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ABSTRACT

This report presents the experimental results of a 2-D (two dimensional)
x~braced tubular steel offshore platform model subjeéted to shaking table
motions simulating earthguake excitations. The test frame was a 5/48 scale
model of a representative Southern California platform designed according to
American Petroleum Institute wave and earthquake criteria. The main purpose
of this research was to measure the dynamic response and failure mechanism
to be expected of a typical offshore frame subjected to damaging earthquake
motions.

This experiment was the first dynamic test of a large single plane
frame model performed on the 20-£ft square shaking table of the University of
California at Berkeley. The model test frame was 17 ££ 9 in. (5.4 m) high and
consisted of three braced panels with the thinnest members having a wall
thickness of 0.049 in. (1.24 mm} and a D/t ratio of 51. A special testing
system was designed to provide lateral support to the test model while
introducing no constraints in the longitudinal and vertical directions. This
arrangement permitted applying a lateral force sufficient to produce major
failure in the éingle test frame, whereas a complete structure including two
parallel frames like this could not have been subjected to a failure load.

The 2-D offshore platform model was loaded by 40,000 1b (18,342 kg) of
concrete blocks to simulate the prototype dead load, and was subjected to a
series of earthquake motions derived from the 1940 El Centro and the 1952
Taft earthquake records. Experimental data are presented indicating when
the primary buckling of braces occurred, which braces were affected, and the
extent of damage in such members. Time h;story plots of the table motions
and global responses of the test frame, such as lateral forces and displace-

ments, are included. Global lateral force versus displacement hysteresis
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loops are presented for the test frame and deterioration of the frame strength
and stiffness are discussed. These experimental data provide information on
the global inelastic behavior of tubular braced frames, which can be used to
verify and extend the ability of existing analytical technigues for predicting
the behavior of offshore structures under extreme earthquake conditions. Also
presented axe data on the local dynamic response of selected bracing members,

including force-displacement hysteresis loops for these members.
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1. INTRODUCTION

Offshore platforms frequently are constructed in parts of the world
where significant seismic activity has been recorded.or where the region
is considered to be geismically active. Structures in such seismic regions
may be subjected to intense ground shaking, causing the platform to experience
deformations well into the inelastic range. Because the severity of measured
earthquake motions has been escalating in recent years, concern for
structural safety and the environmental impact of possible structural
collapse under an intense ground motion has increased.

(1)

The new APT platform design recommendations require both strength
and ductility in platforms designed to be installed in seismic zones.
"strength Level" or operating level criterxia of the API require a structure
to be sufficiently strong so that its members remain within the yield or
buckling stress levels during a moderate earthquake, one which has a high
probability of occurrence in the lifetime of the structure. "Ductility"
requirements of the API demand that sufficient energy absorption capacity
be provided to insure structural integrity and to prevent collapse in the
very rare event of an extremely strong earthquake motion.

The primary ductile deformations in offshore structures which provide
the desired energy absorption capability,are developed in the braces.
Consequently, the applicability of the ductile design concept depends
on the energy dissipation capacity offered by the brace members. Obviously,
the inelastic dynamic response of offshore structures has to be thoroughly

investigated before the ductile design concept can be applied with

confidence,



1.1 Background

In the last several years numerous experimental and analytical investi-
gations have been directed toward evaluating the inelastic behavior of
offshore structures subjected to severe seismic loadings. Early experimental

studies were related to bending, buckling and post-buckling behavior of the

(2,3)

tubular sections . cyclic inelastic behavior of individual tubular

(4,5) (6)

members , and cyclic inelastic behavior of tubular braced subassemblages .
The experimental data on the behavior of individual members provided
information which led to development of failure algorithms such as the Marshall

strut(7'8). Also, analytical studies which rely heavily on such algorithms

(9)

have led to inelastic dynamic analysis computer programs such as DYNAS and

mvrra 100

Furthermore, inelastic cyclic tests performed on two frame models(ll) of

(12}

the Southern California Example Structure have provided data regarding
the overall behavior of braced offshore structures subjected to lateral loads.
This study showed that the overall structural behavior of offshore platforms
depended greatly on the buckling mode of the braces; buckling of the braces
was concentrated in one brace of a full diagonal. The S-shape mede of
buckling occurred only in diagonal braces of the frame having a low D/t

ratio,

The experimental data provided by such inelastic cyclic tests with
imposed quasi-static deformation histories contributed much valuable
information; however, they can verify only certain aspects of the analytical
models. More realistic and general inelastic dynamic behavior of a test
structure can be observed if it is subjected to actual earthquake ground

motions scaled to produce the desired responge intensity. The sequence

of lateral forces due to an earthquake acceleration time history generally



differs from those provided in the guasi-static tests. On the other hand,
the driving force capacity of the available earthquake simulator (nominally
150 kips) limits such shaking table tests to rather small scale models. One
of the objectives of the present study was to develop a technique for shaking
table testing of a planar (2D) frame rather than a 3D model; by this approach
it was possible to increase significantly the scale of the structure to be

tested because only a single frame was subjected to lateral force.

1.2 Objectives and Scope

The primary objective of this study was to obtain experimental data on
the seismic behavior of a two dimensional tubular x-braced offshore frame by
means of a shaking table. The test model represented a 5/8 scale model of

Popov's Frame I(ll); thus, it was a 5/48 scale model of the Southern California

Example Structure used in previous analytical studies(g’lo'lz). Because of
this similarity,rthis test can provide many useful comparisons with earlier
studies; furthermore, it can provide actual dynamic response data for direct
computer analysis correlation.

In addition, this investigation had two other specific objectives, as

follows:

1. Evaluation of the overall dynamic response of the test frame
subjected to scaled earthquakes of differing intensities, simulating
the API "Strength Level”, "Ductility Level”, and "Maximum Credible"
earthguake motions.

2. To provide observations of the actual dynamic inelastic behavior
of brace members and the failure mechanism of the test frame.

The special test fixture designed to make possible dynamic experimentation

with two-dimensional frame structures, as well as details of the test model

and its material properties are discussed in Chapter 2. Descriptions of the



structural response instrumentation and of the experimental procedures
employed are presented in Chapter 3 and Chapter 4, respectively.

The observed dynamic response of the test model is presented in the
form of graphical displays in Chapter 5. Time history plots of the table
motions and global responses of the test frame (such as lateral forces and
digplacements) are discussed, and the global lateral force versus lateral
displacement hysteresis loops are examined. 2Also, the deterioration of
global frame strength and stiffness are discussed. 1In addition to these
data on the global response, most of which were included in the preliminary
report gubmitted to the APT project sponsors, the present report also gives
detailed information on some aspects of the local dynamic response, such

as brace deformations and buckling behavior.



2. TEST MODEL AND PROPERTIES

Dynamic testing by shaking table excitation of a single offshore plat-
form tubular frame model required development of a special testing system
to provide lateral support to the test gstructure. This unigue test fixture
along with design criteria, geometry, and material properties of the test

model are described in this chapter.

2.1 Test Fixture

One unique feature of this investigation was that for the first time a
dynamic study of a large planar frame model wés attempted on the 20-ft square
shaking table at the Earthquake Engineering Research Center. The choice of
a 2D test model was made for two prime reasons: one was to provide dynamic
test results which are directly comparable with the static test results

obtained from the model studied previously by E. P. Popov(ll)

; the other

was to maximize the size of the test structure while keeping its total
strength within the force capabilities of the shaking table. An additional
factor of considerable importance is that a 2-D model costs much less than a
3-D model. However, to permit dynamic testing of a 2-D frame required
design of a speéial lateral support fixture which is described briefly in
this section;

The complete testing system employed in this investigation consisted
of the lateral support fixture, the test model, a steel platform for carrying
the test mass, and a set of lateral support linkages, as shown in Figs. 2.1A
and 2.1B. The lateral support frame consisted of two steel frames placed
parallel to the plane of table motion with a bracing system between them.

These frames provided support for the lateral linkage mechanisms connected

to the test model, as well as for the linkages controlling the added mass.



The dimensions of the test fixture were 9 x 14 ft in plan and 18 ft in
height. Its lateral stability was provided by angle x-braces in the
longitudinal direction and rod-turnbuckle braces in the lateral direction.

The 5/48 scale test model may be seen housed within the test fixture
in the photographs, Figs. 2.1A and 2.1B. Design criteria and a detailed
description of this model are given later in this chapter.

A rigid 6 x 20 ft platform to carry the concrete block, added mass
was fabricated from 20 ft long W16 x 58 chord members, connected by eight
6 ft long W8 x 17 cross beams with supplementary angle diagonal braces, as
shown in Figs. 2.1C and 2.1D. This was bolted to the top of the test model
through the deck module. A cne inch space was provided between the lower
surface of this platform and the top beams of the test fixture to permit
its free movement, but still prevent its dropping on the shaking table if
the frame model should collapse.

The lateral support linkages were specially designed to allow the test
model to move freely in the longitudinal and vertical directions {plane of
table motion) but prevent any lateral (out-of-plane)} movements. An analysis
of the lateral support linkages is given in Appendix A. These mechanisms
consisted of two 45-in. long bracing arms attached to the test fixture at one
end and to a 16 in. coupler beam at the other end (as may be seen in Figs.
2.1B,2.1C and 2.1D). The bracing arms were horizontal in the pre-test
position, with the coupler perpendicular to them and connected to the test
frame {or deck platform) at its center by a pin. All linkage attachments
were provided by spherical bearing joints (HEIM ARE-20M) so that both
longitudinal and vertical motions were possible. A total of six linkages
were used, four of which were mounted on the test frame legs with vertical
couple beams at the locations of horizontal braces. The other two were

attached with horizontal couplers to provide guidance for the mass-platform,



as may be seen in Fig. 2.1C.

2.2 Design Criteria for Test Model

The 2D frame tested on the shaking table (see Fig. 2.2) was a scale
model of part of a small four-pile offshore production platform designed
according to the API wave and earthgquake criteria applicable to Southern
California(l). Design of the model for dynamic testing on the shaking table
was carried out by API Committee No. PRAC #14, and was governed by the
following considerations:

1. Dimension constraints imposed by the shaking table size, and a

height limitation associated with the table overturning capacity.

2. Restrictions depending on the availability of the tube sizes,

especially those involved in the expected failure mechanism.

3. Limitations imposed by the table payload capacity with regard

to survivability of the test model under so called "Maximum
Credible" earthquake excitation.

As was noted earlier, the test frame represents a 5/8 model of the
frame tested by Popov(ll), which in itself was a 1/6 scale model of one
frame of the prototype Southern California example structure. In the
API design of the shaking table model , the measured strength and stiffness
of the Popov Model I (D/t of 48) was scaled up to prototype dimensions.
also the deck mass was increased 30% so that the scaled-up structure would
just reach yield stresses for API Seismic Zone 4 and soil type C strength
level criteria. This prototype was then scaled down to the shaking table
size model, requiring a superimposed weight of 38 kips. The pin-connected
base detail used by Popov was retained so that the correspondence of test

results would be preserved in this regard.

This geometrically scaled frame with mass distribution similar to the



prototype, represented a model which was dynamically similar to the prototype
offshore platform, using an appropriate time scaling factor. Therefore, the
experimental results of the test model can be extrapolated to define proto-

type response, using the standard similitude ratios shown in Table 2.1.

2.3 GCeometry and Member Sizes

The 5/48 scale test model was 75 in. (190.5 cm) wide, 17 ft 9-1/2 in.
(5.4 m) high and consisted of two diagonal x-braced panels and one k-braced
half-panel forming a complete bent (see Fig. 2.2). All brace mewbers and
jacket legs were selected from available steel tubing, approximately propor-
tioned for the 5/48 scale size. The horizontals and upper panel diagonal
brace members were 2-1/2 in. outer diameter tubes with a wall thickness of
0.049 in. (D/t = 51). They were cold rolled electric-welded tubing {CREWL01l0)
fabricatea from A513 mild steel. The failure mechanism for the test structure
developed in these tubes, and it is noteworthy that their wall thickness was
within 6% of the true scaled dimension.

Diagonal braces used in the lower panel, and k-brace members of the
top half-panel were tubes with the wall thickness of 0.083 in. and with
outer diameters of 3 in. and 3.5 in., respectively. They were Drawn-Over-—
Mandrill mechanical tubings, also fabricated from A513 mild steel. The
jacket legs of £he test frame, with outer diameter of 8 in. and D/t ratio
of 43, were chosen from WD-AWWA water pipe sections fabricated from A200
mild steel. Nominal tube sizes and their section propertiés are summarized
in Table 2.2.

The deck module of the test frame was built from two W14 x 22 wide
flange sections of A36 steel, welded side by side (see Fig. 2.2} with
enough stiffener plates to insure rigid aqtion. It was then attached to

the tubular frame by full penetration welds.



Details of the upper and center brace-to-jacket joints are shown in
Fig. 2.3A. An intentional offset of 1/2 in. was introduced at the intersection
of diagonal and jacket center lines, providing clear distances of from 0.74
to 1.4 in. between the tube walls to facilitate the welding process. This
offset and separation between non-overlapping braces are both within the

limits allowed by the API(I)

for simple joints.

The diagonal cross-joints between braces were fabricated according to the
details shown in Fig. 2.3B. Stubs with thick walls were inserted in the
through diagonals to prevent any premature failure of cross-joints prior to
inelastic action of the diagonal braces(ll). The same procedure was employed
in constructing load cells which were inserted at inflection points of the
diagonals. The thick wall stubs used in the load cells assﬁred that they would
remain elastic when the diagonals yielded or buckled; therefore, axial
strains measured in these devices are directly proportiocnal to the member axial
forces.

The test frame fabrication process was carefully planned to prevent any
undesirable eccentricity and mis-alignment. Full penetration TIG (Tungsten-
Insert CGas) welds were used in all tube connections. Tube ends were
beveled, and special efforts were taken to have reasconably close fits between

t+he tube members. Also, all welds were checked by radiograph tests for possible

flaws.

2.4 Material Properties

As was mentioned, all bracing tubes used in the test frame were fabri-
cated from A513 mild steel. According to the manufacturer's report, the
yield strength of such tubing was 58 ksi, which is considerably higher than
the yield strength of the A36 mild steel tubing commonly used in full-scale

offshore construction. To obtain strength properties in the test frame braces
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gsimilar to their corresponding full-scale members, the brace tubings were
annealed by heating them at 1600°F for one hour and then oven-cooling to
600°F. The strain-stress curves of coupon tensile tests shown in Fig. 2.4
demonstrate that the annealing process reduced the yield strength of the
tubing and produced a substantial plastic plateau which is essential to
ductile behavior of the braces.

Three coupon tensile tests were performed for each tube section size
of the bracing members. A summary of these test results along with the
measured wall thicknesses is given in Table 2.3. Tubes with wall
thickness of t = 0.083 in. used in the lower x-braces and in the top half-
panel k-braces had an average yield strength of 32 ksi and an average
ultimate strength of 53 ksi. According to the API criteria for the yield

strength of Fy = 32 ksi, a section is considered fully compact for D/t < 41

and partially compact if 41 < D/t < 59. Based on this criterion the tube
gection of the lower x-braces with D/t = 36 is fully compact, whereas the tube

section of the k-braces with b/t = 42 is considered partially compact.

The yield and ultimate strength of tube sections with measured wall
thickness of t = 0.046 in., used in the upper x-braces and the horizontal
brace members were 19.6 ksi and 41 ksi, respectively. This unexpectedly
low yield strength showed that the thinner sections should have been
annealed separately and under milder temperature condition. Under the APT
compactness reguirement (FY = 19.6 ksi, D/t < 66), this thin section with
D/t = 54 (t = 0.046 in.) is regarded as a fully compact section.

The jacket-legs were not annealed because it was believed that these
members would behave elastically in the dynamic tests. Also, because of
their larger sizes it was considered appropriate to treat these members as
they would be in full-scale construction. Two coupon tensile tests were

performed for these members, showing the average yield strength to be 48 ksi.



TABLE 2.1

SCALE FACTORS FOR DYNAMIC RESPONSE OF OFFSHORE PLATFORM

t PARAMETER ‘ ONE TRUSS PROTOTYPE/ONE TRUSS MODEL
Length : f*
Area % £2
Time VE
Period vE
Displacement £
Velocity VE
Acceleration g 1
Mass é £2
Force £2
Moment £2
Moment of Inertia £
Stress 1
Strain 1

£ = 48/5 geometric scale factor of prototype/model.

11
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NOMINAL TUBE SIZE AND YIELD STRENGTHS

TABLE 2.2

Section Area

Tube Size 0.D. Yield
Member x Wall Thickness (in.?) Strength (kips){ b/t
1,2,3,4,11,12,13* 2-1/2" ¢ x .049" - 0.377 21.87 51
5,6,7,8 3" ¢ x .083 0.761 44,14 36
9,10 3-1/2" ¢ x .083 0.890 51.62 42
Jacket Legs 8 ¢ x .188 4.610 - 43
2-1/2" ¢ Insert 2-1/2" ¢ x .156 1.149 66.064 16
3" ¢ Insert 3" ¢ x .250 2.160 125.28 12

GY = 58 ksi according to manufacturer's report.

Gy not available.

*  For member numbers see Fig. 3.4.




TABLE 2.3

SUMMARY OF COUPON TEST RESULTS

Nominal Section |Measured Thickness Uy Uult.
0.D. x t (in.) (ksi) (ks1i)
1 2-1/2" x .049" .046 21.90 42.9
2 2~=1/2" x 049" . 046 19.45 41,2
3 2-1/2" x .049 . 046 17.29 38.9
4 3" x .083" . 083 34.9 53.9
5 3" x ,083" .083 28.6 53.0
6 3" x .083" .083 30.9 51.9
7 3-1/2" x .083" .083 30.8 53.1
8 3~-1/2" x .083" . 083 33.1 52.8
9 3-1/2" x .083" ,083 32.3 51.2
10 8" x .188" .194 49.0 62.6
11 8" x .l188" .1%4 47.6 61.9
Brace Members Brace Member Jacket Legs
t = 0.046" t =0,083" t =0.194"
0 = 19.6 ksi 0 = 32 ksi 0 = 48 ksi
Y V4 Yy
o = 41 ksi o = 53 ksi o = 62 ksi
Uult ksi gult si. Uit ksi

13
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Fig.

2.1a

Front View of the Test Model and the
Lateral Support Fixture.



Fig. 2.1B Longitudinal View of Test Setup Showing Lateral
Bracing of Test Model to Support Fixture.

15
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Fig. 2.4 Stress-Strain Curves of Coupon Tensile Tests.






23

3. TEST SYSTEM AND INSTRUMENTATION

Over one hundred channels of instrumentation were used to measure the
shaking table motions and earthquake response of the £est model. The
measured response quantities consisted of the various accelerations and
displacements required to represent the overall response of the test model,
as well as forces and strains suitable to describe the behavior of the
individual members. A complete list of the data channels is given in

Appendix B.

3.1 Table Motion

Dynamic testing of the test model was carried out on the 20 ft. square
shaking table of the University of California at Berkeley. This table, which
is essentially a one foot thick reinforced and post-tensioned concrete slab
driven by an electro-hydraulic actuator system, is able to produce any
desired motions independently in the vertical and one horizontal direction.

The limiting values of shaking table motions (displacements, velocities,
and accelerations) are shown in Fig. 3.1. These limitations are imposed by
‘the capacity of the actuators and pumping system as described fully by Rea
and Penzien(l3); The desired table motions were based on actﬁal earthquake
records and were input to the control system in analog displacement form on
magnetic tape. The actual table motions were monitored by accelerometers
and Direct-Current-Differential-Transformers (DCDT's) mounted at the location
of each actuator. In addition to the vertical and translation components,

the horizontal pitch, roll and twist accelerations of the table also were

measured.

Preceding page blank
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3.2 Structural Response

The response of the test model was monitored by various accelerometers
and displacement measuring potentiometers located as shown in Fig. 3.2. A
detailed description and discussion of the accuracy of these instruments is
given in Reference (14}. Longitudinal and possible transverse and rotational
accelerations of the platform supporting the concrete blocks were measured
by three Kistler accelerometers located at the positions shown in Fig. 3.2a.
Thus, the gross base shear could be computed from inertia forces at this
deck level calculated from the corresponding measured longitudinal
accelerations. In addition, longitudinal.and possible transverse and
rotational displacements of the deck were monitored by three linear potentio-
meters shown in Fig. 3.2a.

In addition, seven potentiometers located either on the test fixture
or on a non-moving reference frame off the table, were used to measure the
longitudinal displacements of the frame at the joint lewvels and the out-
of-plane movements of the brace cross joints. These displacements combined
with the table displacement information provided relative displacements
at each joint which were used in evaluating the force-displacement hysteresis

loops of the complete frame as well as those of each panel.

3.3 Local Behavior

Local behavior of individual structural members was determined from
axial and bending strains measured by strain gages placed on appropriate
sections.

Axial displacements of the braces were measured using DCDT's connected
between the center of brace~jacket joints and the center of the brace cross-
joints (photographs "c¢" and "d" of Fig. 3.3). The members for which axial

displacements were measured included x-braces 1 to 8 and horizontal brace 12
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as indicated in Fig. 3.4. Out-of-plane movements of the brace cross-joints
were measured by linear potentiometers as mentioned previously.

Axial loads in the braces were obtained from the load cells consisting
of heavy tubing inserts, as mentioned before, with externally mounted strain
gages {see photographs "a" and "b" in Fig. 3.3 and alsc Fig. 3.5). All four
strain gages of each load cell were model CEA-06~250UM-120 manufactured by
Micro-Measurement. Braces 9 to 11, and 13 were expected to behave
elastically; therefore, strain gages were placed directly on these brace
members and no load cell inserts were used.

In-plane and out-of-plane bending strains were measured at the
two ends of brace 4. (Coincidentally, brace 4 experienced more severe damage
due to buckling than the other braces). For this purpose, four post-yield
strain gages (EP-08-250BG-120) manufactured by Micro-Measurement were applied
at each end section as shown in Fig. 3.5.

Axial forces in the jacket legs were measured by mounting a pair of
strain gages on opposite faces of the jacket tubes. These strain gages were
placed at the mid-height of the bottom, lower, and upper panels of the frame
(see Fig. 3.6). Bending strains in the jackets were also monitored at
critical locaticns next to the joints, using the same type of post-yield

gages mentioned above.

3.4 Data Acguisition

The analog signals from all transducers were scanned and digitized at
the rate of 100 samples per second per channel, by a NEFF 620 data acguisition
system. The data were temporarily stored on a mini-computer magnetic-disk
for immediate extreme wvalues print out, and then were copied on magnetic

tapes for permanent storage and subsequent processing.
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3.5 Load Cell Calibration

Load cells were used to measure the axial loads in the brace members.
Each load cell consisted of a heavy tubing stub with four strain gages mounted
externally at 90 degree angles. Thick wall tubing was used to maintain
elastic behavior of the lcad cell, and the four measured strains were
averaged so that the axial force in the brace would be interpreted directly
from the strain reading.

To verify the accuracy of the load cells, 12 in. lengths were cut from
the bracing membersg including the 4 in. long load cell inserts in their nid
sections. These then were subjected to increasing compressive axial loads
until they failed. The results of these tests on two sets of four load cells
each are susmarized in Table 3.1, where the measured EA factors for
computation of axial forces from axial strains, and the ultimate load capacity
of each specimen are given. In these tests, the applied axial forces were
plotted versus the axial strains measured by each pair of strain gages mounted
on opposite sides of the load cells. Differences in the slopes of those plots
indicated that reliable results could be obtained only from the average read-

ings of all four strain gages on each lecad cell,



TABLE 3.1

TEST RESULTS OF THE LOAD CELL CALIBRATION

: Area | Measured Ultimate i Average
Load Cell (in.2) | EA (kips) Load (kips) EA (kips)
2-1/2" x .165 1.21 31,265.4 8.64
2-1/2" x .165 1.21 36,796.7 10.00
35,139
2=1/2" x ,.165 1.21 36,460.5 8.80
2-1/2" x .165 1.21 36,033.C 9.96
3" x .261 2.246 70,781 30.75
3" x .261 2.246 64,735 29.30
66,482
3" x .261 2.246 63,930 29,30
3" x .261 2.246 ~ 28.00

|

| . STEEL CAP

4 STRAIN GAGE
¥
4 J |
 «———— LOAD CELL INSERT
"

TEST SPECIMEN
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4. TEST PROGRAM

The test program involved shaking table excitation of the frame model
at three earthquake intensity levels: the so-called API "Strength”, "Ductility",
and "Maximum Credible" earthquake motions. Also, static free vibration tests
were made with the original and the damaged frame to evaluate natural

frequencies and stiffness degradation of the test model.

4,1 Earthquake Motion

The earthquake motilons applied to the test model were scaled signals
derived from the S69E Taft component of the 1952 Kern County earthauake,
and the SO00E El Centro component of the 1940 Imperial Valley earthquake. The
APTI proposed scaled earthguakes, as well as the motions actually applied by
the shaking table at various intensities, are listed in Table 4.1. It is
important to note that the long periocd components were filtered out of the
actual earthquake records so that relatively high acceleration jintensities
could be achieved without exceeding the displacement limits of the table.

To produce inelastic behavior in the test frame, the signals suggested
by API were these El Centro and Taft motions scaled in two stages. First,
the basic El1 Centro and Taft earthquakes were scaled to approximate the APT
Ductility-Level earthquake spectrum for seismic Zone 4 and soil type C for
the prototype structure. In this stage the basic motions were scaled to a
peak ground acceleration of about 0.5 g and a peak ground velocity of 25 to 30
in./sec. (see Columns 1 and 2 in Table 4.1)., Then, the intensity scaled
motions of the prototype structure were time scaled appropriately for the 5/48
size test model. To produce the elastic strength level tests, these ductility-

level motions were reduced by one-half.

Preceding page blank
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Also, to investigate the frame behavior subjected to extreme destructive
earthquakes, the basic motions were intensity scaled first to provide a
prototype input acceleration of 1.0 g, and a peak velocity of 4 fps; then the
time scaling was adjusted for the test model accordigg to the similitude factors.

Table 4.1 shows that the scaled earthguake motions produced at the
Earthquake Simulator Laboratory of the University of California, Berkeley,
exceed the APY specified acceleration values, but are gquite low with regard
to peak API displacement values. This is the consequence of filtering out the
long period components of the earthguake record, but is thought to have had

little effect on the observed damage behavior.

4.2 Sequence of Test Runs

A total of ten earthquake excitation tests were performed with the model
on the shaking table, but only the seven tests shown in Table 4.2 are
considered significant. The other three tests had very low intensities and
served only to check out thé instrumentation. The factors indicated before
the name of each signal represent the time scaling, i.e., the factors by
which the basic signals were speeded up. The "Span Setting” indicates the
control console_dial setting that governs the amplitude of the input
displacements. -

The low intensity El Centro and Taft earthguakes with a peak
acceleration of about 0.28 g were the first two significant tests performed;
these were intended to indicate which motion had the greater effect on the test
structure at the linear elastic response lewvel. Following these two tests
was the Taft Span 180 Test, chosen to cause inelastic response equivalent to
the API Ductility-Level. The peak table acceleration and displacement during
this test was 0.58 g and 0.854 in. (2.17 ém),'respectively. Next, the

intensity of the Taft signal was further increased to a peak acceleration of
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1.23 g and a peak displacement of 1.689 in. (4.29 cm) for the purpose of
evaluating the survivability of the offshore frame subjected to a maximum
credible destructive earthquake.

Then two identical low intensity tesgts essentially eguivalent to the
original El Centro signal were performed. These served to demonstrate the
effects of stiffness deterioration of the test frame resulting from damage
in previous tests, and to investigate whether such deterioration continued.
Finally an intense Taft signal, essentially equivalent to the previous
maximum test, was applied to evaluate the ability of the damaged frame to

survive a major aftershock.

4.3 Fregquency Measurement

The fundamental natural frequencieg of the test model were evaluated
by vibration tests performed before and after completion of the dynamic
tests. The measured frequencies and corresponding vibration decay provide
useful information about the stiffness degradation associated with the
structural damage and the resulting changes in modal damping. The two
methods used to measure the natural frequencies are described here.

The basic vibration test was carried out by blocking the shaking table
so that it would not move, and then pulling the test model at the platform
level with a static load applied through a cable. The response resulting
from suddenly releasing the load was monitored by an accelerometer mounted
on the platform of the test model and the response signal was input to a
spectrum analyzer; the natural fregquencies were indicated by the sharp peaks
in the plotted spectrum. As a check, the same response data were also
processed by a Fast Fourier Transform program available on the NOVA mini
computer that controls the earthquake simulator. The natural frequencies

again were evident on the resulting spectrum plots.
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In addition, frequencies ¢of the test model were determined at the
end of each dynamic test by feeding the response decay portion of the deck
acceleration record to the spectrum analyzer, after the table motion had
terminated. Frequencies measured under this condition are the real
frequencies of the test model on the actual "soft" foundation provided by
the shaking table. This soft condition results from the shaking table
hydraulic actuators, passive stabilizers, and air cushion, and tends to reduce
the natural frequencies of the test model as compared with the blocked
foundation condition that existed in the snap tests, Results of all

frequency measurements are presented in Chapter 5.



TABLE 4.1

API PROPOSED AND ACTUAL SHAKING TABLE EARTHQUAKE MOTIONS

( API Seismic Zone 4

Earthguake Prototype 5/48 Scale Model
Soil Type C Signals Acc. Time Acc. Time Max. Acc. | Max. Vel. Max. Displ.
5% Damping Factor | Factoxrl] Factor | Factor (cm/se%) {cm/sec) (cm)

%
APT El Centro 0.75 1.3 0.75 0.42 256 10.5 1.44
Strength Level Taft 1.44 1.5 1.44 0.48 253 12.2 3.056
Shaking Table Fl Centro 0.81 1.3 0.81 0.42 276.4 0.59
P
Strength Level Taft 1.54 1.5 1.54 0.48 270.,5 1.08
APT Ductility E1l Centro 1.5 1.3 1.5 0.42 512 21.0 2.88
: 0.5

Level; g Taft 2.88 | 1.5 2.88 | 0.48 | 506 24.4 6.10
25~30 in./sec
Shaking Table Taft 3.24 1.5 3.24 0.48 569.4 2.17
Ductility Level i
APT Max. Credible El Centro 2.87 1.27 2.87 0.41 980 39.3 5.26
1.0 g, 41ips Taft 5.57 1.23 5.57 0.40 980 39.3 8.13
Shaking Table Taft 6.84 1.5 6.84 0.48 1203.4 4,29
Max., Credible ~

* 0,42 = 1.3 f5/48

6¢
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TABIE 4.2

TEST SEQUENCE

Test

Max Acc Max Displacement
No. Earthguake Signal (g) in. (cm)
1 2.38 * El Centro Span 50 0.282 0.234 (0.59)
2 | 2.08 * Taft Span 90 0.276 0.426 (1.08)
3 2.08 * Taft Span 180 0.581 0.854 (2.17)
4 2.08 * Taft Span 360 I 1.228 1.689 (4.29)
5 2,38 * E1 Centro Span 50- 0.288 0.241 (0.61)
6 2.38 * El‘Centro Span 50 0.288 0.239 (0.61)
7 2.08 * Taft Span 360 II 1.241 1.693 (4.30)




5. EXPERIMENTAL RESULTS

In performing the shaking table tests, the test nmodel described in
Chapter 2 was loaded by 9 concrete blocks attached to the 6 x 20 ft steel
platform bolted to the deck module of the frame. The total superimposed
dead weight was 40.4 kips, 6.3 percent larger than the 38 kip load
suggested by API. The measured natural fregquencies of the frame with this
load, as well as the dynamic response behavior of the test structure
subjected to shaking table motions applied with three different intensity
levels, are presented and described in this chapter.

Following a discussion of the measured natural frequencies and of the
pitching interaction motion of the shaking table in Sections 5.1 and 5.2,
the global response behavior of the structure obgserved in varicus tests is
described in Sections 5.3 to 5.7. Data presented for each test includes
time history plots of the table motions and of the relative displacements
and shear forces developed in the frame together with hysteresis plots of
these shear force-displacement results. Extreme values of the various
regsponse guantities are tabulated, and comments are made on the amount of
stiffness degradation and other damage effects noted in each test.

The next sections of the chapter (5.8 to 5.10) present data on the
local behavior of the frame as indicated by force and deformation historieg
of selected brace members as well as by the corresponding member hysteresis
loops. Also included in the local response data are tables of the maximum

forces measured in obvious members.

5.1 Natural Fregquencies

The fundamental natural frequencies of the model structure measured

at variocus stages of the test program are listed in Table 5.1. The first

41
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freguency measurement was obtained by applying a "snap" test at the deck
level, while the shaking table was resting on its support jacks and blocked
against any movements. The frequency measured with this fixed foundation was
2.75 Hz, corresponding to a lateral stiffness of 31.2 kips/in. This stiff-
ness matches within 2% the scaled stiffness calculated from Popov's test
Frame I (5/8 x 51 = 31.8 kips/in.}. The modal damping ratioc obtained from
the free-vibration response was 1.5% of critical.

Frequencies of the test model measured from the response decay portion
of the deck acceleration in the first "strength level"” dynamic tests 1 and
2 are listed next. The first mode frequency determined in this way was
2,125 Hz., which indicates a significant reduction (23%) with respect to the
frequency obtained with the fixed foundation. As was mentioned earlier,
thig discrepancy is due to the shaking table - structure interaction. The
table-structure interaction mechanism is very complex and varies with the
type of structure on the table as well és with the intensity of input motion.

The first and second mode natural fregquencies of the test model measured
in the final strength level tests were 1.875 and 5.50 Hz, respectively. This
12% reduction of first mode freguency with respect to that obtained in original
strength level tests, was due to the damage that occurred during application
of the "maximum credible"™ motion. It is interesting that the second mode
frequency was unchanged,indicating that distortions excited in this mode were
concentrated in the undamaged portions of the frame. The modal damping
ratio obtained in the final strength level tests was 2.53% of critical;
showing that the damaged structure absorbs more energy due to continued

local yielding in the damage zones.
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5.2 Table Pitching-Motion

The 20-ft square shaking table is driven vertically by four 20 kip
hydraulic actuators. The support of the shaking table provided by these
active actuators, as well as the passive vertical stabilizer units and the
alr cushion beneath the table, has significant flexibility. Therefore it
cannot completely constrain the overturning forces induced during severe
seismic tests with the result that the table has a tendency to pitch, The
pitching motion of the table is very complex, but in general it varies with
the weight and stiffness of the structure installed on the table and with the
intensity of input signals.

The test model with its superimposed weight of 40.4 kips located 21.5
ft. above the table, represented a top heavy, low frequency structure which
exerted very large overturning moments on the table and therefore had
significant interaction with it. The acceleration time histories of the re-
sulting pitching motion caused by table-structure interaction during tests 1 to 4
are depicted in Fig. 5.1. As these time histories indicate, the pitch
acceleration is nonlinear in nature with the pitching peaks changing
drastically with the intensity of the input signal. However, the results of
all tests are generally similar in appearance; that is, all of them represent
a high frequency signal superimposed on a lower frequency response component
that is similar to the acceleration of the test frame deck. (Compare for
example the pitch acceleration for E1l Centre Span 50 with the shear time
histories shown in Fig. 5.5.)

One of the principal objectives of this experiment was to provide
actual response data which could be used in computexr correlations to verify
the accuracy of available analysis techniques. To formulate a successful

analytical model capable of predicting the experimental results, the
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table-structure interaction must be accounted for. Two analytical models

that might be used for representing such interaction are described here.

Model 1 - In this approach, both the horizontal and the pitch motions
measured from the table are included as input signals applied to the test
model. To include the pitching motion, one can either specify angular pitch
acceleration direectly, or transfer the pitch acceleration into egquivalent
vertical couple accelerations applied at the base nodes. Although this
approach seems simple, in principle, it has the basic shortcoming that most
available computer programs are capable of dealing only with translational

input ground motions.

Model 2 - In this model, the interaction of the shaking table in the dynamic
response analysis is accounted for by providing vertical spring supporits under
the table to simulate the 0il column flexibility of the hydraulic actuators,
while the table input motion is defined as simple translation. The table
itself, with a rotational wmass of 1245 kips-sec-in., is modeled as a rigid
beam connected between two base nodes of the test frame and is aliowed to
rotate freely on these spring supports. The required stiffness of‘the

spring supports depends on the type of structure and the intensity of input
ground motion, and is determined by freguency analysis of the table-structure
mathematical model, treating it as the unknown parameter. In this process,
the stiffness properties of the test model determined from a fixed base test
are kept unchanged. Then, by varying the stiffness of support springs, a
trial and error procedure is used until a close match is obtained between

the frequency of the analytical model and that of the actual structure
observed during the dynamic tests, This type of model, shown in Fig, 5.2,

has been used successfully in several previous studies(l4'15'16'17).
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5.3 Global Response to "Strength Level" Input

In the strength level tests, the larger horizontal component of the E1
Centro and Taft earthquake signals was applied to the test model with a peak
acceleration of 0.28 g. These shaking table motions had a peak acceleration
12% higher than the API strength level requirement (0.25 g), but they
caused only essentially elastic structural response with the x-brace members
of the upper panel stressed just to the yield point. The vielding of these
braces was minor and was limited to critical regions near the jacket
connections, The maximum brace member loads calculated from the load cell
strain data, extreme values of the total frame loads, and peak accelerations
and displacements of the deck for each dynamic test are given in Table 5.2.

The overall dynamic response of the test model and table motions are
graphically displayed in Figs. 5.3 to 5.8. Table motion data in Figs. 5.3
and 5.4 depict the acceleration and displacement time histories, along with
the corresponding response gspectra for the El Centro and Taft motion, respect-
ively. The response spectra were cbtained for five damping ratios using a
program developed by Nigam and Jennings‘lB).

The time histories of deck displacement and of gross shear obtained from
the deck acceleration, shown in Figs. 5.5 and 5.6 for the two earthquakes
indicate a domiﬁant first mode vibration as was expected. They also, particularly
in the Taft test, present a peculiar large amplitude response after the 6th
second of motion which does not correspond to any significant large input
horizontal acceleration. It is believed that this behavior is due to the table-
structure interaction mechanism as can be observed in the corresponding table
pitch accelerations in Fig. 5.1.

Hysteresis loops of the gross frame_shear versus deck displacement

presented in intervals of four seconds, are shown in Figs. 5.5 and 5.,8.
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During the El Centro test (Fig. 5.7), the force-displacement relation
remained essentially linear, except for the first four seconds of the response
when local yielding of the upper x-braces was initiated. Clearly, these
hysteresis loops do not indicate any stiffness degradation; the stiffness
measured during the linear response of the last four seconds was 17.44 kips/in.
Hysteresis load-displacement loops of the Taft test {Fig. 5.8) performed
after the El Centro motion, are also narrow and indicate only minor nonlinear
behavior; but the lcad at which yielding of the braces was initiated was lower.
The stiffness of the frame measured in the last four second portion of the
response for this test also was 17.44 kips/in. Thus, the local yielding of
braces that occurred in the stress concentration region near the jacket joints

was not severe enough to produce global stiffness deterioration in the frame.

5.4 Global Response to "Ductility Level” Input

After the strength level tests, the Taft Span 180 earthquake motion was
applied to the test model with a peak acceleration of 0.58 g (two times the
strength level test). The general response of the frame in this test resembled
that of the Taft Span 90 Test with no visible brace buckling. The compression
and tension yielding of x-braces in the upper panel continuved, but energy
dissipation of the frame was not significant. The results of this test are
depicted in Figs. 5.9 to Fig. 5.11, with the table motions (Fig. 5.9) in the
same format as for the strength level tests. The time histories of the deck
displacement and frame shear load (Fig. 5.10) similarly to the previous Taft
test, indicate a dominant first mode vibration with significant table-structure
interaction. Also, a reduction in response freqguency due to brace yielding
is evident, especially in the 4 to 6 second portion of the response (compare
Fig. 5.10 with Fig. 5.6). 7The maximum deck digplacement during this test

reached 1.18 in. which is twice the amplitude in the previous Taft strength
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level test, but the frame load was magnified only 1.7 times.

The force-displacement hysteresis loops, shown in Fig. 5.11, exhibit only
three relatively open loops, indicating only a small amount of energy
dissipation during this rather intense test. The stiffness of the frame
measured during the final portion of the response was 15.34 kips/in. This 12%
stiffness reduction with respect to the previous tests demonstrates that some
damage was incurred, but with no significant loss in structural integrity.

The maximum average transverse acceleration measured at the deck level
was 0.023 g, corresponding to a 930 1lb transverse frame load. Of course this
lateral load was resisted by the test fixture, and is not significant in the

test frame responses.

5.5 Global Response to "Maximum Credible" Input

The "maximum credible" earthquake motion applied to the test wmodel was
the Taft Span 360 signal having a peak table acceleration of 1.228 g and peak
table displacement of 1.689 in. (Fig. 5.12). The application of this very
strong table motion caused major inelastic frame response with significant
compression buckling and tension yielding in the upper panel x-braces. The
buckling, which occurred in the out-of-plane direction, was observed in
braces 2 and 4; that is, in the lower segment of the x-braces.

A graphical display of the results from this test is presented in Figs.
5.13 and 5.14 in the same sequence as those of the earlier tests. The maximum
frame shear force and relative deck displacement were 28.52 kips and 2.42 in.,
regspectively. The time histories of these quantities (Fig. 5,13} show that a
significant portion of the nonlinear frame response took place during the first
6.5 seconds of the test, while the larger amplitudes of the input acceleration
were being applied. Overall force-displacement hysteresis loops of the test

frame during intervals of 4 seconds are shown in Fig. 5.14. The hysteresis loops
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in the upper left graph clearly show when the initial buckling of the x-

braces occurred. The first buckling occurred in brace 2 when the table
acceleration reached its first peak at time 2.18 seconds. No buckling

occurred during the next two response cycleg, but asvthe table acceleration
reached another peak at 3.38 seconds, significant buckling developed again in
brace 4. After these initial bucklings, braces 2 and 4 went through three

more cycles of compression buckling and tension yvielding. During the last

eight seconds, the response of the frame was linear, and the stiffness of the
frame calculated from the slope of the hysteresis loops was 11.25 kips/in.,

only 73% of the stiffness calculated at the end of the previous test. The overall

stiffness reduction with respect to original elastic stiffness was 36%.

5.6 Post-Damage Global Strength Level Response

The maximum c¢redible test (Test 4 TAFT-360 I) was followed by two tests
using the same strength level E1 Centro Earthquake signal used earlier. .The
purpose of these tests was to assess the effect of stiffness degradation of the
test frame due to the damage caused in the previous tests. The table motion
and overall response of the test frame during the first of these repeat tests
(having a peak acceleration of 0.288 g) are shown in Figs. 5.15 to 5.17.

Time histories of the frame load and deck digplacement (Fig. 5.16) diffexr
noticeably from those of the initial strength level test (Fig. 5.4) and their
lower response frequency indicates the substantial stiffness loss from the
condition during the previous tests. The maximum resulting frame load was
only 6.34 kips, only 52% of that obtained in the initial strength level test.
Thus it is evident that the damage has reduced the strength demanded of the
frame. The load imposed on the upper panel x-braces is seen in Table 5.2

to be only 2,26 kips, compared to the 6.55 kips developed in the previous

strength level test. Hysteresis loops of the frame load versus deck
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displacement (Fig. 5.17) are generally wider compared with the previous test
{(Fig. 5.7), with some minor pinching during the first four second interwval
of the response. The stiffness of the test frame determined from the free
vibrations at the end of the response is 13.34 kips/in. compared to the 17.44
kip/in. found during the initial strength level test, a stiffness degradation
of 24%. However, the stiffness in this test, surprisingly, is higher than the
stiffness determined during the maximum credible test (11.25 kips/in.). Thié
difference is believed to have been caused by the table-structure interaction
which tends to decrease the natural frequency of the frame response. In the
Taft Span 360 test, the table pitching was relatively more severe compared to
the pitching observed in the E1l Centro Span 50 test (see Fig. 5.1).

The results of the second post-damage strength level test, are shown in
Figs. 5.18 to 5.20. These resemble the results of the preceding test except
that the pinching of the force-displacement hysteresis loop is slightly more
pronounced, suggesting a slight addition to the damage state. However, the
measured frame stiffness was 13.10 kips/in. which shows that the additional

stiffness degradation was only 1.8%.

5.7 Global Response to Second "Maximum Credible" Input

In order to study further how the damaged structure responded to dynamic
excitation, and alsc to evaluate its ability to withstand a major aftershock,
the same earthquake input applied in Test No. 4 (TAFT 360 I) was applied
again. The table displacement and acceleration, shown in Fig. 5.21,clearly
were essentially identical to the previous test input (Fig. 5.12), so
comparison of the respohse data from the two tests demonstrates the effects
of the damage caused during Test No. 4.

The most explicit comparison is giveh by the global shear force and

displacement histories. It is evident from the plots of Fig. 5.22, showing the
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response of the damaged structure, that the damage has induced some important
changes from the corresponding previous graphs of Fig. 5.13, although the
general character of the response is similar to the earlier test. Specifically,
it may be noted that the amplitude of shear force has been reduced somewhat
by the damage, while the displacements were increased; alsco the response
frequency was slightly reduced. BAll of these effects are consistent with a
loss of stiffness due to brace damage.

Comparison of the new shear force-displacement hysteresis loops of
Fig. 5.23 with the previous results in Fig. 5.14 also supports this
conclusion, especially the reduced force amplitude shown during 0-4 seconds and
the broader loops during 4-8 seconds. Moreover, the free vibration stiffness
during the final four seconds was only 8.45 kip/in., a reduction of 24% from
the value observed in Test No. 4.

Further details of the additional damage done during this second maximum
credible event is presented in Figs. 5.24 and 5.25. The upper curves of
Fig. 5,24 show the time history of shear forces in the upper panel jacket legs,
while the lower curves compare the total shear force in the frame with the
component resisted by the diagonal braces. These figures clearly show the
limited resistance capability of the bracing members, even during the first
few seconds of the test. After diagonals 2 and 4 rupture, at about 6 seconds,
the entire ghear force is resisted by the jacket legs. Of courge these shear
forces are associated with reverse bending of the upper panel jacket legs,
as evidenced by the end moment histories shown in Fig. 5.25.

Detailed evidence of the brace damage observed after this test is shown
in the photographs of Fig. 5.26. A general view of the upper panel damage, given
in (a), shows the complete rupture of brace 4 and the mid-span crumpling of

brace 2. In (b) the damage to brace 2 is shown in close-up view. Careful
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examination reveals that this brace also was torn, but did not fail completely.
In (c) it may be seen that brace 4 suffered severe buckling damage at the lower
end as well as in mid-span. Even though no buckling occurred in the stronger
braces provided in the lower panel, photograph (d) shows that significant
vielding occurred at the ends of some of the brace members.

The maximum forces measured in all brace members during all tests are
listed in Table 5.2, together with the maximum accelerations and displacements
measured at the deck level. Also listed in Table 5.2 are the total frame shear
forces evaluated from the deck level accelerations. Related response
information giving the maximum jacket moments observed at top and bhottom panel
locations during all tests is listed in Table 5.3. Corresponding maximum
dynamic axial forces measured in the jacket legs during all tests are listed

in Table 5.4.

5.8 Local Brace Response to "Ductility Level" Input

To give greater insight into the observed damage mechanismg, the preceding
comments on the global response behavior will now be supplemented by data
concerning the forces and deformations measured in the upper panel brace
members, considering in this section the ductility level test which caused
the first appreciable damage. Figure 5.27 presents time-history plots of
the axial displacements induced in the members. The appearance
of the displacement curves for brace 2, with the maximum amplitude portions
being "clipped" off the cyclic response variation, suggests that this
displacement gage was not performing reliably; however the cause of this
problem is not known.

Axial force-displacement hysteresis loops for braces 1, 2, and 4 are
presented in Figs. 5.28, 5.29, and 5.30, respectively. These all show

significant cyclic yielding in tension and compression, leading to
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considerable energy loss during each cvcle. It should be noted that the
vertical unloading segments in the hysteresis lcops for brace 2 are associated
with the "clipping" effect mentioned above. They demonstrate instrument

malfunction, and do not describe the true brace behavior.

5.9 JIocal Brace Response to First "Maximum Credible" Input

Figure 5.31 presents the axial displacement records for the four upper
panel braces subiected to the first severe damage test. It is interesting to
note that brace 4 underwent the greatest deformation, consistent with its
observed buckling and ultimate failure. The much smaller deformation of brace
3 shows that the damage was concentrated in the lower half of this complete
diagonal member, The 180° out-of-plane response in braces 3 and 4, however,
suggest instrumentation malfunction. It seems likely that the pin to which
the displacement gages were attached at the intersection joint of the "X" was
undergoing significant rotation after about 3 seconds, and this apparent axial
displacement due to rotatioﬁ was being added to {or subtracted from) the
actual axial deformation of the bracing members. This effect alsc may have
been responsible for the "clipping" which is apparent in the brace 2 records;
these records are similar to the ductility level results described above.

The out-of-plane displacements of the brace intersection joint for the
upper panel are plotted in Fig. 5.32; results for the first three tesfs are
presented in the upper curves together with the results for Test 4 shown
in the lowest curve. Because displacement i1s evident even in the least intense
motions, it is apparent that some out-of-plane eccentricity was present,
however the amplitude of the displacement was not important until Test 4.

It is interesting to note the significant residual displacement resulting
from Test 4; this was concurrent with the’residual axial distortions shown in

Fig. 5.31.
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Axial force vs axial displacement hysteresis loops are shown for upper
panel braces 1, 2, and 4 in Figs. 5.33 to 5.35, respectively. BAll of these
curves have the characteristic shape associated with cyclic tension yielding
and compressive buckling. The compressive force is éeen to reach its
maximum value early in the compressive loading cycle, and then to drop off
significantly as the buckling deformation develops. Also, the continuing
reduction of the peak force values during successive cycles is apparent, show-
ing the effects of cumulative damage to the brace members. Figure 5.34
shows the distortion resulting from the "clipping” of the brace 2 axial
displacement records, and can only be used in a qualitative evaluation of the
performance. For similar reasons, the hysteresis loop was not plotted for
brace 3, bhecause its out-of-plane character would produce a reverse direction
hysteresis loop.

To provide further understanding of the buckling deformation mechanism
for brace 4, plots are presented in Figs. 5.36 to 5.39 showing the wvariation
of bending strains at the ends of the member with the axial force. The
bending strains were measured by taking the difference between axial strains
indicated at opposite sides of the cross-section (see Fig. 3.5). TFigure
5.36 shows the étrain due to out-of-plane bending at the lowexr end of the
brace (i.e.,‘at the jacket connection) =-strain 1, while Fig., 5.37 gives
the corresponding results measured at the upper (x-joint) end of the brace
~strain 2. It should be noted that the positive strain direction assumed in
these plots has been chosen arbitrarily; 1t has no real significance.
However, it is interesting to note that the bending strains correspond quite
closely with the axial displacements, as may be seen by comparison with
Fig. 5.35. The amplitude of the strains'indicated by these post-yield

strain gages, listed in Table 5.5, greatly exceeds the yield limit of
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this material. The corresponding results for in-plane bending of brace 4
shown in Figs, 5.38 and 5.39,strain 3 and strain 4, respectively, are of
interest mainly in verifying that the dominant buckling mechanism was in
the out~of-plane direction.

The final set of results from this first significant damage test are
presented in Figs., 5.40 to 5.42. These show axial force vs axial displacement
hysteresis loops for certain brace members of the lower panel. Because
these braces were more than three times stronger than those in the upper
panel, they were able to resist these intense lateral frame loads without
buckling (see Table 5.2). However, some definite yielding of the brace

members is evident in these hysteresis loops.

5.10 Local Brace Response to Second "Maximum Credible" Input

Further details of the damage suffered by the test frame were indicated
by the results measured during the second maximum input test (TAFT 360-II).
In general, the local member responses observed during this test were similar
to those in the first maximum credible event, but because the braces
actually ruptured. during this test the behavior was modified in some
significant details.

Figure 5.43 shows the axial displacement histories measured in the upper panel
braces. Comparison with Fig. 5.31 shows generally similar performance, but
the "clipping" phenomenon of brace 2 has disappeared (no explanation is
available). However, the out-~of-phase response of brace 3 relative to brace
4 is still present, and apparently is responsible for the compression direction
"clipping" in the record presented for brace 4. It is interesting that no
additional "drift" was observed in the axial displacements during this test

(compare with Fig. 5.31).
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The early history of out-of-plane displacements of the upper panel cross
joint, shown in Fig. 5.44, is quite similar to those observed in the earlier
tegts {FPig. 5.32), except that the amplitude is approximately doubled due
to the large residual eccentricity developed during test 4 (TAFT 360-I).

Note that the first two curves of Fig. 5.44 were from tests essentially equal
to the first curve of Fig. 5.32. The rupture of braces 2 and 4 shows up
clearly in the third curve of Fig. 5.44. No out-of-plane displacements could
be induced by the ruptured braces.

gimilar conclusions concerning the rupture of the braces can be drawn
from the axial force-axial displacement hysteresis loops presented in
Figs. 5.45 to 5.47 for braces 1, 2, and 4, respectively. All of these curves
have a normal appearance until rupture occurred after about © seconds.

To complete the record, the plots of out-of-plane and in-plane bending
strain measured at the ends of brace 4 are presented in Figs. 5.48 and 5.49
(out-of-plane) and Figs. 5.50 and 5.51 (in-plane). These generally are quite
comparable with the results of the Taft 360-T test, shown in Figs. 5,36 to

5.39, up to the time when rupture occurred.
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TABLE 5.1

FUNDAMENTAL NATURAL FREQUENCIES

lst Mode

Test ID 2nd Mode
Static Test (table locked) 2.75 Hz -~
Initial-strength level Tests 1 and 2 2.125 5.50
Post-strength level Tests 5 and 6 1.875 5.50




TABLE 5.2

MAXIMUM LOAD OF FRAME AND BRACE MEMBERS

Test! Input Deck |  Deck Frame ; ; E %
No. | Signal BAcc. (g) | Displ (in.) | Load (kips); Brace 1 | Brace 2 Brace 3 Brace 4| Brace 5 |[Brace 6 JBrace 7 ;Brace 8
— : i . + —
| : :
1 EC 50 0.301 0.804 12.16 -6.65 ~-6.75 6.55 6.62 -10.46 !—10.87 !—10.56 i 10.81 i
2 | TAFT 90 0.234 0.595 9.45 ~5.53 -5.61 5.29 5.31 - 8.07 |-8.,28 | 8.01 8.24 ‘
| |
| .
3 TAPT 180 0. 398 1.180 16.08 ~7.85 ~7.95 7.39 7.39 -13.72 2—14.17 13.88 4.10
4 TAFT 360 I; 0.706 2.419 28.52 -8.98 -9.17 8.51 8.86 23.71 f 22,88 -24.08 -24.56
i
5 EC 50 0.157 0.517 6,34 2.15 2.27 2,29 2.34 - 6.36 | - 6.46 6.16 6.21 |
i i
6 | BEC 50 0.158 0.511 6,42 2.11 : 3
E v
L
|
7 |TAFT 360 II| 0.595 3.319 24.04 7.00 7.28 7.43 7.63 =-24,73 -25.32 j-25.29 -25.63
E; = 6.95 kips Brace 1 to 4.
E& = 24,35 kips Brace 5 to 8.

LS



TABLE 5.3

MAXIMUM BENDING MOMENTS OF THE FRAME JACKETS AT

LOCATIONS SHOWN IN FIG. 3.6
Test Top-End | Bottom~ Top-End | Bottom- Top-End| Bottom- Top-End | Bottom- Top-End | Top-End
No. | Input Signal UPJ1 End UPJ1 upJ2 End UpPJ2 LpJl End LPJ1 LpJ2 End LPJ2Z2 BPJ1 BPJ2
1 | EC 50 -33,004 | -39.175 -33.809 | -36,760 48,298 93.645| 46.152 85.059 -97.938 | -94.450
2 | TAFT 20 -22,539 | -24.149 | ~-15.294 ) -22,539 29.5186 72,716 28.979 68.423 ~76.204 | -72,447
3 | TAFT 180 ~77.277 | -79.961 -73.252 | -76.472 91.2307 123.429 88.547 | «110.818 | -127.990 |-117.526
4 j TAFT 360 I -232.905 {194.803 | -201.243 | 194,803 217,342 194,5351-227,270 | -183,534 | -189,168 |-159.116
5 EC 50 -56,348 | =55.275 -56.080 | -53.933 58,495 44,273 58,763 -44.005 ~53.128 48.835
6 | EC 50 -58.763 L_54.738 54,470 | =52,.592 57.690 43,468 57.421 -47.762 ~50.445 47.762
\
7 | TAFT 360 II L323.062 332.722 (-317.964 [~395.241| ~150.261|=355,529 | ~149.456 { ~-194.803 | 164.483

S = 9.065 in? Section Modulus

o
¥y

M
Yy

48 ksi

oys = 435.15 kips~in.

B89



TABLE 5.4

MAXIMUM DYNAMIC AXIAL FORCES OF THE JACKET IEGS AT THE
LOCATIONS SHOWN IN FIG. 3.6 (kips)

Test {

No. Input Signal A; UpPJ1l UpJ2 LPJLl LPJ2 BPJL BPJ2
1 EC 50 E 20.842 | -20.701| 32.248| -31.544] 41.120} 42.669
2 TAFT 90 17.462 | -17.180) 25.770| -25.489] 33.234| 34.501
3 TAFT 180 29.291 | -28.164§ 42.669| -41.543) 52.104| 56,188
4 TAFT 360 T 43.514 42.669) 63.229] 64,356] 65.905] B5,338
5 EC 50 11.266 | -11.5688| 15,913] 15.490) 19.856| 22.250
6 EC 50 10.984 =-11.266| 15.631| =15,350| 19,997] 21.827
7 TAFT 360 II 35.769 36.755| 56.892 57.033} 59,709 69.285

A = Tt({D~t) = 7(.194) (8-.194) = 4,7575 inz, E = 29,600 ksi.

P = UY A = 48 x 4.7575 = 228,361 kips.
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MAXIMUM BENDING STRAINS MEASURED AT LOCATIONS 1, 2,
AND 4 IN BRACE 4 (milli in./in.}

TABLE 5.5

Test

Bending ! Bending Bending Bending

No. {Input Signal Strain 1 = Strain 2 Strain 3 Strain 4
1 {Bc 50 ~-0.305 0.789 ~-0.148 ~0.182
2 {TAFT 90 -0.079 0.207 -0.111 -0.074
3 |TAFT 180 -3.318 1.173 -0.351 0.484
4 |TAFT 360 I ~-10.676 5.285 -8.420 -15.616
5 {EC 50 0.303 0.64§ -0.208 -0.408
6 |EC 50 0.283 0.606 -0.227 -(.385
7 {TAFT 360 II 3.423 -10.396 -2.350 -3.800

1
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6., CONCLUDING REMARKS

This investigation demonstrated the feasibility of dynamic testing of
a two dimensional scale model of a typical fixed tubular x-braced offshore
platform by meané of a shaking table. The experimental data obtained on the
overall seismic response of the test medel subjected to various earthguake
excitations comparable with the APTI "Strength Level”, "Ductility Level”, and
"Maximum Credible™ motions has been presented in this report. Based on
those results, the following remarks and observations can be made:

1. The inelastic behavior of the test model demonstrated that for a
properly designed braced frame, a moderate amount of energy
dissipation can be achieved during severe earthquake input due to
the inelastic buckling and tension yielding of bracing members.

2. Member buckling was initiated in the x-bracing members of the
upper panel as expected, and it is important to note that the low
strength of this panel limited the axial loads transmitted to the
braces of the lower panel. Conseguently, buckling did not progress
to the bracing members of the lower panel during subsequent response
cycles, and thus the force~displacement hysteresis loops for the
complete frame obtained in this study were not as full as those
obtained during the forced displacement inelastic cyclic test(ll),

3. Buckling of the braces tended to be concentrated in one brace of a
full diagonal, with a visible minor bowing of the adjoining brace
along the same diagonal. Such behavior, which was alsc observed
in the pseudo-dynamic cyclic test(ll), would be expected due to

differences in initial imperfections or secondary moments. As

one brace of a full diagonal buckles, local failures made possible

Preceding page blank
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by the high D/t ratio of the tubings reduce the buckling load in
subsequent cycles, and thus, prevent inelastic deformation in the
straighter brace.

4. When the test frame was subjected to the "Maximum Credible” ecarthguake,
x~-bracing members in the upper panel deteriorated rapidly due to
inelastic buckling and local failures. But the resulting lateral
forces in the damaged frame (a much softer structure) were reduced
due to the smaller dynamic magnification for this reduced period
system; consequently, there was no danger of collapse, even though
the lateral force resistance was greatly reduced.

5. This test demonstrated again that survival of a structure subjected
te severe earthguake motions depends almost entirely on its ability
to accommodate the necessary lateral displacements while maintaining
its vertical load carrying capacity. The ability to absorb energy
during inelastic deformations may be useful in limiting the amplitude
of dynamic displacements, but it is not essential to the survival
of the structure if the imposed displacements can be accommodated
by the vertical load carrying system.

6. Experimental results showed that there was significant interaction
between the shaking table and the test model during this investi-
gation. Such interaction was manifested by pitching motion of the
shaking table, and it must be included in the mathematical modeling
in order to achieve successful correlation with computer analyses.
Unfortunately the interaction is a highly nonlinear mechanism, and

must be defined numerically by trial and error procedures.
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LATERAL SUPPORT LINKAGES

The lateral support linkages used in the experiment were based on "Watt's
mechanism” shown below. This mechanism consists of two lever arms attached
at one end to the fixed points A and D and to a coupler member (BC) at the

othexr end. All attachments are hinge type joints.
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It can be shown that as the mechanism moves, point 0 {center of the coupler
r} follows the path indicated as EF. This path is a straight line parallel
to the orientation of the coupler for small movements of the mechanism,
but becomes a curved line for larger movements._
Lateral movements associated with an angular movement & can be expressed

as follows:

X 28-2 coso (1)

1

r + % sinod. (2)

Y1
Also using kinematics and the fact that all members are assumed inextensible

we have

X"+ vy o= (3)



119

2 2 2
(x—xl} + (y~yl) =r . (4)

Eliminating x in equations (3) and (4} we obtain,

v ~2By+C=0 (5)

where

w
[}
N

2 2 2 2 2 2
{ yl(ﬂ + X + yl - r )/(xl + yl) }

1 2 2 2 2,2 2,2 2 2
c=={ [+ X +y; T - 4X12 ]/(Xl + ¥, b

iy

Only the smaller root of the quadratic equation (5) is significant, thus

y = B - /e*c . (6)

Substituting v into equation (3), x is found to be

x = v@z - (B—(BZ~C)1/2)2. (7

Therefore the position of point “Ol"' the center point of the coupler member

in the deformed configuration, is known and may be expressed as follows:

]
I

04 (x + xl)/2 (8)

fl

Yo {(y + yl)/z. (9)

1

The relative position of point 0, with respect to the initial position 0 is

1
given by

Ax = x,. - % (10)

Ay

il

Yol - r/2. {12)

Using the above formulation, (x } and (Ax, Ay) were calculated for a wide
1

r Y
Ol 0
range of angles "Q" varving from —20O to.+200, with results tabulated below.

These numerical results show that Ax remains essentially zero for all angles in
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the range -7 < 0 5_70, corresponding to lateral movements of -5.6 < Ay < 5.6
in. In other words, point 0 moves on a straight line coincident with the
coupler orientation for angles -7° <a 5_70 and deviates gradually from the
straight line as o becomes larger. The tabulated results are based on a
45.75 in. lever arm and a 16.0 in, coupler., Because the extent of the straight
line path is a function of £ and r, any desired range can be obtained by proper
selection of & and x.

In dynamic testing of the 2D offshore frame, the lateral support
linkages were designed to allow the test model to move freely in the
longitudinal and vertical directions (plane of table motion) but would prevent
lateral {out-of-plane) movements. They were designed based on "Watt's
mechanism”, but all attachments were provided by spherical bearing joints so
that motions in a plane perpendicular to bracing arms were permitted (see Fig.Al and
the graph shown below}. It can be shown that as the mechanism moves, point 0
{center of the coupler BC) travels in a YyZ plane passing through the
coupler BC. The elliptical surface shown below is the upper bound for all
possible positions of point 0 with essentially zero lateral movements
(movement in x direction}). The two diameters of the ellipse indicate the

maximum acceptable travel range of point 0 in the v and z direction.
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APPENDIX B

LIST OF DATA CHANNELS



. Channel Maximam |
i No. Name Measurable Data Description
|
§ 0 AV-H-T-DISP 9.92 in, Average Horizontal Table Displacement
} 1 AV-V-T-DISP 2,53 in. Average Vertical Table Displacement
- |
i ‘
| 2 AV-H-T-ACC 2,03 g Average Horizontal Table Acceleration
3 AV-V-T-ACC 2,03 g Average Vertical Table Acceleration
—
4 PITCH-ACC 10.1 rad/in2 Table Angular Pitch Acceleyxation
5 ROLL-ACC 9.99 rad/in2 Table Angular Roll Acceleration
é . 2 . . i
! 6 TWIST-ACC 8.22 rad/in Table Angular Twist Acceleration
2 i
l f
7 BLANK — -
; | ‘
| !
i
8 DISP-HL | 10.0 in. Horizontal Table Displacement at Actuator Hl ;
!
9 DISP-H2 9.94 in. Horizontal Table Displacement at Actuator H2 j
10 . DISP-H3 10.0 in. Horizontal Table Displacement at Actuator H3
11 ! FORCE-H1 128.0 kips Force in Horizontal Actuator H1

¥e1



. I
i Channel Maximum

No. Name Measurable Data Description

12 FORCE-HZ2 130.0 kips Force in Horizontal Actuator H2
,it

13 ; FORCE=-H3 132.0 kips Force in Horizontal Actuator H3
|
i ! t
| 14 i ACC-H1 i 2.05 g Horizontal Table Acceleration at Actuator H1

3
15 ; ACC-H2 2.03 g Horizontal Table Acceleration at Actuator H2
|

.16 ; ACC-V1 2.06 g Vertical Table Acceleration at Actuator V1
; |
L ]
. i
i 17 ! ACC-v2 2.04 g Vertical Table Acceleration at Actuator V2
5 L |
? T
; 18 ACC-V3 ; 2.07 g Vertical Table Acceleration at Actuator V3
i i |
5 1l
? 19 ACC-v4 ! 2.03 g { Vertical Table Acceleration at Actuator V4
i i
% 20 FORCE~V1 ] 48.5 kips Force in Vertical Actuator v1
%
' 21 FORCE~V2 ' 48.8 kips Force in Vertical Actuator v2

22 FORCE-V3 48.1 kips Force in Vertical Actuator V3

23 FORCE-V4 . 48.5 kips Force in Vertical Actuator V4

B
24 DISP-V1 2.58 in. Vertical Table Displacement at Actuator V1

YA




Channel

Maximum

No. Nanme Measurable Data Description
25 DIsp-v2 2.45 in. Vertical Table Displacement at Actuator V2
26 DISP-V3 2.54 in. Vertical Table Displacement at Actuator V3
27 DISP-V4 E 2.86 in. Vertical Table Displacement at Actuator v4
28 BLANK - —_—
29 ACC-~LNG % 4.8l g Deck Longitudinal Acceleration

.
30 ACC~TRI1 4.67 g Transverse Deck Acceleration 1
31 ACC-TR2 4.91 g % Transverse Deck Acceleration 2
32 DISP-TLNG 16.3 in. Absolute Longitudinal Deck Displacement
33 DISP~UPLNG 15.1 in. Absolute Longitudinal Frame Displacement at Upper Joint
34 DISP~LPLNG 8.30 in. Relative Longitudinal Frame Displacement at Mid~-Joint
35 DISP-BPLNG 16.6 in. Absolute Longitudinal Frame Displacement at lower-Joint
36 DISP-TTR1 16.6 in. Relative Transverse Deck Displacement 1
37 DISP-TTR2 7.97 in. Relative Transverse Deck Displacement 2

9Z1



{
Channel Maximum
No. Name Measurable Data Description
38 DISP~UPTR 7.83 in. Relative Transverse Digplacement of the Upper Cross-Joint
39 DISP-LPTR 8.15 in. Relative Transverse Displacement of the Lower Cross-Joint
T
40 DISP-~LHB 1.07 in. Axial Digplacement of the Middle Horizontal Brace
41 DISP-UPBL 2.32 in. Axial Displacement of the Brace 1
42 DISP-UPB2 2.53 in. Axial Displacement of the Brace 2
43 DISP-UPB3 2.46 in. Axial Displacement of the Brace 3
|
|
44 i DISP-UPB4 2.39 in. Axial Displacement of the Brace 4
45 DISP-LPBl 1.27 in. Axial Displacement of the Brace 5
46 DISP-LPB2 1.25 in. Axial Displacement of the Brace 6
47 DISP-LPB3 1.24 in. Axial Digplacement of the Brace 7
48 DISP-LPB4 I 1.38 in. Axial Displacement of the Brace 8
49 | BLANK - -
50 BLANK - -

LZT



| Channel Maximum
‘ No. Name . Measurable Data Description
|
| 51 BLANK | - -
]
i 52 AXST1-UPBl 4.77 milli in./in. Axial Strain 1 in the Brace 1 Load Cell
!
53 ! AXST2-UPBL 4.82 milli in./in. Axial Strain in the Brace 1 Load Cell
i
54 AXST1-UPB2 4.86 milli in./in. Axial Strain in Brace 2 Load Cell
! 55 | AXST2-UPB2 4.83 milli in./in. Axial Strain in Brace 2 Load Cell
L i3
E
56 | AXST1-UPB3 4.81 milli in./in. Axial Strain 1 in Brace 3 Load Cell
; 1
57 | AXST2-UPB3 4.82 willi in./in. Axial Strain 2 in Brace 3 Load Cell
58 ? AXST1-UPB4 4.82 milli in./in. Axial Strain 1 in Brace 4 Load Cell
59 ; AXST2-UPB4 4,81 milli in,/in. Axial Strain 2 in Brace 4 Ioad Cell
60 ' AXST1-LPR1 4.82 milli in,/in. Axial Strain 1 in Brace 5 Load Cell
61 | AXST2-LPB1 4.84 milli in./in. Axial Strain 2 in Brace 5 Load Cell
E
62 AXST1-T.PB2 4.92 milli in,/in. Axial Strain in Brace 6 Load Cell
63 AXST2-LPB2 4,85 milli in,/in. Axial Strain 2 in Brace 6 Load Cell

8¢t



Channel Maximum

| No. Name Measurable Data Description

f 64 AXST1-LPB3 4.84‘milli in./in. Axial Strain 1 in Brace 7 Load Cell

; 65 AXST2-1PB3 4,90 milli in./in. Axial Strain 2 in Brace 7 Ioad Cell
66 AXST1-1LPB4 4,85 milli in./in. Axial Strain 1 in Brace 8 ILoad Cell

{67 AXST2-LPB4 4,90 milli in./in. Axial Strain 2 in Brace 8 load Cell
68 AXST1-TKB1 4.83 milli in./in. Axial Strain 1 in K-Brace 1
69 AXST2~TKBL 4,84 milli in./in. Axial Strain 2 in K-Brace 1

j
70 AXST1-TKB2 4,79 milli in./in. Axial Strain 1 in K-Brace 2
71 AXST2-TKB2 4,83 milli in./in. Axial Strain 2 in X-Brace 2
72 AXST1-UHB 9.76 milli in./in. Axial Strain 1 in Upper Horizontal Brace
73 AXST2-UHB 9.75 milli in./in. Axial Strain 2 in Upper Horizontal Brace
74 AXST1-LHB 4.82 milli in./in. Axial Strain 1 in Lower Horizontal Brace Load Cell
75 AXST2~-LHB 4.87 milli in./in. .Axial Strain 2 in Lower Horizontal Brace Load Cell
76 AXST1-BHB milli in./in. Axial Strain 1 in Bottom Horizontal EBrace

61



lchannel Maximum
i No. Name Measurable Data Description
| T
77 | AXST2-BHB 4.82 milli in./in. Axial Strain 2 in Bottom Horizontal Brace
78 BNDST1-UPB4 48.9 milli in./in. Bending Strain 1 in Brace 4
I
79 BNDST2-UPB4 49.0 milli in./in. Bending Strain 2 in Brace 4
80 BNDST3~UPB4 1 49.0 milli in./in. Bending Strain 3 in Brace 4
81 BNDST4-UPB4 | 49.6 milli in./in. Bending Strain 4 in Brace 4
82 BNDSTT-UPJL 12.5 milli in./in. Bending Strain in Top~End of the Upper Panel Jacket 1
83 ? BNDSTB-UPJ1 12.6 milli in./in. Bending Strain in Bottom-End of the Upper Panel Jacket 1
|
84 © BNDSTT-UPJ2 ¢ 12.4 milli in./in. Bending Strain in Top-End of the Upper Panel Jacket 2 §
: 3 |
Bl ; ]
85 BNDSTB-UPJ2 12.3 milli in./in. Bending Strain in Bottom-~End of the Upper Panel Jacket 2 |
86 BNDSTT-LPJL f 12.4 milli in./in. Bending Strain in Top-End of the Lower Panel Jacket 1
87 BNDSTB-LPJ1 | 12.3 milli in./in. Bending Strain in Bottom-End of the Lower Panel Jacket 1 %
88 BNDSTT-LPJ2 i 12.3 milli in./in. Bending Strain in Top-End of the Lower Panel Jacket 2
|
89 BNDSTB-LPJ2 | 12.3 milli in./in. Bending Strain in Bottom-End of the Lower Panel Jacket 2

0ET



Channel

Maximum
No. Name Measurable Data Description
90 BNDSTT-BPJ1 12,4 milli in./in, Bending Strain in Top-End of the Bottom Panel Jacket 1
91 BNDSTT-BPJ2 12.4 milli in./in. Bending Strain in Top-End of the Bottom Panel Jacket 2
92 BAXST-UPJL 4,80 milli in./in, Axial Strain in Upper Panel Jacket 1
93 AXST-UPJ2 4.83 milli in./in. Axial Strain in Upper Panel Jacket 2
94 AXST-LPJL 4.82 milii in./in. Axial Strain in Lower Panel Jacket 1
95 AXST-LPJ2 4.81 milli in./in. Axial Strain in Lowex Panel Jacket 2
96 AXST-BPJL 4,29 milli in./in. Axial Strain in Bottom Panel Jacket 1
o7 AXST-BPJ2 4.81 milli in./in. Axial Strain in Bottom Panel Jacket 2
98 BLANK — -
3
=
99 BLANK —— —_—
100 DISP-UCTR 16.4 in. Absolute Longitudinal Displacement of the Upper Cross-Joint
101 DISP-LCTR 16.5 in. Absolute Longitudinal Digplacement of the Lower Cross-Jdoint

I€T
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