
REPORT NO.
UCB/EERC-81/19
DECEMBER 1981

PB82-218496

EARTHQUAKE ENGINEERING RESEARCH CENTER

DELIGHT. STRUCT
ACOMPUTER-AIDED
DESIGN ENVIRONMENT FOR
STRUCTURAL ENGINEERING

by

R. J. BALLING

K. S. PISTER

E. POLAK

Report to the National Science Foundation

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA . Berkeley, California
REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

u.s. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

For sale by the National Technicallnforma­
tion Service, U.S. Department of Commerce,
Springfield, Virginia 22161.

See back of report for up to date listing of
EERC reports.

DISCLAIMER
Any opinions, findings, and conclusions or
recommendations expressed in this publica­
tion are those of the authors and do not
necessarily reflect the views of the National
Science Foundation or the Earthquake En­
gineering Research Center, University of
California, Berkeley

REPORT DOCUMENTATION 11. REPORT NO.

PAGE NSF/CEE-8l048
4. Title and Subtitle DELIQ-IT. STRUCT

A Computer-Aided Design Environment for Structural
Engineering

7. Author(s)

R.J. Balling, K.S. Pister, E. Polak
9. Performing Organization Name and Ad<1ress

Earthquake Engineering Research Center
University of California, Berkeley
47th Street &Hoffman Blvd.
Richmond, California 94804

12. Spon5Of'ing Orr;anization Name and Address

National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550

15. SUpplementary Notes

S. Report Date

December 1981

S. Performina 0'1lanizatiOft R~t. No.

UCB/EERC-8l/l9
10. ProjectlTasklWork Unit No.

11. Contl'll~C) or Grant{G) N<>­

eC)

(Gl PFR-790826l

13. Type of Report & Period C<>vered

'--'---~'------------l1.-.

16. AbstntCt eUrl'Iit: 200 words)

This report describes an expandable software system for optimization-based, interactive
computer-aided design of structures. This system can be used for the design of statically
and/or dynamically loaded structures which exhibit linear or nonlinear response.

The software is the union of: (1) an interactive base code for the management of the
computer-aided design process named DELIGHT, (2) a dynamic nonlinear general-purpose
structural analysis package-named ANSR, (3) a library of optimizatiohalgorithms specialized
for the type of mathematical programming problems characteristic of structural design, and
(4) specialized software for the design of seismic-resistant planar steel frames.

Flexibility has been emphasized in the development of this system so that a wide range of
structural problems can be considered. The user describes his problem to the system by
supplying a minimal amount of software or by selecting software from expandable libraries.

18. A.,..ilability Stat...me,,~

(See AHSI-Z39.18)

Release Unlimited

19. Security crns (This Report)

2'0. Security Clan (ThIs Pair")

See Instructions on R""ttrstt

21. No. of Page-s

l3S~

22. Price

omON>.L FO~ 272 (4--77>
eFo",..,..r1y I'lTI S-3 5)
Department of Commerce

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

DELIGHT.STRUCT: A Computer-Aided Design Environment
for Structural Engineering

by

R. J. Balling

K. S. Pister

and

E. Polak

Prepared under the sponsorship of
the National Science Foundation

Grant PFR-7908261

Report No. UCB/EERC-81/19
Earthquake Engineering Research Center

College of Engineering
University of California

Berkeley, California

December 1981

r- .&

ABSTRACT

This report describes an expandable software system for optimization-based, interactive

computer-aided design of structures. This system can be used for the design of statically

and/or dynamically loaded structures which exhibit linear or nonlinear response.

The software is the union of: (0 an interactive base code for the managment of the

computer-aided design process named DELIGHT, (2) a dynamic nonlinear general-purpose

structural analysis package named ANSR, (3) a library of optimization algorithms specialized

for the type of mathematical programming problems characteristic of structural design, and (4)

specialized software for the design of seismic-resistant planar steel frames.

Flexibility has been emphasized in the development of this system so that a wide range of

structural problems can be considered. The user describes his problem to the system by supply­

ing a minimal amount of software or by selecting software from expandable libraries.

i i

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation under Grant PFR­

7908261 with the University of California, Berkeley. Computing facilities were provided in part

by equipment Grant ENG-7810442 from the National Science Foundation.

The authors also wish to acknowledge the developers of parts of software that were used

in this work. Names of these researchers appear in references cited throughout the report. In

particular, W. Nye, A. Tits, and A. Sangiovanni-Vincentelli are acknowledged as the developers

of the DELIGHT software system used in this research.

iii

TABLE OF CONTENTS

Page

ABSTRACT. . . . · · · · · · i

ACKNOWLEDGEMENTS. ii

TABLE OF CONTENTS · · · · · · · · · iii

1- INTRODUCTION. · · · · 1.1

2. BACKGROUND ON DELIGHT STRUCT. · · · · · 1.5

2. 1 DELIGHT. · · · · · · · · · 1.5

2.1.1 Fortran Interface · · · · · · · 1.6

2.1.2 Compilation/Execution · · · · · · · · 1.7

2.1.3 Included Files And Memfiles · · · · · 1.9

2.1.4 Interrupts. · · · . · · · · · 1.10

2.1.5 Rattle Language · · · · · · · 1.12

2.1.6 Memory Manager. · 1.13

2.1. 7 Utility Commands. 1.14

2.1.8 High-Level Ma tri x Commands. . · · · · · 1.15

2.1. 9 High-Level Graphics Commands. 1.16

2.2 ANSR • · · · · · · · · · . . . · 1.17

2.2.1 Mini-ANSR . · · · · 1.17

2.2.2 Optimization-Simulation Interface · · · · · · 1.18

2.2.3 Simulation-Optimization Interface · · · · · · 1.19

2.2.4 Subroutines Analys And Resman · 1.20

2.3 STRUCT . · · · · · · · · 1.21

2.3.1 Control Commands. · 1.22

2.3.2 Optimization Algorithm Library. 1.25

2.3.3 User-Software Interface . 1.26

2.4 FRM1E. · · · · · · · · · 1.28

2.4.1 Pre-Processing. · · · · 1.29

iv

Page

2.4.2 Interface To STRUCT. · · · · · · · · · 1.30

2.4.3 Post-Processing. · · · · · 1. 31

3. USE OF DELIGHT STRUCT. · . · · · · · · 1.32

3.1 USER-SUPPLIED SOFTWARE. · · · · · · · · · 1.32

3. 1. 1 Necessary Files. · 1.33

3.1.2 Necessary Procedures · · · · 1.34

3.1. 3 Optional Procedures. · · · · · · 1.37

3.1.4 Writing And Debugging Procedures . 1.38

3.2 COMr1ANDS FOR COMPUTATION. · · · · · · 1.41

3.2.1 Getting Started. · · 1.41

3.2.2 Optimization Process 1.42

3.2.3 Storage Of Results . 1.45

3.3 SEISMIC-RESISTANT DESIGN OF FRAMES. · · · · 1.46

3.3. 1 Problem Definition Phase 1.46

3.3.2 Computation Phase. · · 1.48

4. FUTURE DEVELOPMENT • . · · · · · 1.50

4.1 LIBRARY EXPANSION • · · · · · · · · 1.50

4.1.1 DELIGHT Commands • · · · · 1.50

4.1.2 ANSR Elements. · · · · · 1.51

4.1. 3 Optimization Algorithms. · · · · · · · · · 1.53

4.1.4 Classes Of Structural Problems . 1.54

4.2 IMPROVEMENT • . . · . · · · · · · · · 1.56

4.2.1 DELIGHT STRUCT Speed And Size. · · · · 1.56

4.2.2 Gradient Computation . · · · · · · · · · I. 57

4.2.3 Simulation Package . · 1.58

4.2.4 Optimization Algorithms, 1.59

v

APPENDIX 3: Ansrdata File Syntax.

4.2.5 Optimization-Simulation Interface••

4.2.6 Processing Packages.

REFERENCES

FIGURES. . .

APPENDIX 1:

APPENDIX 2:

Identification Of Files In DELIGHT STRUCT ..

Interactive Variables In DELIGHT STRUCT .

Page

1.59

1.60

1.61

1.63

1.69

1. 75

1. 78

APPENDIX 4: Sample DELIGHT STRUCT
Terminal Input and Output • · · · · · · · · · · · · · 1.86

APPENDIX 5: Sample DELIGHT STRUCT
Graphical Input And Output. · · · · · · · · · · · · · 1. 92

APPENDIX 6: Sample DELIGHT STRUCT
File Input And Output. . . · · · · · · · · · · · · · 1.105

H

1. INTRODUCTION

One of the most fundamental problems facing the structural engineer is that of design.

This problem may be stated as, "Specify a good structure which will perform acceptably under

possible loads". The way in which the engineer solves this problem is known as the design pro­

cess. Typically the design process will have a "quantification" and a "computation" phase. In

the quantification phase the engineer, after conversing with the owner, architect, contractor,

etc., quantifies such questions as:

(0 What are the quantities which must be "specified"?

(2) What criteria are used to define "good"?

(3) What constitutes "acceptable performance"?

(4) What are the "possible loads"?

(5) What is a reasonable mathematical model?

(6) What is a good initial design?

It is important to note that because people have a tendency to change their minds, the answers

to such questions are often revised throughout the entire design process. In the computation

phase a trial-and-error scheme is employed in which the designer iterates by "analyzing" the

design to obtain its response and "modifying" the design accordingly until he is satisfied. Any

engineer who has designed a structure as simple as a reinforced concrete beam is familiar with

this trial-and-error scheme.

The computer may be a very useful tool to the structural engineer. It can perform repeti­

tious computations and logic very rapidly. Therefore, a good policy for the engineer to adopt is

to let the computer perform those aspects of the design process which are repetitious and stan­

dard while the engineer carries out those aspects which require judgement and experience.

Thus in the computer-aided-design (CAD) environment, engineer and computer are comple­

mentary as they work together to solve the design problem. This concept constitutes the prem­

ise of this report. It is foolish for a programmer to try to completely automate the design

1.2

process. It is also foolish for the engineer to waste time performing routine computations and

logic by hand. The quantification phase of the design process is not easily generalized and

requires much judgement on the part of the engineer. The computation phase has many repeti­

tious aspects which can and should be automated.

One part of the computation phase which can be done by the computer is that of analysis.

This may be defined as determining the response of a given structure under given loads. Most

efforts to utilize the computer in structural engineering have been in the area of analysis, and

much progress has been made. Indeed efficient general-purpose computer programs capable of

modelling dynamic and nonlinear response have emerged in recent years Ul. The efficiency

and generality of such programs have led to their popularity in industry. These programs typi­

cally require the user to supply data describing the particular analysis problem at hand. The

programs work like a "black box" acting upon the data in a batch mode to compute the

response.

Analysis is not the only part of the computation phase which may be automated. The way

in which the structure is modified according to its response computed from analysis, thus, the

trial-and-error process itself may be generalized. Optimization algorithms may be used to

manage the trial-and-error process. These algorithms take advantage of the computer's ability

to assimilate much information about the current design in order to determine the best set of

modifications. Work in the area of optimization-based design has occurred and programs have

emerged [2]. Typically they take the same format as the general-purpose analysis programs in

requiring the user to supply data upon which the program acts in a batch mode. These programs

have not enjoyed near the popularity as their analysis counterparts. In the author's opinion

there are two main reasons for this lack of popularity. The first reason is that most of these

programs lack sufficient flexibility. Normally they pre-specify the choice of cost and constraint

functions. For example a common cost function is to minimize weight. However in most real

design situations the choice of cost and constraints is one of the most judgement-based deci­

sions in the design process. This decision is very problem-dependent and should not be

1.3

automated. The second reason for the lack of popularity of optimization-based design programs

is that their convergence may be slow. The choice of algorithm and parameters for that algo­

rithm which provides fastest convergence is not only problem-dependent but also iteration­

dependent. Thus, by running in a batch mode a change of algorithm or algorithm parameters

cannot be made.

The system OPTNSR was based on the philosophy that the user should supply programs

to evaluate the cost and constraints and that he should be able to interact with algorithm param­

eters [3]. OPTNSR was the union of a general-purpose structural analysis program named

ANSR and an interactive feasible directions optimization program named INTEROPTDYN.

After gaining sufficient experience with OPTNSR, three shortcomings were recognized. First, it

took too much time for the user to write the programs for cost and constraint evaluation

because the format was complex and required a knowledge of the internal operation of ANSR.

Second, once the user-supplied programs were specified, it was not allowed to later change

them in the design process. Third, the possibility of changing algorithms interactively did not

exist.

DELIGHT.STRUCT is a computer-aided structural design environment· which has

emerged after working with OPTNSR. Basically it is the union of ANSR, an engineering design

system named DELIGHT, a library of optimum structural design software, and a library of

software for specific classes of structural problems. DELIGHT.STRUCT is a system rather than

a program. The philosophy adopted is that the user may interactively write software or choose

software from existing expandable libraries. This allows the user to define his own cost and

constraints, to utilize his own trial-and-error scheme, and to develop his own pre- and post­

processors for communicating data in the way he thinks is best. If his software has some

degree of generality, it may be added to expandable libraries to lessen future programming

effort. Another aspect of the DELlGHT.STRUCT philosophy is that the user may interact with

the execution in order to display and/or change the values of variables. Furthermore the user

is allowed to interactively change or create programs during execution.

1.4

This report describes the DELIGHT.STRUCT system and how to use it. Section 2 pro­

vides background about the DELIGHT.STRUCT system. Organization and content of the

different components of the system are described in this section. Section 3 describes the use of

the DELIGHT.STRUCT system. Details on software and commands given by the user to solve

specific structural design problems are explained in this section. Section 4 discusses future

development of the DELIGHT.STRUCT system. Expansion of the libraries in the system as

well as areas of improvement of the system itself are explored in this section.

1.5

2. BACKGROUND ON DELIGHT.STRUCT

DELIGHT.STRUCT is currently operational on a VAX 11/780 computer with a virtual

memory version of the UNIX operating system. It is assumed, therefore, that the reader has

some familiarity with UNIX [4), This section of the report is intended to give the reader back-

ground on how the DELIGHT.STRUCT system is organized and how it operates. Details on

how to use the system will be treated in the Section 3 of the report. As depicted in Figure 1,

DELIGHT.STRUCT is the name of a directory which currently contains ten sub-directories.

The directories work.d, frameworkd, save.d, and framesave.d are the places where the user does

the actual computing and storing of results. The directory delight.d contains files which inter-

face the DELIGHT design system the, bulk of which resides in a central location external to

DELIGHT.STRUCT. The main executable program, also named DELIGHT.STRUCT, is

found in the directory delight.d. The DELIGHT design system will be briefly described in Sub-

section 2.1 which follows. Subsection 2.2 will describe the ANSR structural simulation package

as it appears in the directories ansr.d and element.d. Subsection 2.3 will describe the software in

the directory structrattle.d which is oriented toward optimum structural design. Subsection 2.4

will describe the software in the directories framefort.d and framerattle.d which relates to the

seismic-resistant design of planar steel frames. Identification of each individual file in these

directories is given in Appendix 1.

2.1. DELIGHT

DELIGHT, or "DEsign Laboratory with Interaction and Graphics for a Happier Tomor-

row" is a system tailored for an engineering design environment. Although it is still in its

developmental stages, it has been used successfully by research as in the design of electrical

components and earthquake resistant structures. Thus, the bulk of the DELIGHT software

-resides in a central location while only those parts necessary to form the DELIGHT.STRUCT

version reside in the directory delight.d. Three main goals were emphasized in the development

of DELIGHT. First, the system was designed to simplify the programming process for the

1.6

user. Second, the system is based upon an interaction between the designer and the computer.

Third, the system is organized to accomodate expandable libraries of software. Some of the

features of the DELIGHT system which are directed toward these goals are depicted in Figure 2

and briefly described in the remainder of this subsection. For a more detailed description of

the features of DELIGHT the reader is referred to the DELIGHT manual [5].

2.1.1. Fortran Interface

Engineering design software must necessarily include an analysis or simulation package.

As mentioned in the Introduction, much research effort has been directed in recent decades

toward the development of good engineering simulation programs. In order to expand

DELIGHT to include such programs, DELIGHT allows easy interfacing with existing Fortran

software. A Fortran subroutine may be interfaced to the DELIGHT program with virtually no

modification so that it may later be called by a DELIGHT statement. Furthermore, variables

within Fortran subroutines can be made "interactive" so that their values can be used or even

changed with DELIGHT statements. This interfacing capability allows easy addition or substi­

tution of superior simulation programs which are sure to appear in the future. A design group

may form its own version of the DELIGHT program by interfacing only those programs which

it needs. Thus, in the DELIGHT.STRUCT system the ANSR structural simulation program, as

well as seismic resistant frame design software, are interfaced to the basic DELIGHT program.

A description of how this was done follows.

To interface structural engineering subroutines the "built-in" part of DELIGHT was first

modified. This part of DELIGHT contains information regarding the names and arguments of

all Fortran subroutines which may be called from DELIGHT. This information for the struc­

tural subroutines was added by editing the files builtnam, builtmid, and builttop. The whole

built-in part of DELIGHT was then recompiled. The compiled Fortran subroutines to be inter­

faced, the compiled subroutines which they call, the compiled built-in part of DELIGHT, and

the compiled DELIGHT program itself were then loaded together to form the executable file

1.7

DELIGHT.STRUCT.

Certain variables and coefficients in the frame design subroutines were made interactive.

This was done by writing the Fortran subroutine fdeclr (with no arguments) and interfacing it

with the DELIGHT program in the manner described in the preceding paragraph. This subrou­

tine contains the common blocks with all the variables which are interactive. Following these

common blocks are calls to one of the DELIGHT subroutines deci, decial, decia2, deer, decral,

or decra2 for each such variable depending on its type. Execution of this subroutine is done

once and causes all of these frame design variables to be made interactive.

2.1.2. Compilation / Execution

A useful engineering design system must be interactive. To help achieve this goal

DELIGHT is based on the idea of interactive execution. When the designer types a command

at the terminal, DELIGHT compiles and executes that command immediately. This means that

DELIGHT performs line by line compilation and execution bypassing the usual load-linkage

phase. This type of operation also allows the user to perform "scratchpad" calculations on the

terminal in order to help him make decisions. In this respect the computer operates like a

sophisticated hand-held calculator. In addition to this interactive execution capability

DELIGHT also has interactive programming capabilities. The user is thus able to interactively

program his own commands which will relieve him from having to re-type a series of state­

ments over and over. The way these interactive execution and programming capabilities work

will now be explained.

When the DELIGHT program is started, the prompt "1>" will appear on the terminal. At

this point the user types a valid statement. DELIGHT "compiles" this statement into an inter­

mediate form by translating it into a series of numeric codes using a modern compiler-compiler

generated parser. Then the statement is "executed" by entering a large Fortran computed goto

which acts on the numeric codes and sends execution to corresponding groups of Fortran state­

ments. This results in interactive execution. There is no load-linkage phase.

1.8

Sometimes it is necessary to compile more than one statement before execution. For

example a decision or a loop statement expects at least one following statement before it can be

executed. DELIGHT automatically postpones execution for such statements. The user may

also force postponement of execution by enclosing blocks of statements in curly brackets. In

this case each statement is compiled as it is typed, but the statements are not executed until

DELIGHT encounters the closing curly bracket.

Often a user would like to compile a group of statements once without execution and give

them a name whereby they can be executed in the future without compilation. This is done by

enclosing the statements in curly brackets and preceding them by a "procedure" statement.

Such DELIGHT procedures are analogous to Fortran subroutines. The procedure is executed

by calling the procedure name. Because there is no load-linkage phase in DELIGHT, a pro­

cedure called by another procedure must already exist in compiled form before the calling pro­

cedure can be compiled. The called procedure may be a dummy procedure which can later be

replaced by the "real" procedure.

Two important features of DELIGHT are "defines" and "macros". The user can define any

name to be a group of characters which is its definition. When the user types characters at the

terminal they are broken up into names, numbers, etc. DELIGHT then checks the names to

see if they are the define name from a previous define statement. If so, DELIGHT replaces

them with the definition characters which are sent to be compiled and executed. Therefore, the

user may actually type define names which may appear as invalid input but the DELIGHT com­

piler actually "sees" the definition which is valid input. Arguments, optional arguments with

default values, and quoted strings may occur after the name and before the definition in define

statements. Macros work similarly to defines except that they also allow operations and logic to

be performed on the user's input and on the characters sent to the compiler.

Through the use of procedures, defines, and macros the user is able to interactively pro­

gram. Several statements can be represented by a single statement. Procedures have the

advantage that they are compiled only once. The statements replaced by defines and macros,

1.9

however, are re-compiled each time they are called. Defines and macros have the advantage

that they do not use up a lot of memory by storing compiled code. Defines and macros also

allow the user to create very readable command syntax. Thus, the user is able to expand

DELIGHT according to his own needs or interests.

2.1.3. Included Files And Memfiles

Most of the software in DELIGHT is found among libraries of files. The user selects the

software he wishes to use from such file libraries. This philosophy permits the user to have

access to an extremely powerful program, but at the same time he is not bogged down with

large amounts of software that he is not using. Furthermore, the user is also permitted to add

to the file libraries, thus expanding the power of the system according to his needs. DELIGHT

allows the user to access source files of DELIGHT statements which can then be compiled and

executed. DELIGHT also allows the user to access binary files which are already in compiled

form and may be executed directly.

Suppose the user creates a file in his working directory which contains delight statements

after which he starts the DELIGHT program and awaits a prompt. DELIGHT is waiting for the

user to input a statement from the terminal. With an "include" statement the user can direct

that input be made from a file instead of from the terminal. Thus, DELIGHT will go to the file

and compile and execute the statements therein just as if they had been typed at the terminal.

The file may contain a procedure which the user has written. When the file is included, this

procedure is compiled.

It would be ridiculous to force· the user to have all the files in all the libraries which he

may ever want to include in his working directory. Instead the user needs only a file openhdtl,

which contains a list of the names of the directories containing the libraries of files. If the user

wishes to include a particular file which is in one of these directories, he uses the include com­

mand but encloses the name of the file in triangular brackets. This causes DELIGHT to search

through the directories listed in the file openhdtl for the file, which it then includes.

1.10

Often after the user has included many files and compiled many procedures, he would like

to be able to store this compiled information in a binary file. Such binary files are known as

"memfiles". Everything that has been compiled up to the current time can be stored in a

memfile with the "store" command. This creates a binary memfile in the working directory. At

a later date the user may start DELIGHT and "restore" from a memfile. Thus, he starts where

he left off and does not have to re-compile all the previous software. The "openhdtl" philoso­

phy applies to memfiles also. Thus, the user may restore from memfiles which are in the direc­

tories listed in the file openhdtl.

The bulk of the software in DELIGHT.STRUCT is in memfiles and libraries of files to be

included. After the executable file DELIGHT.STRUCT was first loaded, it was forced to start

and the files listed in the file setup were included. The files listed therein are those basic

DELIGHT software files from the DELIGHT library thought to be useful for structural

engineering. After these files were included, the compiled information was stored in the

memfile memfile. Thus the memfile memfile contains basic DELIGHT software. Later

DELIGHT.STRUCT was started, the software in the memfile menifile was restored, files con­

taining software for optimum structural design were included, and the compiled information

was stored in the memfile memstruct. Finally, DELIGHT.STRUCT was started, the software in

the memfile memstruct was restored, files containing seimic-resistant frame design software were

included, and the compiled information was stored in the memfile memframe.

2.1.4. Interrupts

DELIGHT possesses sophisticated interrupt capabilities. The user may interrupt execu­

tion and then examine the values of variables. From this information he can make changes,

and he can decide whether to continue execution or start execution of something else. This

interrupt capability is also useful for procedure debugging. Thus, the interrupt capabilities are

essential to interactive programming and execution.

1.11

When the user writes a DELIGHT procedure, he may insert a "suspend" statement.

When the procedure is later executed, it will interrupt at the suspend statement. Alternatively,

the user may insert an "interaction" statement in a procedure. When executing the procedure if

the user hits the "break" key on the terminal once, the execution will be interrupted when it

reaches the next interaction statement. If the user does not hit the break key, execution will

bypass the interaction statement. Finally, if the user hits the break key on the terminal twice

during the execution of a procedure, execution will be interrupted no matter where it is in the

procedure. These three methods of interrupting define "forced", "soft", and "hard" interrupts,

respectively. One final type of interrupt is the "run-time error". For some execution errors

such as "divide by zero" or "array subscript out of bounds" DELIGHT will not abort but instead

will interrupt with a "run-time error" message.

Once execution has been interrupted, by whatever means, all DELIGHT variables,

whether they are external or local to procedures, retain their most recent values from the exe­

cution. The user may then interact with these variables as he wishes. This is an important

feature for debugging. If the execution interrupts due to a run-time error, the user can enter

the procedure where the interrupt occurred and print out the current values of local variables to

discover what went wrong.

After the user has finished interacting with DELIGHT variables following an interrupt, he

has many options. He may "resume" execution of the interrupted procedure. He may begin

execution of a second procedure, interrupt, begin execution of a third procedure, etc. up to five

levels deep, and successively resume their executions from the innermost to the outermost. He

may "reset", which causes him to leave the interrupted procedure to do something else. He

may "quit", which exits from DELIGHT altogether. He may store into a memfile, which causes

the current values of all DELIGHT variables to be stored in the memfile, which he can exam­

ine later.

1.12

2.1.5. Rattle Language

The programming language for DELIGHT is known as Rattle or "RATfor Terminal

Language Environment". This language has been designed to simplify the programming pro­

cess. Some of the tedious details of Fortran are eased in Rattle. Furthermore, there has been

emphasis placed on readability in the development of Rattle syntax so that it is easy to become

acquainted with an unfamiliar Rattle program.

Rattle is a structured programming language patterned after Ratfor or "RATional FOR­

tran". Thus, it is very similar to Fortran, the main difference in Rattle being the absence of

statement labels By convention the programmer indents all statements which are to be exe­

cuted following a loop statement or as a result of a decision statement. The appearance of com­

plicated branching statements can be simplified through successive indentation with a structured

language. The user may also choose from several constructions such as "for", "while", and

"repeat" for loops and "if', "else", and "case" for decisions. Finally, Rattle allows the user to

"break" out of or skip to the "next" iteration of any level of nested looping. The result of this

programming structure and style is enhanced program readability.

Some of the details typical to Fortran which are eliminated in Rattle include the following:

(I) All Rattle variables are initialized to zero automatically.

(2) If a loop end limit is less than its start limit, the loop is automatically bypassed.

(3) All local variables in a Rattle procedure retain their values from the last call of the pro­

cedure to the next call.

(4) Incomplete Rattle statements may be continued on the next line.

(5) All numbers in Rattle are double precision so there is no need to distinguish variable

type.

1.13

(6) Anything following a "#" sign at any point on a line is taken as a comment.

(7) Certain variables may be designated as "global", meaning that they are automatically

known to all procedures.

(8) Common constants such as "PI", "TWOPI", or "MAXREAL" are included among the glo-

bal variables.

By convention the names of global variables consist of all capital letters; the names of local pro­

cedure variables consist of all small letters; and the names of regular Rattle variables begin with

a capital letter followed by small letters.

Most of the nice features of Fortran are included in Rattle. Some examples are:

(1) Rattle includes the standard library of intrinsic mathematical functions.

(2) Inputl output to or from the terminal or files may be in free or specified format.

(3) Regular Rattle variables may be "imported" to any procedure analogous to a Fortran com­

mon statement.

2.1.6. Memory Manager

Another way in which DELIGHT simplifys the programming process is through its

memory management system. Arrays with any number of subscripts may be variably dimen­

sioned or redimensioned at any point within or outside a procedure. Dynamic array dimension­

ing may even occur as a result of a decision statement or within a loop statement. It is also

permitted to dimension arrays to size zero. When an array is passed to a procedure through the

argument list it is unnecessary to pass any of its dimensions. This completely dynamic memory

management relieves many of the usual headaches of typical programming.

It is important to emphasize the efficiency of the memory manager in addition to the con­

venience it provides. When gaps are created in the large DELIGHT storage block due to the

redimensioning of arrays and the recompilation of procedures, the user may force a "CRUNCH"

to occur in which the allocated memory is basically compacted. An automatic CRUNCH will

I.14

occur as the storage block nears capacity in order to free up more memory space. If this fails to

provide enough free space for the desired array, an automatic "FLOP" will occur, whereby array

locations are swapped in order to free up space. Both the CRUNCH and the FLOP represent

recent efficient techniques from the field of memory management in computer science.

2.1.7. Utility Commands

To give DELIGHT interactive power many utility commands have been devised. The

commands "include", "system", "store", "restore", "suspend", "interaction", "resume", "reset", and

"quit" have already been mentioned. Commands exist to help manipulate DELIGHT input and

output. There are also commands to help the user keep track of the variables and procedures

he has created. Finally, there are commands to help the user examine what has happened dur­

ing execution. Some of these commands are described below. New commands are being made

available which the user mayor may not choose to include.

The user can cause DELIGHT input and/or output to be written on or appended to a file

as well as output to the terminal with the "output_to", "echo_to", and "echojo_to" commands.

This allows the user to keep records of what he has been doing. When the user includes a file,

switching DELIGHT input from the terminal to that file, he may monitor with the "echo" com­

mand. The "list" command allows the user to list on the terminal the contents of a file. The

"history" command allows the user to list. the most recent commands which have been given.

With the "edit_history" command this history may be edited and written to a file.

All names of variables and procedures which have been created are stored in a symbol

table. The command "whatis" permits the user to find out if a particular name corresponds to a

variable, an array, a procedure, a define, etc. With the "whereis" command he can find the

source file where the variable, array, procedure, define, etc. was created. An entry in the sym­

bol table along with its memory allocation in the DELIGHT memory block can be removed

with the "remove" command. Probably the most frequently used DELIGHT command is the

"display" command. The names and values of some or all variables, global variables, local

1.15

variables, or system variables can be displayed with this. command. Similarly the names of

some or all of the arrays, defines, functions, macros, operators, or procedures in the symbol

table can be displayed. The user can designate certain variables with which he often interacts as

parameters with the "parameter" command. The parameters can later be displayed in a fancy

way with their values, source file names, and descriptive strings.

When execution has been interrupted, the "trace" command will tell the user on which

line of which procedure called from which line of which procedure etc. the execution was inter­

rupted. The "display_time" command will display the cpu-time and number of calls that have

been made to the most-used procedures. The "enter" command allows the user to enter a pro­

cedure where he may then display the values of local variables and arrays. The"!" command

allows the user to re-execute any of the commands which appear in the history list.

2.1.8. High-Level Matrix Commands

In order to simplify the programming process for the user, DELIGHT has incorporated

many high-level matrix commands. Algorithms from the LINPACK and Harwell libraries have

been built into the system. Programs become much shorter and readable when a single state­

ment can be used for a more complex matrix operation. Some of these powerful commands

will now be described.

Vector and matrix functions include "det" for computing matrix determinants, "rcond" for

computing matrix condition numbers, "I.t' for computing the euclidean norm of a vector, and

"< < .,. > >" for computing the inner product of two vectors. Matrix algebra statements may

follow the command "matop". These statements include adding, subtracting, multiplying,

inverting, finding the eigenvalues, forming the singular value decomposition, and forming the

Q-R decomposition of matrices. Arrays which are formed as a result of such operations are

automatically dimensioned. The symbol ,"" may be used throughout to denote the transpose of

any matrix. Smaller arrays may be "clipped" out of larger arrays, and parts of larger arrays may

be "filled" with smaller arrays. Algorithms for solving systems of linear equations, linear

1.16

programming problems, and quadratic programming problems may be accessed by a single

statement. Array commands exist for finding the dimensions of an existing array, printing out

or reading in values for array elements, and saving the values of an array in a file in the form

of assignment statements so that the file can later be included.

2.1.9. High-Level Graphics Commands

High-level graphics commands which are necessary for interactive power also exist. The

man-machine interface is an important consideration in the development of an engineering

design system. Graphics aid the designer to rationally interpret large quantities of information

quickly so that he can make decisions. Some of the DELIGHT graphics capabilities will now be

descibed briefly.

The "terminal" and "grinit" commands allow the user to tell the DELIGHT system the

type of terminal on which he is working and to initialize the terminal for graphics commands.

The user may set up "viewports" and "windows" on the terminal screen representing graphics

working areas, and he may endow them with their own "world" coordinate systems. Once the

user has selected a viewport to work in, he may draw boxes, ovals, and vectors in whichever

color he chooses. He may also display data in the form of "barplots" or continuous "curves"

where only ordinates are given, or parametric "parcurves" where ordinates and abcissas are

given. He can also position the graphics text cursor and display graphics text for labelling pur­

poses. There is a sophisticated "plot" package which automatically scales, plots, and labels up to

nine Rattle expressions vs a linear or logarithmic increment of any Rattle expression with

specified limits. With this, a nice-looking plot of data can be made with one command.

Finally, there are commands for erasing all or parts of the screen.

I.l7

2.2. ANSR

The structural simulation program imbedded in DELIGHT.STRUCT is ANSR or

"Analysis of Nonlinear Structural Response" [6]. This program has capabilities for analyzing

static or dynamic, linear or nonlinear structural response. The main reason this program was

chosen over other available structural simulation packages was because of its organization. It is

quite modular and easy to follow. The organization of the ANSR program is depicted in Figure

3. The directory ansr.d contains the Fortran subroutines for central ANSR processing while the

expandable directory e/ement.d contains the Fortran subroutines for the various ANSR ele­

ments. Currently the directory e/ement.d contains a three-dimensional elasto-plastic parallel­

component truss element and the two-dimensional lumped-plasticity parallel-component beam­

column element [7]. The subroutines in both the directories ansr.d and e/ement.d have been

loaded into the main executable program DELIGHT.STRUCT. The mini-ANSR program will

be briefly described, and the optimization-simulation and simulation-optimization interfaces will

then be explained. Finally the two subroutines in ANSR which may be called from

DELIGHT.STRUCT will be described.

2.2.1. Mini-ANSR

Mini-ANSR is a version of ANSR adapted for mini virtual-memory computers such as the

VAX. It differs from the original ANSR program in its memory management system, which

was drastically simplified in order to take advantage of the existing virtual memory manage­

ment. The mini-ANSR version also contains modifications at the element and global levels to

enable the computation of the energy response of the structure.

To perform a mini-ANSR simulation, the subroutine input is first called. This subroutine

reads input data from files both at the global level and at the element levels through the ele­

ment subroutines inell, ine/2, etc. After reading in the raw data, the subroutine input processes

it, compacts it, stores it into common blocks, and determines corresponding addresses. After

the subroutine input is finished one of the computation management subroutines static or dynmic

1.18

is called depending on whether a static or dynamic simulation is to be performed. These sub­

routines loop through load or time steps linearizing to form the stiffness matrix in the subrou­

tine stiff, solving the resulting set of linear equations for the incremental nodal displacements in

the subroutine optsol, and finding the unbalanced nodal forces in the subroutine respon. When

convergence is attained, the response envelopes may be output by the subroutine envout. The

global subroutines stiff, respon, and envout call their element level counterpart subroutines stifl.

stifl. etc., respl, resp2, etc., and outl. f!ut2, etc.

2.2.2. Optimization-Simulation Interface

One of the two main obstacles the software developer is faced with when interfacing a

simulation program such as ANSR with an optimization-based CAD package such as

DELIGHT.STRUCT is to devise a scheme whereby the simulation input can be modified

according to the changing set of design variables. In other words as the structure in question is

re-designed by the optimization process, data in the simulation program must be changed so

that the "new" structure can be analyzed. Some limitations had to be made on the scope of

structural design problems to be considered in order to generalize this process.

First, it was decided that permissible design variables may only affect element properties.

Thus the distance between nodes or the magnitude of nodal loads must remain constant with

changes in design variables. Second, as a new element is added to ANSR, the programmer

must also add a subroutine named mdjf in which he pre-specifies the possible design properties

for that element. For the truss element the possible design properties are section area, strain

hardening ratio, tensile yield stress, and compressive yield or buckling stress. For the beam­

column element the possible design properties are section area, section moment of inertia,

strain hardening ratio, and plastic yield moment. The element subroutine mdjf has as argu­

ments the values of these possible element design properties from which it enters element com­

mon blocks and makes the necessary changes in data affected by these properties.

1.19

2.2.3. Simulation-Optimization Interface

The second obstacle in interfacing ANSR to DELIGHT.STRUCT involves storing in a

general yet efficient manner the structural response from which the values of cost and con­

straints can be computed. The ANSR program normally prints the response information at

each time step, and therefore it can use the same response arrays in the next time step by sim­

ply "writing over" the old information. However in the optimization setting the cost or con­

straints may be functions of the response at individual time steps meaning the entire response

history should be stored for generality. It would obviously be inefficient if not impossible to

store all possible response histories at every node and for every element. Therefore a general

scheme must be devised whereby the user can communicate which response histories he wishes

to store for his particular problem. The scheme should also include ordered storage of the

specified histories so that the user knows where any particular history is located.

In order to avoid inefficient overdimensioning of several arrays, ali response histories are

stored in a large vector named resp which is the only member in the common block bigres. The

first entries in resp are the values of the design variables from which the simulation generated

the response to be stored. The user may have cost and constraint functions which correspond

to different loadings, solution strategies, geometric modellings, etc. in his design problem. For

example in the seismic resistant design problem the user may formulate one group of con­

straints corresponding to a static nonlinear model subjected to gravity loads, another group of

constraints corresponding to a dynamic linear model subjected to moderate ground motion, and

another group of constraints corresponding to a dynamic nonlinear model subjected to severe

ground motion. To accomodate this situation the user would prepare three data files for ANSR

named ansrdata1, ansrdata2, and ansrdata3 which contain data for the three different analysis

problems. The reponse histories corresponding to each ansrdata file are then stored in order in

the vector resp. Therefore each ansrdata file must contain an integer which is the starting

address in resp where its resp.onse histories are stored.

1.20

For each ansrdata file the possible global response histories which may be stored include

seven different global energies from the energy balance equation, and relative displacements,

relative velocities, or absolute accelerations in any of three orthogonal directions for any free

node. Therefore each ansrdata file should include flags and lists expressing which histories for

which nodes are to be stored. At each time step ANSR calls the subroutine storsp which takes

care of the orderly storage of the response for that time step in resp. As an element is added to

ANSR, the programmer must also add a subroutine named stor in which he pre-specifies which

response quantities may be stored for that element. For the truss element it is possible to store

axial displacement, axial force, or inelastic energy dissipation for each element. For the beam­

column element it is possible to store axial force, plastic hinge rotation, plastic hinge energy

dissipation, end moment, or total end rotation at both ends for each element. The subroutine

storsp calls the element subroutines storl, stor2, etc., which store element response histories

according to element storage codes for each element. Each ansrdata file must specify such ele­

ment storage codes.

2.2.4. Subroutines Analys And Resman

The subroutine which may be called from DELIGHT.STRUCT and which drives the

ANSR simulation package is named analys. This subroutine performs the following four tasks:

(1) The storage sizes of ANSR common blocks are initialized and the arrays therein are set to

zero.

(2) One of the six possible ansrdata files is opened and the subroutine input is called. Thus,

the subroutine analys must be called for each ansrdata file in order to perform a complete

simulation for a given set of design variables.

(3) The element subroutines mdjll, mdjl2, etc. are called in order to modify the input data

according to current values of the possible element design properties.

1.21

(4) The subroutines static and/or dynmic are called to carry out simUlation.

Another subroutine which may be called directly from DELIGHT.STRUCT is resman.

This subroutine manipulates the large vector resp in one of the following five ways, according to

the value of its first argument flag:

(1) The contents of the vector resp may be written out to the binary file response.

(2) The vector resp may be restored from the binary file response. In this way the response

from a previous simulation can be restored and used at a later date.

(3) Recall that the first things stored in resp are the values of the design variables which gen­

erated the stored response. Actually the responses from simulations corresponding to the

two most recent design variable vectors may be stored in the vector resp one after

another. The current set of design variables may be compared to the previous two sets,

and if it is within a tolerance of either of them another flag is set and the corresponding

response is copied into the front part of the vector resp. In this way one is able to obtain

the response without performing another simulation in cases when the set of design vari­

ables is sufficiently close to either of the previous two sets.

(4) The two sets of design variables stored in the vector resp may be initialized.

(5) The vector resp may be made an interactive DELIGHT variable.

2.3. STRUCT

The directory structrattle.d contains software for general optimal structural design. The

software is written in Rattle, and it has been compiled, combined with the basic DELIGHT

software from the memfile memfile, and stored in the memfile memstruct. Structural design

problems can be solved which mayor may not employ ANSR simulation. At present this

software has been utilized in seismic-resistant steel frame design which involved ANSR simula­

tion as well as for the design of a large reflecting telescope support system which did not

involve ANSR simulation. The software has been organized into three groups which will be

1.22

described in this subsection. These groups include software for the control of the computation

phase of the design process, the optimization algorithm library, and the user software interface.

The names of files of these groups begin with the capital letters "C", "A", and "S" respectively.

The intricate relationships among the software in the directory structrattle.d are depicted in Fig­

ure 4.

2.3.1. Control Commands

There are control commands for the purpose of initialization according to the specific

problem of the user. In particular the file Cstarto.flJile is used to initialize the computation of

the cost and constraint functions. Specifically when this file is included the following five tasks

are performed:

(1) The variables which describe the problem size are initialized by including a user-supplied

file.

(2) The initial values of the design variables are set by including another user-supplied file.

(3) If ANSR simulation is involved, an ANSR simulation initialization file is included.

(4) Arrays for storing the values of constraints are dimensioned.

(5) A CRUNCH is forced.

The file Coptimizejile is used to initialize the optimization process. Specifically when this file is

included the following five tasks are performed:

(1) The user is asked which optimization algorithm he wishes to employ and according to his

answer the proper algorithm initialization file is included.

(2) The user is asked if he has supplied his own gradient computation scheme and if not the

standard perturbation initialization file is included.

1.23

(3) The user is asked the maximum number of iterations he expects to complete and accord­

ing to his answer, arrays are dimensioned for storing iteration histories.

(4) The cpu-time measurement features are initialized.

(5) An echo of DELIGHT input and output to the file dialogue is activated.

A number of commands have been created through DELIGHT defines for the control of

the computation process. These commands are as follows:

(1) "startotr' causes the initialization file Cstarto./ffile to be included.

(2) "optimize" causes the initialization file Coptimizefile to be included.

(3) "simulate" causes the cost and constraint functions to be computed.

(4) "run n" causes the optimization algorithm to start running and suspend after it has com­

pleted n iterations.

(5) "cont n" causes the optimization algorithm to continue running and suspend after n addi­

tional iterations.

(6) "sleep nIt causes the DELIGHT.STRUCT algorithm to sit idly for n seconds.

(7) "pajama" causes DELIGHT.STRUCT to include the file pajama the next time it suspends.

(8) "stop_opt" suspends the cpu-time measurement features and the echo to the file dialogue.

(9) "start_opt" resumes the cpu-time measurement features and the echo to the file dialogue.

(10) "saveall" saves the current ANSR simulation response in the binary file response, the

current values of design variables in the file Jifile, and the current state of DELIGHT exe­

cution in the memfile memprob.

(11) "onward" causes ANSR simulation response to be restored from the binary file response.

The way in which these commands are used is described in more detail in the Section 3 of this

report.

All algorithms operate by successively "re-designing" the set of design variables. Each re­

design constitutes an iteration. Some point in each iteration must be designated as the "main

1.24

breakpoint" of the algorithm. This is done by calling the procedure interact at this main break­

point. This procedure does the following four things at each iteration:

(1) The iteration number, the value of the cost function, the value of the maximum of all the

constraint functions, and the values of the design variables are printed.

(2) Three procedures which output information regarding the chosen optimization algorithm,

information regarding ANSR simulation if pertinent, and any other information which the

user wishes to output are called.

(3) The arrays for storing iteration histories are updated.

(4) Execution is suspended if the number of additional iterations has reached the value

specified by the last "run" or "cont" command.

Post-processing control commands are available for doing the following:

(1) Iteration histories of the cost function, the maximum constraint value, and the cumulative

cpu-time may be plotted on the terminal screen or routed to a hard-copy plotter.

(2) Iteration histories of the values of any of the design variables may be plotted on the ter­

minal screen or routed to a hard-copy plotter.

(3) The values of the above iteration histories may be written to the file history in a format

which can be later "included" by DELIGHT.STRUCT.

(4) The file state may be generated which contains the percentage violations of all the con-

straint functions for the current design.

Windows have been set up for plotting on the terminal screen, and they may be listed with the

"window_list" command. The process of routing data to the hard-copy plotter involves the gen­

eration of data files to be used as input to available hard-copy plotter software external to the

DELIGHT.STRUCT system.

1.25

2.3.2. Optimization Algorithm Library

One of the optimization algorithms available in the library is a feasible directions algo­

rithm described in more detail in another reference [8]. Feasible directions algorithms are

characterized by the property that when a design is "infeasible", or violates constraints, succes­

sive designs are monotonically decreasing in max constraint violation, and when a design is

feasible successive designs are also feasible and monotonically decreasing in cost. Therefore,

these algorithms are desirable for interactive CAD because the user is guaranteed a "better"

design with each iteration. The available feasible directions algorithm is programmed as the

procedure feasdir. This procedure calls two other procedures for each iteration. The first pro­

cedure is the procedure actgrad, which chooses a direction vector in the design variable space by

the Gonzaga-Polak-Trahan [8] method. This direction is chosen so as to be opposite to the

minimum vector in the convex hull of the cost and active constraint gradient vectors. The

second procedure is the procedure armijo, which determines a step length in the chosen direc­

tion by the "armijo rule". The step length is chosen so that, if infeasible, a sufficient drop in

max constraint violation is made, and if feasible, a sufficient drop in cost is made while remain­

ing feasible. The algorithm automatically insures that all designs satisfy implied "side" con­

straints or constraints relating to the max and min values of design variables. The algorithm

distinguishes between conventionally constraining a function to be less than a specified value,

and functionally constraining the max over a given range of a parameter, such as time, of a

function to be less than a specified value. This is done because the max function is

nondifferentiable; therefore the nondifferentiable functional constraint functions must be han­

dled differently than the differentiable conventional constraint functions.

Another algorithm available in the library is a conjugate gradient algorithm for uncon­

strained problems. This algorithm has a convergence rate which is quicker than the method of

steepest descent but somewhat slower than Newton's method. However, unlike Newton's

method, the hessian of the cost function is not required. This algorithm is programmed as the

procedure congrad. Just as in the feasible directions algorithm, this algorithm calls a direction

1.26

finding procedure and a step length determination procedure at each iteration. The direction

finding procedure is the procedure polrib in which a direction is selected by the Polak-Ribier

method (9]. The direction selected is a linear combination of the opposite to the cost gradient

vector and the direction from the previous iteration. The step length determination procedure

is the procedure linesearch, which utilizes a line search algorithm suggested by Luenberger [lO].

Basically, this algorithm iteratively approximates the value of the cost function along a line with

a quadratic function, and chooses the step length so as to minimize the quadratic function.

Associated with the two algorithms are the procedures jeasdirout and congradout. These

procedures are called by the control procedure interact at each design iteration for the purpose

of outputting information special to their respective algorithms. There are also the files

Ajeasdirjile and Acongradjile for the two algorithms. These files are included by the control ini­

tialization file Coptimizejile for the purpose of initializing their respective algorithm procedures

and parameters.

2.3 ..3. User-Software Interface

All optimization algorithms require the evaluation of the cost and constraint functions.

This is done by calling the procedure state. For a given set of design variables this procedure

does the following five things:

(0 If ANSR simulation is involved, the procedure ansrsim is called.

(2) The user-supplied procedure objective is called to evaluate the cost function.

(3) The user-supplied procedure conventional is called to evaluate each conventional con­

straint.

(4) The user supplied procedure junctional is called for each functional constraint and the max

over time of each functional constraint is evaluated.

1.27

(5) The max value over all the constraints is found.

As mentioned above, if ANSR simulation is involved the procedure state calls the pro­

cedure ansrsim. This procedure manages the relevant ANSR simulation by performing the fol­

lowing four tasks:

(1) The user-supplied procedure section is called to evaluate the element design properties

corresponding to the given set of design variables.

(2) The Fortran subroutine resman is called to check the given set of design variables against

the sets of design variables used in the previous two ANSR simulations to see if it is pos­

sible to skip ANSR simulation.

(3) ANSR simulation is carried out for a specified number of time steps for each ansrdata file

by calling the Fortran subroutine analys.

(4) Variables which record the number of ANSR simulations, the number of ANSR simula­

tion time steps, the number of ANSR simulation stiffness matrix reformulations, and the

maximum ANSR simulation error energy ratio are updated.

Some optimization algorithms require the computation of the gradients of cost and/or

constraint functions with respect to the set of design variables. This is done by calling the pro­

cedure sensitivity. If the given set of design variables is the same as it was the last time the pro­

cedure sensitivity was called, then any cost and/or constraint gradients desired in the current call

which were also desired in the previous call are simply copied from a stored array. Any remain­

ing cost and/or constraint gradients which are desired are computed by calling the procedure

gradients. If the user has not supplied the procedure gradients, then the procedure gradients sim­

ply calls the procedure perturb by default.

The procedure perturb manages the computation of the cost and/or constraint gradients by

the method of perturbation or finite differences. For a given set of design variables the gra­

dients of the desired cost and/or constraints are computed by performing the following three

steps:

1.28

(1) The number of ANSR simulation time steps for each ansrdata file is determined. Thus, if

the gradient of a functional constraint at time step i is desired, it is unnecessary to per­

form ANSR simulation up to the last time step, which may be much greater than i.

(2) The cost and/or constraint functions for which gradients are desired are evaluated for the

given set of design variables by calling the procedure ansrsim, if pertinent, and by calling

the relevant user-supplied procedures objective, conventional, or junctional.

(3) Each component of the set of design variables is perturbed and the relevant cost and/or

constraint functions are re-evaluated, differenced from their previous values, and divided

by the amount of perturbation to obtain the gradients.

There is also the procedure ansrsimout which outputs information about the ANSR simu­

lation, if pertinent, as called by the control procedure interact at each design iteration. If ANSR

simulation is involved, the control initialization file Cstarto.ff]ile includes the ANSR simulation

initialization file Sansrsimfile. This file initializes procedures and parameters used by ANSR

simulation as well as restores the previously generated file response if available. If the user has

not supplied the procedure gradients, the control initialization file Coptimizefile includes the per­

turbation initialization file Sperturbfile. This file initializes procedures and parameters for the

computation of gradients by the perturbation method.

2.4. FRAME

The directories framejort.d and framerattle.d contain software for the seismic-resistant

design of planar, rectangular, braced or unbraced, steel frames. This software is an example of

a pre-formulated design problem for a general class of structures. It is hoped that similar

software for other general classes of structures will be added to the DELIGHT.STRUCT system

in the future. If the user employs this software, he no longer has to supply his own software

defining the cost and constraint functions because such functions have been pre-defined. Thus

this software allows the frame designer to reduce the amount of programming effort at the cost

of surrendering problem flexibility. The actual definition of the cost and constraint functions

1.29

used in this software is described in a companion report [I1]. It is necessary to interact with

some parts of this frame design software and therefore these parts are written in Rattle and

found in the directory framerattle.d. Other parts which are "non-interactive" have been written

in Fortran, which executes faster, and are found in the directory framefort.d. The Fortran part

has been loaded into the executable program DELIGHT.STRUCT, while the Rattle part has

been compiled, combined with the optimum structural design software from the memfile mem­

struct, and stored in the memfile memframe. The pre-processing software which helps the user

define his particular frame among this general class of frames, and the software interfacing this

package to the optimum structural design package will be described. Finally, a desciption of the

available software for post-processing the response computed by ANSR simulation will be

given. The relationships among the frame software are depicted in Figure 5.

2.4.1. Pre-Processing

Information regarding frame geometry, element types, gravity loads, boundary conditions,

element design status, and initial design are input· through execution of the large Rattle pro­

cedure finputter. This procedure asks the user questions about the frame, which it displays

graphically on the terminal screen in color. The user transforms the original grid into the pro­

posed frame through his answers to the questions. Thus this information is conveyed to the

computer in a straightforward manner.

After obtaining this raw data, the procedure finputter calls the subroutine /prcss. This sub­

routine processes the data by performing the following six tasks:

(1) The subroutine fassum is called, which reads assumed material constants from the file

assumptions and reads the ground acceleration record from the file record.

(2) The main processing subroutine fcrnch is called.

1.30

(3) The subroutine fandat is called, which generates the relevant ansrdata files.

(4) The subroutine fdescr is called, which generates the file description which in turn describes

the particular design problem for the benefit of the user.

(5) The subroutine fpass is called, which generates the binary file passdata containing informa­

tion to be used later for the computation of the cost and constraints and for post­

processing.

(6) The subroutine fstart is called, 'which generates the normally user-supplied files sizejile and

xjile describing the problem size and the initial design, respectively.

When the execution of the procedure jinputter has finished, the user may consult the file

description for a list of the cost and constraint numbering in his problem. He may employ the

procedure fstructure to plot on the terminal screen a picture of his frame with element number­

ing and nodal information. He may also use the procedure frecord to plot the ground accelera­

tion record on the terminal screen or route this information to the hard-copy plotter.

2.4.2. Interface To STRUCT

This frame design software provides the procedures which the user normally supplies for

the optimum structural design package. The procedures objective, conventional, and junctional .

for evaluating the cost and constraint functions are set to call the Fortran subroutines fobjec,

ftonve, and ./Junct, respectively. Since the design of frames involves ANSR simulation, the pro­

cedure section for computing element design properties from the design variables is set to call

the Fortran subroutine fsectn.

Two of the commands for controlling the computation process have been modified in

order to include the additional initialization needed for the frame design package. To initialize

the computation process the command "fstartoff" is given instead of the usual command

"startoff", This causes the file Fstartojffi/e to be included to perform the following four tasks:

1.31

(1) The Fortran subroutine finitl is called, which restores problem data from the binary file

passdata created by the pre-processor.

(2) The user is asked to type in cost function coefficients from which the amount of simula-

tion necessary to compute the cost is determined.

(3) Design parameters pertinent to the user's particular problem are initialized.

(4) The usual initialization command "startoff" is given.

The command "fonward" should be used instead of the usual command "onward". The only

difference between these two commands is that the command "fonward" calls the Fortran sub­

routine finitl for restoring problem data from the binary file passdata.

2.4.3. Post-Processing

Post-processing commands are available for displaying the response of the frame under

seismic loads as computed by ANSR simulation. The procedure jrameprint may be used to out­

put data regarding terms in the cost function and non-normalized values of the design variables

to the file frame. It is also possible to display much of the response graphically. Specifically the

user may plot the histories of terms in the global energy balance equation, story drifts, floor

accelerations, total frame drifts, element energy dissipation, and element resultant forces. It is

also possible to plot hysteresis loops for some elements. These plots may be made on the ter­

minal screen or routed to the hard-copy plotter.

1.32

3. USE OF DELIGHT.STRUCT

The software and the commands which the user should give to solve structural engineer­

ing problems with the DELIGHT.STRUCT system are described in this section of the report.

The description given here treats the DELIGHT.STRUCT system as a "black box", and explains

only what the user sees and does during operation. For an explanation of what goes on behind

the scenes regarding DELIGHT.STRUCT operation and organization the reader is referred to

Section 2 of this report. Subsection 3.1 describes the software supplied by the user before the

computation phase can begin. Subsection 3.2 describes the commands which the user may give

to manage the computation phase. If the user opts to use the seismic-resistant steel frame

design software, the instructions in Subsection 3.3 are applicable. Sample DELIGHT.STRUCT

terminal, graphical, and file input and output for the example problem depicted in Figure 6 for­

mulated with or without the frame design software are given in Appendices 4, 5, and 6, respec­

tively.

3.1. USER-SUPPLIED SOFTWARE

The DELIGHT.STRUCT system has been designed so that it is necessary for the user to

supply a minimal number of files and Rattle procedures. These files and procedures contain the

problem-dependent information which results from the designer's answers to the questions

comprising the quantification phase of the design process. This subsection provides explana­

tions of the necessary files and procedures to be supplied by the user. Additional user-supplied

software which is optional is also treated. Finally a brief explanation of how to write and debug

software in the DELIGHT.STRUCT system is given. All files and procedures written by the

user as described in this subsection are normally placed in the working directory work.d.

1.33

3.1.1. Necessary Files

It is necessary for the user to write a file named sizejile. In this file he specifies the values

of certain global variables relating to the size of his problem and the amount of ANSR simula­

tion needed. These variables are listed and identified in Appendix 2. The file sizejile is made

up of Rattle assignment statements whereby each of these variables is given a numerical value.

It is necessary for the user to write a file named ;ifile. In this file he specifies the initial

values of the design variables for his problem. Normally each design variable has "geometric"

or min and max bounds. The user must normalize each of his variables by linearly mapping

them from the interval [min,maxl to the interval [-I,ll. This is done so that the optimization

algorithms do not weight certain variables more than others. In cases where the user insists on

using plus or minus infinity for his max or min value rather than just choosing a large or small

number, he could employ an exponential map. The name of the global Rattle vector which

contains the values of the design variables is X. The file ;ifile consists of Rattle assignment

statements whereby each component of the vector X is given its initial numerical value between

plus and minus one.

If the problem involves ANSR simulation for computation of cost and/or constraints, the

user must supply "ansrdata" files. These files provide input for the ANSR program. If the user

has constraints corresponding to different loadings, different modellings, etc. he may have more

than one ansrdata file. Ansrdata files are named ansrdatal, ansrdata2, etc. up to a maximum of

six. files. The input syntax for an ansrdata file is given in Appendix 3. The element input in

the ansrdata files that is dependent on the values of the design variables is arbitrary because this

information will be changed automatically according to the values of the design variables.

The user may wish to create some Rattle variables. Such variables may contain informa­

tion about the design problem which the user may wish to examine periodically during the

optimization or simulation processes. These variables may also be problem-dependent

coefficients which the user may want to interactively adjust during execution. Furthermore,

these variables may contain information to be imported to problem-dependent pre- or post-

1.34

processing procedures. To create these variables the user writes a file named startsetup. This

file contains Rattle "create" statements with syntax "create name" where name is the name of a

scalar variable created. For coefficients which may be interactively adjusted, the "parameter"

statement should be used instead of the create statement. To create array variables, an "array"

statement which has exactly the same syntax as a Fortran dimension statement is used. Typi­

cally the dimensions of arrays are set to zero in the file startsetup and re-dimensioned later when

they are used. All variables thus creat~d in the file startsetup are Rattle variables and thus their

names should begin with a capital letter followed by small letters.

3.1.2. ~ecessary Procedures

If the problem involves ANSR simulation, the user must write a procedure named section.

This procedure has two arguments. The first is a design variable vector x. Sometimes this pro­

cedure is called with the vector x equal to the design variable vector X; and other times this

procedure is called with the vector x equal to some perturbed or trial design variable vector

xpert or xnew. The second argument in the procedure section is a matrix secprop. The number

of rows in this matrix is equal to the number of elements in the structure to be simulated. The

number of columns in the matrix secprop is equal to the maximum number of possible element

design properties for the elements in the structure. The role of the procedure section is to com­

pute the element section property matrix secprop corresponding to the given design variable

vector x. The ith row contains the possible element design properties for the ith element as

derived from the given design variable vector x. For beam-column elements the possible ele­

ment design properties are cross-sectional area, moment of inertia, strain hardening ratio, and

plastic yield moment. For truss elements the possible element design properties are cross­

sectional area, strain hardening ratio, tensile yield stress, and compressive failure (yield or

buckling) stress.

As an example suppose the ith design variable corresponds to the moment of inertia for

elements (beams) m and n, and the jth design variable corresponds to the plastic yield moment

1.35

for elements m and n. In the procedure section the user would have to do the following three

things:

(1) Because the ith and jth design variables are normalized to the interval [-I,ll, they have to

be scaled to obtain actual values of moment of inertia and plastic yield moment.

(2) The value of moment of inertia derived from the ith design variable is assigned to

secprop(m,2) and secprop(n,2), and the value of plastic yield moment derived from the jth

design variable is assigned to secprop(m,4) and secprop(n,4).

(3) The values of cross-sectional area and strain hardening ratio for elements m and n,

though not design variables themselves, may be related by some approximate functions to

the values of moment of inertia and/or plastic yield moment. The user computes the

corresponding value for cross-sectional area and assigns it to secprop(m,J) and

secprop(n,l), and computes the corresponding value for strain hardening ratio and assigns

it to secprop(m,3) and secprop(n,3).

Some of the elements in the structure may be unaffected by the values of the design variable

vector x. Nevertheless, their corresponding element design properties must be re-assigned by

the procedure section to their constant values.

Whether or not the problem involves ANSR simulation, the user will have to supply a

procedure named objective, which has two arguments. The first argument is a given design vari­

able vector x from which this procedure computes the value of the cost function and returns it

in the second argument, which is the scalar cost. If the user wishes to include conventional

constraints in his problem, he must supply a procedure named conventional, with three argu­

ments. The first argument is a given scalar i and the second argument is a given design variable

vector x from which this procedure computes the value of the ith conventional constraint func­

tion and returns it in the third argument, the scalar ineq. If the user wishes to include func­

tional constraints in his problem, he must supply a procedure named functional, with four argu­

ments. The first argument is a given scalar i, the third argument is a given scalar steps, and the

second argument is a given design variable vector x from which this procedure computes first

1.36

steps values of the ith functional constraint, and returns these values in the fourth argument,

the vector fineq. To carry out these computations it may be useful for the user to write other

procedures which are called by the procedures objective, conventional, or functional. It is sug­

gested that the user normalize the constraint functions so that their range is in the interval [­

1,0] when x is feasible, and the interval [0, +infinity] when x is infeasible. Furthermore, the

user should normalize the cost function so that its range has the same order of magnitude as

the constraint functions.

The cost and constraints are often functions of the response from an ANSR simulation

made prior to calling the procedures objective, conventional, or functional. This response is

stored in the large vector Resp, which must be imported to the procedures objective, conven­

tional, or functional. The user must compute the values of cost or constraints from values in

this vector Resp. The first values stored in the vector Resp are the values of the design vari­

ables used in the ANSR simulation generating the response. Following these, the response his­

tories corresponding to the ANSR simulation for each ansrdata file appear. The order of

storage of response histories for an ansrdata file is as follows:

(I) A zero history

(2) Global energy balance histories: quake input energy, work done by loads, elastic strain

energy, . inelastic energy dissipation, damped energy dissipation, kinetic energy, energy

error

(3) Histories of relative displacements, relative velocities, and absolute accelerations in global

x-direction for each node

(4) Histories of relative displacements, relative velocities, and absolute accelerations in global

y-direction for each node

(5) Histories of relative displacements, relative velocities, and absolute accelerations in global

z-direction for each node

1.37

(6) Element response histories

Not all of these histories are stored for every ansrdata file. In each ansrdata file the user

specifies whether global energies are to be stored, which nodal motions for which nodes are to

be stored, and which element responses for which elements are to be stored. Therefore, in the

procedures objective, conventional, or junctional the user must determine the address of the

desired quantity in the vector Resp before it can be used for computation of the cost or of a

constraint.

3.1.3. Optional Procedures

Most optimization algorithms require the evaluation of gradients of cost and constraint

functions with respect to the design variables. The DELIGHT.STRUCT system currently com­

putes such gradients by perturbation. However, the particular cost and constraint functions in

the problem may be in a form in which the user may supply a more efficient scheme for com­

putation of their gradients. If this is possible, the user should write a procedure named gra­

dients with five arguments. The first argument is a given scalar nact which is the number of

"active" constraints for which gradients are desired. The second argument is a given vector listl

of dimension nact, the third argument is a given vector list2 of dimension nact, and the fourth

argument is a given design variable vector x. The last argument is the matrix jacob with dimen­

sions equal to nact by the number of design variables. The procedure gradients computes the

gradients of the active constraints specified in listl and list2 with respect to the design variables

evaluated at the design variable vector x and stores such gradients row-wise in the matrix jacob.

If the ith element of listl equals zero and the ith element of list2 equals zero, the gradient of

the cost function should be computed and stored in the ith row of jacob. If the ith element of

listl equals positive j and the ith element of list2 equals zero, the gradient of the jth conven­

tional constraint should be computed and stored in the ith row of jacob. If the ith element if

listl equals positive j and the ith element of list2 equals positive k, the gradient of the jth func­

tional constraint at time step k should be computed and stored in the ith row of jacob.

1.38

If the user wishes to print out certain information particular to his problem at each design

iteration, he must write a procedure named uoutput with no arguments. In this procedure he

imports Rattle variables or accesses local procedure variables containing the information to be

printed, and prints out their values in the format of his choice.

The user may wish to write procedures to post-process the results from his problem. Such

procedures could display information in files, to the terminal screen, graphically as plots on the

terminal screen, or in files compatible with hard-copy plotter software external to the

DELIGHT.STRUCT system. If there is any degree of generality to the user's problem, he may

wish to write procedures for pre-processing input information. Such procedures are useful if

the problem is going to be done more than once with slightly different data. Pre-processing

procedures read the values of variables which change from problem to problem from the termi­

nal or from files. Then they generate some or all of the normally user-supplied files mentioned

previously saving the user a certain amount of work. These pre-processors can be made quite

friendly if they interactively ask the user questions and employ graphics.

The user may also wish to utilize the DELIGHT.STRUCT system in its sophisticated

"hand-held calculator" mode to make "scratchpad" computations before, during, or after the

optimization phase of his problem. Such computations are useful for obtaining a preliminary

design, for determining appropriate adjustments for parameters, and for interpreting results.

The user may construct variables and procedures which aid in these computations. Such

scratchpad software is typically very problem-dependent.

3.1.4. Writing And Debugging Procedures

A good methodology to adopt for writing and debugging large (more than 20 lines) pro­

cedures is as follows:

1.39

(1) Leave the DELIGHT.STRUCT program with the "system" command, write the procedure

in a file using the UNIX editor, and return to DELIGHT.STRUCT with the "exit" com­

mand.

(2) Cause DELIGHT.STRUCT to compile the procedure by "including" the new file. Any

compiling errors will appear on the terminal screen with a diagnostic message.

(3) Leave DELIGHT.STRUCT, re-edit the file to correct the compiling errors, return to

DELIGHT.STRUCT, and re-compile until a successful compilation has been made.

(4) Prepare test data and cause the procedure to execute by simply "calling" it. Most execu­

tion errors will cause the execution to interrupt with a "run-time error" message instead of

aborting.

(5) Give the command "trace" to find out on which line execution was interrupted, "enter" the

procedure, and display the values of local variables and arrays. From these values the

source of the execution error can usually be determined after which the interrupt level

should be "reset" to one.

(6) Leave DELIGHT.STRUCT, re-edit the file to correct the source of the execution error,

return to DELIGHT.STRUCT, re-compile, and re-execute until a successful execution

has been made.

An alternative methodology for writing and debugging small procedures using the

DELIGHT "history" features is as follows:

(1) Prepare test data for the procedure.

(2) Begin typing the body of the procedure (without the "procedure", "inherited array", or

"import" statements) directly from the terminal. The statements or statement blocks are

compiled and executed as the user types them, and any compilation or execution errors

will show up immediately.

1.40

(3) When a compilation error appears simply re-type the corrected statement.

(4) When a run-time execution error appears, discover its source by displaying the values of

variables. Then reset the interrupt level to one.

(5) To correct the run-time execution error, obtain the history numbers of previous state­

ments with the "history" command, re-execute those history numbers with the "!" com­

mand, and re-type the corrected statement.

(6) When the execution is error-free, "edit the history" taking out unnecessary statements and

adding "procedure", "inherited array", and "import" statements at the top. Then "write

out" the contents of the history editor to a file.

After the user has completed writing and debugging his software, it is useful to create the

memfile memstart in which the DELIGHT.STRUCT software together with his compiled pro­

cedures is stored. The user can simply start from the memfile memstart when he begins the

computation phase. This is especially useful if he is going to run more than one design prob­

lem because he won't have to re-compile all that software each time. The memfile memstart

can be constructed by giving the UNIX command "make.memstart", which starts

DELIGHT.STRUCT restoring from the memfile memstruct, takes input from the file startsetup,

and writes out any errors or messages to the file make.errors. The user must append to the file

startsetup DELIGHT "include" statements for each of the files containing the user-supplied pro­

cedures before the UNIX command "make.memstart" is given. Because there is no load-linkage

in DELIGHT, all procedures called by a given procedure must already exist. Therefore the

order in the file startsetup in which the procedure files are included is important. If the

"include_and_print" statement is used instead of the ordinary include statement, a record of

when each file was included will be recorded in the file make. errors. The final lines in the file

startsetup are usually the DELIGHT statements, "clear_time", "store memstart 'starting

memfile"', and "quit".

1.41

3.2. COMMANDS FOR COMPUTATION

In this subsection, the commands given by the user to carry out the computation phase of

design are described. First, the pusiness for getting started and initializing will be treated.

Second, some of the possible DELIGHT commands for carrying out optimization will be dis­

cussed. Third, processing and storage of results will be described. Some of the commands for

getting started and storing results are described for the UNIX operating system and therefore

may be different for other operating systems.

3.2.1. 1. Getting Started

The user performs his work in the directory work.d. In fact if the DELIGHT.STRUCT

system resides in a central location, users need only the directory work.d. This directory con­

tains a copy of the UNIX file make.memstart as mentioned in Subsection 3.1. A copy of the file

openhdtl which consists of a list of names of directories containing DELIGHT.STRUCT

software is also found in the directory work.d. The user should put the directory delight.d at the

end of his UNIX csh path. He should also create a UNIX alias equating "work" to changing to

the directory work.d, and a UNIX alias equating "go" to DELIGHT.STRUCT.

To get started the user gives the UNIX command "work" which puts him in the directory

work.d. Next he gives the UNIX command "go" which starts the DELIGHT,STRUCT program

and restores software from the default memfile memfile. At this point the user-supplied

software should be developed as described in the Subsection 3.1. After the files containing this

software have been written and debugged, the user should stop the DELIGHT.STRUCT pro­

gram with the pELIGHT command "quit". Then he should give the UNIX command

"make.memstart" to create the memfile memstart. When this is done, the user is at the point

where he may begin the computation phase of the design process. If he is going to run more

than one design problem which uses the same software, he begins each time at this point.

The user starts the DELIGHT.STRUCT program restoring from the memfile memstart by

giving the UNIX command "go memstart". At this point he may wish to execute scratchpad or

1.42

pre-processing software which he has written. Next he gives the initialization command

"startotr'. If ANSR simulation is involved he will be asked if the file response for the current

design already exists, and he should give the proper answer. The user normally gives the com­

mand "simulate" at this point. This command causes the cost and constraints for the current

design to be computed. At this point if the user wishes to proceed with optimization, he gives

the initialization command "optimize". The user will be asked which optimization algorithm he

wishes to use, whether he has supplied his own gradient computation scheme, and the max­

imum number of design iterations he expects to complete. Proper initializations are made

depending on his answers.

3.2.2. Optimization Process

To start the optimization algorithm the command "run nIt is given where the optional

argument n is the number of design iterations to be performed. After the n iterations are com­

pleted, execution will be suspended at the main breakpoint in the algorithm. At this point the

user may interact with the results. When he is ready to continue execution of the algorithm,

he gives the command "cont mIt which causes m additional design iterations to be performed.

There are other breakpoints in the algorithms besides the main breakpoint. If the user hits the

"break" key once during execution of the design iterations, the execution will suspend when it

reaches the next breakpoint, and a message will appear on the terminal screen telling the user

at which breakpoint he is. When the user is ready to resume execution from this breakpoint,

he gives the command "resume". It is also possible to interrupt execution between breakpoints.

If the user hits the "break" key twice during execution, the execution is suspended no matter

where it is. The user should then give the command "trace" to find out where he is in the exe­

cution. When he is ready to resume execution again, he gives the command "resume".

When the user has suspended execution, he may interact with the results. He may

display the current values of variables with the "display" command. He may display the current

values of variables designated as parameters with the "dp" command. He may "enter" a

1.43

procedure, "display" the current values of local variables, and "leave" the procedure. He may

also print the current values of the elements of arrays with the "printv" command. He may

display the amount of cpu-time used in the various procedures with the "dt" command. He may

even display results graphically with the "plot" command. The user may wish to change the

values of some variables, particularly those which have been designated as parameters. This

may be done with Rattle assignment statements. Some of the DELIGHT.STRUCT variables

and parameters with which he may want to interact are described in Appendix 2. In order to

aid the designer in making decisions regarding which variables to modify, how many more

iterations to carry out, etc. he may perform scratchpad computations with DELIGHT in its

sophisticated "hand-held calculator" mode.

The commands given by the user while execution of the algorithm is suspended are

echoed to the file dialogue. Anything following a "#" symbol is taken as a comment, which pro­

vides a means whereby the user may record an explanation in the file dialogue of what he is

doing during the design process. The cumulative cpu-time for each design iteration is also

measured and stored. If the user decides he doesn't want a group of commands to be recorded

in the file dialogue nor to be taken into account in the running total cpu-time, he precedes them

with the command "stop_opt" and follows them with the command "start_opt". If the user

decides he is finished with the optimization process, he gives the commands "stop_opt" and

"reset".

When execution has been suspended at the main breakpoint in the algorithm, the user

may wish to stop and continue execution at a later date. This will be possible if he gives the

commands "stop_opt", "simulate", "saveall", and "quit". The command "saveall" causes the

values of DELIGHT variables to be stored into the memfile memprob, the values of the ANSR

simulation response vector Resp to be stored in the file response, and the values of the current

design variable vector X to be stored in the file xfile. When he is ready to begin again at a later

date, he should make a backup copy of the memfile memprob, start DELIGHT.STRUCT with

the UNIX command "go memprob", give the command "onward" which restores from the

1.44

stored files, and finally give the command "start_opt". After doing this, he may continue where

he previously left off.

For larger problems the execution of each design iteration may take a long time, and the

user may wish to operate in a semi-interactive mode which has come to be known as the

"pajama" mode. In this mode the user initializes his problem with the "startotr' and "optimize"

commands just as in the usual fully-interactive mode. Then he gives the command "pajama".

This will cause the DELIGHT.STRUCT program to take commands from the file also named

pajama the next time execution suspends. The user then gives the command "sleep n ; run m".

This will cause the DELIGHT.STRUCT program to remain idle for n seconds after which m

design iterations will be executed. After giving these commands the user may put the

DELIGHT.STRUCT program in the background, which is done with the UNIX commands

"cntl-z" and "bg". He may then log out and go home. Thus the user may give these commands

during the day causing the program to "sleep" for n seconds idly until say midnight when the

computing rates go down. At midnight the program automatically begins execution of the

design iterations after which the execution suspends and receives commands from the file

pajama. Typically the user places the commands "stop_opt", "simulate", "saveall", and "quit" in

his pajama file. When the user returns in the morning he finds his job completed. He may

start the execution where it left off with the commands "go memprob", "onward", and

"start_opt" and interact to find out what happened over night. Then he may set up further

pajama mode iterations for the following night with the commands "pajama", "sleep n ; cont m",

"cntl-z", and "bg". The name "pajama mode" obviously originated from the fact that this

method was used for overnight computation. With this method the user can still interact

without having to sit and wait for a long time at a terminal while simulation or design iterations

are being executed.

1.45

3.2.3. Storage Of Results

When the user thinks he has completed enough design iterations, he should save and

store results. Histories of cost, maximum constraint value,cumulative cpu-time, and design

variables vs iteration have been stored throughout the optimization process. These histories

may be plotted graphically on the terminal screen. The terminal must be initialized for graphics

with the "terminal" and "grinit" commands. The available windows may be listed with the

"window_list" command. The user must select one of these windows with the "window" com­

mand. The command "graph_cost from n to m" will create a plot in the selected window of the

cost history from iteration n to iteration m. The arguments nand m are optional with default

values being zero and the current iteration number, respectively. Similarly the commands

"graphysi", "graph_time", and "graph_x" can be used to obtain plots of maximum constraint

value, cumulative cpu-time, and design variables vs iteration. By replacing the characters

"graph" with the characters "plot" in these commands, files are created which are compatible

with available hard-copy plotter software. The command "savehist" causes these histories to be

saved in the file history in a format which is "includable" by DELIGHT.STRUCT. The com­

mand "printstate" causes the value of the cost and the percentage violation of each of the con­

straints to be printed out to the file state. In addition to these commands, the user may employ

his own post-processing software commands.

The commands "saveall", "savehist", "printstate", etc. generate files in the working direc­

tory work.d containing the results of the design process. It is suggested that the user create a

directory named save.d in which he can store such results so that the working directory may be

cleared and made ready for another design problem. The user may wish to save copies of any

or all of the files dialogue, history, Jifile, state, response, memprob, sizefile, the ansrdata files, and

the hard-copy plotter files in the directory save.d. He may also wish to save copies of the user­

supplied procedures for his problem.

1.46

3.3. SEISMIC-RESISTANT DESIGN OF FRAMES

If the user elects to utilize the existing software for seismic-resistant design of planar rec­

tangular braced or unbraced steel frames, he does not have to supply much of the software

mentioned earlier. The procedures section, objective, conventional, and functional as well as pre­

and post-processing procedures have already been written in a general fashion. Of course the

user may add further scratchpad procedures if he desires. The files sizefile and)(file and the

ansrdata files are generated by the pre-processing software from a minimal amount of informa­

tion given by the user in a painless manner which describes his specific frame from among a

large number of possible frames. The software has been set up to divide the design process

into two distinct phases. These are the problem definition phase and the computation phase.

These phases are described in this subsection.

3.3.1. Problem Definition Phase

It is suggested that the frame designer create another working directory named

framework.d. It is convenient to create a UNIX alias so that the UNIX command "fwork" will

put the user in this directory. If DELIGHT.STRUCT resides in a central location, the directory

framework.d is the only directory the frame designer needs. This directory should contain a

copy of the file openhdtl consisting of names of software directories. A copy of the file assump­

tions should also reside in this directory. This file lists assumed parameter values for quantities

such as elastic modulus, damping ratio, and coefficients for relationships among element section

properties. If the user wishes to replace these values with others, he can do so by simply edit­

ing the file. A copy of the file record should also exist in the directory framework. d. This file

contains the digitized ground acceleration record to be used for the design. The user is free to

replace this file with another ground acceleration record file with similar format. To start the

DELIGHT.STRUCT program, the user should give the UNIX command "go '<memframe>"',

which restores software from the memfile memframe.

1.47

After starting the DELIGHT.STRUCT program, the user is ready to execute the pre­

processor. He should be on a color graphics terminal, and he should initialize the terminal for

graphics with the "terminal" command. Next he gives the command "finput". He is asked how

many stories and bays in the frame and the values of the respective story heights and bay

widths. The frame grid is then displayed on the terminal screen with nodal and element

numbering. He can place cross-bracing in panels of his choice in the grid. Such bracing is

graphically displayed and numbered. He can "erase" elements and nodes of his choice. He can

designate girders of his choice as "shear link elements" for eccentrically braced frames or "dissi­

pator elements" for base isolation systems, and he can designate columns of his choice as

"rubber bearing elements" for base isolation systems. All of this element information is

displayed graphically. In this way the geometry of the particular frame is easily conveyed to the

computer. The user may then place uniform gravity loads on girders of his choice and down­

ward point gravity loads on nodes of his choice. He may also giv.e nodal constraint codes for

nodes of his choice. Again this nodal information is displayed graphically. The user may

specify certain elements as elements whose size is not to change during the design process. He

may specify certain elements as elements which have no constraints on their behavior (for

example the frame may have sufficient symmetry so that constraints on some elements may be

redundant). He may also specify groups of elements to have the same size throughout the

design process. This information is also displayed graphically. Finally the user specifies the ini­

tial sizes of the elements in the frame, and the corresponding elements are erased as he does

so. This interactive graphical pre-processor has sufficient intelligence to detect many illogical

responses from the user, and in such cases the user is asked to try the particular response again.

There is also an "undo" capability with which the user may undo previous accidental responses

in each part.

The interactive graphical pre-processor sends all this information to a processor which

generates the files sizefi/e, xfi/e, ansrdatal, ansrdata2, and ansrdata3. The processor also gen­

erates the file description which identifies and numbers the constraints in the particular problem

1.48

for the benefit of the user. A final file generated by the processor is the binary file passdata,

which contains all other information about the user's frame needed later for computation of

cost and constraints.

The user may display the frame as defined by the pre-processor on the terminal screen for

inspection with the command "fstruct". He may also select a window with the "window" com­

mand and display for inspection a plot of the ground motion accelerogram with the command

"graphJrecord". The record may also be written to files compatible with the hard-~opy plotter

software with the command "plotJrecord". If the user is satisfied with the frame as described

by this problem definition phase, he may stop the DELIGHT.STRUCT program with the "quit"

command and start the computation phase at a later time.

3.3.2. Computation Phase

To begin the computation phase the user again goes to the directory jramework.d with the

UNIX command "fwork" and starts the DELIGHT.STRUCT program with the UNIX command

"go '< memframe> '''. The initialization command "fstartoff" is then given instead of the usual

command "startoff". The user will be asked questions about his choice of cost function

coefficients. Afterwards the user may wish to perform a simulation by giving the usual com­

mand "simulate", and/or he may wish to initialize for optimization by giving the usual com-

mand "optimize".

To carry out the optimization process the commands are the same as the usual commands

for other structural problems with the single exception that the command "onward" should be

replaced by the command "fonward". The files dialogue, memprob, response, and xfile are like­

wise created and used in the same way. Additional frame design variables and parameters with

which the user may wish to interact are described in Appendix 2.

There are frame post-processing commands available in addition to the usual post­

processing commands for structural problems. The command "fprint" causes information

regarding the terms in the cost function and the values of design variables in terms of member

1.49

sizes to be printed out to the file frame. Plots on the terminal screen of moderate quake story

drifts, moderate quake floor accelerations, and severe quake total structure sway vs time can be

made for the current design with the commands "graphjdrift", "graphjaccel", and

"graphjsway", respectively. A plot of terms in the global energy balance equation vs time can

be made with the command "graphJenergy". Plots of severe quake element energy dissipation

and moderate quake element resultant forces vs time can be made with the commands

"graphjelenergy" and "graphjelforce", respectively. Plots of hysteresis loops for braces, shear

link elements, or base-isolation dissipator elements can be made with the command

"graphjelhyst". In all the above mentioned "graph" commands, one can instead generate plot

files compatible with the hard-copy plotter software by replacing the characters "graph" with the

characters "plot".

It is suggested that the user create the directory framesave.d analogous to the usual direc­

tory save.d where results from seismic-resistant frame design problems can be stored. In addi­

tion to the usual structural design files the user may wish to save copies of any or all of the files

frame, description, assumptions, record, and passdata.

1.50

4. FUTURE DEVELOPMENT

The DELIGHT.STRUCT system as it now stands is a research tool. Before it could be

used in an industrial environment, future development must occur in two main areas. First,

the libraries in the system must be expanded, thus increasing the power of the system for solv­

ing a wider range of problems. An explanation of how to expand the libraries will be given in

in Subsection 4.1 which follows. Second, there are many specific improvements which should

be made in the operation and organization of the system itself. However, the incorporation of

these improvements should not be attempted until sufficient experience has been gained with

the present system in order to pinpoint the exact sources of inefficiency. A discussion of areas

in which improvements could be made is found in Subsection 4.2.

4.1. LIBRARY EXPANSION

The organization of DELIGHT.STRUCT is such that users may expand and adapt the

libraries of software according to their needs and interests. Specifically, the libraries which may

be expanded include the library of basic DELIGHT commands, the library of ANSR elements,

the library of optimization algorithms, and the library of general classes of structural design

problems. Some of these libraries consist of Fortran subroutines which are loaded directly into

the executable file DELIGHT.STRUCT. Other libraries consist of Rattle files which are com­

piled into memfiles. Still other libraries consist of Rattle files which can be included. Each of

these libraries currently contains software which the programmer can use as an example when

expanding them.

4.1.1. DELIGHT Commands

The library of DELIGHT commands exists in the central directory containing DELIGHT

software. This software is in the form of files written in Rattle source code. Each file provides

the software for a basic DELIGHT feature. Files and thus features are being added to this

directory continually. The latest features which have been added to this directory are described

,

1.51

in the file features also in this directory. Some of the files in this directory were selected to be

included in the compiled software in the DELIGHT.STRUCT memfiles memfile, memstruct, and

memjrame. If the user wishes to use one of the features found in a file that was not included in

these memfiles, he must simply "include" the file after starting the DELIGHT.STRUCT pro­

gram.

4.1.2. ANSR Elements

Currently the library of ANSR elements contains a three-dimensional elasto-pJastic

parallel-component truss element and a two-dimensional lumped-plasticity parallel-component

beam-column element. Future additional elements may include a plane-stress, plane-strain ele­

ment, a plate element, a shell element, a solid element, etc. Specialized elements such as a

shear link element or a hysteretie dissipator element may also be added. Addition of an ele­

ment involves adding the six subroutines inel, stif, resp, out, stor, and mdfl for that element to

the directory element.d, and removing the corresponding six dummy subroutines from the file

eldum.jalso in the directory element.d. Then one must go to the directory delight.d and reload

the executable file DELIGHT.STRUCT by giving the UNIX command "load.delight". The

memfiles must be re-made by giving the UNIX command "make.memfile" in the directory

delight.d, followed by the UNIX command "make.memstruct" in the directory structrattle.d, fol­

lowed by the UNIX command "make.memframe" in the directory jramerattle.d.

Four of the six element subroutines, namely inel, stif, resp, and out, are written and added

in exactly the same way as elements are added to the original ANSR-I program, with two

exceptions. These exceptions result from the fact that the original ANSR-I program was

modified to form the mini-ANSR version, which is capable of computing energy response and

is compatible with virtual memory computing systems. The first exception is that the element

information must be separated into element "integer" information and element "real" informa­

tion. This means the common block infel becomes the common blocks infeli and infelr, the

argument vector coms becomes the argument vectors icoms and coms, the argument scalar ninft:

1.52

becomes the argument scalars ninfei and ninfcr, and the local vector com becomes the local vec­

tors ieom and com. The second exception is that the first four members of the element real

information common block must be the following quantities, which must be computed in the

subroutine resp:

(1) eelas = elastic strain energy in the element

(2) einel = cumulative inelastic energy dissipated in the element

(3) fee = vector of components of equivalent non-geometric element resistence forces in

local coordinates for the element

(4) fdd = vector of components of equivalent damping nodal forces in local coordinates for

the element.

The user must also add the element subroutine mdfl. The arguments for this subroutine

are:

(1) ieoms = element integer information vector

(2) corns = element real information vector

(3) ninfci = element integer information size

(4) ninfcr = element real information size

(5) secpro = matrix of element design properties

(6) nels

= number of elements in the structural model

The transfer of element information is made in the same way as in the other ANSR element

subroutines. The task of this subroutine is to modify the members of the element real com­

mon block infelr according to the values of the element design properties found in the matrix

secpro.

The user must also add the element subroutine stor. The arguments of this subroutine

are icoms, corns, ninfei, and ninfcr which have the same meanings as defined above. In addition

to the usual element common blocks infeli and infelr, the common blocks stores and bigres must

1.53

also be included in this subroutine. The transfer of element information is made in the same

way as in the other ANSR element subroutines. The task of this subroutine is store values of

certain members of the element common block in/elr into appropriate locations of the vector

resp found in the common block bigres.

4.1.3. Optimization Algorithms

The library of optimization algorithms currently contains a feasible-directions algorithm

for constrained optimization with possible functional constraints and a conjugate-gradient algo­

rithm for unconstrained minimization. A new algorithm for this library must be written as a

Rattle procedure with no arguments. The algorithm may be modularized to call other Rattle

procedures. All files associated with the new algorithm should have names which begin with

the capital letter A and should be placed in the directory structrattle.d. Typically optimization

algorithms iterate over successively improved designs. A main breakpoint in the design itera­

tion loop should be chosen and established by calling the procedure interact which has no argu­

ments.

Optimization algorithms must somewhere require the evaluation of cost and constraint

functions. This may be done by calling the user-supplied procedures objective, conventional, or

junctional directly. If the values of these functions depend on the response determined from

ANSR simulation, the procedure ansrsim should be called first. The procedure ansrsim has two

arguments: a design variable vector x and the scalar steps, which is the number of time steps for

which simulation is desired. As an alternative to calling the procedure ansrsim and then the

procedures objective, conventional, or junctional directly, an algorithm may call the procedure

state. The first argument of this procedure is a given design variable vector x from which it

returns the value of the cost function in the second argument cost and returns the value of the

maximum of all the constraint functions in the third argument psi. Many optimization algo­

rithms also require evaluation of the gradients of the cost and constraint functions with respect

to the design variables. This may be done by calling the procedure sensitivity, which has the

1.54

same arguments as the optional user-supplied procedure gradients described earlier.

After supplying files containing Rattle source code for the new algorithm in the directory

structrattle.d, the following details must be carried out to complete expansion of the algorithm

library:

(0 An output procedure with no arguments to be called at each design iteration should be

written. This procedure prints out useful information about the performance of the algo­

rithm.

(2) Any interactive parameters used by the algorithm should be created in the file structsetup

and imported to the algorithm procedure. The file structsetup should also be modified to

include the files containing the algorithm procedure, all procedures called by the algorithm

procedure, and the algorithm output procedure.

(3) An initialization file for the new algorithm should be written which sets the procedure

algo to call the algorithm procedure, sets the procedure aoutput to call the algorithm out­

put procedure, and initializes the algorithm parameters with "parameter" statements.

(4) The file Coptimizefile should be modified to include the new algorithm among the choice

of algorithms, and the initialization file for the new algorithm should be included if it is

chosen.

(5) The UNIX command "make.memstruct" should be given in the directory structrattle.d and

the UNIX command "make.memframe" should be given in the directory framerattle.d

causing the memfiles memstruct and memframe to be re-compiled.

4.1.4. Classes Of Structural Problems

The library of software for classes of structural design problems currently contains

software for the seismic-resistant design of steel frames. Examples of other structural design

problem classes may include design of steel bridge decks, design of concrete dams, etc. The

seismic-resistant frame design software should be used as an example in developing software

1.55

for other classes. Such software pre-specifies the normally user-supplied software in a some­

what general way. Thus the software should supply the procedures section, objective, conven­

tional, and functional. The software should include a pre-processor which takes input from the

user which distinguishes his specific problem from other possible problems in the class and gen­

erates the files sizefile, Jifile, and the ansrdata files. Post-processing software should also be

included which allows the user to interpret results quickly and efficiently.

The software may consist of a directory containing Fortran code as well as a directory con­

taining Rattle code. The following work must be done to interface the Fortran code to the

DELIGHT.STRUCT system:

(1) The built-in part of the DELIGHT.STRUCT system must be modified. This is done by

editing the files builttop, builtmid, and builtnam in the directory delight.d to include the

name and argument information of the new subroutines. Then the file builtn.r in the

directory delight.d should be re-compiled with the rat4 compiler.

(2) The DELIGHT.STRUCT program should be re-Ioaded by adding the names of the files

containing the compiled Fortran code to the UNIX file load. delight in the directory

delight.d and giving the UNIX command "Ioad.delight".

(3) The memfiles merrifile and memstruct should be re-made by giving the UNIX commands

"make.memfile" in the directory delight.d and "make.memstruct" in the directory

structrattle. d.

To interface the Rattle code with the DELIGHT.STRUCT system a setup file and a UNIX file

should be constructed for making a memfile which contains the new Rattle code and the

software from the memfile memstruct. After interfacing the new Fortran and Rattle code, direc­

tories for working with the new software and for saving the corresponding results should be

formed. The openhdtl file in the working directory should contain the name of the directory with

the new Rattle code.

1.56

4.2. IMPROVEMENT

After working with the DELIGHT.STRUCT system for a period of time the author has

been able to recognize some of the deficiencies of the system. Alternatives for correcting such

deficiencies have also been considered. In this subsection possible improvements on the

DELIGHT.STRUCT system are treated briefly. First the problem of DELIGHT.STRUCT

speed and size will be considered. Then, a closer look at how gradients are computed for the

sensitivity analysis will be made. Suggestions for improving the simulation package will be

given. A brief discussion regarding optimization algorithms will follow. Then, the

optimization-simulation interface will be examined. Finally some mention is made of enhanc­

ing the pre- and post-processing power of the system.

4.2.1. DELIGHT.STRUCT Speed And Size

The primary goals in the development of the DELIGHT system did not include optimal

execution speed and minimal program size. It has been discovered that the cpu-time required

for executing many loops of compiled DELIGHT statements is more than an order of magni­

tude larger than the cpu-time required for executing the same number of loops of compiled

Fortran statements. This is a serious drawback. The current size of the DELIGHT.STRUCT

program is a little over four mega-bytes. This means that its use practically requires a virtual­

memory system. There are two large data spaces in the system which are the main culprits for

its size. One of the spaces is the simulation response storage vector Resp which currently has a

dimension of 300000 double-precision numbers accounting for over two mega-bytes of space.

This array was nearly filled when designing a seismic-resistant steel frame with 20 degrees of

freedom using 1100 analysis time steps. The other large data space is the DELIGHT data

space, which contains compiled procedure code and values of DELIGHT variables. This is the

data which can be written out into binary memfiles. It can have a size up to a little under one

mega-byte, and well over half of this maximum size has been used in design problems encoun­

tered thus far.

1.57

One alternative to correct the slow execution speed of the DELIGHT program is to make

a systematic overhaul of the program with efficiency as the primary goal. Such an overhaul is

planned by its creator in the near future. A systematic examination of the data spaces would

reveal that much of the stored information is not necessary to the design process, and schemes

could be incorporated which cut down the large size of the system.

Another alternative solution to the slow execution speed and the large size of the system

is based on a completely different organization. The current organization of the system is such

that the ANSR simulation package is loaded together with optimization algorithms, the proces­

sors, the interfaces, and the management package DELIGHT. The alternative is to organize so

that each of these modules is a stand-alone executable program. In such an organization the

management system would not be DELIGHT, but rather the operating system of the computer.

Much of the interactive power and friendliness of the DELIGHT system would be lost in this

organization. A data-base management system would be necessary to handle the data

input/output needed to pass from one stand-alone module to another. The space needed to

operate would have to be only as large as the largest module in the package. Furthermore,

modules could be written in Fortran for faster execution. Finally, modules which involve large

amounts of number-crunching could be executed on array-processors while other modules

could be executed on "slower" hardware.

4.2.2. Gradient Computation

In order to compute the sensitivity of the cost and constraint functions with respect to

changes in the design variables, the author has resorted to a "brute force" finite-difference

scheme up to this point. This is extremely inefficient because it ignores much of the useful

information generated during simulation. However, the finite-difference scheme can be pro­

grammed external to the simulation package whereas more efficient schemes involve extensive

modification of the simulation package itself. One efficient scheme which has been used by

researchers is based on an adjoint method [12].

1.58

Another alternative gradient computation scheme is based on implicit differentiation of

the structural equation of motion with respect to a design variable. This results in an equation

for the derivatives of the displacements which has the same form as the original equation of

motion except that there is a new right-hand-side load vector. This means that at each time

step in the simulation the gradients of the displacements may be obtained by simply resolving

the already triangularized tangent dynamic stiffness matrix for each design variable. The reduc­

tion in the number of multiplications in this scheme from the finite-difference scheme is by a

factor approximately equal to the number of degrees of free90m in the system. However, the

storage requirements may increase in order to store these gradient histories along with the usual

simulation response histories.

4.2.3. Simulation Package

Much of the computational effort spent in the optimization process occurs during simula­

tion. Simulation approximations may be incorporated into the DELIGHT.STRUCT system

which lessen these lengthy computations. One obvious suggestion takes advantage of the fact

that after gradients have been computed for a given design, the simulation response for other

designs may be approximated by the first two terms in the Taylor's series expansion. Another

suggestion is to incorporate iterative rather than direct equation solvers in the simulation pack­

age because the response from previous designs provides a good starting point for the iterative

solvers and because the tolerance for simulation accuracy depends on how close one is to the

optimum.

One drawback to the ANSR simulation package is its lack of flexibility. A more ideal

package would allow the user to interactively construct "runstreams" which dictate the solution

strategy. These runstreams consist of combinations of the modularized operations normally

found in structural simulation packages. One operation might be to formulate the tangent

stiffness matrix while another might be to solve the eigenproblem for the natural frequencies

and mode shapes. This runstream philosophy is more consistent with the general philosophy of

1.59

modularity in the DELIGHT.STRUCT system.

4.2.4. Optimization Algorithms

An extensive library of optimization algorithms has been developed for the DELIGHT

system. This library was not incorporated into the DELIGHT.STRUCT system because the for­

mat of the algorithms was inefficient for structural engineering design problems. Nevertheless

the DELIGHT.STRUCT system and the library should be modified so that the two could be

brought together. In such a case the library of optimization algorithms would be moved from

the directory structrattle.d to a central directory used by other groups of engineers in addition to

structural engineers.

Many algorithms utilize some sort of line-search which usually accounts for a large per­

centage of the simulation time. The line-search could be made more efficient by incorporating

information from available gradients as well as from previous simulations along the line.

Furthermore a hierarchy of analyses could be established such that is a point in the line-search

failed from the results of simpler analyses, more complex analyses at that point could be

bypassed.

4.2.5. Optimization-Simulation Interface

The interface from optimization to simulation centers on the task of setting up a simula­

tion for the new set of design variables computed by the optimization algorithm. Currently this

interface has been constructed so as to allow certain element section properties to be designated

as design variables. The ANSR simulation program reads input data, processes it, stores it into

common blocks, then calls this interface to modify the data in the common blocks according to

the design variables before proceding with simulation. An alternative scheme would be to read

input data, modify it according to the design variables, then process it, store it into common

blocks and proceed with simulation. Such a scheme would allow any piece of input information

to be a design variable. By considering nodal coordinates as design variables, some interesting

1.60

shape optimization problems could be treated. This scheme tends to bring the interface up to a

level of generality which exploits the full capabilities of the ANSR simulation package. This

scheme would also be less complicated since knowledge of the common blocks in ANSR is not

needed.

The interface from simulation to optimization centers on the task of extracting the data

from the simulation necessary for the computation of the cost and constraint functions. The

current interface requires the user to do alot of bookkeeping to keep track of the addresses of

various simulation data stored in the vector Resp. Use of a friendly data manager would be

preferable.

4.2.6. Processing Packages

The modularity of the DELIGHT.STRUCT system allows the possibility of interfacing

some of the sophisticated pre- and post-processing software packages currently available. Such

software enhances communication between man and machine. In particular graphics software

coupled with modern hardware is sure to aid in achieving the real goal of design efficiency if

utilized properly.

1.61

REFERENCES

1. K.J. Bathe, E.L. Wilson, and F.E. Peterson, "SAP IV - A Structural Analysis Program for

Static and Dynamic Response of Linear Systems", Report No. EERC 73-11, Earthquake

Engineering Research Center, Univ. of Ca., Berkeley, Ca., June, 1973

2. C. Fleury, R.K. Ramanathan, M. Salama, and L.A. Schmit Jr., "ACCESS Computer Pro­

gram for the Synthesis of Large Structural Systems", Proceedings of the International

Symposium on Optimum Structural Design, Univ. of Ariz., Tucson, Az., October 19-22,

1981

3. M.A. Bhatti, V. Ciampi, K.S.Pister, and E. Polak, "OPTNSR An Iteractive Software Sys­

tem for Optimal Design of Statically and Dynamically Loaded Structures with Nonlinear

Response", Report No. EERC 81-02, Earthquake Engineering Research Center, Univ. of

Ca., Berkeley, Ca., January, 1981

4. "UNIX Programmer's Manual" Seventh Edition, VAX-11 Version, Bell Telephone

Laboratories, Inc., Holmdel, N.J., December, 1978

5. W. Nye, E. Polak, and A. Sangiovanni-Vincentilli, "DELIGHT DEsign Laboratory with

Interaction and Graphics for a Happier Tomorrow", Dept. of Electrical Engineering and

Computer Sciences, Univ. of Ca., Berkeley, Ca., April, 1981

6. D.P. Mondkar and G.H. Powell, "ANSR-I General Purpose Program for Analysis of Non­

linear Structural Response", Report No. EERC 75-37, Earthquake Engineering Research

Center, Univ. of Ca., Berkeley, Ca., December, 1975

7. A. Riahi, D.G. Row, and G.H. Powell, "Three Dimensional Inelastic Frame Elements for

the ANSR-I Program", Report No. EERC 78-06, Earthquake Engineering Research

Center, Univ. of Ca., Berkeley, Ca., August, 1978

1.62

8. G. Gonzaga, E. Polak, and R. Trahan, "An Improved Algorithm for Optimization Prob­

lems with Functional Inequality Constraints", Memorandum No. UCB/ERL/ M78/56,

Electronics Research Laboratory, Univ. of Ca., Berkeley, Ca., September, 1977

9. E. Polak, Computational Methods in Optimization, Academic Press, New York, N.Y.,

1971

10. D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley,

Reading, Mass., 1973

11. R.J. Balling, V.Ciampi, K.S. Pister, and E. Polak, "Optimal Design of Seismic-Resistant

Planar Steel Frames", Report No. EERC 81-20, Earthquake Engineering Research Center,

Univ. of Ca., Berkeley, Ca., December, 1981

12. R.K. Brayton and S.W. Director, "Computation of Delay Time Sensitivities for Use in

Time Domain Optimization", IEEE Transactions on Circuits and Systems, vol. cas-22, no.

12, December, 1975

1.63

direc~or~ DELIGHTSTRVCT

DELIGHl

ce!1~ral

DEI. !Of-{j­
directory

ANSR

directory
·;lnsr. d

directory
element. d

STRUCT

Idirector y I
structrattle. d

d irector'J
delight. d

WQRKrr-:c­
DIRECTORIES

director'J
:.li'IJT' k d

directory
framework. d

STORAGE
DIRECTORIES

directory
save. d

directory
framesave. d

SOFIWARE FOR SPECIAL CLASSES OF STRUCTURAL PROBLEMS

__------------~I\'"-------------~/ \

FRAME

director'J
·frame-tort. d

directory
framerattle. d

FIGURE i ORGANIZATION OF DELIGHT.STRUCT

GOAL #1 :

1.64

SIMPLIFY PROGRAMMING PROCESS

* FRIENDLY RATTLE LANGUAGE

* SOPHISTICATED DYNAMIC MEMORY MANAGER

* HIGH-LEVEL MATRIX OPERATION STATEMENTS

GOAL #2: ALLOW INTERACTION

* NO LOAD-LINKAGE IN COMPILATION I EXECUTION

* EXECUTION INTERRUPTS

* UTILITY COMMANDS

* HIGH-LEVEL GRAPHICS COMMANDS

GOAL #3: ACCOMODATE EXPANDABLE LIBRARIES

* INTERFACE EXISTING FORTRAN CODE

* INCLUDE SOURCE FILES AND ACCESS COMPILED "MEMFILES"

FIGURE 2 GOALS AND FEATURES OF DELIGHT

I DEI IGHI. STRUCT PROGRAM

1 1ISUSROU I WF I ISUElROUT I NE
ANALYS RESMAN

I I I
directorlJ ansr. d

I subroutine static or dynmic I
subroutine
input

subroutine subroutine SUBROUTINE subroutine
stiff respon STORSP en'l,/cu+';

I ';ubroIJtine I I subroutine I
optsol energy

';'Jbrout ines SUBROUTINEs subroutines subroutines SUBROUTINES subroutines
inel1 MDFLi stiH resp1 STOR1 out1
inel2 MDFL2 stif2 rasp2 STOR2 out2

..

directory element. d

original mini-ANSR in small letters
MODIFICATIONS I~ CAPITAL LETTERS

......
m
U'I

FIGURE 3 ORGANIZATION OF ANSR

1.66

CONTROL COMMANDS OPTIMIZATION USER SOFTWARE USER SOFn~ARE

ALGO LIBRARY INTERFACE AND FORTRAN

~i:nulate
~ STATE

[AllMIJO I r SEC:TION

~un

cont - I
LINESEARCH to --.:J l~ OBJECTIVE

r---+ ANSRS I M - l!- CONVENTIONAL

FE'S".3 t - r+ FUNCTIONAL
pajama
sleep CONGRAD PERTURB

stop_opt
[ACTGRAO ---, tstart_opt

I

POLRIB SENSITIVITY GRADIENTS

h ANALYSFEASDIROUT
INTERACT

CONGRAnOUT ~ RESMA:J
ANSRS mOl) I

starto'l''' UO'JTPUT

~
Cstartofffile ---. Sansrsimfile

optimize

! -
t Afeasdirfile

~ Acongrad'l'ile
Coptimizefile - Sperturbfile

saveall
onward

PLOT ITER

PLOTXITER

prints tate
savehist

PROCEDURES AND SUBROUTINES ARE IN CAPITAL LETTERS
de'!'ines and '!'iles are in small letters

FIGURE 4 ORC~NIZATIQN OF STRUCT

1.67

Reproduced from
best available copy.

oj i reo: t'Jr!~ director'J d i rector'~
fr.iLnerdtt Ie >:1 frdmefort d frdmewor k. d

r- 1'ds'~lJm d';StliTlptions

0 f-+ fcrnch record
Z....

ansrdatalJ) r-- fandat(JJ
w iprCS:i --u Fi'1put desc r 1 p t; i l,:iq
0 f-+ fdescra::
0-

F·~truct '5i-refileI
W f-+ f;;tarta:: ;:filell..

Frecord
L...+ fp.3·~S - passdata

1'5tartoff - 1'initl

l- t
u start off::J
a::
I- fonward(iJ

0 tI-

W on~.-3:r.j
U
<t
LL section fsectn
il:
w objectiveI- fobJec
Z
~

conventional fconve

functional f-r 'J"l'1ct

Fprint >'rame

S
FE,~ergy

.... Fdrift
U'J
(JJ
w Faccel
u
0
a:: F5wa',/
Q.
I

I- Felenergy
(JJ
0
ll.. Felforce

Felhyst

ORG~NIZATION OF FRAME

1.68

W= 3 KLF Vg

T
P

12' -p

1 0.0 0.2 . 0.4
TIME (SEC)

Vg

I... ·130'

DESIGN VARIABLES

#1 ::::

#2 ::::

#'':) ::::• '...1

column moment of inertia
brace cross-sectional area
dummy story drift variable

COST FIJNCTION

minimize linear combination of square of max of moderate
qua~e story drift and severe quake inelastic energy

CONVENTrON~L CONSTRAINTS

1
2
:3.4
5,6
7,8
9,10

volume
lcolumn axial gravity force:
lcolumn gravity end moments:
lbrace gravity axial force:
severe quake column energy dissipation
severe quake brace energy dissipation

,. Cl"'.

-(C2
,. C3".
,. C4".
" C5".,. C6".

FUNCTIONAL CONSTRAINTS

1,2 :moderate qU.:Ike C 'J 1umn end momentsl ..• C7"0.

3,4 1moder.ate quake br.ac e a x ia 1 force: ,. C8".

5 lmoderate ':tIJake story drift: ..- C9......

6 lmoderate qu.ake f l'Jor accelerationl ,. Cl0"'.

7 square moderate quake story drift ,. des val" #3-'0.

8 lsevere quake structure swayl " C11.....

FIG!.,.lRE 6 EXAt1PLE PROBLEM

1.69

APPENDIX 1 : IDENTIFICATION OF FILES IN DELIGHT.STRUCT

Files in the directory delight.d:

builtmid, builttop, builtnam
Ratfor code for interfacing Fortran to DELIGHT

builtn.r, cexeval, chrdefs, ciochans, cralloc, ctk7data, exdefs, interupt, iodefs, machdep,
maxdefs, style

linked files representing the built-in part of DELIGHT
rat4

linked Ratfor compiler
fort. 7

Fortran code translated from built-in part of DELIGHT
builtn.o

compiled built-in part of DELIGHT
meMfio.f

Fortran code for storing Fortran variables in memfiles
meMfio.o

compiled meMfio.f
testrr.o

linked compiled main DELIGHT code
load.delight

UNIX code for loading the DELIGHT.STRUCT program
DELIGHT.STRUCT

executable main program in the DELIGHT.STRUCT system
openhdtl

formatted basic DELIGHT software directory list
setup

Rattle code selecting software for the memfile memfile
make.memfile

UNIX code for making the memfile memfile
memfile

binary compiled basic DELIGHT software
make.errors

formatted output while making the memfile memfile

Files in the directory ansr.d

analys.f
Fortran code for driving ANSR simulation

resman.f
Fortran code for manipulating response storage vector

storsp.f
Fortran code for storing response at each time step

remaining ".f'
Fortran code representing mini-ANSR simulation package

".0"
compiled versions of source counterparts

Files in the directory element.d

elem3.f, elem4.f, elem5.f, elem6.f, elem7.f, elem8.f, elem9,f, elemlO.f

1.70

Fortran code for dummy ANSR elements
inell.f, stifl.f, respl.f, outl.f

Fortran code for 3-D inelastic truss element
ineI2.f, stif2.f, resp2.f, out2.f

Fortran code for 2-D lumped-plasticity beam element
storl.f, stor2.f

Fortran code for storing element response at each step
mdfll.f, mdfl2.f

Fortran code modifying element data according to design
".0"

compiled versions of source counterparts

Files in the directory.structrattle.d

Afeasdir
Rattle code for feasible directions algorithm

Aactgrad
Rattle code for Gonzaga-Polak-Trahan direction finder

Aarmijo
Rattle code for Armijo step length determination

Afeasout
Rattle code for feasible directions output

Afeasdirfile
Rattle code for feasible directions initialization

Acongrad
Rattle code for conjugate gradient algorithm

Apolrib
Rattle code for Polak-Ribier direction finder

Alinesearch
Rattle code for Luenberger line search

Acongradout
Rattle code for conjugate gradient output

Acongradfile
Rattle code for conjugate gradient initialization

Coperate
Rattle code containing defines for control commands

Cinteract
Rattle code governing interaction at each iteration

Cstartofffile
Rattle code for initialization of computation process

Coptimizefile
Rattle code for initialization of optimization process

Cwindow
Rattle code setting up windows for plotting

Cplotiter
Rattle code for plotting COST, PSI, cpu-time histories

Cplotxiter
Rattle code for plotting design variable history

Csavehist
Rattle code for saving histories on file

Cprintstate
Rattle code printing constraint percentages on file

Sstate

I.71

Rattle code for computing cost and constraints
Sansrsim

Rattle code for performing relevant ANSR simulations
Sansrsimout

Rattle code for ANSR simulation output
Sansrsimfile

Rattle code for ANSR simulation initialization
Ssensitivity

Rattle code for performing sensitivity analysis
Sperturb

Rattle code for computing gradients by perturbation
Sperturbfile

Rattle code for perturbation initialization
openhdtl

formatted structural software directory list
structsetup

Rattle code selecting software for memfile memstruct
make.memstruct

UNIX code for making the memfile memstruct
memstruct

binary compiled structural software
make.errors

formatted output while making the memfile memstruct

Files in the directory framefort.d

fdeclr.f
Fortran code declaring frame variables as interactive

fprcss.f
Fortran code managing the pre-processing of input data

fassum.f
Fortran code reading record and assumed material values

fcrnch.f
Fortran code digesting the input data

fandatJ
Fortran code creating ansrdata files

fdescr.f
Fortran code printing a description of the problem

fpass.f
Fortran code creating binary data file passdata

fstart.f
Fortran code creating files sizefile and xfile

finitl.f
Fortran code reading from binary data file passdata

fsectn.f
Fortran code computing element section properties

fobjec.f
Fortran code computing the cost function

fconveJ
Fortran code computing the conventional constraints

ffunct.f
Fortran code computing the functional constraints

". 0 "

1.72

compiled versions of source counterparts

Files in the directory framerattle.d

Finterface
Rattle code for interfacing frame software to system

Fstartofffile
Rattle code for initializing frame software

Finput
Rattle code for the frame pre-processor

Fstruct
Rattle code plotting frame geometry and loads

Frecord
Rattle code plotting ground acceleration record

Fprint
Rattle code giving printout of frame information

Fenergy
Rattle code plotting terms in global energy balance

Fdrift
Rattle code plotting moderate quake story drifts

Faccel
Rattle code plotting moderate quake floor acceleration

Fsway
Rattle code plotting severe quake structure drift

Felenergy
Rattle code plotting severe quake element energy

Felforce
Rattle code plotting moderate quake element forces

Felhyst
Rattle code plotting severe quake element hysteresis

openhdtl
formatted frame software directory list

framesetup
Rattle code selecting software for memfile memframe

make.memframe
UNIX code for making the memfile memframe

memframe
binary compiled frame software

make.errors
formatted output while making the memfile memframe

Files in the directory work.d

objective
Rattle code for user-supplied cost function

conventional
Rattle code for user-supplied conventional constraints

functional
Rattle code for user-supplied functional constraints

section
Rattle code for user-supplied procedure section

uoutput

1.73

Rattle code for user-supplied output at each iteration
preprocessor

Rattle code for user-supplied pre-processing software
postprocessor

Rattle code for user-supplied post-processing software
scratchpad

Rattle code for user-supplied scratchpad software
sizefile

Rattle code initializing problem size variables
xfile

Rattle code initializing design variable set
ansrdata

formatted ANSR simulation input data
startsetup

Rattle code compiling problem software
openhdtl

linked structural software directory list
make.memstart

UNIX code for making the memfile memstart
memstart

binary compiled problem software
make.errors

formatted output while making the memfile memstart
dialogue

formatted record of optimization process
memprob

binary temporary information state in optimization
backup

binary spare copy of previous memprob
response

binary most recent ANSR simulation response data
pajama

Rattle code giving commands when execution suspends
ansroutput

formatted output from ANSR simulation
history

Rattle code for restoring iteration history arrays
state

formatted current cost and constraint percentages
plot

formatted data for hard-copy plotter software
plotdesc

formatted description of data in plot

Files in the directory framework.d

assumptions
formatted assumptions used in ANSR simulation

record
formatted ground acceleration record

description
formatted description of optimization problem

passdata

1.74

binary frame information generated by pre-processor
openhdtl

linked frame software directory list
frame

formatted values of useful frame quantities
remaining files as in the directory work.d

Files in the directory save.d

files saved by user from directory work.d (not listed here)

Files in the directory framesave.d

files saved by user from directory framework.d (not listed here)

NPARAM
NSIMPAR
NLOAD
NINEQ
NFINEQ
NPROP
NELS
NRESP
COSTL

1.75

APPENDIX 2 : INTERACTIVE VARIABLES IN DELIGHT.STRUCT

Global Variables To Be Initialized By The User In The File Sizefile

total number of design variables
number of design variables which affect ANSR simulation
number of ansrdata files for ANSR simulation
number of conventional constraints
number of functional constraints
maximum number of element design properties for ANSR simulation
number of structural elements for ANSR simulation
amount of response storage space needed for ANSR simulation
ANSR simulation ansrdata files needed to compute the cost (if simu­
lation with ansrdatal file is needed COSTL = I, if both ansrdatal and
ansrdata2 are needed COSTL = 21, etc,)

Q(NLOAD) number of ANSR simulation time steps for each ansrdata file
INEQL(NLOAD) beginning conventional constraint number for each ansrdata file
FINEQL(NLOAD) beginning functional constraint number for eat;;h ansrdata file

if ANSR simulation is not
NSIMPAR = NLOAD = NPROP = NELS = NRESP =COSTL =0

Other Global Structural Variables

ITER optimization design iteration number
X(NPARAM) vector of current design variables
COST current value of the cost function
INEQ(NINEQ) current values of the conventional constraints
NQ maximum number of time steps in functional constraints
FINEQ(NQ) values of a functional constraint over time
MFINEQ(NFINEQ,2)max time step and max value of each functional constraint
PSI value of max constraint
IPSI max constraint number
JPSI max constraint time step (zero if conventional constraint)

Possible Structural Parameters

involved,

Tolx
Numsim
Numsteps
Numref
Maxerr
Print
Eps
Dist
Delta
Epstol
Psitol
Geomslope
Alpha
Beta
Distmax

tolerance for ANSR resimulation
number of ANSR simulations
number of ANSR simulation time steps
number ANSR stiffness reformulations
maximum ANSR ratio of error energy to input energy
ANSR simulation printout code (Print = 1 for no printout)
active constraint band-width
steplength in optimal direction
eps reduction control
convergence tolerance on eps
convergence tolerance on psi
geometric constraint slope
cost or psi reduction angle
step length line-search factor
maximum step length

Scale
Gamma
Deltax
Maxiter
Tolf
Tolgrad

1.76

scale for gradients of active constraints
cost penalty when infeasible
gradient perturbation
maximum number of iterations in step length determination
tolerance for line search
tolerance on norm of cost gradient

Other Structural Variables

Startime starting cpu-clock time
Iterstop design iteration number when next interaction will occur
CostsaveO iteration history of cost
PsisaveO iteration history of max constraint value
Timesave0 iteration history of cumulative cpu time
Xsave (NPARAM,) iteration history of design variables
Resp(300000) ANSR simulation response storage vector

Algorithm Local Variables Output At Each Iteration

direct(NPARAM) (procedure feasdir) direction vector
theta (procedure feasdir) value of the optimality function
nact (procedure actgrad) number of active constraints
list! (nacO (procedure actgrad) constraint numbers of active constraints
list2 (nact) (procedure actgrad) time step numbers of active functional constraints
ngeom (procedure actgrad) number of active geometric constraints
glist(ngeom) (procedure actgrad) active geometric constraint numbers
jacobian(nact,NPARAM) (procedure actgrad) gradients of active constraints
norms(nact) (procedure actgrad) norms of active constraint gradients
angles (nact) (procedure actgrad) angles from direction to active constraints
narm (procedure armijo) number of step length iterations
distart (procedure armijo) starting step length
stepviol(narm) (procedure armijo) history of step length iterations
direct(NPARAM) (procedure congrad) direction vector
gradnorm (procedure congrad) norm of current cost gradient
angles (procedure polrib) angle from direction vector to cost gradient
ncost (procedure linesearch) number of cost evaluations in line search

Possible Frame Design Parameters <Interactive Fortran Variables)

Cosvol
Cosdri
Cosinp
Cosdis
Cosfus
Coscol
Volmax
Drift
Accel
Sway
Colax
Colgra
Girgra

volume cost coefficient
moderate quake drifts cost coefficient
severe quake input energy cost coefficient
severe quake inelastic energy cost coefficient
severe quake fuse inelastic energy cost coefficient
severe quake column inelastic energy cost coefficient
max structural volume
max moderate quake story drift
max moderate quake floor accel in g's
max severe quake structure sway
gravity load column axial force factor
gravity load column end moment yield factor
gravity load girder end moment yield factor

Girdef
Bragra
Colyld
Colduc
Berten
Giryld
Girduc
Shryld
Shrduc
Disyld
Disduc
Brayld
Braduc

1.77

max gravity load girder midspan deflection
gravity load brace yield or buckling factor
moderate quake column yield factor
severe quake column ductility
severe quake rubber bearing tensile stress factor
moderate quake girder yield factor
severe quake girder ductility
moderate quake shear element yield factor
severe quake shear element ductility
moderate quake dissipator element yield factor
severe quake dissipator element ductility
moderate quake brace yield or buckling factor
severe quake brace ductility

Other Frame Design Interactive Fortran Variables

Nc(6), Nstnd, Naccel, Ntpnd, Ksever, Kmoder, Nodsev, Ldrift, Nelm, Kinde(60),
Xplus(6), Xminus(6), Kaccel(26), Kdrift(26,2), Hstnd(26), Nee, Mapct(60),
Kelem(60,3), Ksway(26,2), Htpnd(26), Xy(26,2), Totht, Totwd, Kind(60), Nodes,
Konn(60,2), Force(26,2), Ndcon, Konst(26,2), Ns, Sh(l2), Nb, Bw(l2), Nrecd, Tend,
Record (I 100)

1.78

APPENDIX 3 : ANSRDATA FILE SYNTAX

Control And Nodal Information

one line (a5,18a4)
type the word START
problem title

one line (10)
starting address for storing response in vector resp

one line (I6i5)
total number of nodes
number of control nodes = NCNOD
number of coordinate generation commands = NODGC
number of zero displacement commands = NDCON
number of equal displacement commands = NIDDOF
number of nodal mass commands = NMSGC
number of element groups = NELGR
execution code

(=0 full execution; = 1 data checking only)

NCNOD lines 05,3flO.0)
node number
x-coordinate
y-coordinate
z-coordinate

NODGC lines (4i5,flO.0,10i5)
node number at beginning of generation line
node number at end of generation line
number of nodes to generated along the line
node number difference between successive generated nodes
node spacing

(=0 uniform spacing; < 1 spacing is this proportion
of total line length; > 1 spacing is this distance)

list of nodes to be generated

NDCON lines (I6i5)
node number of first node
constraint code for x-displacement

(=0 not constrained to be zero;
= 1 constrained to be zero)

constraint code for y-displacement
constraint code for z-displacement
constraint code for x-rotation
constraint code for y-rotation
constraint code for z-rotation
node number of last node
node number difference between successive nodes
number of nodes in following list
list of nodes with this constraint code

NIDDOF lines (16i5)

1.79

equal displacement code for x-displacement
(=0 displacement not equal; = 1 displacement equal)

equal displacement code for y-displacement
equal displacement code for z-displacement
equal displacement code for x-rotation
equal displacement code for y-rotation
equal displacement code for z-rotation
number of nodes in following list
list of nodes for which displacement code applies

NMSGC lines (i5,6flO.O,2i5)
node number of first node
x-displacement mass
y-displacement mass
z-displacement mass
x-rotation mass
y-rotation mass
z-rotation mass
node number of last node
node number difference between successive nodes

Load Information

one line (8i5,3flO.O)
code for static and/or dynamic analysis = KSTAT

(=°dynamic analysis only;
= 1 static and dynamic analysis;
=-1 static analysis only)

number of static force patterns = NSPAT
number of static force load increments = NSLGC
code for ground motion records = IGR

(=°no ground motion records;
= 1 ground motion records exist)

number of dynamic force records = NDLR
largest number of points on any dynamic force record
number of dynamic force application commands = NDLGC
number of integration time steps
integration time step
Newmark integration parameter delta
Newmark integration parameter beta

NSPAT sets of lines

one line (i5,18a4)
number of nodal load commands for this pattern = NSLC
load pattern title

NSLC lines (i5,6flO.O,2i5)
node number of first node
load in x-direction
load in y-direction
load in z-direction
moment about x-axis
moment about y-axis

1.80

moment about z-axis
node number of last node
node number difference between successive nodes

one line if IGR = 1 (4i5,6flO.0)
number of points in x-direction record = NIPX
number of points in y-direction record = NIPY
number of points in z-direction record = NIPZ
print code

(=0 no printout; = 1 records printed as input and scaled;
=-1 records printed as input, scaled, and interpolated)

time interval for x-direction record
time interval for y-direction record
time interval for z-direction record
scale factor for x-direction record
scale factor for y-direction record
scale factor for z-direction record

one line if NIPX > 0 (l5a4,5a4)
x-direction record title
input format for the NIPX points

lines for NIPX points (format as specified on preceding line)
values of ground accelerations in x-direction

one line if NIPY > 0 (l5a4,5a4)
y-direction record title
input format for the NIPY points

lines for NIPY points (format as specified on preceding line)
values of ground accelerations in y-direction

one line if NIPZ > 0 (l5a4,5a4)
z-direction record title
input format for the NIPZ points

lines for NIPZ points (format as specified on preceding line)
values of ground accelerations in z-direction

NDLR sets of lines

one line (2i5,2flO.O,8a4,4a4)
number of points defining record = NIPT
print code

(=0 no printout; = 1 record printed as input and scaled;
=-1 record printed as input, scaled, and interpolated)

record time interval
record scale factor
record title
input format for record

lines for NIPT points (format as specified on preceding line)
values of forces

1.81

NDLGC lines (l6i5)
dynamic force record number
direction code

(= 1 x-translation; = 2 y-translation; = 3 z-translation;
=4 x-rotation; =5 y-rotation; =6 z-rotation)

list of nodes for which record is to be applied

one line if KSTAT > -1 (3flO.O)
mass proportional damping factor
tangent stiffness proportional damping factor
initial stiffness proportional damping factor

Analysis And Output Information

NSLGC sets of lines

one line if KSTAT < 1 (8i5,4flO.0)
number of static load steps in this load increment
static iteration type

(=0 Newton-Raphson iteration; =n constant stiffness
iteration reinitializing stiffness every n iterations)

state determination type
(=0 path independent; = 1 path dependent)

stiffness reformation code
(=0 stiffness not reformed;
=n stiffness reformed every n load steps)

termination code
(=0 continue regardless of convergence;
= 1 terminate if there is no convergence)

print code
(=-1 no printout;
=0 results printed at end of increment;
= 1 results printed at each load step;
= 2 results printed at each iteration)

maximum number of cycles of iteration in any load step
maximum number of iterations within any cycle
nodal force convergence tolerance for last load step
nodal force convergence tolerance for all load steps
nodal force tolerance for changing stiffness
maximum nodal displacement

as may lines as needed for NSPAT values (8flO.0)
scale factors for the static force patterns

one line if KSTAT > -1 (7i5,4f10.0,i5)
dynamic iteration type

(=0 Newton-Raphson iteration; =n constant stiffness
iteration reinitializing stiffness every n iterations)

state determination type
(=0 path independent; = 1 path dependent)

stiffness reformation code
(=0 stiffness not reformed;
=n stiffness reformed every n load steps)

termination code

1.82

(=0 continue regardless of convergence~
= 1 terminate if there is no convergence)

maximum number of cycles of iteration within any time step
maximum number of iterations within any cycle
number of time steps for fine convergence tolerance
fine nodal force convergence tolerance
coarse nodal force convergence tolerance
nodal force tolerance for changing stiffness
maximum nodal displacement
number of initial condition commands = NICGC

NICGC lines G5,2flO.0,lli5)
direction code

(= 1 x-translation~ = 2 y-translation~ = 3 z-translation~

=4 x-rotation; =5 y-rotation; =6 z-rotation)
initial velocity
initial acceleration
list of nodes having these initial conditions

one line (l0i5)
time step interval for printout of nodal displacements
time step interval for printout of element response
time step interval for printout of envelopes
number of nodes for x-direction output and storage = NODSX
number of nodes for y-direction output and storage = NODSY
number of nodes for z-direction output and storage = NODSZ
code for storage of nodal displacements

(= 0 no storage; = 1 storage)
code for storage of nodal velocities

(=0 no storage; =1 storage)
code for storage of nodal accelerations

(= 0 no storage; = 1 storage)
code for storage of global energies

(=0 no storage; = 1 storage)

as many lines as needed for the NODSX nodes (l6i5)
list of nodes for x-direction output and storage

as many lines as needed for the NODSY nodes (l6i5)
list of nodes for y-direction output and storage

as many lines as needed for the NODSZ nodes (l6i5)
list of nodes for z-direction output and storage

Lumped-Plasticity Parallel-Component 2-D Beam-Column Element

NELGR sets of lines

one line (lOi5,6f5.0)
element group indicator

(=2 for beam-column element)
number of elements in this group = NMEM
element number of the first element in this group
number of element stiffness types = NMBT

1.83

number of end eccentricity types = NECC
number of yield interaction surface types = NSURF
number of initial force patterns = NINT
blank
blank
blank
initial stiffness element damping factor
tangent stiffness element damping factor

NMBT lines 05,4f10.0,3f5.0,flO.0,2f5.0)
stiffness type number
modulus of elasticity
strain hardening ratio
average cross-sectional area
reference moment of inertia
flexural stiffness factor kii

(=4 for prismatic)
flexural stiffness factor kjj

(=4 for prismatic)
flexural stiffness factor kij

(=2 for prismatic)
effective shear area
poisson's ratio
ratio of minor to major axis bending stiffness

NECC lines 05,6flO.O)
end eccentricity type number
x-eccentricity at end i
x-eccentricity at end j
y-eccentricity at end i
y-eccentricity at end j
z-eccentricity at end i
z-eccentricity at end j

NSURF lines (2i5,5flO.O,4f5.0)
yield surface number
yield surface shape code

(= 1 beam type; = 2 steel I-beam type;
=3 reinforced concrete column type)

scale factor
positive yield moment
negative yield moment
compressive axial yield force
tensile axial yield force
moment fraction of positive moment corner
axial force fraction of positive moment corner
moment fraction of negative moment corner
axial force fraction of negative moment corner

NINT lines 05,6flO.0)
initial force pattern number
axial force at end i
shear force at end i
moment at end i

1.84

axial force at end j
shear force at end j
moment at end j

lines for the NMEM elements O0i4,i3,ilO,i5,f5.0)
element number
node number at end i
node number at end j
node number increment for element generation
number of node to which i end is slaved
number of node to which j end is slaved
stiffness type number
end eccentricity type number
yield surface type number for end i
yield surface type number for end j
code for geometric stiffness

(=0 neglect geometric stiffness;
= 1 consider geometric stiffness)

code for response storage and output
(up to a 5 digit number with codes as follows:
=0 no storage or output for this element;
= 1 store and output end axial forces;
= 2 store and output end plastic rotations;
=3 store and output end inelastic energies;
=4 store and output end moments;
=5 store and output end rotations)

initial force pattern number
scale factor for initial force pattern

Nonlinear Parallel-Component 3-D Truss Element

one line OOi5,6f5.0)
element group indicator

(= 1 for truss element)
number of elements in this group = NMEM
element number of the first element in this group
number of element material types = NMAT
blank
blank
blank
blank
blank
blank
initial stiffness element damping factor
tangent stiffness element damping factor

NMAT lines 05,5f10.0)
material type number
modulus of elasticity
strain hardening ratio
yield stress in tension
yield or buckling stress in compression
scale factor for yield or buckling stress

1.85

lines for the NMEM elements (4i5,2flO.0,4i5)
element number
node number at end i
node number at end j
material type number
cross-sectional area
initial axial force on element
node number increment for element generation
code for large displacements

(=0 neglect large displacements;
= 1 consider large displacements)

code for response storage and output
(up to a 3 digit number with codes as follows:
=0 no storage or output for this element;
= 1 store and output axial force;
=2 store and output axial displacement;
=3 store and output inelastic energy)

code for buckling
(=0 yields in compression;
= 1 buckles in compression)

1.86

APPENDIX 4: SAMPLE DELIGHT.sTRUCT TERMINAL INPUT AND OUTPUT

Example of using DELIGHT.STRUCT in a hand-calculator mode to obtain an initial design
for the example problem

% go
Restoring from < memfile > .. ,
Identifier: basic memfile
----- LONG LIVE RATTLE/DELIGHT !!! ----­
List <features> to see the new features.

1> # Design columns to take all of the gravity axial force.
1> axfor = 360*.25/2
1> icoll = (axfor*2/361.8)**2
1> icol2 = 044/PI)**2*axfor*2/29000
1> icolmin = 50
1> icol = max Gcoll,icoI2,icolmin)
1> printf 'column moment of inertia = %r/n' icol
column moment of inertia = 5.000e+ 1

1> # Design brace area to supply necessary stiffness to keep
1> # severe quake sway below limit.
1> # Approximate as undamped SDOF system under sinusoidal pulse.
1> # Use iterative procedure to find necessary stiffness.
1> k1 = 100 ; k2 = 200
1> t = .4 ; w = 2*PIIt ; g = 386.088 ; mass = 2*axfor*.8/g
1> dl = g*w/(kl/m-w**2)*sqrt(2*m/kl*(l-cos(t*sqrt(kl/m»»
RUN-TIME ERROR: overflow or other floating point exception.
Interrupt...
2> # Oops, lets try that one again.
2> reset
1> dl = g*w/(kl/mass-w**2)*sqrt(2*mass/kl*(I-cos (t*sqrt (kl1mass»»
1> repeat {
1> d2 = g*w/(k2/mass-w**2)*sqrt(2*mass/k2*(l-cos(t*sqrt(k2/mass»»
1> dk = (k2-kl)*(l44*.01-d2)/(d2-dl)
1> kk = k2+dk
1> if (abs(dk/k2) < .0001) break
1> k1 = k2 . d1 = d2 . k2 = kk
1> } , ,

1> forever
1> abra = (kk-24*29000*icol/144**3)*(l44**2+360**2)/2/360/29000
1> abramin = 1
1> abra = max (abra,abramin)
1> printf 'brace area = %r/n' abra
brace area = 1.000

1> # The initial design is quite uninteresting since it is just
1> # the minimum section values, but this was intended to be an
1> # illustration of the DELIGHT.sTRUCT scratchpad mode.
1> quit
Goodbye Sir

1.87

Example of initialization for the optimization process for the example problem using the
existing seismic-resistant frame design software

% go '< memframe > '
Restoring from < memframe > .,.
Identifier: frame memfile
----- LONG LIVE RATTLE/DELIGHT !!! ----­
List <features> to see the new features.

1> fstartoff
Input cost function coefficients for:

volume of designed elements: 0
sum of squares of moderate quake story drifts: 1
input energy from severe quake: 0
inelastically dissipated energy from severe quake: 1
fuse dissipated energy from severe quake: 0
column dissipated energy from severe quake: 0

PARAMETER: Cosvol = Cosvol : volume cost coefficient
PARAMETER: Cosdri = Cosdri : drift cost coefficient
PARAMETER: Cosinp = Cosinp : input energy cost coefficient
PARAMETER: Cosdis = Cosdis : plastic energy cost coefficient
PARAMETER: Cosfus = Cosfus : fuse energy cost coefficient
PARAMETER: Coscol = Coscol : column energy cost coefficient
PARAMETER: Volmax = MAXREAL : max structural volume
PARAMETER: Drift = .005 : max moderate story drift
PARAMETER: Accel = .5 : max moderate floor accel in gs
PARAMETER: Sway = .01 : max severe structure sway
PARAMETER: Colax = .5 : gravity column axial force factor
PARAMETER: Colgra = .6 : gravity column yield factor
PARAMETER: Colyld = 1 : moderate column yield factor
PARAMETER: Colduc = 3 : severe column ductility
PARAMETER: Bragra = .6 : gravity brace yield factor
PARAMETER: Brayld = 1 : moderate brace yield factor
PARAMETER: Braduc = 2 : severe brace ductility
PARAMETER: Tolx = 0.0001 : tolerance for resimulating
PARAMETER: Numsim = 0 : number of simulations
PARAMETER: Numsteps = 0: number of simulation time steps
PARAMETER: Numref = 0 : number stiffness reformulations
PARAMETER: Maxerr = 0.0 : maximum energy error ratio
PARAMETER: Print = 1 : simulation printout code
Type" 1" if a response file exists, otherwise type "0": 0
---------- Next CRUNCH is forced. ----------
CRUNCH ...

1> Volmax = 10000
1> simulate
begin simulation...
end simulation...
begin simulation...
end simulation...
begin simulation...
end simulation...
1> print PSI
5.882e+ 1

1.88

1> # This design is very infeasible.
1> print IPSI
4.000
1> # The brace constraint is the culprit.
1> # I will increase the brace size a little.
1> print X(2)
-1.000
1> X(2) = -.8
1> simulate
begin simulation...
end simulation...
begin simulation...
end simulation...
begin simulation...
end simulation...
1> print PSI
6.162
1> # This looks like a reasonable starting design.
1> fprint
Created file "frame"
1> list frame
-------------------- frame --------------------
Values Of Different Terms In The Cost Function:

Volume of designed elements = 3.108e+3
Sum of squares of story drifts = 6.922e-7
Severe quake input energy = 9.548e+ 1
Severe quake dissipated energy = 7.568e+ 1
Fuse dissipated energy = 0.000
Column dissipated energy = 1.150

Element Section Design Variable Values:
Xl = moment of inertia = 50
X2 = brace section area = 1.900

Dummy Design Variable Values:
X3 = 1.000, should be = -.9446

-------------------- frame --------------------
1> # From the results listed above in the file frame,
1> # I will make the following adjustments:
1> Volmax = 6000
1> Cosdri = 10000000
1> Cosdis = .1
1> X(3) = -.94
1> simulate

1> optimize
Which optimization algo do you wish to use?

o = user supplied
1 = feasible directions
2 = conjugate gradient
Type the corresponding number: 1

PARAMETER: Eps = 0.2 : active constraint width
PARAMETER: Dist = 0.2 : step length
PARAMETER: Delta = 1.0 : eps reduction control
PARAMETER: Epstol = 0.00001 : convergence tolerance on eps
PARAMETER: PsitoI = 0.00001 : convergence tolerance on psi

1.89

PARAMETER: Geomslope = 100.0 : geometric constraint slope
PARAMETER: Alpha = 0.2 : cost or psi reduction angle
PARAMETER: Beta = 0.5 : step length search factor
PARAMETER: Distmax = 1.0 : maximum step length
PARAMETER: Scale = 1.0 : scale for active constraints
PARAMETER: Gamma = 1.0 : infeasible cost penalty
PARAMETER: Maxiter = 50 : maximum number of armijo loops
Type "I" if you have supplied a gradient scheme, otherwise type "0": 0
PARAMETER: Deltax = 0.0001 : gradient perturbation
What is the maximum number of iterations you expect to complete? 30
Created file "dialogue"

Example of compiling the user-supplied software and initialization for the example problem
without using the existing seismic-resistant frame design software

% make.memstart &
Beginning make.memstart
Restoring from < memstruct> ...
Identifier: structural memfile
----- LONG LIVE RATTLE/DELIGHT !!! ----­
List <features> to see the new features.
1> PARAMETER: Cosdri = Cosdri : drift cost coefficient
1> PARAMETER: Cosdis = Cosdis : plastic energy cost coefficient
1> PARAMETER: Volmax = 10000: max structural volume
1> PARAMETER: Drift = .005 : max moderate story drift
1> PARAMETER: Accel = .5 : max moderate floor accel in gs
1> PARAMETER: Sway = .01 : max severe structure sway
1> PARAMETER: Colax = .5 : gravity column axial force factor
1> PARAMETER: Colgra = .6 : gravity column yield factor
1> PARAMETER: Colyld = 1 : moderate column yield factor
1> PARAMETER: Colduc = 3 : severe column ductility
1> PARAMETER: Bragra = .6 : gravity brace yield factor
1> PARAMETER: Brayld = 1 : moderate brace yield factor
1> PARAMETER: Braduc = 2 : severe brace ductility
1> including section (9sec)
1> including objective (l5sec)
1> including conventional (l7sec)
1> including functional (24sec)
1> Storing into memstart '"
CRUNCH ...
1> Goodbye Sir
End make.memstart

% go memstart
Restoring from memstart ...
Identifier: starting memfile
----- LONG LIVE RATTLE/DELIGHT !!! ----­
List <features> to see the new features.
1> startoff
PARAMETER: Tolx = 0.0001 : tolerance for resimulating
PARAMETER: Numsim = 0 : number of simulations
PARAMETER: Numsteps = 0 : number of simulation time steps
PARAMETER: Numref = 0 : number stiffness reformulations
PARAMETER: Maxerr = 0.0: maximum energy error ratio

1.90

PARAMETER: Print = 1 : simulation printout code
Type "1" if a response file exists, otherwise type "0": 0
---------- Next CRUNCH is forced. ---------­
CRUNCH ...

1> # From here on the computation phase proceeds almost exactly
1> # the same as it does with the existing frame design software.

Example of the dialogue file generated for a couple of iterations of optimization for the exam­
ple problem

> > Gamma = 100
> > run 1

ITER = 0, COST = 1.507e+l, PSI '= 6.162
Column X(3):

-1.000
-.8000
-.9400

--------simulation output-------
number of simulations = 3
number of time steps = 283
number of stiffness reformulations = 173
maximum energy error ratio = 5.340e-5

ITER = 1, COST = .7876, PSI = 3.807
Column X(3):

-.9059
-.6319
-.9937

--------algorithm output--------
Eps = .2000, theta = -1.106e+3, Dist = .2000
direction finding phase:
Column direct(3):

.4704

.8406
-.2685

COST norm = 1.250e+2 angle = l.056e+2
FINEQ(3,14) norm = 5.316e+ 1 angle = 1.522e+2
-X(l) norm = 1.000e+2 angle = 1.181e+2

Matrix jacobian(3,3):
0.000 0.000 1.250e + 2

-5.524 -5.287e+ 1 0.000
-1.000e+2 0.000 0.000

steplength determination phase:
first try in armijo did it
nothing was violated
geometric constraints violated

--------simulation output------­
number of simulations = 8
number of time steps = 848
number of stiffness reformulations = 356
maximum energy error ratio = 5.340e-5

1.91

Interrupt...
> > # Lets try the pajama mode.
> > pajama
> > sleep 10 ; cont 1

ITER = 2, COST = 3.833e+ 1, PSI = .3886
Column X(3):

-.6988
8.008e-2

-.6933
--------algorithm output--------
Eps = .2000, theta = -3.268e+2, Dist = .8000
direction finding phase:
Column direct(3):

.2589

.8900

.3754
COST norm = 1.250e+2 angle = 6.795e+l
FINEQ(7,34) norm = 7.51Oe+2 angle = 1.126e+2

Matrix jacobian(2,3):
0.000 0.000 1.250e+2

-2.051 -7.049 -7.510e+2
steplength determination phase:

armijo loop was increasing
nothing was violated
nothing was violated
nothing was violated
step size exceeded max

--------simulation output------­
number of simulations = 19
number of time steps = 1979
number of stiffness reformulations = 866
maximum energy error ratio = 5.340e-5

Interrupt. ..
> > simulate
»dt 8

TOTAL DIRECT NUMBER
SECONDS SECONDS OF CALLS PROCEDURE/MACRO NAME
2.46e+2 Cpu-time since last "clear_time"
2.0Se+2 .367 17 ansrsim
2.03e+2 2.03e+2 16 analys
l.S6e+2 1.08e+l 5 state
l.S5e+2 .683 2 armijo
7.71e+l1.27e+l 2 actgrad
6.17e+l .633 2 sensitivity
6.08e+ 1 .417 2 perturb
6.08e+ 1 0.00 2 gradients
> > stop_opt
> > # At this point I would probably increase Volmax and
> > # continue on with pajama mode for 2 or 3 more iterations.

1.92

APPENDIX 5 : SAMPLE DELIGHT.STRUCT GRAPHICAL INPUT AND OUTPUT

If the seismic-resistant frame design software is used an interactive graphical pre-processor
defines the frame at hand as shown. Also shown is a graphical display of the frame and the
ground acceleration record after pre-processing.

I. 93

% gO '{MeMfraMs}'
Restoring froM (MBMfraMe)
Identifier, fraMe MeMfile

......_-_._. LONG LIVE RrYITI.. E/DEU.GHT I! I

List (features) to see the new features.

j. > terMinal hp
1> fi.nput
INTERACTIVE GRAPHICAL INPUT OF GEOMETRY AND LOADS

(vou should be on a color terMinal, Sir)
(units are inches, kips, and seconds throughout)

Type the nUMber of stories, 1
TYPE! "ttH:> n UMber of tlays: 1
Type story heights frOM bottOM to top (one per line):
144
Type bay widths frOM left to right (one per line),
360

FrOM this point on the user inputs lists of various data.
Each line of the list May contain one Dr More eleMents.
The list is terMinated by a line consisting of a single zero.
While Making a list, errors May be undone. This is done by

typing the negative of the first eleMent of the bad line

Type a list of story and bay nUMbers of braced panels:

-";'3- - - - - -. - - - - - - - - lines

Reproduced from
best availa ble copy.

1.94

Type a list of story and bay nUMbers of braced panels:
1 1
o
Type a list of nUMbers of eleMents to be erased:
o
Type a list of nUMbers of nodes to be erased:
o
Type a list of shear girder eleMent nUMbers:
()

Type a li5t of dissipator eleMent nUMbers:
()

Type a list of rubber bearing eleMent nUMbers:
o
Type a list of loaded girder nUMbers with their uniforM load:

f'~-~ - -- -- -- -- -- --'>- - - - - - - - - - - - -r~; 7-r
......... ./' ~

"

lin~s

(, 0 1 '.Jmn~

braces

...~...
"'"'./

.,/

, /"
.....,~

...."...

",">::
..........

..'-.....
"

.~-,
'."

.~,..
....,-..

...~

./'
/'

./
,.k·'

/'"

elems nodes

,

/'
~/
text

.,.~'~

''''''
........

Type a Jist of loaded girder nUMbers with their uniforM load:
4 .25

Specified eleMent is not a girder. try again Sir:
3 .;':!S
o
Type a list of loaded node nUMbers with their point loads:
o
lype a list of constrained node nUMbers with their code:

(code is 3-digit integer where digits represent hori-disp.
vert-disp. rotation with O=free, l=constrained)

(default code is 111 for the base nodes)'
~5 001
4 001
o
Type a list of nUMbers of eleMents not subject to design:

1. 95

Type a list of nUMbers of eleMents not subject to design,
:.3
,":)
r...
.... ?
()

Type a list of nUMbers of eleMents not subject to constralnt:

o
Type a list of groups of eleMents constrained equal during design

(end each line with a zero),
t ? 0
4 ';j 0
o
Type a list of eleMent nUMhe~s with their initial design values

(t1 a ,"If.m t~; of :i.IH:·'r' t i a for' c: 0 1 ur'ln san d q :i. r' d (;~r ";.: dr' (;~a "; f () 1"' br' a,:: (")';;
thickness for truss glrders, and edge lengths for bearlngs)

(eleMents are systeMatically erased as values are specified)
(default values are the Max values for the eleMents):

:~----

"-.

......

.-,
- - - - - - - - -;,0- -

'.
'-'"

.........

......... .•.../

...;,,:-

.•."....
.........

.•~...,

...~....
..•.

--~
.-,.,

linE'S

colE.Jmn:=.

braCE'S

const no-de no-ct eq-de

.........
t,·,
text elems nodes unit

..'
.--

-....."'-..~"
.........

..........

'........

.........

..........

.........

'-'-"

\

.......

Type a list of eleMent nUMbers with their initial design values
(MOMents of inertia for colUMns and girders, areas for braces
thickness for truss girders, and edge lengths for bearings)

(eleMents are systeMatically erased as values are speciFied)
(default values are the Max values for the eleMents),

j, ~:; 0
I) j,

o

1.96

i> fstructy
U

........
.........

-45 -45
-2700 271313

r.'~~-~=-------------"- ------------~=;-/1
.........

columns

y-
xvr xyr
:.::----.-----.-.--.---.---- 3€:ij--- ..-----.--....--.-----.-.. --.

node" info

braces

forces
moments
number
fixi t~,..

......~
........

...~.....

"-'"

....-'"
,r"

",.

.--
~~./

~...~.,
/

J'

"......"
.01...•

.....
.:--:;:.".~

.'
" ' .

........
.........

••*.....

........
.........

-....~
"

.........
-.-.....

.........

144

time

'i..0
1.0
'i..O
1.0
'i..O
1.0
:1..0
1.0
1..0
i.O
:1.. 0
i.O
1..0
1..0

;;::::::::-.::~::-.::::;

t.1l
j .0
t.O
j .0
i..O
j .0
:I.. Il
:I.. n
1.1l
j .0
1..1l
1.0
1.0
j .0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
00
0.0

world coordinates
0.0
0.0
(J.O
0.0
0.0
0.0
(J.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0

::::::~::::::-::::::::::

r.)c··
.;;....')

.50
.7S

1..0
.50
1.0
.34
.66
1..0

1..0
.50
.so
1.0
1.0

c()ordin.~tt,·s

1..0
:1..0
1.0
1..0
1..0
1.0
1..0
j .0
1..0
j .. {}

.50
1.0
.50
j .0

j> eras;e
j. > window list
window na~e viewport

screen 0.0 0.0
half! 0.0 0.0
half2 0.0 .50

thirdi 0.0 0.0
third2 0.0 .34
third3 0.0 .66
quart! 0.0 0.0
quart2 0.0 .25
Quart3 0.0 .50
quart4 0.0 .75

fourth1 0.0 0.0
fourth2 .51 0.0
fourth] 0.0 .50
fourth4 .50 .50

1.) wj.nO/lW hal-f2
4. Qraph frecord

d1?· .. groun acceleration
1) 1.0 ..

.- ~• .,,81= ., , ; ,

"~:~~~~~~~~~~~~~~~
-l.e~ \1/ i i

.600 .90171 1.20 1.50

1.97

The seismic-resistant frame design post-processing software allows plotting of various
response quantities following simulation as shown.

plot I curve 1
curve 2

plot 2 curve 1
curve 2

plot 3 curve 1
curve 2

plot 4 curve 1

curve 2
curve 3

plot 5 curve 1
curve 2
curve 3

plot 6 curve 1

curve 2

plot 7 curve 1
curve 2
curves 3

plot 8 curve 1
curve 2
curves 3

plot 9 curve 1
curve 2
curves 3

plot 10 curve 1

curve 2

curves 3

plot 11 curve 1
curve 2
curves 3

plot 12 curve 1
curve 2
curves 3

input energy for starting design under severe quake
work done by the gravity loads for the starting design under severe quake

plastic dissipated energy for the starting design under severe quake
damped energy for the starting design under severe quake

elastic strain energy for the starting design under severe quake
kinetic energy for the starting design under severe quake

column bottom node energy dissipation for starting design under severe
quake
column top node energy dissipation for starting design under severe quake
allowable level

first brace energy dissipation for starting design under severe quake
second brace energy dissipation for starting design under severe quake
allowable level

first brace force-displacement hysteresis for starting design under severe
quake
second brace force-displacement hysteresis for starting design under severe
quake

starting design story drift under moderate quake
final design story drift under moderate quake
allowable levels

starting design floor acceleration under moderate quake
final design floor acceleration under moderate quake
allowable levels

starting design structure sway under severe quake
final design structure sway under severe quake
allowable levels

column bottom node end moment for starting design under moderate
quake
column bottom node end moment for starting design under moderate

quake
allowable levels

column bottom node end moment for final design under moderate quake
column bottom node end moment for final design under moderate quake
allowable levels

first brace axial force for starting design under moderate quake
second brace axial force for starting design under moderate quake
allowable levels

plot 13 curve 1
curve 2
curves 3

1.98

first brace axial force for final design under moderate quake
second brace axial force for final design under moderate quake
allowable levels

le1313.13

1.99

g.s

r --,.---r--,.---r-- --;--..-----.--- r_--,.41-!-·lt!.2f.....~!C1li!!.Ij,!;lY:u.,---.- --r-- I

-
-
-
-
-

I • Cl

~1lI.1lI

Ill. III

t., ..._

Reproduced from
best available copy.

1.100

I

~ -
~ -
~ -

••• r- -
~ -
~ -
~ -
~ CvJ:'VC', i c..v, t>.V!Z' "2. -

o.o•.l.=-_.....___&..J.c::A:=;o~.~.~=;::=j:=::i==::L:=~t~.~0~~:::=:;:=::::L=::j

"-

-
-

-
-
-

I I ~.,...

, ..•••
"-

/
J

_--j/f-------- - 5::::. '?,,,'<;..-:z., ..

-.. ~

~

I I-

~

~ .1·'·0.•

a.a

a
&. a.1I
l.

....a
-La 11.11 La

ell.

1. 101

-eDD.IiI
D

•
D

IS.S

-I iii. III
G"1iI

m.E
\1_

1.Il!

1.1iI

1.1iI

.,

Reproduced from
best available copy.

1.102

-

-=---

-
-
....

.-•

I •••. s

"-

~<,_""'\.;:2"""'C i J (_"R..'-.-~ 2
-

-
-
-

I-

-
•••

-....III ••

_...
1

1

e •.•

-=

._-- --
I ••III.S,t_

,
i

-
I-

...

•••

••••

-_..•••

•.! •.•

-....••• III.S

"t_
I ••

Software is
shown.

plot 1

plot 2

plot 3

plot 4

plot 5

1.103

available for plotting optimization iteration histories for various quantities as

cost function vs. iteration

maximum constraint value VS. iteration

cumulative cpu-time vs. iteration

design variable number one (column moment of inertia) vs. iteration

design variable number two (brace cross-sectional area) vs. iteration

1.104

..... r--r---J===!::==:t"--'r"--......--......--......---~----.,.J,u..! ...'.:otF'--'....,""'''''u,

I ••

I •••c .•

c ••

'''-

I •••

r--.,....-...,..---....--L.,-."'--r-.......--......-...,...--r---rW--UI!F--"""jIILXS-L,

•••

•••••••~:::;;;...__...__.....__..._~c="'.":.=-_-_....._--L.--...-I,...='.":.::--......_-......__...

•••

•••

- ..

c ••

'i.

...
••• c •• t •••..

I ••

A

'l2 - ••

1 - .•

I.105

APPENDIX 6: SAMPLE DELIGHT.STRueT FILE INPUT AND OUTPUT

If the existing seismic-resistant frame design software is not used, the user must supply a
file named startsetup such as the following

COSTL = 2

parameter Cosdri =Cosdri 'drift cost coefficient'
parameter Cosdis=Cosdis 'plastic energy cost coefficient'
parameter Volmax=IOOOO 'max structural volume'
parameter Drift=.005 'max moderate story drift'
parameter Accel =.5 'max moderate floor accel in gs'
parameter Sway=.OI 'max severe structure sway'
parameter Colax=.S 'gravity column axial force factor'
parameter Colgra =.6 'gravity column yield factor'
parameter Colyld = I 'moderate column yield factor'
parameter Colduc=3 'severe column ductility'
parameter Bragra =.6 'gravity brace yield factor'
parameter Brayld = I 'moderate brace yield factor'
parameter Braduc=2 'severe brace ductility'

include_and_print section
include_andyrint objective
include_andyrint conventional
include_andyrint functional

clear_time
store memstart 'starting memfile'
quit

If the existing seismic-resistant frame design software is not used, the user must supply a
file named section such as the following

procedure for determining element section properties
procedure section (x,seeprop) {

array xO, seeprop(,)

determine column and brace section properties
ieol = (l550+ I450·x(l))12
aeol = .8·sqrt(icoI)
deal = ricol··.2S/.78
mpeol = 36· (aeol·deol/8+ l.S·ieol/deoI)
abra = (II +9·x(2))12
ibra = .I69·abra··3
tbra = 36
cbra = (PII387.732)··2·29000·ibra/abra

fill in matrix seeprop
for i = I to 2 {

seeprop(i,l) = acol ; seeprop(i,2) = icol
seeprop(i,3) = .05 ; seeprop(i,4) = mpcol
seeprop(i+3,l) = abra ; seeprop(i+3,2) = .05
seeprop(i+3,3) = tbra ; secprop(i+3,4) = cbra
}

1.106

re-assign properties for girder
secprop(3,0 = 24.53 ; secprop(3,2) = 2500
secprop(3,3) = .05 ; secprop(3,4) = 8147
}

If the existing seismic-resistant frame design software is not used, the user must supply a
file named objective such as the following

procedure for computing the cost function
procedure objective (x,cost) {

array xO
import Cosdri, Cosdis, Resp, Drift

add contribution from moderate quake drift bounds
cost = Cosdri*Drift**2*(x(3) +0/2 .

add contribution from severe quake dissipated energy
cost = cost+Cosdis*Resp(9+12*140
}

If the existing seismic-resistant frame design software is not used, the user must supply a
file named conventional such as the following

procedure for computing conventional constraint functions
procedure conventional O,x,ineq) {

array xO
import Resp, Volmax, Colax, Colgra, Bragra, Colduc, Braduc

evaluate volume constraint
if 0==0

ineq = 2* (l44*SECPROP(l,n +387.732*SECPROP(4,0)/Volmax-l

evaluate column gravity load axial constraint
if 0 == 2) (

if (Resp(5) > = 0) ineq = Resp(5)/36/SECPROP(l,0/Colax-l
else (

allow=min(36*SECPROP(l,O,(PIII44)**2*29000*SECPROP(l,2»
ineq = -Resp(5)/allow/Colax-l
}

evaluate column gravity load moment constraints
if 0 = = 3 Ii = = 4) {

ax = abs(Resp(5»/.15/36/SECPROP(l,0
if (ax> 1) factor = (l-.15*ax)/.85
else factor = 1
ineq = abs(RespO+3»/SECPROP(l,4)/factor/Colgra-l
)

evaluate brace gravity load force constraints
if 0 = = 5 Ii = = 6) {

if (RespO + 3) > = 0)
ineq = RespO+3)/SECPROP(4,0/SECPROP(4,3)/Bragra-l

else ineq = -RespO +3)/SECPROP(4,0/SECPROP(4,4)/Bragra-l

1.107

evaluate column severe quake energy constraints
if G = = 7 Ii = = 8) (

ax = 45/.15/36/SECPROP(l,l)
if (ax> 1) factor = 0-.15*ax)/.85
else factor = 1
eyield = (SECPROP(l,4)*factor)**2*144112129000/SECPROP(l,2)
duct = (Colduc-l)*.95*(2+.05*(Colduc-1)
ineq = Resp{9+ 00 + j)*141)/eyield/duct-l
}

evaluate brace severe quake energy constraints
if G = = 91 i = = 10) { .

eyield' = 36**2*SECPROP(4,1)*387.73212900012
duct = (Braduc-1) *.95* (2 + .05* (Braduc-l)
ineq = Resp(9+ (3*i-8)*14l)/eyield/duct-1
}

If the existing seismic-resistant frame design software is not used, the user must supply a
file named functional such as the following

procedure for computing functional constraint functions
procedure functional G,x,steps,fineq) {

array xO, fineqO
import Resp, Colyld, Brayld, Drift, Accel, Sway

evaluate column moderate quake moment constraints
if (i = = 1 Ii = = 2) {

ax = 45/.15/36/SECPROPO,l)
if (ax> 1) myield = SECPROPO,4)*Colyld*(I-.15*ax)/.85
else myield = SECPROP(l,4)*Colyld
for j = 1 to steps

fineq(j) = abs(Resp(9+(2+j)*141 +j»/myield-l

evaluate brace moderate quake force constraints
if G= = 3 Ii = = 4) {

fyieldl = SECPROP{4,1)*SECPROP{4,3)*Brayld
fyield2 = SECPROP(4,l)*SECPROP{4,4)*Brayld
for j = 1 to steps {

resp = Resp(9+ (2+j)*141 +j)
if (resp > = 0) fineq(j) = resp/fyieldl-l
else fineq (j) = -resp/fyield2-1
}

evaluate moderate quake story drift constraint
if G== 5)

for j = 1 to steps
fineq(j) = abs(Resp(9+ 141 +j»1l44/Drift-l

evaluate moderate quake floor acceleration constraint

1.108

if (i = = 6)
for j = 1 to steps

fineqG) = abs(Resp(9+2·141 +j»/386.088/Accel-1

evaluate moderate quake dummy variable drift constraint
if G== 7)

for j = 1 to steps
fineqG) = 2· (Resp(9 + 141 +j)/Driftll44)"21 (x (3) + 0-1

evaluate severe quake structure sway constraint
if G== 8)

for j = 1 to steps
fineqG) = abs(Resp(9+ 15·141 +j»/144/Sway-l

If the seismic-resistant frame design software is used, the user should check and possibly
modify the assumed values of constants in the file assumptions which follows

*•• ASSUMED PARAMETER VALUES·"

• inertia •• 0.25

* inertia ** 0.25

• depth ··0.92
• inertia •• 0.287

•• 3.• area

Ratio of live uniform load to total uniform load = 0.2
Global damping ratio = 0.02
Ratio of number of stories to fundamental period = 4.52
Ratio of fundamental period to second period = 3.
Young's modulus for steel = 29000.
Yield stress for steel = 36.
Strain hardening ratio for steel = 0.05
For columns:

50. < inertia < 1500.
moment yield coordinate fraction = 1.
axial yield coordinate fraction = 0.15
radius ofgyration = 0.436 • depth •• 1.
for inertia < = 429.
depth = 2.56
otherwise
depth = 2.56

For rubber bearings:
5. < edge length < 100.
shear modulus of rubber = 0.0984
bearing height = 25.

For girders:
125. < inertia < 2500.
steel poisson ratio = 0.3
radius of gyration = 0.52
depth = 2.66

For dissipators:
0.25 < thickness < 10.
height of dissipator = 75.
width of dissipator = 36.

For braces:
1. < area < 10.
inertia = 0.169

1.109

If the seismic-resistant frame design software is used, the user should supply the file record
which provides the ground motion record such as the following

*** GROUND ACCELERAnON RECORD ***

the maximum allowable number of data points in a record is 999
units for the accelerations are inches per seconds squared
EXAMPLE PULSE
number of data points = 4
time increment in seconds = 0.1
peak acceleration for this record in inches per seconds squared = 1.
severe quake acceleration in g's = 1.
moderate quake acceleration in g's = 0.3
format for the following accelerations is (4f4.0)

1. O. -1. O.

If the seismic-resistant frame design software is used, the ansrdata files are automatically
generated otherwise these files must be written by the user. For the example problem, the
files ansrdatal, ansrdata2, and ansrdata3 are used. The file ansrdata3 for the severe quake
loading is listed here, while the files ansrdatal for gravity loading and ansrdata2 for the
moderate quake loading are similar.

e+000.3521d-03
1 0 1 1 200.1000e-Ol0.1000e-OlO.lOOOe-01

e+OOO. e+00-.2700d+04
e+OOO. e+000.2700d+04

e+000.386Id+03
(4f4.0)

3
4
4

1
2
3

start SEISMIC ANALYSIS OF RECTANGULAR BRACED PLANAR FRAMES
996

4405323
10. d +000. d +00
20.3600d+030. d+OO
30. d+000.1440d+03
40.3600d +030.1440d +03
10011 104
111 1 1 1 1
211 1 1 1 1
3001111
400 1 111
011 1 102
011 1 102
101 1 102
30.9324d-010.9324d-01
40.9324d-Ol0.9324d-Ol
1 1 1 1 0 0 0 1400.1000e-Ol
2 GRAVITY LOADS
30. e+00-.4500d+020. e+OOO.
40. e+00-.4500d+020. e+OOO.
4 0 0 1O.l000d+000. e+OOO.

EXAMPLE PULSE
1. O. -1. O.

0.8520d +000.
501

O.lOOOe+Ol
o 1 1 0 1 20 10.1OOOe-OI O. 1000e-Ol0.1 OOOe-Ol

10 50 0 1 0 0 1 0 0 1
3
221 2 0 2 2
10.2900d+050.5000d-OlO.5676d+010.5000d+02 4.00 4.00 2.00

1.110

20.2900d +050.5000d-01O.5676d +010.5000d +02 4.00 4.00 2.00
I 20.1000e+01O.5705d+030.5705d+030.2043d+030.2043d+03 1.000.15 1.000.15
2 20.1000e+OI0.5705d+030.5705d+030.2043d+030.2043d+03 1.000.15 1.000.15
10.4500d+020. e+OOO. e+00-.4500d+02
20.4500d+020. e+OOO. e+00-.4500d+02

I I 3 0 0 0 I 0 I I I 3 I 1.00
2 2 4 0 0 0 2 0 2 2 I 0 2 1.00
213 101 I
1O.2900d+050.5000d-010.2453d +020.2500d +04 4.00 4.00 2.00
I 10.1000e +010.8147d +040.8147d +04
10. e+000.4500d +020.2700d +040. e+000.4500d +02-.2700d+04

3 3 4 0 0 0 I 0 I 1 0 0 1 1.00
1 242
10.2900d+050.5000d-010.3600d +020.3218d +000.1000e +01
20.2900d +050.5000d-Ol 0.3600d +020.3218d +000.1000e +01
4 I 4 10.1000d+010. e+OO 0 0 213 I
5 3 2 20.1000d+Ol0. e+OO 0 0 213 1

If the seismic-resistant frame design software is used the following file description is gen­
erated which identifies and numbers the constraints for the benefit of the user

*** DESCRIPTION OF THE OPTIMIZATION PROBLEM ***

The Problem:
Design variable list: Xi (i = 1 to 3)
Minimize the cost function: F(X)
Conventional constraints: Gj(X) < 0 (j = 1 to 10)
Functional constraints: max over t (Hk(X,t» < 0 (k = I to 8)

Design Variables:
X 1 = column moment of inertia for element(s):

1 2
X 2 = brace area for element(s):

4 5
X 3 = dummy variable for story drift

Cost Function:
F = Cosvol*structural volume of designed elements

+ Cosdri*sum of squares of moderate quake story drifts
+ Cosinp*input energy from severe quake
+ Cosdis*severe quake inelastic energy
+ Cosfus*fuse severe quake inelastic energy
+ Coscol*column severe quake inelastic energy

Volume Conventional Constraint:
volume of designed elements < Volmax

G I

Gravity Load Conventional Constraints:
~olumn axial forcel < column yield or buckling force*Colax

G 2: element 1
~olumn end momentl < column yield moment*Colgra

G 3: element 1 node I
G 4: element 1 node 3

1.111

Ibrace axial forcel < brace yield or buckling force*Bragra
G 5: element 4
G 6: element 5

Severe Quake Conventional Constraints:
column end energy < column failure energy (Colduc)

G 7: element 1 node 1
G 8: element 1 node 3

brace energy < brace failure energy (Braduc)
G 9: element 4
G 10: element 5

Moderate Quake Functional Constraints:
~olumn end momen~ < column yield. moment*Colyld

HI: element 1 node 1
H 2: element 1 node 3

Ibrace forcej < brace yield or buckling force*Brayld
H 3: element 4
H 4: element 5

~tory driftJ < Drift
H 5: top node 3 bottom node 0

Ifloor acceleractionl < Accel*g
H 6: floor node 3

(story drift)**2 < dummy design variable
H 7: drift 1 dummy variable 3

Severe Quake Functional Constraints:
~tructure swayl < Sway

H 8: top node 3 bottom node 0

If the seismic-resistant frame design software is used the following file sizefile is automati­
cally generated, otherwise this file must be supplied by the user

array Q(3),INEQL(3),FINEQL(3)
NPARAM = 3
NSIMPAR = 2
NLOAD = 3
NINEQ = 10
NFINEQ = 8
NPROP = 4
NELS = 5
NRESP = 6786
Q(I) = 1
Q(2) = 141
Q(3) = 141
INEQL(I) = 2
INEQL(2) = 7
INEQL(3) = 7
FINEQL(I) = 1
FINEQL(2) = 1
FINEQL(3) = 8

1.112

If the seismic-resistant frame design software is used the following file xfile is automatically
generated, otherwise this file must be supplied by the user

X(l)=-.1617
X(2) =-8.704e-2
X(3) =-.9973

The following file state provides information regarding the amount of constraint violation
following a simulation

*** COST = .3346
PSI = -6.422e-4 IPSI = 7 JPSI = 12

INEQ(l): percent = 99
INEQ(2): percent = 12
INEQ(3): percent = 0
INEQ(4): percent = 0
INEQ(5): percent = 5
INEQ(6): percent = 5
INEQ(7): percent = 0
INEQ(8): percent = 0
INEQ(9): percent = 0
INEQ(lO): percent = 0

FINEQU,12): percent = 4
FINEQ (2, 12): percent = 4
FINEQ(3,12): percent = 22
FINEQ(4,32): percent = 22
FINEQ(5,12): percent = 4
FINEQ(6,12): percent = 59
FINEQ(7,12): percent = 100.
FINEQ(8,12): percent = 6

If the seismic-resistant frame design software is used the following file frame may be gen­
erated may be generated following a simulation to provide more information

Values Of Different Terms In The Cost Function:
Volume of designed elements = 9.890e+3
Sum of squares of story drifts = 3.344e-8
Severe quake input energy = 2.367
Severe quake dissipated energy = 0.000
Fuse dissipated energy = 0.000
Column dissipated energy = 0.000

Element Section Design Variable Values:
Xl = moment of inertia = 658
X2 = brace section area = 5.108

Dummy Design Variable Values:
X3 = -.9973, should be = -.9973

1.113

The iteration histories of the cost, max constraint value, cumulative cpu time, and design
variables may be saved in the following file history following optimization

ITER = 4; NPARAM = 3
array Costsave(ITER + I),Psisave(ITER+ I),Timesave(ITER + I)
array Xsave (NPARAM,ITER + 1)
Costsave(l)= 1.507e+1
Costsave(2) = .7876
Costsave(3) = 3.833e+ 1
Costsave(4) = 3.833e+ 1
Costsave(5) = 3.833e+ 1
Psisave(1) = 6.162
Psisave(2) = 3.807
Psisave(3) = .3886
Psisave(4) = .1615
Psisave(5) = 1.853e-2
Timesave(l) = 5.400
Timesave(2) = 9.027e+ 1
Timesave(3)= 2.437e+2
Timesave(4) = 3.038e+2
Timesave(5) = 3.78ge+2
XsaveO,1) =-1.000
Xsave (2,1) =-.8000
Xsave(3,1) =-.9400
XsaveO,2) =-.9059
Xsave(2,2) =-.6319
Xsave(3,2) =-.9937
XsaveO,3) =-.6988
Xsave(2,3) = 8.008e-2
Xsave(3,3) =-.6933
XsaveO,4) =-.8640
Xsave(2,4) =-3.263e-2
Xsave(3,4) =-.6933
XsaveO,5) =-.9532
Xsave(2,5) =-7.78ge-2
Xsave(3,5) =-.6933

1.115

EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are
followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB --- ---)
and remittance must accompany each order. Reports without this information were not available at time of printinq.
Upon request, EERC will mail inquirers this information when it becomes available.

FCRC 67-1

SERC 68-1

CEPC 68-2

ECRC 68- 3

EERC 68-4

EERC 68-5

EERC 69-1

EERC 69-2

EERC 69-3

EERC 69-4

EERC 69-5

EERC 69-6

CCRC 69-7

CERC 69-8

"Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J.G. Bouwkamp, R.W. Clouqh
and O. Rea - 1967 (PB 187 905)A07

Unassigned

"Inelastic Behavior of Beam-to-Column SUbassemblages Under Repeated Loading," by v. V. Bertero - 1968
(PIl 184 888) A05

"A Graphical Method for Solving the \oIave Reflection-Refraction Problem," by H.D. McNiven and Y. Mengi - 1968
(PIl 187 943)A03

"Dynamic Properties of McKinley School Buildinqs," bv D. Rea, J. G. Bouwkamp and R. W. Clouqh - 1968
(PB 187 902)A07

"Characteristics of Rock Motions During Earthquakes," by H.B. Seed, LH. Idriss and F.I~. Kiefer -1968
(PB 188 338)A03

"Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)All

"Nonlinear Seismic Response of Earth :::tructures," by H. Dibaj and J. Penzien - 1969 (PB 187 904)A08

"Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien -1969
(PB 187 886) A06

"Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value
Formulation," by N. Distefano andJ. Schujman -1969 (PB 187 942)A02

"Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano -1969 (PB 187 941)A03

"Stochastic Analysis of Offshore Tower Structures," by A. K. Malhotra and J. Penzien - 1969 (PB 187 903) AOe.

"Rock ~lotion Accelerograms for High Magnitude Earthquakes," by H.B. Seed and LM. Idriss -1969 {PB 187 940)A02

"Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen,
J.G. Bouwkamp, R.~l. Clough and J. Penzien -1969 (PB 189 11l)A04

EERC 69-9 "Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfu1ian and H.B. Seed
1969 {PB 189 114)A03

EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures under Arbitrary Loading," by S. Ghosh and E.L. Wilson
1969 {PB 189 026)A10

EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and
V. V. Bertero - 1969 (PB 190 662)AIO

EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by
V.V. Bertero, B. Bresler and H. Hing Liao -1969 (PB 202 942)A07

EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfulian and H.B. Seed-1969
(PB 191 023) A03

EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J.G. Bouwkamp -1969 (PB 190 663)A06

EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H.B. Seed and
I.H. Idriss - 1969 (PB 191 036)A03

EERC 69-16 "The Behavior of Sands Under Seismic Loading Conditions," by M.L. Silver and H.B. Seed -1969 {AD 714 982)A07

EERC 70-1 "Earthquake Response of Gravity Dams," by A.K. Chopra-1970 (AD 709 640)A03

EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by
H.B. Seed, LM. Idriss and H. Dezfulian - 1970 (PB 195 762)A05

EERC 70-3 "Cyclic Loading of Full Size Steel Connections," by E.P. Popov and'R.M. Stephen -1970 {PB 213 545)A04

EERC 70-4 "Seismic Analysis cf th,· C"araima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research
Committee: V.V. Bertero, P.F. Fratessa, S.A. r~hin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie,
H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)A06

Preceding page blank

1.116

EERC 70-5 "A Computer Program for Earthquake Analvsis of Dams," by A.K. Chopra and P. Chakrabarti - 1970 (AD 723 994)A05

EERC 70-6 "The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L.A. Drake
1970 (PB 197 896)A03

EERC 70-7 "Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H.B. Seed and P.B. Schnabel
1970 (PB 197 897)A03

EERC 70-8 "Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic
Loading," by H.B. Seed and W.lI. Peacock - 1970 (PB 198 016)A03

EERC 70-9 "A Simplified Procedure for Evaluating Soil Liquefaction Potential," by I1.B. Seed and LM. Idriss - 1970
(PB 198 009)A03

EERC 70-10 "Soil Moduli and Damping Factors for Dynamic Response Analysis," by H.B. Seed and LM. Idriss -1970
(PB 197 8(9)A03

Er:!'.C 71-1 "Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A.K. Chopra and P. Chakrabarti
1971 (AD 731 49G)AOc,

CERC 71-2 "Preliminary In-Situ Measurements of Anelastic Absorption in Soils using a Prototype Earthquake Simulator,"
by R.D. Borcherdt and P.W. Rodgers - 1971 {PB 201 454)A03

EERC 71-3 "Static ann. Dvnamic l\nnl~!SiS of Inelastic Frame Structures," by F.L. Porter and G.B. Powell -1971
(I'B 210 135) A06

EERC 71-4 "Research Needs in Limit Design of Reinforced Concrete Structures," by V.V. Bertero -1971 {PB 202 943)A04

EERC 71-5 "Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A.A. Shah and'; .G. Bouw),ahlp
197] (PB 203 584)A06

EERC 71-6 "Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghabolissi and
E. L. Wilson" 19,1 {PB 211 396)A06

CERC 71-7 "Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V.V. Bertero and E.P. Popov
1971 {PB 211 335)A14

EERC 71-8 "Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H.B. Seed and
J. Lysmer - 1971 (FB 214 450)A03

EERC 72-1 "Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and
H.H. Dovey -1972 {PB 212 904)A05

EERC 72-2 "Accelerations in Rock for Earthquakes in the Western United States," by P .B. Schnabel and H. B. Seed - 1972
(PB 213 100)A03

EERC 72-3 "Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami -1972 {PB 214 868)A08

EERC 72-4 "Stochastic Inelastic Responsn of Offsh"re Towers to Strong Motion Earthquakes," by M.K. Kaul - 1972
(PB 215 713) A05

EERC 72-5 "Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero
and H. Krawinkler - 1972 {PB 214 555)A05

EERC 72-6 "Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and
A.K. Chopra - 1972 (AD 762 330)A08

EERC 72-7 "Dynamic Properties of Pine Flat Dam," by D. Rea, C. Y. Liaw and A.K. Chopra -1972 (AD 763 928)A05

EERC 72-8 "Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.H. Dovey-1972 (PB 222 438)A06

EERC 72-9 "Rate of Leading Effects On Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V.V. Bertero,

D. Rea and M. Atalay - 1972 (PB 224 520) A08

EERC 72-10 "Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by E.L. Wilson, K.-J. Bathe,
J.E. Peterson and H.H.Dovey -1972 (PB 220 437)A04

EERC 72-11 "Literature Survey-Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R.W. Clough-1972
(PB 215 613) A19

EERC 72-12 "SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P.B. Schnabel
and J. Lysmer -1972 {PB 220 207)A06

EERC 73-1 "Optimal Seismic Design of Multistory Frames," by V.V. Bertero and H. Kamil-1973

EERC 73-2 "Analysis of the Slides in the San Fernando Dams During the Earthquake of February 9, 1971," by H.B. Seed,
K.L. Lee, LM. Idriss and F. Makdisi -1973 (PB 223 4(2)A14

1.117

EERC 73-3 "Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. EI-Hafez and G.H. Powell
1973 (PB 248 315)A09

EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical Re0iOns of Reinforced Concrete Components
as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)A09

EERC 73-5 "Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien - 1973
(PB 239 568) AD3

EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response·of Plane Structures," by A. Kanaan and
G.H. Powell - 1973 (PB 221 260)A08

EERC 73-7 "A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by
P. Chakrabarti and A.K. Chopra-1973 (AD 766 271)A04

EERC 73-8 "Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads," by O. Kustu and
J.G. Bouwkamp-1973 (PB 246 ll7)A12

EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems," by A.K. Vaish and 1•• K. Chopra -1973 (AD 766 272)A07

EERC 73-10 "Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer -1973 (PB 227 179)A08

EERC 73-11 "SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J. Bathe,
E.L. Wilson and F.E. Peterson-1973 (PB 221 967)A09

EERC 73-12 "Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges." by W.S. Tseng
and J. Penzien - 1973 (PB 227 816)AIO

EERC 73-13 "Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and
J.A. Guti"rrez - 1973 (PB 222 970)A03

EERC 73-14 "ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R.W. Clough, J.M. Raphael and
S. Mojtahedi - 1973 (PB 223 763)A09

EERC 73-15 "Cyclic Plastic Analysis of Structural Steel Joints," by R. B. Pinkney and R. W. Clough -1973 (PB 226 843)A08

EERC 73-16 "QPAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping
Finite Element Procedures," by I.M. Idriss. J. Lysmer, R. Hwang and H.B. Seed-1973 (PB 229 424)A05

EERC 73-17 "Dynamic t,,·havior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and
J. G. Bouwkamp - 1973 (PB 240 718) A06

EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns f
ll by V.V. Bertero,

J. HOllings, O. Kiistii, R.M. Stephen and J .G. Bouwkamp -1973

EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V.V. Bertero -1973 (pa 235 986)A06

EERC 73-;'0 "Linear and Nonlinear Seismic Analysis Computer Programs for Long MUltiple-Span Highway Bridges," by
W.S. Tseng and J. Penzien -1973

EERC 73-21 "Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P.P. Gillis
1973 (PB 226 024)A03

EERC 73-22 "DRAIN - 2D User's Guide," by G.H. Powell-1973 (PB 227 016)A05

EERC 73-23 "Earthquake Engineering at Berkeley - 1973," (PB 226 033)All

EERC 73-24 Unassigned

EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra
1973 (AD 773 052)A09

EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their
Implications on Seismic Design," by V.V. Bertero and R.G. Collins -1973 (PB 235 106)A13

EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler
and E.P. Popov-1973 (PB 234 In)A06

EERC 74-1 "Seismic Risk Analysis," by C.S. Oliveira -1974 (PB 235 920)A06

EERC 74-2 "Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H.B. Seed
1974

EERC 74-3 "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K.S. Fister and A.K. Chopra - 1974
(PB 231 172)A06

EERC 74-4 "LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. lldaka,
H.B. Seed and R. Hwang - 1974 (PB 236 796)A05

EERC 74-5

1.118

"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray
1974 (PB 233 213)A06

EERC 74-6 "Soil Structure Interaction Analyses for Evaluating Seismic Response," by H.B. Seed, J. Lysmer and R. Hwang
1974 (PB 236 519)A04

EERC 74-7 Unassigned

EERC 74-8 "Shaking Table Tests of a Steel Frame - A Progress Report," by R.W. Clough and D. Tang -1974 (PB 240 ar,9)A03

EERC 74-9 "Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by
V.V. Bertero, E.P. Popov and T.Y. Wang - 1974 (PB 236 797)A07

EERC 74-10 "Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures,"
by E. Vitiello and K.S. Pister -1974 (PB 237 231)A06

EERC 74-11 "Liquefaction of Gravelly soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan
1974 (PB 242 042)A03

EERC 74-12 "Site-Dependent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer -1974
(PB 240 953)A03

EERC 74-13 "Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R.W. Clough -1974
(PB 241 9~4)A13

EERC 74-14 "Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal - 1974 (AD/A 006 583)A06

EERC 74-15 "Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by
N. Distefano and A. Rath - 1974 {PB 241 548)A06

EERC 75-1 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description,
Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang-1975 (PB 259407)A15

EERC 75-2 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical
Studies and Establishment of Seismic Design Criteria," by F. Baron and S. -H. Pang - 1975 (PB 259 408) All
(For set of EERC 75-1 and 75-2 CPB 259 406»

EERC 75-3 "Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira-1975 (PB 248 134)A09

EERC 75-4 "Analytical Investigations of Seismic Response of Short, Single or Hultiple-Span Highway Bridges," by
H. -C. Chen and J. Penzien - 1975 (PB 241 454) A09

EERC 75-5 "An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S.A.
Mahin and V.V. Bertero -1975 (PB 246 306)A16

EERC 75-6 "Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough and
D.T. Tang -1975 (PB 243 981)A13

EERC 75-7 "Dynamic Properties of San Bernardino Intake Tower," by D. Rea, C.-Y. Liaw and A.K. Chopra-1975 (AD/A008406)
A05

EERC 75-8 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description,
Theory and AnalYtical Modeling of Bridge Components," by F. Baron and R.E. Hamati-1975 (PB 251 539)A07

EERC 75-9 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical
Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Hamati -1975 (PB 251 540)AIO

EERC 75-10 "Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G.H. Powell -1975 (PB 242 434)A08

EERC 75-11 "Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and S. Chandramouli-1975 (PB252 365)All

EERC 75-12 "Earthquake Engineering Research Center Library Printed Catalog," -1975 (PB 243 7l1)A26

EERC 75-13 "Three Dimensional Analysis of Building Systems (Extended Version)," by E.L. Wilson, J.P. Hollings and
H.H. Dovey - 1975 (PB 243 989)A07

EERC 75-14 "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba,
C.K. Chan and H.B. Seed - 1975 (NUREG 0027)A08

EERC 75-15 "A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R.W.
Clough -1975 (PB 246 292)AIO

EERC 75-16 "Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and
E.P. Popov-1975 (PB 246 388)A05

EERC 75-17 "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions
for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and 1.M. Idriss -1975 (PB 248 172)A03

EERC 75-18 "The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis,
C.K. Chan and H.B. Seed - 1975 (Summarized in EERC 75-28)

I.119

EERC 75-19 "The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear
and Axial Force," by M.B. Atalay and J. Penzien -1975 (PB 258 842)All

EERC 75-20 "Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and
D. Jurukovski - 1975 (PB 246 945)A04

EERC 75-21 "State-of-the-Art in Seismic Strength of Masonry -An Evaluation and Review," by R.L. Mayes and R.W. Clough
1975 (PB 249 040)A07

EERC 75-22 "Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by A.K. Chopra,
P. Chakrabarti and G. Dasgupta -1975 (PB 248 12l)A07

EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov-1975

EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V.V. Bertero, E.P. Popov and
T. Endo-1975

EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and
C.K. Chan -1975 (Summarized in EERC 75-28)

EERC 75-26 "The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P.P. Martin
and J. Lysmer - 1975 (PB 252 648) AD3

EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero
1975 (PB 248 136)A05

EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, 1. Arango and C.K. Chan -1975
(NUREG OD26)A13

EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction
Analyses," by H.B. Seed, 1.M. Idriss, F. Makdisi and N. Banerjee -1975 (PB 252 635)A03

EERC 75-30 "FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by
J. Lysmer, T. Udaka, C.-F. Tsai and H.B. Seed -1975 (PB 259 332)A07

EERC 75-31 "ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by
E. Berger, J. Lysmer and H.B. Seed -1975

EERC 75-32 "TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling
Waves," by T. Udaka, ,1. !,vsmer and 1LB. Seed-1975

EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien - 1975 (PB 248 13D}AD3

EERC 75-34 "Efficient Finite Element Analysis of Seismic Structure - Soil - Direction," by J. Lysmer, H. B. Seed, T. Udaka,
R.N. Hwang and C.-F. Tsai -1975 (PB 253 570)A03

EERC 75-35 "The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading,"
by R.W. Clough and L.-Y. Li-1975 (PB 248 841)A05

EERC 75-36 "Earthquake Simulator St'ldy of a Steel Frame Structure, Volume II -Analytical Results," by D.T. Tang-1975
(PB 252 926)AlO

EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D.P. Mondkar
and G.H. Powell - 1975 (PB 252 386)A08

EERC 75-38 "Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete
Structures," by M, Murakami and J. Penzien - 1975 (PB 259 530) A05

EERC 75-39 "Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earth­
quake Loading," by N.D. Walker and K.S. Pister -1975 (PB 257 78l)A06

EERC 75-40 "An Alternative Representation of the ElastiC-Viscoelastic Analogy," by G. Dasgupta and J .L. Sackman -1975
(PB 252 173) AD3

EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin -1975
(PB 258 78l)A03

EERC 76-1 "Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," by
T. Okada and B. Bresler - 1976 (PB 257 906)All

EERC 76-2 "Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and
T-Beams," by S.-Y.M. Ma, E.P. Popov and V.V. Bertero-1976 (PB 260 843)A12

EERC 76-3 "Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp -1976 (PB 273 279)A07

EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi & C.-Y. Chang - 1976
(PS 292 065)A08

EERC 76-5 "Analysis and Design of Tube-Type Tall Buildinq Structures," by H. de Clercq and G.H. Powell - 1976 (PB 252 220)
AIO

EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo
and J. Penzien (PB 260 556}All

EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, ¥. Ornote, S.W. Chen
and R.W. Clough - 1976 (PB 270 09B}A05

EERC 76-B "Cyclic Shear Tests of Masonry Piers, Volume 1 - Test Results," by R.L. Mayes, Y. Ornote, R.W.
Clough - 1976 (PB 264 424}A06

EERC 76-9 "A Substructure Method for Earthquake Analysis of Structure - Soil Interaction," by J .A. Gutierrez and
A.K. Chopra -1976 (PB 257 7B3)AOB

EERC 76-10 "Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and
J.R. Booker-1976 (PB 25B B20}A04

EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by
G.H. Powell and D.G. Row-1976 (PB 271 409}A06

EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and
E. Polak - 1976 (PB 262 B59}A04

EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra ­
1976 (PB 257 907)A09

EERC 76-14 "Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976

EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and
J. Gidwani - 1976 (PB 261 323)AOB

EERC 76-16 "Cyclic Shear Tests of Masonry Piers, volume 2 - Analysis of Test Results," by R.L. Mayes, Y. Ornote
and R.W. Clough - 1976

EERC 76-17 "Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and
C.W. Roeder - 1976 (PB 260 715)A05

EERC 76-18 "Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and
W.G. Godden - 1976 (PB 269 548)AOB

EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by
F. Baron and R.E. Hamati - 1976 (PB 282 981)A16

EERC 76-20 "Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System
Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 25B 453)A07

EERC 76-21 "Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick - 1976
(PB 260 378)A04

EERC 76-22 "Response of the Olive View Hospital Main Building during the San Fernando Earthquake," by S. A. Mahin,
V.V. Bertero, A.K. Chopra and R. Collins - 1976 (PB 271 425)A14

EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel,
R.L. Mayes, R. W. Clough and S.W. Chen - 1976 (Not published)

EERC 76-24 "GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during
cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)A04

EERC 76-25 "Seismic Safety Evaluation of a RiC School Building," by B. Bresler and J. Axley - 1976

EERC 76-26 "Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge
Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388lA11

EERC 76-27 "Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk - 1976 (PB 265 l57}A07

EERC 76-28 "Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen - 1976 (PB 262 899)A03

EERC 76-29 "Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber - 1976
(PB 264 4l0}A06

EERC 76-30 "Contribution of a Floor system to the Dynamic Characteristics of Reinforced Concrete Buildings," by
L.E. Malik and V.V. Bertero - 1976 (PB 272 247)A13

EERC 76-31 "The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R.E. Hamati _
1976 {PB 272 279)A09

EERC 76-32 "Infilled Frames in Earthquake Resistant Construction," by R.E. K1ingner and V.V. Bertero - 1976
(PB 265 892)A13

1.121

UCB/EERC-77/0l "PLUSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Inter­
action," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977

UCB/EERC-77/02 "Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June
7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer - 1977 (PS 265 795)A04

UCB/EERC-77/03 "Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.K.
Chan - 1977 (PS 267 352)A04

UCB/EERC-77 /04 "Seismological Studies of Strong Motion Records," by J. Shoja-Taheri - 1977 (PB 269 655) AIO

UCB/EERC-77/05 "Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov - 1977

llCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No.1 -
B. Bresler; No.2 - B. Bresler, T. Okada and D. Zisling; No.3 - T. Okada and B. Bresler; No.4 - V.V.
Bertero and B. Bresler - 1977 (PB 267 354)AOB

UCB/EERC-77/07 "A Literature Survey - Transverse Strength of Masonry Walls," by Y. Ornote, R.L. Mayes, S.W. Chen and
R.W. Clough - 1977 (PB 277 933)A07

llCB/EERC-77/08 "DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by
R. Guendelman-Israel and G.H. Powell - 1977 (PB 270 693)A07

UCB/EERC-77/09 "SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1977
(PB 270 567)A05

llCB/EERC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough
(PB 272 280) Al3

llCB/EERC-77/11 "Earthquake Engineering Research at Berkeley - 1976," - 1977 (PB 273 507)A09

UCB/EERC-77/12 "Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. - 1977
(PB 276 526)A09

llCB/EERC-77/13 "Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and
B.P. Popov - 1977 (PB 275 165)A06

t1CB/EERC-77/14 "Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura - 1977 (PB 284 201)A04

UCP,/EERC-77/15 "Bond Deterioration under Generalized Loading," by V.V. Bertero, E.P. Popov and S. Viwathanatepa - 1977

lJCB/EERC-77/16 "Computer Aided optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W.
Zaqajeski and V.V. Bertero - 1977 (PB 280 137)A07

CCB/EERC-77/17 "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and
D.F. Tsztoo - 1977 (PB 273 506)A04

UCB/EERC-77/1B "Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and
E.P. Popov - 1977 (PB 275 526)A15

UCB/EERC-77/19 "A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.r.
Makdisi and H.B. Seed - 1977 (PB 276 820)A04

UCB/EERC-77/20 "The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de Alba - 1977
(PB 276 821lA04

UCB/EERC-77/21 "Dynamic Plastic Analysis using Stress Resultant Finite Element FormUlation," by P. Lukkunapvasit and
3.M. Kelly - 1977 (PB 275 453)A04

UCB/EERC-77/22 "Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridgc'
1977 (PB 278 769)A08

UCB/EERC-77/23 "Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A.
Huckelbridge - 1977 (PB 277 944)A09

UCB/EERC-77/24 "Nonlinear Soil-Structure Interaction of Skew Highway Bridges," by M.-C. Chen and J. penzien - 1977
(PB 276 176)A07

UCB/EERC-77/25 "Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.-N. Liou and J. Penzien
1977 (PB 2B3 180)A06

llCB/EERC-77/26 "Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K. Chopra ­
1977 (PB 279 654)A06

UCB/BERC-77/27 "A Practical Soft Story Earthquake Isolation System," by .ToM. Kelly, J.M. Eidinger and C.J. Derham ­
1977 (PB 276 814)A07

UCB/EERC-77/28 "Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An
Exploratory Study," by A.J. Meltsner - 1977 (PB 281 970)A05

UCB/EERC-77/29 "Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi
1977 (PB 282 569)A04

UCB/EERC-77/30 "An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints," by
B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06

lIn,/EERc-78/01

I'CB,EERC-78/03

UCB/EEHC-78/04

lJl'R/EEHC-78/05

UCR/EEHC-78/06

UCB/EERC-78/07

UCB/EERC-78/08

liCR/EERC-78/09

lICB/EERC-78/10

l'CB/EERC-78/11

UCB/EERC-78/12

lICB/EERC-78/13

UCB/EERC-78/14

UCB!EERC-78!15

lICB/EERC-78/l6

lICB/EERC-78/l7

UCB/EERC-78/l8

UCB!EERC-78/19

UCB!EERC-78/20

UCB!EERC-78!21

UCB!EERC-78/22

UCB!EERC-78!23

UCB!EERC-78/24

UCB/EERC-78/25

UCB!EERC-78/26

UCB!EERC-78!27

UCB!EERC-78/28

UCB/EERC-78/29

1.122

liThe Development of Enerqy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and
D,f. Tsztoo - 1978 (PB 284 978)A04

"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and 1\. Mukhopadhyay - 1978

IIExperimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M.
Eidinger and J.M. Kelly - 1978 (PB 281 686)A04

"Seismic Behavior of Tall Liquid Storage Tanks;" by II. Niwa - 1978 (PB 284 017)1114

"Hysteretic Behavior of Reinforced concrete Columns Subjected to High Axial and Cyclic Shear forces,"
by S.W. zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978 (PB 283 858)1113

"Inelastic Beam-Column Elements for the IINSR-I Program," by A. Riahi, D.G. Rowand G.H. Powell - 1978

"Studies of Structural Response to Earthquake Ground I·lotion," by O.A. Lopez and A.K. Chopra - 1978
(PB 282 790)A05

HA Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Earthquakes,"
by R.C. Byrd - 1978 (PB 284 957)A08

"Model for Evaluating Damageability of Structures," by 1. Sakamoto and B. Bresler - 1978

"Seismic Performance of Nonstructural and Secondary Structural Elements," by 1. Sakamoto - 1978

"Mathematical tlodelling of Hysteresis Loops for Reinforced concrete Columns," by S. Nakata, T. Sproul
and J. Penzien - 1978

"Damageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978

"Dynamic Behavior of a Pedestal Base Multistory Building," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp
and M. Button - 1978 (PB 286 650)A08

"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978
{PB 286 503)AlO

"A Substructure Technique for Nonlinear Static and Dynamic Analysis," by D.G. Rowand G.H. Powell ­
1978 (PB 288 077)AlO

"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira ­
1978

"Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gulkan, R.L. Mayes and R.W.
Clough - 1978

"Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and
E.P. Popov. - 1978

"Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by
J.L. Sackman and J.M. Kelly - 1978 (PB 292 357)A04

"Testing of a Wind Restraint for Aseismic Base Isolation," by J.M. Kelly and D.E. Chitty - 1978
(PB 292 833)A03

"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal
Sand Layers During Cyclic or Earthquake Loading," by P.P. Martin and H.B. Seed - 1978 (PB 292 835)A04

"Optimal Design of an Earthquake Isolation System," by M.A. Bhatti, K.S. Pister and E. Polak - 1978
(PB 294 735)A06

"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in
Horizontally Layered Deposits," by P.P. Martin and H.B. Seed - 1978 (PB 293 101)A05

"Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System ~dentification,"

by I. Kaya and H.D. McNiven - 1978

"Investigation of the Nonlinear Characteristics of a Three-Story Steel Frame Using System
Identification," by 1. Kaya and H.D. McNiven - 1978

"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978

"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A. Hidalgo,
R.L. Mayes, H.D. McNiven and R.W. Clough - 1978

"Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of 1," by S.-w.J. Chen,
P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978

"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978

uca/EEllC-79/01

ua/EEllC-79/02

0Cll/EEllC-79/03

tJc:B/EEllC-79/04

OCS/EEllC-19/0S

uca/EElle-79/06

tJc:B/EEllC-79/07

UCB/EERC-79/0B

UCS/EEllC-79/09

OCS/EERC-79/10

UCB/EEllC-79/U

UCB/EEllC-79/12

OCS/EEllC-79/13

UCB/EEllC-79/14

UCB/EEllC-79/17

UCB/EEllC-791l9

UCB/EEllC-79no

tJc:BlEEllC-79/21

tJc:B/EER:-79/22

OCB/EEllC-79/23

OCS/EEllC-79/24

OCB/EElle-79/2S

OCS/EERC-79/26

UCB/EERC-79/27

OCB/EEllC-19/2B

UCB/EElle-79/29

UCB1EERC-79130

UCB/EElle-79/3l

UCB/EEllC-79/32

UCB/EERC-19/33

UCB/EERC-79/34

1.123
"Hyste&etic Behavior of Light-.,eighe ~infQrced COncrete EleiUl\-COlUIM Subass8liQlages." by Il. I'orzani.
E.P. l'opov anel V.V. Bertero - Apl:il 1919(1'9 298 267)1'.06

"'1'hs Development of a Mathematical Medel to Predict the Flexural Response of Reinforced COncrete Eleams
to Cyclic t.Qads. Using SystlUl Iclenti:icati~n." by J. Stanton & H. McNiven - Jan. 1979(PIl 295 875lAlO

"Linear and Nonlinear Earthquake Response of Simple torsionally COupled Systems." by C.L. Kan anel
A.K. Chopra - Feb. 1919(PIl 29B 262lA06

"A Mathematical Moclel of Mason:y for Predictinq its Linear Sei.slllic Response Characteristics." by
Y. Men¢ and H. D. McNi1ten - Feb. 1979 (i'3 298 266l A06

"Mechanical Behavior of Liqt\tweiqt\t ConcreU! COnfined by Cifferent tYpes of Lateral Reinforc_nt."
by M.A. Manrique. V.V. Ilereero IUId E.P. Popov - May 1979(PIl 301 114lA06

"Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank." by R.W. Clough and Po. Niwa - Feb. 1979
(Pa 301 16111'.06

"The Design of Steel Enerqy Absor:bing Restrainers and '!heir Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 1 - Su:mary Report." by P.N. Spencer. V.F. Zackay. anel E.R. Parker ­
Feb. 1979(UCB/EERC-79/07)A09

"The ['l<>,,;ign of Ste('l t~\leT.gy IIhsC'rbing' f.le"t,nune~ ,,,,,Ii ~'heir Inc:orpo:t",t4.fJll inm /lUCle<'.r Powet: Plmts
fOl' Enhcmc:ed Saf~,ty: Volume- 2-11.'.6 Develo.-nt ot llnalyses for Ileac"",,' System Piping,'"Simp1e S;(stelllS"
by M.C. Lee. J. pennen. A.K. Chopra lInC1 K. Su.zuki "Complex SystelllS" by G.H. Powell, E.L. Wilson.
a.w. Clough and D.G. Row ~ Feb. 1919(OCB/E:<:.'\'C-79/08lAlO

"'!he Design of Steel Energy Absorbing !<est.."'a.iners and Their Incorporation into NUclear Power Plants
for Enhanced S",fety: Volume, 3 - EValuation of COllmlerc:ia! Steels ," by W.S. Owen. a.M.N. Pelloux.
R.O. RitC"hie. M. Feral, T. Ohhashi, J. Toplosky. S.J. Hart:Il\an. V.F. zaekay and E.R. Parker -
Feb. 1979(UCB/EERC-79/09lA04

"The Design of Steal l':nerqy Absorbing !<estra1ners and 'l'hei1= InClQrporation into Nu<:lear Power Plants
tor Enhanced Safety: Volume 4 - A Review of Enerqy-Absor:bing Devices." by J.M. Kelly and
M.S. Skinner - Feb. 1979(OCS/EERC-79/10lA04

"COnservatism In S1.1IIlIMtion Rules for Closely Spaced Modes." by 07.14. Kelly and J.L. Sackman - Hay
1979(Pa 301 328lA03

"Cyclic Loading Tests of Muon:y Single Piers; VolUlll8 3 - Heiqt\t to width Ratio of 0.5," by
P.A. Hidalgo. R.L. Mayes. R.D. McNiven and R.W. ClouC]h - May 1979(P8 301 321lA08

"cyclic Behavior of Dense COurse-Grained l'.aterials in Relation to the Seisllli.c Stability of cams." by
H.G. 8anerjee. H.B. Seeel anel C.X. Chan - ';,;;ne 1979(Pa 301 373lAl3

"Seismic Behavior of !<einforced COncrete!:leador Beam-Column Subasselli:llages." by S. Viwathanaeepa.
E.P. POpov and V.V. Berten) - JW\e 1979(PIl 301 326lAlO

"Optimal Design of Localized Nonlinear Syst:elllS with Dual Perfor.llance Criteria tlncler Earthquake
Excitations." by M.A. Bhatt:!. - July 1979(F! 80 167 109lA06

"OPTCYN - A General Purpose Optimization Program for Pn)blelllS with or "''i.thout Dyn~c Conscraints."
by M.A. Bhatti. E. POlak and K.S. Pisti!r - July 1979(Pa eo 167 091lAOS

"ANSa-II, Analysis of Nonlinear Structural Response. Users Manu41," oy D.P. ~Xlndltar ~d G.H. Powell­
July 1979(PB SO 113 301lAOS

"Soil Structure Interaction in Different Seislllic Environments." A. GolNlz-Masso. J. LyslIllIr. J.-C. Ol_
and H.B. Seed - August 1979(P8 SO 101 520lA04

"ARM Models for EarthquMe GJ:OWlel :-lotions." by M.K. Chang. J.W. KWiatkowski. R.I'. Nau. R.M. Oliver
anel K.S. Pister - July 1979 (Pa 301 166l AOS

"Hysteretic Behavior of ReinforcedCOncreea Structural Walls," by J.K. Vallenu. V.V. Berl:ero and
E.P. l'opov - August 1979(P8 80 165 90SlAl2

"Stw:lies on HiC]h-Frequency Vibrations of Bl:ildinc;s - 1: 'l'he COlllllll\ Effect." by J. Lubl1ner - A1I9\lIIt1979
(PS 80 158 553/ A03

"Effects of Generali:i:ed Loadings on Banel lle1nfor<::ing Bars Elllbecldeel in Confined COncrete Blocks." by
S. Viwath~atepa. E.P. POpov ~el V.V. Bertero - August 1979

"Shaking Table Stucly of Sing1e-Sto:y Mason:y Houses. Volu- 1: Test Structures 1 and 2." by P. Giilkan.
R.L. Mayes and R.W. Clouqt\ - Sept. 1979

"Shaking Table Stucly of Sinqle-Story Masonry Houses, Volume 2: Test Structures 3 anel 4." by P. GUlkan.
.R.L. Hayes and R.W. Clough - Sept. 1979

"Shaking Table Study of Single-Stor; :-Iasor.:; Houses. Volume 3: SUIllIIl&rY. COnclusions and Recollllllel1dstions.",
by R.W. Clough. R.L. Mayes and P. GUlka.'\ - Sept. 1979

"Recommendations for a U.S.-Japan 'coopera~ve Research Proqram Utilizing Large-Scale Tes~ng Facilities."
by U.S.-Japan Planning Group - Sept. 1979(:9 301 407lA06

":;arthquake-Induced Liquefaction Near l:.a!ce .\l:lacitlan, Guatemala." by H.B. Seed. I. Arango. C.lt. Chan.
A. Gomez-Masso and R. Grant de Ascoli - Sel'e. 1979(NUREG-CRl3411A03 '

"In£ill Panels: '!heir Influence on Seisl:lic aasponse of Buildings," by J.W. Axley and V. V. Berte:o ­
Sept. 1979(Pa 80 163 371lAlO

"3D Truss 8ar Element (Type 1) fOr to~e A.'iSl\-II ProgriUl\." by D.P. Mondkar ~el G.H. POwell - Nov. 1979
(PS SO 169 709lA02

"20 Bea::l-C01= Element ('Iyl'e 5 - Pcallel ::le!'ent Theoryl for the ANSa-II ~roqram." by O.G. llcw.
G.H. Powell and C.P. Monclkar - Dec. 197:!(?! ac 167 224lA03

"30 Beam-COl= Element ('I';pe 2 - Parallel ::le:r.e:\t '!heoryl for to"e A."lSR-II Pn)gralll." by A. Riahi.
G.H. ~well and D.P. Mondkar - Dec. 19i9!?: SO lS7 216lA03

"On Response of Structures to Stationa:y ~:itacion." by A. Der Kiureqhian - Dec. 1979(P880166 929lA03

"undisturlled Sampling and cyclic Load Tes~~:; of Sands." by S. Sinqh. If.B. Seed and C.l<. Clan -
Dec. 1979(

"Interaction Effects of Simultaneous 7ors~~r.al and Compressional Cyclic: Loading of Sand." by
P.M. Griffin and W.N. Housto:\ - !lec. 1979

1.124

UCB/EERC-80/01 "Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction
Effects," by A.K. Chopra, P. Chakrabarti and S. Gupta - Jan. 1980(AD-A087297)A10

UCB/EERC-80/02 "Rocking Response of Rigid Blocks to Earthquakes," by C.S. 'lim, A.K. Chopra and J. Penzien - Jan. 1980
(PBSO 166 002)A04

UCB/EERC-80/03 "Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by S.W. Zagajeski
and V.V. Bertero - Jan. 1980(PB80 164 635)A06

UCB/EERC-80/04 "Effects of Amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinforced
Concrete Walls," by R. Iliya and V.V. Bertero - Feb. 1980(PBS1 122 525)A09

UCB/EERC-80/05 "Shaking Table Research on Concrete Dam Models," by A. Niwa and R.W. Clough - Sept. 1980 (PB81 122 368)A06

UCB/EERC-80/1B

UCB/EERC-80/0B

UCB/EERC-80/06

UCB/EERC-80/11

UCB/EERC-80/15

UCB/EERC-80/16

UCB/EERC-80/17

UCB/EERC-80/14

UCB/EERC-80/12

UCB/EERC-80/13

UCB/EERC-80/10

UCB/EERC-80/07

UCB/EERC-BO/09

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol lA): Piping with Energy Absorbing Restrainers: Parameter Study on Small Systems,"
by·G.H. Powell, C. Oughour1ian and J. Simons - June 1980

"Inelastic Torsional Response of Structures Subjected to Earthquake Ground Motions," by 'I. 'lamazaki
April 1980(PBBl 122 327)AOB .

"Study of X-Braced Steel Frame Structures Under Earthquake Simulation," by Y. Ghanaat - April 1980
(PBBl 122 335)All

"Hybrid MOdelling of Soil-Structure Interaction," by S. Gupta, T.W. Lin, J. Penzien and C.S. 'leh
May 1980(PB81 122 319)A07

"General Applicability of a Nonlinear MOdel of a One Story Steel Frame," by B.1. Sveinsson and
H.D. McNiven - May 1980(PBBl 124 877)A06

"A Green-Function Method for Wave Interaction with a Submerged Body," by W. Kioka - April 1980
(PBS1 122 269)A07

"Hydrodynamic Pressure and Added Mass for Axisymmetric Bodies," by F. Nilrat - May 19BO(PB81 122 343)AOS

"Treatment of Non-Linear Drag Forces Acting on Offshore Platforms," by B.V. Dao and J. Penzien
May 1980(PBBl 153 413)A07

"2D Plane/Axisymmetric Solid Element (Type 3 - Elastic or Elastic-Perfectly Plastic) for the ANSR-II
program," by D.P. Mondkar and G.H. Powell - July 1980(PB81 122 350)A03

"A Response Spectrum Method for Random Vibrations," by A. Der Kiureghian - June 19BO (PB81122 301) A03

"Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin
June 1980(PB81 124 8S5)AlO

"Dynamic Response of Simple Arch Dams Including Hydrodynamic Interaction," by C.S. Porter and
A.K. Chopra - JUly 19BO(PBBl 124 000)A13

"Experimental Testing of a Friction Damped Aseismic Base Isolation System with Fail-Safe
Characteristics," by J.M. Kelly, K.E. Beucke and M.S. Skinner - July 1980(PBBl 14B 595)A04

UCB/EERC-80/19 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol IB): Stochastic Seismic Analyses of Nuclear Power Plant Structures and Piping
Systems Subjected to Multiple Support Excitations," by M.C. Lee and J. Penzien - June 19BO

UCB/EERC-80/20 "The Design of Steel EnergY-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced safety (Vol lC): Numerical Method for Dynamic Substructure Analysis." by J.M. Dickens
and E.L. Wilson - June 19BO .

UCB/EERC-80/21 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 2): Development and Testing of Restraints for Nuclear Piping Systems," by
J.M. Kelly and M.S. Skinner - June 19BO

UCB/EERC-80/22 "3D Solid Element ('type 4-E1astic or Elastic-perfectly-Plastic) for the ANSR-II Program," by
D.P. Mondkar and G.H. Powell - July 19BO(PB81 123 242)A03

UCB/EERC-80/23 "Gap-Friction Element (Type S) for the ANSR-II Proqram," by D.P. Mondkar and G.H. Powell - July 1980
(PBSl 122 285)A03

UCB/EERC-80/24 "U-Bar Restraint Element (Type 11) for the ANSR-II Program," by C. ~ghourlian and G.H. Powell
July 1980(PB81 122 293)A03

UCB/EERC-80/2S "Testing of a Natural Rubber Base Isolation System by an Explosively Simulated Earthquake," by
J.M. Kelly - August 1980

UCB!EERC-80/26 "Input Identification from Structural Vibrational Response," by Y. Hu - August 1980(PB81 152 308)A05

UCB/EERC-80/27 "Cyclic Inelastic Behavior of Steel Offshore Structures," by V.A. Zayas, S.A. Mahin and E.P. Popov
AUgust 1980

UCB/EERC-80/28 "Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response," by M.G. Oliva
october 1980(PBBl 154 304)AIO

UCB/EERC-80i29 "Dynamic Properties of a Twelve-Story Prefabricated Panel BUilding," by J .G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - OCtober 1980

UCB!EERC-80/30 "Dynamic Properties of an Eight-Story Prefabricated panel BUilding," by J. G. BOuwkamp, J. P. Kollegger
and R.M. Stephen - OCtober 19BO

UCB/EERC-80/31 "Predictive Dynamic Response of panel Type Structures Under Earthquakes," by J.P. Kol1egger and
J.G. Bouwkamp - October 1980(PBBl 152 316)A04

UCB/EERC-80/32 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 3): Testing of Conunercial Steels in Low-Cycle Torsional Fatigue," by
P. Spencer, E.R. Parker, E. Jongewaard and M. Orory

1.125

UCB/EERC-SO/33 "The Design of Steel Energy-.~sorbing Restrainers and their Incorporation ~nto Nuclear Power Plants
for Enhanced Safety (Vol -l): Shaking Table Tests of Piping Systems ·..ith Energy-Absorbing Restrainers,"
by S.F. Stiemer and W.G. Godden - Sept. 19S0

UC3/EERC-SO/34 "The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety l~lol 5): Summary Report, II by P. Spencer

CCB/EERC-SO/35 "Experimental Testing of an Energy-Absorbing Base Isolation System," bv J. ~':. !'Celly, ~'1. S. Skinner ar.d
K.E. Beucke - October 19BO(PBSl 154 072)A04

UCB/EERC-SO/36 "Simulating and Analyzing Artificial Non-Stationary Eart:hquake Ground elations," by R.F. Nau, R.M. Oliver
and K.S. Fister - October 19S0(PBSl 153 397lA04

UCB/EERC-SO/37 "Earthquake Engineering at Berkeley - 19S0," - Sept. 19S0

UCB/EERC-80/3S "Inelastic Seismic Analysis of Large Panel Buildings," by V. Schricker and G.H. Powell - Sept. 1980
(PBSI 154 33SlA13

UCB/EERC-80/39 "Dynamic Response of Embankment, concrete-Gravity and Arch Dams Including Hydrodynamic Interaction,"
by J.:. Hall and A.K. Chopra - October 1980(PB81 152 324)All

UCB/EERC-80/40 "Inelastic Buckling of Steel Struts Under Cyclic Load Reversal," by R.G. Black, W.I\. Wenger and
E.P. Popov - October 19S0(PBSl 154 312)I\OS

UCB/EERC-80/41 "Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Eart:hquake," by
P. Repett:o , I. Arango and H.B. Seed - Sept. 1980(PBSl 161 739)1\05

UCB/EERC-SO/42 "Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete
Frame," by J. M. Blondet, R. W. Clough and S. A. Mahin

UCB/EERC-SO/43 "Modelling of Soil-Structure Interaction by t'inite and Infinite Elements," by F. Medina

UCB/EERC-8l/0l "Control of Seismic Response of Piping Systems and
Other Structures by Base Isolation," edited by
J.M. Kelly - January 1981 (PB8l 200 735}A05

UCB/EERC-8l/02 "OPTNSR - An Interactive Software System for Optimal
Design of Statically and Dynamically Loaded Structures
with Nonlinear Response," by M.A. Bhatti, V. Ciampi and
K.S. Pister - January 19B1 (PBBl 218 B51)A09

UCB/EERC-Bl/03 "Analysis of Local Variations in Free Field Seismic
Ground Motion," by J.-C. Chen, J. Lysmer and H.B. Seed
January 1981 (AD-A099S08}Al3

UCB/EERC~81/04 "Inelastic Structural Modeling of Braced Offshore Platforms
for Seismic Loading," by V.A. Zayas, P.-S. B. Shing,
S.A. Mahin and E.P. Popov - January 1981 (PB

UCBjEERC-8l/0S "Dynamic Response of Light Equipment in Structures," by
A. Dar Kiureghian, J.L. Sackman and B. Nour-Omid - April
1981 (PB81 218 497)A04

UCB/EERC-81/06 "Preliminary Experimental Investigation of a Broad Base
Liquid Storage Tank," by J.G. Bouwkamp, J.P. Ko11egger
and R.M. Stephen - May 1981

UCB/EERC-81/07 "The Seismic Resistant Design of Reinforced Concrete
Coupled Structural Walls," by A.E. Aktan and V.V. Bertero
June 1981 (PB82 113 358)A11

UCB/EERC-81/08 "The Undrained Shearing Resistance of Cohesive Soils at
Large Deformation," by M.R. Pyles and H.B. Seed - August
1981

I.126

UCB/EERC-8l/09 "Experimental Behavior of a Spatial Piping System with
Steel Energy Absorbers Subjected to a Simulated Differential
Seismic Input," by S.F. Stiemer, W.G. Godden and J.M. Kelly ­
July 1981

UCB/EERC-81/10 "Evaluation of Seismic Design Provisions for Masonry in the
United States," by B. I. Sveinsson, R.L. Mayes and H.D. McNiven _
August 1981

UCB/EERC-81/11 "Two-Dimensional Hybrid Modelling of Soil-Structure _
Interaction," by T.-J Tzong, Sunil Gupta and J. Penzien
August 1981

UCB/EERC-81/l2 "Studies on Effects of 1nfills in Seismic Resistant RiC
Construction," by S. Brokken and V. V. Bertero - September 1981

UCB/EERC-81/l3 "Linear Models to Predict the Nonlinear Seismic Behavior
of a One-Story Steel Frame," by H. Va1dimarsson, A.H. Shah
and H.D. McNiven - September 1981

UCB/EERC-8l/l4 "TLUSH: A Computer Program for the Three-Dimensional
Dynamic Analysis of Earth Dams," by T. Kagawa, L.H. Mejia,
H.B. Seed and J. Lysmer - September 1981

UCB/EERC-81/1S "Three Dimensional Dynamic Response Analysis of Earth Dams,"
by L.H. Mejia and H.B. Seed - September 1981

UCB!EERC-8l/16 "EXperimental Study of Lead and E1astomeric Dampers for
Base Isolation Systems," by J.M. Kelly and S.B. Hodder ­
OCtober 1981

UCB/EERC-81/l7 "The Influence of Base Isolation on the Seismic Response of
Light Secondary Equipment," by J .M. Kelly - April 1981

UCB/EERC~81/18 "Studies on Evaluation of Shaking Table Response Analysis
Procedures," by J. Marcial Blondet - November 1981

UCB/EERC-81/19 "DELIGHT.STRUCT: A Computer-Aided Design Environment for
Structural Engineering," by R.J. Balling, K.S. Pister and
E. Polak - December 1981

UCB/EERC-8l/20 "Optimal Design of Seismic~ResistantPlanar Steel Frames,"
by R.J. Balling, V. Ciampi, K.S. pister and E. Polak ­
December 1981

