion after 1ift-off are highly non-
linear and coupled and, apparentily, they can only be solved numerically.
Because of this complexity, the Winkler model is not an attractive
model for simplified analyses. The linearized equations of motion dur-

ing full contact and the fully nonlinear equations after 1ift-off are:

Full contact

my + cay + koay = - mye (3.2.48)

2
I 3. -
Iy & + 77 ca’d + koa(%z»— h6)¢ = - mhx (3.2.49)

After 1ift-off

2 2 2
a.,s y a 8 oy _ ¥ _
my + C [._. + ) y ) (m ) + W2 )(b]
(2 ¢ ¢) 8 2¢2 82 2¢2
2 2 2
kQ(gy_ 6.8 ¢ - % + c“d?y_ » %_&)_) =_;_mg - myG (32.50)

3 2 2 3 2 .2
1 " a~ a’h h&® , hdy , hy § y §7y Sy~
(IM+2mah¢)¢+co[(24' Rl e i i B B 3>¢

2 2 2 2
a~ _po_ah I R AR A a(a__
- (8 hs == by =T - =+ z)y]+ko[2(1 hé)‘-b

26° 205
- 2 3 .2 2 3 .
ah o fa_ _8 sy Sy.y _hy a2
Rl L (8‘“5)y7 o el 2 8h¢]



-101-

in which k_0 and ¢, are the spring and dashpot constants, respectively.
The equations after 1ift-off, as given above, are valid only for posi-
tive angles of rotation.

For the full contact case, the equations of motion ére uncoupled
and can be solved directly. The undamped natural frequencies in rocking
and vertical directions, p? and p;, are given by equations (2.4.,9) and

(2.4.10}) and the corresponding damping coefficients are

2

e S0 a (3.2.52)
& 27 .2 ) "

* o a

(;2 = 5 -k—;)ﬁ (3.2.53)

The ratio of these coefficients is

* —

z 2
_g =/ ma (3.2.54)

Z5 12 Ty (1 - 327)
in which :
in whic ¢cr
U.* =
)
2
¢cr = ﬁ;— is the critical angle at which Tift-off happens in the absence

of vertical oscillations and 6 = 5%-15 the overturning angle. For many
applications o* << 1 and for slender structures, ma2 << 12 Iy. Under
these conditions, equation (3.2.54) implies that the vertical oscilla-
tions during full contact are much more damped than rocking motions.

Recall that the same conclusien was drawn for the two-spring foundation.
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3.2.3 Equivalence between the Winkler Foundation and the Two-Spring

Model

As in the undamped case, although the Winkler foundation is a
commonly used medel for the soil, it involves many difficulties when it
is applied to the rocking of structures, because of the complicated
equations of motion resulting from the varying area of contact. The
two-spring foundation, on the other hand, Teads to much simpler equa-
tions which can be solved analytically. An equivalence established
between the two models, therefore, would allow using the two-spring
model instead of the complicated continuous elastic foundation. As was
discussed in the previous chapter, one seeks relations between the
parameters of the two foundation models, such that the resultant ver-
tical forces from the foundation and their points of application are
the same in the two cases. For the damped problem, however, the
forces resulted from the springs and the dashpots have to be distin-
guished and treated separately. In this way, three equations can be
found for the determination of the three unknown parameters of the two-
spring foundation, k, ¢, and £, in terms of the geometry of contact and
the Winkler constants, kO and €y Two different sets of relations can
be found for the two regimes, before and after 1ift-off. The final

expressions are:
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Equivalence during full contact

k = —%— (3.2.55)
coa

c= 5 (3.2.56)

=22 (3.2.57)

_3
k = ) kOS (3.2.58)
c = 3 ¢S (3.2.59)
4 O - -
_a_$
£ = 5 3 (3.2.60)

where S is the average length of contact during uplift for the
Winkler foundation. In Appendix I, an empirical formula for

the estimation of S was found for the case of undamped free oscil-
lations [see equation (I.6)]. When damping exists, however,

this formula cannot be applied directly because it is not clear which
value of ¢;ax should be used. Under impulse loading, with damping,

the average length of contact over each half cycle increases with
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time, and eventually becomes equal to a (no 1ift-off). The

uncertainty of the appropriate value of ¢C is even larger for

max
a continuous random excitation. It is clear, however, from the
example of section 2.5.6, that the equivalent two-spring model

of the Winkler foundation is not very sensitive to the value of

S . Also, from the engineering viewpoint, one is often primarily
interested in the maximum amplitude of the response. Therefore,
the maximum angle of rotation which would happen if Tift-off
were not allowed is suggested for the calculation of S . This
value can be thought of as an estimate of the average tlength
of contact during the half cycle at which this maximum rocking
amplitude occurs. In this way, S can be estimated by equation

(I.6) with ¢;ax calculated by the solution of equation

(3.2.49) or, directly, by means of response spectra.

General equivalence

For a general equivalence, the expression found for the two
different regimes of full contact and uplift can be combined,

similarly to the wundamped case, i.e.,



K =81—2(% koa)+(] —;7)(% k0§) (3.2.61)
e =Y (Tea)+(1- L)Ee) (3.2.62)
B B
_ 1 {a¥3 1\fa S |
€'§§G?)+O'Q§G'§) (3.2.63)

3.2.4 Numerical Examplie

As an example, let us again consider the free oscillations of a
rigid block the size of Millikan Library, with the motion generated by
a horizontal impulse. A description of the buiiding and the values of
the parameters were presented in section 2.5.6. The only new parameter
is the damping coefficient of the Winkler foundation, Coo which can be
estimated by using Veletsos' ana]ysis[Z]]; the procedure is similar to
the determination of the spring constant, ko‘ For Millikan Library

and By = 0.2 (see [21]), the damping coefficient, C_, of the rotational

¢
dashpot is found to be
2 _ 10
o C¢ = 1.58x 10~ ft-1b-sec/rad (3.2.64)

where o is the radius of the equivalent circular base. The value of
o can then be found by equating the foundation moments about point M
for the Winkler foundation and the rctational spring-dashpot system,

which gives

——-———131 (3.2.65)

Using (3.2.64), this equation gives c_ = 5.77 x 10° lbs-sec/ft’
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(2.82x 103 t-sec/mz). The corresponding ratios of critical damping
during full contact, as defined by expressions (3.2.52) and {3.2.53),
are ¢} = 5.7% and ¢ = 22.7%.

Figures 3.2.5 and 3.2.6 show the free oscillations of the example
for 8 = 4 and B = 8, respectively. The physical significance of these
values of B is given in section 2.5.6. The value of ¢;ax was approx-
imated by using the solution of equation (3.2.49), i.e.,

. mot
5 LSS

c _ .0 4 2v1-z32
max b
P1d

¢ (3.2.66)

in which &O is the initial anguiar velocity. The response of the
Winkler system was calculated numerically (after 1ift-off); for the two-
spring foundation, the response was obtained via equations (3.2.3) and
(3.2.4) during full contact and equations (3.2.24), (3.2.25), and
(3.2.30) after lift-off. It is evident from these plots that the two-
spring model, defined by the relations of the general equivalence, can
match the response of the Winkler system very well, especially for small
time. The matching between the two responses worsens with time, but
this behavior was expected, since 8 was calculated using as ¢éax the
value of the maximum angle of rotation, which happens during the first
half-period. From the engineering viewpoint, however, one is mainly

interested in the response of the larger amplitudes, therefore, the

results of the general equivalence are satisfactory.
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Fig. 3.2.5. Free oscillations of a simplified model of Millikan
Library for g = 4.
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Fig., 3.2.6., Free oscillations of a simplified model of Fillikan
Library for B = 8.
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3.3 TWO-SPRING FOUNDATION WITH ELASTIC-PERFECTLY

PLASTIC SPRINGS

Inelastic action of the soil is one of the main mechanisms by
which energy is dissipated in the foundation during the rocking of
structures under very strong shaking. This behavior can be considered
in the foundation models used earlier (Winkler or two-spring founda-
tion} by assuming that the springs are behaving inelastically. of
course, this would introduce additional complications into the equations
of motion, and the added complexity may 1imit the use of the model. In
this section, the simplest case of a two-spring foundation with elastic-
perfectly plastic springs is examined.

In Fig. 3.3.1 the force-displacement behavior of the springs is
shown. We assume that the block has been rocking for some time, so
- that the springs at points 0 and 0' have already experienced plastic
deformations, Y? and Yg, respectively. Because of the different pos-
sible states of the two springs, there are five different cases which
should be considered. The corresponding linearized equations of motion

for these fjve cases are:

(a) Full contact - Elastic region

" _ TS p p
my + 2ky = - my, - k(YT + Y2) (3.3.1)
Iy ¢ + (2k22 - mgh)o = -mhX * kg(v‘]’ - Yg) (3.3.2)

(b) Full contact - Right spring in plastic region

my + Ky + kEg = -myg + F, - -]2-mg— vp (3.3.3)
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Fig. 3.3.1. Force-displacement behavior of the springs.
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e 4 1 _ e 1 D
Iyo + (kg - mgh - Foh)¢-+kgy = ~mth-+§»mg€-ng2 - Fog (3.3.4)

(c) Full contact - Both springs in plastic region

my = -mj,;G +2F - mg | (3.3.5)
Iy ¢ - 2F0h¢ = -mth (3.3.6)

(d}) After lift-off - Spring in elastic region

Wy - ke < i - Loy - 2 (3.3

IM$ + (kgz--% mgh)¢ - k&y = —mhiG-%-mgg + kEY? (3.3.8)

(e) After 1ift-off - Spring in plastic region

my = -mi}G + Fy - mg (3.3.9)
Iy$ - Fhe = -mh¥. - F £ ~(3.3.10)

in which F0 is the yield force of the springs and the angle of tilting
was assumed positive. For negative ¢, similar equations hold.

Although each of'the above equations can be solved analytically,
the calculation of the response of the block is complicated because the
system repeatedly changes from one regime to another. Hence, one not
only has to monitor the transition from full contact to 1ift-off and
vice versa but also the states of yielding and unloading for both
springs. Therefore, even the simplest case of elastic, perfectly-plastic
springs does not appear to be attractive for practical applications. The
difficulties are expected to increase if more complex force-displacement

relations are introduced. Yielding foundation models are not examined
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further in this thesis, although further research in this direction is

certainly possibie.

3.4  DISSIPATION OF ENERGY DURING IMPACT

Energy dissipation from impact is expected to occur in actual
situations where 1ift-off happens. For rocking of a rigid block on a
rigid foundation, Housner[]] found that energy is dissipated every
time that the block hits the base and changes its pole of rotation
from one corner of the base to the other. In this case, the assumed
kinematics of the problem require dissipation of energy, which is
described by the coefficient Q (see section 2.2). A1l the other
foundation models introduced so far do not permit dissipation of energy
upon impact.

In this section, an analysis is first made assuming that an
impact is generated when the block regains full contact with the base.
Then, in section 3.4.2, a mechanism is introduced which generates this
kind of impact. Such a mechanism can be used together with dashpots or

elastoplastic springs with both the Winkler and two-spring foundations.

3.4.17 Analysis

Consider a blaock rocking on a two-spring foundation and Took
particularly at the time when the block reestablishes contact with the
left spring, after having uplifted. The simplest way to introduce
dissipation of energy from impact is by assuming that the vertical
velocity of point 0' is suddenly reduced by some impact mechanism (see

Fig. 3.4.1). This implies that ¢ and y are also changed. Let $; and
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91 be the corresponding values before impact, and iz, &2 after it.
Since the velocity of point 0' is, to first order, (y+Ed), one can
write

(5/2"'5&’2) = 8(5’]"'5&7]) (3.4.1)

where ¢ is a coefficient of restitution which satisfies the inequality

0<exl (3.4.2)

For the Timiting case of € = 1 no energy is dissipated, while for e = 0
the maximum possible amount of energy is lost because of the impact
against a (momentarily) rigid support.

Let I be the vertical impulse generated at point 0' and IA be the
resulting horizontal impuise at point A. Application of the impulse-
momentum principle to vertical, horizontal and rocking (about the

center of mass) motions and elimination of IA finally reduces to

Yy =yt % (3.4.3)
and
By = 4y + H—%‘bﬂ (3.4.4).

Substituting in equation (3.4.1), the impulse I can be expressed in

terms of € and the initial velocities as

I
I= -m(?—'“nﬁég)(l - e}y, + ) (3.4.5)

in which I0 is the moment of inertia about the point 0 or Q'.
Since the angle of rotation, ¢, is assumed to be small, the term

mh&¢ can be neglected in comparison with I0 in the above equation.
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Substituting back into equations (3.4.3) and (3.4.4) one gets the fol-

Towing expressions for the velocities after impact

C@2+€IM. %

Yy = Y, - — (1 - €) & (3.4.6)
2 IO 1 I0 1
: IM + emiz . mg -
9, = | —1—=)b; - 7= (1-e) ¥, (3.4.7)
) 0

The energy dissipated is equal to the difference of the kinetic
energies before and after the impact, which gives

I I (3.4.9)
4]

The maximum dissipation of energy occurs for €=0 and is

I

] Y.
(AE) gy = m-I;(ylﬂ‘EdJ}) | (3.4.9)

X

| —

In order to interpret these resulits for the calculation of the
response of the system it is necessary to use the reduced values of the
velocities, as given by equations (3.4.6) and (3.4.7) as initial veloc-
ities for the full contact case. For a Winkler foundation, the value

of £ should be taken equal to a/2.

Comparison with Housnher's results

As an example, let us consider the limiting case of a rigid
foundation, in which £ = %, y =<%¢ and ¢ = 0. Then, the energy 1oss
during the impact, according to equation (3.4.8), is

2 Iy .o

AE = 5 ma” 1 ¢ (3.4.10)
0

| =

According to Housner's results (see egquation (2.2.5))



H

2
1 2 ma : 2
AE > ma ( -~ T >¢>] (3.4.11)

Since in this case,

I
1
]
=
]

Iy = 1,

equation (3.4.11) is identical to equation (3.4.10)

3.4.2 An Impact Mechanism

In this section, an impact mechanism which reduces the velocity of
point 0' according to equation (3.4.1) is presented. A dashpot of con-
stant ¢* is connected in series, on the top of the spring, k, and the
dashpot, ¢, as shown in Fig. 3.4.2a. We assume that c¢* is large, and
in the Timit c¢* - . Because of its large coefficient, the dashpot
forms an essentially rigid 1ink and, as shown in Fig. 3.4.2a, does not
affect the response of the system except during impact.

At the time of impact, however, we assume that the dashpot, c*, is
locked as shown in Fig. 3.4.2b, for a small time, At, which in the 1imit
goes to zero. The time At can be viewed as the time for the dashpot
plunger to move a distance Az, unlocking the dashpot at the end of its
travel. During that time, the spring, k, and the dashpot, ¢, are not
activated, and the response is affected by the impact dashpot only. As
a result, the velocity of point 0' is reduced. After time At, the

impact dashpot is unltocked, and its effect on the response ceases.
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{a) Unlocked
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(b) Locked

Fig. 3.4.2. Impact mechanism.
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Let us now look analytically at the behavior of the block during

the time At. The vertical forces from the foundation are

k(6§-y+&¢) + c{-y+2d) at point 0

“r
1]

-
i

5 ~c*(y +£d) at point 0
The governing equations of motion then, are

my + (c*+c)y + (c*-c)gd + ky - ko =- T - my, (3.4.12)

Iy §+ (c*-c)ey+ (cx+c)glp + (k52_mgﬁ)¢_ key =--’Eg§-mh'iG (3.4.13)

Let Y15 ¢'i’ jf], <f>1 be the displacements and velocities at the

onset of contact. One can then write,

i

y o= oyt

(3.4.14}

& = 4y *+A¢

Substituting in equations (3.4.12) and (3.4.13) and taking under con-

sideration that Yy satisfy equation (3.2.10), yields

mAj}+c={§/1 + (c*+ c)Afr+c*gd>] +(c*- c)EAd + kAy - kEAG = O (3.4.15)

Ty 6+ cxeyy + (% cJony+ xehy + (ex v e)end v (ke” - H)ao - keny= 0

(3.4.16)

Since c* ~ o« and At - 0, the impact mechanism is expected to affect the
velocities significantly, but not the displacements. It is reasonable,

therefore, to assume

Ay = A = 0 (3.4.17)
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Also, c¢ can be neglected in comparison with c*. Equations (3.4.15) and

(3.4.16) then reduce to

mAy + c*(ay +EAG) = -c*(yy +Edy) (3.4.18)
Ly 88 + c*g(ay +£ad) = -c*(y, +&d)) (3.4.19)
which give
d . . C*IO . . C*IO . o
EE'(AY'F§A¢)'+ﬁrﬂ;'(AY'FEA¢) ="EFTQ'(Y]'*E¢]) (3.4.20)

At t=0,Ay+&Ad = 0, therefore, the solution of (3.4.20) can be

written as
(A7 +EA) = ~(yy+EB )1 - e MM T (3.4.21)

The final velocity of point 0' at time t=At is
Eg_c*At)

(5’2"‘5&32) = (.)"]"'g(i)]) e-(IM m (3.4.22)

Making the final assumption that ¢* - «» and At -+ 0 in such a way that

c*At is constant, we can put

_(ig c*At)
g =e \M M (3.4.23)

Equation (3.4.22) can be written as

(v, +2d,) = ely+ géy) (3.4.24)

which is the same as equation (3.4.1). The unlocking impact dashpot,

therefore, is equivalent to a coefficient of restitution, e, which
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depends on the ratio IO/I the mass, m, of the block, and the constant

M*
c*At, which is a property of the dashpot. For (c*At) = 0, € > 1, and
there is no energy dissipated during the impact. For c*At =, e > 0
and the maximum possible amount of energy is lost. The equivalence

can be checked by calculating the energy lost during the impact. This

energy is equal to the work done by the impact dashpot, i.e.,
At I
_ TV 2\(: L \2
AE—J ex(y+eo)at= T (162 )y, + 20,) (3.4.25)
O 0
which agrees with equation (3.4.8).

3.4.3 Numerical Example

The effect of the dissipation of energy during impact on the
response of the block is illustrated in Fig. 3.4.3 for the same exampie
based on Miliikan Library that was used in section 3.2.4. The two-
spring model (general equivalence) was used instead of the Winkler
foundation. The two extreme cases of € = 0 {maximum possible dissipa-
tion of energy) and £ = 1 (no toss of energy) are plotted with solid
and fine dashed lines, respectively. It is evident that the dissipation
of energy during impact may be significant for values of = close to zero.

However, the response of the block for £ = 0 has the same
appearance that is produced by simply adding‘more damping to the founda-
tion. As it is shown in Fig. 3.4.3, the response fore = 0 can be
closely matched by a 130% increase of the dashpot constant, c, and
neglecting the impact. This suggests that in many cases viscous damp-
ing in the foundation may adequately model the effect of dissipation

of energy upon impact. Considering the nature of the other assumptions
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model of Millikan Library.
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made in the analysis of tipping bodies, the simple modeling of energy
dissipation from impact by means of additional foundation damping would
appear to be justified in most applications.

The amount of the necessary increase in the value of the damping
coefficient would have to be establishéd, however. One way to do this
would be by equating the energy dissipated per.cyc1e. The equivalent
l1inear system estabiished in section 3.2.1 could be used for an approxi-

mate solution.
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CHAPTER IV
DYNAMICS OF FLEXIBLE SUPERSTRUCTURES

4.1 INTRODUCTION

In this chapter, the dynamics of a flexible structure rocking on
a flexible foundation are examined. For simplicity, the two-spring
foundation is considered. It is assumed that the equivalence between
the Winkler foundation and the two-spring model, established for the
case of a rocking rigid block, can again be used. The system is
excited by horizontal and vertical ground accelerations, QG and yG,
respectively. These are strong enough to cause separation of the
structure from one of the foundation springs, but not from both. No
slipping between the base and the foundation is allowed, therefore,
the dynamic coupling between the superstructure and the ground results
in two extra degrees of freedom for the system, in addition to the
degrees of freedom of the superstructure itself.

First, the simple case of a single-degree-of-freedom structure
with concentrated mass is examined in section 4.2. The rocking of
this simple oscillator on a rigid foundation was first examined by
Meek[15]; a comparison between that solution and the response for a
flexible ground is presented in section 4.2.5. The more general case
of a multidegree of freedom structure rocking on a two-spring founda-

tion is studied in section 4.3.
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4.2 DYNAMICS OF A SINGLE DEGREE OF FREEDOM
SUPERSTRUCTURE

4.2.1 System Considered

The system considered herein is shown in Fig. 4.2.1. The super-
structure consists of a concentrated mass, m, placed at height, h, and
connected with the base through a massless rod of stiffness, K, and
damping constant, C. The foundation is modeled by two springs of stiff-
ness, k, and damping, ¢, placed symmetrically at the corners of the
base, which has Tength, 2%, and is assumed rigid and massless. The
horizontal and vertical ground acceleration are denoted by QG and yG,
respectively, and the assumption of no slipping between the structure
and the foundation is applied. Formulated this way, the system possesses
three degrees of freedom, namely, rotation in the plane of motion,
denoted by ¢, vertical displacement of the mass, denoted by .y, and
horizontal displacement of the mass relative to the base, excluding
rotations, measured by the shear deformation, u.

The system may be viewed as a highly simplified model of a single
story building or other structure, or as the equivalent simple oscilla-
tor modelling a mode of vibration of a more complex vibrating system.
In the Tatter case, the values of m, h, K, and C should be calculated
by the standard earthquake engineering methods, applied for fixed-base
response (e.g., see Ref. 55). The foundation parameters, k, ¢, and
the length, £, can be obtained from the equations of equivalence
between the Winkler and the two-spring foundation, as defined in sec-

tion 3.2.3. Note that the value of B, which enters these egquations,



-g¢i-

S

AR
.X“G

Free body diagrams of the mass and

Fig. 4.2.2.
the system.

Simple oscillator on a two-spring

Fig. 4.2.1.
model of a rocking foundation.
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should be calculated for the flexible superstructure. It should be men-
tioned, moreover, that the response of a multi-degree-of-freedom inter-
acting system calculated by this method will be approximate, primarily
because the effect of Tift-off on the response is nonlinear and there-
fore the total response cannot be obtained by the superposition of the

responses of the individual modes.

4.2.2 Equatibns of Motion

Free body diagrams for the mass and the system are shown in Figs.

4.2.2a and b. Applying Newton's second law, and assuming displacements

small enough that sin{(¢ + %J can be replaced by (¢ + %J and cos(¢ + %J

by unity, the following equations for the mass can be derived
N=mg+myg +my (4.2.1)
e .. . u an
mhg + mu + Ku + cU-N(¢+-ﬁ) = - mkg (4.2.2)
which finally reduce to the equation

X+ 0+ 2500 + I %{g-*&e + y)x - %{gi-yG + yYu= -iG (4.2.3)

in which
x = ho (4.2.4)
2 _K
W = o (4.2.5)
s = G (4.2.6)
2vVKm

The external forces acting on the system,which are shown in Fig.

4.2.2b for positive angles of rotation,are
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-n
1

c(-y + &0) + k(8- y+Ed)

~c{y+&d) + k(6-y-£¢) , before lift-off

-n
1]

0 , after lift-off
Ry = -mXG - mu - mhé

Then, in addition to equation (4.2.3), the other two equations of motion

(in the vertical and rocking directions) are

Full contact

- . ? "
y + 2§2p2y + pzy = '.yG (4.2.7)
X+u % i%-(is +u+x) x + 252p2( )y + (%) 2C2P2
2 .
(RP o o AR - (29

After Tift-off

. . - g . -
yFeopyy * (ﬁ‘)52p2X tp Yt

X+U + % (SEG+1}+32)X + 5292[(%)2 X 1%—y+(5?-)§' 1%(%—!)’(]

h
p% EN2 g (x+uy - g £ pz X+uy, = pg £/ x+u
Yo (E) X - ?(T) v (E) t (T)y v (E')(T)x
= X 3 = (4.2.10)

in which
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2 _ 2k

Py = — (4.2.11)

¢, = ¢ (4.2.12)
2km

Whenever a double sign appears in these equations, the upper one cor-
responds to positive angles of rotation and the lower one to negative

ones, In this first presentation, all the nonlinear terms were kept.

4.2.3 Undamped Case

For simplicity, let us first consider the case in which there is
no damping in the foundation or the superstructure. The equations of

motion can then be greatly simplified.

Full contact

Subtracting equation (4.2.3) from equation (4.2.8), using (4.2.7)},
and dropping the nonlinear terms from the resulting expression, one
gets

P
X (4.2.13)

Nlmr\:

(£\2
o= (&) -

which means that the variables u and X are not independent but linearly
related to each other. Using equation (4.2.13) as a constraint, the
probiem reduces to the solution of two uncoupled differential equations.

Let us define
vit) = u(t) + x{t) (4.2.18)

Recall that x(t) measures the horizontal displacement of the mass,

which results from the rotation, and u(t) the shear distortion.
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Therefore, v(t) measures the total horizontal displacement of the mass.

Equations (4.2.13) and (4.2.14) reduce to the following relations

2

(t) = —‘“—) (1) (4.2.15)
X (w2+&2p§ \'
5202
u(t) =(2—§7)v(t) (4.2.16)
w +a p2

= iyt

(4.2.17)

Note that the value of tan—1

d determines the overturning angle. Sub-
stituting into (4.2.3) and dropping the nonlinear terms, one finally
gets

o+ &ng

&2m2 p2
a 2 g _ .
vl s é)v = - Xg (4.2.18)
The square root of the quantity in parenthesis in the above equa-
tion will determine the natural fregquency, &, of the soil-structure

interacting system, i.e.,

22 2
2 %Y Py 4.2.19)
® T 27 h (4.2.
CU+0LD2

The solution of the equations of motion can then be written as
t
1 - .
Eg'f §o(t)sin py(t-r)ar

0 (4.2.20)

y(t) = y(0) cos p2t + Xéglsin p2t -
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2 2 t
2P <o w(0) oo~ 1 .~
u(t) = 5= [v(0) coswt+ =—+sinwt - = | xg(r)sinw(t-t)dr]
W+ a P> w 0 g
(4.2.21)
2 “oon
x(t) = ho(t} = —2-—(”7-2- [v(0) cos 53t+yi~—0—ls1'n wt
w o p2 @
t
- 23— J | SEG(T) sinw{t-t)dr] (4.2.22)
Q

For many practical applications, the term g/h can be neglected
in equation (4.2.19). Then

22 2
P p— (4.2.23)
2. 27
w +a pz

In this case, equation {4.2.21) implies that the earthquake response of
the simple oscillator-foundation system, during full contact, is
equivalent to the response of a one-degree-of-freedom oscillator of
natural frequency », resting on a rigid foundation and subjected to
effective ground acceleration equal to (c:)/m)z QG(t). This behavior
was also reported by Jennings and Bie]ak.[w]

On the other hand, one can write

2
o5 = %5 = zfé (4.2.24)
m

where Py is the approximate rocking frequency during full contact of
the corresponding rigid superstructure. Then, equation (4.2.22)

implies, that the rocking response of the system can also be given by‘
the response of the equivalent oscillator, if the Tatter is subjected

to ground acceleration equal to %— (51/[3])2 ?G(t)-
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It is evident from equation (4.2.23) that @ is smaller than both
w and Py Therefore, the dynamic coupling between the structure and
the foundation results in a system which is softer than either the sys-
tem of the structure on a rigid foundation or the system of the rigid

structure on a flexible foundation.

After 1ift-off

For simplicity let us consider the case of positive angles of
rotation. Substituting equation (4.2.9) into (4.2.3), subtracting the
resulting equation from (4.2.10), and dropping the nonlinear terms

reduces to
&Zpgx- &pgy - 2fut g =0 (4.2.25)

which again is a constraint between the variables x, ¥y, and u. In
contrast to the case of full contact, however, the vertical displace-
ment of the system is now coupled with the rotation and the shear
deformation.

Making again the transformation v(t) = u(t) + x(t), one gets

ap5 y(t) + 2u(t) - g3
20 + o Py
-5 y(t) +5p5 v(t) + gd
u(t) = 5% (4.2.27)
2w ta Py

and the governing equations of motion reduce to
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y + y - V=EYo "N 573 L.
2m2<+&2p§ 2w2-F&2p§ G 202 + 32 pg
~2 2
2 G- p ~ 2
- ® 22 g 2 - Q0
vV + ———s—5 Qx Py - )v -5 Y = X, - § —5—57
2m2-F&2pg Sz oh szi-&ng G szi-&ng
(4.2.29)

The characteristic equation of this system of equations is

4 2
2 @'
=4 @ 2\ 2 _al|z2_g_®F2 i
R S 2 (“‘“ )pz M Rzl T 0 (42.30)
&)+ap2 @m +apJ

This equation has two real and two imaginary roots, which can be writ-
ten as iﬁ] and iiﬁz, where §1 and ﬁz are real and positive. The real
roots Tead to the expected hyperbolic functions in the solution.

For slender structures, o is a small quantity, therefore &2 can
be neglected in comparison to unity. In this case, approximate values

for ﬁ] and 52 can be found from equation (4.2.30), which are

2
i, = (4.2.31)
‘ J/h(Emz + 57p5)
y wp,
R, = (4.2.32)

2
J 2m2 + &Zpg
The system of equations (4.2.28) and (4.2.29) can be solved by

standard methods. The final expressions for the response are



-133-

~ 2 2

2 0w p
w ~ ~
y(t) == | 5 (0) (‘“‘?‘Tf (szg'%>'ﬂg)+"(0) ——7
(Q]+Q2) 20t o Py 2w+ Py
2. 2.2\ 2
2 B glw +a"p;jw
+ g a2w2 2 m2+oz2 2 Q2 _ ( 2) cos Bt
2 .2 27 Py Moo 7 2.7 2
05 (20" +a”p5) h(Zm +OLP)
2 2 2
. 22 .
2 G p sinfi,t
1 [ w 22 gy =2\, - 7 R
S y(O)(———ap- -ﬂ)+v(0) =
(Q$+Q§) 2m2+&2p§( 2 h) 2 2m2+&2p§] R
1 ()( o’ (22 g) ~) O‘“’Zpg
+ ———| ¥(0 aps-7)+er] + v(0)
2 =2 zZ 27 2 h 1 2. ~2 2
(QI+Q2) 2 ta Py 2w+ Dy
2. 2272
2 2 2 .2 2\«2 9\ ’””’2)“’ ~
Tt (@772
2.2
2 aw p sinh Q. t
1 [ o 22 ~ ? 1
t o y(O)( & p +Q)»v(0) ] =
(5 +0) 202 + 5202 (%2~ 7+ 5 I
g2 2m2 + Zpg ‘ wz + ozng
Y 7 -9 7773
w @ Py
’ t
1 0 -2 2 =21 1 " .o
t G ps, - - Q ;—Jy (1) sinQ,(t-t)dt
1 2 2 0
't ‘Tj: (t) sinfly(t-1) d
+ = X T} STn -T T

t
2
~2 2 =21 1 - .
_(2—2(”—:2—2 (a pz-%) + ﬂ]) = J yg{t) sinh(t-t) dr
@ p 1)

t
1. o
T e 3y B (J) Xo(t) sinh Q) (t-1) dr J (4.2.33)



-134-

(t) ] (0) vz (0) gl 7 +am2(p2-§§)g‘ it
v(t) == | ¥ tv = cos
(sﬁmg) 2 2+d2p§ 22455 5 ﬂg(&uzﬁgpg) ‘
. F'(O) uwng ) mng <2 1 sin Rt
- —~ y + vy - =
Qs+ w-+ap w +ap 2

Glpl 22 L 2( 2,2
oW p @p o\ de“(ps+as)g -
ot )[y(o) —_—2 v(O)(————@——m% ____(_2___]_)_“ cosh,t

+
~7  ~ N - x2 ~2
(Q§~FQ§ Zmz-kung 2m2-+u2p§ Q](Zmz-kd pg)
: r.( : &wng y )(\ mng _o\] sinhil ¢
+ | ¥{0) ———5—=+ V(0| ——55 + O ————
=2 =2 2, ~2 2 2, ~2 2 1
(Q]~F92);_ 20" +a7p, 2w +atp, 4
2m2+m2p§
+ £ 5

1
R ) ¢

yG(T) sinh 51(t—“r)d'r
19
22 t
o p _ . .
- (}—-ii+———+Q%)]—f XG(T)SinhQ](t-T)dT
2
(4.2.34)

The origin of time in these eguations is at the onset of Tlift-off.
After y(t) and v(t) have been found, ¢(t) and u(t) can be determined by

equations (4.2.26) and (4.2.27).

General response

In order to calculate the total response, one has to determine at
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each time step whether the system is in the state of full contact or
uplift, and then apply the appropriate set of equations. When the sys-
tem changes from one state to the other, the final conditions of the
first case should be used as initial conditions for the next one,

A much simpler solution can be derived by neglecting the gravity
terms in the Teft-hand side of the equations of motion, which is a good
approximation for small angles of rotation. Then, the response after
lift-off is given by the superposition of a parabolic and a harmonic
term. Since this solution is derived as an approximate, first-mode
solution for the response of a multistory structure (see section 4.3.3),

it is not presented here.

4.2.4 Damped Case

If damping exists in the superstructure and the foundation, equa-
tions (4.2.13) and (4.2.25) are not valid. With damping, x and u are
not linearly dependent but are related through a first-order differen-
tial equation. After lift-off, y is coupled with x and u also.
Therefore, one has to solve a system of two differential equations in
x and u during full contact, and a system of three differential equa-
tions in x, u, and y after uplift. This problem can be treated as a
special case of the n-story superstructure, which is examined in sec-

tion 4.3.

4.2.5 Example

As an example, let us consider the simple oscillator which models

the first mode of Millikan Library. If n is the first eigenvector, one
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can write (according to Ref. 55)

10 5 10
I:izl mini’] 1‘21 i
m= S [ and h = 0
121 "M ~i§1 "N

For Millikan Library, these expressions reduce to m==0.66>(103t-sec2/m

1]

and h=32.6 m. Also, w = 1.88 Hz. For the foundation take:

k = 6.56x10% t/m and £

1]

6.07 m. (These values were found from the
Winkler stiffness used in section 2.5.6, considering the equivalent
two-spring model during full contact.) Then, a = 0.186, p,= 22.4 Hz,
and p; = &pz = 4,17 Hz.

In Figs. 4.2.3 and 4.2.4 the rocking response and shear distor-
tion are shown for a horizontal impulse excitation. The value of B was
3, which corresponds to an initial horizontal velocity equal to 507mm/s.
It is evident from these plots that 1ift-off greatly affects the
response of the system, since both the fixed base response (not shown)
and the response for the flexible foundation in which 1ift-off is not
allowed are much different from the solution obtained from this analy-
sis. On the other hand, the solution obtained by Meek[]sj for the
rocking of the structure on a rigid foundation gives good results. It
should be mentioned, however, that the foundation was quite stiff in

this example; softer foundations may not yield such good agreement.

4.3 DYNAMICS OF A MULTIDEGREE OF FREEDOM STRUCTURE

4.3.1 System Considered and Equations of Motion

The system under investigation is shown in Fig. 4.3.7. The



SIS

Rocking n-story structure on two-spring foundation,

Fig. 4.3.1.
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superstructure consists of n+l rigid masses, concentrated at the floor
levels and connected with massless, viscously damped members, so that
there is one degree of freedom per floor. The building is supported
by a two-spring foundation with springs of stiffness k and dashpots of
constant ¢, placed symmetrically, a distance £ from the center of the
base, M. The system, initially at rest, is subjected to horizontal
and vertical ground accelerations, QG and yG respectively, and no
slippage is allowed between the base and the foundation. Formulated
this way, the building-foundation system possesses n+2 degrees of- free-
dom, namely, rotation of the structure in the plarne of motion, measured
by the angle ¢, vertical translation measured by the vertical displace-
ment of the center of mass, y, and displacement of the superstructure
at the ith floor relative to the base, excluding rotations, denoted by
i=1,2,--",n.

For the special case of a superstructure deforming only in shear,
the equations of motion for the building-foundation interactive system
are derived in Appendix II. 1In general, for small displacements, the

equations of motion can be written as

[MIG+ [T+ [Klu =-[MI(h$ - 1 g + 1 xg) (4.3.1)

and

Full contact

. . 2 .
Y+ 2,p¥ + Py =-Yg (4.3.2)

$ ++— ] mih.u, + 2z,p,4+po -
Ly s2¢ 1171 171 1 Iy 4
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After Tift-off

2 2
Y + ZoDoY - T, E«b+ggy-—3£q5=—9--" (4.3.4)
Y T Gobs P2 5 ? 2~ Vg .-
n Z.p o’ n
-] . . 1’1 . . Py kE g _
¢+—2m.h.u.+§p¢-————y+—¢-—-—y— zm.u.—
IM PR B 11 £ P IM ZIM 38y 1T
mh
= MmgE ¢y (4.3.5)
2l T T, e

In these equations, u = {ui} and h = {hi} are column vectors; 1
is the column vector with unit elements; hi is the height of the jth
floor measured from the base level, and hC is the height at which the

th story, and m is

center of mass is located; m. is the mass of the i
n

the total mass, i.e., m= 7} Mis Mg being the base mass; I, is the
i=0 '

total moment of inertia about the middle point of the base, M, and can

be written as

0 5 L ¥ (4.3.6)
in which Ii is the centroidal moment of inertia of the ith mass: Pq>
Pps Tqs and To are defined by equations (2.3.24), (2.3.25), (3.2.5),
and (3.2.6}, respectively, and are the characteristic frequencies and
ratios of critical damping during full contact for rocking and vertical
motions of the corresponding rigid superstructure; [M], [C], and [K]
are the mass, damping, and stiffness matrices of-the superstructure,
calculated for fixed base response.

The matrix [M] is diagonal and the matrices [K] and [C] are sym-

metric and positive definite. For a shear structure, [K] and [C] are
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tri-diagonal but this property does not hold, in general, if bending

th

deformation is also taken under consideration. Let o be the r™ eigen-

value of the matrix [M]-]{K], n(r) the corresponding eigenvector, and

[N] the modal matrix defined by
v = 1) ) )y (4.3.7)
The eigenvectors can be normalized so that

[13 (4.3.8)

[NTT [MICN]

and
2

1}

[NIT [KIIN] ] (4.3.9)

[~

where [I] is the identity matrix. Then, making the transformation,
u(t) = [N] q(t) (4.3.10)

and substituting into equation (4.3.1) with premultiplication by [N]T,

one finds
[11g+ [N [CINI G+ [~o®Tq=- [NT[MI(hG - T gg+1%5)  (4,3.11)

If the superstructure admits decomposition 1ﬁto classical normal
modes, the matrix [N]T[C][N] will be diagonal (see Caughey and
O'Ke'Hy[%:l for conditions for this to occur). It is assumed here that
classical normal modes exist, since buildings seem to possess such modes

over a significant range of amplitudes.

Equation (4.3.11) reduces then to a system of n uncoupled differ-

ential equations which can be written in the form
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q,+ 25 w g +ag

r rip rip = .Fr((bs(b:xa) s r=1,2,"",n (4.3.12)

in which Zgimr is the rth diagonal term of the matrix [N]T[C][N] and

S th mode of the

a is the ratio of critical damping associated with the r
superstructure. The function fr is the rth component of the forcing

function in the right-hand side of equation (4.3.11} and can be written

as
fo = - Ad +B.gb - Bxg (4.3.13)
where
L (r)
A.= 1 mhn (4.3.14)
i=1
n
B.= 1 min§r’ (4.3.15)

i=]

In the above expressions, ngr) is the ith component of the pth eigen-
vector.

Equation (4.3.12) can be solved for qr(t) in terms of ¢(t),
$(t), and XG(t). Substitution in equations (4.3.3), (4.3.4), and
(4.3.5) using (4.3.10), however, would reduce the problem to the solu-
tion of an integrodifferential equation for the case of full contact,
or a system of two integrodifferential equations after lift-off. To

avoid this, a solution by use of Laplace transform is proposed.

Taking the Laplace transform of equations (4.3.12) and (4.3.13),

8,(s) Ts) =- (A s"- B g)3(s) - B % (s)+sIA,6(0) +q,(0)]

+ AS(0) +q.(0) + 25 w 9,(0) (4.3.16)
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in which

2

- S 2
Ar(s) =s" +20 ws tog (4.3.17)

In this equation, and subsequently, s is the complex Laplace variable
and a bar over a function denotes the Laplace transform.

From equation (4.3.10)

' n
TROEE IR E (4.3.18)

! r=]

Taking the Laplace transform of equation (4.3.3), (4.3.4), and (4.3.5)

and using (4.3.16) and (4.3.18), the following equations can be derived.

Full contact

2 2
9 n (As -Bg _
[s +-2;]p1s+-p$--%— y ( r I ) &(s)

M r=1 Ar(s)

“r) (A 00 +4,.(0) + 22500, (0))

n n
+ [¢(0)+T]p-d- iZ] mihiui(o)}5+ [&(0)+ZC]P]¢(O)+Q—M 121 mihiﬁi(O):l

(4.3.19)
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After 1ift-off

2 2
Py ) Pal — y
(Sz+ ZoPpS +72)y(5) = (c2p2s+72)£ 8(s) - gls) - 5

+5y(0) +y(0) +7,p,y(0) - T,p,E ¢(0) (4.3.20)
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x [¥{0)+z,p, y(0) - z,p, £6(0)]

2
e+
m.h.i; (0) - g%ss - NS (4.3.21)

i 2s
] E(SZ"'C PS"'E‘Z—)
2v2 2

1
+—-....
In 4

He~13

The Laplace transform of equation (4.3.2) was not taken, since this
~equation can be solved directly by means of Duhamel's integral.

It should be mentioned here that although the system is initially
at rest, all the terms in these equations involving initial conditions
should be kept. This is because the system continuously changes from
the state of full contact to 1ift-off, or vice-versa, and the final
conditions of one state are used as initial conditions for the other.

For the inversion of the Laplace transform by residue theory, the
zeroes of the terms in brackets in the left-hand side of equations
(4.3.19) and (4.3.21) must be determined. This procedure requires the
determination of the roots of an {n+1)th order algebraic eguation in s2
in the case of equation (4.3.19) and an (n+2)th order equation in the
case of equation (4.3.21), which, in general, can only be done numeri-
cally. However, approximate values of the poles of these transfer func-

tions can easily be found, as is discussed in the next section.

4.3.2 Qualitative Investigation of the Behavior of the System

For simplicity, let us first consider the undamped case. For the

case of full contact, it is convenient to define the functions



Gy (s2) =~ (s “P]) (4.3.22)

and

(4.3.23)

Note that GZ depends on the parameters of the superstructure only,
while the foundation parameters appear in the expression of G1. If one
piots the functions G] and G2 VErsys 32, the values of 32 at the inter-
sections of these two curves locate fhe zeroes of the bracketed expres-
sion in the left-hand side of equation (4.3.19). Let s==% iék,
k=1,2,---,n+] be those zeroes. The values of &k define the n+l
resonant frequencies of the building-foundation system., The functions
G] and G2 are plotted versus 52 in Fig. 4.3.2a for the example based on
Millikan Library (presented in section 4.3.3) with the two-spring
foundation defined by the equations of equivalence during full contact
(see section 2.5.2). An expanded view of the plot near the origin is
shown in Fig. 4.3.2b.

First, note that the function G2 is smooth with apparently constant
slope, except for narrow regions around the values 52= -wi, k=1,2,"+-,n,
where its slope suddenly approaches infinity. As a result, the values
of ﬁk, k=1,2,-+-,n are expected to be close to w, and, at least for
the higher frequencies, the relative difference between &k and Wy is
negligible. For &], however, this difference may be important, as
can be seen from Fig. 4.3.2b. It is evident that 51 is always smaller
than 01 and it decreases as the foundation stiffness decreases. It can

be concluded, therefore, that the higher frequencies of the building are
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Fig. 4.3.2, Determination of the resonant frequencies of the building-
foundation system during full contact.
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not affected significantly by the interaction of the structure with the
ground and the effect is primarily shown on the fundamental frequency,
which is always reduced. These results have also been reported by other
investigators of soil-structure interaction (e.g., see Jennings and
Bie]ak[19]).

In Fig. 4.3.3, the first three terms of the series in the expres-
sion for 62 are plotted individually. It is evident that apart from
narrow regions around 52= %ui, k=2,3,-"-,n, the first term of the

series is the dominant one. Because of this behavior, equating the

functions G] and 62 reduces to

-B%g =0 (4.3.24)

— O

( [I +-p] + 247 B]g] + I p% w

which is a second order equation in sz. let s% and sg be the roots of

this equation, which are both negative, and let Is?[ < Isgl. One can

then write: 51 = 151 and 5n+1 o 152. The remaining n-1 resonant

frequencies of the system can be approximated by the corresponding
frequencies of the building, i.e., &k =@, k=2,3,"

For base excitation, the contribution of the higher modes to the
response of the system decreases as the value of the corresponding
eigenfrequencies increase, so the importance of the (n+1)th mode

depends on the relative value of @ in comparison to the other reson-

n+1

ant frequencies of the system. It can easily be concluded from Fig.

4,3.2a that @ increases with the foundation stiffness and in the

n+l

limit, 5n+1 + o for rigid foundations. Also, since the slope of Gl is

21 2 ~
-1 and the slope of G, for large Ise] ds - AY/1y» the value of o,

increases as A% approaches IM' Note that both A1 and IM depend on the



40.0 60.0
SCALE FACTOR = 10°

G2
20.0

C.0

-20.0

FIRST TERM OF THE SERIES
———————— SECGND TERM OF THE SERIES
—-——— THIRD TERM OF THE SERIES

|

! | f i

|.._ —
|
““““““““““““““““““““““ - T S
| i
B I : N
i SCALE RACTOR = 103
1 1 | 1 | ] ;
-45.0 -35.0 -25.0 ) -15.0 -5.0 5.0
S

Fig. 4.3.3,

Importance of each term of function G2(s?).



~-151-

properties of the buiiding, and A% is always less than IM'
let us now examine the behavior of the system after 1ift-off. In
this case we are seeking the zerces of the transfer function which

appears in the left-hand side of equation (4.3.21). Let us define the

functions
2 2 2
p kE™ p
G (52) aa sl e L — 2 (4.3.25)
3 2 p2
21 2+-ii
M\S T2
2 1 0 Arz ' %’Ar8r952+'; Bigz
G4(s y = - T z 55 (4.3.26)
M r=] st

With this notation, the zeroes of the transfer function can be found
from the points of intersection of functions G3 and 64, when the latter
are plotted versus 52. This plot is shown in Fig. 4.3.4a for the same
example of Figs. 4.3.2 and 4.3.3; an enlarged view around the origin is
shown in Fig. 4.3.4b.

It is interesting to notice that one of these points of intersec-
tion corresponds to a positive value of 52. As a result, the response
of the system consists of n+1 harmonic terms combined with a hyperbolic
term. A hyperbolic term was expected in view of the results for a
rigid superstructure. The existence of the real pole can be demon-
strated if one keeps only the first term of the series in the expres-
sion for G4, which again is the dominant one, except for narrow regions
around 52= -mﬁ, k=2,3,-+-,n. Then, three of the zerces of the trans-

fer function can be approximated by the roots of the eguation
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2 2 22
2 p])(z Eg)(z 2) KEPy (2. 2
IM(S +7 S +2 S +cuT - 5 (s +w1)—

2
4 3 2 1,22 2pz>*
- (Ais -5 ABigs" +5 By g ) (s t5) =0 (4.3.27)

which is a third order equation in 52. The product of the three roots
of this equation is equal to the negative of the ratio of the constant
term to the coefficient of 56, and can be written as

pg 2 2
T e )
Since IM- A? > 0, this is a positive number and thus one of the roots of
equation (4.3.27) must be positive.

Let s = iiﬁk s k=1,2,---,n+l and s = iﬁo be the zeroes of the
bracketed expression in the left-hand side of equation (4.3.21). One
can write ﬁk =, for k=2,3,---,n, while ﬁl’ §n+1’ and ﬁo can be cal-
culated by the roots of (4.3.27). As a result of the real poles s=:t§o,
the system does not possess resonant freguencies in the classical sense.
Looking at the free oscillations, however, one can identify an apparent
fundamental frequency, which depends on the amplitude of the response.
This apparent fundamental frequency is determined by the hyperbolic term
of the response, upon which the harmonic terms are superimposed. Since
the system becomes softer after 1ift-off, the apparent fundamental fre-
quency is expected to be smaller than 51. An approximate method of
estimating this frequency by considering only the first mode of the

superstructure is presented in section 4.3.3.c.
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Let us now consider the damped case. During full contact, let

Ek’ k=1,2,-+-,n+]l be the ratios of c¢ritical damping of the soil-struc-
ture interacting system. As it was shown, the eigenfrequencies of the
second to nth modes of the superstructure are not significantly affected
by the interaction with the soil, therefore, one can write Ek = ZE for
k=2,3,---,n. The values of E] and En+1 can be found approximately by
keeping only the first term of the series which appears in the left-hand
side of equation (4.3.19). We want to determine El’ 2=1,n+1, so that

the values

s = 5g(- FERNE Ei) . 2=T,n+] (4.3.28)

satisfy approximately the equation

) ) (A]SZ - 8,9)°
s™+2z,p,s+pT - =0 (4.3.29)
1™ 1 2 S 2
IM(S +2£1 mls-Fw1)

Substituting and keeping only the first-order terms in Eg’ one finds

2\ ~4 2,2 ]~2 2 2 2.2
(1y- 893, - [1ed+p7) +2n8y0fi5 + 1y 0] of-870%= 0 (4.3.30)
‘and
~ o~ s -~ -~
. C](“’z"“] - wpfig) + oy {wg/ey - F’]/%)
L, = — s 2=1,n4]
. A% di W1 Py 2A]B]g
2 ]'T— -_— _+E—+I—'z)—"ﬂ (4.3.3‘1)
m/eP1 \P1 “1 ‘m9Py
Equation (4.3.30) is a second-order equation in 5§ and the two
roots will determine the values of 51 and &n+1' After the ég‘s are

found, the corresponding ratios of critical damping can be estimated
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(to first order) by equation (4.3.31).

After 1ift-off, one can again assume that the damping coeffici-
ents, 2k’ associated with the higher modes of the system, are close to
the corresponding ratios of critical damping of the superstructure,
i.e., ik = ci for k=2,3,-,n. For the remaining modes, one considers
again only the first term of the series in the left-hand side of

equation (4.3.21) and assumes that the zeroes of the transfer function

can be approximated by the values

s = ﬁz(-i + 1 “Zi) 2=1,n+1, and s = is”zo (4.3.32)

Working similarly, the values of ?2‘3 can be derived.
Note that equation (4.3.30) gives the same values for 5] and

5n+1 as equation (4.3.24).

In general, it can be concluded that soil-structure interaction
resuits in a reduction of the fundamental resonant frequency of the
structure, while the higher resonant frequencies are not affected sig-
nificantly. If the excitation is strong enough to cause l1ift-off, the
system becomes softer and the apparent fundamental frequency decreases
even more. Since the system is now nonlinear, this frequency depends
on the excitation and decreases as the amplitude of the excitation
increases. Because of this behavior, the earthquake response of the
uplifting system may be significantly different from the response
without 1ift-off. The difference between the two responses, however,
depends on the parameters of the structure and the foundation, and on

the nature of the excitation., These features also determine whether

1ift-of f is favorable or not to the structure.
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4.3.3 Approximate Solution for Response of the First Mode

4.3.3.a Undamped case

As was done for the rocking rigid block (see section 2.3.5), the
gravity terms in the left-hand side of the equations of motion can bhe

neglected for small angles of rotation. Noting that

(4.3.33)

and keeping only the first term of the series in the right-hand side of
these relations (first mode approximation), the undamped equations of motion

reduce to

. " 2 .
q.[ + A](j) + 03., q.l *-B.IXG (4-3~34)

Full contact

2 .

y+tpy -y (4.3.35)

. A] - 2 mhc - (

G+ g +pie= - =Sk 4.3.36)
IM 1 1 IM G

After lift-off

2 2

. Do P5 g =

y +_2_y - quj T - —é—- yG (4.3.37)

oM e mgr _ ™e o (

(b.,._q +_¢__y=_ - —— X 4.3.38)
IM 1 2 IM ZIM IM G

2]

In general for buildings, I

2 .
M A] and mhC = A1B], these relations are
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exact if the centroidal moments of inertia of the floor masses are
neglected and the first mode shape is a straight 1ine. Then, for the

case of full contact one can write

2
p12g = AL g (4.3.39)
Iy

and the solution of the equations of motion is

t
7(0) . . .
y(t) = y(0) cos pot + 1%31’51n pat - ;%— / yG(T) sin p,(t-t)dr
(4.3.40)
t
by mh C.L)lz {
o(t) = #(0) cos Wt + QLQl.sin it - ¢ ‘/iG(T)Sirl&l(t-T)dT
w1 Lo (wi” + pr?)
M 0 .
(4.3.41)
in which
- wl?_ 12'
B o= (4.3.42)

and equations (2.3.52), (2.3.53) can be used for the calculation of p;
and p». The normalized displacement, qi{t), can be calculated by equa-
tion (4.3.39).

After 1ift-off, equations (4.3.34) and (4.3.38) give

2 2
0124 - 2A11w1 q - By Lﬂ%i_ -0 (4.3.43)
M g M

It is convenient again to use the downward displacement of point 0, Y,

defined by (see Fig. 4.3.1)

Y = §£¢ -y (4.3.44)
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With this substitution, the equations of motion reduce to

h
2\ .. 2
(1 + 42—2-—) Ve By = 301-0) -4 £ &g+ T

2

2wy
(4.3.45)
}\ 22 M hC . .
g5 = ey 1 - JL—;) Y -g - + % - Vg (4.3.46)
20)1
2
in which X\ =-%§— and p1? = Ap.2. The solution of these equations can be
M
written as
Y(t) = [Y(O) - 6(%5%)Jcos Pot + I%%l sin Pyt
( ) 2 t h ‘
,T'}\_ 2&31 [ C s o .
+ S - =X (1)-¥ (T)]S1rlpz(t-T)dT
(]+)\) pz(v2m12+)\p22) 0 [ £EG G
(4.3.47)
.
- A o Pt _ ¢ N _ 942
$(t) m[(] 2m12> Y(t) : xG(t) .yG(t) 5t +C1t+C2:|
where, (4.3.48)
P2 w *pz* (1)) (4.3.49)
2(1)12 + Apz ]
and
. 2\ . h. . .
i = “I—” £ 6(0) - (1 - P—L)Y(o) + = x5(0) + yg(0)
2un 2 3
I
(4.3.50)
2 h
e, = U2 g 40) - (1 i Ji—)v(m - £, (0) + yg(0)
2wy £
T
(4.3.51)

After Y(t) and ¢(t) have been calculated, y(t) and q:(t) can be found by

equations (4.3.44) and (4.3.43). Recall that this solution is valid for
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positive angles of rotation only and that the origin of the time is at
the onset of Tift-off.

When the system changes from full contact to uplift or vice-versa,
the final conditions of the one regime should be used as initial condi-
tions for the other one. At that time, the constraints given by equa-
tions {4.3.39) and (4.3.43) both hold. Differentiation of these
equations, however, gives constraints upon the velocities which cannot
hold simultaneously. This inconsistency, which is due to the approxima-
tions considered, has only a local effect and does not affect the overall
response. The appropriate values of the initial velocities which should
be used can be calculated using the principle of conservation of
momentum as follows.

Assume that the system changes from full contact to uplift and that
the final velocities for the full-contact regime are do, Qio and o.

Assuming that the horizontal momentum does not change, one cah write

mhdo + Bidio = mh $(0) + BiGy(0) (4.3.52)

Matching of the vertical momenta before and after lift-off requires that

y(0) = yo. Then, using (4.3.39) and (4.3.43), (4.3.52) reduces to

o) = Hwimt)e ol g, (4.3.53)
(2un 2+p1 %) (2w *+p1 ?) £

For Y(t), one should take

. 2 2 . 2 .
Y(0) = .2_(93_1_;“&_2.)52% - *iw;l—zyo (4.3.54)
(2w *+p1 %) (2w “+p1 )



-160-

Now, assume that the buiiding goes from uplift to full contact and
that éu and ¥, are the final velocities for the uplift regime. Working
similarly, the initial velocities, $(0) and y(0), for the case of full

contact are

. 2 . 2 .
$(0) = —8 g+ —P (4.3.55)
(wy 2+p1 2) 2 (un 2+Dl g
and
y(0) = &, - ¥, (4.3.56)

It should be noted that under the assumptions considered here
(i.e.,zero centroidal moments of inertia of the floor masses and linear
first mode) conservation of the horizontal and vertical momenta during
lift-off or contact implies conservation of the kinetic energy, too.
4,3,3.b Damped Case

For the case of full contact, again considering the approximate
solution, we can assume for small damping that q; and ¢ are related
according to equation {4.3.39). The fundamental ratio of critical
damping, %1, can be found by equation (4.3.31), which for the approxima-

tions considered here reduces to

(B - ) v of(B - )
o= - = = (4.3.57)
W, P 2mhcg

—[5-1_' Wi IMUJL P1

Then, the solution can be written as
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y(t) = e-Ezpzt [y(O) cos pat + (légl-+ ;zy(oi)sin pzt]

t

-g; ] e‘gzpz(t—T)yG(T) sin ps(t-t)dr (4.3.58)
0

e_gl&lt[nb(()) cos iyt + (4’ 0) 4 t1¢(0)> sin Cult]

-
—
P
~—
]

w1

t
mh .y 2 o ~
_ M [ e'Clwl(t-T)
IM{BI (wl 2{-pl 2 )0

XG(T) sin & (t-t)dr

(4.3.59)

After 1ift-off, we can again assume that equation (4.3.43) holds
for small damping. The differential equation for Y(t) in this case is

expected to be

h
Ap2® \ v, D2” TP L
(1 + 2mlz)Y + Zap2 (THA)Y + 5 (1+0)Y 5 (1-2) A £ XG + g

(4.3.60)

Note that a similar behavior was found for the rigid superstructure in

section 3.2.1. Then,

Y(t) = e-Zngt[(y_(o) -3 };?) cos Pat + (X-F(;.:l)- + zzy(o)> sin pzt}

t
2 h
it (o [ -]
Pa? (2w 7+ Ap2?)

x sin Po(t-7)dT (4.3.61)
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in which

7, ) ¢41+A112w12 + Ap2?) (4.3.62)

2(.01

The angle of rotation, #(t}, can be again calculated by equation (4.3.48).

4.3,3.c. Estimation of tﬁe Fundamental Period

Let us consider the undamped free oscillations of the system, ex-
cited by a horizontal impulse. In this case, the vertical oscillations
are not excited before the building lifts off for the first time, which

happens at time, to, given by

ty = ~"—-s.in-l(l) (4.3.63)
" B
1

In this equation, £ is the normalized impulse and it is equal to the

C

max’ which would occur if uplift

ratio of the maximum angle of rotation, ¢
were not allowed, over the critical angle, ¢cr’ at which 1ift-off
happens in the absence of vertical oscillations.

At time t = to, the angular velocity, éo, can be written as
do = 0,8/ BT, (4.3.64)

Using equations (4.3.53) and (4.3.54) to calculate ¢(0) and Y(0) and

substituting in (4.3.50) one finally gets

a = 3 ./8%1 (4.3.65)

As can be seen from equation (4.3.48), the angle of rotation after

Tift-off consists of a harmonic function of frequency P, superimposed
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upon a parabola,

This parabolic term attains its maximum value at time
Cy .

t; ==, i.e.

LT g

(4.3.66)
w

It is reasonable to assume that a quarter of the apparent fundamental
period, T, has ellapsed at this time. Therefore, one can write

T

2 s 1f]
?1 = E-[51n l(g)-*v/ﬁz— 1 ] (4.3.67)
¢

. . > _ 2
in which T]c =

~

is the fundamental period of the interacting system
W
when 1ift-off is not allowed.

[t is seen that the apparent fundamental
period increases bapid]y with the value of the normalized impulse, and

T

for large values of &, :I-1s essentially proportional to 3. Recall
1c

that the same behavior was found for the case of the free oscillations
of a rocking block [see equation (2.3,76)7]. A plot of equation (4.3.67)
is shown in Fig. 2.3.6.

Let T, be the fundamental period of the building for fixed-base
response. In this case, (4.3.67) becomes

T w1 z sl 1 [ a

_— = + X LI s 2_

T 1 > [s1n (B) A/B 1 ] (4.3.68)
P1

Since p, can be thought as a measure of the foundation stiffness, it

can be concluded from this equation that the apparent period, T,

increases as the foundation becomes softer.
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4.3.4, Example

As an example, let us consider again a simpiified model of the
Millikan Library building, The dimensions and masses of the floors are
given in section 2.5.6. For the calculation of the stiffness matrix,
(K], the procedure used by Foutch[zgj was employed. According to this
method, the flexibility matrix of the model was first calculated by
applying unit loads separately at each floor level and computing the re-
sulting floor displacements. These displacements were found using the
plane stress solution for the displacement of the centerline of a rec-
tangular cantilever beam with a concentrated lcad applied at the end
(e.g., see [57]). The resulting flexihility matrix was then inverted
to obtain the stiffness matrix, [K]. As proposed by Foutch, the total
moment of inertia of the east and west shear walls was taken equal to
6,64 x 10" ft* and Young's modulus (for 4,000 psi concrete) was
3.6 x10° psi.

The eigenfrequencies and the corresponding eigenvectors of the
fixed-base model were then calculated from the matrix [M]™'[K]. The
resulting values for the five first eigenfrequencies are given in Table
4.3.1 together with the corresponding values of‘Ai‘s and Bi's [see
equations (4.3.14) and (4.3.15)]. The normalized values of the five
first eigenvectors are given in Table 4.3.2.

The ratios of critical damping for the superstructure were taken
equal to 6.5% for the first mode and 5% for the others. The values
for the first two modes were suggested by McVerryISSJ and are based on
the response of the building during the San Fernando earthquake of

February, 1971. Since no information was available for the values of
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TABLE 4.3.1

Calculated Values of the First Five Eigenfrequencies
and Corresponding Values of Ai and Bi for the
Fixed-Base Model of Millikan Library

No. E‘geqiESF“e“Cy A1/TO00 B/TO00
1 1.88 26.55 0.814
2 7.81 -2.89 -0.462
3 16.0 0.709 0.228
4 23.7 -0.174 -0.136
5 31.0 0.102 0.099
TABLE 4.3.2
First Five Normalized Eigenvectors (x¢1000) for
the Fixed-Base Model of Millikan Library
Floor 1 2 3 4 5
Level

1 0.067 -0.469 0.917 -1.173 1.453

2 0.192 -0.984 1.498 -1.183 | 0.415

3 0.336 -1.300 1.245 0.069 -1.200

4 0.507 -1.437 0.470 1.256 -1.085

5 0.697 -1.359 -0.481 1.342 0.596

& 0.901 -1.065 -1.178 0.259 1.452

7 1.112 -0.588 -1.302 -1.027 0.269

8 1.326 0.012 -0.788 -1.372 -1.260

9 1.537 | 0.659 | 0.147 | -0.454 | -0.944

10 1.743 1.270 1.103 0.944 0.787
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the fractions of critical damping for the other modes, they were
arbitrarily taken egual to 5%.

For the foundation (Winkler model), the stiffness and damping con-
sidered were: ko = 6.24 x10° t/m” and ¢y = 2.82 x10° t - sec/m.

These values are equal to the ones calculated in sections 2.5.6 and 3.2.4.

The S16E component of the accelerogram recorded at Pacoima Dam
during the San Fernando earthquake (ML = 6.3) was used as the ground
acceleration. The first 15 seconds of this record are shown in Fig.
4.3.5. The peak acceleration is -11.48 m/sec® {= 1.17g) and the peak
velocity is -1.13 m/sec.

The equations of motion were integrated numerically using the Runge-
Kutta method and a time step of 0.007 seconds. Only the first five modes
were included in the calculation. First, the continuous, full contact
case was solved by using the equivalent two-spring model for the
Winkler foundation (see section 3.2.3). The value of ¢;ax was calculated
and the corresponding value of B was found to be 3.96. For distinction,
here, B denotes the equivalent normalized impulse corresponding to the
Winkler model and BZS the one corresponding to the two-spring foundation.
[For a relation between 625 and 8 see (2.5.24)]. After g was estimated,
a new two-spring model, hased on the equations for general equivalence,
was defined. For this model, k = 5.05 x10° t/m, ¢ = 2.28 x 10* t » sec/m,
£=6.93 m and st = 2, The resulting characteristic frequencies of the
foundation were: p1 = 4.02 Hz and p, = 14.1 Hz, and the corresponding
ratios of critical damping: z1 = 5.7% (in rocking) and ¢. = 20% (in
vertical). The critical angle at which 1ift-off occurs is 0.187 x 10™°

rad, which corresponds to a rigid body movement of 0.8 cm at the roof
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level. This model was then subjected to the same ground acceleration,
allowing 1ift-off. The resulting response is presented in Figs. 4.3.6 -
4.3.12. For comparison, the response without allowing 1ift-off and the
approximate, first-mode solution are also shown.

In Figs. 4.3.6 and 4.3.7, the deflections of the 5th and 10th (roof)
floors relative to the base, exciuding rotations, are shown. It is
evident that Tift-off significantly affects the deflection history of
the building, although the amplitude is not much affected in this
example. The first-mode solution is very clese to the total response,
which means that the response of the structure is dominated hy the first
mode. The higher frequency components, which are apparent in the exact
and approximate solutions, but not in the response without 1ift-off, are
due to the dynamic coupling of the deformation with the vertical osc¢illa-
tions.

Similar observations hold for the absolute accelerations of the
5th and 10th floor levels, which are shown in Figs. 4.3.8 and 4.3.9,
respectively. It is seen that uplift results in somewhat higher ac-
celerations, compared to the case without lift-off. The approximate
solution includes all the main features of the response except the high
frequency components which are due to the contribution of the higher
modes.

In Fig. 4.3.10, the angle of rotation is shown. The first 1ift-off
at 2.5 seconds can be correlated with the Targe puise in the accelero-
gram at this time. It is seen that the angle of rotation is increased
tremendously by the upliift, compared to the response without 1ift-off,

It should be noted, however, that this response was calculated for a
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very strong ground shaking and stiff foundation conditions. Also, the
restraining effects of embedment and foundation details were not con-
sidered {(except for the calculation of the foundation stiffness). The
amplitude of the rocking response changes nonlinearly with the amplitude
of the excitation and decreases significantly for smailer excitations,
This behavior is illustrated in Fig. 4.3.13, in which the rocking
response for 80% of the Pacoima record is shown, It can be seen that a
20% reduction in the excitation caused an 85% reduction in the amplitude
of ¢. In contrast to the behavior of the angle of rotation, the nonlinear
effect of 1ift-off is not as evident in the defiection of the building
model, as can be verified by comparison of Figs. 4.3.7 and 4.3.14.

The vertical displacement of the center of mass is shown in Fig.
4,3.11 for the exact and the approximate solutions. Since y = gl¢]| - ¥
and Y is small (of the order of magnitude of the static deflection, §),
this displacement is essentially proportional to the angle of rotation.

In Fig. 4.3.12, the ratio of the base shear force to the weight
of the building is shown. This force was calculated by the equation

(see Appendix I1)

10
— U o - .
b o) L mlte v - )

in which N; is the base axial force, given by

v (L e )

i=1

Since this shear force mainly depends on the absolute accelerations of
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the floors, the same comments made for the accelerations apply here. It
is seen that the amplitude of the base shear force for the uplifting
system is slightly higher than for the case without 1ift-off. This
conclusion, however, should not be generalized and, as it was mentioned
in the analysis, rocking on the foundation and uplifting may or may not
be favorable for the building, depending upon the characteristic

parameters of the structure and upon the nature of the ground shaking.
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CHAPTER V
SUMMARY AND CONCLUSIONS

Summary

The principal result of this thesis is a detailed presentation of
the dynamic behavior of simplified structures supported by flexible
foundations which permit uplift. Some approximate models for founda-
tions allowing uplift, suitable for design calculations, have been
presented also. The analysis was limited to two types of foundations:
the continuous elastic foundation (the well-known Winkler model) and a
two-spring foundation in which the structure is supported by two springs
symmetrically placed under the base. The structure was not allowed
to slip horizontally on the foundation; therefore, in addition to the
degrees of freedom of the superstructure, the system possessed two
more degrees of freedom in rocking and vertical motions.

In general, the equations of motion for the two-spring model are
much simpler than the corresponding equations for the Winkler founda-
tion. Based on this observation, relations between the parameters of
the two models were derived so that the responses are similar. In this
way, the equivalent two-spring model can be used instéad of the Winkier
foundation. The Winkler foundation is commonly used in soil mechanics,
but 1eads to guite complicated equations when uplift is permitted.
Since the behavior of the uplifting systems is nonlinear, the equations
of equivalence depend on the expected amount of lift-off, which is
measured by the "normalized impulse.” This quantity is proportional
to the maximum angle of rotation which would occur under pulse loading

if 1ift-off were not allowed. Although the equations éf equivalence
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were derived for a rigid superstructure and a horizontal impulse exci-
tation, the results can be extended to account for flexible superstruc-
tures and other types of dynamic loading.

For the case of a rigid superstructure and an undamped two-spring
foundation, the equations of motion were solved analytically for any
horizontal and/or vertical ground motion. Simpler approximate solu-
tions were also developed. The response after 1ift-off is dominated by
hyperbolic functions; these exponential terms can be approximated by a
parabola for many applications. Using the approximate solution, the
apparent rocking period of free oscillations was determined. Then, an
equivalent linear system was defined; this system is not allowed to
uplift and its parameters depend on the normalized impulse. The advan-
tage of this approximate method is that it greatly simplifies the solu-
tion and it even permits the use of response spectra for the estimation
of the maximum angle of rotation. Note that the value of the norma]ized
impulse can also be calculated from response spectra,

In an effort to introduce dissipation of energy into the foundation
to account for the inelastic behavior of the soil as well as the radia-
tion of energy in the form of stress waves, three different mechanisms
were examined. First, viscous damping was introduced by placing
dashpots in parallel with the springs. For the two-spring foundation,
the equations of motion were solved analytically, while the corres-
ponding equations for the Winkler model were highly nontinear and were
solved numerically. The equations of equivalence between the two

models were extended to take the damping into consideration. For the
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two-spring foundation, simple, approximate solutions were also derived,
similar to those fdr the undamped case.

As a second way to dissipate energy in the foundation, springs with
inelastic behavior were considered. The simple case of elastic-perfectly
plastic springs and the two-spring foundation was examined. Although
the equations of motion for each regime of the response can be linearized
and solved analytically, the many conditions of possible contact and
yielding which must be considered make this method unattractive for
design purposes.

Finally, the disssipation of energy caused by the inelastic impact,
which occurs when the block regains full contact with the foundation,
was also examined. Since the elastic springs, even with dashpots in
parallel, do not permit this kind of energy dissipation, an impact mecha-
nism was developed which can be used with both the two-spring and the
Winkler model, along with other energy dissipating mechanisms. The
impact mechanism causes a reduction in the velocities during the impact
and can be easily implemented.

The equations of egquivalence between the two-spring and the Winkler
foundation, which were derived for the rigid block, hold for fiexible
superstructures, too, provided only that the base of the structure be
rigid. The analysis for flexible superstructures was therefore limited
to a viscously damped, two-spring foundation. First the response of a
simple shear oscillator was examined and.then a multi-degree-of-freedom
structure was considered. For the case of the multistory structure, it
was assumed that the fixed-base response admits decomposition into

ctassical normal modes. An approximate, first-mode solution was also
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derived. Like that for the rocking rigid block, the solution of the

equations of motion after 1ift-off includes exponential terms.

Conclusions

In general, it can be said that Tift-off results in a softer
vibrating system which behaves nonlinearly, overall, although the
response is composed of a sequence of linear responses. For the case of
the rocking rigid block, the apparent rocking period of the system
increases with the amount of 1ift-off and for large amplitudes of the
response the increase is essentially proportional to the normalized
impulse. For the case of a flexible superstructure, the effect of uplift
is mainly shown in the apparent fundamental period of the system which
also increases in the same way, compared to the period before 1ift-off.
Note that the latter period is always larger than the fundamental period
of the fixed-base response of the superstructure, because of the deforma-
bility of the foundation. In contrast to the first mode, the second and
higher modes of the superstructure are not affected significantly by
either the soil-structure interaction or the uplift,

Another effect of 1ift-off on the response is that vertical oscilla-
tions are excited even for purely horizontal excitation. Although for
many potential applications, including the response of buildings, the
vertical vibrations are of relatively minor interest, they may sometimes
be important for very strong excitations since complete separation is
possible. The possibility of complete separation increases with the
value of the normalized impulse and with the width-to-height ratio of

the structure. For very short and wide structures, if horizontal
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slipping can, in fact, be prevented, complete separation is possible for
any horizontal excitation strong enough to cause partial 1ift-off,

For a rigid block rocking on a Winkler foundation, the length of
contact between the base and the foundation decreases as the amount of
1ift-off increases. A parametric analysis showed that the average length
of contact, with respect to time, is inversely proportional to the square
root of the normalized impulse.

When damping is included in the foundation, the apparent ratio of
critical damping in rocking has a general tendancy to decrease with the
amount of T1ift-off. It should be noted that introduction of damping
into the foundation results in sigificantly more damping for vertical
motion than for rocking. As a result, the possibility of complete
separation reduces in this case.

Considering our present level of understanding of response with
lift-off, it seems that for engineering purposes viscous damping is the
simptest and most efficient method to account for energy dissipation in
the foundation. Inelastic springs are conceptually better for modeling
the h&steretic behavior of the soil but, as was mentioned earlier, this
approach does not appear to be attractive for applications. On the
other hand, several numerical examples showed that an increase in the
dashpot coefficients is sufficient to account approximately for the
dissipation of energy during impact.

Because of the significant reduction of the fundamental frequency
of the system caused by Tift-off, the dynamic behavior of a structure
allowed to uplift may be very different from the response without 1ift-

off. For the rigid superstructure, 1ift-off tends to decrease the
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rocking acceleration while the angle of rotation may be larger or smaller.
For flexible superstructures, it seems that uplift always increases the
angle of rotation but the effects on the deflection and the resulting
stresses are not clear. In general, it cannot be concluded whether
uplift is beneficial to the structure or not, since this depends on the
parameters of the system and the characteristics of the excitation.

There is an important limitation in the analysis for flexible
superstructures, if the results are to be applied for the calculation
of the response of buildings. In this case, the details of the founda-
tion design, the degree of embedment and the deformability of the base
may need to be considered. These factors may significantiy affect the
dynamic characteristics of the foundation, particularly at the large
amplitudes of response associated with possible 1ift-off.

An analysis of the problem with other models of the foundation is
certainly an attractive subject for future research. As a first step,
modeling of the 5611 by an elastic half-space should be considered.
Next, nonlinear but more realistic models of the soil could be examined.
Further research could be conducted for buildings with embeded founda-
tions and with flexible bases. Of course, these considerations would
complicate the formulation of the problem significantly and would
probably require numerical solutions, e.g., by finite element methods.
The analyses may not be attractive for practical applications but could
guide simpler approaches to the problem. In addition, such investiga-
tions would lead to a clearer understanding of the phenomenon of uplift

and its effect on the response of structures.
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APPENDIX I

ESTIMATION OF THE AVERAGE LENGTH OF CONTACT BETWEEN THE BLOCK

AND THE UNDAMPED WINKLER FOUNDATION DURING FREE OSCILLATIONS

Assuming that the mass of the block is uniformly distributed, there
are only six parameters involved in the response of the block,namely:
the mass, m; the height, h, at which the center of mass is located; the
width of the base, a; the stiffness of the springs of the Winkler founda-
tion, ko3 the acceleration of gravity, g; and the initial angular velocity,
$o, caused by the horizontal impulse. Instead of the last quantity,

however, the maximum angle of rotation, ¢C

max’ which would happen if

1ift-off were not allowed, is used in the following. As eguation (2.4.8)

implies, these quantities are related to each other by the expression

c X (I.1)
¢max * -t
P1

*
in which py is the rocking frequency during full contact. The advantage

of using ¢;ax is that the results can then be extended to other horizon-

tal excitations, also.

Let S be the average length of contact during uplift. Then,
[s9]

according to Buckingham's II-thegrem, the dimensionless quantity

WL

can be expressed as a function of three other dimensioniess quantities,

Ty, I» and T3, which here are chosen to be
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(I.4)

Y

The function which relates

~

the dependence of %- oh each of these dimensionless quantities while

with the Hi's can be found by examining

the other two are kept constant.

The resuits of such an analysis are shown in Fig. 1.1 (isolated
points). The response of the system was found using equations (2.4.7)
and (2.4.8) during full contact and equations (2.4.3) and (2.4.4) after
1ift-off. The Tatter equations were integrated numerically, via Runge-
Kutta method for the solution of a system of first order, nonlinear,
ordinary differential equations. The value of the length of contact, S,
at each time step during uplift, was calculated according to equation
(2.4.6) and S was taken equal to the numerical average of these values,
The values of the parameters used and the numerical results are shown
in Tables 1.1, 1.2 and 1.3. In these tables, the values of the maximum
angle of rotation, ¢max’ and the.rocking period, T, are also presented
and compared with the corresponding values, which would occur if 1ift-

off were not allowed, ¢;a and Tc’ respectively.

X

From the first plot of Fig. I.1, it is seen that -g is independent
of 1 ; Figs. 1.1.b and I.1.c imply that
S RN
3 G+ Cz('é') (Cbmax) (I.5)

where C;, Co, au and oo are constants, which have to be determined. For
the limiting case, however, of a rigid foundation, both § and § reach

zero, therefore, C; must vanish. The values of C,, o; and a, were found



Variation of with m;

a | h m ko Sop 1. ff.’: Te (Hr: ) (] (113) < T T Pmax ?_“_@.’i
(m} | (m) (E__gn_:_egf_) (m%) (rad) B ¢r(r:1ax (sec) | 3 E?g'z' ¢;ax a (sec) | T¢ {rad) q’r?lax
10. | 4. 44. 8,000.1 9.81 x 107 {0.13333 {0.265 | 0.4 | 4.905 x 10™* 17,3575 x 103 | 0.33057 0.677 |2.551 268 x 1072 1,724
10. | 6. 0. [712,000. " " 0.6 . " Sce"‘;“ap:aettfon
10. | 8, #0. 16,000. " " 0.475 0.8 " " 0.33361 1.09% 12.319 .338 x 1077} 1.818
i0. {10. 10Q. 20,000 " ! 0.581 | 1.0 " " 0.36664 1.324 12,279 11.363 x 10-*| 1.853
V0. ji2. ¥20. 24,000, " " 0.691 1.2 " " 0.35204 1,571 |2.273]1.364 x 1072} 1.854
10. |14, 140, 28,000. " " 0.803 {1.4 " ! 0.36488 1.818  2.265 .368 x 1072 1.859
10. {16. 160. 32,6000. " " 0.914 | 1.6 " " 0.35557 2.071 {2.265{1.379 x 107%{ 1.874
10. }18. 180. 36,000. " " 1.027 | 1.8 " " 0.36346 2.327 |2.266 [ 1.386 x 1072 | 1.884
10. {20, 200. 40,000. " " 1.139 j2.0 " " 0.35622 2.586 [2.270 { 1.389 % 10°? l.885ﬁ
10. [25. 250. 50,000. " " 1.422 [ 2.5 " ! 0.35732 3.247 12.283 .400 x 107%] 1.903
10. }30. 300. 60,000. " " 1.707 | 3.0 " " 0,25819 3.929 [2.302]1.410 x 1072 1.916
0. 135, 350. 70,000, ! . 1.993 13.5 ! " 0.35518 4.625 12.321 420 % 10724 1.930
10. [40. 400. 80,000. " " 2.279 14.0 " " 0.35566 5.344 {2.34511.431 = 1077 1.945
0. ]50. 500. |100,000. " " 2.856 }5.0 " " 0.35230 6.838 12.394 1 1.453 x 107%| 1,975
10. 160, 600. {120,000, " " 3.436 }6.0 " " 0.34979 8.421 | 2.451 477 x 10°%| 2.007

SLBI-
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TABLE .2

a4 oh m ko ¢ L der T (m) {12) () g T T S max 11"%31
cepc? Pl :

{m) | (m) (Ejf&_) (m%) x(;‘;?) B qfnax (sec) ‘_?31_ ilg? r[};ax 2 (sec) T, (rad) 1Hax
F]U. 5. 50. 4,000, 2.452 0.981 0.499 10.5] 1,23 x 10~} 0.0025 0.,99417 0.502 [1.007 0.0025 1.000
10, 5. " 5,000, 1.862 0.785 6.446 " 0.98 x 107? " 0.91996 0.453 {1.017 0.00251 ].00;
106, t 5. " 6,000, 1.635 0.654 0.407 | " 0.82 x 19-¢ " 0.85516 0.424 |1.043 0.00253 1.012
E. 5. " 7,000. 1.401 | 0.560 |0.3%6 | " | 0.70 x 107 " 0.79596 [0.406 [1.079{ 0.00257 {1.026
10, 5. " 8,000, 1.226 0.490 0.352 " 0.61 x 10°? " 0.74081 0.396 |1.125 0.00261 1‘043-
7;). 5, " 9,000, 1.090 0.436 0.332) " 0.54 x 1073 * 0.69113 ]0.392 j1.182 0.00265 1.061
10. ] 5. " 10,000. 0.981 0.392 0.315 " 0.49 x 1073 " 0.64790 0.390 [1.240 0.00270 1.081
10,1 5. " 12,000, 0.817 0.327 6.2871 " 0.41 x 1073 " 0.57856 0.391 11,362 @.00280 1.121
_]0. 5. " 14,000, 0.70) 0.280 0.266 " 0.35 x 1072 " 0.53032 0.394 }1.482 0.00290 1.161
F;O. 5. " _16,000. 0.613 0.245 | 0.249{ “ 0.31 x 1078 " 0.50208 ]0.396 1.59; 0.00300 1.201
10.1 5. " 18,000, 0.545 0.218 0.234 " 0.27 x 107° " 0.46659 0.402 (1,715 .00321 1.282
1D, 5. " 20,000, 0.490 0.196 0.222 “ 0.25 = 1073 " 0.43447 0.410 {1,844 0.00356 1.423
10. 5. " 25,000, (.392 UET 0.199 . 0.20 x 10°8 " 0.39236 0.429 {2,158 0.003%4 1.577

861~



TABLE 1.3

Variation of ; withll,
a |h m 2 K, ber vt | T () {12) (i3 i T Pmax ﬁg_a_x_
(m) |(m) (t"—s"?c_-) (;"th) (rad} B ¢r(rzlax (sec) 2 k—mg; ¢’|(r:|ax % (sec) TT— £r?813 Tmax
od x_10° ¢

10. | 5. 50, 10,000. | 9.81 x 107" | 0.98) 0.31510.5 14.905 x 107" 1.00 0.99558 0.3201.0%7 1.000 1.000

10. { 5. " . " 0,785 " " " 1.25 0.92077 0.32211.023 1.254 1.003

10. 5, " " ' 0.654 " " " 1.50 0.85643 0.329 | 1,046 1.518 1.012

10. | 5. " " * 0.561 " " " 1.75 0.79694 0.340 | 1.081 1.7955 1.026

10. 5. " " " 0.491 u | " 2.00 0.74066 0.35511.128 2.086 1.043

10. 5. " " " 0.392 " " " 2.50 0.64790 0.390| 1.240 2.7025 1.081 "_‘
o] s ‘ ! 0.327 | * | - 3.00 0.57974 | 0.429[1.364| 3.363  |1.12] N
10. | 5. " " " 0.280 " " " 3.50 0.53341 0.4651 1.478 4,067 1.162

10. 5. " " " 0.245 " " " 4.00 0.50145 0.501] 1.592 4,808 1.202

10. } 5. " . " 0.218 " " " 4 .50 0.46533 0.539] 1.713 5.796 1.288

10. | 5. " " " 0.196 " " " 5.00 0.43272 0.5801 1.843 7.145 1.429

10. 5. " " " 0.178 " " " 5.50 (.40999 0.622) 1.977 8.4205 1.531

i0. 5. " " . 0.164 " " " 6.00 0.39549 0.661] 2.101 9.468 1.578

10. [ 5. " ! " 0.140 " " " 7.00 04.37737 0.726] 2.308 10,31 1.473

0. | 5. " " " 0.123 " " ! §.00 sce?;;lpr]aettieon
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by a least square analysis and are

Cz = 1.27
op = 0.51
Qe = -0.54

134

Noting that C, ¥+2 and that o, ¥ ~a ¥ % » the following simple formula

can be written

s /1T
3 - 5 (1.8)
where
C
o)
B = ‘;?‘”‘ (1.7)
cr

In equation (1.7), ¢ is the critical angle at which 1ift-off happens

cr
in the absence of vertical oscillations, given by

¢ = T (1.8)

The fitting of formula (I.6) with the calculated data is good, as
it can be seen from the plots of Fig. 1.1, where expression (1.6) is
plotted with a solid 1ine. In Fig. I.2, all these data, plus more
points corresponding to other combinations of the dimensionless param-
eters, are plotted together with equation (I.6). It seems that this
simple equation accurately estimates the value of 5.

Although the empirical expression (I.6) cannot be proven

analytically, it can be shown that the value of g— is close to the
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value predicted by (I1.6). To do that, let us first recall that the pole
of rotation, P, before Tift-off is located at the middle-point of the
base, M. After lift-off and for positive angles of rotation, P is
moving to the right. 1In the following, it is assumed that P lies on
line L-L and the distance, %, depends on the amount of 1ift-off (see
Fig. 1.3). The following expression can then be written

¢
s . cer 2 21
F (1 - ; ) + . (1.9)

The maximum angle of ratation, $nax and the rocking frequency, p,
can be estimated by the response of the equivalent two-spring model
(equivalence during fuil contact), which is defined by equations (2.5.6)

and (2.5.7). Using equations (2.3.81) and (2.3.74), one can write,

Ymax ¢é$5)[;"%—i'(sgs B ]) t1 ] (I.10)

P = Pi1 . R '[Tr ']-
f Yy, ~
2[s1n (BZS) 825 ]

in which ¢£§S) and B, are the corresponding values of the critical

(I.11)

angle and the normalized impulse for the two-spring foundation, and

2
Py = 2§£
M

(1.12)

Equations (2.5.6) and (2.5.7) imply that

q:((ﬁs) = /3 9, (1.13)
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STATIC
EQUILIBRIUM

) L ) S &
g g b le ¢l

Fig. I.3. Length of contact and pole of rotation after 1ift-off for a
rocking block on a Winkler foundation.
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Boe = (1.14)

A

Since B, <1 for g < ¥3 , the two-spring model does not lift-off for

1 < B <73 . Inthat case, the following expressions apply

- 2s .
®max 625 ¥op T B ey (I.15)
P = p1 (1.16)

For simpicity, let us assume that X << 1, Then, one can write

B ¢, sin pt , 1< B <V3
op(t) = (1.17)
/3 g2 ) . * -
= ¢cr(?f + 1) sin pt . 8 V3
Substituting in (1.9) and taking the average of % from the time

. . T .
of 1ift-off, to’ to t = %%—(I.e. t = E) gives

- - A
3 ( a)Gl@’le+;°'“_l_ (1.18)
a %‘- Sin-leu a
in which
.

B ]ﬁgﬁ‘/é—

. (1.19)
B =3

1
&
2
O
/_3‘—-'5-4'}

and



5 B +vp~ -1 s 15{33/‘3_“
2:
2 2 2
Flo)dHlsf 0 e
(1.20)

In these expressions, t, was calculated from equation
sin pt, = Gi (1.21)

as equation (I.17) suggests.

The rocking equation of motion can be written as
o3 + % koS?{2: - 2) 6 - mgh ¢ = mgt (1.22)
p 5 Ko 1 3 g g .

where IP is the moment of inertia about the pole, P. Neglecting the

term mgh ¢ and putting IP E IM (for small A), the rocking frequency can

kog2 (51«1 - %)
p = Al (1.23)

in which S was substituted by S and %, was assumed constant, equal to

be expressed as

some average value. Using equations (I.11), (I1.12), (1.16) and (1.23)

ane can write

G [e-3]- % .28

where
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1 R 1< B<v3
Gy = 2 .
’ T - . , B =v3
4[%1n‘16£g:) + /Eiéii}
(1.25)
Eliminating %;» from (1.18) and {1.24), the following equation for-%
can be obtained
(5)3 3 - sin”'6; ] (5)2 Gy gn G2 Gs ,
BT - st - GG O 31T - sin"16y - Gy gn G
(1.26)

The real root of this equation is plotted versus gin Fig. I.4. In
the same plot, the corresponding values of equation (I.6) are shown.
Although the agreement of the two curves is only approximate, it can be
concluded that the behavior of ‘%‘ is similar to 1B, taking under

consideration the many approximations used in the derivation of equation

(1.26).
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real root of equation (1.26)

NO
UPLIFT

05~

0.3
0.0 .o 2.0 3.0 4.0 5.0 6.0 7.0 8.0

\/

i

Fig. I.4. Comparison of the approximate analytical values of( )with

the results of equation (I1.26).
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APPENDIX TI

EQUATIONS OF MOTION FOR A ROCKING n-STORY
SHEAR STRUCTURE {TWO-SPRING FOUNDATION)

Let us consider a system of coordinates (xo,yo,zo) applied at
the center of mass, CM, as shown in Fig., II.1, and rotating with the
structure, with angular velocity 9y with respect to the reference sys-
tem (X,y,z). Let.@i be the relative angular velocity of the mass ms
with respect to the system (xo,yo,zo). Then, the angular momentum, Hi’
of this mass with respect to its center of mass can be written in matrix

form as
{H}.} = 1] {mo} + [1.] {sz}.} (11.1)
or, in vector form as

Hy =y + 1 (11.2)

where H% and H; are angular momenta associated with the velocities 9y
and Qi’ respectively, and [Ii] is the inertia matrix of mass m. -
Similarly, the total angular momentum of the system with respect tc the

center of mass, CM, is

Hay = HY

cM cu TR

” (11.3)

Let (v.)

it be the velocity of the center of mass of the ith mass,

relative to the system (xo,yo,zo). Then

n
Hi, = J HL+

o 01X Mg xeq) (11.4)

HE~123
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and
n n
How = iZO fy * 120 og xmi vy, (I1.5)
But, in our case,
( 0
4 =4 © (11.6)
-0
and
9 =0 : 1=0,1,2,--+,n (11.7)
which implies that
ﬂ;I:g ’ i=0,1,2,""",n (I1.8)

Since there is rotation aboat the z-axis only, we consider the
equations associated with this axis only. Equations (II.4) and (II.5)

give

HC':M.—._

H~—13

b @i+mw§)é (11.9)

n

1 - N :

Hew = - L meoy (G- ) (11.10)
i=0

where Uy and u. are the shear deformations of the ith story and the cen-

ter of mass, respectively (see Fig. II.2).

Applying the eguation of motion:

M., =H

oM (I11.11)

CM

the following equation can be obtained
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. n e
Moy = Iem o+ igo Moy U, : (11.12)

in which MCM and ICM are the moment of the external forces and the
moment of inertia about the center of mass, respectively, and the iden-

tities

mips = 0 (11.13)

- _
Ii +mepy = ICM (11.14)

were employed.
Application of Newton's second law in the horizontal direction
gives
RA = -m(hc¢ tu ot XG) (I1.15)

n
where m = J m;, s the total mass. Then two of the equations of

i=0
motion for the system can be found from equation (II.12) and application

of Newton's second law in the vertical direction. For tilting to the

right and neglecting the nonlinear terms, one gets

Full contact

my + 2cy + 2ky = -myG (11.16)

I E§+ E m,h.u -FZCgZé-+2(kF2-1-m h )¢-g E m.U; = -mh_X

MO Ly MY > T2 M RIS "G
(11.17)

After Tift-off

my + cy - c&d+ky- k&¢ =-%-mg - myg (11.18)
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. n .. - .
Iy ¢ 1 mhgiy+ce% - gy + (k- man Jo - key

i=0

n
7 mu, = -%-mgi - mhciiG (I11.19)

where IM is the moment of inertia about the middle-point of the base,

M, given by

_ 2
IM = ICM + mhC (11.20)

The following expressiaons were also used for the derivation of equa-

tions (I1.17) and (I1.19)

n

1§O miu, = mu (11.21)
n e

1‘Zo.miuT = mi (11.22)
hy = h_ + o (11.23)

Note that for the mass Mys Up = Uy = Uy = 0.

The remaining n equations of motion can be found by examining each
mass separately. A free-body diagram of the ith mass (i= 1,2,+++,n=1)
is shown in Fig. II.3. The equation of motion in the vertical direction

can be written as

& =N+H +m#g+yG+y), i=1,2,++,n=1 (11.24)
U, - U; Uy . - U
X : . i i-1 . i+1 i
in which the terms Q, s1r1(Fﬁ~j7TGi;;) and Qi+1 sin (E}:}ﬁff7f;> were

neglected as of second order. For i =n, the corresponding equation is
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Ny = m.(9 + ya+Y) (11.25)

For i = n-1,

Nn_-i = Nn+mn_](g+:};3+y) = (mn-]+mn)(g+;G+;)

As can be easily verified by induction, the following formula can be
used in general:

) .
N]_ =<5L§:I mg)(g+_yG+_y) s i=1,2,°+°,n (I1.26)

Then, the eguation of motion in the horizontal direction is

mi(hgotug) + (G Gy - Gl - Gty

PR KUy = Kyyg - KUy - my9

u, - u, n U, - u, Uy 7~ U, .
"“19( : H“_L_'T“) - ( ) mg) 9( - ;!H 1) "M%
i £=7+1 i i+]

(11.27)

for i=1,2,-+-,n-1, where Hf= hi_ hi-] and 91 is assumed small, so that

one can write

cos 8, =1 and sin 8, = ¢ + ——— (11.28)

The corresponding equation for the nth mass has to be derived

independently and is
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mn(hn¢ + un) * Cn(un- un-l) * Kn(un- un-]) B

U -u
n n-1Y_ .
- Mp9¢ - mng( i, ) = PaXg

(I1.29)

The equations of motion derived here were verified by rederiving

them using Lagrange's equations. The author expresses his sincere

thanks to Mr. Dirceu Bothelo, who did this derivation.

Equations (II.27) and (II.29) can be written in matrix form as

MId + [Cla+ [Klu =~[MIh§ + mgs - mig

where
u = {ui} s i=T1,""",n
b = {hi} s i=1,"**,n
m = {mi} , i=1,---,n
Ml=1~m ] . j=1,",n

1

(11.30)

(11.31)
(11.32)
(11.33)

(11.34)

and [C] = [Cij] , [K] = [Kij] are tridiagonal matrices, defined by

4 C1+Ci+] , 1=3=T,-++,n-]
Ci , 1=J=n
o , i=i-1
-Ci i1 s g =41
L 0 , otherwise

(11.35)



in which

and

]

1=j=1,
i=j=n
J=1-1
J=1+1
otherwise
i=1,"',n

(11.36)

(11.37)

(11.38)



