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ABSTRACT

This report presents a method for the seismic-resistant design of planar rectangular braced

or unbraced steel frames. An important feature of the method is that nonlinear step-by-step

integration is used as the analysis technique within the design process itself.

The method directly quantifies the accepted seismic-resistant design philosophy that a

structure: (1) resists moderate ground motion without structural damage, and (2) resists severe

ground motion without collapse. Actual ground motion accelerograms are selected and scaled

to levels representing moderate and severe ground motions. Constraints quantifying structural

damage and limited non-structural damage are constructed for the case of moderate ground

motion. Constraints quantifying collapse and limited structural damage are constructed for the

case of severe ground motion. In addition there are serviceability constraints on structural

behavior under gravity loads only. Possible objective functions range from the minimization of

structural volume to the minimization of response quantities such as story drifts or inelastically

dissipated energy. Sophisticated optimization algorithms are utilized to solve the resulting

mathematical programming problem.

The frame design method is illustrated by application to a non-trivial example 4-story 3­

bay moment-resisting steel frame. The practicality and reliability of the method for this exam­

ple problem are assessed.
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1. INTRODUCTION

The design of structures to resist earthquake loading presents one of the most challenging

problems facing structural engineers. The major components of this design problem are treated

in [1]. Two principal aspects differentiate seismic-resistant design from other branches of

engineering [2]: First, there is enormous uncertainty in the prediction of future disturbances;

Second, the response of structures to such complicated disturbances is not well understood.

Uncertainties arise not only with regard to the number and magnitudes of future earthquakes

affecting a structure, but also with regard to the characteristics of the motions themselves. At

best, earthquake ground motion can be broadly described as a nonstationary random process.

Sources of difficulty related to the second aspect of seismic-resistant design stem from the ina­

bility to model properly the nonlinear, dynamic, cyclic behavior of material, which will occur

when the structure is subjected to strong ground motion.

Notwithstanding the many obstacles involved, progress has been made in the state of

analysis of the response of given structures to prescribed deterministic seismic excitation. At

present, it is generally agreed that the analysis of linear elastic structures is most efficiently per­

formed by a mode-superposition procedure, while analysis of inelastic structures require use of

step-by-step integration techniques [3].

There is also general consensus in the profession of structural engineering that a proposed

structural design should meet the following criteria [4]:

(I) The structure should resist minor earthquakes without damage.

(2) The structure should resist moderate earthquakes without structural damage, but possibly

with limited non-structural damage.

0) The structure should resist the most severe earthquakes without collapse, but possibly

with limited structural damage.

These criteria will be referred to as the "accepted design philosophy". It is evident that the pro­

cess of design should involve at least a two-tier approach to account for the different criteria
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regarding moderate and severe earthquakes.

Consider now the state of design as prescribed by the Uniform Building Code [5J. The

methodology suggested therein may be summarized as follows:

(I) Compute "equivalent static seismic forces" from formulae such as V = ZIKCSW where V

= base shear, W = weight of the structure, C = coefficient related to the fundamental

period of the structure, and Z,I,K,S are empirical coefficients which account for seismi­

city, importance of the structure, ductility of the structure, and effect of local soil condi­

tions, respectively.

(2) Place the static seismic forces on a linear-elastic model of the structure.

(3) Design the structure such that the resulting stresses and displacements do not exceed

allowable values.

An obvious criticism of this design method is the fact that its relationship to the accepted

design philosophy is tenuous. This method makes no distinction between moderate and severe

ground motion. Futhermore there is no attempt to quantify structural or non-structural dam­

age, and it is difficult to relate the exceedance of allowable stresses to collapse. Another flaw in

the method is its incompatibility with the state of analysis of seismically-excited structures. The

linear static method of analysis prescribed by this design scheme is extremely primitive. The

capability for performing more sophisticated and more reliable analyses is available; however it

is not required by the proposed code design method.

Structural engineers, recognizing the drawbacks to the code method of design, have pro­

posed alternative design methods. Probably the most prominent among these is the method

proposed by the Applied Technology Council [61. In the area of seismic-resistant design of

steel framed structures, several methods have emerged from research done in the academic

environment [7-9]. In all of these methods the accepted design philosophy is approached more

directly, and more sophisticated methods of analysis are employed than are used in the code

method. However, all of these methods avoid the use of step-by-step integration analysis

within the design process itself. Severe earthquake excitation is certain to cause significant
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inelastic deformation in structures.. The resulting nonlinear response demands the use of a

nonlinear analysis technique such as step-by-step integration; however, this alternative is usu­

ally dismissed as too costly.

It is the author's opinion that advances in current computational technology make the use

of more sophisticated analysis techniques within a design methodology a viable alternative.

Specific reasons for this opinion include:

(1) The computational speed and storage capabilities of new computers is increasing rapidly.

(2) Affordable yet powerful mini-computers are becoming available for use by consulting

engineering firms.

(3) Computing costs are small in comparison to the cost of construction, or to the cost of

insurance, or even to other engineering costs.

In this report, a method is proposed and illustrated by a non-trivial example for the

seismic-resistant design of planar, rectangular braced or unbraced steel frames. The accepted

design philosophy is approached directly. Moderate and severe earthquake ground motions are

selected. Structural damage, non-structural damage, and collapse are quantified directly in

terms of mathematical constraint functions, and the problem is cast into a nonlinear program­

ming setting. Flexibility with regard to the objective function is allowed, and some interesting

possibilities are explored. Most important, step-by-step integration is used as the analysis tech­

nique within the design process itself. Therefore, the approach may be viewed as an attempt to

propose a design method compatible with the current state of analysis.

The proposed design method makes use of an interactive, optimization-based structural

design software system known as DELIGHT.STRUCT, which is described in a companion

report [10]. The system contains a library of software wherein the proposed frame design

method is programmed. The software library will be referred to as the "frame software". The

design of an example 4-story 3-bay frame using the proposed method will form the central

focus of the report. This frame, referred to as the "example frame", is shown in Figure 1 and is

typical of frames found in low-rise apartment buildings. The example frame will be designed as
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a independent planar frame in this report, but in practice its design would have to reflect the

complete three-dimensional frame behavior of the building. The example frame is taken from

a report by Pique and Roesset [11] where the frame was designed according to the Uniform

Building Code to resist gravity, earthquake, and wind loadings.

Section 2 of the report will treat the quantification of design criteria. Here the proposed

method will be presented and assumptions made in its formulation will be enumerated. Section

3 will present the computational results obtained by applying the proposed method to the exam­

ple frame. Section 4 draws some brief conclusions from the results.
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2. QUANTIFICATION OF DESIGN CRITERIA

Before the designer can enter the computation part of the design process, the answers to

important questions such as the following must be quantified:

(1) What are the loads for which the structure is to be designed?

(2) What is a reasonable mathematical model that can be used for analysis of the structural

response?

(3) What structural characteristics should be chosen as design variables?

(4) What is the objective to be used in deciding among competing designs?

(5) What constraints on performance of the structure should be imposed?

The answers to these five questions for both the frame software and the example frame will be

treated in Subsections 2.1, 2.2, 2.3, 2.4, and 2.5, respectively.

2.1. LOADING

It is assumed that the frames to be designed will be subjected to gravity loading, moderate

earthquake loading, and severe earthquake loading. Wind and other loading conditions are

omitted for simplicity; however, more comprehensive loading combinations could be added to

the method without significant change. The assumed gravity loads will be described first. A

discussion of modelling earthquake loading, followed by an explanation of the earthquake load­

ing model adopted for the example frame, completes the subsection.

2.1.1. Gravity Loads

The frame software allows the user to specify downward gravity loads on nodes of the

frame as well as downward uniform gravity loads on girders of the frame. Furthermore, the

percentage of uniform load to be designated as live load may be specified by the user. Load

factors are not used; thus, one should try to specify the "worst" possible gravity loads and incor­

porate safety factors in the constraints on response.
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For the example four-story, three-bay frame nodal gravity loads are not specified. The

specified dead load is 80 psf, and the specified live load is 40 psf for the floors and 20 psf for

the roof. These frames are assumed to be spaced 20 feet apart. Thus, the downward gravity

uniform loads are 0.2000 kipslin for the floors and 0.1667 kipslin for the roof. Live load is

given as one-third of the total uniform load.

2.1.2. Earthquake Loading

One of the most difficult tasks facing the structural engineer is that of specification of an

earthquake loading. Many complex geological and geotechnical factors which currently cannot

be reasonably modelled affect the nature of ground motion at a given site. The absence of data

from actual strong motion earthquakes in the vicinity of a site makes it difficult to statistically

quantify future ground motion.

A common approach taken by structural engineers is to use "smoothed design response

spectra". This approach assumes that possible future ground motions will have response spectra

which are bounded by a smoothed envelope spectrum derived from the spectra of past motions.

The drawback to this method is that the notion of a response spectrum is based on the linear

elastic properties of structures. Although the design envelope spectrum may contain the most

severe frequency content for linear elastic structures, other classes of ground motion may exhi­

bit characteristics which cause more severe response in yielding structures. For example, the

long acceleration pulse experienced near the fault during the 1971 San Fernando earthquake is

recognized to have been a major cause of the damage potential of that earthquake. Information

regarding acceleration pulse size is not available from response spectra. To account for the ine­

lastic properties of structures, "inelastic design response spectra" have been derived from elastic

design spectra by various methods. Some of these methods make the crude assumption that for

a given ground motion elastic and yielding SDOF systems with the same stiffness will have

roughly the same peak displacements; thus, the design forces may be obtained by dividing the

design forces on the equivalent elastic structure by the design ductility factor.
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Step-by-step integration is used as the analysis technique in the frame software. This

requires that the user supply a time history for a design earthquake together with values for

peak accelerations of "severe" and "moderate" ground motions. It is assumed that the time his­

tory so given is for ground acceleration in the horizontal direction in the plane of the frame,

and vertical ground acceleration is neglected for simplicity. Selecting an appropriate design time

history for a site poses difficult problems. First, one must construct the time histories of possi­

ble motions for a site. This can only be done through statistical procedures which operate on

actual past time histories at the site or at similar sites. Recent work in this regard using auto­

regressive, moving-average (ARMA) models captures the non-stationary nature of earthquake

ground motions [12]. Second, one must select from the possible time histories a design his­

tory. Normally the design history should be that ground motion which drives the structure to

its maximum response. The problem is that this "worst" motion is a function of the structure

itself, which has not yet been designed. Thus, any approach to obtain a design time history will

have to involve a considerable amount of judgement and assumption.

2.1.3. Adopted Earthquake Loading Model

Since several strong motion records are available for area surrounding El Centro, Califor­

nia, let us assume that the example frame will be constructed at that site. Six actual ground

motion histories digitized at time intervals of 0.02 seconds were selected for this site and will be

designated as El, E2, E3, E4, E5, and E6 throughout the remainder of this report. Histories

E1 and E2 represent the SOOE and S90W components, respectively, of the earthquake which

occurred on May 18, 1940 as measured at the El Centro Site Imperial Valley Irrigation District.

Histories E3 and E4 represent the SOOW and S90W components, respectively, of the earthquake

which occured on December 30, 1934 as measured at the El Centro Site Imperial Valley Irriga­

tion District. Histories E5 and E6 represent the N50E and N40W components, respectively, of

the earthquake which occurred on October 15, 1979 as measured at the El Centro Community

Hospital on Keystone Road. Histories El through E4 were obtained from the California
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Institute of Technology [13]. Histories E5 and E6 were obtained from the United States Geo­

logical Survey [14]. The most severe ten seconds from each history were selected by inspec­

tion. The actual histories together with the respective ten-second intervals are shown in Figure

2. After selecting the ten second intervals, each record was translated along the acceleration

axis by a small amount so that the residual ground velocity obtained by integrating the record

by the trapezoidal rule is zero. The largest ratio of this acceleration translation to the peak

acceleration over all the records was 0.0150.

The next step was to scale these records so that they each represent roughly the same

damage potential. Initially each record was scaled so as to have the same peak acceleration.

However, the example frame was expected to exhibit a strong variance in behavior when

analyzed under the motions scaled in this way. It was decided that a more rational approach

would be to scale according to the spectral intensity which is a measure of ground motion inten­

sity for linear-elastic structures. The program SPECTR [15] was used for evaluating digitized

response spectra at an assumed damping ratio of 2% for each of the records. It was then

assumed that the significant vibrational modes of the four-story frame will have periods

between 0.1 sand 1.0 s. The spectral intensities for each of the records were obtained by

integrating the response spectra between these limits using the trapezoidal rule. Since EI Cen­

tro, California is a highly seismic region it was decided that the "severe" earthquake should have

a peak acceleration of O.5g and the "moderate" earthquake should have a peak acceleration of

O.15g. Thus, all of the records were normalized so as to have the same spectral intensity. The

set of records was then scaled for the severe earthquake so that the maximum peak acceleration

over all the records was 0.5g, and scaled for the moderate earthquake so that the maximum

peak acceleration over all the records was 0.15g. The resulting spectral intensities, peak

accelerations, and scale factors for each record are listed in Figure 3. The response spectra at

2% damping for the records before and after normalization and scaling for the severe earth­

quake are shown in Figure 4. The ten-second interval time histories for the normalized records

scaled for the severe earthquake are shown in Figure 5.
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After selecting, normalizing, and scaling the set of records, the final step is to select a

design earthquake from the set in a rational manner. An effort was made to obtain a good ini­

tial design for the example frame. This initial design was then analyzed under all six motions

and the design constraints were evaluated. The destructive potentials of the motions for this

design were ranked using the following criteria:

(1) Energy input from the severe earthquake to the structure

(2) Sum of squares of story drifts caused by the moderate earthquake

(3) Energy dissipated inelastically by the entire frame during the severe earthquake

(4) Energy dissipated inelastically by the columns during the severe earthquake

(5) Maximum constraint function violation

These criteria were weighted as depicted by the decision table in Figure 6. It became clear that

records E2 and E6 were the most damaging for this frame. By a purely judgemental decision it

was decided to use record E6 as the design record. It is assumed that the final design will not

differ substantially from this preliminary design; thus, record E6 may be the most damaging

motion for the final design as well. Of course, once a final design is obtained, it will be

checked by analyses using the other records.

2.2. MODEL OF THE STRUCTURE

The mathematical model used in the frame software to simulate the response of a

specified frame under the assumed loads will now be described. This involves a description of

the frame geometries allowed in the frame software as well as an explanation of the solution

strategies and element models used for simulation.
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2.2.1. Geometry Of The Model

The frame configurations which can be treated with the frame software include planar,

rectangular braced or unbraced frames. Specifically the desired frame configuration must be

derivable from the following three-step process:

(I) A rectangular grid is constructed according to a specified number of stories, number of

bays, story heights, and bay widths.

(2) Cross-bracing may be placed in specified panels.

(3) Specified elements and nodes in the resulting grid may be erased.

After the configuration is thus specified, the element types for the model are given. The

frame software assumes horizontal elements are modelled as girders, vertical elements are

modelled as columns, and diagonal elements are modelled as braces. In addition the user may

specify some girders as "shear link" elements, other girders as "dissipator" elements, and some

columns as "rubber bearing" elements (see Figure 7).

The boundary condition assumed by the frame software is that the base nodes are fixed

against translation and rotation. The user may include additional boundary conditions at

specified nodes.

A result of the freedom allowed in specification of configuration, element type, and boun­

dary conditions is that a wide range of frame geometries may be treated. The example frame is

but one of many possible geometries. Other examples are shown in Figure 7, which include

moment-resistant frame geometries, reduced-degree-of-freedom frame geometries, concentric

and eccentric braced frame geometries, and vibration-isolated frame geometries.
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2.2.2. Simulation Procedure

The following simulation procedure is adopted in the frame software:

(1) A static nonlinear analysis is made under gravity loads only.

(2) A static linear analysis under gravity loads followed by a dynamic linear analysis under the

moderate earthquake loading is made.

(3) A static nonlinear analysis under gravity loads followed by a dynamic nonlinear analysis

under severe earthquake loading is made.

The general-purpose structural analysis program, ANSR, is used to compute simulation struc­

tural response [16]. Parameters used in the ANSR simulation program are set in the frame

software to achieve the desired solution strategies for the several analyses. For all analyses:

(1) Path dependent state determination is used.

(2) The maximum allowable nodal displacement is unlimited.

(3) Convergence tolerances on unbalanced force vector norms are set to 0.01.

(4) The next load or time step is applied regardless of convergence in the previous step.

For all dynamic analyses:

(1) Nodal translational masses are computed by dividing the nodal forces due to gravity dead

loads by the acceleration of gravity, and nodal rotational masses are neglected.

(2) Step-by-step integration is made using Newmark's method where parameters are set to

yield constant "average" acceleration with no numerical damping (trapezoidal rule).

(3) The time step length is 0.01 seconds, and the number of time steps is chosen so that

analysis is carried out one second beyond the end of the earthquake ground acceleration

record. Thus, for the example frame 1100 time steps were used in dynamic analysis.
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(4) The damping matrix is taken as a linear combination of the mass matrix and the initial

stiffness matrix as:

where

C = damping matrix

M = mass matrix

K = initial stiffness matrix

{ = damping ratio

n = number of stories

f = ratio of number of stories to the fundamental period

s = ratio of the fundamental to the second period

The damping ratio, the ratio of the number of stories to the fundamental period, and the

ratio of the fundamental period to the second period are specified by the user. For the

example frame a damping ratio of 2% was selected and the period ratios were estimated by

solving the eigenproblem for the initial design. The damping coefficients given by the

above formulae yield the specified damping ratio in the first two modes.

In order to achieve a nonlinear static analysis under gravity loads only, a Newton-Raphson

iteration scheme is employed. The loads are applied in a series of five load steps. The max-

imum number of iterations permitted in any load step is 20, and the stiffness matrix is

reformed at each iteration. Axial deformation of columns and girders is considered so that

there are 48 degrees of freedom in the example frame.
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For the combined gravity and moderate earthquake loads analyses are simplified by

neglecting axial deformation in the girders and columns and assuming linear elastic response.

The example frame has but 20 degrees of freedom after neglecting axial deformation. Linear

analyses are achieved by increasing yield moments and forces in the model by 1000 times, and

by allowing only one iteration per load or time step. Only one static load step is needed to

represent gravity loads before the moderate earthquake dynamic loads are applied.

For the combined gravity and severe earthquake loads, nonlinear static and dynamic ana­

lyses are made employing a Newton-Raphson iteration scheme. Axial deformations are

neglected. Five static load steps are applied, representing the gravity loads followed by applica­

tion of the severe earthquake dynamic loads. The stiffness matrix is reformed at each iteration

in each load or time step and the maximum number of iterations within any step is 20.

2.2.3. Element Models

For all elements the frame software requires that the user supply values for the yield

stress, the strain hardening ratio, and the initial modulus of elasticity. The values chosen for

the example frame are yield stress = 36.0 ksi, strain hardening ratio = 0.05 , and modulus of

elasticity = 29000. ksi. Furthermore, shearing deformations, out-of-plane deformations, and

end eccentricities are not considered in any of the element models to simplify the analysis.

Columns are modelled by a two-dimensional lumped-plasticity parallel-component beam­

column element as depicted in Figure 8 and descibed in reference [17]. The geometric stiffness

of columns is considered. A yield interaction diagram is used as shown in Figure 9, where the

parameters Ym and Yp are specified by the user. For the example frame these factors were

chosen as Ym = 1.0 and Yp = 0.15. Initial axial forces are included on the columns to

influence the onset of yielding and the impact of geometric stiffness. These initial axial forces

are computed from the gravity loads by approximating the girders as simply supported.

Girders are also modelled by the same beam-column element, however, the geometric

stiffness and yield surface interaction are neglected. Initial fixed-end moments for girders with
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uniform gravity loads are employed to influence the onset of yielding.

Braces can be modelled by a three-dimensional elasto-plastic parallel-component truss ele-

ment as depicted in Figure 8. Geometric nonlinearity is neglected. The braces yield elasto-

plastically in tension and buckle elastically in compression at their Euler load.

For eccentrically braced frames (see Figure 7), the shear links can be modelled by the

beam-column element used for columns and girders. Appropriate input parameters can be

derived assuming the shear link elements are constrained to deform in pure shear. It is

assumed that wide flange sections are used for the shear links and that the web behaves as an

elastic perfectly-plastic shear block and the flanges behave elastically in flexure. Thus, in the

parallel-component model, the lumped-plasticity component can model the web and the strain-

hardening component can model the flanges. A value for Poisson's ratio must be specified by

the user. With these assumptions one is able to derive the following· expressions for the

equivalent model section properties from the actual element dimensions:

s =m

where

1m = model moment of inertia

Sm = model strain hardening ratio

M m = model yield moment

A = actual cross-sectional area
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I = actual moment of inertia'

D = actual section depth

L = element length

U'Y = yield stress of steel

v = Poisson's ratio for steel

As with girders, geometric stiffness and yield interaction are ignored while initial end moments

due to uniform gravity loads are included.

For frames which involve vibration isolation (see Figure 7), rubber bearing elements can

also be modelled by the beam-column element used for the columns and girders. These rubber

bearing elements are constrained to deform in pure shear. They are assumed to have a square

cross-section and infinite yield stress. The user must supply values for the shear modulus of

rubber and the height of the bearings. From these assumptions the following expression can be

derived to compute the equivalent model moment of inertia from the actual element dimen-

sions:

where

1m = model moment of inertia

A = actual cross-sectional area

L = length of bearing

G, = shear modulus of elasticity for rubber

E = steel modulus of elasticity



11.16

H = height of bearings

Note that the specified length of the bearing is arbitrary. As with the columns, geometric

stiffness is considered and initial axial forces due to gravity loads are included.

For frames which involve vibration isolation, triangular dissipator elements (of the type

shown in Figure 7) connected by a rigid link to the frame may be modelled by the same truss

element used for braces with the exception that the element yields rather than buckles elasti-

cally in compression. The user must specify the dissipator height and base width. From these

quantities the following expressions can be derived to compute the equivalent model section

properties from the actual element dimensions:

A =
WL T3

m
6H3

3(T H 2
y

(Tym =
2L T

where

Am = model cross-sectional area

(T ym = model yield stress

T = actual dissipator thickness

W = actual dissipator base thickness

H = actual dissipator height

L = rigid link length

(T y = yield stress of steel
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Note that the specified length of the rigid link is arbitrary. The dissipator is assumed to yield at

the same stress in both tension and compression, and geometric nonlinearity is included.

2.3. DESIGN VARIABLES

To simplify the design problem the frame software assumes that there is only one design

variable per element. The design variables considered for the various elements are explained in

this subsection. Other section properties needed for analysis for each element are computed by

appropriate approximate functional relationships also described.

2.3.1. Element Design Variables

The section moment of inertia is used as the element design variable for columns, girders,

and shear elements. For braces the element design variable is the cross-sectional area. The

thickness of the dissipator is the design variable for dissipator elements. Cross-section edge

length is the design variable for rubber bearing elements. The minimum and maximum values

acceptable for each design variable are specified by the user. It is possible to specify some ele­

ments as "not subject to design", meaning that their section properties are pre-set and remain

constant throughout the design process. It is also possible to designate groups of elements as

"equal during design", meaning that the section properties of elements in the group remain

equal as they change throughout the design process.

The design variables for the example frame are numbered as follows:

(1) Moment of inertia for the exterior columns of the bottom two stories

(2) Moment of inertia for the interior columns of the bottom two stories

(3) Moment of inertia for the exterior columns of the top two stories
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(4) Moment of inertia for the interior columns of the top two stories

(5) Moment of inertia for first story girders

(6) Moment of inertia for second story girders

(7) Moment of inertia for third story girders

(8) Moment of inertia for fourth story girders

It is assumed that column moments of inertia lie in the interval [50 in 4 , 1500 in 4], and that

girder moments of inertia lie in the interval [125 in 4 , 2500 in 4].

2.3.2. Section Relationships

The frame software assumes that the section depth for columns and girders can be

approximated by an expression which is proportional to the moment of inertia raised to a

rational power specified in the input. Further, the radius of gyration for columns and girders is

taken to be proportional to the section depth raised to a rational power specified in the input.

For wide flange sections the cross-sectional area and plastic yield moment can then be com-

puted from the following formulae:

[AD 31]Mp = cry -8- + 2 D

where

A = cross-sectional area

Mp = plastic yield moment

1 = moment of inertia

R = radius of gyration
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(T y = yield stress

D = section depth

It is necessary to compute the moment of inertia for braces in order to derive their critical

buckling stress. It is assumed that for braces the moment of inertia can be approximated by an

expression which is proportional to the cross-sectional area raised to a rational power specified

in the input.

For the example frame many of the functional relationships proposed by Walker [18] are

used for the column and girder properties. These relationships were derived from least-square

curve fits among "economy" wide flange sections most likely to be used for columns and gird­

ers. The relationships thus derived are as follows:

for columns with / ~ 429 in 4

D = 1.47/°.368

R = 0.39 D 1.04

for columns with / > 429 in 4

D = 10.5 /0.0436

R = 0.39 D 1.04

for girders

D = 2.66/°.287

R = 0.52 DO.92
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where

D = section depth in inches

I = moment of inertia in inches4

R = radius of gyration in inches

2.4. COST FUNCTION

One must have a specific cost or merit function for the design process in order to choose

among the set of designs satisfying the constraints. The cost function must in some way put a

scalar "pricetag" on each design. Although a number of cost functions may be used, in

seismic-resistant design it may be desirable to formulate cost in terms of energy. This is for the

following reasons:

(1) Energy dissipation is an indicator of the amount of inelastic deformation (damage)

throughout the structure.

(2) Energy is the mapping of complex mechanical information varying over space and time

into a time dependent mathematical scalar.

(3) One has an intuitive feel for what energy represents, since it is used in many aspects of

science.

In this subsection the way in which an existing finite-element program was modified to compute

terms in the energy balance equation is described. Then, the possible cost functions allowed by

the frame software are explained.
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2.4.1. Energy Balance

The computation of terms in the energy balance equation adopted herein follows the work

of Berg and Thomaides in spirit [19]. In the ANSR simulation program, the following force

balance equation is satisfied at each load or time step:

where

Fu = unbalanced nodal force vector

F, = vector of applied nodal loads

Fi = nodal inertia force vector

Fdm = nodal mass proportional damping force vector

Fe = nodal element resistance force vector

The nodal element resistance force vector is evaluated by accumulating the contributions from

each element to the proper global degrees of freedom. These contributions from each element

consist of three parts:

where

Fee = nodal forces due to element deformation

Fge = nodal forces due to P-delta effect

Fde = nodal forces due to stiffness proportional damping
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By rearranging the terms in the force balance equation and multiplying through by the

differential nodal displacements one obtains the following differential energy balance equation:

where

dEq = - < Fee, R dVg >

= earthquake input energy differential

= differential of work done by applied loads

= kinetic energy differential

= damped energy differential

dEe = < Fee, dv, >

= element deformation energy differential

= error energy differential

dv, = relative nodal differential displacement vector

dVg = differential ground displacement
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R = boolean ground displacement distribution vector

At each load or time step the ANSR simulation program calls the subroutine energy after

the norm of the unbalanced forces has satisfied the convergence tolerance criterion. This sub­

routine integrates the differential energy balance equation with respect to nodal displacements

in order to compute the values of terms in the energy balance equation at each step. The

numerical integration must be carried out in a manner consistent with the scheme used by the

ANSR simulation to solve the differential equation of motion. Thus, if the Newmark average

acceleration scheme is used by the ANSR simulation program, the trapezoidal rule must be

used to evaluate the energy integrals. Furthermore, the trapezoidal rule must also be used to

evaluate ground velocities from ground accelerations and ground displacements from ground

velocities. At each time step the subroutine energy updates the earthquake input energy,

kinetic energy, damped energy, and energy error. The element deformation energy is separated

into the element elastic and element inelastic energy, which are computed at the element level

and accumulated in the subroutine energy. For some elements in ANSR, initial element forces

may be applied in order to influence the onset of yielding. Such initial forces represent the

effects of distributed element gravity loads which are absent when modelled by equivalent nodal

loads. These initial. element forces will cause the sum of the element elastic and inelastic

energy to be out of balance with the work done by the nodal element resistance forces. The

energy difference may be attributed to work done by distributed element gravity loads. There­

fore, the subroutine energy evaluates the work done by the applied loads as the opposite of the

sum of the other terms in the energy balance equation.

The earthquake input energy so evaluated represents the work done by the base shear

force on the frame as it moves through the ground displacement. One would expect this

energy to be generally increasing in time, although not monotonically, and to remain constant

after the ground motion ceases. The kinetic energy represents the work done by inertial forces.

One would expect this energy to be oscillatory and positive, and to be decreasing in amplitude

after the ground motion ceases. The damped energy represents work done by the nodal
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damping forces. The dissipative nature of damping would cause one to expect this energy to be

monotonically increasing in time, however the stiffness proportional damping model used per­

mits the possibility of decreasing damping energy to occur. The elastic energy represents the

elastic strain energy stored in the elements due to element displacements. This energy is posi­

tive and oscillatory in time, and is almost 180 degrees out of phase with the kinetic energy.

The elastic energy is initially non-zero at time zero due to strain under gravity loads. Further­

more, if yielding occurs during the earthquake, the axis about which the elastic energy oscillates

may shift upward due to the build-up of prestrain in the elements. The inelastic energy

represents the energy dissipated by inelastic deformation of the elements. It is expected to be a

monotonically increasing in time and may be non-zero under gravity loads only. The work

done by the applied loads represents work done by applied nodal loads, work done by axial

loads on the columns due to the P-delta effect, and work done by the aforementioned initial

element forces. At time zero one would expect this work to be equal to the sum of the elastic

and inelastic energy at time zero, but thereafter this work may be increasing or decreasing, and

positive or negative. The error energy represents the work done by the unbalanced nodal

forces, and is expected to be relatively small.

2.4.2. Possible Cost Functions

The cost function allowed by the frame software is a linear combination of the following

six terms:

(I) Volume of design elements;

(2) Sum of squares of maximum story drifts during the moderate earthquake;

(3) Severe earthquake input energy;

(4) Severe earthquake inelastically dissipated energy;
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(5) Severe earthquake energy dissipated inelastically by shear link and dissipator elements;

(6) Severe earthquake energy dissipated inelastically by the columns.

The coefficients for each of these terms are set interactively by the user. Terms specified with

positive coefficients are minimized, terms specified with negative coefficients are maximized,

and terms specified with zero coefficients are ignored.

If one chooses not to minimize volume, then it is wise to have a constraint on volume to

keep the problem well posed. The frame software formulates such a constraint according to an

interactively supplied value for the maximum volume. The minimization of something other

than volume may be viewed as trying to utilize a given amount of material in some optimal

way.

Mathematical problems arise when trying to minimize the sum of the squares of the max-

ima over time of the story drifts by conventional optimization algorithms. These problems

stem from the fact that most algorithms require the computation of the gradient of the cost

function with respect to the design variables, and the max function is nondifferentiable. To

overcome this problem, dummy design variables and constraints are created to shift the

nondifferentiable max function from the cost function to constraint functions. This is done

because algorithms are available for handling functional max constraints over time. The new

formulation is as follows:

minimize

subject to

maxD/ < Xi i=l,n
time
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where

D; = story drift for story i

Xi = dummy drift design variable for story i

The choice of cost· function is a very complex decision. One might wish to minimize ini­

tial construction cost. This may be quantified as the minimization of volume if it is assumed

that material and labor costs are roughly proportional to the volume. The minimization of

volume or weight is the cost function chosen most often in the literature on optimum structural

design. However in real-world situations, the savings of a modest amount of material is not

usually an important objective. An structural engineer might wish to design a structure with a

given amount of material so as to minimize seismic damage. Non-structural damage during a

moderate earthquake may be quantified in terms of the sum of the maxima of the moderate

earthquake story drifts since breakage of glass and cracking of walls are roughly functions of the

story drift. Likewise, structural damage during a severe earthquake may be quantified in terms

of the severe earthquake inelastic energy dissipation. Failure of columns in a severe earthquake

usually produces more devastating effects than failure of girders. Thus, an engineer may wish

to minimize the energy dissipated inelastically in the columns during a severe earthquake. One

may view the role of a structure during an earthquake as dissipating in an acceptable manner

the energy imparted to it from ground motion. An optimal way of dissipating this energy may

be to maximize the proportion of this energy which is dissipated in "fuses". Such fuses are ele­

ments which can locally dissipate large amounts of energy without causing significant damage to

the global structure. In the frame software, shear link elements and dissipator elements are

classified as fuses. It should be recognized that the amount of energy input from the ground to

the structure is a function of the characteristics of both the ground motion and the structure.

One may therefore wish to design the structure so as to minimize the input energy during a

severe earthquake. Base-isolated structures tend to minimize the amount of input energy

imparted to the structure from the ground motion.
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2.5. CONSTRAINTS

The frame software defines various constraints on the response of a specified frame under

gravity loads only, under combined gravity and moderate earthquake loads, and under com­

bined gravity and severe earthquake loads. There are constraints on both nodal and element

quantities. There are both "conventional" and "functional" constraints. Conventional con­

straints may be represented mathematically as an inequality on a scalar-valued function of the

design variables. Functional constraints are represented by an inequality on the maximum of a

scalar-valued function over all the time steps. The user may specify certain elements as "no

constraint elements" meaning constraints are not formulated for those elements. This may be

useful for frames and loadings possessing enough symmetry that constraints on some elements

are duplicates of constraints on other elements. Each constraint as formulated by the frame

software contains a parameter which may be set interactively to increase or decrease the restric­

tion imposed by the constraint. For the example frame the number of conventional constraints

totalled 141 and the number of functional constraints totalled 69.

2.5.1. Constraints Under Gravity Loads Only

Under gravity loads only, the following conventional constraints are placed on the

columns, girders, and braces:

~olumn axial forcel < Colax * column axial yield or buckling force

~olumn end momentsl < Colgra * column yield moments

girder end,momentsl < Girgra * girder yield moments

girder midspan deflection under live loadl < Girdef * girder span

Ibrace forcel < Bragra * brace yield or buckling force

For the example frame the values selected for the interactive constants were Colax = 0.5 , Col­

gra = 0.6 , Girgra = 0.6, and Girdef = 11240, which are consistent with current design prac­

tices.
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2.5.2. Constraints Under Combined Gravity And Moderate Earthquake Loads

Under combined gravity and moderate earthquake loads the accepted design philosophy

directs that structural damage be resisted. Structural damage is defined in the frame software as

element yielding. Thus, the following functional constraints are placed on the element

response:

max over time ~olumn end moments! < Colyld * column yield moments

max over time girder end momentsl < Giryld * girder yield moments

max over time ~hear element forcel < Shryld * shear yield force

max over time Idissipator force! < Disyld * dissipator yield force

max over time /brace force! < Brayld * brace yield or buckling force

For the example frame, the values of the interactive constants Colyld and Giryld were set to

unity.

Although non-structural damage is allowed under combined gravity and moderate earth­

quake loads, it should be limited. One form of non-structural damage is the cracking of glass

and any walls, which is strongly related to the amount of interstory drift. Another form of

non-structural damage is the falling and tipping over of equipment, which is strongly related to

the amount of floor acceleration. Thus, the following functional constraints are placed on nodal

response:

max over time ~tory driftl < Drift

max over time ~bsolute floor accelerationl < Accel * acceleration of gravity

For the example frame, the interactive drift parameter, Drift, was set to 1/200. The interactive

acceleration parameter, Accel, was set to 1/2 which corresponds to the uniform floor accelera­

tion required to initiate the tipping of an unsecured bookshelf twice as tall as it is wide.
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2.5.3. Constraints Under Combined Gravity And Severe Earthquake Loads

Under combined gravity and severe earthquake loads the structure should resist collapse.

Any collapse of the frame may be detected by large displacements at the top of the frame. The

following functional constraint is therefore placed on the frame sway which is the relative hor­

izontal displacement at the top of the frame divided by the total frame height:

max over time ~tructure swayl < Sway

For the example frame, the interactive sway parameter, Sway, was set to 1/100.

Under combined gravity and severe earthquake loads structural damage is allowable, but it

should be limited. This may be interpreted as placing a limit on the amount of yielding. Tradi­

tionally the limit on element yielding has been defined in terms of the "ductility factor" or the

ratio of maximum displacement to yield displacement. This scheme, however, neglects the fact

that many cycles at lower ductilities can be just as critical as a single large excursion into the

higher ductility range. In order to account for "low-cycle fatigue" failures, the frame software

puts a constraint on the inelastic energy dissipation rather than on the ductility allowed in an

element. For a given allowable ductility under monotonic loading on an elasto-plastic element,

the corresponding constraint on its inelastic energy dissipation is:

Ed < Ey (mu-I) (1-8) (2 + 8 (mu-I))

where

Ed = inelastic energy dissipation

Ey = elastic strain energy at yield

p, = allowable ductility for monotonic loading

8 = strain hardening ratio
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The equivalent number of cycles at a given ductility for uneven cyclic deformation may be

defined in terms of energy as indicated in Figure 10. The energy constraint curve on a plot of

equivalent cycles vs. ductility (as shown in Figure 10) reveals that the allowable number of

cycles is inversely proportional to the allowable ductility. Experimental results show that cyclic

failure criteria have similar form [20].

The frame software places the following conventional constraints on the element inelastic

energy dissipation:

column end inelastic energy dissipation < f(Colduc) * yield strain energy

girder end inelastic energy dissipation < f(Girduc) * yield strain energy

shear element inelastic energy dissipation < f(Shrduc) * yield strain energy

dissipator inelastic energy dissipation < f(Disduc) * yield strain energy

brace inelastic energy dissipation < f(Braduc) * yield strain energy

The yield strain energy of each end for the columns and girders was taken to be half the ele­

ment yield strain energy when loaded in pure shear (MLl6EI). Multiplying the yield strain

energy by the function f as in the above inequalities gives the energy dissipated under mono­

tonic loading up to the allowable ductility. For the example frame the values of the interactive

allowable monotonic ductility factors Colduc and Girduc were set to 3 and 6, respectively.

For the rubber bearing elements, excessive damage was defined to occur if a tensile bear­

ing stress occurred at any point on the bottom cross-section of the element. This condition can

be expressed as a functional constraint on the end moment as follows:

max over time !bearing end momentl

< Berten * edge length * axial force / 6

Here the factor Berten is an interactive factor.
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3. COMPUTATION OF A DESIGN FOR THE EXAMPLE FRAME

The computation of a design for the example frame was done in two parts. First, a

rational preliminary design was generated. The ground motion to be used in the final design

process was chosen as the most destructive motion for the preliminary design. Second, final

designs were obtained from the preliminary design by formal optimization procedures. One

should try to obtain a preliminary design which will be as close as possible to the final design or

else the possibility of another ground motion becoming the critical motion increases. It is also

important to obtain a good preliminary design because final design iterations are costly. A

feasible directions algorithm [21] was used for final design optimization. This algorithm has the

desirable property that once a design satisfying all constraints is produced, successive iterations

generate designs which also satisfy all constraints and which have monotonically decreasing

costs. Thus, every iteration is guaranteed to generate a superior design. The computational

expense limited the number of final design iterations that were performed. The resulting

designs should be viewed as "improved" designs rather than "optimal" designs. The results from

the preliminary design are presented in Subsection 3.1, and the results from final design are

presented in Subsection 3.2.

3.1. PRELIMINARY DESIGN

A preliminary design for the example frame was generated from an iterative procedure

which closely follows the design procedure suggested by Bertero and Kamil [22]. The method

employs equivalent static seismic forces for the severe earthquake which are derived from "ine­

lastic design spectra" constructed in a manner similar to that suggested by Newmark and Hall

[23]. The girders are then designed so as to prevent formation of a collapse mechanism at each

story under the design loads, and the columns are designed by using a strong-column weak­

girder philosophy. The advantage of using a collapse mechanism based design philosophy for

the design of the girders is that plastic design is governed by the equations of equilibrium,

which are linear. The resulting linear programming problem can be solved in a finite number
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of iterations. An iterative scheme was used for preliminary design of the example frame.

More detail on the derivation of the inelastic design spectra, the girder and column design, the

iterative scheme, and the results of the preliminary design will be presented in this subsection.

3.1.1. Inelastic Design Spectra

As mentioned in Subsection 2.1 of this report, response spectra were obtained for six

ground acceleration records at the assumed dampiflg ratio of 2%. These spectra are depicted in

Figure 4. From these spectra the maximum envelope spectrum was constructed and then ideal-

ized by straight lines on a tripartite plot. The result is a design spectrum for linear elastic struc-

tures with 2% damping. The maximum envelope spectrum and the elastic design spectrum are

shown in Figure 11.

In order to transform the elastic design spectrum to inelastic design spectra a value for the

story ductility is needed. As shown in Figure 12 if one allows no ductility in the columns and

assumes a ductility capacity for girder end rotation, the story ductility can be computed to be

the following:

J.ts=l+

where

J.t s = story ductility

J.t g = assumed girder end rotation ductility

R i = ratio of girder to column moment of inertia

R, = ratio of girder to column length
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For the example frame, the girder end ductility was taken as 6, the ratio of girder moment of

inertia to column moment of inertia was taken as 1, and the ratio of girder length to column

length was taken as 2. Thus, the approximate story ductility was computed to be 4.33.

For an elasto-perfectly plastic system the design spectrum for displacement and the design

spectrum for force in a ductile structure should differ by a ratio equal to the story ductility. For

flexible structures the inelastic design spectrum for displacement would be roughly equal to the

elastic design spectrum; and for rigid structures the inelastic design spectrum for force would be

equal to the elastic design spectrum. From these assumptions inelastic design spectra for force

and displacement at a story ductility of 4.33 are constructed from the elastic design spectrum

and depicted in Figure 11.

3.1.2. Girder And Column Design

The required girder plastic moment capacities for each story were computed by a linear

programming scheme. For each story there are two design variables which are the plastic

moment capacities for the girders on top and the girders on bottom. It was assumed that half

the plastic moment capacity and half the gravity uniform load for each girder applied to the

story under consideration while the other half applied to the adjacent story. In the case of the

top story, all rather than half, of the plastic moment capacity and gravity uniform load was used

for the top girders. In the case of the bottom story the uniform load for the bottom girders was

taken as zero. Under the equivalent static seismic story shear force and the gravity uniform

loads, eighteen non-redundant collapse mechanisms are possible for each story, as shown in

Figure 13. Thus, eighteen linear constraints are placed on the two design variables together

with the linear constraint that the plastic moment capacity for the girders on the bottom of the

story must be greater than the plastic moment capacities for the girders on the top of the story.

The cost function used was to minimize weight. If it is assumed that an increase in cross­

sectional area of an element yields an increase in its phistic moment capacity and vice-versa,

then the weight of an element could be minimized by minimizing the product of its length and
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its plastic moment capacity. With the linear cost and constraint functions available, the linear

program is solved for each story for the plastic moment capacities of the girders.

The plastic moment capacities for the columns were selected by requiring that the sum of

the actual plastic moment capacities of the columns was greater than 1.2 times the sum of the

girder plastic moment capacities at each joint. This restriction is made to insure a strong­

column weak-girder design. The "actual" plastic moment capacities for the columns include

reductions due to the interaction of gravity axial forces according to the interaction diagram

shown in Figure 9. There is also a constraint that the moment capacity of any column must be

greater than the moment capacity of the column above it. The minimum plastic moment capa­

cities were then chosen to satisfy all these constraints.

3.1.3. Iterative Preliminary Design Program

An iterative design program was written for the preliminary design of the example frame.

This program applies only to the example frame. It is written in the Rattle language of the

DELIGHT.STRUCT package [10], and is listed in Appendix 1. First a subprogram is called,

which computes the mass at each of the four stories, the factored uniform loads at each story,

and the axial forces due to factored gravity loads in each column. Next, initial values of the

moments of inertia for the eight design variables in the example frame are specified by the

user. Then the main iteration loop is begun generating new values for the eight moments of

inertia until the maximum change in any moment of inertia is less than 1 in 4•

For each iteration in the main loop seven subprograms are called for carrying out the fol­

lowing tasks:

(0 The 20 by 20 stiffness matrix for the frame is assembled from the 4 by 4 element stiffness

matrices of the 16 columns and the 12 girders.
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(2) Since the mass matrix is only a4 by 4 diagonal matrix, a condensation is performed on

the general eigenproblem equations. Then, the general eigenproblem is transformed to

the standard eigenproblem by pre- and post-multiplying the resulting 4 by 4 stiffness

matrix by the squareroot matrix of the inverse of the mass matrix. The standard eigen­

problem is then solved and the four natural periods and mode shapes of the frame are

computed.

(3) The pseudo-accelerations for the four periods are computed from the inelastic force

design spectrum, and the pseudo-displacements for the four periods are computed from

the inelastic displacement design spectrum.

(4) The maximum shears and drifts at each story for each mode are computed from the

pseudo-accelerations and pseudo-displacements respectively. The maximum shears and

drifts are then computed from the modal maxima by the squareroot of the sum of the

squares (SRSS) method. Finally, the equivalent static story shears are computed by

adding to the maximum shears the P-Delta effect due to the maximum drifts.

(5) With the equivalent static seismic story shears and gravity uniform loads available, the

linear program is solved for each story to yield the required plastic moment capacities of

the girders.

(6) The plastic moment capacities for the columns are computed from the plastic moment

capacities of the girders by applying the strong-column weak-girder philosophy as

described previously.

(7) The new moments of inertia for the 8 design variables are derived from their respective

plastic moment capacities by solving the nonlinear section property relationships given in

Subsection 2.3 by a Newton-Raphson scheme.
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3.1.4. Results Of The Preliminary Design

The design given by Pique and Roesset [Ill was taken as the starting design for the itera­

tive preliminary design program. After 8 iterations an improved preliminary design was

reached. The moments of inertia, natural periods, pseudo-accelerations, equivalent static

seismic story shears, and plastic moment capacities for the starting and preliminary design are

tabulated in Figure 14. The collapse mechanisms for the starting and preliminary designs are

shown in Figure 15.

Note that the preliminary design is quite different from the starting design which was

made according to the Uniform Building Code. The moments of inertia for the interior

columns were approximately doubled during the preliminary design process while the moments

of inertia for the exterior columns did not change dramatically. The moments of inertia for the

lower girders were increased while the moments of inertia for the upper girders were decreased.

Reasons for the dramatic change between the "code" design and the preliminary design may be

attributed to the fact that the design earthquake forces used in the preliminary design are higher

than those prescribed by the code. Furthermore, the simplifying approximations used in the

code design are sure to be a major factor in the difference.

3.2. FINAL DESIGNS

After a satisfactory preliminary design was obtained for the example frame, it was used as

the starting design for a formal optimization procedure based on the criteria described in Sec­

tion 2. The first task was to obtain a "feasible" design or a design which satisfied all the con­

straints. Minimum volume was chosen as the cost function during the process of obtaining a

feasible design in order to keep the problem well-posed. From the feasible design, effort was

made to decrease severe earthquake structural damage by minimizing the inelastic energy dissi­

pation during the severe earthquake. Five iterations were carried out with this cost function.

It was then decided to diminish moderate earthquake non-structural damage by minimizing the

sum of the maxima of the moderate earthquake story drifts. Six further iterations were made
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with this cost function. Finally these three final designs, Le. the feasible design, the minimum

dissipated energy design, and the minimum story drift design, were analyzed under all six

ground motion records. The three final designs are depicted and compared in Figure 16.

3.2.1. Feasible Design

The preliminary design was analyzed under the six ground motions described in Subsec­

tion 2.1. From these analyses constraints were evaluated and the percentages of the allowables

for all the constraints under each motion are tabulated in Appendix 2. Based on this evaluation

the motion E6 was considered to be the most destructive to the preliminary design and was

thus chosen as the design ground motion, as previously mentioned. Note that under severe

earthquake motions, the ends of nearly all the girders and the bases of the bottom story

columns undergo yielding. This is a desirable mechanism since the burden of energy dissipa­

tion is shared among many locations in the structure. The constraints which exhibited the

worst violations were constraints on severe earthquake energy dissipation at the bottom nodes

of the bottom columns. The end moments of the top girders under gravity and moderate

earthquake loading, the third story drift under moderate earthquake loading, and the structure

sway under severe earthquake loading were also in violation.

Intervention of the designer led to increasing the sizes of the bottom columns and the top

girders before formal optimization began. After six iterations of formal optimization a feasible

design satisfying all 141 conventional constraints and all 69 functional constraints was found.

The iteration histories of the maximum value over all the constraint functions, the structural

volume, and the values of the design variables are plotted in Figure 17. Note the large

decrease in constraint violation in the first iteration, and the slow decrease in later iterations.

This is typical of the performance of many optimization algorithms. Note also that the volume

of the structure remained nearly constant for all iterations. Thus the feasible design was not

contructed by simply increasing the strengths of all the members, but rather by re-distributing

the strength of the structure among the members.
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The constraints which are greater than 90% of allowable for the feasible design include the

following:

First story girder end moments under gravity loads only (96%).

Second story girder end moments under gravity loads only (99%).

Third story girder end moments under gravity loads only (94%).

Fourth story girder end moments under gravity loads only (95%).

First story girder end moments under moderate earthquake loads (95%).

Second story girder end moments under moderate earthquake loads (100%).

Third story drift under moderate earthquake loads (93%).

First story interior column energy dissipation under severe earthquake loads (96%).

Second story girder energy dissipation under severe earthquake loads (97%).

Structure sway under severe earthquake loads (99%).

The fact that there is a number of these "active" constraints suggests that this feasible design is

probably a good design if one subscribes to the notion that an optimal design is a "fully

stressed" design.

The process of obtaining a feasible design appears to have modified the preliminary design

in two main areas. First, the columns were increased in size, especially the lower interior

columns and the upper exterior columns. An increase in the sizes of the lower columns was

expected because the ductilities in these columns for the preliminary design were unacceptably

high. Increasing the sizes of the upper columns would tend to lessen the third story drift under

moderate earthquake loading and the structure sway under severe earthquake loading. The

second area of modification occurred in the sizes of the girders. In the preliminary design the

sizes of the girders decreased from the bottom story to the top. In the feasible design the

girder sizes for the bottom three stories are roughly the same and the girder size for the top

girder is slightly less. Thus, the lower girders were decreased in size while the upper girders

were increased in size during the feasible design process. This is rational because the
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constraints under gravity loads only are the controlling constraints for the girders in the feasible

design, and the girders on the bottom three stories support the same amount of gravity load,

while the top girders support slightly less gravity load.

The feasible design was analyzed under all six ground motion records and the values of

the constraint functions were computed. The percentages of allowables for all the constraint

functions under each ground motion record are tabulated in Appendix 3. Note that the feasible

design is acceptable under ground motions E3 and E5 in addition to the design ground motion

E6. Under motion E4 the severe earthquake energy dissipation constraint in a bottom interior

column was violated by 3%, and under the motion El the moderate earthquake end moment

constraints for second story girders were violated by 3%. The motion E2 seems to be the most

severe for the feasible design. Under this motion, moderate earthquake end moment con­

straints for girders in the first two stories were violated by a maximum of 11%. Moderate

earthquake story drift constraints in the second and third stories were violated by a maximum

of 14%. Severe earthquake energy dissipation constraints in the third story columns were

violated by 8%. The worst violation was 32%, which occurred in the constraints on severe

earthquake energy dissipation in the second story girders. Under monotonic loading a violation

of this much would give a girder rotation ductility of 7.4 rather than the allowable of 6. This is

still probably acceptable if attention is placed on detailing. Thus, it appears that the feasible

design is an acceptable design for all the ground motions.

3.2.2. Minimum Dissipated Energy Design

The minimization of severe earthquake inelastically dissipated energy was used as the cost

function for five iterations starting from the feasible design. The histories of the cost function,

cumulative cpu-time, and values for the design variables vs. the five iterations are plotted in

Figure 18. Note that the reduction from the feasible design in inelastic energy dissipation was

about 14%. There was also a drop of 15% in sum of maxima of moderate earthquake story

drifts, and a small drop of 0.1% in volume. Each iteration of the optimization process required
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about 28 analyses. There was an average of about 700 time steps per analysis meaning there

were many dynamic analyses for the full time period which requires 1101 time steps. Further­

more there was an average of about 0.91 reformulations of the stiffness matrix per time step

meaning many of the analyses were nonlinear. The fact that many nonlinear dynamic analyses

were required is plausible since these analyses were needed to evaluate of the cost function.

Fewer constraints were active for the minimum dissipated energy design than for the

feasible design. In particular none of the constraints on severe earthquake dissipated energy

were active ---- a reasonable result since this quantity was minimized. Active constraints

included the following:

First story girder end moments under gravity loads only (99%).

Second story girder end moments under gravity loads only (99%).

Third story girder end moments under gravity loads only (94%).

First story girder end moments under moderate earthquake loads (94%).

Second story girder end moments under moderate earthquake loads (94%).

Structure sway under severe earthquake loads (100%).

When the severe earthquake inelastic energy dissipation was minimized, the first un­

anticipated result was the slight decrease in the volume of the structure. Originally it was

expected that decreasing the dissipated energy in a yielding structure would require increasing

the sizes of the elements to make them stronger and thus yield less. However, a larger element

may have a lower amplitude of yield deformation, but it also has more material with which to

dissipate energy. Therefore, the slight decrease in volume is plausible. Perhaps a cost function

which minimized the dissipated energy divided by the volume of the structure would have

quantified severe earthquake damage in a better way.

A second interesting result is depicted in Figure 19 which shows the time histories of

energy dissipation in various parts of the structure for the feasible and the minimum dissipated

energy designs. In both designs approximately 85% of the dissipated energy was dissipated in
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the girders. Note, however, that in the minimum dissipated energy design the upper stories

dissipated about 16% of the dissipated energy while in the feasible design the upper stories dis­

sipated only 8%. Thus, in this case minimizing the dissipated energy tended to balance the dis­

sipated energy distribution in the structure.

A third interesting result concerns the fifth iteration. In this iteration there was a substan­

tial reduction in energy dissipation, and correspondingly there was an unexpected drop in the

size of the upper interior columns and an increase in the size of the top story girders. Upon

checking the values of the gradients of the cost and active constraint functions for the fifth

iteration, it was discovered that the decrease in the size of the upper interior columns causes a

decrease in the dissipated energy, and the increase in the size of the top story girders causes a

decrease in the severe earthquake structure sway constraint. These are examples of how the

results of a complex constrained optimization problem involving constraints on nonlinear

dynamic response are difficult to anticipate before computation.

The minimum dissipated energy design was then analyzed under all six available ground

motion records and the percentages of the allowables for the contraints under each record are

tabulated in Appendix 4. The design was acceptable for records E3 and E4 in addition to the

design record E6. Under record E5 all constraints are satisfied except the structure sway con­

straint, which was violated by only 5%. Records El and E2 appear to produce the greatest

response in this design. Although the constraints on moderate earthquake girder end moments

were violated by less than 10%, and the constraint on moderate earthquake third story drift was

violated by 15%, the energy dissipated by the third story interior columns under severe earth­

quake loading violates the contraint by up to 139%. A violation by this much under monotonic

loading would give a rotation ductility of 5.3 in these columns rather than the allowable of 3.

This is probably unacceptable, and the sizes of the upper story interior columns should be

increased.
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3.2.3. Minimum Drift Design

Since the minimum dissipated energy design had a lower sum of maxima of moderate

earthquake story drifts than the feasible design, it was used as the starting design for the

minimization of story drift. Six iterations were carried out and the corresponding iteration his­

tories are plotted in Figure 20. The first thing to note is that there was not much change in the

cost nor in the design variables. The sum of the maxima of the moderate earthquake story

drifts was decreased by a mere 3%. There was also a drop of 2% in severe earthquake dissi­

pated energy and a small drop of 0.3% in volume. An average of 24 analyses was needed per

iteration. Each analysis required an average of 414 time steps, which is significantly lower than

for the minimum dissipated energy design. Furthermore, there was an average of only 0.54

reformulations of the stiffness matrix per time step, which is about half the number required by

the minimum dissipated energy design. Since computation of the cost function does not

require full nonlinear dynamic analysis, one would expect less computational effort per itera­

tion. However, although the computational effort per iteration is low for this choice of cost

function, the change per iteration in the cost and in the design is also low.

The main change in the minimum drift design from the minimum dissipated energy

design is that the third story girder was decreased in size. The girders of the minimum story

drift design have nearly the same size. This is a result of the gravity load end moment con­

straints, which are active in the minimum story drift design. Other active constraints include

moderate earthquake end moment constraints on first and second story girders and the con­

straint on severe earthquake structure sway. Thus the same constraints are active for the

minimum story drifts and minimum dissipated energy designs.

Again, one would have expected that a minimization of story drift would have given an

increase in volume rather than the decrease that was realized. The reason for the decrease in

volume may be explained from the plots of story drift for the minimum story drift and feasible

designs as shown in Figure 21. Note that in each story the minimum story drift design exhibits

slightly less drift. Note also that the period of the minimum story drifts design is slightly
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longer than the period of the feasible design. One must therefore conclude that frequency con­

tent of the particular design ground motion £6 tends to drive the stiffer feasible design to

greater response. This conclusion can be made since the structural response to the moderate

earthquake is in the linear elastic range.

The minimum story drift design was analyzed under all six ground motions and the per­

centages of the allowables for all constraints under each motion are tabulated in Appendix 5.

This design was acceptable for motions £3 and £4 in addition to the design motion £6. The

only constraint not satisfied under motion £5 was the severe earthquake structure sway con­

straint, which was violated by only 5%. Under motions £1 and £2 moderate earthquake end

moment constraints were violated in the girders by less than 10%, and the moderate earthquake

third story drift constraint was violated by 18%. These results are similar to those for the

minimum dissipated energy design. However, the constraint on severe earthquake energy dissi­

pation in the third story interior columns under motions £1 and £2 was violated by a maximum

of 104%, which is less than the 139% violation exhibited by the minimum dissipated energy

design. If the loading were monotonic, this 104% violation in energy dissipation constraint

would correspond to a column rotation ductility of 4.9 rather than the allowable of 3. This may

be unacceptable. Thus, the minimum story drift design appears to be a little less sensitive to

change in ground motion than the minimum dissipated energy design; however, it is more sen­

sitive than the feasible design.
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4. CONCLUSIONS

Conclusions are now stated in three areas. The practicality of the proposed design method

is examined in Subsection 4.1. The reliability of the method is assessed in Subsection 4.2.

Finally some generalizations regarding low-rise steel frames, such as the example frame, are

drawn in Subsection 4.3.

4.1. PRACTICALITY OF THE PROPOSED DESIGN METHOD

A major consideration of the optimization method developed and used in this study is the

amount of computational effort that has been involved. Computation was done on a VAX

11/780 mini-computer. For the minimum dissipated energy design an average of 4.3 hours of

cpu-time was required per iteration, for the minimum story drift design 2.1 hours of cpu-time

were required per iteration, and for the feasible design the figure was somewhere in between.

For an engineering firm that owned an equivalent mini-computer, the cost for computing is

minimal. The amount of time it takes for computation becomes a critical factor because it

affects the scheduling of the design project itself.

The final design process should be viewed as a refinement process on the preliminary

design. One should not expect to carry out a final design to some surprisingly different optimal

design. The importance of obtaining a reasonably good preliminary design cannot be over­

emphasized, since they minimize the number of final design iterations needed. In the case of

the example frame, a good preliminary design was obtained by solving a simplier optimization

problem. Consequently, a very practical design was produced after only one iteration of final

design. The first iteration design was very close to the final feasible design which performed

quite well under the different ground motions. However, in general more iterations of final

design would be required.

The computation process used a more or less "brute force" method. Many inefficiencies

are involved and are described in the companion report [10] in more detail. The computational

effort could be reduced by more than an order of magnitude if the more efficient schemes
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suggested in that report were utilized. These schemes must be incorporated before the method

can be applied to the design of frames which are significantly larger than the example frame.

Obviously the proposed method involves more computation than conventional design

methods. However, this does not necessarily imply an increase in the amount of real time

invested in the design process. The computations in the proposed method are performed by

the computer 24 hours a day, while many of the computations required by conventional

methods are performed slowly and expensively by hand during "prime" time.

4.2. RELIABILITY OF THE PROPOSED DESIGN METHOD

The proposed method is one of the first seismic-resistant design methods which actually

uses nonlinear dynamic analysis in the design process itself, rather than just using such an

analysis to check the final design. This method should have greater reliability over state-of­

the-art design methods because the cyclic, dynamic, nonlinear behavior exhibited by

seismically-excited frames is accounted for in an improved fashion. However, it should be

recognized that further improvement could be made in the modelling of the nonlinear behavior

of beams and columns. The frame software modelled beams and columns with single lumped­

plasticity beam-column elements as available in the ANSR simulation package. Such models

are computationally inexpensive and therefore, popular. However, significant errors may be

introduced by the approximations involved.

The method should also possess greater reliability because it quantifies accepted design

philosophy more directly. Descriptions of moderate and severe ground motion were derived

from accelerograms corresponding to actual earthquakes. Constraint functions were constructed

to reflect structural damage and excessive non-structural damage in the case of moderate

ground motion, and collapse and excessive structural damage in the case of severe ground

motion.

A complex mathematical programming problem is generated by the proposed method. In

the case of the example frame the problem involved over 200 constraints, most of which were
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extremely complicated functions of the design variables. This complexity was the reason that a

sophisticated optimization algorithm was employed to manage the final design process. Note

that a feasible design for the example frame was produced without a noticable increase in the

volume of material. An engineer faced with an infeasible design would be tempted to resolve

the problem by simply increasing the sizes of relevant members. Thus, the way in which infor­

mation about a design is generated and utilized in the proposed method definitely contributes to

its reliability.

An area which needs improvement in the proposed method is the way in which seismic

ground motion is incorporated. Indeed, all deterministic design methods could be improved in

this area. The record E6 was chosen as the design record for the example frame because it

seemed to be the most destructive to the preliminary design. However, as the final designs

moved further away from the preliminary design, it became apparent that records E1 and E2

caused more critical responses. Since the final design process incorporated information about

the design record E6 only, the designs became more sensitive to different records as final

design iterations were carried out. The optimization process seems to seek out some optimal

"corner" in design space, and such corners are dependent on the characteristics of the design

record. This problem of sensitivity to different ground motions can only be resolved properly if

the design method is modified to utilize information about different possible ground motions.

4.3. LOW-RISE STEEL FRAMES

The following generalizations are proposed on the basis of the results obtained for the

example frame:

(1) Girder design seems to be controlled by the constraints on their end moments under grav­

ity loads only. An exception is the design of the top story girder, which may be con­

trolled partially by the severe earthquake sway constraint.
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(2) Column design seems to be controlled by moderate earthquake story drift constraints, the

severe earthquake sway constraint, and severe earthquake energy dissipation constraints in

the columns and girders.

(3) Designs produced by the minimization of severe earthquake inelastically dissipated energy

seem to distribute the energy dissipation more evenly among the different stories than

conventional designs.

(4) The minimization of moderate earthquake story drift is strongly linked to the frequency

content of the design ground motion.

From these generalizations it may be possible to propose "simplified" design methods for

the design of low-rise steel frames. One such method would advocate that girder design be

made on the basis of constraints under gravity loads only with the use of an empirical dynamic

amplification factor for sizing the girders in the top stories. Column design seems to be con­

trolled by constraints under dynamic loading, and little simplification in the final design process

is recommended. Nevertheless, the simplifying assumption on girder design would have cut

the number of design variables, and thus the computational effort, in half for the example

frame.
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FORCE

energy dissipated
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Vg

~
IRDER

AXES

X

D Re
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X

C:MNt ;11)g = allolJJable
AXES girder d'.:ctilit'J

Vc
L :::: length of girder
H = height of column
19 = girder moment

of inertia
Ie :::: column moment

of inertia
~1y :::: yield il'lo:-nent
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BOUNDARY CONDITIONS
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Vg(O) = 0
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FIGURE 12: STORY DUCTILITY
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STARTING PRELIM
DESIGN DESIGN

ext lower- columns 210 216
int lower- columns 210 593

MOMENTS ext upper- columns 171 101
OF int upper- columns 171 340
INF."RTIA 1st stOr-1I gir-der-s 374 432
(in**4) 2nd stor-II gir-deT's 374 370

3r-d stOT''' gir-der-s 374 279
4th stor-II gir-deT's 300 97

I

Nt;TURAL 1st 0.967 0.853
PERIODS 2nd 0.320 0.304
(seconds) 3T'd O. 186 O. 167

4th O. 134 O. 105

PSEUDQ- 1st 0.332 0.377
ACCELERATION 2nd O. 780 O. 773
(9's) 3T'd O. 712 0.699

4th 0.674 0.647

SHEAR 1st stOT'y 106. 5 113.5
FORCES 2nd stor-y 94.2 101. 4
(kips) 3T'd stor-y 75.4 82.5

4th stOT'y 48.7 57. 1

GIRDER 1st stor-y 2043 -2270
PLAST MOM 2nd stOT'Y 2043 2028
CAPACITIES 3r-d stOT'Y 2043 1650
(kip-in) 4th stOT'Y 1740 765

COLUt-1N ext loweT' 1568 1598
PLAST MOM int lower- 1568 3333
CAPACITIES ext upper- 1379 996
(kip-in) int uppeT' 1379 2116

FIGURE 14 . STARTING AND PRELIMINARY DESIGNS
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STARTING DESIGN

PRELIMINARY DESIGN

FIGVRE 15 COLLAPSE MECHANISMS
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Finlll De~:;i.gns
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FEASIBLE DESIGN
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--- MIN. STORY DRIFTS DESIGN
FEASI BLE DESIGN
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APPENDIX 1 : RATTLE PROGRAM FOR PRELIMINARY DESIGN

Initialization

array unif(4),axiaI(4,2)
call massload (mass,unif,axiaI)
array inertia(8)
readmatrix inertia
:210 210 171 171 374 374 374 300
matop oldin = array(8) of 100000
array stiffness(20,20) ,periods(4) ,modes(4,4) ,pseudoacc(4),

pseudodis(4), forces (4) ,girmom (4),colmom(4)
echo_to preliminary

Main Loop Of Program

repeat {
printy inertia
diff = 0
for i = 1 to 8 diff = max(diff,abs(inertia(i)-oldin(i»)
if (diff < 1) break
matop oldin = inertia
call assemble (inertia,stiffness)
call eigenprob (stiffness,mass,periods,modes)
printy periods
call pseudo (periods,pseudoacc,pseudodis)
printy pseudoacc
call dynforce (pseudoacc,pseudodis,modes,mass,forces)
printy forces
call girder (forces,unif,girmom)
printy girmom
call column (girmom,inertia,axial,colmom)
printy colmom
call inertias (girmom,colmom,inertia)
}

forever
echo_end

Procedure For Computing Mass, Gravity Loads, And Axial Forces

procedure massload (mass,unif,axiaI) {
array unifO ,axial (,)
mass = 80*20*55/1000/386.088
for i = 1 to 3 unif(i) = (80+ 1.4*40)*20/1000/12
unif(4) = (80+ 1.4*20)*20/1000/12
matop axial = array(4,2) of 0
for i = 1 to 4

for j = 1 to i {
axiaIG,l) = axiaIG,l) + 120*unif(j)
axiaIG,2) = axiaIG,2) +210*unif(i)
}
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Procedure For Formulating Element Stiffness Matrix

procedure elemstiff Oner,leng,kelem) {
array kelem(,)
fae = 12*29000*iner/leng**3
kelemO,1) = fac ; kelemO,2) = -fac
kelem(2,1) = -fae; kelem(2,2) = fae
fae = fae*lengl2
kelemO,3) = fae; kelem(2,3) = -fae
kelem(2,4) = -fae ; kelemO,4) = fae
kelem<3,l) = fae; kelem<3,2) = -fac
kelem(4,2) = -fae; kelem(4,1) = fae
fae = fae*leng/3
kelem(3,4) = fae ; kelem(4,3) = fae
kelem(3,3) = 2*fac ; kelem(4,4) = 2*fac
}

Procedure For Including Element Stiffness Matrix Into Global Stiffness Matrix

procedure elemassem (kelem,elmap,stiffness) {
array kelem (,) ,elmap0 ,stiffness (,)
for i = 1 to 4 {

ii = abs(elmap(i)
if (ii = = 0) next
is = elmap (i) Iii
for j = 1 to 4 (

jj = abs(elmap(j»
if (jj = = 0) next
js = elmap(j)/jj
stiffness (ii,jj) = stiffness (ii,jj) + is*js*kelemOJ)
}

Procedure For Assembling Global Stiffness Matrix

procedure assemble Onertia,stiffness) {
array inertia0 ,stiffness(,)
arrayelmap(4),kelem(4,4)
matop stiffness = array(20,20) of 0
for i = 1 to 4 {

leng = 10*12
elmap(l) = ·0-1) ; elmap(2) = -i
for j = 1 to 4 {

elmap(4) = 4*i+j
if (i = = 1) elmap(3) = 0
if (i != 1) elmap(3) = 4*0-O+j
if 0 < = 2) {

if (j = = 1 Ij = = 4) iner = inertia(1)
if (j = = 2 \j = = 3) iner = inertia(2)
}

if 0 > = 3) {
if (j = = 1 \j = = 4) iner = inertia(3)
if (j = = 2 \j = = 3) iner = inertia(4)
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}
call elemstiff (iner,leng,kelem)
call elemassem (kelem,elmap,stiffness)
}

elmap(l) = 0 ; elmap(2) = 0
for j = 1 to 3 {

elmap(3) = 4*i +j ; elmap(4) = 4*i+j+ 1
if G= = 2) leng = 12*15
if G! = 2) leng = 12*20
iner = inertia(4+i)
call elemstiff (iner,leng,kelem)
call elemassem (kelem,elmap,stiffness)
}

Procedure For Computing Periods And Mode Shapes

procedure eigenprob (stiffness,mass,periods,modes) {
array stiffness (,), periods0, modes (,)
matop mhi = identity(4)
matop mhi = (l/sqrt(mass)) * mhi
clip kll = stiffness(l:4,1:4)
clip k12 = stiffness(l:4,5:20)
clip k22 = stiffness(5:20,5:20)
matop al = inv(k22)
matop a2 = al * k12'
matop a3 = k12 * a2
matop a4 = kl1 - a3
matop a5 = mhi * a4
matop a6 = a5 * mhi
matop periods,a7 = sym_eigen(a6)
matop modes = mhi * a7
for i = 1 to 4 periods(i) = TWOPIIsqrt(periods(i))
}

Procedure For Finding Pseudo Accelerations And Displacements

procedure pseudo (periods,pseudoacc,pseudodis) {
array periods0 ,pseudoacc0 ,pseudodis ()
perl = .01; per2 = .04; per3 = .4; per4 = 3.4; per5 = 10.
al = .55 ; a2 = .55 ; a3 = .81 ; a4 = .093 ; a5 = .012
dl = .0025; d2 = .039 ; d3 = 5.9 ; d4 = 50. ; d5 = 50.
cal = O. ; ca2 = .16812; ca3 = -1.0114; ca4 = -1.8981
cdl = 1.9817; cd2 = 2.1798; cd3 = .99860 ; cd4 = O.
for i = 1 to 4 {

per = periods (i)
if (per < = per2) {

pseudoacc(i) = al*(per/perl) **cal
pseudodisO) = dl *(per/perl)**cdl
}

if (per> per2 & per < = per3) {
pseudoacc(i) = a2*(per/per2)**ca2
pseudodisW = d2*(per/per2)**cd2
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}
if (per> per3 & per < = per4) (

pseudoacc(i) = a3*(per/per3)**ca3
pseudodis(i) = d3*(per/per3)**cd3
}

if (per > per4) (
pseudoacc(i) = a4*(per/per4)**ca4
pseudodis(i) = d4*(per/per4)**cd4
}

Procedure For Computing Maximum Dynamic Story Shears

procedure dynforce (pseudoacc,pseudodis,modes,mass,forces) (
array pseudoaccO, pseudodisO, modes(,), forcesO
array disps (4)
matop forc = (mass) * modes'
matop disp = modes'
matop one = array (4,1) of 1
matop modefac = modes' * one
matop modefac = (mass) * modefac
for i = 1 to 4

for j = 1 to 4 {
dispGj) = dispGj)*modefacG,1)*pseudodis(i)
forc(ij) = forc(ij) *modefacG,1)*pseudoacc(i)*386.088
}

for j = 3 downto 1
for i = 1 to 4

forcGj) = forc(ij) +forc(ij + 1)
for i = 1 to 4 (

clip fvec = forc(,i)
forces(i) = ~vecl
clip dvec = disp(,i)
disps (i) = Ictvecl
}

odisp = 0
for i = 1 to 4 [

ndisp = disps (i)
forces(i) = forces(i) + 386.088*mass*(ndisp-odisp)1120
odisp = ndisp
}

procedure for finding girder plastic moments of failure mechanism

procedure girder (forces,unif,girmom) (
array forces 0,unifO ,girmom0
array cost(2) ,coeff(19,2) ,rhs(l9)
costO) = 11 ; cost(2) = 11 + 1.2*32
coeffO,1) = 1 ; coeffO,2) = 1
coeff(2,1) = 1 ; coeff(2,2) = 0
coeff(3,1) = 0 ; coeff(3,2) = 1
coeff(4,1) = 4 ; coeff(4,2) = 3
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coeff(S, I) = 3 ; coeff(S,2) = 4
coeff(6, I) = S ; coeff(6,2) = 3
coeff(7, I) = 3 ; coeff(7,2) = 5
coeff(8,1) = 1 ; coeff(8,2) = 1
coeff(9,1) = 2 ; coeff(9,2) = 1
coeff(lO,1) = 1 ; coeff(l0,2) = 2
coeff(ll,1) = S ; coeff(1l,2) = 4
coeff(l2, I) = 4 ; coeff(l2,2) = 5
coeff(l3,1) = 3 ; coeff(l3,2) = 2
coeff(l4,1) = 2; coeff(l4,2) = 3
coeff(lS,1) = 1 ; coeff(l5,2) = 1
coeff(l6, I) = 6 ; coeff(l6,2) = S
coeff(l7, I) = 5 ; coeff(l7,2) = 6
coeff(18,1) = 1 ; coeff(18,2) = 1
coeff(l9, I) = -1 ; coeff(l9,2) = 1
for i = 1 to 4 {

wt = unif(i)
if (i = = 4) {

wt = 2*wt
for j = 1 to 19 coeff(j, I) = 2*coeff(j, I)
cost(l) = 2*cost(1)
}

if (i = = I) then wb = 0
else wb = unif(i-1)
s = forces(i)
rhs(l) = 40*s
rhs(2) = 3600*wt
rhs(3) = 3600*wb
rhs(4) = 120*s+nOo*wt
rhs(S) = 120*s+nOO*wb
rhs(6) = 120*s+ 14400*wt
rhs(7) = 120*s+ 14400*wb
rhs(8) = 30*s+ 1800*(wt+wb)
rhs(9) = 40*s+6150*wt
rhs(10) = 40*s+61S0*wb
rhs (11) = 120*s+ 14400*wt+ nOO*wb
rhs (12) = 120*s + noo*wt + 14400*wb
rhs(13) = 60*s+922S*wt+3600*wb
rhs(14) = 60*s+3600*wt+922S*wb
rhs(1S) = 24*s+2880*(wt+wb)
rhs(16) = 120*s+ 18450*wt+ 14400*wb
rhs(17) = 120*s+ 14400*wt+ 18450*wb
rhs(18) = 20*s+307S*(wt+wb)
rhs(19) = 0
Iinprog var = argmin { cost'*x Icoeff*x> =rhs }
actl = 1000 ; act2 = 1000 ; j1 = 0 ; j2 = 0
matop active = coeff * var
matop active = active - rhs
for j = 1 to 19

if (active(j) < = act2) {
if (active(j) < = actl) {

act2 = act1 ; act1 = active(j)
j2 = j1 ; j1 = j
}
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if (active(j) > actl) (
act2 = active(j) ; j2 = j
}

}
printf 'max constraint numbers = %i %iln' jl j2
girmom(i) = var(l)
if G!= l)

if (var(2) > girmomG-l)
girmomG-l) = var(2)

Procedure For Computing Column Plastic Moduli

procedure column (girmom,inertia,axial,colmom) (
array girmom0 ,inertia0 ,axial (,) ,colmom0
array area (4)
for i = I to 4 (

if Gnertia(i) > 429)
then depth = 10.5*inertia(i) **0.0436
else depth = 1.47*inertia(i)**0.368
area(i) = inertia(i)/(0.39*depth**1.04)**2
}

ml = 1.2*girmom(4) ; m2 = 0.6*girmom(3)
c3 = max(ml,m2)
if (axiaJ(4,l) > O.15*area(3)*36)

ml = O.85*mllO-axiaJ(4,l)/36/area(3»)
if (axiaI(3,l) > 0.15*area(3)*36)

m2 = 0.85*m2/0-axiaI(3,l)/36/area(3))
colmom(3) = max(ml,m2)
ml = 2.4*girmom(4) ; m2 = 1.2*girmom(3)
c4 = max(ml,m2)
if (axiaI(4,2) > 0.15*area(4)*36)

ml = 0.85*mll (I-axial (4,2) /36/area (4))
if (axial(3,2) > O.15*area(4)*36)

m2 = 0.85*m2/(I-axiaI(3,2)/36/area(4))
colmom(4) = max(ml,m2)
ml = 1.2*girmom(2)-c3 ; m2 = 0.6*girmom(I)
if (axiaI(2,l) > 0.15*area(I)*36)

ml = O.85*mllO-axial(2,l)/36/area(l)
if (axiaIO,l) > O.15*areaO)*36)

m2 = O.85*m2/0-axiaIO,l)/36/areaO»
colmomO) = max(ml,m2,colmom(3»
ml = 2.4*girmom(2)-c4 ; m2 = 1.2*girmomO)
if (axial(2,2) > O.15*area(2)*36)

ml = 0.85*mllO-axial(2,2)/36/area(2))
if (axialO,2) > O.15*area(2)*36)

m2 = 0.85*m2/0-axialO,2)/36/area(2))
colmom(2) = max(ml,m2,colmom(4»
}
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Procedure For Computing Inertias From Plastic Moduli

procedure inertias (girmom,colmom,inertia) {
array girmom0 ,colmom0 ,inertia0
ael = 19.516; bel = .60256; eel = 36.735; del = .63200
ac2 = 2.3345; be2 = .95291; cc2 = 5.1429; dc2 = .95640
ag = 7.3165; bg = .75892; eg = 20.301; dg = .71300
toler = .00001
for i = 1 to 4 (

inert = 200; pm = eolmom(i)
repeat {

if (inert < = 429)
{ae = acl ; be = bel ; ec = eel; de = dell

if (inert> 429)
{ae = ae2 ; be = be2 ; ee = ee2 ; de = de2}

pmt = ae*inert**be+cc*inert**dc
dpm = ac*be*inert**(bc-I) +ce*de*inert**(dc-I)
dinert = (pm-pmt)/dpm
inert = inert + dinert
if (abs(dinert/inert) < toler) break
}

forever
inertia(i) = inert
}

for i = 1 to 4 {
inert = 200 ; pm = girmom(i)
repeat {

pmt = ag*inert**bg+eg*inert**dg
dpm = ag*bg*inert** (bg- I) +cg*dg*inert** (dg- I)
dinert = (pm-pmt)/dpm
inert = inert + dinert
if (abs(dinert/inert) < toler) break
}

forever
inertia(4 + i) = inert
}



11.79

APPEN[}IX g: PERCENTAt:iES OF ALLOWABLES FOR CONSTRAINTS ON
PREL I i1 I Nt-.RY DES I GN

Constraints Under Gravity Loads Only

lcolu.nn axial
e le:''!\ent

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

forcel

46~t.

561.
561.
461.
341.
421.
421.
341.
261.
381.
381.
26~t.

121.
171.
171.
121.

< 0.5 * column failure force
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lcolumn end mument: ,( 0.6 * column yield moment
element node

1 bot 17%
1 top 33%
2 bot 5:'.
2 top 10%
3 bot 5%
3 top 1Oi~

4 bot 17%
4 top 33%
5 bot 46i'~

5 top 49%
6 bot 15~t,;

6 top 15%
7 bot 15%
7 top 15:'.
8 bot 467-
8 top 497-
9 bot 4(,1i~

9 top 487-
10 bot 147-
10 top 147-
11 bot 14i~

11 top 14:'~

12 bot 441.
12 top 48%
13 bot 731.
13 top 98%
14 bot 23%
14 top 31%
15 bot 23%
15 top :31%
16 bot 73%
16 top 987-



I I. 81

:girder end moment: < 0.6 * girder yield moment
element node

17 lit 53r.
17 rht 75r.
181ft 43t.
18 rht 43%
19 1ft 75%
19 rht 53%
201ft 59%
20 rht 85t.
21 lit 48r.
21 rht 48%
22 lit 85%
22 rht 59%
23 1ft 73%

~~~ 23 rht 104%
241ft 58%
24 rht 58%

~~~ 251ft 104%
25 rht 73%

*~* 26 1ft 128%
*~* 26 rht 190%
~~* 271ft 105%
~** 27 rht lOSt.
*~* 28 1ft 190%
-** 28 rht 128%

:live load girder midspan deflection: < girder span I 240
element

17 10%
18 0%
19 10%
20 ln~

21 0·'"I.
22 11 :t.
2'''' 14%..J

24 1 :.~

~C\ 14:'~<::..~

26 36i~

27 1"'I.
28 36%
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Constraints Under Combined Gravity 8.n.!!. Moderate Quake Loads

1column end moment I .,' 1.0 * column yield moment'.

element node El E2 E3 E4 E5 E6
1 bot 57% 55% 46'i'~ 43i~ 45% 52%
1 top 46% 44% 40% 381. 411. 451.
2 bot 601. 621. 451. 531. 441. 641.
2 top 361. 371. 281. 331. 231. 411.
3 bot 651. 621. 511. 471. 501. 59'i'~

3 top :39i'~ 361. 321. 291. 331. 371.
4 bot 531. 547- 407- 487- 341. 56%
4 top 447- 441. 377- 417- 337- 47%
5 bot 61~'~ 637- 53% 527- 517- 54%
5 top 62% 631. 55% 54% 5:3% 577-
6 bot 447- 467- 317- 40% 27% 43%
6 top 43% 437- 337- 397. 277- 427-
7 bot 47i~ 497- 38% 37i~ 34% 38%
7 top 45~t. 457- 38% 36% 357- 41X
8 bot 597. 617- 48% 557- 447- 587-
8 top 60% 61% 51% 56% 467- 597-
9 bot 557- 607- 50% 50% 477- 53%
9 top 617. 647- 50% 527. 497- 55%

10 bot 497- 537- 467- 427- 307- 47%
10 top 52% 54% 41% 45% 31% 48%
11 bot 49i'~ 577- 437- 42% 38% 47%
11 top 547- 57% 40% 42% 377- 457-
12 bot 55% 587- 527- 497. 417- 53%
12 top 60% 61% 527- 547- 447- 577-
13 bot 63% 67% 66% 64% 62% 66%
13 top 76~/~ 81% 78% 76% 757- 78%
14 bot 36% 37% 38% 40% 33% 427-
14 top 38% 41% 397- 397- 33% 42%
15 bot 34% 397- 397- 38% 347- 407-
15 top :38i'~ 431. 401. 381. 371. 40%
16 bot 64% 661. 65% 66% 607- 687-
16 top 71% 79~t. 77% 77% 72% 79%
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19irder end momentl .( 1.0 * girder '-1:i.e ld moment
element node E1 £2 £3 £4 £5 £6

17 1ft 70:'~ 7{):{ 61% 60i~ 59:/~ 64i'~

17 rht 82i~ 84% 70% 77% 65% 82'i'~

18 1ft 79~t~ 80% 6 7i'~ 6S~/~ 65~{ 71 i~

18 rht 76% 78% 59% 69% 53% 75i'~

19 1ft 85% 85% 76% 74% 74% 791.
19 rh t 67i~ 69% 56% 63F.: 51% 67%
20 1ft 74% 77% 63F.: 62% 61% 65%
20 rht 89i~ 92% 76% 83F.: 71% 86%
21 1ft 84i~ 88% 68% 67i~ 65% 71%
21 rht 81% 841. 62% 73% 56% 77i~

22 1ft 911. 94% 80i~ 791. 78% 82%
22 rht 72'i'~ 74% 59% 661. 541. 691.
23 1ft 72% 791. 69% 68% 66% 71%
23 rht 93% 97% 921. 89% 80% 93%
24 lft 77i~ 88% 741. 72% 69% 761.
24 rht 7""" 83% 75% 71% 591. 761.. I I.

25 1ft 93i'~ 1011. 91'7. 90'7. 88~1,. 93%
25 rht 71 i~ 75% 70i'~ 67% 591. 71%

*.:l":l- 26 1ft 100% 105'7. 102'7. 99% 98'l. 102%
~~ Ll· 26 rht 1:37i~ 140'7. 138% 139% 131 i~ 141'7.
*"~..>.l- 27 lft 95i~ 103% 98i'~ 95i~ 9'"")" 98j~<::.1.

27 rht 95% 99% 96i'~ 97% 87% 100i'~

')1:1-* 28 Ht 137~1,. 143'/. 140'7. 137~1,. 1351. 140i'~

*-::1-":1- 28 rht 10m~ 103% 100F.: 101% 94F.: 103F.:
ls{.or'.j driitl ,. 1/200'.
story £1 £2 £3 £4 E5 £6

1 61% 59% 47% 49% 46% 59'7.
2 87i~ 91% 66/~ 71% 601. 78'7.

-:1-* :I- 3 93% 106% 72% 73'7. 63% 82i'~

4 69% 87'7. 73i'~ 69'7. 611. 77'7.
labsolute floor accelerationl ,. 9/2".
floor El £2 £3 £4 E5 E6

1 29% 26i'~ 34i'~ 33i'~ 311. 40i~

2 :38i'~ 40% 46'7. 461. 38'l. 61%
:3 56% 4\?i'~ 45% 481. 377- 52%
4 56~/~ 67% 62% 621. 51'l. 68%
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Constraints !::L!l1~ Combined Gravity tin!! Severe Quake Loads

column end energy dissipation " ductility=3 dissipation.....

element node El E2 E3 E4 ES E6
~:I- :I- :l- i bot 8S~{ 68% 71. 221. 311. 1311.

1 top f:i:-,t 01. 01. 01. 01. 01.~ ..
,:I-.~ :I- 2 bot 280i~ 337% 30% 1991. 791. 3701.

2 top Oi~ 0% O/~ 0% 0% 0%
->:~ :I- 3 bot 276i~ 343% 351. 205% 84% 377%

3 top 01. 01. 01. 0% 0% 0%
::H:I- 4 bot 96i~ 581. 0% 10% 17% 120%

4 top (;t~~ 0% 0% 0% 0% 0%
S bot ('!-l 01. 01. 0% 0% 0%.....
S top ()~~ 0% 0% 0% 0% 0%
6 bot 0-' 0% 0% 07.. 0% 0%I.

6 top o,~ 0% 0% 0% 0% 0%
7 bot O~t. 01. 01. 0% 0% 07..
7 top 0% 0% Or. Oi'~ 0% Or.:
8 bot 07.. 0% 07- 07- 0% 07-
8 top 07- 07.. 07- 07.. 01. Or.:
9 bot 07- 0% 0% 0% 0% Or.:
9 top 07- lOr.: 0% 07- 0% 6%

10 bot 4r.: 58% 4% 0% 0% 7%
10 top 24% 36% Of. 07- 01. 37-
11 bot 131. 37i~ 0% 0% 0% 0%
11 top O-l 427- 0% 0% 0% 16%...
12 bot 0% 11 i'~ 0% 0% 0% 0%
12 top 6-l 0% Of. 0% Of. 0%..
13 bot fl-l 0-' 0% 0% 0% 0%J •• I.

13 top 07- 0% O'l. 0% 0% 0%
14 bot 0% 0% O'Y. 0% O'Y. 0%
14 top O'Y. O'Y. O'Y. 0% 0% O'Y.
15 bot 0% 0% Oi'~ 0% 0% 0%
15 top O'Y. O'Y. 0% O'Y. O'Y. O'Y.
16 bot O'Y. 0% O'Y. 0% O'Y. 0%
16 top O'Y. 0% O'Y. O'Y. O'Y. O'Y.



11.85

girder end energl.J dissipation .( ductility=6 dissipation
element node £1 £2 £3 £4 £5 £6

17 1ft .,.",' 151. 71. 91. 91. 191." I.

17 rht 20i~ 101. 0'1. 6'1. 0'1. 7'l.
18 1ft 26:'~ 25:<. 151. 181. 171. 39'l.
18 rht .-""'":),,,. 261. 1'1. 11'1. 01. 13'l.."j-..ll.

19 1ft 9% 161. 11 'I. 11 'I. 13'1. 22'l.
19 rht 18i~ 81. 0% 4% 01. 6'l.
20 1ft 14i~ 23% 13% lOr. 11 % 18i'~

20 rht 19:1. 17% 0'1. 9'1. 0'1. 10'l.
21 1ft 42i~ 49% 22'l. 19% 21'l. 41'l.
21 rht 38i~ 69'l. 0% 16'1. 3'l. 19i'~
-:i ..... 1ft 15i~ 26i~ 16% 13'1. 15i~ 20%-.:::

22 rht 1 7 "' 16% 0% 7% 0% 9%, I.

23 1ft 15:<. 13% 8'1. 7% 8% 10'l.
23 rht 10i~ 281. 91. lOi'~ 4% 9'l.
24 1ft 27i~ 401. 18% 15'1. 171. 22'l.
24 rht 15i~ 45% 12% 12% 31. 14'l.
25 1ft 18i~ 16% 14'l. 111. 14'1. 14'l.
25 rht 6~~ 251. 4'1. 41. 01. 4'l.
26 1ft 30% 27% 31 f~ 31% 311. 35'l.
26 rht 29% 41% 311. 35% 28% 34'l.
27 1ft 27i~ 22% 261. 26% 26% 311.
27 rht 18:/~ 35% 21% 26'1. 17'1. 24%
28 1ft :35f~ 31'1. 36'1. 35% 35'1. 39%
28 rht 24% 37% 27% 31'1. 24'1. 31'%.

:structure s'.:Jay: ". 1/100'.

£1 £2 £3 £4 £5 E6
.-.t.:l-:l- 91 ~{ 97'1. 89'1. 78:1. 93'1. 103'%.



I I. 86

APPENnI.X ~: PERCENTAGES OF ALLOWABLES FOR CONSTRAINTS ON
FEASIRLF DESIGN

Constraints Under Gravit~ Loads Only

: column ax ial
element

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

forcel

45'l.
4S:t.
45'l.
45'l.
33~/~

33i'~

33:t.
:33~/~

24'l.
38'l.
38'l.
24'l.
11 ~t.

17i'~

17'l.
11'l.

~ 0.5 * column failure force
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:clllumn end moment: " O. 6 * column yield moment"-
element node

1 bot 18:r.
1 top 34:{
2 bot 4"'I.
2 top 8%
3 bot 4:1,.
3 top 8~<

4 bot 18%
4 top 34i~

5 bot 45:1,.
5 top 46%
6 bot 11 f~

6 top 12i.
7 bot lit.
7 top 12%
8 bot 45:1.
8 top 46%
9 bot 42%
9 top 45%

10 bot 13%
10 top 14%
11 bot 13'1.
11 top 14i~

12 bot 42%
12 top 4S%
13 bot 56t.
13 top 6S:r.
14 bot 21%
14 top 27~'
15 bot 21~'

15 top 27%
16 bot 56%
16 top 68f~
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07­
12i'~

187­
27­

18%

117­
1%

117­
12%

12%

18

28

19
20
21
22
2 --;)...;;
24
25
26
27

19irder end moment: < 0.6 * girder yield moment
element node
171ft 73%
17 rht 96%
181ft 53%
18 rht 53%
191ft 96%
19 rht 73%
20 Ht 75~{

20 rht 99%
21 1ft 55%
21 rht 55%
221ft 99%
22 rht 75%
231ft 67%
23 rht 94%
24 lit 53%
24 rht 53%
251ft 947-
25 rht 67%
26 1ft 547-
26 rht 957-
271ft 56%
27 rht 56%
281ft 95%
28 rht 54%

llive load girder midspan deflectionl < girder span I 240
element

17
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Constraints Under Combined Gra ..d ty And Moderate Guake Loads

: c·::>llJmn end m.:>ment: .~: 1.0 * column yield moment
element node E1 E2 E3 E4 E5 E6

1 bot 52i~ 551. 45i'~ 571. 491. 461.
1 top 38i~ 39% 361. 43'Y. 387- 367-
2 bot 471. 531. 397- STY. 431. 451.
2 top 20:·~ 221. 197- 271. 141. 207-
."'\ bot 521. 557- 441. 581. 481. 44'Y.•.:J

3 top 2"'·' 231. 207- 281. 231. 207-c:;. I.

4 bot 48:'~ 531. 42% 561. 311. 461.
4 top 36i~ 381. 347- 421. 30'Y. 367-
5 bot 55:/~ 60% 50% 501. 481. 511.
5 top 55i~ 561. 501. 57% 52% 52'Y.
6 bot 33~~ 367- 24'Y. 307- 21% 327-
6 top 31% 347- 27% 35i~ 201. 307-
7 bot 341. 391. 287- 277- 261. 29%
7 top :33% 341. 29% 37% 311. 30%
8 bot 54:'~ 58% 46% 51% 42% 53i'~

8 top 53/~ 56!~ 481. 561. 42'Y. 52%
9 bot 52/~ 59'Y. 45% 51% 441. 49%
9 top 59:1. 671. 50'i'~ 51 ~r. 47% 54%

10 bot 427- 50% 3TY. 43% 29% 47%
10 top 51% 60i'~ 39F;; 46% 31i'~ 54i'~

11 bot 44% 541. 35% 45% 34% 41%
11 top 54% 64F;; 411. 43F;; 38% 47%
12 bot 50% 561. 45% 50~'- 401. 541.
12 top 57% 63% 48% 54% 42% 59%
13 bot 48% 51% 49'Y. 58~1. 49% 51%
13 t .:>p 61 i~ 651. 58% 691. 59% 60%
14 bot 29% 321. 34% 39% 27% 36%
14 t .:>p 40% 46% 401. 47% 341. 45%
15 bot 29% 33% 31% 44% 31% 34%
15 -l;op 42/~ 48i~ 38% 52% 40% 41%
16 bot 48% 501. 51% 55% 46% 53%
16 top 59~·~ 64i'~ 591. 64% 55% 63%
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19irder end moment: <.. 1.0 * girder yield moment
element node E1 £2 £3 £4 £5 £6

17 1ft 85% 88% 77% 85% 79% 78:·~

"'""** 17 rht 9"'·'- 101 i~ 87% 98% 79i~ 95%/ I.

18 1ft 89% 94% 78r~ 89i~ 81% 80:t.
18 rht 85:'~ 92% 73% 88:/; 61% 83~f~

*"'"* 19 1ft 99:t. 103:t. 91 r; 99i'~ 93% 93'1~

19 rht 8"-/ 87% 7:3% 84% 65% 80%e.. It,

20 lft 89% 96i~ 77% 76~,~ 74% 80/~

;<l.~-;:I- 20 rht 101 i~ 107% 86~t. 95% 82i~ 100%
*.>.1-"'" 21 Ht 93;~ 104% 77% 76i~ 73% 81%

21 rht 907~ 98% 70% 82% 63% 88'i'~
;<l_.~* 22 1ft 103:'~ 111% 91% 91% 89% 95%

22 rht 86:'~ 92% 72% 81 i'~ 67% 85%
23 1ft 71 i~ 78% 61 i~ 71% 63% 66%
28 rht 86~/~ 92% 80i'~ 85% 74% 89i~

24 1ft 74:/~ 84% 60i~ 75i'~ 64% 68%
24 rht 7n~ 80% 63i'~ 71% 55% 75%
25 lft 88'i'~ 95% 78% 881. 80r. 831.
25 rht 69:~~ 75% 63:/~ 68% 57:!. 72%
26 Ht 48:'~ 52% 46% 54% 47% 48r~

26 rht 72i~ 76% 72% 761. 68% 75%
27 1ft 56~1~ 60r~ 52% 64% 54% 55%
27 rht 54% 59% 54% 60% 49% 58%
28 1ft ..,..~.,. 77r; 71 i'; 79% 72% 73i';l ..j I.

28 rht 47i~ 50i'~ 47% 51 i'~ 44% 50i'~

ls-l;ory drifltl -,. 1/200--.
s tor l,/ £1 £2 £3 £4 £5 E6

1 58:1. 61 i~ 48% 62% 52% 501.
oll ":1-:1- 2 90'1; 102% 70i'~ 77% 70% 81%
~ *:1- 3 95:1. 114:·~ 64i'~ 78% 62% 93i'~

4 57i'~ 69% 49% 72i'; 49% 61'l.
lfloor accelerationl .~: g/2
floor £1 £2 £3 £4 £5 £6

1 23/~ 25'l. 33'l. 50'l. :38% 34%
2 40i'~ 47'l. 60'l. 90% 59% 57%
3 45% 521. 401. 461. 391. 441.
4 6Cii~ 741. 641. 961. 601. 741.
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C.::tn·;traints Under C.jmb i ned Gr.:':lvity And Severe Guake Loads

c·::tlumn end ener g!oJ di·;sip.:ation .::: d lJ .: til i t y =3 di';sipation
element node El E2 £3 E4 E5 E6

1 bot 19~':: 7-' 29% 24';1~ 53% 50%, I.

1 top Oi~ 0% 0"/ 0% oat Oi'~.. I •

2 bot 68i~ 56';1~ 41% 103i~ 72% 93%
2 top 0% 0% O';l~ 0% 0" O'i'~I.

3 bot 6c::."' 52i~ 45% 99% 76% 96%.... f.

3 top 0% 0% 0% 0% 0% 0%
4 bot 28i~ 12% 17% 36~t. 43% 40'i'~

4 top {)~{ 0% 0"/ 0% 0% 0%,.
5 bot Oi'~ 0% 01. 0% 0% 0%
5 top 0% 0% 0% 0% 0% 0%
6 bot O~':: 0% 0% 0% 0% 0%
6 top 0% 0% Oi'~ 0% 0% 0%
7 bot Oi~ 0% 0% 0% 0% 0%
7 top 0% 0% Oi'~ 0% 0% 0%
8 bot Cti~ 0% Oi'~ 0% 0% 07-
8 top {)/~ 0% 0% Cti~ 0% 0'1.
9 bot 0·/ 0% 0" 0% 0" 0%.. I • I.

9 top 0% 18% O/~ 0% 0% 0%
10 bot 0"/ 0% 2% 1 ';I~ 0% O';l~..

,,*.q.)jo 10 top 19i'~ 108% 0% 0% 0" 1i'~I.

11 bot {):i~ 0% 0% 0% 0% 0%
ol:l.~* 11 top -r-l 105% Or. 4% 4% 12%i l.

12 bot Cti~ 0% 0% 0% 0% 0%
12 top 0'/ 0% O'i'~ 0% 0% O'i'~..
13 bot Cti~ 07- 07- 0% Oi'~ 0%
13 top Ct~,~ Oi~ O'i'~ 18% 0% 0%
14 bot c,'j 0% 0% 0% 0% 0%~ ,.
14 top (l-/ 0% Oi'~ Oi'~ 0'1. Oi'~.....
15 bot 0'/ 0'1. Or. 0% 0% 0%,.
15 top 0% 0% Oi'~ 0% 0% 0%
16 bot Oi'~ 0% Of~ <)% 0"/ 0%,.
16 top Oi'~ Oi~ O{~ 0% 0% 0%



11.92

girder end ener91,J dissipation ,. ducti1itl,J=6 dissipation.'.
element node E1 E2 E3 E4 E5 E6

17 1ft 267. 267. 227. 227. 257. 317.
17 rht 287. 287- 77. 217. 47- 227-
18 ITt 587. 717. 347. 587. 367. 817.
18 rht 617. 857- 77. 547. 4% 597-
19 1ft 277. 277- 247- 237. 26% 327.
19 rht 277. 277. 57. 197. 27. 217.
20 1ft 307. 377. 227. 207. 257. 297.
20 rht 367. 467. 37. 207. 87. 267.

.~'<l* 21 1ft 827. 1227. 287- 397. 357- 977.
*-,:1-:1- 21 rht 897. 1327. 27. 217. 14% 817.

22 1ft 327. 40% 237. 217. 27% 307.
22 rht :33:1,. 427. 27. 197. 7% 267.
23 1ft 87. 187. 37. 97- 57- 77-
23 rht 9% 147- 57- 11% 17. 77-
24 1ft 157- 207- 107- 157- 107- 127-
24 rht 12% 237- 67- 147- 07- 10'Y.
25 1ft 11 'Y. 167. 97- 117. 107. 10'Y.
.?t:; rht 77- 12% 27. 97. 07. 57-l.;,:~~ '...,

26 loft 07- 07. 07. O'Y. 0% 07.
26 rht 07- 17- 07. 17. 0% 07-
2:'" 1ft 07- 07- 07- 57. 07- 07-
27 rht 07- 07- Oia O'Y. 07- 07-
28 1ft or.. Or.. Or.. 67- 07- 07-
28 rht OF. 07- Oia O'Y. 07. O'Y.

tstructure sUlal,Jt ,.
1/100.'.

£1 £2 E3, E4 E5 E6
94'Y. 1007- 87'Y. 797. 977- 997-



II. 9:3

A~PENPIX 1.: PERCENTAGES OF ALLOWABLES FOR CONSTRAINTS ON
flINIi'lUf1 DISSIPATED ENERG\{ DEStGN

:column aXIal force: < 0.5* column failure force
element

1

4
5
6

8
9

10
11
12
13
14
15
16

43i~

44:f~

44i~

4:3:,~

31:1.
33i~

:33:,~

31 ~l~

25i~

41 i~

41%
25%
11 i~

19%
19i'~

11%



11.94

lcolumn end ~l\oment:
,.

0.6 * column yield moment".
element node

1 bot 16%
1 top 30%
2 bot 3%
2 top 7%
3 bot 3%
3 top 7%
4 bot 16%
4 top 30%
5 bot 40%
5 top 42%
6 bot 11%
6 top 12%
7 bot 11%
7 top 12%
8 bot 40%
8 top 42%
9 bot 40%
9 top 46%

10 bot 13%
10 top 16%
11 bot 13%
11 top 16%
12 bot 40%
12 top 46%
13 bot 58%
13 top 68%
14 bot 24%
14 top 29%
15 bot 247-
15 top 29%
16 bot 587.
16 top 687.
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18%

13%
18~,~

""j·l
..J I.

11 %
11 i'~

1','I.
11 ~t.

1"'",../I.

19irder end moment: ( 0.6 * girder yield moment
element node
171ft 83%
17 rht 99%
181ft 56%
18 rht 56%
19 1ft 99%
19 rht 83%
201ft 80%
20 rht 99%
21 lit 56%
21 rht 56%
221ft 99%
22 rht 80%
231ft 69%
23 rht 94%
241ft 55%
24 rht 55%
251ft 94%
25 rht 69%
261ft 48%
26 rht 84%
27 1ft 54%
27 rht 54%
281ft 84%
28 rht 48%

llive load girder midspan deflection: < girder span I 240
element

17
18
19
20
21
22
23
24
25
26
27
28



11.96

Constraints Under.. Combined 9ravity And Moderate Gua kJ!. Loads

: column end moment: .,. 1.0 * column yield moment'.
element node E1 E2 E3 E4 E5 E6

1 bot 55% 48% 43'Y. 51% 48'Y. 43%
1 top 32i~ 30% 29% 32% 31% 29'Y.
2 bot 50% 44% 37% 49'Y. 42'Y. 41'Y.
2 top 19% 17% 16/~ 20% 14% 16%
3 bot 54~{ 47% 41% 50% 46% 41%
":) top 21 ~,~ 18% 17% 21% 20'Y. 17'Y..J

4 bot 51% 46% 38'Y. 50% 31% 43%
4 top :31 ~/~ 29% 271. 32% 25% 28%
5 bot 50~·~ 47% 43'Y. 4S% 42'l. 43%
5 top 50% 48% 45% 49~{ 47% 45%
6 bot 33% 34% 23/~ 29% 20'l. 27'Y.
6 top 33~/~ 31% 2S% 32% 211. 29%
7 bot 35i~ 32% 27% 29% 26'l. 26'l.
7 top :35~~ 32% 28% 33% 31% 28%
8 Dot 49i~ 49% 39% 44% 37% 44%
8 top 48/~ 46% 42/~ 48% 39% 45%
9 bot 58i~ 52'Y. 45% SOl. 46% 49%
9 top 66~{ 59% S2% 57% 49'7. 53'7.

10 Dot 57'7. 57'7. 41'7. 48% 32% 48'7.
10 top 66% 66% 45% 54% 37% 54%
11 bot 60'7. SO% 41'7. 48'7. 41'7. 47'7.
11 top 69i~ S8/~ 48'Y. 5S% 4S'7. SO%
12 Dot S6/~ S6'7. 46% SO% 39% SOl.
12 top 64% 64'7. SO% S6% 4S'7. SS/~

13 bot 51'7. SO'7. 49% 52% 49i~ 48'7.
13 top 65% 62% S8'7. 62% 60'7. 59/~

14 bot 38'7. 41'7. 35% 37'7. 36'7. 39%
14 top 51'7. 53'7. 42'7. 48'7. 42'7. 49i'~

15 Dot 41 ~/~ 38'7. 36'7. 40% 37% 34'7.
15 top 54% 49'7. 43'Y. 49% 46'7. 44'7.
16 bot 50% 52'7. 49% 50'7. SO'7. S1'7.
16 top 63'7. 65/~ 58'7. 61'7. 57'7. 62'7.
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Jgirder end llloment: .,- 1.0 * girder yield moment'.

element node El E'~ E3 E4 E5 £6.....
17 1ft 96i'~ 90% 84% 91% 87% 83%

4:H:I- 17 rl1t 10:3:·~ 100% 89:< 99:1. 82% 94%
18 1ft 96:t. 88% 79% 88:1. 83% 78%
18 rl1t 9''")-' 87% 72% 87:t. 64% 80%c.:.l.

*""* 19 Ht 106% 100% 94% 100% 97% 93%
19 rht 93:·~ 901. 79% 89% 721. 84%
20 1ft 97i~ 90% 81% 85:1. 80% 81%

":I- *':t 20 rht 105i~ 105% 86% 96% 83% 94%
21 1ft 98~·~ 89% 77% 82% 76% 76%
21 rl1t 94% 94% 69i'~ 83% 65% 80%

4'~":~ 22 1ft 108:1,. 101% 92% 96% 91% 92%
22 rht 94:1. 94% 75i'~ 85% 72% 83%
23 1ft 78% 711. 6:3% 69% 66% 67%
23 rl1t 90:/~ 90% 78% 84% 73% 85%
24 1ft 79i~ 70% 60% 68% 64% 65%
24 rl1t 76i'~ 76f~ 61f~ 69% 54% 691.
25 1ft 92~< 85% 78% 84% 81% 82:1.
25 rht 75% 76% 63% 69% 581. 70%
26 Ht 46% 44% 41/~ 441. 42% 41 f~

26 rl1t 66% 67% 62% 65% 62% 66/~

27 1ft 54i~ 51% 47% 51% 49% 48%
27 rl1t 52i'~ 53% 47% 50% 46% 51 ':I~

28 1ft 68i~ 65% 63% 66% 64% 631.
28 rht 45% 46/~ 41% 43% 40/~ 44/~

:'Story drift: ..... 1/200'-
'Si;OT'I~ E1 £2 £3 £4 £5 £6

1 62% 54% 46% 56% 51% 46%
2 98% 88% 69% 80% 72% 721.

.;:t-:<l-::I- 3 115:1. 1091. 70% 87% 701. 86/~

4 70:1. 67% 46% 58:1. 52% 59%
:absolute floor ·::Icce lerat ion: .( g/2
floor E1 E2 E3 E4 E5 E6

1 27% 27% 30% 32% 35% 34%
2 43% 41% 45% 64% 59% 44%
3 52:/~ 51% 40% 45% 41% 41%
4 70:/~ 70% 53% 65i'~ 571. 641.
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Constraints Under C,:>mbined Gravity And Severe Quake Loads

co I IJilln end energl~ di-:.sipation <: due til i t y =:3 dissipation
element node E1 E2 E3 E4 E5 E6

1 bot 6i~ O/~ 18r. lOr. 57% 31%
1 top 0% 0% 0'( 0% Oi'~ O~t.I.

2 bot 27i'~ 8% 23% 37% 68% 43:1.
2 top 0% 0% O/~ 0% 0% Or.
3 bot 25i~ 4% 26i~ 32% 71% 46/~

3 top O:/~ 0% 0% 0% 0" 0%I.

4 bot 11 i'~ 0"' 8i'~ ""/ 49r. 26~/~I. I ,.

4 top 0% Or. O/~ 0% 0% O/~

5 bot O/~ 0% Or. 0% Or. 0%
5 top Cti~ 0% 0% 0% 0% 0'"I.
6 bot 0:1. 0% 0% 0% 0% 0%
6 top O:/~ 0% 0% 0"/ O/~ 0%..
7 bot 0'" 07- 0% 07- Oi'~ 07-I.

7 top 0'" 07- 0% 07- 07- 07-I.

8 bot O~f~ Oi'~ 07- 0% 0% 0"I.
8 top 0'/ 07- 07- 07- 0% Oi'~,.
9 bot 0"/ 0% 0% 0'( 0% 0%,. I.

9 top 8/~ 0% 0% 0% 7% 7i'~

10 bot C(i~ 22r. 13r. 0% Or. 0%
-<t-<t.)l- 10 top 229r. 239r. Oi'~ 31r. 15% 61%

11 bot 0% 22% 5% Or. Or. Or.
*-<t* 11 top 227% 220% 17'% 43'% 34i'~ 81%

12 bot or. 0"( 0'% Or. or. 0'%I.

12 top 1:3'% 14:1. Oi'~ Or. 0'% Oi'~

13 bot 0'% 0% 0% 0'% 0% 0%
13 top O:/~ 0'% Or. Or. 0% Or.
14 bot 0% 0% 0% 0% 0% 0'(I.
14 top Oi'~ O/~ 0% 0% 0% 0'%
15 bot 01. 01. 0% 01. 01. 01.
15 top 0% 0'% Oi'~ 0'% 87- 0'%
16 bot 0"/ 0% 0% 0'% 0'% 0'%,.
16 top t):{ 0:1. 0'% 0'% O/~ 0%
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girder end energy di-;sipation .~: ductility=6 dissipation
element node El E2 E:3 E4 E5 E6

17 1ft 26:'~ 2:3'l. 24i~ 2n~ 28i~ 32i~

17 rht :30~'~ 28'l. 6'l. 2:3'l. 3'l. 21'l.
18 1ft 4Q

"' 45"1. :3l)'l. 46/~ 35i~ 611., I-

18 rht 58'l. S9i~ 5'l. 49'l. O'l. 40'l.
19 1ft 27~~ 23"1. 25'l. 28'1. 28'1. 32'1.
19 rht 29f. 27f. 5'l. 22f. 2f. 20f.
20 1ft 33i'~ 28f. 25'l. 22'i'~ 26'l. 3Sr~

20 rht 39'i'~ 36f. 2% 20f. 4f. 24f.
21 1ft 80i'~ 79f. 31f. 42'l. 32'l. 71 i'~

21 rht 92i'~ 96f. O/~ 31f. 1"1. Slf.
22 lit :32:1,. 28f. 2Sf. 23'l. 26'l. 34i'~

22 rht 40/~ 37% 1 i'~ 20f. 3f. 24f.
'").-, lit 10'l. 14f. 3f. Sf. 9f. 11%<::--J

23 rht 9"' lif. 4f. 8f. 3f. 7f.I ..

24 1ft 10% 12f. 5"' 6"' 11 f. 13'1.I- I-

24 rht 8% 11% :3% 8% 2% 6f.
25 1ft 11 f. 13% 6"' 6f. 10'1. 12'1.I-

25 rht 9"'- 1Of. 2% 6"' 0% 5f.I- I.

26 1ft 0:1,. 0% Of. Of. Of. Oi'~

26 rht Of. Of. 0% 0% Oi'~ Oi'~

27 ITt 01. 01. 01. 01. 0% Oi'~

27 rht O~/~ 0% 0% Of. Or~ Oi'~

28 1ft 0"' 0% Of. Of. 0% Of.I-

28 rht 01. 0% 0"' 0% Oi'~ 0'1.I.

lstructure swal,j l " 1/100-'-
E1 E2 E3 E4 E5 E6

.>.f.-<l -'" 97'~ 96% 88% 78% 103% 100':l~
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APPENDIX 2.: PERCENTAGES OF ALLOWABLES FOR CONSTRAINTS Q!i
t1INIi~lJt1 STORY DRIFT DESIGN

Constraints Under {}ravity boad:§. Only

lcolumn axial force:
1 42%
2 44i~
''"3 44%>-I

4 42;~

5 :31 i~

6 :33i'~

7 :3:3%
8 :31 %
9 25i'~

10 41 i'~

11 41 i'~

12 25i~

13 11%
14 19i~

15 19i~

16 11%

~ 0.5 * column failure force
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lCQlumn end moment: ·c 0.6 * column yield moment
element node

1 bot 16i~

1 top 301.
., bot ....,.,
.:!. ..,:jt'tI.
., top 77<'.:!.

3 bot 31.
3 top 7·.....
4 bot 161.
4 top 30:·~

5 bot 39i'~

5 top 42:1.
6 bot 1171.
6 top 12f~

7 bot 111.
7 top 121.
8 bot 39i~

8 top 421.
9 bot 401.
9 top 46%

10 bot 1371.
10 top 16i~

11 bot 131.
11 top 16/~

12 bot 401.
12 top 46/~

13 bot S8'l.
13 top 671.
14 bot 24~~

14 top 291.
15 bot 2471.
15 top 2971.
16 bot 58i~

16 top 67%
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2i~

31.

01.

11t.

171.

11 i~

l1t.
It.

11 :1.
141.

14:1.
17%

end moment: < 0.6 * girder yield moment
node
1ft 83i~

rh t 99'l~

1ft 56:';;
rh t 56i~

1 f t 99i'~

rh t 83i'~

1ft 801.
rht 991.
1ft 561.
rht 561.
1ft 991.
r h t 80i~

1 i t 75:/~

rh t 1001.
1ft 58:/~

rht 58t.
1ft lOOt.
rh t 75:1.
loft 48:/~

rh t 83'l~

1 i t 53'l~

rh t 53'l~

1 of! t 83:,~

rh t 48:1.
girder midspan deflectionl < girder span I 240

19irder
element

17
17
18
18
19
19
20
20
21
21
22
22
23
2:3
24
24
25
25
26
26
27
27
28
28

llive load
element

17
18
19
20
21
22
23
24
25
26
27
28
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Constraints Under COf!lbined Gravi t'J. And t10derate Guake Loads

l co l';mn end moment: <: 1.0 * col';mn J,j ie 1d moment
element node El E2 E3 E4 E5 E6

1 bot 56:·~ 49% 43i'~ 50% 48i~ 43%
1 t.::>p 32i~ 29% 29i'~ 31 i~ 31% 29%
2 bot 51% 441. 36% 481. 421. 40%
2 top 19% 171. 15% 20:< 15% 16%
3 bot 55% 47% 41% 49% 46% 40%
3 top 21% 18% 17% 20% 20% 17%
4 bot 52% 46% 38% 49i'~ 31% 43%
4 top 31i~ 28% 27% 31% 26% 28%
5 bot 50i~ 47% 43% 45i~ 42% 42%
5 top 49i~ 47% 44% 481. 47% 44%
6 bot 34% 34% 231. 291. 2m~ 27%
6 top 33:1. 31% 25% 311. 21% 291.
7 bot 36~·~ 32% 27% 29% 26% 26%
7 top 35% 32% 28% 33~<' 31% 28i~

8 bot 48i'~ 48% 39% 44:1. 37% 43%
8 top 48:1. 46i'~ 42% 47% 38i'~ 44%
9 bot 59% 50% 45% 51% 46% 49i~

9 top 66i~ 58% 52% 57% 49% 52%
10 bot 57% 56i'~ 41% 481. 33% 47%
10 top 66:1. 65% 44:t. 54% 37% 52%
11 bot 61 :1. 47% 41% 49% 42% 46%
11 top 69% 571. 47% 55% 44% 49%
12 bot "'\7"' 56% 46% 50% 40% 50f~.~ I I.

12 top 64% 63% 491. 56i'~ 45~~ 54%
13 bot 501. 491. 491. 51% 491. 471.
13 top 65i~ 62% 57% 621. 591. 58i'~

14 bot 37% 401. 341. 371. 361. 371.
14 top 5n~ 53i'~ 42% 48% 421. 48%
15 bot 39:~ 38% 35% 40% 36% 341.
15 top 54:1. 491. 431. 50% 46:1. 44%
16 bot 491. 50% 48% 49f~ 50% 491.
16 top 63% 64i'~ 57% 61 i'~ 57% 611.
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:giT'deT' end moment: ...- 1.0 * giT'deT' yield moment'.
element node £1 E2 E3 E4 E5 E6

17 1ft 97% 91% 83% 90% 87i. 83i.
*** 17 T'ht 10:3% 100i. 88i. 99i. 82i. 94i.

18 1ft 96i~ 88i. 78i. 87i. 83i. 78i.
18 T'ht 92i~ 88i. 72i. 86i. 63i. 79i.

*~.* 19 ITt 107% 100% 93% 100% 96% 93%
19 T'ht 93;~ 90% 78% 89% 72% 84%
20 1ft 98% 91i. 82% 86% 817- 811.

:1--4-* 20 T'ht 106% 105% 86'7. 971. 83'7. 93'7.
21 1ft 99;~ 891. 771. 831. 76i. 771.
21 T'ht 951. 94% 69i'~ 83i. 647- 79%

",.** 22 1ft 109% 101% 92% 977- 91% 92%
22 T'ht 95~t. 95% 75i'~ 86% 721. 831.
23 1ft 8''''·'' 75% 67i'~ 747- 701. 71%'-II.

2:3 T'ht 9S~J~ 951. 831. 891. 77i'~ 897-
24 1ft 83% 737- 63% 727- 671. 68%
24 T'ht 801. 801. 641. 72'7. 57% 72'7.
25 1ft 981. 901. 82% 89% 85% 861.
25 T'ht 81% 811. 681. 75% 621. 74%
26 1ft 461. 441. 41% 441. 42% 42%
26 T'ht 661. 671. 621. 641. 621. 64%
27 1ft 5''''·'' 507- 471. 51% 481. 481.. -..Il.

27 T'ht 52% 537. 46% 50% 467. 507.
28 1ft 671. 651. 621. 651. 631. 631.
28 rht 45% 467- 417- 441. 411. 441.

lstorq driftl ,- 1/200".
stOT'1,J E1 E2 E3 E4 E5 E6

1 63i~ 541. 46% 551. 511. 45%
2 99i~ 891. 69% 801. 721. 701.

* ~.:I- 3 1181. 1101. 70% 89i. 701. 851.
4 711. 691. 471. 601. 531. 591.

:floor acceleration: ,. g/2"-
floor El E2 E3 E4 E5 E6

1 281. 267- 281. 31% 381. 341.
2 43i~ 401. 421. 61% 581. 451.
3 511. 511. 401. 451. 421. 391.
4 69% 691. 521. 651. 571. 611.
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Constraints Under Combined Gravity And Severe Guake Loads

column end ener91J dissipation ,- duc:tility=3 dissipation-,-
element node El E2 E3 E4 E5 E6

1 bot ..,.., 0% 15% 6"' 54% 28%l l .. 10

1 top 0% 0% 0% 0% 0% 0%
2 bot 26~{ 9% 19% 25% 64% 39%
'"' top C(~{ 0% 0% 0% 0"' 0%.::. I •

:3 bot 24i~ 8"' 23% 21% 68i~ 43%I.

3 top 0"' 0% 0% 0% 0% 0%I.

4 bot 11 i~ 0% 5% 3% 46% 23%
4 top O"f 0% 0% 0% 0% 0%..
5 bot 0% 0% 0% 0% 0% 0%
5 top 0"" 07- 0% 0'; 0% 07-.. I •

6 bot O~,~ 0% 0% 0% 0% 07-
6 top O~t. 0% 07- 0% 0% 0%
7 bot 0% 0% 0% 0% 0% 0%
7 top O~/~ 01. 0% 01. 01. 01.
8 bot 01. 0% 01. 01. 0% 0%
8 top 0% 0% 0% 0% 0% 0%
9 bot 01. 07- 0% 0% 0% 0%
9 top 4~~ 01. 0% 0% 01. 0%

10 bot Ct~l~ 19% 6% 07- 1% 0%
.q :I-}I- 10 top 204'i'~ 170% 01. 241. 13% 47%

11 bot 0% 19% 01. 01. 0% 07-
*.~}I- 11 top 195% 151% 14% 27% 29% 66%

12 bot 0% 0% 0% 0% 0% 0%
12 top S'i'~ 3% 0% 0% 0% 0%
13 bot o:~ 0% 0% 01. 0% 0%
13 top 0" 0% 0% 0% 0% 0%I.

14 bot 01. 0% 01. 0% 0% 0%
14 top 01. 11. 0% 01. 0% 0%
1S bot 0"/ 0% 0% 01. 0% 0%..
1S top C(i~ 0% 0% 01. 10% 0%
16 bot 0% 0% 01. 01. 0% 0%
16 top 01. 01. O'i'~ 01. 01. 0%
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girder end energy dissipation ·c ductility=6 dissipation
element node £1 £2 £3 £4 £5 E6

17 1ft 26:r~ 23% 23% 26% 28% 31 i~

17 rht 30~t. 29% 5~t. 23~t. 3% 21%
18 1ft 48% 45% 30% 43% 34% 57i'~

18 rot 57% 6C!/~ 4f~ 48/~ 0% 38%
19 Ht 27/~ 24% 25% 27% 28% 31%
19 rht 29i'~ 28% 4% 22% 1% 20%
20 ITt 33f~ 27% 26% 23% 26~t. 34%
20 rht 40% 35% 2% 22% 3% 24%
21 lit >34% 75% 31% 42% 31% 66%
21 rht 96% 95% 0% 34% 0% 46%
22 1ft 33% 27% 25% 23% 26% 34%
22 rht 42% 36% 1% 22% 2% 23%
23 ITt 14~t. 17% 6% 10% 14% 16%
23 rht 12% 15% 6-' 11% 6% 11%I.

24 1ft 127·~ 15% 7% 9% 13% 16%
24 rht 12i~ 15% 4% 11% 57- 9%
25 1ft 14% 16% 8% 10% 137- 15%
25 rht 14% 16% 4% 10% 4% 10%
26 ITt 0-/ 0% 0% 0% 0-' 0%.. I •

26 rht 0% 0% 0% 0% 0% 0%
27 1ft 0% 0% 0% 0% 0% 0%
27 rht Of~ 0% 0% 0% 0% 0%
28 1ft 0-[ Of. Oi'~ Of. 0% 0%..
28 rht 0% Of. Of~ Of. 0% 0%

lstrlJcture sluay 1 .( 1/100
E1 E2 E3 £4 £5 £6

~'*~ 98% 97% 88% 76% 105% 99%
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EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are
followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB------)
and remittance must accompany each order. Reports without this information were not available at time of printing.
Upon request, EERC will mail inquirers this information when it becomes available.

EERC 67-1

EERC 68-1

EERC 68-2

EERC 68-3

EERC 68-4

EERC 68-5

EERC 69-1

EERC 69-2

EERC 69-3

EERC 69-4

EERC 69-5

EERC 69-6

EERC 69-7

EERC 69-8

"Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J.G. Bouwkamp, R.W. Clough
and D. Rea - 1967 (PB 187 905}A07

Unassigned

"Inelastic Behavior of Beam-to-Column Subassemblages Under Repeated Loading," by V. V. Bertero - 1968
(PB 184 888) A05

"A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H.D. McNiven and Y. Mengi - 1968
(PB 187 943}A03

"Dynamic Properties of McKinley School Buildings," by D. Rea, J.G. Bouwkamp and R.W. Clough-1968
(PE 187 902) A07

"Characteristics of Rock Motions During Earthquakes," by H.B. Seed, I.M. Idriss and F.W. Kiefer -1968
(PB 188 338)A03

"Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)All

"Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien-1969 (PB 187 904)A08

"Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien - 1969
(PB 187 886) A06

"Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value
Formulation," by N. Distefano and J. Schujman-1969 (PB 187 942}A02

"Dynamic ProgrillTllTling and the Solution of the Biharmonic Equation," by N. Distefano -1969 (PB 187 94l)A03

"Stochastic Analysis of Offshore Tower Structures," by A.K. Malhotra and J. Penzien - 1969 (PB 187 903) A09

"Rock Motion Accelerograrns for High Magnitude Earthquakes," by H. B. Seed and I.M. Idriss - 1969 (PB 187 940) A02

"Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen,
J.G. Bouwkamp, R.vl. Clough and J. Penzien -1969 (PB 189 1l1}A04

EERC 69-9 "Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H.B. Seed
1969 (PB 189 114)A03

EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary Loading," by S. Ghosh and E.L. Wilson
1969 (PB 189 026}A10

EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and
V. V. Bertero - 1969 (PB 190 662}A10

EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by
V. V. Bertero, B. Bresler and H. Ming Liao - 1969 (PB 202 942) A07

EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfulian and H.B. Seed-1969
(PB 191 023}A03

EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J .G. Bouwkamp - 1969 (PB 190 663)A06

EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H.B. Seed and
I.M. Idriss - 1969 (PB 191 036)A03

EERC 69-16 "The Behavior of Sands Under Seismic LOading Conditions," by M.L. Silver and H.E. Seed-1969 (AD714982)A07

EERC 70-1 "Earthquake Response of Gravity Dams," by A.K. Chopra - 1970 (AD 709 640)A03

EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by
H.E. Seed, LM. Idriss and H. Dezfulian -1970 (PB 195 762)A05

EERC 70-3 "Cyclic LOading of Full Size Steel Connections," by E.P. Popov and R.M. Stephen - 1970 {PB 213 545)A04

EERC 70-4 "Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research
Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie,
H.B. Seed and J. Penzien, Chairman-1970 {PE 201 455)A06
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EERC 70-5 "A Computer Program for Earthquake Analysis of Dams," by A.K. Chopra and P. Chakrabarti-1970 (AD723994)A05

EERC 70-6 "The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L.A. Drake
1970 (PB 197 896)A03

EERC 70-7 "Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H.B. Seed and P.B. Schnabel
1970 (PB 197 897)A03

EERC 70-8 "Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic
Loading," by H.B. Seed and W.ll. Peacock - 1970 (PB 198 016)A03

EERC 70-9 "A Simplified Procedure for Evaluating Soil Liquefaction Potential," by II.B. Seed and I.M. Idriss - 1970
(PB 198 009)A03

EERC 70-10 "Soil Moduli and Damping Factors for Dynamic Response Analysis," by H.B. Seed and I.M. Idriss - 1970
(pB 197 869)A03

EEEC 71-1 "Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A.K. Chopra and P. Chakrabarti
1971 (AD 731 496}AOG

EERC 71-2 "Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator,"
by R.D. Borcherdt and P.W. Rodgers - 1971 (PB 201 454)A03

EERC 71-3 "Static and Dvnamic Analysis of Inelastic Frame Structures," by F.L. Porter and G.H. Powell -1971
(PB 210 135) A06

EERC 71-4 "Research Needs in Limit Design of Reinforced COncrete Structures," by V. V. Bertero - 1971 (pB 202 943)A04

EERC 71-5 "Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A.A. Shah and J.G. Bouw)'.ahlp
1971 (pB 203 584}A06

EERC 71-6 "Dynamic Stress Analysis of Porous Elastic Solids Saturated with compressible Fluids," by J. Ghaboussi and
E. L. wilson - 1971 (pB 211 396)A06

EERC 71-7 "Inelastic Behavior of Steel Beam-to-Column Subassenlblages," by H. Krawinkler, V.V. Bertero and E.P. Popov
1971 (pB 211 335)A14

EERC 71-8 "Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H.B. Seed and
J. Lysmer - 1971 (pB 214 450)A03

EERC 72-1 "Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. WilSon and
H.H. Dovey -1972 (PB 212 904)A05

EERC 72-2 "Accelerations in Rock for Earthquakes in the Western United States," by P.B. Schnabel and H.B. Seed-1972
(pB 213 100}A03

EERC 72-3 "Elastic-Plastic EarthqUake Response of Soil-Building Systems," by T. Minami - 1972 (pB 214 868) A08

EERC 72-4 "Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M.K. Kaul -1972
(pB 215 713) A05

EERC 72-5 "Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.p. Popov, V.V. Bertero
and H. Krawinkler - 1972 (pB 214 555)A05

EERC 72-6 "Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and
A.K. Chopra - 1972 (AD 762 330)A08
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