.

NSF/CEE-82017

THE EQUIVALENT NUMBER OF CYCLES OF RECORDED ACCELEROGRAMS FOR SOIL LIQUEFACTION STUDIES

by

Ricardo Wer

Ricardo Dobry

Report No. CE-82-5

Sponsored by National Science Foundation

Directorate for Applied Science and

Research Application (ASRA)

Grant No. PFR-7902871

Department of Civil Engineering Rensselaer Polytechnic Institute Troy, New York 12181

April 1982

	PAGE	NSE / CEE - 82017		10007	21.921.6
4. Title an	d Subtitle			5. Report D	L. L. O L O
Equiv	/alent Number o Soil Liquefacti	f Cycles of Recorded Ac	celerograms	Ар	ril 1982
	Son Liqueracci	UN SCUUTES		6.	
7. Author(s R. WE	») er, R. Dobry			8. Performi	ng Organization Rept. No.
9. Perform Renss	ning Organization Name a Selaer Polytech	nd Address nic Institute		10. Project/	/Task/Work Unit No.
Depar	rtment of Civil	Engineering		11. Contrac	t(C) or Grant(G) No.
Iroy,	, NY 12181			(C)	R7902871
				(G)	N/ 5020/1
12. Sponse	oring Organization Name	and Address		13. Type of	Report & Period Covered
Uirec Natio	ctorate for Eng	undation			
1800	G Street, N.W.	andarion	·	14.	
Washi	ington, DC 205	50			
15. Supple Submi	itted by: Comm Nati Wash	unications Program (OPF onal Science Foundation ington, DC 20550	RM)		
16. Abstra	ct (Limit: 200 words)				
porti calcu basec cycli press	ional to the su ulations instea d on an equiva ic strength cu sure as the equ	inface accelerations; the d of the cyclic stres lence rule for each re- rve of sands. The oth uivalence parameter. A	acting in the so herefore, the accel s time histories. corded cycle, deri her three methods number of strong	lerograms ar The first ved from a use the exc i-motion acc	re used for the procedure is representative ess pore-water elerograms re-
porti calcu based cycli press corde four four azimu	ional to the su ulations instea d on an equiva ic strength cur sure as the equ ed during sever methods. The methods and c uth.	inface accelerations; the d of the cyclic stres lence rule for each re- rve of sands. The oth uivalence parameter. A ral earthquakes in the corresponding equivale orrelated with earthqu	acting in the so herefore, the accel s time histories. corded cycle, deri er three methods number of strong western United Sta nt numbers of cycl ake magnitude, dis	lerograms ar The first ved from a use the exc -motion acc tes are ana les are comp stance to th	e used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four azimu 17. Docum Eart Liqu	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	inface accelerations; the d of the cyclic stres lence rule for each re- rve of sands. The oth uivalence parameter. A cal earthquakes in the corresponding equivale orrelated with earthqu	Soils Stresses	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to th	e used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	inface accelerations; the inface accelerations; the d of the cyclic stres lence rule for each re- rve of sands. The oth uivalence parameter. A ral earthquakes in the corresponding equivale orrelated with earthqu	Soils Static loads	lerograms ar The first ved from a use the exc -motion acc tes are ana les are comp stance to th	e used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	s of the cyclic stress inface accelerations; the d of the cyclic stress lence rule for each re- rve of sands. The oth uivalence parameter. A ral earthquakes in the corresponding equivale orrelated with earthqu	Soils Static loads	lerograms ar The first ved from a use the exc -motion acc ites are ana les are comp stance to th	e used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	rface accelerations; the of the cyclic stres lence rule for each re- rve of sands. The oth uivalence parameter. A cal earthquakes in the corresponding equivale orrelated with earthqu	Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to th	re used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	inface accelerations; the inface accelerations; the d of the cyclic stres lence rule for each re- rive of sands. The oth uivalence parameter. A ral earthquakes in the corresponding equivale orrelated with earthque tors	Soils Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to th	the used for the procedure is representative ess pore-water elerograms re-lyzed with the bared among the source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou West Pore	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	tors ited States) re	Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to th	re used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou West Pore c. cos	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	tors tited States) re	Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to th	med to be pro- re used for the procedure is representative ess pore-water elerograms re- lyzed with the pared among the ne source, and
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou West Pore c. Cos	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth. hent Analysis a. Descrip thquakes uefaction ds htifiers/Open-Ended Term elerograms und motion tern Region (Un e-water pressur GATI Field/Group polity Statement	tors	Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to the stance to the stance to the stance to the stance	21. No. of Pages
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou West Pore c. cos	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth.	tors	Soils Static loads	lerograms ar The first ved from a use the exc i-motion acc ites are ana les are comp stance to the stance to the s	21. No. of Pages
porti calcu based cycli press corde four four azimu 17. Docum Eart Liqu Sand b. Ider Acce Grou West Pore c. cos	ional to the su ulations instea d on an equiva- ic strength cur sure as the equ ed during sever methods. The methods and c uth. nent Analysis a. Descrip thquakes uefaction ds ntifiers/Open-Ended Term elerograms und motion tern Region (Un e-water pressur GATI Field/Group offity Statement TIS	tors	Soils Static loads Static loads	lerograms ar The first ved from a use the exc (-motion acc ites are ana les are comp stance to the stance to the s	21. No. of Pages

TABLE OF CONTENTS

٠

· _

	LIST	OF TABLESv
	LIST	OF FIGURESvii
	LIST	OF SYMBOLSix
	ACKN	OWLEDGEMENTS
	ABST	RACTxii
l	INTR	ODUCTION1
	1.1	Causes of Seismic Liquefaction
	1.2	Methods for Evaluating the Seismic Liquefaction Potential of Sands Deposits3
	1.3	Importance of the Earthquake Duration6
	1.4	Objectives
2	METH	OD 1 (Seed et al. 1975)8
	2.1	Description8
		2.1.1 The Stress Time History
		2.1.2 The Weigthing Curve
	2.2	Procedure for Method 1 (Seed et al. 1975)10
	2.3	Examples14
	2.4	Discussion
3	METH	NOD 2 (Pore-pressure law: non-linear)19
	3.1	Description
	3.2	Pore-Water Pressure Development During an Earthquake Motion
	3.3	Procedure for Method 222
	3.4	Examples
	3.5	Discussion
4	METH	HODS 3 AND 4 (Pore-pressure law: linear)30

	4.1 Description	
	4.1.1 Linear Variation	
	4.2 Procedure for Methods 3 and 4	
	4.2.1 Procedure for Method 3	
	4.2.2 Procedure for Method 4	
	4.3 Examples	
	4.4 Discussion	
5	EVALUATION OF THE DIFFERENT METHODS	
	5.1 General Conditions for the Analysis42	
	5.2 Comparison of the Methods	
	5.2.1 Methods 1 and 344	
	5.2.2 Methods 2 and 4	
	5.2.3 Methods 1 and 4	
	5.3 Correlation Between N and Earthquake Parameters	
6	DISCUSSION AND CONCLUSIONS	
7	LITERATURE CITED	
	APPENDIX A	
	A-1 Selection of Weighting Curve	
	A-2 Procedure for the Development of the Weighting Curve	
	APPENDIX B	
	Acceleration time histories recorded during earthquakes in Western U.S. (set 1 and 2)	
	APPENDIX C	
	Acceleration time histories recorded during 1971 San Fernando earthquake (set 3)	

.

*

,

· -

- ...

iii

APPENDIX D

APPENDIX E

Plots of N	versus epicentr	al distance a	and azimuth
for acceler	ograms recorded	l during 1971	San Fernando
earthquake	(set 3) "Rock S	ites"	109

LIST OF TABLES

•

• .

TABLE	A-1	Equivalent Stress Level (From Fig. A-3) Safety Factor = 1.0077
TABLE	A-2	Equivalent Stress Level (From Fig. A-3) Safety Factor = 1.50 ⁷
TABLE	A-3	Equivalent Stress Level (From Fig. A-3) Safety Factor = 1.75
TABLE	A-4	Equivalent Stress Level (From Fig. A-3) Safety Factor = 2.0078
TABLE	B-1	Equivalent Number of Cycles at 0.65 (ap)max for Earthquakes Western U.S. Application of Methods 1, 2-4, 3 Safety Factor = 1.00
TABLE	B-2	Equivalent Number of Cycles at 0.65 (ap)max for Earthquakes Western U.S. Application of Methods 1, 2-4, 3 Safety Factor = 1.5081
TABLE	B-3	Equivalent Number of Cycles at 0.65 (ap)max for Earthquakes Western U.S. Application of Methods 1, 2-4, 3 Safety Factor = 1.7582
TABLE	B-4	Equivalent Number of Cycles at 0.65 (ap)max for Earthquakes Western U.S. Application of Methods 1, 2-4, 3 Safety Factor = 2.00
TABLE	B-5	Equivalent Number of Cycles at 0.65 (ap)max for Earthquakes Western U.S. Application of Methods 1, 2-4, 3 Safety Factor = 1.0, 1.5, 1.75, 2.0084
TABLE	C-1	Equivalent Number of Cycles at 0.65 (ap)max for San Fernando Earthquake 1971 Application of Methods 1, 2-4, 3 Safety Factor = 1.50

÷

· . .

LIST OF FIGURES

.

٠

1

I

.

· . .

F	TIG.	1	Cyclic Shear Stress on a Soil Element During Ground Shaking (Seed 1979)
F	FIG.	2	Representative Relationship Between ap/(ap) ₁ and the Number of Cycles Required to Cause Liquefaction
I	FIG.	3	Representative Relationship Between ap/(ap)max and the Number of Cycles Required to Cause Liquefaction
ł	FIG.	4	Rate of Pore Pressure Build-up in Triaxial Tests (Lee and Albaisa 1974)20
ł	FIG.	5	Rate of Pore-Water Pressure Build-up In Cyclic Simple Shear Tests (De Alba, et al., (1975)20
]	Fig.	6	Increment of Pore-water Pressure in Half-cycle23
]	EIG.	7	Linear Rate of Pore-Water Pressure Build-up .32
.]	FIG.	8	Method 1 vs. Method 3 with Safety Factor = 1.0046
-	EIG.	9	Method 1 vs. Method 3 with Safety Factor = 1.5046
	EIG.	10	Method 1 vs. Method 3 with Safety Factor = 1.7547
•	FIG.	11	Method 1 vs. Method 3 with Safety Factor = 2.0047
	FIG.	12	Linear and Non-linear Rate of Pore-Water Pressure Build-up used for Methods 2 and 448
	FIG.	13	Method 2 vs. Method 4 with Safety Factor = 1.0050
	FIG.	14	Method 2 vs. Method 4 with Safety Factor = 1.5050

FIG.	15	Method 2 vs. Method 4 with Safety Factor = 1.7551
FIG.	16	Method 2 vs. Method 4 with Safety Factor = 2.0051
FIG.	17	Method 1 vs. Method 4 with Safety Factor = 1.0053
FIG.	18	Method l vs. Method 4 with Safety Factor = 1.5053
FIG.	19	Method 1 vs. Method 4 with Safety Factor = 1.7554
FIG.	20	Method 1 vs. Method 4 with Safety Factor = 2.0054
FIG.	21	Safety Factor vs. Maximum Number of Equivalent Cycles for Method 456
FIG.	22	Equivalent Numbers of Uniform Stress Cycles Based on Strong Componets of Ground Motion (Seed et al., 1975) Method l (F.S.= 1.5)61
FIG.	23	Method 1 vs. Magnitude with F.S.= 1.5 Set 1 Strongest Component (Table B-2)61
FIG.	24	Method 1 vs. Magnitude with F.S.= 1.5 Set 2 Strongest Component (Table B-5)62
FIG.	25	Method 1 vs. Magnitude with F.S.= 1.5 Set 3 Strongest Component (Table C-1)62
FIG.	26	Method 1 vs. Magnitude with F.S.= 2.0 Set 2 Strongest Component (Table B-5)63

.

viii

LIST OF SYMBOLS

.

.

(ap)	peak acceleration of any cycle
(ap)ab	peak acceleration in one half-cycle
(ap)1	peak acceleration causing liquefaction in one cycle
(ap)max	maximum peak acceleration of the entire accelerogram
F.S.	factor of safety
N	number of applied equivalent cycles
(N)above	equivalent number of cycles above the time axis
(N)below	equivalent number of cycles below the time axis
(N)a	equivalent number of cycles at the begining of one half cycle
Nl	number of cycles required to cause liquefaction
Rn	cycles ratio
Ru	pore pressure ratio
(Ru)ab	increase in pore pressure ratio in one half cycle
(Ru)a	values of pore pressure ratio at the begining of one half cycle
(Ru)b	value of pore pressure ratio at the end of one half cycle
(t)a	time at the begining of one half cycle
(t)b	time at the end of one half cycle
u	pore-water pressure
ď °	effective overburden pressure
a	constant

ix

ACKNOWLEDGEMENTS

This report is identical with the Master's Thesis of Ricardo Wer Asturias, who was supported under Grant No. PFR-7902871, Earthquake Engineering Program of NSF-ASRA. This support of the National Science Foundation is gratefully acknowledged.

 \times

ABSTRACT

The primary purpose of this work is to study several procedures for determining the equivalent number of cycles of available recorded accelerograms, from the viewpoint of liquefaction of saturated sand deposits. The cyclic shear stresses acting in the soil are assumed to be proportional to the surface accelerations; therefore, accelerograms the are used for the calculations instead of the cyclic stress time histories. Four different procedures are presented and compared in this work. The first method is that originally proposed by Seed et al., (1975), which is based on an equivalence rule for each recorded cycle, derived from а representative cyclic strength curve of sands.

The other three methods were developed as part of this work, and they use the excess pore-water pressure as the equivalence parameter. In these methods the porepressure increment is computed for each half-cycle of the accelerogram under consideration. In Methods 3 and 4 the pore water pressure build-up during a uniform cyclic acceleration time history is assumed to vary linearly with number of cycles, and thus, the location of each half-cycle within the accelerogram does not influence its

> ×ii ∑∱

contribution to pore pressure build-up. In Method 3, an unlimited pore pressure build-up is accepted, and it is demonstrated that this gives a result essentially identical to that of Method 1 proposed by Seed et al. (1975). In Method 4, the pore pressure build-up is limited to the onset of initial liquefaction, $u/\sigma_o^{\prime} \leq$ 1.00. In Method 2 a nonlinear variation of pore pressure with number of cycles is used, and the pore pressure buid-up is also limited to $u/\sigma_o^{\prime} \leq$ 1.00.

A number of strong-motion accelerograms recorded during several western U.S. earthquakes, including San Fernando 1971 are analized with the four methods. The corresponding equivalent numbers of cycles are compared among the different methods, and correlated with earthquake magnitude, distance to the source, and azimuth.

> ⇒xIII ≫iT

INTRODUCTION

It is not difficult to recall the distress and amazement which confronted soil engineers when they first observed the enormous damage due to soil liquefaction both in Anchorage, Alaska and Niigata, Japan following both 1964 earthquakes. These events probably did more to stimulate geotechnical engineering studies of earthquake-induced liquefaction that any other single factor. Also, the need to consider the problem for the design of nuclear power plants and off-shore structures has played a major role. All of this has led to increasing efforts in the development of procedures for evaluating the liquefaction potential of soil deposits.

This should not be construed to imply that liquefaction of sands is a new subject for geotechnical engineering studies. The major new development of the problem is a recognition of the manner in which it can develop under cyclic loading conditions. Liquefaction induced by static loading has been a familiar topic to virtually all soil engineers since the classical work of Casagrande

(1936) in this area.

1.1 Causes of Seismic Liquefaction

It is now generally recognized that the basic cause of cyclic liquefaction of saturated cohesionless soil during an earthquake is the build-up of excess pore-water pressures due to the application of cyclic shear stresses or strains induced by the ground motions. These stresses are generally considered to be due primarily to vertical propagation of shear waves in a soil deposit, although other forms of wave motions are also expected to occur. Thus, soil elements can be considered to undergo a series of cyclic stresses as illustrated in Fig. 1-a, with the stress series having a somewhat random pattern but being nevertheless cyclic in nature, as shown in Fig 1-b.

a) IDEALIZED FIELD LOADING CONDITIONS

5) SHEAR STRESS VARIATION DETERMINED BY RESPONSE ANALYSIS

FIG.1 Cyclic Shear Stresses on a Soil Element During Ground Shaking (Seed, 1979)

1.2 <u>Methods</u> for <u>Evaluating</u> the <u>Seismic</u> <u>Liquefaction</u> Potential of <u>Sands</u> <u>Deposits</u>.

There have been basically three methods available for evaluating the cyclic liquefaction potential of a deposit of saturated sand subjected to earthquake shaking:

i) Methods based on observation of the performance of sand deposits in previous earthquakes (Seed and Idriss, 1971; Castro, 1975).

ii) Methods based on cyclic stress-controlled laboratory test results.

iii) Methods based on cyclic strain-controlled laboratory test results (Dobry and Ladd, 1981).

Methods i) and iii) are outside the scope of the present work, and will not be discussed further herein. In what follows, the main aspects of method ii), which is based on stress-controlled test results, are described.

stress-controlled Procedures based on tests for evaluating the cyclic liquefaction potential of soil deposits were first proposed by Seed and Idriss (1967), and involve two independent determinations: (1) an evaluation of the cyclic stresses induced at different levels in the deposit by the earthquake shaking, and (2) a laboratory investigation with cyclic stress-controlled tests, to determine the cyclic stresses, which at given confining pressures representative of specific depths in the deposit, will cause the soil to liquefy or undergo various degrees of cyclic strain. The evaluation of liquefaction potential is based on a comparison of the cyclic stresses induced in the field with the stresses required to cause cyclic liquefaction or an acceptable limit of cyclic strain in representative samples in the laboratory.

Even in its simplest form, this type of approach requires the development of five basic steps (Seed, 1979):

1.- Development of suitable analytical procedures

for evaluating the stresses developed in a potentially liquefiable layer in the ground during a given earthquake.

- 2.- Development of a suitable procedure for representing the irregular stress history produced by an earthquake by an equivalent uniform cyclic stress series. This requires an estimate of the duration of the design earthquake at the site, as measured by the equivalent number of cycles, N.
- 3.- Development of a suitable test procedure for measuring the cyclic stress condition causing initial liquefaction or a given level of strain in representative samples of soil.
- 4.- Development of an understanding of all the factors having a significant influence on the liquefaction characteristic of soils.
- 5.- Development of an understanding of the effects of sample disturbance on the laboratory determination of in-situ properties of natural deposits.

In the rest of the work presented herein, the focus is on step 2, and on the determination of the equivalent number of cycles required to plan laboratory tests and make design decisions.

1.3 Importance of the Earthquake Duration.

It is known that longer earthquake durations tend to increase the damaging effect of earthquakes on the stability of both structures and soil deposits. This parameter, together with the level of shaking and the frequency content, is a very important earthquake characteristic for engineering purposes (Housner, 1975; Seed et al, 1969; Schnabel and Seed, 1972; Seed et al, 1975; Dobry et al., 1978).

6

While some facilities would not suffer any damage if high shaking levels are applied during short periods of time, they could collapse under the same or even lower accelerations during a longer earthquake. For instance, during the 1966 Parkfield earthquake, with a high peak acceleration (about 0.5g) and short duration, very little structural damage was observed. On the other hand, during the 1971 San Fernando earthquake, the upstream slope of a hydraulic fill dam failed due to liquefaction, apparently near the end of the earthquake. It was concluded (Seed et al., 1975), that if the duration of motion had been shorter, the slide may have not happened at all, while if it had lasted longer the collapse of the whole dam may have occured, flooding the densely populated downstream area.

The earthquake motion may induce a pore-water pressure build-up in saturated soil deposits, which in the case of loose sands may eventually lead to liquefaction (almost total loss of strength). A totally liquefied soil can undergo very large deformations and literally flow over large distances as was the cases in 1964 in the Alaska and Niigata, Japan earthquakes:

1.4 Objectives

The main objectives of this work are: a) to develop several methods of calculating the equivalent number of cycles of an accelerogram, N, b) to compare the different methods among themselves and with the method proposed by Seed et al., (1975), and c) to use these methods to process actual earthquake records, and to establish correlations between N, earthquake magnitude and other parameters.

METHOD 1

2.1 Description

Method 1 for calculating the equivalent number of cycles, N, of a recorded accelerogram, is identical to the analytical procedure used by Seed et al, (1975). The essential feature of the method, is the development of a simple way to determine the series of uniform shear stress cycles which is equivalent in its effects, to the stress pattern resulting from the irregular shear earthquake motion. This simple way, which is described in parts 2.1 and 2.2, is based on laboratory cyclic stress-controlled test results. As mentioned before, and as discussed again in part 2.1.1, the method is applied to accelerograms instead of stress time histories.

2.1.1 The Shear Stress Time History

The irregular shear stress time history at a shallow depth below the ground surface (such as shown in Fig. 1) is, for all practical purposes, proportional to the

horizontal acceleration time history at the ground surface (Seed and Idriss, 1971). Thus, from the horizontal accelerations records of past earthquakes the equivalent number of stress cycles at any prescribed stress level can readily be determined. Therefore, in the rest of this work, the words stress and acceleration will be used interchangeably for this purpose.

2.1.2 The Weighting Curve

In order to obtain the uniform stress cycles, the cyclic strength curve shown in Fig. 2 is used. This curve was obtained from typical laboratory results on saturated sands, as detailed in Appendix A. In Fig. 2, the ratio ap/(ap), is plotted versus the number of cycles required for liquefaction, where ap = peak acceleration of any cycle within the accelerogram, and (ap) = peak acceleration causing liquefaction in one cycle. If we further define (ap)max = maximum peak acceleration of the entire accelerogram, and $F.S. = (ap)_{1}/(ap)max$, then be interpreted to correspond to Fig. 2 can an accelerogram having a Safety Factor F.S. = 1.00, and the ordinates can be interpreted to mean ap/(ap)max.

In Method 1, each half-cycle of an irregular accelerogram, is transformed into an equivalent number of

uniform stress cycles, by means of a weighting factor obtained from Fig. 2, and from the Safety Factor, F.S., as explained in Appendix A. An additional parameter which needs to be defined is the value of the peak uniform acceleration used, as a percentage of the maximum acceleration of the accelerogram, (ap)max. Following Seed et al., (1975), the percentage used in this work is 65% of (ap)max. This means that the uniform cyclic acceleration series has an amplitude equal to 65% of the maximum acceleration of the accelerogram, (ap)max.

FIG.2 Representative Relationship Between ap/(ap), and the Number of Cycles Required to cause Liquefaction

2.2 Procedure for Method 1 (Seed et al., 1975)

The procedure to obtain the equivalent number of cycles

at 0.65 (ap)max, is applied twice by Seed et al. (1975) for the same accelerogram. In the first analysis, only the part of the accelerogram located above the time axis is considered, and the equivalent number of cycles, N(above), is computed. For the second analysis, only the the accelerogram below the time axis part of is considered and the equivalent number of cycles, N(below) Both analyses are independent of each is computed. other, even though the procedure is identical for the two cases. The final equivalent number of cycles, is the average of the cycles found in both cases, that means N = 1/2(N(above) + N(below)).

The following steps must be considered in order to obtain the desired equivalent number of cycles for the accelerogram, N:

The equivalent number of cycles representative a.of any record depends greatly on the choice of maximum acceleration considered to the be representative of the site in question. Where both components of a record motion have about the same maximum acceleration, (ap)max, this problem. But when the two presents no components at any site have quite differents values of (ap)max, the appropiate number of cycles representative of the effects of the

motions depends on the degree of conservantism adopted. From some studies of this aspect, it is possible to say that the strongest component of motion at a site dominates the liquefaction potential (Seed et al., 1975). Therefore, the first step is to choose the maximum peak acceleration that will be representative of the site in question.

- b.- Choose the acceleration level, as a fraction of (ap)max, selected for the uniform acceleration series. In this work, and following Seed et al., (1975) the value adopted is 0.65 (ap)max.
- c.- Count up the number of cycles in the accelerogram corresponding to different acceleration levels. Above the time axis for N(above), and below the time axis for N(below).
- d.- Use the Weighting curve procedure, (see Appendix A), for obtaining the conversion factor to 0.65 (ap)max for each acceleration level, and multiply the number of cycles obtained in step (c) by the respective factor.
- e.- Add all numbers of cycles at all acceleration levels obtained in step (d), and obtain the equivalent numbers of cycles, N(above) and N(below) respectively. Finally, compute N = 1/2(N(above) + N(below)). This later

value, N, is the desired equivalent number of cycles of the accelerogram in question.

This is the procedure used by Seed et al., (1975) to obtain the number of equivalent cycles of recorded accelerograms. Method 1 was incorporated into the first part of the computer program included in Appendix F.

In this method it is useful to obtain curves similar to that shown in Fig. 2, but for values of F.S. different from 1.00. This has been done in Fig. 3 for F.S. = 1.50; 1.75 and 2.00. In Fig. 3, ap/(ap)max is plotted versus number of cycles. Fig. 3 was obtained from Fig. 2 by means of the expression: $ap/(ap)max = ((F.S.)(ap))/(ap)_1$ Therefore, the curve labelled "F.S.= 1.00" in Fig. 3 is identical to the curve of Fig. 2.

For the development of Method 1, Seed et al., (1975) used the weighting curve shown in Fig. 3 with a safety factor, F.S = 1.50, which means that the curve is developed for a condition where the acceleration required to cause failure in one cycle is equal to 1.5 times the maximun acceleration of the earthquake, (ap)max. For the present work safety factors of 1.00, 1.50, 1.75 and 2.00 are used.

FIG.3 Representative Relationship Between ap/(ap)max and Number of Cycles Required to Cause Liquefaction

2.3 Examples

An illustration of Method 1 follows, in Examples 1 and 2, using respectively each of the components of the motion recorded at the Orion Blvd. site in San Fernando earthquake 1971, and for F.S.= 1.50. The conversion factor listed in the examples for different values of ap/(ap)max were obtained from Fig. 3, for F.S. = 1.50. These same conversion factors are listed in Table A-2 for F.S. = 1.50and in Tables A-1, A-3 and A-4 for F.S. = 1.00, F.S. = 1.75 and F.S. = 2.00respectively. factor = 0.20For example, the conversion for ap/(ap)max = 0.50 and F.S. = 1.5 was obtained as follows:

From Fig. 3:

6 cycles of ap = 0.65(ap)max are required to cause liquefaction

28 cycles of ap = 0.50(ap)max are required to cause liquefaction

therefore, 1 cycle of 0.50(ap)max is equivalent to 6/28 = 0.20 cycles of 0.65(ap)max, and the conversion factor = 0.20

EXAMPLE 1

EVALUATION OF THE EQUIVALENT UNIFORM STRESS CYCLES FOR ORION BOULEVARD RECORD (Component North-South)

ORION BLVD. RECORD, N-S COMP. SAN FERNANDO EARTHOUAKE, 1971

	ABOVE 1	IORIZONTAL	AXIS	BELOW	HORIZONTAL	AXIS
			EQUIVALENT			EOUIVALENT
ap (ap) max	NUMBER OF STRESS CYCLES	CONVERSION FACTOR	NO. OF CYCLES AT 0.65(ap) max	NUMBER OF STRESS CYCLES	CONVERSION FACTOR	NO. OF CYCLES AT 0.65(ap) max
1.00 (ap)max				1	3.00	3.00
0.95						
0.90						
0.85				1		
0.80						***
0.75			*			*
0.70	2	1.20	2.40	2	1.20	2.40
0.65	1	1.00	1.00	2	1.00	2.00
0.60				2	0.70	1.40
0.55	6	0.40	2.40			
0.50	1	0.20	0.20	3	0.20	0.60
0.45	1	0.10	0.10	2	0.10	0.20
0.40	2	0.04	0.08	3	0.04	0.12
0.35	1	0.02	0.02	6	0.02	0.02
0.30	~~~		4 6 7			
		TOTAL	6.20		TOTAL	9.84

AVERAGE NUMBER OF CYCLES AT 0.65(ap)max = 8.0

EXAMPLE 2

ORION BLVD. RECORD. E-W COMP. SAN FERNANDO EARTHOUAKE	-19	71
---	-----	----

ABOVE HORIZONTAL AXIS

BELOW HORIZONTAL AXIS

ap	NUMBER OF	CONVERSION	EQUIVALENT	NIMBER OF	CONVERSION	EQUIVALENT
/(ap) max	STRESS CYCLES	FACTOR	AT 0.65(ap) max	STRESS CYCLES	FACTOR	AT 0.65(ap)max
1.00 (ap) max	·	*	·	1	3.00	3.00
0.95	3	2.70	8.10			
0.90	1	2.40	2.40			
0.85	2	2.05	4.10	1	2.05	2.05
0.80				2	1.70	3.40
0.75	3	1.40	4.20			
0.70				2	1.20	2.40
0.65	1	1.00	1.00	1	1.00	1.00
0.60	2	0.70	1.40	1	0.70	0.70
0.55	3	0.40	1.20	3	0.40	1.20
0.50	1	0.20	0.20	5	0.20	1.00
0.45	3	0.10	0.30	5	0.10	0.50
0.40	3	0.04	0.12			
0.35	5	0.02	0.10	7	0.02	0.14
0.30				~~~		
		TOTAL	23.12		TOTAL	15.39

AVERAGE NUMBER OF CYCLES at 0.65(ap)max = 19.30

2.4 Discussion

For Method 1, the effect of one cycle on the liquefaction process of the soil is considered to be the same no matter what the position of the cycle is in the stress time history. Therefore, in this method the analysis of the entire accelerogram is always done because there is no explicit way to know if initial liquefaction did occur at some intermediate point during the shaking. METHOD 2

3.1 Description

The method developed in this section uses the law of development of excess pore pressure in saturated sands, measured experimentally during cyclic stress controlled tests, to compute the equivalent number of cycles, N. This law is used in conjunction with the curves of Fig. 3.

3.2 <u>Pore Water Pressure Development During an Earthquake</u> <u>Motion</u>

By observing the rate of pore-water pressure development during cyclic stress controlled tests, it has been found that the rate of build-up generally lies within a fairly narrow range, when plotted in the normalized form shown in Figs. 4 and 5. Thus, for example, tests on different sands in cyclic triaxial tests, show data falling within the band shown in Fig. 4 (Lee and Albaisa, 1974), and tests on sands in cyclic simple shear tests show data

falling within the band presented in Fig. 5. (De Alba et al, 1975). The use of such data and the assumption that other sands will exhibit similar characteristic, provides a reasonable basis for the practical assessment of pore-water pressure build-up in sand deposits.

FIG.4 Rate of Pore Pressure Build-up in Triaxial Tests

(Lee and Albaisa, 1974)

FIG.5 Rate of Pore-Water Pressure Build-up in Cyclic Simple Shear Tests (De Alba et al., 1975)
For the purpose of developing Method 2, it appears that the curve shown by the dashed line in Fig. 5, representative of sands with relative density of about 60%, provides the best general representation of the rate of pore pressure development in sands exhibiting a serious liquefaction potential problem. Accordingly, this curve has been adopted as a convenient basis for predicting the rate of pore-water pressure generation in Method 2.

If the excess pore pressure ratio, Ru, is defined as: $Ru = u/\sigma_o^{\prime}$ (3.1) and the cycles ratio Rn is defined as: Rn = N/Nl (3.2) where: u = excess pore-water pressure

 $\sigma_{\rm o}$ = initial effective overburden pressure N = the number of applied equivalent cycles Nl = the number of cycles required to cause initial liquefaction, defined by Ru = 1.00. Then, the following expression may be shown to fit the characteristics of the curve presented in Fig. 5 as used by Seed et al., (1975).

$$Rn = (1/2(1.00 - \cos \pi Ru))^{2}$$
(3.3)

The value of α is a function of the soil properties and test conditions. For the dashed line in Fig. 5, a value of $\alpha = 0.7$ provides the best fit. In fact, the dashed line was plotted from Eq. (3.3) with $\alpha = 0.7$.

Where required, the pore pressure ratio Ru may be expressed in terms of the cycle ratio Rn by inverting Eq. (3.3):

$$Ru = (1/2) + (1/\pi) \arcsin(2(N/N1)^{1/2} - 1.00)$$
(3.4)

Having established this relationship, the rate of generation of pore-water pressure in a soil deposit, and the equivalent number of cycles at 0.65 (ap)max, can both be found using equations (3.3) and (3.4). This is Method 2, as explained below in part 3.3.

3.3 Procedure for Method 2

Method 2 uses equations (3.3) and (3.4) to calculate the pore pressure build-up, Ru, versus time, for an arbitrary accelerogram. This is done by combining equations (3.1) and (3.2) with Fig. 3. It is assumed here that the cyclic strength curve for the selected F.S., in Fig. 3 corresponds to the number of equivalent cycles, N1, of initial liquefaction failure, i.e. Ru = 1.00. To apply the procedure to an arbitrary accelerogram, it is further assumed that the increment of excess pore pressure, $\mathcal{J}(Ru)ab$, produced by an acceleration halfcycle between times t(a) and t(b) and having a peak (ap)ab is (see Fig. 6):

$$\mathcal{O}(\mathrm{Ru})\mathrm{ab} = f((\mathrm{Ru})\mathrm{a}, (\mathrm{ap})\mathrm{ab})$$

and (Ru)b = (Ru)a + (Ru)ab

that is, $\mathscr{O}(\operatorname{Ru})ab$ and $(\operatorname{Ru})b$ are function only of the pore pressure at the beginning of the half-cycle, $(\operatorname{Ru})a$, and of the peak acceleration (ap)ab. This function, $f((\operatorname{Ru})a$; (ap)ab) or more conveniently, (Ru)b can be evaluated numerically for each half-cycle.

FIG.6 Increment of Pore-Water Pressure in Half-Cycle

The specific procedure to obtain, for a given accelerogram and a given safety factor, F.S., the equivalent number of cycles at 0.65 (ap)max is described in the following steps:

- Read the first half-cycle peak acceleration, a.-(ap), in the accelerogram. This half-cycle may be above or below the time axis.
- b.- From the curve in Fig. 3, selected for the given S.F., obtain the number of cycles that cause initial liquefaction, N1, for the value of (ap) founded in step (a).
- c.- Using equation (3.3), with the initial normalized pore pressure, Ru(a) = 0 at the begining of the accelerogram, and the value of Nl determined in step (b), above, find the current number of equivalent cycles, Na.

 $Rn = Na/Nl = (1/2(1.00 - \cos \pi (Ru)a))^{\alpha} (3.3-a)$ $Na = Nl(1/2(1.00 - \cos \pi(Ru)a))^{\alpha} = 0$ (3.3-b)

Using equation (3.4) find the pore pressure d.ratio at the end of the subsequent half-cycle, (Ru)b:

> $(Ru)b = 1/2 + 1/T \arcsin(2((Na+1/2)^{4}/N1)) - 1.00)$ (3.4 - a)

Na = 0.0 for the first half-cycle e.- Start againg in step (a), reading the next

value of peak acceleration, ap, and for the initial pore-water pressure at the beginning of the next half-cycle use the incremented value founded in step (d). Continue with this procedure until (Ru)b = 1.00, which means that the soil has reached initial liquefaction, or until the end of the accelerogram if always (Ru)b < 1.00 and the earthquake did not produce liquefaction for the site in question.

f.- Using equation (3.3) with Nl for 0.65 (ap)max and the final value of (Ru)b determined in step (d), find the equivalent number of cycles at 0.65 (ap)max.

 $N = Nl(1/2(1.00 - cos TRu(b)))^{\alpha}$ (3.3-c) (Ru)b = the last increment of pore pressure calculated in step (e).

3.4 Examples

An illustration of the method is presented in Examples 3 and 4, using each of the components of the motion recorded at the Orion Blvd. site in San Fernando earthquake 1971, and for F.S.= 1.50. This method corresponds to the second part of the computer program included in Appendix F.

EXAMPLE 3

EVALUATION OF THE EQUIVALENT UNIFORM STRESS CYCLES FOR ORION BOULEVARD RECORD (Component North-South)

ORION	BLVD.	RECORD.	N-S	COMP.	SAN	FERNANDO	EARTHQUAKE,	1971
			SAFEI	TY FACT	OR =	1.50		

METHOD 2

PEAK ACCELERATION sec ²	NORMALIZED ACCELERATION ap/(ap)max	NL	(Ru)b	N	(<u>Ru)a</u>
1295	0.52	20.80	0.00	0.00	0.04
1228	0.49	52.00	0.04	1.25	0.06
1091	0.44	139.60	0.06	4.70	0.06
1371	0.55	16.00	0.06	0.60	0.09
1331	0.53	23.20	0.09	1.59	0.11
1625	0.65	6.00	0,11	0.54	0.18
1837	0.73	4.68	0.18	0.81	0.26
1747	0.70	5.00	0.26	1.40	0.33
1000	0.40	160.00	0.33	60.83	0.34
1771	0.68	5.60	0.34	2.15	0.40
1734	0.69	5.80	0.40	2.74	0.46
1575	0.63	7.68	0.46	4.29	0.51
1071	0.43	119.20	0.51	74.37	0.51
1321	0.55	23.20	0.51	14.57	0.53
1679	0.67	6.40	0.53	4.16	0.59
1378	0.55	16.00	0.59	11.64	0.61
1517	0.61	6.36	0.61	4.98	0.68
1410	0.56	10.24	0.68	8.55	0.74
1125	0.45	58.00	0.74	51.28	0.75
1344	0.54	25.60	0.75	22.85	0.77
2500	1.00	2.00	0.77	1.82	1.00

(ap) max = 2500.0 mm/sec²

N = 6 cycles

EXAMPLE 4

EVALUATION OF THE EQUIVALENT UNIFORM STRESS CYCLES FOR ORION BOULEVARD RECORD (Component East-West)

SAFETY FACTOR = 1.5 METHOD 2

PEAK ACCELERATION mm/sec ²	NORMALIZED ACCELERATION ap/(ap)max	NL	(<u>Ru</u>)b	N	<u>(Ru)a</u>
597	0.45	58.00	0.00	0.00	0.02
735	0.56	10.24	0.02	0.09	0.08
1120	0.85	2.90	0.08	0.17	0.23
- 682	0.52	20.80	0.23	4.78	0.25
583	0.44	139.60	0.25	35.44	0.25
1239	0.94	2.44	0.25	0.63	0.39
964	0.73	4.68	0.39	2.16	0.47
586	0.44	139.60	0.47	79.47	0.47
700	0.53	23.20	0.47	13.29	0.48
702	0.53	23.20	0.48	13.79	0.50
591	0.45	58.00	0.50	55.72	0.51
719	0.55	16.00	0.51	9.99	0.53
1233	0.94	2.44	0.53	1.60	0.71
595	0.45	58.00	0.71	49.92	0.72
575	0.44	139.60	0.72	121.36	0.72
5 9 6	0.45	58.00	0.72	\$0.63	0.73
1317	1.00	2.00	0.73	1.76	1.00
	2				

(ap) max = 1317.0 mm/sec²

N = 6 cycles

3.5 Discussion

Method 2 considers the position of each half-cycle in the accelerogram as an increment of the pore-water pressure in the soil deposit. Therefore, the effect of one half-cycle on the liquefaction of the soil depends on the history of previous half-cycles. If the value of pore pressure is Ru = 1.00, which is the maximum normalized value, there is initial liquefaction. This may or may not happen before the end of the accelerogram. In Method 2, unlike Method 1, it is possible to know the time at which initial liquefaction occurs.

METHODS 3 AND 4

4.1 Description

Ţ

In Method 2, already discussed in Part 3, the pore pressure build-up during a uniform cyclic acceleration time history was assumed to vary as shown by the dashed line in Fig. 5. In Methods 3 and 4, the pore pressure build-up during a uniform cyclic acceleration time history is assumed to vary linearly with number of cycles, as shown in Fig. 7. Using the same assumptions and symbols as in Part 3, the increment of the pore pressure d(Ru)ab, corresponding to a half-cycle with a peak acceleration (ap)ab (see Fig. 6), is: d(Ru)ab = 1/(2N1) (4.1)

(Ru)b = (Ru)a + o(Ru)ab

where Nl is obtained from (ap)ab and from Fig. 3 for the corresponding F.S., and where d(Ru)ab is <u>not</u> a function of the pore pressure at the beginning of the half-cycle, (Ru)a.

Therefore, in Methods 3 and 4 the location of each half-

cycle in an arbitrary accelerogram does not influence its contribution to pore pressure build-up. If Fig. 7 is used, it is possible to make the analysis of the stress time history under two differents points of view:

- 1.- Study the acceleration time history of the site in question until the end, and keep computing Ru even if initial liquefaction occurs, and Ru becomes equal to 1.00. In this procedure values of Ru \geq 1.00 are accepted. This is the procedure used for the analysis in METHOD 3. It can be demostrated that this method is conceptually identical to Method 1, discussed before.
- 2.- Study the acceleration time history of the site in question but imposing the condition Ru < 1.00. This is a realistic limitation, as the soil can not build-up pore-pressure beyond initial liquefaction. In this procedure, the soil gets, either a condition of initial liquefaction Ru = 1.0 during the accelerogram, or Ru < 1.00 at the end of the accelerogram. This is the procedure used for the analysis in METHOD 4.

FIG.7 Linear Rate of Pore Water Pressure Build-up

In Methods 3 and 4, the straight-line showed in Fig. 7 provides the representation of pore pressure build-up with the number of cycles, and is used for predicting the rate of pore water pressure generation in both methods. Equations similar to Eq. (3.3) and (3.4), but now based on the linear pore pressure law of Fig. 7, must be considered:

4.1.1 Linear Variation

For the assumed linear variation of Ru, the pore pressure ratio at time (t)a in Fig. 6 is equal to the cycle ratio. (Rn)a = Na/Nl = (Ru)a (4.2)

 $Na = (Ru)a \times Nl$ (4.3)

where Nl must be obtained from Fig. 3 for

(ap)ab and for the selected F.S. The pore pressure ratio at time (t)b, (Ru)b, can be obtained by inverting Eq. (4.3) and using (Na + 1/2) instead of Na.

(Ru)b = (Na + (1/2))/Nl (4.4)
Having established this relationship, the rate
of generation of pore-water pressure and the
equivalent number of cycles for Methods 3 and
4, can be found using equations (4.2), (4.3),
and (4.4) in the following procedure.

4.2 Procedure for Methods 3 and 4

4.2.1 Procedure for Method 3

- a.- As in Method 2, read the first peak acceleration, (ap) in the accelerogram, and start with the initial pore pressure (Ru)a = 0.0
- b.- From the curve in Fig. 3, selected for a given safety factor, find the number of cycles that cause liquefaction, N1, for this value of (ap).

c.- Using equation (4.3), find the value of Na. Na = (Ru)a x Nl

For the first half-cycle, Na = (Ru)a = 0 d.- The pore-water pressure after the half-cycle is found using equation (4.4) with the values computed in steps (b) and (c) (Ru)b = (Na + (1/2))/Nl

- e.- Start again in step (a), reading the new value for (ap) and using the increment of pore pressure found in step (d) above. Continue with this procedure until the end of the accelerogram.
- f.- When the last value of pore pressure is found, read in the weighting curve Nl for 0.65 (ap)max.
- g.- Substitute in equation (4.3), Nl determined in step (f), and the last value of (Ru)b (i.e at the end of the accelerogram), and find the equivalent number of cycles at 0.65 (ap)max, N. N = (Ru)b X Nl

4.2.2 Procedure for Method 4

- a.- As in Method 2, read the first peak acceleration (ap) in the accelerogram, and start with the initial pore pressure (Ru)a = 0.0
- b.- From the curve in Fig. 3, selected for a given safety factor, find the number of cycles that cause liquefaction, N1, for this value of (ap).

c.- Using equation (4.3), find the value of Na. Na = (Ru)a X Nl

For the first half-cycle, (Ru)a = 0

- d.- The pore-water pressure increment after the half-cycle is found using equation (4.4) with the values computed in steps (b) and (c). (Ru)b = (Na + (1/2))/Nl
- Start againg in step (a), reading the new value e.for (ap) and using the increment of pore pressure found in step (d). Continue with this procedure until the value of pore-water pressure (Ru)b = 1.00, which means that the soil has reached initial liquefaction or, until the end of the accelerogram if always Ru < 1.00, which means that the earthquake did not produce liquefaction for the site in question.
- f.- When the last value of pore pressure (Ru)b is found, either (Ru)b < 1.0 or (Ru)b = 1.0, read in the weighting curve of Fig. 3, N1 for 0.65 (ap)max.
- g.- Substitute in equation (4.3), NI determined in step (f), and the last value of (Ru)b, and find the equivalent number of cycles at 0.65 (ap)max, N.

 $N = (Ru)b \times Nl$

4.3 Examples

1...

Both methods are illustrated by Examples 5 and 6, using each of the components of the motion recorded at Orion Blvd. site in San Fernando earthquake 1971, and for F.S.= 1.50. This method corresponds to the third part of the computer program included in Appendix F. For both components, (Ru)b > 1.0 at the end of the earthquake, indicating that the liquefaction ocurred up to the time at which Ru = 1.0, the calculations shown in Examples 5 and 6 are valid for both Methods 3 and 4. However, for times beyond the instant at which Ru = 1.0, the calculations shown in Examples 5 and 6 are applicable only to Method 3.

NICH BOOLEVARD RECORD (COMPONENT NOTCH-SOUTH)

EXAMPLE 5

EVALUATION OF THE EQUIVALENT UNIFORM STRESS CYCLES FOR ORION BOULEVARD RECORD (Component North-South)

ORION	BLVD.	RECORD,	N-S	COMP.	SAN	FERNANDO	EARTHOUAKE,	1971
		s	AFETY	FACTOR	ર ≃ 1	.50		
				METHOD	3			

PEAK ACCELERATION mm/sec ²	NORMALIZED ACCELERATION ap/(ap)max	NE	(Ru)b	N	(<u>Ru</u>)a
1295	0.52	20.80	0.00	0.00	0.02
1228	0.49	52.00	0.02	1.25	0.03
1091	0.44	139.60	0.03	4.70	0.04
1371	0.55	16.00	0.04	0.60	0.07
1331	0.53	23.20	0.07	1.59	0.09
1625	0.65	6.00	0.09	0.54	0.17
1837	0.73	4.68	0.17	0.81	0.28
1747	0.70	5.00	0.28	1.40	0.38
1000	0.40	160.00	0.38	60.83	0.38
1771	0.68	5.60	0.38	2.15	0.47
1734	0.69	5.80	0.47	2.74	0.56
1575	0.63	7.68	0.56	4.29	0.62
1071	0.43	119.20	0.62	74.37	0.63
1321	0.53	23.20	0.63	14.57	0.65
1679	0.67	6.40	0.65	4.16	0.73
1378	0.55	16.00	0.73	11.54	0.76
1517	0.51	6.56	0.76	4.98	0.84
1410	0.56	10.24	0.84	8.55	0.88
1125	0.45	58.00	0.88	51.28	0.89
1344	0.54	25.60	0.89	22.85	0.91
2500	1.00	2.00	0.91	1.82	1.16
1364	0.55	16.00	1.16	18.60	1.19
1222	0.49	32.00	1.19	62.06	1.20

(ap) max = 2500.0 mm/sec²

 $N = 6.0 \times 1.2 = 7.2$ cycles (METHOD 3)

 $N = 6.0 \times 1.0 = 6.0$ cycles (METHOD 4)

EXAMPLE 6

EVALUATION OF THE EQUIVALENT UNIFORM STRESS CYCLES FOR ORION BOULEVARD RECORD (Component East-West)

METHOD 3

PEAK	NORMALIZED				
mm/sec ²	ap/(ap)max	NL	(Ru)b	N	(Ru) =
	0.45	52.0	0.00	0.00	0.01
597	0.45	10 74	0.00	0.00	0.01
/35	0.50	10.24	0.01	0.05	0.08
1120	0.85	2.90	0.00	0.1/	0.23
682	0.52	20.80	0.23	4./0	0.23
583	0.44	139.50	0.25	33.44	0.20
1239	0.94	2.44	0.26	0.63	0.46
964	0.73	4,58	0.46	2.16	0.57
586	0.44	139.60	0.57	/9.4/	0.57
700	0.33	23.20	0.57	13.29	0.59
702	0.53	23,20	0.59	13.79	0.52
591	0.45	58.00	0.62	35.72	0.62
719	0.55	16.00	0.62	9.99	0.66
1233	0.94	2.44	0.66	1.60	0.86
595	0.45	58.00	0.86	49.92	0.87
\$75	0.44	139.60	0.87	121.36	0.87
596	0.45	\$8.00	0.87	50.63	0.88
1317	1.00	2.00	0.88	1.76	1.13
1024	0.78	3.92	1.13	4.44	1.26
880	0.67	6.40	1.26	8.06	1.34
1104	0.84	3.38	1.34	4.52	1.49
1214	0.92	2.32	1.49	3.45	1.70
673	0.51	18.40	1.70	31.29	1.73
527	0.40	160.00	1.73	276.45	1.73
1069	0.81	3.02	1.73	5.23	1.90
1294	0.98	2.12	1.90	4.02	2.13
766	0.58	13.12	2.13	27.98	2.17
748	0.57	11.68	2.17	25.35	2.21
546	0.41	78,40	2.21	173.52	2.22
758	0.58	13.12	2.22	29.12	2.25
809	0.61	6.56	2.26	14.36	2.34
902	0.68	5.60	2.34	13.08	2.43
1007	0.76	3,64	2.43	8.83	2.56
1127	0.86	2.58	2.56	6.61	2.76
1056	0.80	3.50	2.76	9.65	2.90
667	0.51	18,40	z.90	\$3.35	2.93
890	0.68	5.60	2.93	16.39	3.02
530	0.41	78.40	3.02	236.47	5.02
843	0.64	8.24	3.02	24.91	3.08
777	0.55	16.00	3.08	49.33	3.11
144	0.20	46.00	5.11	143.27	3.13
627	0.48	46 00	3.13	143.77	3.14
717	0.40	25 60	3 14	80 20	7 14
114	U.34	20.00	4.74	00.43	2.10

(ap) max = 1317.0 mm/sec²

N = 6.0 x 3.16 = 18.96 cycles (METHOD 3) N = 6.0 x 1.00 = 6.00 cycles (METHOD 4)

4.4 Discussion

For Methods 3 and 4 the pore pressure build-up during a uniform cyclic acceleration time history is assumed to vary linearly with number of cycles, and thus, the location of each half-cycle in the accelerogram does not influence its contribution to the pore-pressure build-up. Based on this fact it is possible to analyze the acceleration time history in two different ways: a) it is possible to stop the analysis at the time when initial liquefaction occurs, Ru = 1.00, that is the procedure developed in Method 4, and b) it is possible to make the analysis until the end of the accelerogram, even if Ru > 1.00, which is the procedure developed in Method 3.

PART 5

EVALUATION OF THE DIFFERENT METHODS

For the evaluation of the different methods, a total of 129 horizontal ground strong-motion accelerograms recorded in western U.S. between 1933 and 1971, with magnitudes between 5.3 and 7.1 (see Appendices B and C) were used for this study. The accelerogram records used for all the calculations were obtained from standard tapes issued by CALTECH.

The accelerograms are divided in three different sets. The first one corresponds to 22 accelerograms of different earthquakes at several sites in the west coast of the U.S., with magnitudes ranging between 5.3 and 7.1. This set is similar to that presented by Seed et al., (1975). The main characteristics of these records, including the computed numbers of cycles, are summarized in Tables B-1, B-2, B-3 and B-4 of Appendix B. For each of these records, the corresponding equivalent numbers of cycles, N, obtained using the four different safety factors, were compared among the Methods, and N was also correlated with the magnitude of the earthquake. These

comparisons and correlations are discussed later herein.

The second set corresponds to 11 accelerograms of different earthquakes at several rock sites in the west coast of the U.S., with magnitudes ranging between 5.3 and 7.6. This set was obtained from Dobry et al., (1978). The main characteristics of these records, including the computed number of cycles, are summarized in Table B-5 of Appendix B. The values of N computed for these rock sites records were also correlated with earthquake magnitude, as explained later herein.

The third set corresponds to 96 strong-motion accelerograms recorded on rock and soil sites during the Fernando, California earthquake, and was 1971 San obtained from Bond (1980). The range of distances between station and source of energy release is between 21.9 and 150.2 Km., while the magnitude of this earthquake was 6.6. The computation of N are summarized in Tables C-1 and C-2 of Appendix C, for F.S.= 1.5 and 2.0, respectively. For this third set of accelerograms, all sites were classified in two groups: soil sites and rock sites. It was decided to study first the soil site accelerograms, and then consider the influence of rock. The corresponding equivalent numbers of cycles for this San Fernando set of accelerograms, using F.S.= 1.5 and

2.0, and for Methods 1 and 4, are plotted versus epicenter distance and azimuth for the soil sites in Appendix D. In this Appendix plots are presented for all components of the records, and also for the strongest components only, as recommended by Seed et al., (1975). Appendix E presents the same plots shown in Appendix D, but for the rock sites recorded in San Fernando Earthquake.

5.1 General Conditions for the Analysis.

The computation of the equivalent number of cycles, N, for each of these accelerograms, was performed for Methods 1 through 4, for an acceleration level of 0.65 (ap)max, and using the procedures described herein in Parts 2, 3 and 4. In all the calculations, which were repeated for safety factors, F.S. = 1.00, 1.50, 1.75 and 2.00, the representative laboratory cyclic strength curve shown in Figs. 2 and 3 was used. The analysis conditions for the four different methods can be summarized as follows:

METHOD	SOURCE	PORE PRESSURE	LIMIT
No.		LAW	
l	Seed et al	Linear	Unlimited
	(1975)		(Ru ≷ 1.0)
2	This work	Nonlinear	Limited to initial
			Liquefaction
			(Ru ≤ 1.00)
3	This work	Linear	Unlimited
			(Ru ≷ 1.00)
4	This work	Linear	Limited to initial
			Liquefaction
			(Ru ≤ 1.00)

<u>NOTE</u>: Methods 1 and 3 are conceptually identical but slightly different computational procedures were used in them.

÷ .

5.2 Comparison of the Methods

5.2.1 Methods 1 and 3

In Method 3 the effect of one half-cycle in the liquefaction of the soil is considered to be the same no matter what its position is in the acceleration time history. It is demostrated later herein that this assumption is conceptually identical to that used for Method 1 by Seed et al., (1975). For both methods, 1 and 3, the analysis of the entire accelerogram is always done, and it should be expected that the equivalent number of cycles, N, computed by Methods 1 and 3, should be almost identical for any accelerogram.

Methods 1 and 3 can be proven to be conceptually equivalent as follows (in this demostration it is assumed that a value of F.S. has been selected, and that the corresponding curve in Fig. 3 can be used to obtain the number of cycles, N1, required to cause liquefaction under a uniform cyclic acceleration (ap)b).

For Method 1:

Nl cycles of (ap)ab produce $Ru = u/\sigma_o' = 1.00$ then:

1.00 cycle of (ap)ab produce (Ru) = u/σ_o^1 = 1.0/Nl 0.50 cycle of (ap)ab produce (Ru)ab = u/σ_o^\prime = 1/(2Nl)

For Method 3; and as already shown in Eq. (4.4), 0.50 cycles of (ap)ab also produce an increment of (Ru)ab = 1/(2N1). Therefore, (Ru)ab is always the

same between Methods 1 and 3, for any given half-cycle of the accelerogram, (ap)ab, and this value of (Ru)ab does not depend on the location of the half-cycle.

· ...

Therefore, for a given recorded accelerogram, the values of N computed using Methods 1 and 3 should be expected to be very similar or identical. This is confirmed by a comparison of the corresponding results tabulated in Appendices B and C. Also, the values corresponding to the first accelerogram set (see beginning of Part 5), have been plotted in Figs. 8 through 11 for the factors of safety used in this work. These comparisons confirm the equivalence between the two methods. However, some slight differences are noted in Fig. 8 for F.S.= 1.00, with the value of N for Method 3 being somewhat smaller than N computed by Method 1. For $F.S. \ge 1.50$, there is not significant difference between the two methods, as illustrated by Figs. 9, 10 and 11.

FIGURE 9

FIGURE 11

5.2.2 Methods 2 and 4

Methods 2 and 4, like Method 3, compute the increment of pore-water pressure in the soil deposit cause by each half-cycle of the accelerogram. Unlike Method 3, in Methods 2 and 4 the computation of N is not necessarily done for the whole accelerogram but is stopped if initial liquefaction (Ru=1.00) occurs. The only difference between Methods 2 and 4 is that, while in Method 4 the increment of Ru for a uniform cyclic acceleration follows a linear variation with number of cycles, in Method 2 the increment follows a non-linear variation. Figure 12 illustrates this difference.

FIG.12 Linear and Nonlinear Rate of Pore-Water Pressure Build-up used for Methods 2 and 4.

The evaluation of the accelerograms presented in Appendices B and C, show that Methods 2 and 4 give essentially the same numerical results. Therefore, Methods 2 and 4 are practically equivalent, no matter what is the the value of the safety factor chosen. This practical equivalence is demostrated by the results in Figs. 13, 14, 15 and 16, which corresponds to the first accelerogram set discussed at the beginning of Part 5.

× ...

1_

FIGURE 14

5.2.3 Methods 1 and 4

The preceding discussiones about the four methods showed that Methods 1 and 3 are conceptually and practically equivalent, and that Methods 2 and 4 are also equivalent in practice. That is, the method used by Seed et al., (1975) is identical to using a linear variation law for the pore pressure and allowing Ru to exceed 1.00 (Methods 1 and 3); and also there is little diference between using a linear or non-linear law (Methods 2 and 4). In what follows, a comparison is made between Methods 1 and 4, to establish the influence of limiting Ru to Ru = 1.00, on the value of N.

Comparisons between N for Methods 1 and 4, obtained from Appendices B and C, are plotted in Figs. 17 through 20 for the different factors of safety, and for the first set of accelerograms. The plots show the variation between Methods 1 and 4 when a different safety factor is applied for the same accelerogram. In Fig. 20 for a safety factor F.S.= 2.00, both Methods 1 and 4 give practically identical results in all cases, as the correlation Ru = 1.0 was not reached in any accelerogram. However, for safety factors $1.0 \leq F.S. \leq 1.75$ the difference between Methods 1 and 4 increases as F.S. In Fig. 17, for F.S.= 1.0, N from Method 4 decreases.

FIGURE 20

is usually much smaller than N for Method 1.

This discrepancy is clearly due to the fact that in Method 1 the analysis of the entire accelerogram is always done, while in Method 4 the analysis is stopped, and N is computed when condition of initial liquefaction (Ru=1.00) is reached. As a consequence, N for Method 4 is always equal or smaller than N for Method 1.

It is very clear from an inspection of Figs. 17 through 20, that there is an upper limit for the values of N computed by Method 4, while no such limit exists for Method 1. This upper limit depends on the factor of safety, and is clearly related to the constraint imposed in Method 4 that $Ru \leq 1.00$. It is not difficult to demostrate that this upper limit, (N)max, must exist, and that (N)max is identical to Nl obtained from Fig. 3, for the curve corresponding to the given F.S., and for ap/(ap)max = 0.65. The corresponding values of (N)max obtained are plotted in Fig. 21. The reason for the behavior shown in Figs. 17 through 20 becomes now clear, and can be formulated as follows:

(N)4 = (N)1 < (N)max if (N)1 < (N)max
(N)4 = (N)max if (N)1 > (N)max
where (N)4, (N)1 are the values of N obtained for the
same accelerogram with Methods 1 and 4, respectively, and

(N)max is the value listed in Fig. 21 for the corresponding F.S. The only reason why (N)4 = (N)1 for all the accelerograms in Fig. 20, is that, for F.S.= 2.0, in no accelerogram (N)1> (N)max = 35 cycles. Obviously, the chance of having (N)1> (N)max for any particular accelerogram decreases as the value of F.S. increases.

ł i

:1

5.3 Correlation Between N and the Earthquake Parameters.

The equivalent number of cycles, N, computed using Method 1, was plotted for the three accelerogram sets used in this work, versus the distance to the epicenter, azimuth and magnitude. Some additional plots were also generated using Method 4. Appendices D and E include plots of N versus epicentral distance and azimuth for the records of

of this work from set 1, for F.S.= 1.5 and also for the
figures.

The N values for accelerograms set 2, which contains rock sites accelerograms from several western U.S. earthquakes, were also plotted versus magnitude in Fig. 24, again using Method 1, F.S.= 1.5 and for the strongest components. The upper and lower bound curves from Fig. 22 have been superimposed with data points in Fig. 24, with good agreement.

The N values from Methods 1 and 4, obtained from the San Fernando earthquake (magnitude 6.6), are plotted versus epicentral distance and azimuth in Appendices D and Ε. of these plots show that there is An inspection considerable scatter in the data, and that there is no significant influence of distance or azimuth on the value of Ν. On the other hand, comparisons between corresponding plots of Appendices D and E suggest a significant influence of site condition N. For example, Fig. D-1, obtained with Method 1, F.S.= 1.5 and all components, shown that N range between about 4 cycles and 20 cycles, irrespective of epicentral distance. On the other hand, Fig. E-1, obtained in the same way but for the 14 rock sites only, indicates a range for N between about 4 cycles and 10 cycles, also irrespective of the distance. This suggests a greater range of variation for

N in soil sites than in rock sites, with the lower bound coinciding for both rock and soil sites but with some records obtained at soil sites having significantly larger number of cycles. This found for N (cycles) of records on rock and soil sites is similar to that obtained for records duration (seconds) by Dobry et al. (1978).

The values of N computed using Method 1 for F.S.= 1.5 and strongest components of the San Fernando for the earthquake, were retrieved for all soil sites from Table C-1 and their average and standard deviation was The result was 9.2 ± 4.9 cycles. computed. The same operation was performed with the 14 rock sites and the result was 6.3 ± 1.9 cycles. These mean and mean \pm standard deviation range have been superimposed on Seed's curves in Fig. 25, for magnitude = 6.6 of that earthquake. The comparison in Fig. 25 shows that Seed's curves represent well the N values for rock sites during the San Fernando earthquake, but that a significant number of soil site records had N values above Seed's upper curve.

Although the correlation presented by Seed et al. (1975)in Fig. 22 was obtained originally with a F.S.= 1.5, it has been used in engineering practice for other values of

F.S. Therefore, it is of interest to verify the validity of Seed's curves for factors of safety different from 1.5. Figure 26 presents the corresponding plot for F.S.= 2.0. Figure 26 was obtained using the same data and procedure than Fig. 23, with the only difference between the two figures in the value of F.S.. The comparison in Fig. 26 indicates that Seed's correlation may underestimate significantly the value of N for factors of safety larger than 1.5

Equivalent Numbers of Uniform Stress FIG. 22 Cycles Based on Strong Componets of Ground Motion (Seed et al., (1975) Method 1 (F.S.=1.5)

Set 3 Strongest Component (Table C-1)

۰,

FIG. 26 Method 1 vs. Magnitude with F.S.= 2.0 Set 2 Strongest Component (Table B-5)

1.5

DISCUSSION AND CONCLUSIONS

The importance of significant duration of motions produced by earthquakes is of concern to engineers because it has been identified as one of the basic parameters affecting soils failures due to liquefaction. In this investigation, four methods are presented for evaluating the equivalent number of cycles, N, at 0.65 (ap)max during earthquakes motions. All of these methods use the pore pressure ratio, Ru, built-up during the accelerogram as a basic parameters for the calculations, but they differ in assuming a linear or non-linear variation of Ru during stress-controlled tests, and in allowing or not the existence of values of Ru 1.0 (where Ru = 1.0 means initial liquefaction). The four methods were compared using actual accelerograms recorded in the western U.S., and it was concluded that:

1.- The value of N is not significantly affected by the assumption of linear versus non-linear variation of Ru.

2.- The value of N can be affected by the

limitation of Ru to values \leq 1.0. This is not significant for a factor of safety, F.S.= 2.0, against liquefaction in the first cycle, but is very important for F.S.= 1.0 and 1.5. This is associated with the fact that many earthquakes cause initial liquefaction when F.S. is low, Ru< 1.0 at all times when F.S. is high.

- 3.- If the limitation Ru < 1.0 is imposed, N can not be larger than Nmax, where Nmax is a function of F.S. and of the cyclic strength weighting curve of the soil. For the strength curve used in this work, Nmax = 6.0 cycles for F.S.= 1.5 and Nmax = 35 cycles for F.S.= 2.0.
- 4.- The four methods were used to compute N of 129 accelerograms recorded in the western U.S., including 96 accelerograms on rock sites and soil sites obtained during 1971 San Fernando earthquake. The values of N were tabulated, plotted correlated and versus epicentral distance and azimuth, for the case of the San Fernando earthquake. From these plots and correlations, obtained mostly with Method 1 and allowing Ru to be larger than 1.0, it is possible to conclude:

a- For the 1971 San Fernando earthquake, and for F.S.= 1.5, N ranged between about 4 and 10

cycles for the rock sites and between about 7 and 20 cycles for the soil sites, with little influence on N of epicentral distance and azimuth.

b- The values of N obtained from the strongest components of the wester U.S. records analyzed and correlated for F.S.= 1.5, are generally consistent with the correlation between N and magnitude, M, suggested by Seed et al. (1975), except for some soil records obtained during the San Fernando earthquake, which give significantly higher values.

c- Increasing the values of F.S. tends to icrease the values of N. As a consequence, some values of N computed using a F.S.= 2.0, are significantly higher than those predicted using Seed et al. (1975) correlation between N and M, and which was originally developed for F.S.= 1.5.

LITERATURE CITED

- Ambraseys , N. and Sarma, S. (1969) "Liquefaction of Soil Induced by Earthquakes", Bull., Seis. Soc. of America, Vol. 59, No. 2, pp.651-664.
- Bond, W.E. (1980), "A Study of the Engineering Characteristics of the 1971 San Fernando Earthquake Records Using Time Domian Techniques", Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.
- Casagrande, A. (1936), "Characteristics of Cohesionless Soils Affecting the Stability of Earth Fill," Journal of the Boston Society of Civil Engineers, Jan (reprinted in "Contributions to Soil Mechanics, 1925-1960," Boston Society of Civil Engineers, Oct., 1940)
- Castro, G. (1975), "Liquefaction and Cyclic Mobility of Saturated Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT6, Proc. Paper 11388, pp. 551-569.
- De Alba, P., H. B. Seed, and C. K. Chan (1976). "Sand Liquefaction in large-scale simple Shear tests", J. Geotechn. Eng. Div. 102, GT9.
- De Alba, Pedro, Chan, Clarence K. and Seed, H. Bolton (1975) "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests", Report No. EERC 75-14, Earthquake Engineering Research Center, University of California, Berkeley, May.
- Dobry, R., I. M. Idriss, C. Y. Chang, and E. Ng (1977). "Influence of Magnitude, site conditions and distance on significant duration of Earthquakes", Proc. World Conf. Earthquake Eng. 6th, New Delhi, India.

- Dobry, R., I. M. Idriss, and E. Ng. (1978). "Duration characteristics of horizontal components of strong-motion earthquakes records". Bulletin of the Seismological Society of America, Vol. 68, pp.1487-1520, October.
- Dobry, R. and Ladd, R., (1981) Discussion to "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes", by H.B. Seed and "Liquefaction Potential: Science versus Practice", by R.B. Peck, Journal of the Geotechnical Engineering Division, ASCE Vol. 106, GT6, June, pp. 720-724.
- Housner, G. W. (1965). "Intensity of Earthquake Ground Shaiking near the causative Fault", Proc. World Conf. Earthquake Eng., 3rd, Auckland, New Zealand.
- Housner, G. W. (1975). "Measures of Severity of Earthquake Ground Shaking", Proc. U.S. Natl. Conf. Earthquake Eng. Ann Arbor, Michigan.
- Lee, K. L. and Albaisa, A. (1974) "Earthquake Induce Settlements in Saturated Sands", Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 100, No. GT4, April.
- Schnabel, P. B. and H. B. Seed (1972). "Accelerations in rock for earthquakes in the Western U.S. Earthquake Engineering Research Center, Report EERC 72-2, University of California of Berkeley.
- Seed, H. Bolton and Idriss I. M. (1975) "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses", Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, October.
- Seed, H. Bolton et al., (1975). "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses", Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, October.
- Seed, H. Bolton (1979) "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes", Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, Proc. Paper 14380, February, 1979, pp. 201-255.

- Seed, H. B., R. V. Whitman, H. Dezfulian, R. Dobry and I. M. Idriss (1972). "Relationship between soil conditions and building damage in the 1967 Caracas Earthquake", J. Soil Mechanics Foundations Div., ASCE, 98, SM8, 787-806.
- Seed, H. Bolton and Idriss, I. M. (1971) "A Siplified Procedure for Evaluation Soil Liquefaction Potencial", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, September.

1.1

ł

i

- Seed , H.B., I.M. Idriss, and F.W. Keifer (1969), "Characteristics of Rock Motion During Earthquakes", J. Soil Mechanics Foundations Div., ASCE, 95, SM5, pp. 1199-1218.
- Seed, H. B. and I. M. Idriss (1967). "Analysis of Soil Liquefaction: Niigata Earthquake", J. Soil Mechanics Foundations Div., ASCE, 93, SM3, 83-108.
- Seed, H. Bolton and Lee, Kenneth L. (1966) "Liquefaction of Saturated Sands During Cyclic Loading", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, Proc. Paper 4972, November, pp.105-134.

APPENDIX A WEIGHTING CURVE

• • •

. 1

-

4

.

T

•

1 : . •

-

APPENDIX A

A-1 <u>Selection</u> of <u>Weighting</u> <u>Curve</u>

The development of some simple way to determine the series of uniform stress cycles, which are equivalent in its effects to the irregular stress patterns resulting from the earthquake motion, is clearly an essential feature for all the different methods presented in this work.

A representative cyclic strength curve for soils is used by Seed et al., (1975) in conjunction with a weighting procedure. This curve which is presented as a solid line in Fig. A-3, and as a curve of ap/(ap)max versus number of cycles to liquefaction, is also reproduced in the text as Fig. 2. This curve has been adopted for the development of the different methods studied in this work. The rest of the dicussion in this Appendix, is a summary of a similar presentation included in Seed et al., (1975).

A-2 Procedure for the Development of the Weighting Curve

In the study of the equivalent uniform stress series, the

required weighting curve for evaluating the effects of an irregular sequence of stress cycles is provided directly by the results of experimental measurements during cyclic The result of such a stress controlled tests. series of tests performed using cyclic stress levels of different magnitudes, but constants in any one test, are shown in Figure A-1. readily apparent that a condition of It is liquefaction can be induced in the same test specimen by combinations of cyclic stress levels and number of varius For the data shown in Fig. cycles. A-1, the same condition of liquefaction is produced by:

2 uniform cycles at a stress level of 0.22 Kg/cm
5 uniform cycles at a stress level of 0.17 Kg/cm
10 uniform cycles at a stress level of 0.14 Kg/cm
40 uniform cycles at a stress level of 0.22 Kg/cm

FIG.A-1 Relationship Between Cyclic Shear Stress and Number of Cycles Required to Cause Liquefaction

Therefore, a given number of cycles at any of these stress levels can be expressed as being equivalent to some other number of cycles at one of the other stress levels, and since the curve can provide results for any selected stress level, it can be used for the determination of the equivalent number of equivalent cycles at any other stress level.

1.

It is apparent from the above discussion that the shape of the particular curve used to determine equivalencies of different stress series is a critical part of the conversion from irregular to equivalent uniform stress series. Ideally, the curve would be obtained by means of a series of simple shear tests on the particular soil under investigation. Data from other simple shear investigations, have similar shapes, and it appears reasonable to adopt such test data as a representative curve for determining equivalent effects of different stress levels and number of cycles.

This average curve, as proposed by Seed et al., (1975), is reproduced in Figure A-2, and it will be assumed herein that the shape of this curve is representative of the shear stress versus number of cycles relationship for any sand at any confining pressure.

FIG.A-2 Representative Curve for Relationship Between Cyclic Stress Ratio and Number of Cycles to Liquefaction

Fig. A-2 plots the stress ratio, $\mathcal{T}_{p}/\mathfrak{s}_{p}^{1}$, versus number of cycles required for initial liquefaction. Following Seed et al., (1975), it is convenient to replot the same information by dividing all stress ratios by $(\mathcal{T}_p), /\mathfrak{G}_o^1$, where $(\mathcal{T}_p)_1/\sigma_o^{\prime}$ is the stress ratio required to cause liquefaction in one cycle. For Fig. A-2, $(\mathcal{T}_{P})_{1}/\sigma_{0}^{1} = 0.45$. In this way a plot of $\left. \zeta_{P} \right|_{1}$ versus the number of cycles to liquefaction was obtained, which is ploted in Fig. A-3. Due to the proportionality in the field between seismic shear stress and surface accelerations, dicussed in the can be considered either a plot of text, Fig. A-3 $\zeta_p/(\zeta_p)_1$ or of ap/(ap), versus number of cycles, where (ap) = amplitude of uniform acceleration series, and (ap)₁ = amplitude of acceleration causing liquefaction in one cycle.

Fig. A-3 has also been reproduced in Fig. 2 in the text. Selected points of this curve were digitized and are included in the first two columns of Table A-1. (For example, $ap/(ap)_1 = 0.50$ corresponds to 4.00 cycles to liquefaction). As discussed in the text, it is convenient to transform Fig. A-3 once more into curves of ap/(ap)maxversus number of cycles to liquefaction, where (ap)max = maximum peak acceleration of the accelerogram being considered. For this transformation, a factor of safety, F.S. = $(ap)_1/(ap)max$ is defined for the accelerogram, and:

(ap)/(ap)max = F.S.(ap/(ap),)

This expression was used to transform the curve in Fig. A-3, into a family of curves of ap/(ap)max versus number of cycles to liquefaction, for F.S. = 1.0, 1.5, 1.75 and 2.00. This family of curves is included in Fig. 3 of the text, while the corresponding digitized values have been included in the first two columns of Tables A-1 through A-4. Only in Table A-1, for F.S.= 1.0, is $(ap)max = (ap)_1$; in Tables A-2, A-3 and A-4, $(ap)max \neq (ap)_1$.

In Tables A-1 through A-4, in addition to ap/(ap)max versus number of cycles to liquefaction, other pertinent

information is also included, necessary to applied Method in Table A-2 and F.S. =1.50, for For example, 1. ap/(ap)max = 0.50, the number of cycles to initial For liquefaction is 28. this F.S. = 1.50, for ap/(ap)max = 0.65, the number of cycles to initial 6.00. Therefore, in Method liquefaction is 1 the conversion factor = 6/28 = 0.2, and 1 cycle of 0.50 (ap)max is equivalent to 0.20 cycles of 0.65 (ap)max.

FIG.A-3 Representative Relationship Between ap/(ap) and the Number of Cycles Required to Cause Liquefaction

TABLE A-1 EQUIVALENT STRESS LEVELS (FROM FIG. A-3) SAFETY FACTOR = 1.00

i

I

1

}

1

٠

1.00	Cycles	9	1.00(ap)max	7	2.1	Cycles	ê	0.65 (ap) max	1	Cycle	e	1.00 (ap)max	-	2.10	Cycles	e	0.65 (ap) max
1.10	Cycles	0	0.95	=	2.1	Cycles	0	0.65	1	Cycle	6	0.95	=	1.90	Cycles	0	0.65
1.20	Cycles	9	0.90	=	2.1	Cycles	6	0.65	1	Cycle	6	0.90	=	1.80	Cycles	e	0.65
1.40	Cycles	8	0.85	=	2.1	Cycles	6	0.65	1	Cycle	e	0.85	"	1.50	Cycles	6	0.65
1.75	Cycles	0	0.80	=	2.1	Cycles	6	0.65	1	Cycle	6	0.80	=	1.20	Cycles	6	0.65
1.80	Cycles	6	0.75	=	2.1	Cycles	e	0.65	1	Cycle	9	0.75	2	1.20	Cycles	ę	0,65
1.90	Cycles	0	0.70	=	2.1	Cycles	6	0.65	1	Cycle	9	0.70	=	1.10	Cycles	6	0.65
2.10	Cycles	0	0.65	=	2.1	Cycles	6	0.65	1	Cycle	6	0.65	=	1.00	Cycles	6	0.65
2.50	Cycles	6	0.60	=	2.1	Cycles	6	0.65	1	Cycle	9	0.60	=	0.80	Cycles	0	0.65
3.00	Cycles	0	0.55	=	2.1	Cycles	6	0.65	1	Cycle	6	0.55	=	0.70	Cycles	0	0.65
4.00	Cycles	6	0.50	#	2.1	Cycles	6	0,65	1	Cycle	9	0.50	Ξ	0.50	Cycles	6	0.65
7.00	Cycles	0	0.45	=	2.1	Cycles	e	0.65	1	Cycle	8	0.45	=	0.30	Cycles	@	0.65
10.00	Cycles	6	0.40	=	2.1	Cycles	ê	0.65	1	Cycle	6	0.40	=	0.20	Cycles	0	0.65
20.00	Cycles	ê	0.35	#	2.1	Cycles	ŧ	0.65	1	Cycle	9	0.35	=	0.10	Cycles	ê	0.65

TABLE A-2 EQUIVALENT STRESS LEVELS (FROM FIG. A-3) SAFETY FACTOR = 1.50

2.00	Cycles	ĝ	1.00(ap)max	=	6.0	Cycles	ø	0.65(ap)max	1	Cycle	e	1.00(ap)ma×	=	3.00	Cycles	6	0.65(ap)max
2.20	Cycles	6	0.95	=	6.0	Cycles	8	0.65	1	Cycle	6	0.95	=	2.70	Cycles	0	0.65
2.50	Cycles	0	0.90	а	6.0	Cycles	ê	0.65	1	Cycle	e	0.90	=	2.40	Cycles	9	0.65
2.90	Cycles	6	0.85	a	6.0	Cycles	ê	0.65	1	Cycle	e	0,85	=	2.05	Cycles	e	0.65
3.50	Cycles	Ø	0.80	72	6.0	Cycles	6	0.65	1	Cycle	6	0.80	=	1,70	Cycles	0	0.65
4.20	Cycles	6	0.75	=	6.0	Cycles	6	0.65	1	Cycle	0	0.75	=	1.40	Cycles	9	0.65
5.00	Cycles	6	0.70	-	6.0	Cycles	6	0.65	1	Cycle	8	0.70	=	1.20	Cycles	0	0.65
6.00	Cycles	0	0.65	=	6.0	Cycles	6	0.65	1	Cycle	6	0.65	ŧ	1.00	Cycles	9	0.65
8.80	Cycles	ê	0.60	=	6.0	Cycles	6	0.65	1	Cycle	ê	0.60	=	0.70	Cycles	6	0.65
16.00	Cycles	0	0.55	=	6.0	Cycles	ę	0,65	1	Cycle	6	0.55	-	0.40	Cycles	ø	0.65
28.00	Cycles	Ø	0.50	=	6.0	Cycles	9	0.65	1	Cycle	0	0.50	Ħ	0.20	Cycles	6	0.65
58.00	Cycles	9	0.45	ч	6.0	Cycles	9	0,65	1	Cycle	Ð	0.45	=	0.10	Cycles	8	0.65
100.00	Cycles	e	0.40	-	6.0	Cycles	9	0.65	1	Cycle	ø	0.40	=	0.04	Cycles	6	0.65
320.00	Cycles	6	0.35	=	6.0	Cycles	æ	0.65	1	Cycle	0	0.35	=	0.02	Cycles	6	0.65

3.10	Cycles	e	1.00(ap)max	=	14	Cycles	6	0.65(ap)max	1	Cycle	ø	1.00(ap)max	=	4.52	Cycles	6	0.65(ap) max
3.60	Cycles	0	0.95	=	14	Cycles	6	0.65	1	Cycle	0	0.95	=	3.89	Cycles	6	0.65
4.20	Cycles	0	0.90	2	14	Cycles	Ø	0.65	1	Cycle	6	0.90	=	3.33	Cycles	0	0.65
4.80	Cycles	6	0.85	=	14	Cycles	0	0.65	1	Cycle	ø	0.85	#	2.92	Cycles	6	0.65
5.20	Cycles	6	0.80	3	14	Cycles	9	0.65	1	Cycle	e	0.80	Ŧ	2.69	Cycles	6	0.65
5.50	Cycles	€	0.75	=	14	Cycles	6	0.65	1	Cycle	6	0.75	=	2.55	Cycles	6	0.65
10.00	Cycles	9	0.70	=	14	Cycles	@	0.65	1	Cycle	6	0.70	=	1.40	Cycles	e	0.65
14.00	Cycles	e	0.65	=	14	Cycles	e	0.65	1	Cycle	ø	0.65	7	1.00	Cycles	Q	0.65
24.00	Cycles	6	0.60	=	14	Cycles	ê	0.65	1	Cycle	ĝ	0.60	=	0.58	Cycles	e	0.65
44.00	Cycles	6	0.55	ä	14	Cycles	6	0.65	1	Cycle	9	0.55	=	0.32	Cycles	9	0.65
120.00	Cycles	e	0.50	Ħ	14	Cycles	6	0.65	1	Cycle	9	0.50	H	0.12	Cycles	0	0.65
1000.00	Cycles	8	0.45	=	14	Cycles	6	0.65	1	Cycle	8	0.45	=	0.01	Cycles	6	0.65
1000.00	Cycles	6	0.40	=	14	Cycles	6	0.65	1	Cycle	9	0.40	=	0.00	Cycles	6	0.65
1000.00	Cycles	9	0.35	=	14	Cycles	e	0.65	1	Cycle	6	0.35 тmax	=	0.00	Cycles	6	0.65

TABLE A-3 EQUIVALENT STRESS LEVELS (FROM FIG. A-3) SAFETY FACTOR = 1.75

.

.

· ..

TABLE A-4 EQUIVALENT STRESS LEVELS (FROM FIG. A-3)

SAFETY FACTOR = 2.00

4.25	Cycles	9	1.00 (ap) max	2	35	Cycles	0	0.65 (ap) max	1	Cycle	0	1.00 (ap)max	=	8.24	Cycles	9	0.65(ap)max
5.00	Cycles	6	0.95	=	35	Cycles	6	0.65	1	Cycle	0	0,95	=	7.00	Cycles	0	0.65
6.25	Cycles	6	0.90	Ŧ	35	Cycles	9	0.65	1	Cycle	0	0.90	z	5.60	Cycles	6	0.65
8.13	Cycles	e	0.85	#	35	Cycles	e.	0.65	1	Cycle	9	0.85	=	4.31	Cycles	e	0.65
10.00	Cycles	9	0.80	=	35	Cycles	ê	0.65	1	Cycle	9	0.80	=	3,50	Cycles	e	0.65
14.00	Cycles	ê	0.75	-	35	Cycles	6	0.65	1	Cycle	9	0.75	=	2.50	Cycles	6	0.65
19.00	Cycles	€	0.70	2	35	Cycles	0	0.65	1	Cycle	6	0.70	≓	1.84	Cycles	6	0.65
35.00	Cycles	ê	0.65	=	35	Cycles	8	0.65	1	Cycle	6	0.65	Ŧ	1.00	Cycles	6	0.65
68.75	Cycles	â	0.60	=	35	Cycles	0	0.65	1	Cycle	9	0.60	=	0.51	Cycles	6	0.65
200.00	Cycles	e	0.55	2	35	Cycles	9	0.65	1	Cycle	ê	0,55	=	0.18	Cycles	6	0.65
1000.00	Cycles	9	0.50	=	35	Cycles	ê	0.65	1	Cycle	6	0.50	=	0.00	Cycles	ø	0.65
1000.00	Cycles	6	0.45	=	35	Cycles	6	0.65	1	Cycle	6	0.45	=	0.00	Cycles	ê	0.65
1000.00	Cycles	6	0.40	=	35	Cycles	6	0.65	1	Cycle	6	0.40	=	0.00	Cycles	e	0.65
1000.00	Cycles	6	0.35	=	35	Cycles	6	0.65	1	Cycle	e	0.35	=	0.00	Cycles	6	0.65

APPENDIX B

.

1.

ACCELERATION TIME HISTORIES RECORDED DURING EARTHQUAKES IN WESTERN U.S. (SETS 1 AND 2)

TABLE B-1 EQUIVALENT UNIFORM CYCLIC STRESS SERIES FOR DIFFERENTS EARTHQUAKES APPLICATION OF METHOD 1, 2 AND 3 WITH SAFETY FACTOR = 1.00 (SET 1; FROM SEED ET AL. 1975)

-

٠

.

· ~

			,		NIMBE	ROF	1 T
CALTECH NUMBER	EARTHQUAKE	MAGNITUDE	RECORDING STATION CO	OMPONENT	METHOD M #1	ETHOD M #2 & 4	ETHOD #3
001	Imperial Valley (1940)	6.6	El Centro	SOOE S90W	8.85 15.60	2.10 2.10	8.24 14.10
007	Kern Country (1952)	7.6	Pasadena	S00E S90W	10.25	2.10 2.10	8.74 12.95
010	Kern Country (1952)	7.6	Taft	S69E N21E	13.55 9.85	2.10	12.66 8.87
013	Kern Country (1952)	7.6	Santa Barbara	548E N42E	10.30 3.35	2.10 ⁻ 2.10	10.00 3.30
022	Eureka (1954)	6.5	Fed.Bldg.	N79E N11W	6.80 6.20	2.10 2.10	6.62 5.98
025	Eureka (1954)	6.5	Ferndale	N46W N44E	4.85 2.25	2.10 2.10	4.52 2.20
046	San Francisco (1957)	5.3	State Bldg.	S09E S81W	5.45 8.50	2.10 2.10	5.07 8.03
052	Hollister (1961)	5.6	Hollister	N89W S01W	16.75	2.10	15.82
061	Long Beach (1933)	6.3	Vernon	N82W S08W	6.60 3.00	2.10 2.10	6.28 2.39
076	N.W. California (1938)	5.5	Ferndale	NOOE SOOE	2.75 6.25	2.10 2.10	2.67 5.56
082	Wester Washington (1949)	7.1	Seattle	SO2W N88W	19.35 12.10	2.10	17.93 10.92
085	Wester, Washington (1949)	7.1	Olympia	586W S04E	20.95 7.15	2.10 2.10	19.76 5.55
088	Norther, California (1952)	5.5	Ferndale	S46E N44E	10.10 5.25	2.10 2.10	9.86 5.01
100	Park Field (1966)	5.6	#5	N85E N05W	2.40 2.35	2.10 2.10	2.01 2.18
103	Park Field (1966)	5.6	#8	N40W N50E	3.60 3.25	2.10 2.10	3.40 2.75
142	San Fernando (1971)	6.6	Orion Blvd.	NOOW EOOW	9:80 19.30	2.10 2.10	8.78 18.39
169	San Fernando (1971)	6.6	Hollywood Bsmt	N90E Noow	13.05 8.65	2.10 2.10	12.33 8.29
172	San Fernando (1971)	6.6	Hollywood P.Lot.	EOOW NOOS	14.45 12.20	2.10 2.10	13.67 11.79
322	San Fernando (1971)	6.6	Millikan Library	NOOS EDOW	5.80 4.30	2.10 2.10	5.55 3.76
124	San Fernando (1971)	6.6	Ventura Blvd	N11E N79W	13.20 15.15	2.10 2.10	12.80 14.05
190	San Fernando (1971)	6.6	Wilshire Blvd	NOOS EOOW	11.60 5.55	2.10 2.10	10.91 5.19
361	Ferndale (1967)	5.6	Ferndale	544W N46W	2.05 1.20	1.97 1.05	1.97 1.05

TABLE B = 2EQUIVALENT UNIFORM CYCLIC STRESS SERIES FOR DIFFERENTS EARTHQUAKES APPLICATION OF METHOD 1, 2 AND 3 WITH SAFETY FACTOR = 1.50 (SET 1: FROM SEED FT M. 1975)

.

• +

.

	(581'.	L; FRUM SEED	ET AL. 1975)		NIMB) EOUIVALEN	ER OF T CYCLES	AT max
CALTECH NUMBER	EARTHQUAKE	MAGNITUDE	RECORDING STATION C	OMPONENT	METHOD 1 #1	HETHOD ME #2 &4	THOD
001	Imperial Valley (1940)	6.6	'El Centro	S00E S90W	7.30 12.37	6.00 6.00	7.01 11.75
007	Kern Country (1952)	7.6	Pasadena	S00E S90W	8.43 13.74	6.00 6.00	7.73 13.42
010	Kern Country (1952)	7.6	Taft	S69E N21E	11.72 7.64	6.00 6.00	11.32 7.07
013	Kern Country (1952)	7.6	Santa Barbara	S48E N42E	10.25 2.55	6.00 2.47	10.11 2.47
022	Eureka (1954)	6.5	Fed.Bldg.	N79E N11W	7.28 7.23	6.00 6.00	7.04 7.10
025	Eureka (1954)	6.5	Ferndale	N46W N44E	5.28 2.50	5.21 2.53	·5.21 2.53
046	San Francisco (1957)	5.3	State Bldg.	S09E S81₩	5.57 8.92	5.55 6.00	5.55 8.59
052	Hollister (1961)	5.6	Hollister	N89W S01W	16.74	6.00	16.56
061	Long Beach (1933)	6.3	Vernon	N82W SO8W	6.51 2.92	6.00 2.84	6.48 2.84
076	N.W. California (1938)	5.5	Ferndale	NOOE SOOE	2.57 6.02	2.54 5.77	2.54 5.77
082	Wester Washington (1949)	7.1	Seattle	SO2₩ N88₩	17.21 9.88	6.00 6.00	16.82 9.40
085	Wester, Washington (1949)	7.1	Olympia	S86₩ S04E	17.93 4.51	6.00 4.06	17.54 4.06
088	Norther, California (1952)	5.5	Ferndale	S46E N44E	11.87 5.56	6.00 5.45	11.77 5.45
100	Park Field (1966)	5.6	#5	N85E NOSW	2.57 1.95	2.47 1.89	2.47 1.89
103	Park Field (1966)	5.6	#8	N40W N50E	3.04 3.47	2.93 3.33	2.93 3.33
142	San Fernando (1971)	6.6	Orion Blvd.	NOOW EOOW	7.89 19.76	6.00 6.00	7.39 19.10
169	San Fernando (1971)	6.6	Hollywood Bsmt	N90E NOOW	12.76 8.13	6.00 6.00	12.51 7.63
172	San Fernando (1971)	6.6	Hollywood P.Lot.	EOOW NOOS	14.40 13.15	6.00 6.00	14.04 12,99
322	San Fernando (1971)	6.6	Millikan Library	NOOS EOOW	4.72 3.12	4.69 2.90	4.69 2.90
124	San Fernando (1971)	6.6	Ventura Blvd	N11E N79₩	14.44 13.53	6.00 6.00	14.33 13.41
190	San Fernando (1971)	6.6	Wilshire Blvd	NOOS EOOW	11.27 4.87	6.00 4.77	10.96 4.77
361	Ferndale (1967)	5.6	Ferndale	\$44W N46W	2.57 1.53	2.50 1.50	2.50 1.50

EQUIVALENT UNIFORM CYCLIC STRESS SERIES FOR DIFFERENTS EARTHQUAKES APPLICATION OF METHOD 1, 2 AND 3 WITH SAFETY FACTOR = 1.75

(SET 1; FROM SEED ET AL. 1975)

٠

.

÷ .

	(SET 1;	FROM SEED ET A	⊥975)		NIMBI	ER OF	
CALTECH NUMBER	EARTHQUAKE	MAGNITUDE	RECORDING STATION C	OMPONENT	EQUIVALEN METHOD N #1	AETHOD ME #2 54 #	AT max THOD 3
001	Imperial Valley (1940)	6.6	El Centro	S00E S90 w	8.00 14.31	8.05 13.71	8.05 13.71
007	Kern Country (1952)	7.6	Pasadena	SOOE S90W	9.71 17.71	9.22 14.00	9.22 17.31
010	Kern Country (1952)	7.6	Taft	569E N21E	14.16 7.88	13.51 7.45	13.51 7.45
013	Kern Country (1952)	7.6	Santa Barbara	S48E N42E	12.76 2.89	12.90 2.84	12.90 2.84
022	Eureka (1954)	6.5	Fed.Bldg.	N79E N11W	9.52 10.25	8.91 10.06	8.91 10.06
025	Eureka (1954)	6.5	Ferndale	N46W N44E	6.98 3.75	7.00 3.70	7.00 3.70
046	San Francisco (1957)	5.3	State Bldg.	S09E S81W	7.27 11.27	7.27 10.95	7.27 10.95
052	Hollister (1961)	5.6	Hollister	N89W SOTW	22.52	14.00	22.52 3.16
061	Long Beach (1933)	6.3	Vernon	N82W S08W	7.95 4.09	8.04	8.04 4.08
076	N.W. California (1938)	5.5	Ferndale	NOOE SOOE	3.14 7.70	3.11 7.36	3.11 7.36.
082	Wester Washington (1949)	7.1	Seattle	SO2W N88W	22.05 11.35	14.00 10.64	21.60 10.64
085	Wester, Washington (1949)	7.1	Olympia	S85₩ S04E	20.33 4.24	14.00 4.11	20.21 4.11
088	Norther, California (1952)	5.5	Ferndale	S46E N44E	16.64 7.31	14.00 7.05	16.28 7.05
100	Park Field (1966)	5.6	#5	N85E N05W	3.67	3.63 2.42	3.63 2.42
103	Park Field (1966)	5.6	#8	N40₩ N50E	3.37 4.60	3.34 4.55	3.34 4.55
142	San Fernando (1971)	6.6	Orion Blvd.	NOOW EOOW	8.73 25.99	8.12 14.00	8.12 24.96
169	San Fernando (1971)	6.6	Hollywood Bsmt	N90E NOOW	16.35 9.77	14.00 8.96	16.06 8.96
172	San Fernando (1971)	6.6	Hollywood P.Lot.	EOOW NOOS	18.72 17.94	14.00 14.00	18.63 17.75
322	San Fernando (1971)	6.6	Millikan Library	NOOS EOOW	3.22 3.12	3.18 2.90	3.18 2.90
124	San Fernando (1971)	6.6	Ventura Blvd	N11E N79W	19.4 2 16.70	14.00 14.00	19.11 16.73
190	San Fernando (1971)	6.6	Wilshire Blvd	NOOS EOOW	14.52 5.71	14.00 5.77	14.08 .5.77
361	Ferndale (1967)	5.6	Ferndale	544W N46W	3.72 2.66	3.68 2.66	3.68

TABLE B - 4 EQUIVALENT UNIFORM CYCLIC STRESS SERIES FOR DIFFERENTS EARTHQUAKES APPLICATION OF METHOD 1, 2 AND 3 WITH SAFETY FACTOR = 2.00

(SET 1; FROM SEED ET AL. 1975)

٠

. .

J

.

	(SET 1	; FROM SEED E	IT AL. 1975)		NIMBER	OF YCIES AT max
CALTECH NUMBER	EARTHQUAKE	MAGNITUDE	RECORDING STATION CO	OMPONENT	METHOD MET #1 #2	HOD METHOD &4 #3
001	Imperial Valley (1940)	6.6	El Centro	S00E S90W	9.84 10 17.98 17	0.01 10.01 7.71 17.71
007	Kern Country (1952)	7.6 .	Pasadena	SOOE S90W	12.96 12 23.98 23	2.36 12.36 5.67 23.67
010	Kern Country (1952)	7.6	Taft	S69E N21E	18.97 18 10.06 9	.11 18.11 .48 9.47
013	Kern Country (1952)	7.6	Santa Barbara	S48E N42E	17.75 18 4.46 4	.08 18.08 .50 4.50
022	Eureka (1954)	6.5	Fed.Bldg.	N79E N11W	12.70 12 15.98 15	2.03 12.03 5.60 15.60
025	Eureka (1954)	6.5	Ferndale	N46W N44E	11.39 11 5.46 5	
046	San Francisco (1957)	5.3	State Bldg.	S09E S81W	11.42 11 16.99 16	.42 11.42
052	Hollister (1961)	5.6	Hollister	N89W S01W	29.12 29 4.96 4).44 29.44 .82 4.82
061	Long Beach (1933)	6.3	Vernon	N82W SO8W	12.72 12 5.87 5	2.82 12.82 5.95 5.95
076	N.W. California (1938)	5.5	Ferndale	NOOE SOOE	4.80 11.75 11	
082	Wester Washington (1949)	7.1	Seattle	SO2W N88W	26.09 25 13.79 13	5.53 25.53 5.38 13.38
085	Wester, Washington (1949)	7.1	Olympia	S86W S04E	25.85 25 5.75 5	5.79 25.79 5.71 5.71
088	Norther, California (1952)	5.5	Ferndale	S46E N44E	23.57 23 10.12 9	3.13 23.13 9.96 9.96
100	Park Field (1966)	5.6	#5	N85E NO5W	5.87 5 4.21 4	5.80 5.80 1.27 4.27
103	Park Field (1966)	5.6	#8	N40₩ N50E	5.05 6.87 6	5.08 5.08 5.81 6.81
142	San Fernando (1971)	6.6	Orion Blvd.	NOOW EOOW	10.51 10 36.01 35).06 10.06 5.00 35.00
169	San Fernando (1971)	6.6	Hollywood Bsmt	N90E NOOW	20.36 20 13.45 12).31 20.31 2.51 12.51
172	San Fernando (1971)	6.6	Hollywood P.Lot.	EOOW NOOS	23.95 2: 23.46 2:	3.83 23.83 5.11 23.11
322	San Fernando (1971)	6.6	Millikan Library	NOOS EOOW	7.39 4.81	7.56 7.56 4.85 4.85
124	San Fernando (1971)	6.6	Ventura Blvd	N11E N79W	19.60 19 17.30 17	9.55 19.55 7.30 17.30
190	San Fernando (1971)	6.6	Wilshire Blvd	NOOS EOOW	12.13 12 6.40 6	2.10 12.10
361	Ferndale (1967)	5.6	Ferndale	544W N46W	4.20 4 3.00 3	.15 4.15 .00 3.00

		(5	ET 2; FROM DOBRY	(ET AL. 1978)				
CALTECH NUMBER	EARTHQUAKE	MAGNITUDE	RECORDING STATION	COMPONENT	NUMBER CYCLES	OF EQUIV. METHOD 1	ALENT	
					SF=1.0,	SF=1.5,	SF=1.75,	SF=2.C
043	San Francisco	5.3	Golden Gate	N108 S80E	4.25 5.95	4.74 6.54	6.33 8.67	9.84 12.93
427	Lytle Creek	5.4	Wringhtwood	S65E S25W	6.00 3.45	5.74 3.86	7.08 5.05	8.91 8.37
109	Parkfield	5.6	Temblor	N65W S25W	2.85 2.40	3.18 2.50	4.28 3.06	6.77 4.87
073	Helena	6.0	Helena	EOOW NOO5	4.70 5.00	4.79 5.89	6.99 8.85	8.56 13.07
457	San Fernando	6.6	Lankershim	S90W NOOE	4.30 9.90	4.80 8.54	6.89 9.48	10.17 11.98
055	San Fernando	6.6	Griffith	S90W S00W	6.65 4.80	5.54 4.12	6.33 5.05	8.88 6.71
160	San Fernando	6.6	445 Figueroa	N52W \$38W	7.85 17.25	7.63 15.71	8.51 17.54	10.96 23.52
2,32	San Fernando	6.6	Water Buld.	N50W S40W	4.15 9.45	2.84 8.93	3.06 11.23	4.71 16.83
076	San Fernando	6.6	Fairmont	N56E N34W	5.95 14.10	5.21 13.20	6.05 16.79	9.32 20.81
304	San Fernando	6.6	Ft Tejon	N90E NOOE	7.65 4.40	7.32 4.15	9.06 5.12	13.32 8.22
010	Kern Country	7.6	Taft	S69E N21E	13.55 9.85	11.72 7.64	14.16	18.97 10.06

TABLE B-5 EQUIVALENT NUMBER OF CYCLES AT 0.65 (ap)max ROCK SITES (SET 2: FROM DOBRY ET AL. 1978)

J

-

\$

APPENDIX C

•

a

~

• .

ACCELERATION TIME HISTORIES RECORDED DURING 1971 SAN FERNANDO EARTHQUAKE (SET 3)

TABLE C-1 EQUIVALENT NUMBER OF CYCLES AT 0.65 (ap) max SAN FERNANDO EARTHQUAKE 1971 SAFETY FACTOR = 1.50

.

(SET 3; FROM BOND, 1980)

. .

			, 1. non 501,5,	1,000	 ХП П	ADED OF	
CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	CYCLES METHOD #1	AT 0.65 METHOD #2.&4	(ap)max METHOD #3
142	21.09	199.36	2500 1317	NOOW S90W	7.89 19.76	6.00 6.00	7.39 19.10
151	41.40	159.94	1227 978	N54W N36E	6.40 13.73	6.00 6.00	6.10 13.22
160	40.59	161.75	1471 1170	N52W S38W	4.80 8.54	4.63 6.00	4.61 8.38
166	29.54	305.70	3094 2654	N21E N69W	3.3 5 6.33	3.10 5.96	3.08 5.95
169	35.67	170.86	1482 1038	N90E S00W	8.13 12.76	6.00 6.00	7.63 12.51
172	35.67	170.86	2070 1673	S90E S00W	13.15 14.40	6.00 6.00	12.99 14.04
175	38.54	182.88	1471 1338	S44W N46W	9.69 6.56	6.00 6.00	9.34 6.34
184	41.33	156.16	1303 1180	S52W N38W	15.03 10.24	6.00 6.00	14.83 9.88
193	38.49	167.82	1557 1467	S90W S00W	7.48 3.55	6.00 3.42	7.14 3.39
202	33.50	171.91	980 812	N90E N00E	7.04 12.69	6.00 6.00	6.77 12.58
211	87.35	321.89	265 253	SOOW N90E	7.38 8.12	6.00 6.00	7.13 7.79
214	38.11	171.10	1150 822	N15E N75W	8.91 11.48	6.00 6.00	8.73 11.19
223	38.70 '	166.88	1338 1118	NOOE S90 W	9.92 10.41	6.00 6.00	9.85 9.93
232*	41.14	161.10	169 2 1265	N50W S40W	4.12 5.54	3.95 5.36	3.93 5.36

٠

• -

CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	NUMI CYCLES METHOD # 1	BER OF AT 0.65 METHOD #2 & 4	(ap)max METHOD #3
241*	33.32	281.82	2130 1983	S08E S82W	5.23 8.29	4.98 6.00	4.96 8.00
247	38.63	166.27	1619 1582	N90E SOOW	9.68 13.50	6.00 6.00	9.41 13.14
256	47.96	158.04	1046 805	N83W S07W	5.47 8.90	5.44 6.00	5.36 8.56
259	87.13	146.05	282 268	S86W S04E	17.48 15.12	6.00 6.00	17.65 14.26
262	32.61	155.40	2657 2091	S70E S20W	6.48 8.37	6.00 6.00	6.40 8.04
265	42.67	161.90	1390 1319	S37W S53E	5.12 10.29	5.04 6.00	4.99 10.16
274*	41.67	155.14	791 642	S28W S62E	7.69 10.28	6.00 6.00	7.36 9.99
283	36,10	178.21	962 839	S88E S02W	6.32 12.85	6.00 6.00	6.14 12.93
292	41.32	161.70	2364 1920	S53E S37W	3.34 6.12	3.07 5.84	3.03 5.81
301	106.48	110.83	375 300	SOOW N90E	16.46 10.21	6.00 6.00	15.90 10.02
304*	69.70	318.23	246 206	NOOE N9OE	7.63 15.71	6.00 6.00	7.44 14.96.
307	45.04	74.49	1205 915	N90W N00E	14.56 16.06	6.00 6.00	14.38 15.24
310	53.51	326.52	1031 852	N90W NOOE	2.34 4.95	2.26 4.73	2.26 4.71
313	37.41	187.77	831 776	SOOW N90E	12.04 8.73	6.00 6.00	11.50 8.82
316*	34.72	143.62	1886 875	S90W S00W	6.04 12.01	6.00 6.00	6.02 11.84
319	38.41	139.11	1073 935	N90E N00E	18.36 9.30	6.00 6.00	8.28 9.04

TABLE C-1 (continuation)

-

٠

•

÷ 4.

			4	•	NUM	BER OF	
CALTECH	DISTANCE TO EPICENTER	ለ 7 ፕ አብ ሆ ን	PEAK ACCELERATION	COMPONENT	CYCLES METHOD	AT 0.6 METHOD	5(ap)max METHOD
NUMBER	КШ	AZ IMU1	mm/sec ²	COMPONENT	<u>स 1</u>	<i>₩</i> 2&4	πS
32 2	38.38	139.73	1980 1816	NO OE N90E	4.72 3.12	4.69 2.90	4.65 2.86
328	30.11	137.52	2078 1390	S82E S08W	4.44 5.60	4.48 5.56	4.45 5.49
334	41.10	161.67	1019 785	N38E N52W	7.91 12.18	6.00 6.00	7.61 11.68
340	32.58	52.64	1362 1108	S30W S60E	6.69 19.04	6.00 6.00	6.27 18.52
343	28.09	193.03	2206 1460	NllE N79W	8.76 13.51	6.00 6.00	8.43 13.16
352	48.98	182.54	337 327	S45E S45W	18.83 14.91	6.00 6.00	18.50 14.19
361	41.70	147.14	1194 1123	S90W S00W	8.39 13.82	6.00 6.00	8.35 13.60
370	74.90	140.87	349 345	S90W S00W	7.88 13.81	6.00 6.00	6.99 13.01
379	35.83	179.35	916 609	S90W NOOE	4.81 15.06	4.79 6.00	4.74 14.67
388	36.86	181.59	1843 1606	N50E N40W	6.23 6.10	6.00 5.69	6.05 5.69
397	37.54	182.73	979 823	N54E S36E	10.98 11.58	6:00 6.00	10.89 11.19
406	27.81	196.32	1402 1290	S81E S09W	7.07 12.63	6.00 6.00	6.62 12.09
415	30.86	352.33	1455 1089	N21E S69E	4.10 5.28	3.93 5.12	3.92 5.03
418*	27.98	343.83	1682 1435	S69E S21W	6.79 8.47	6.00 6.00	6.49 8.27
421*	27.75	326.61	1193 1094	N21E N69W	7.14 10.27	6.00 6.00	7.12
424*	24.35	321.61	3462 2779	N21E N69W	5.55 9.96	5.42 6.00	5.42 9.75

.

TABLE C-1 (continuation)

.

٠

.

_

			55.4	NUMBER OF			
CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	CYCLES METHOD #1	AT 0.6 METHOD #2&4	5(ap)max METHOD #3
427	33.46	132.94	1139 1034	SOOW S90W	16.16 19.50	6.00 6.00	15.98 19.40
436	38.56	166.75	1120 1076	S90W NOOE	15.12 12.77	6.00 6.00	14.53 12.43
445	41.09	161.29	1683 1161	S53E S37W	3.27 6.22	3.30 6.00	3.26 6.16
457*	29.36	173.86	1642 1476	NOOE S90W	2.84 8.93	2.78 6.00	2.74 8.80
472	138.56	145.96	159 120	N57W N33E	7.59 18.03	6.00 6.00	7.33 17.28
487	41.46	162.50	1160 834	S53E N37E	4.99 13.43	4.85 6.00	4.78 13.07
496*	72.02	326.76	467 208	N90E SOOW	9.96 5.64	6.00 5.31	9.88 5.23
1	82.96	146.10	299 239	S90W S00W	11.02 22.22	6.00 6.00	10.29 21.98
10	70.09	93.54	557 424	N25E N65W	6.62 10.42	6.00 6.00	6.24 10.03
13	70.09	93.54	572 431	S25W S65E	7.16 10.79	6.00 6.00	6.61 10.32
16	74.28	136.62	673 673	S50E S40W	13.36 18.13	6.00 6.00	12.48 18.13
19	52.69	143.32	967 957	S53W S37E	13.92 7.54	6.00 6.00	13.45 7.03
22	71.05	112.33	759 557	N75W N15E	14.31 11.81	6.00 6.00	14.34 11.43
25	37.06	182.65	1265 1144	N36W N54E	19.22 6.14	6.00 6.00	18.71 5.99
34	66.66	179.36	401 247	S25E N65E	4.34 19.16	4.15 6.00	4.11 18.53
37	39.30	164.35	989 967	N61W N29E	12.41 12.21	6.00 6.00	12.06 11.55

•

-

CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	NUM CYCLES METHOD #1	BER OF AT 0.4 METHOI #2&4	65(ap)max D METHOD #3
46	121.32	146.58	409 310	N33E N57W	10.35 17.10	6.00	10.03 16.71
49	74,06	159.44	350 312	N76W S14W	23.58 22.70	6.00 6.00	22.73 22.47
52	184.42	120.61	354 256	N45W N45E	9.29 6.96	6.00 6.00	8.89 6.53
55*	32.53	164.34	1769 1674	S00W S90W	5.21 13.20	5.06 6.00	5.02 13.00
58	40.54	164.06	2388 1379	N62W N28E	4.14 10.03	4.26 6.00	4.17 9.73
67	72.53	165.18	260 208	NOOE N9OE	11.64 24.27	6.00 6.00	11.39 23.11
70	72.36	167.50	284 281	N21W N69E	12.09 20.85	6.00 6.00	11.67 19.92
73	107.19	107.79	439 374	N90E NOOE	4.23 9.66	4.03 6.00	4.03 7.19
76*	34.04	355.07	971 647	N34W N56E	4.15 7.32	4.13 6.00	4.13
79	133.50	270.60	170 165	S48E N42E	22.22 14.12	6.00 6.00	21.70 13.85
82	150.22	119.75	384 349	S45W S45E	12.21 8.06	6.00 6.00	11.99 8.03
88	34.81	164.48	1563 1541	SO1E S89W	12.90 10.32	6.00 6.00	12.82 10.11
97	38.63	166.27	1083 882	SOOW N90E	8.77 9.13	6.00 6.00	8.37 8.88
106	94.52	152.81	343 242	N90E SOOW	10.97 13.83	6.00 6.00	10.55 13.13
109*	42.06	124.64	1658 1377	N87W NO3E	9.37 12.07	6.00 6.00	9.14 11.81
112	79.02	249.40	259 252	SOOW S90W	22.56 14.75	6.00 6.00	22.06 14.01

• ...

.

٠

CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	NUMI CYCLES METHOD #1	BER OF AT 0.65 METHOD #2&4	5(ap)max METHOD #3
115*	63.72	122.95	697 533	N55E N35W	6.51 10.59	6.00 6.00	6.15 10.07
118	50.48	179.04	413 378	NOOE S90W	8.03 12.12	6.00 6.00	7.65 12.08
124	28.10	191.36	2433 1970	S12W N78W	14.42 13.51	6.00 6.00	14.33 13.41
133	33.45	171.13	1673 1224	SOOE N9OE	8.67 9.35	6.00 6.00	8.34 9.29
142	37.07	179.22	1618 1192	N90E S00E	4.76 16.10	4.47 6.00	4.43 16.11
148	40.36	160.80	1380 868	N53W N37E	3.29 20.35	3.17 6.00	3.13 19.95
157	40.38	160.84	1494 1268	N53W S37W	2.94 6.41	2.91 6.00	2.86 6.08
163	34.18	170.11	1160 1070	S00E N90E	7.65 15.13	6.00 6.00	7.63 14.88
172	37.89	182.86	842 799	S46E N44E	12.67 14.74	6.00 6.00	12.39 14.57
178	40.35	161.67	1956 1883	N37E S53E	6.19 3.60	5.96 3.45	5.09 3.45
184	40.65	161.92	2420 2207	N30W S60W	3.77 4.45	3.62 4.28	3.62 4.28
190	37.59	175.36	1284 1238	N82W N08E	4.85 11.27	4.79 6.00	4.79 10.96
199	43.19	166.22	834 564	S61E N29E	5.51 14.64	5.15 6.00	5.15 14.48
208	38.27	180.04	1077 978	N31W N59E	5.92 11.25	6.00 6.00	5.95 11.03
211	37.68	174.87	937 684	S07W N38W	5.71 11.00	5.44 6.00	5.44 11.03
220	38.55	166.79	1252 1042	N90W S00W	8.19 12.27	6.00 6.00	7.92 12.15

.

			NUMBER OF				
CALTECH	DISTANCE TO EPICENTER	PEAK ACCELERATION			CYCLES METHOD	AT 0.6. METHOD	5(ap)max METHOD
NUMBER	km	AZ IMUT	mm/sec ²	COMPONENT	#1	#2&4	#3
2.23	38.59	167.15	1536	NOOW	7.59	6.00	7.33
			1297	S90W	10.06	6.00	9.76
226	50.64	177.60	615	S90E	8.23	6.00	7.79
			333	NUUE	11.55	6.00	10.99

* ROCK SITE

٠

· -

.

.

TABLE C-2 EQUIBALENT NUMBER OF CYCLES AT 0.65 (ap)max SAN FERNANDO EARTHQUAKE 1971 SAFETY FACTOR = 2.00 (SET 3; FROM BOND, 1980)

.

					NUMBER OF		
CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	CYCLES METHOD #1	AT 0.65 METHOD #2&4	(ap)max METHOD #3
142	21.09	199.36	2500 1317	NOOW S90W	10.51 36.91	10.06 35.00	10.06 35.00
151	41.40	159.94	1227 978	N54W N36E	8.65 21.81	8.47 20.96	8.47 20.96
160	40.59	161.75	1471 1170	N52W S38W	10.17 11.98	9.90 11.94	9.90 11.94
166	29.54	305.70	3094 2654	N21E N69W	5.31 11.77	5.19 11.37	5.19 11.37
169	35.67	170.86	1482 1038	N90E SOOW	13.45 20.36	12.51 20.31	12.51 20.31
172	35.67	170.86	2070 1673	S90E S00W	23.46 23.95	23.11 23.83	23.11 23.83
175	38.54	182.88	1471 1338	544W N46W	16.04 11.03	15.46 10.73	15.46 10.73
184	41.33	156.16	1303 1180	S52W N38W	28.18 19.13	28.20 18.11	28.20 18.11
193	38.49	167.82	1557 1467	S90W S00W	11.81 6.38	11.30 6.37	11.30 6.37
202	33.50	171.91	980 812	N90E N00E	11.88 24.01	11.52 23.88	11.52 23.88
211	87.35	321.89	265 253	SOOW N90E	12.81 14.13	12.43 13.95	12.43 13.95
214	38.11	171.10	1150 822	N15E N75W	15.54 21.62	15.95 21.07	15.95 21.07
223	38.70	166.88	1338 1118	NOOE S90W	17.04 17.67	16.94 17.18	16.94 17.18
232*	41.14	161.10	1692 1265	N50W S40W	6.71 8.88	6.76 8.88	6.76 8.88

- ...

· •
•

• -

CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	NUM CYCLES METHOD # 1	BER OF AT 0.6 METHOD #2&4	5(ap)max METHOD #3
241*	33.32	281.82	2130 1983	S08E S82W	8.89 11.81	8.40 11.55	8.40 11.54
247	38.63	166.27	1619 1582	N90E S00W	16.08 25.50	15.87 24.98	15.87 24.98
256	47.96	158.04	1046 805	N83W S07W	8.40 12.71	8.48 12.88	8.48 12.88
259	87.13	146.05	282 268	S86W S04E	26.64 19.68	27.87 19.53	27.87 19.53
262	32.61	155.40	2657 2091	S70E S20W	11.13 12.24	11.15 11.92	11.15 11.92
265	42.67	161.90	1390 1319	S37W S53E	7.47 21.12	7.70 20.78	7.70 20.78
274*	41.67	155.14	791 642	S28W S62E	12.44 20.51	12.40 19.80	12.40 19.80
283	36.10	178.21	962 839	S88E S02W	10.15 23.13	9.94 23.83	9.94 23.83
292	41.32	161.70	2364 1920	S53E S37W	5.29 8.72	5.42 8.58	5.42 8.58
301	106.48	110.83	375 300	SOOW N90E	25.82 15.84	24.84 16.65	24.84 16.65
304*	69.70	318.23	246 206	N00E N90E	10.96 23.52	11.24 22.58	11.24 22.58
307	45.04	74.49	1205 915	N90W NOOE	18.42 20.51	18.58 19.74	18.58 19.74
310	53.51	326.52	1031 852	N90W N00E	4.71 8.31	4.77 8.14	4.77 8.14
313	37.41	187.77	831 776	SOOW N90E	18.30 12.23	17.50 12.70	17.50 12.70
316*	34.72	143.62	1886 875	S90W S00W	11.43 19.36	11.91 19.53	11.91 19.53
319	38.41	139.11	1073 935	N90E N00E	13.07 14.21	$13.11 \\ 14.17$	13.11 14.17

·

÷

.

•

.

I.

۱.

ł

					NUM	BER OF	
CALTECH	DISTANCE TO EPICENTER	а <i>т.</i> тм. гт	PEAK ACCELERATION	COMPONENT	CYCLES METHOD #1	AT 0.6 METHOD #2.84	5 (ap)max METHOD #3
	Kill	1011101		COM GUENT	41	" <u>4</u> G 4	" 0
332	38.38	139.73	1980 1816	NOOE N9OE	7.39 4.81	7.56 4.85	7.56 4.85
328	30.11	137.52	2078 1390	S82E S08W	8.04 7.16	8.22 7.40	8.22 7.40
334	41.10	161.67	1019 785	N38E N52W	14.34 18.60	14.06 17.88	14.06 17.88
340	32.58	52.64	1362 1108	S30W S60E	9.54 32.27	9.26 31.52	9.26 31.52
343	28.09	193.03	2206 1460	NILE N79W	12.09 22.15	12.05 21.90	12.05 21.90
352	48.98	182.54	337 327	S45E S45W	27.02 24.77	26.93 23.44	26.93 23.44
361	41.70	147.14	1194 1123	S90W S00W	13.40 22.91	13.65 22.54	13.65 22.54
370	74.90	140.87	349 345	S90W S00W	8.20 22.06	7.59 20.78	7.59 20.78
379	35.83	179.35	916 609	S90W NOOE	6.97 22.93	7.20 22.68	7.20 22.68
388	36.86	181.59	1843 1606	N 50E N 40W	8.24 10.44	8.37 9.97	8.37 9.97
397	37.54	182.73	979 823	N54E S36E	19.81 17.15	19.58 16.66	19.58 16.66
406	27.81	196.32	1402 1290	S81E S09W	11.08 18.58	11.00 18.10	11.00 18.10
415	30.86	352.33	1455 1089	N21E S69E	7.30 8.64	7.02 8.54	7.02 8.54
418*	27.98	343.83	1682 1435	S69E S21W	9.00 17.32	8.84 17.29	8.84 17.29
421*	27.75	326.61	1193 1094	N21E N69W	10.77 17.57	11.10 17.36	11.10 17.36
424*	24.35	321.61	3462 2779	N21E N69W	10.17 19.42	10.25 18.63	10.25 18.63
•							

٠

• -

ļ

J

]

		•	÷	• 1	NUM	BER OF	
CALTECH	DISTANCE TO EPICENTER	47 T M FP	PEAK ACCELERATION	COMPONENT	CYCLES METHOD	AT 0.6 METHOD	5(ap)max METHOD
NOMPER	кm	AZ IMU I	am/sec-	COMPONENT	ਜ <u>ੇ</u>	π∠&4	πΟ
427	33.46	132.94	1139 1034	1139 1034	29.65 37.31	29.71 35.00	29.71 37.05
436	38.56	166.75	1120 1076	1120 1076	24.42 22.17	23.44 21.87	23.44 21.87
445	41.09	161.29	1683 1161	1683 1161	6.92 10.30	7.30 10.47	7.30 10.47
457*	29.36	173.86	1642 1476	1642 1476	4.45 16.70	4.71 16.83	4.71 16.83
472	138.56	145.96	159 120	159 120	12.44 26.16	12.46 25.00	12.46 25.00
487	41.46	162.50	1160 834	1160 834	7.46 21.28	7.40 21.02	7.40 21.02
496*	72.02	326.76	467 208	467 208	17.33 7.09	17.32 7.02	17.32 7.02
1	82.96	146.10	299 239	299 239	14.40 36.97	14.24 35.00	14.24 35.00
10	70.09	93.54	557 424	557 424	7.99 14.92	7.88 14.82	7.88 14.82
13	70.09	93.54	572 431	572 431	9.07 15.55	8.66 15.36	8.66 15.36
16	74.28	136.62	673 673	673 673	28.11 17.25	28.98 16.57	28.98 16.57
19	52.69	143.32	967 957	967 957	23.52 11.57	23.10 11.40	23.10 11.40
22	71.05	112.33	759 557	759 557	22.82 17.85	23.52 18.42	23.52 18.42
25	37.06	182.65	1265 1144	1265 1144	35.76 8.64	34.70 8.93	34.70 8.93
34	66.66	179.36	401 247	401 247	6.30 29.55	6.37 29.37	6.37 29.37
37	39.30	164.35	989 967	989 967	21.23 20.21	20.49 18.91	20.49 18.91

- .

.

٠

.

			4	·	NUM	BER OF	
CALTECH	DISTANCE TO EPICENTER		PEAK ACCELERATION		CYCLES METHOD	AT 0.65 METHOD	(ap)max METHOD
NUMBER	km	AZIMUT	mm/sec ²	COMPONENT	#1	#2 &4	# 3
46	121.32	146.58	409 310	N33E N57W	14.30 28.36	14.72 28.79	14.72 28.79
49	74.06	159.44	350 312	N76W S14W	41.13 41.09	35.00	39.96 40.98
52	184.42	120.61	354 256	N4 5W N4 5E	15.13 9.25	14.93 9.45	14.93 9.45
55*	32.53	164.34	1769 1674	SOOW S9OW	9.32 20.81	9.35 20.21	9.35 20.21
58	40.54	164.06	2388 1379	N62W N28E	6.71 16.37	7.04 16.18	7.04 16.18
67	72.53	165.18	260 208	NOOE N90E	15.15 35.39	15.88 33.21	15.88 33.21
70	72.36	167.50	284 281	N21W N69E	14.72 27.47	15.16 26.76	15.16 26.76
73	107.19	107.79	439 374	N90E NOOE	5.90 14.02	5.69 14.32	5.69 14.32
76*	34.04	355.07	971 647	N34W N56E	8.22 13.32	8.37 13.32	8.37 13.32
79	133.50	270.60	170 165	S48E N42E	35.70 21.98	35.00 22.22	35.44 22.22
82	150.22	119.75	384 349	S45W S45E	21.57 11.39	21.43 12.12	21.43 12.12 ·
88	34.81	164.48	1563 1541	SO1E S89W	20.81 17.65	20.93 18.00	20.93 18.00
97	38.63	166.27	1083 882	SOOW N9OE	16.33 15.93	15.73 15.27	15.73 15.27
106	94.52	152.81	343 242	N9OE SOOW	18.83 19.14	18.40 18.92	18.40 18.92
109*	42.06	124.64	1658 1377	N87W NO3E	15.07 17.38	14.64 17.83	14.64 17.83
112	79.02	249.40	259 252	SOOW S90W	38.65 21.69	35.00 21.28	38.17 21.28

•

· -

ł

CALTECH NUMBER	DISTANCE TO EPICENTER km	AZIMUT	PEAK ACCELERATION mm/sec ²	COMPONENT	NUM CYCLES METHOD #1	BER OF AT 0.6 METHOD #2 &4	5 (ap)max METHOD #3
115*	63.72	122.95	697 533	N55E N35W	11.70 16.07	11.13 15.37	11.13 15.37
118	50.48	179.04	413 378	NOOE S90W	11.14 19.51	10.94 20.26	10.94 20.26
124	28.10	191.36	2433 1970	S12W N78W	29.30 21.26	29.33 21.73	29.33 21.73
133	33.45	171.13	1673 1224	SOOE N9OE	14.94 15.00	14.48 15.53	14.48 15.53
142	37.07	179.22	1618 1192	N90E SOOE	6.48 27.56	6.31 27.85	6.31 27.85
148	40.36	160.80	1380 868	N53W N37E	5.96 37.65	5.78 35.00	5.78 37.62
157	40.38	160.84	1494 1268	N53W S37W	4.48 10.21	4.66 9.91	4.66 9.91
163	34.18	170.11	1160 1070	500E N90E	11.63 23.41	12.32 23.78	12.32 23.78
172	37.89	182.86	842 799	S46E N44E	21.19 29.46	20.63 28.75	20.65 28.75
178	40.35	161.67	1956 1883	N37E S53E	8.34 7.84	8.02 7.76	8.02 7.76
184	40.65	161.92	2420 2207	N30W S60W	6.78 6.48	6.80 6.45	6.80 6.45
190	37.59	175.36	1284 1238	N82W N08E	8.28 20.84	8.39 20.51	8.39 20.51
199	43.19	166.22	834 564	561E N29E	9.89 26.55	9.39 26.32	9.39 26.32
208	38.27	180.04	1077 978	N31W N59E	9.80 19.98	10.06 19.55	10.06 19.55
211	37.68	174.87	937 684	507W N38W	10.06 20.54	9.78 20.48	9.78 20.48
220	38.55	166.79	1252 1042	N90W S00W	12.81 21.67	12.80 22.20	12.80 22.20

.

۰.

· -

CALTECH NUMBER	DISTANCE TO EPICENTER km	PEAK ACCELERATION AZIMUT mm/sec ² COMPONENT			NUMBER OF CYCLES AT 0.65 (ap METHOD METHOD METH #1 #2&4 #3		
233	38.59	166.79	1536 1297	NOOW S90W	13.07 15.23	12.90 14.50	12.90 14.50
226	50.64	177.60	615 555	590E NOOE	13.50 17.84	13.35	13.35 17.14

• • • •

* ROCK SITE

APPENDIX D

.

. .

.

1.1

PLOTS OF N VERSUS EPICENTRAL DISTANCE AND AZIMUTH FOR ACCELEROGRAMS RECORDED DURING 1971 SAN FERNANDO EARTHQUAKE (SET 3) " SOIL SITES "

, . . .

ł

i.

i

DISTANCE VS METHOD 4 (S.F. =2,00)

FIGURE D-6

AZIMUTH VS METHOD 4 STRONG COMPONENT (S.F. =1.50)

FIGURE D-12

J

AZIMUTH VS METHOD 4 (S.F. =2.00)

FIGURE D-14

AZIMUTH VS METHOD 4 STRONG COMPONENT (S.F. =2.00)

FIGURE D-16

APPENDIX E

.

. .

.

· ~

PLOTS OF N VERSUS EPICENTRAL DISTANCE AND AZIMUTH FOR ACCELEROGRAMS RECORDED DURING 1971 SAN FERNANDO EARTHQUAKE (SET 3) " ROCK SITES "

• • • •

J

FIGURE E-2

80.00

70.00

60.00

FIGURE E-4

DISTANCE VS METHOD 4 ROCK SITE (S.F. =2,00)

20.00 30.00 40.00 50.00 DISTANCE TO THE EPICENTER KMS

C

8 1.00

AZIMUTH VS METHOD 4 ROCK SITE (S.F. =1.50)

FIGURE E-6

APPENDIX F

· · · · · · · · · · · ·

٠

: _

.

. i

1

COMPUTER PROGRAM

• ·.. .

С 1 2 С PROGRAM TO GET THE REPRESENTATION OF IRREGULAR STRESS 3 C TIME HISTORIES BY EQUIVALENT UNIFORM STRESS SERIES IN 4 С 5 С LIQUEFACTION ANALYSIS. -С 6 *********************** Ĉ 7 С 8 9 С DEFINITION OF THE VARIABLES С 10 Ċ CO. . = COMMAND TO CHOOSE THE OPERATION 11 Ċ 12 13 Ĉ READING SECTION: č = THE NUMBER OF POINTS IN THE ACCELEROGRAM. NPTS 14 č = THE NUMBER OF IDENTIFICATION FOR THE FILE. 15 NELLE = THE COMPONENT THAT IS GOING A CHECK Ċ 16 COMPON С 17 PEAK ACCELERATION: С 18 = THE PEAK ACCELERATION. С 19 AMAX = LOWER BOUND ABOVE HORIZONTAL AXIS. 20 С AMIN1 .= LOWER BOUND BELOW HORIZONTAL AXIS. С AMIN2 21 С 22 C METHOD 1: 23 = TIME BETWEEN EACH ACCELERATION. 24 С DT 25 C TIME = TIME WHEN EACH PEAK OCCURS. = THE NUMBER OF POINTS IN THE ACCEL. 26 С NPTS 27 Ċ NCNT = THE NUMBER OF PEAKS IN THE ACCEL. = NUMBER OF PEAKS ABOVE THE HORIZONTAL AXIS 28 С NCNT1 29 С NCNT2 = NUMBER OF PEAKS BELOW THE HORIZONTLA AXIS = THE PEAK ACCELERATION. 30 С PICK = THE PEAKS ABOVE THE HORIZONTAL AXIS. PICK1 31 С = THE PEAKS BELOW THE HORIZONTAL AXIS. 32 33 34 C PICK2 = NUMBER OF PEAKS ABOVE HORZ. AXIS EQV. .65TMAX С XNUM1 = NUMBER OF PEAKS BELOW HORZ. AXIS EQV. .65TMAX С XNUM2 = TOTAL NUMBER OF PEAKS ABOVE HORZ. AXIS 35 С SUM1 = TOTAL NUMBER OF PEAKS BELOW HORZ. AXIS 36 С SUM2 37 С CYCLES = THE EQUIVALENT NUMBER OF CYCLES Ċ 38 METHOD 2: 39 С 40 С NPTS = NUMBER OF POINTS 41 С AP = THE PEAK ACCELERATIONS AP1 = THE NORMALIZED PEAKS ACCELERATION 42 С = THE NORMALIZED PEAKS UP TO LOWER BOUND С 43 AP2 С = THE NUMBER OF ACCELERATIONS TO CHECK 44 ĸ 45 С UL = INITIAL PORE PRESSURE Ċ = FINAL PORE PRESSURE AFTER HALF CYCLE 46 UF

47 C 48 C 49 C 50 C 51 C 52 C	XN = EQUIVALENT NUMBER OF CYCLES XNL = EQUIVALENT NUMBER OF CYCLES CAUSE LIQUEF. TRAN = TRANSFER NUMBER OF CYCLES TO .65TMAX SUMA = TOTAL NUMBER OF CYCLES OF .65TMAX DIMENSIONS:		
53 C 54 C 55 56	METHOD 1 DIMENSION PICK(5000),PICK1(3000),PICK2(3000),XNUM(14), +XNUM1(14),XNUM2(14),XNUM3(14),PICKS(5000)		
57 C 58 C 59 60 61	METHOD 2 DIMENSION AP(5000),AP1(5000),AP2(5000),UI(3000),UF(3000), +T(3000),TIME(3000),XN(3000),XN1(3000),XNL2(3000),EQV(3000), +TRAN(3000)		
62 C 63 C 64 65 66	METHOD 3 DIMENSION AP3(5000),UI1(3000),UI2(3000),UF1(3000), +UF2(3000),XN2(3000),XN3(3000),XN4(3000),XN5(3000),XNL3(3000), +T1(3000),T2(3000),TRAN1(3000),XRAN2(3000),EQV1(3000), +EOV(3(3000),THE1(3000),AP4(5000),AP5(5000)		
68 C 69 70 C	DIMENSION COMM(10), COMP(3)		
71 72 73 74	COMMON/A/FCOR(100),ACCEL(5000),ICOR(100) DATA COMP/IX','Y','Z'/ DATA COMM/'READ','PEAK','MET1','MET2','MET3','DIST','QUIT'/ DATA YES/'Y'/		
75 C 76 77 C	COMMON/HEAD/CORTIL(2000)	•.	
78 79 80 C 81	LOGICAL*1 CORTIL		
82 83 84 C	WRITE(6,1) 1 FORMAT(PLEASE WAIT, GETTING THE TAPE READY') ONLY ONTRY (LEOCH-#1#1 LEN 1 DET)	•	
85 86 87 88 89 90	<pre>CALL CNTRL('POSN=*T*',LEN,T,RET) NPOS=1 2 WRITE(6,3) 3 FORMAT(/5X,'COMMANDS'/9X,'- READ RECORDS'/9X, +'- PEAK ACCELERATION'/9X,'- METHOD 1 -NUMBER OF CYCLES'/9X, +'- METHOD 2 -NUMBER OF CYCLES'/9X.</pre>		!
91 92	+'- METHOD 3 -NUMBER OF CYCLES'/9X, +'- DISTANCE TO THE EPICENTER'/9X,		

in a second s In the second In the second second

+'- QUIT') 93 94 1=0 95 READ(5,4)CO 4 FORMAT(A4) 96 97 5 = 1 + 1IF(CO .EQ. COMM(I)) GO TO 8 98 -99 IF(I .GT. (7)) GO TO 6 GO'TO 5 100 6 WRITE(6,7) 7 FORMAT('***** UNRECOGNIZABLE COMMAND *****') 101 102 GO TO 2 103 8 GO TO(100.200.300.400.500.600.700),1 104 105 С 106 C 107 С 100 WRITE(6,107) 107 FORMAT(1 CHOOSE THE FILE NUMBER THAT YOU WANT TO CHECK') 108 109 110 WRITE(6,113) 113 FORMAT(' THE FILE NUMBER FORMAT (13)') 110 111 READ(5, 115)NFILE 112 WRITE(2,114)NFILE 114 FORMAT(13,'-----') 113 114 115 FORMAT(13) 115 116 WRITE(6, 117) 117 FORMAT(1 WHICH COMPONENT ? (X,Y,Z)') 116 117 READ(5, 103)COMPON 118 103 FORMAT(A1) 119 100=0120 121 119 |C0=|C0+1 IF(COMP(ICO) .EQ. COMPON) GO TO 120 122 IF(ICO .GT. 3) GO TO 116 123 GO TO 119 124 120 NFILE=NFILE+1CO-1 125 126 С CALL TAPECO(NFILE, NPOS) 127 128 С CALL TPREAD(NPTS, 1) 129 С 130 WRITE(6.122)(CORTIL(1), I=481,532), (CORTIL(J), J=561,569) 131 122 FORMAT(1X,52A1/1X,9A1) 132 WRITE(6,124) 124 FORMAT(' DO YOU WANT THIS RECORD 7 (Y,N)') READ(5,103)A1 133 134 135 IF(A1 .NE, YES) GO TO 110 136 С 137 138 CALL TPREAD(NPTS, 2)

1 1 7

140 C 141 C 142 C 143 200 144 225 145 146 147 148 149 150 151 226 152 153 154 227 155 228 156 229 157 229 159 159	<pre>####################################</pre>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>WRITE(6,225) 5 FORMAT(' ARE YOU GOING TO USE A DIFF. PEAK ACCELERATION (Y,N)') READ(5,103)A1 IF (A1 .EQ. YES) GO TO 227 AMAX=FCOR(66) AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)</pre>		
143 200 144 225 145 146 147 148 149 150 151 226 152 253 154 227 155 228 156 229 157 229 158 2157 159 159	<pre>> WRITE(6,225) 5 FORMAT(' ARE YOU GOING TO USE A DIFF. PEAK ACCELERATION (Y,N)') READ(5,103)A1 IF (A1.EQ.YES) GO TO 227 AMAX=FCOR(66) AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)</pre>		
144 225 145 146 147 148 149 150 151 226 153 C 154 227 155 228 156 229 157 229 158 159	5 FORMAT(' ARE YOU GOING TO USE A DIFF. PEAK ACCELERATION (Y,N)') READ(5,103)A1 IF (A1.EQ.YES) GO TO 227 AMAX=FCOR(66) AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
145 146 147 148 149 150 151 226 153 C 154 227 155 228 156 29 157 229 158 159	READ(5,103)A1 IF (A1.EQ.YES) GO TO 227 AMAX=FCOR(66) AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT('WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
146 147 148 149 150 151 226 152 2 154 227 155 228 156 229 156 229 157 229 159	AMAX=FCOR(66) AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT('WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT('F10.0)		
148 149 150 151 226 152 0 154 227 155 228 156 229 157 229 159	AMAX=ABS(AMAX*10.) WRITE(2,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
149 150 151 226 152 0 153 0 154 227 155 228 156 2 157 229 158	WRITE(2,226)AMAX WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT('WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
150 151 226 152 0 153 C 154 227 155 228 156 229 157 229 159	WRITE(6,226)AMAX 5 FORMAT(1X,'THE PEAK ACCELERATION=',F10.0) GO TO 230 7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
151 226 152 153 0 154 227 155 228 156 229 157 229 159 159	GO TO 230 7 WRITE(6,228) 3 FORMAT('WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
153 C 154 227 155 228 156 229 157 229 158 159	7 WRITE(6,228) 3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
154 227 155 228 156 157 229 158 159	7 WRITE(6,228) 3 FORMAT(1 WHAT PEAK ACCELERATION ARE YOU GOING TO USE1) READ(5,229)AMAX 9 FORMAT(F10.0)		
155 228 156 157 229 158 159	3 FORMAT(' WHAT PEAK ACCELERATION ARE YOU GOING TO USE') READ(5,229)AMAX 9 FORMAT(F10.0)		
150 157 229 158 159	FORMAT(F10.0)		
158 159	/ / • • • • • • • • • • • • • • • • • •		
159	WRITE(2,226)AMAX		
	WRITE(6, 226) AMAX	×	
160 230) GO 10 2		
161 U 162 C	********** MFTHOD 1 (NUMBER OF EQV. CYCLES) **********		
163 C			
164 300	CONTINUE		
165	CALL MPEAK(NPTS,.02,PICK,NCNT,TIME)		
160 U 167 33P	5 FORMAT(1X F10 2)	•	
168 C			
169	AMIN1=. 325*AMAX		
170	AMIN2=325*AMAX		
1/1	I≕I NCNT1≃0		
173 C			
174	DO 336 J=1,NCNT	•	
175	IF(PICK(J) LT. 0.0) GO TO 336		
176	IF(FIGK(J) .ET. AMINT) GU TU 330 PICK1/T)-PICK(T)		
178	NCNT1=NCNT1+1		
179	= +1		
180 336	5 CONTINUE		:
181 C	1-1	,	
102			
184 C			
		·	
			_
			00
	168 C 169 170 170 171 172 173 173 C 174 175 176 177 178 336 180 336 181 C 183 184 184 C	168 C 169 AMIN1=.325*AMAX 170 AMIN2=325*AMAX 171 I=1 172 NCNT1=0 173 C 174 D0 336 J=1, NCNT 175 IF(PICK(J) .LT. 0.0) GO TO 336 176 IF(PICK(J) .LT. AMIN1) GO TO 336 177 PICK1(1)=PICK(J) 178 NCNT1=NCNT1+1 179 I=I+1 180 336 181 C 182 I=1 183 NCNT2=0 184 C	168 C 169 $AMIN1=.325*AMAX$ 170 $AMIN2=325*AMAX$ 171 $I=1$ 172 $NCNT1=0$ 173 C 174 $DO \ 336 \ J=1, NCNT$ 175 $IF(PICK(J) \ .LT. \ 0.0) \ GO \ TO \ 336$ 176 $IF(PICK(J) \ .LT. \ AMIN1) \ GO \ TO \ 336$ 177 $PICKI(I) = PICK(J)$ 178 $NCNT1=NCNT1+1$ 179 $I=I+1$ 180 336 CONTINUE 181 C 184 C

DO 338 J=1, NCNT 185 0.0) GO TO 338 186 IF(PICK(J) .GT. IF(PICK(J) .GT. AMIN2) GO TO 338 187 PICK2(1)=PICK(J)188 NCNT2=NCNT2+1 189 190 |= |+1 338 CONTINUE 191 С 192 CALL SELECT (AMAX, PICK1, NCNT1, XNUM1) 193 194 С 195 CALL MUL(XNUM1) С 196 197 CALL SELECT (AMAX, PICK2, NCNT2, XNUM2) 198 С GALL MUL(XNUM2) 199 С 200 201 SUM1=0. DO 350 1=1,14 202 SUM1=SUM1+XNUM1(I) 203 204 350 CONTINUE Ċ 205 206 SUM2=0. 207 DO 345 1=1.14 208 SUM2=SUM2+XNUM2(1) 209 345 CONTINUE 210 С 211 CYCLES=(SUM1+SUM2)/2. 212 С WRITE(2,122) (CORTIL(1), 1=481,532), (CORTIL(J), J=561,569) 213 214 WRITE(2,347)CYCLES WRITE(6,347)CYCLES 347 FORMAT(' THE NUMBER OF EQUIVALENT CYCLES BY METHOD 1 ',F10.2, 215 216 +/' '/) 217 218 С GO TO 2 219 С 220 ********* METHOD 2 (NUMBER OF EQV. CYCLES) ********* С 221 222 С 223 400 CALL MPEAK(NPTS, .02, AP, K, TIME) С 224 225 DO 410 J=1,K 226 AP1(J) = ABS(AP(J)/AMAX)410 CONTINUE 227 PH1=3.141592654 228 U(1)=0.0229 230 1=0

231 DO 420 J=1.K IF(AP1(J) .LT. .4) GO TO 420 232 233 1=1+1 234 AP2(1) = AP1(J)235 T(I) = TIME(J)CALL GRAPH(AP2(1), XNL2(1)) XN(1)=XNL2(1)*(.5*(1.0-COS(PH1*U1(1))))**.7 236 237 XN1(1) = XN(1) + .5238 IF((XN1(1)/XNL2(1)) .GE. 1.0) GO TO 430 239 UF(1)=.5+(1./PHI)*(ARSIN(2.*(XN1(1)/XNL2(1))**(1./.7)-1.0)) 240 UI(1+1)=UF(1) 241 420 CONTINUE 242 243 С С TRANSFER THE NUMBER OF CYCLES REQUIRED TO .65TMAX 244 245 С 246 GO TO 440 247 430 CONTINUE ITOT=1 248 249 XEQV=0.0 250 XU=0.0 251 XU=1.0 252 XEQV=2.10*(.5*(1.0-COS(PHI*XU)))**.7 GO TO 450 253 254 С 255 440 CONTINUE 256 |TOT=1257 XEQV=0.0 XEQV=2.10*(.5*(1.0-COS(PHI*UF(1))))**.7 258 259 WRITE(2,455)UF(ITOT) WRITE(6,455)UF(ITOT) 260 GO TO 456 261 С 262 263 450 CONTINUE WRITE(2,122) (CORTIL(1), 1=481,532), (CORTIL(J), J=561,569) 264 WRITE(2,455)XU 265 266 WRITE(6,455)XU 455 FORMAT(THE PORE PRESSURE '.F10.2, 267 +/1 1/1 268 456 WRITE(2,460)XEQV 269 WRITE(6,460)XEQV 460 FORMAT(1 THE NUMBER OF CYCLES AT .65 TMAX METHOD 2 270 ', F10.2, 271 +/1 1/) 272 WRITE(2,470)T(ITOT) 273 WRITE(6,470)T(ITOT) 470 FORMAT(1 TIME WHEN LIQUEFACTION OCCURS BY METHOD 2 274 275 ', F10.2, +/' '/) 276

277 С 278 GO TO 2 С 279 ******* METHOD 3 AND COMPARATION WITH METHOD 2 ********* 280 С 281 C 500 CALL MPEAK(NPTS, .02, AP, K1, TIME1) 282 С 283 284 DO 510 J=1,K1 285 AP4(J) = ABS(AP(J) / AMAX)286 510 CONTINUE 287 PHI=3.141592654 288 U|1(1)=0.0289 1=0 290 DO 515 J=1,K1 291 IF(AP4(J) .LT. 0.40) GO TO 515 292 1=1+1 293 AP5(1)=AP4(J)294 T1(I) = TIME1(J)CALL GRAPH(ÅP5(1), XNL3(1)) 295 296 XN2(I)=XNL3(I)*UI1(I)297 XN3(1) = XN2(1) + 0.5298 UF1(1) = XN3(1) / XNL3(1)299 U[1(1+1)=UF1(1)515 CONTINUE 300 301 С TRANSFER THE NUMBER OF CYCLES REQUIRED TO .65TMAX 302 С 303 С 304 520 CONTINUE 305 |T0T1=| XEQV1=0.0 306 XEQV1=2.10*UF1(|TOT1) 307 С 308 WRITE(2,122) (CORTIL(1), I=481,532), (CORTIL(J), J=561,569) 309 WRITE(2,525)UF1(ITOT1) 310 WRITE(6,525)UF1(ITOT1) 525 FORMAT(' THE PORE PRESSURE AT THE END OF THE E-QUAKE ',F10.2, 311 312 +/' '/) 313 WRITE(2,535)XEQV1 314 WRITE(6,535)XEQVI 535 FORMAT(1 THE NUMBER OF CYCLES AT .65 TMAX METH.1-A 315 ¹.F10.2. 316 317 318 WRITE(6,540)T1(ITOT1) 540 FORMAT(' TIME WHEN LIQUEFACTION OCCURS BY METH.1-A 319 ', F10.2, 320 +/' '/) 321 322 С

202	00 TO 0	
323 324 C	60 10 2	
325 C	******************* DISTANCE TO THE EPICENTER ***	**********
327 60	DO CALL DISTAN(DIST,DIRC)	
328	WRITE(2,610)DIST	
329	WRITE(0,010)DIST 10 CORMAT/ THE DISTANCE TO THE EDICENTED IS	1 510 2 FUNCT
330 0	WRITE/2 620101RC	, FIU.Z, KNO)
332	WRITE(6,620)DIRC	
333 62	20 FORMAT(THE DIRECTION IS (THE AZIMUT)	',F10.2)
334 C		
335	GO TO 2	
330 U 337 C		****
338 C	QUIT SECTION ANALASSA	
339 70	DO WRITE(6,710)	
340 7	10 FORMAT(' READY TO FINISH? (Y,N)')	
341	READ(5,103)A1	
342	IF(AI .NE. YES) GO TO 2	
344	END	
345 C		
346 C		
347	SUBROUTINE SELECI(AMAX, PICKS, NN1, XNUM)	
340 340 C	DIMENSION PICKS(1), ANOM(1)	
350	XK1=1.025*AMAX	
351	XK2=1.025*AMAX	•
352 C		
353	D0 65 I=1,14	
355	XKJ=XKI=0.05*AMAX XNUM/T\=0	
356	DO 55 J=1.NN1	
357	IF(ABS(PICKS(J)) .LT. XK1) GO TO 55	
358	IF(ABS(PICKS(J)) .GT. XK2) GO TO 55	
359	XNUM(1) = XNUM(1)+1.	
360 22	CONTINUE ΧΚ2=ΧΚ2+Ω Ω5#ΔΜΔΧ	
362 65	CONTINUE	
363 C		
364	RETURN	
365	ENU	
367 C		
201		

С 369 NP=NREC-NPOS 370 371 IF(NP .NE. 0) GO TO 15 NP=1372 CALL SKIP(NP,0,1) 373 NP = -1374 375 CALL SKIP(NP-1,1,1) 376 GO TO 30 15 IF(NP .LT. 0) GO TO 20 377 CALL SKIP(NP,0,1) 378 379 GO TO 30 20 CALL SKIP(NP-1, 1, 1) 380 С 381 30 NPOS=NREC 382 383 С 384 RETURN END 385 386 С Ċ 387 SUBROUTINE TPREAD(NDATA, IR) 388 С 389 LOGICAL#1 CORTIL, P 390 COMMON /HEAD/CORTIL(2000) 391 COMMON /A/FCOR(100), ACCEL(5000), ICOR(100) 392 С 393 394 GO TO (100,200), IR 395 100 READ(1, 10, END=300)CORTIL 10 FORMAT(80A1) 396 RETURN 397 398 С 200 READ(1,15) ICOR 399 READ(1,20)FCOR 400 15 FORMAT(2014) . 401 20 FORMAT(8F10.3) 402 403 NDATA=ICOR(53) READ(1, 25)(ACCEL(1), I=1, NDATA)404 25 FORMAT(8F10.0) 405 406 300 RETURN 407 END 408 С С 409 SUBROUTINE PEAK(NPTS, DIFF, PICK, NCNT) 410 С 411 DIMENSION PICK(1), DIFF(5000) 412 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 413 С 414

23

- E -

415			NDIFF=NPTS-1
416			DO 10 I=1.NDFF
417			DIFF(1) = ACCEL(1+1) - ACCEL(1)
418		10	CONTINUE
h10	С	10	Contrinct
412	U		1-1
420			
421			
422			
423			00 20 I=1,NN
424			F(DIFF(1), LE, 0.0, AND, DIFF(1+1), LE, 0.0) GO 10 20
425			IF(DIFF(I) . GE. 0.0 . AND. DIFF(I+1) . GE. 0.0) GO TO 20
426			1F(DIFF(I) .GE. 0.0 .AND. DIFF(I+1) .LE. 0.0) GO TO 15
427			IF(ACCEL(1+1) .GT. 0.0 .AND. ACCEL(1) .GT. 0.0) GO TO 20
428			PIČK(J)=ÀCCEĽ(I+1)
129			NCNT=NCNT+1
130			
430			
431		15	1 = 1 = 1 = 0 AND ACCEL(1) IT 0.0 GO TO 20
432		15	
433			
434			
435		~ ~	
436		20	CONTINUE
437	С		
438			RETURN
439			END
440	C		
441	С		
442			SUBROUTINE MPEAK(NPTS.DT, AP, K, TIME)
443	С		
<u>1111</u>	-		DIMENSION TZERO(5000), AP(5000), TIME(3000)
1115			COMMON / A / FCOR (100) . ACCFL (5000) . I COR (100)
1116	С		
117	č		VARIABLES DEFINITION.
447	ž		VARIABLES DELIVITION.
440	č		V - THE NUMBER OF AD(PEAKS ACCEL)
449	U A		$\mathbf{x} = \mathbf{n} \mathbf{c}$ NUMBER OF AF(FEARS AGGEL)
450	ç		NPTS = THE NUMBER OF TOTAL ACCELERATIONS.
451	C C		DI = THE TIME BETWEEN EACH AUGEL.
452	Ç		AP = THE PEAKS ACCELERATIONS.
453	Ç		IIME = IRE IIME WHEN EACH PEAK ACCORS.
454	С		
455			J=0
456			NPTS1=NPTS-1
457			DO 100 I=1,NPTS1
458			IF(ACCEL(1+1) .EQ, 0.0) GO TO 100
459			Q=ACCEL(1)/ACCEL(1+1)
460			IF(Q.GT. 0.0) GO TO 100

,

124

٠

۰.

461			
462			TZERO(J)=((ABS(ACCEL(I))/ABS(ACCEL(I+1)-ACCEL(I)))+FLOAT(I-1))*DT
463		100	CONTINUE
464			К=0
465			JMAX=J-1
166			DO 110 L=1 JMAX
465			$+1 \pm 1 \pm 1 \pm 1 \times (77 \pm 80(1)/DT) \pm 2$
467			$12 = 1 F_1 X (TZ F_{RO} (1+1) / 0T) + 1$
400			APMAY-0.0
407			
470			100 100 0-11, 12
471			Tr(ADS(AUGEL(3)) . LT. APPIAA) OU TO TO)
472			APMAX=ABS(AUGEL(J))
4/3		405	
474		105	CONTINUE
475			K=K+1
476			AP(K)=ACCEL(IMAX)
477			TIME(K)=FLOAT(IMAX -1)+DT
478		110	CONTINUE
479			RETURN
480			END
481	С		
482	С		
483	-		SUBROUTINE GRAPH(APL1, XNL1)
484			DATA N/O/
485	С		
486	•		DIMENSION VAL(14), VAL1(14), VAL2(14)
187	C		
188	~		F(AP) = GT = 1 + O
400			IF(N GT 0) GO TO 23
400			
490			N = 1 $N = 1$ $N = 1$ $N = 1$ $N = 1$
491			VAL(1/2) = 1.00
492			VAL1(2)-1.10
493			
494			VAL1(4) = 1.40
495			VALI(5)=1.75
496			VAL1(6)=1.80
497			VAL1(7)=1.90
498			VAL1(8)=2.10
499			VAL1(9)=2.50
500			VAL1(10)=3.00
501			VAL1(11)=4.00
502			VAL1(12)=7.00
503			VAL1(13)=10.0
504			VAL1(14)=20.0
505	С		
506			VAL(1)=1.

•

· · · ·

125

۰.

507 DO 10 1=2.14 VAL(+)=VAL(1-1)-.05 508 509 10 CONTINUE 510 DO 20 1=1,13 511 VAL2(1) = VAL1(1) - VAL1(1+1)512 20 CONTINUE 513 23 DO 30 1=1,13 IF(ABS(APL1) .LT. VAL(1+1)) GO TO 30 514 IF(ABS(APL1) .GT. VAL(1)) GO TO 30 515 IF(ABS(APL1) .EQ. VAL(1+1)) GO TO 25 516 IF(ABS(APL1) .EQ. VAL(1)) GO TO 26 517 REST=ABS(APL1)-VAL(I+1) 518 519 X=(VAL2(1)*REST)/.05 XNL1=VAL1(1+1)+X 520 GO TO 35 521 522 25 APL1=VAL(1+1) 523 XNL1=VAL1(1+1)524 GO TO 35 26 APL1=VAL(1) 525 XNL1=VAL1(1) 526 GO TO 35 527 30 CONTINUE 528 529 35 CONTINUE 530 С RETURN 531 532 END 533 С 534 С 535 SUBROUTINE GRAPH2(APL1,XNL1) 536 DATA N/0/ С 537 538 DIMENSION VAL(14), VAL1(14), VAL2(14) 539 С 540 IF(APL1 .GT. 1.0)APL1=1.0 541 IF(N .GT. 0) GO TO 23 N=Ì 542 543 VAL1(1)=3.0 544 VAL1(2)=2.7 VAL1(3)=2.4545 546 VAL1(4)=2.05 VAL1(5)=1.7 547 VAL1(6) = 1.4548 VAL1(7)=1.2549 VAL1(8)=1.0 550 551 VAL1(9)=0.7 552 VAL1(10)=0.4

ł

553 554 555 556 556	^		VAL1(11)=0.2 VAL1(12)=0.1 VAL1(13)=0.04 VAL1(14)=0.02
558 559 560 561 562 563 564	0	10 20	VAL(1)=1. DO 10 1=2,14 VAL(1)=VAL(1-1)05 CONTINUE DO 20 1=1,13 VAL2(1)=VAL1(1)-VAL1(1+1) CONTINUE
565 566 567 568 569 570 571 572		23	DO 30 I=1,13 IF(ABS(APL1) .LT. VAL(I+1)) GO TO 30 IF(ABS(APL1) .GT. VAL(I)) GO TO 30 IF(ABS(APL1) .EQ. VAL(I)) GO TO 25 IF(ABS(APL1) .EQ. VAL(I)) GO TO 26 REST=ABS(APL1) -VAL(I+1) X=(VAL2(I)*REST)/.05 XNL1=VAL1(I+1)+X
573 574 575		25	GO TO 35 APL1=VAL(++1) XNL1=VAL1(++1)
576 577 578 579		26	GO TO 35 APL1=VAL(1) XNL1=VAL1(1) GO TO 35
580 581 582	с	30 35	CONTINUE
583 584 585	ç		RETURN END
586 587 588	C		SUBROUTINE MUL(XNUM3) DIMENSION XNUM3(1)
589 590 591 592 593 594 595	c		XNUM3(1)=XNUM3(1)#2.10 XNUM3(2)=XNUM3(2)#1.90 XNUM3(3)=XNUM3(3)#1.80 XNUM3(4)=XNUM3(4)#1.50 XNUM3(5)=XNUM3(5)#1.20 XNUM3(6)=XNUM3(6)#1.20
596 597 598			XNUM3(7)=XNUM3(7)*1.10 XNUM3(8)=XNUM3(8)*1.0 XNUM3(9)=XNUM3(9)*0.80

A

~

٠

• -

603 XNUM3(14)=XNUM3(14)=0.10 604 C 605 RETURN 606 END 607 C 608 C 609 SUBROUTINE DISTAN(DIST, DIRC) 610 C 611 C 612 C 613 C 614 LOGICAL*1 CORTIL, P 615 COMMON/AFCOR(100), ACCEL(5000), ICOR(100) 616 COMMON/AFCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA RR/6371.2213/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLAT=FLOAT(ICOR(19)))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 C 630 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 624 EPLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 625 C 630 OBLAT=BLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+ 629 C	599 600 601 602		XNUM3(10)=XNUM3(10)*0.70 XNUM3(11)=XNUM3(11)*0.50 XNUM3(12)=XNUM3(12)*0.30 XNUM3(13)=XNUM3(13)*0.20
604 C 605 ERD 606 END 607 C 608 C 609 SUBROUTINE DISTANCE AND DIRECTION FROM EPICENTER TO RECORD 611 C 612 C ### FROM KUBO AND PENZIEN (1976) 613 C 614 LOGICAL#1 CORTIL, P 615 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 616 C MMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C 620 DATA RA/G371.2213/ 621 DATA RAJA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(16)))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 C 626 C 627 DBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=EPLAT 631 OBLAT=EPLAT 632 EPLAT=EPLAT 633 EPLAT=EPL	603	-	XNUM3(14)=XNUM3(14)*0.10
600 END 600 SUBROUTINE DISTAN(DIST, DIRC) 601 C 602 SUBROUTINE DISTAN(E AND DIRECTION FROM EPICENTER TO RECORD 611 C 612 C 613 C 614 LOGICAL*1 CORTIL, P 615 COMMON/HEAD/CORTIL(2000) 616 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2, 57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 C 626 OBLAT=FLOAT(ICOR(16))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=PLAT*PAIA 631 OBLON=BLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA	604 605	C	RETURN
607 C 608 C 609 SUBROUTINE DISTAN(DIST, DIRC) 611 C 612 C 613 C 614 LOGICAL*1 CORTIL, P 615 COMMON/HEAD/CORTIL(2000) 616 C OMMON/HEAD/CORTIL(2000) 617 C 618 C 619 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2, 57.29577951/ 622 C 623 EPLON=ABS(FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(12))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+ 627 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 629 C 631 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 632 EPLOT=EPLAT 633 EPLON=EPLO	606		END
608 C 609 SUBROUTINE DISTAN(DIST,DIRC) 611 C 611 C 612 C 613 C 614 LOGICAL*I CORTIL,P 615 COMMON/A/FCOR(100),ACCEL(5000),ICOR(100) 616 COMMON/A/FCOR(100),ACCEL(5000),ICOR(100) 617 C 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA,PAIB/1.745329252E-2,57.29577951/ 622 DATA PAIA,PAIB/1.745329252E-2,57.29577951/ 623 EPLON=ABS(FLOAT(1COR(16)))+FLOAT(1COR(17))/60.0+FLOAT(1COR(18))/3600.0 624 EPLON=ABS(FLOAT(1COR(16)))+FLOAT(1COR(17))/60.0+FLOAT(1COR(18))/3600.0 625 C 626 O 627 OBLON=ABS(FLOAT(1COR(16)))+FLOAT(1COR(11))/60.0+FLOAT(1COR(12))/3600.0 628 ©FLOAT(1COR(15))/3600.0 629 C 630 OBLAT=FLOAT(1COR(13)))+FLOAT(1COR(11))/60.0+FLOAT(1COR(12))/3600.0 629 C 630 C 631 OBLON=ABS(FLOAT(1COR(15)))/3600.0 632 EPLAT=FLOAT+FAIA <td>607</td> <td>С</td> <td></td>	607	С	
609 SUBROUTINE DISTAN(DIST,DIRC) 610 C 611 C 612 C 613 C 614 LOGICAL#1 CORTIL,P 615 COMMON/HEAD/CORTIL(2000) 616 COMMON/HEAD/CORTIL(2000) 617 C 618 C 619 C 610 C 611 C 612 COMMON/HEAD/CORTIL(2000) 613 C 614 LOGICAL#1 CORTIL(2000) 615 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 616 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA RAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 625 C 630 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 62	608	С	
<pre>610 C 611 C 612 C 614 C 615 C 614 C 615 C 614 C 615 C 616 C 616 C 617 C 618 C 618 C 619 C 619 C 619 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 C 624 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT+PAIA 631 OBLON=OBLON+PAIA 631 EPLON=EPLON*PAIA 633 EPLON=EPLON*PAIA 634 C 635 A=OBLAT=FPLAT 636 DB=0.5+COS(EPLAT)+COS(OBLAT))*(OBLON=EPLON) 637 DIRC==ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 IIO0 DIRC==DIRC+360.0 640 I200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN</pre>	609		SUBROUTINE DISTAN(DIST,DIRC)
611 C CALCULATE DISTANCE AND DIRECTION FROM EPICENTER TO RECORD 612 C *** FROM KUBO AND PENZIEN (1976) 613 C LOGICAL*1 CORTIL, P 614 LOGICAL*1 CORTIL(2000) COMMON/HEAD/CORTIL(2000), ICOR(100) 616 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C 620 DATA RR/8371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2, 57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 632 EPLAT=EPLAT*PAIA 633 EPLON=ABIA 634 C 635 A=0BLAT=FLOAT 636 DIRC=-ATAN2(BB,AA)*P	610	С	· · · · · · · · · · · · · · · · · · ·
612 C #** FROM KUBO AND PENZIEN (1976) 613 C 614 LOGICAL*1 CORTIL, P 615 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C RADIUS OF EARTH (EQUIVALENT SPHERE) 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(16)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 (FLOAT(ICOR(15))/3600,0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	611	С	CALCULATE DISTANCE AND DIRECTION FROM EPICENTER TO RECORD
613 C 614 LOGICAL*1 CORTIL, P 615 COMMON/HEAD/CORTIL(2000) 616 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C RADIUS OF EARTH (EQUIVALENT SPHERE) 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %/LOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+ 628 %/FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 633 EPLON=EPLON*PAIA 634 C 635 A=OBLAT=EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON=EPLON) 637 DIRC==AIAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 1100 DIRC=OIRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	612	C	*** FROM KUBO AND PENZIEN (1976)
614 LOGICAL*1 CORTIL, P 615 COMMON/HEAD/CORTIL(2000) 616 COMMON/HEAD/CORTIL(2000), ICOR(100) 617 C 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(16)))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=EPLAT*PAIA 631 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 632 EPLAT=EPLAT*PAIA 633 EPLON=ABA 634 C 635 AA=OBLAT-EPLAT 636 IF(DIRO)1100, 1200, 1200 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRO)1100, 1200, 1200 639 1000 DIRC=DIRC+	613	C	
615 COMMON/A/FCOR(100), ACCEL(5000), ICOR(100) 617 C 618 C RADIUS OF EARTH (EQUIVALENT SPHERE) 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(1COR(16))+FLOAT(1COR(17))/60.0+FLOAT(1COR(18))/3600.0 624 EPLON=ABS(FLOAT(1COR(19)))+FLOAT(1COR(17))/60.0+FLOAT(1COR(12))/3600.0 625 %FLOAT(1COR(10))+FLOAT(1COR(11))/60.0+FLOAT(1COR(12))/3600.0 626 OBLAT=FLOAT(1COR(10))+FLOAT(1COR(11))/60.0+FLOAT(1COR(12))/3600.0 627 OBLAT=FLOAT(1COR(13)))+FLOAT(1COR(14))/60.0+ 628 %FLOAT(1COR(15))/3600.0 629 C 630 OBLAT=EPLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 Aa=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200 639 1100 DIRC=DIRC+360.0 641 C	614		LOGICAL#1 CORIIL, P
616 COMMON/A/FCOR(100), ACCEL(5000), TCOR(100) 617 G 618 C 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLAT=FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 IF(DIRC)TIO0, 1200 637 DIRC=ATAN2(BB, AA)*PAIB 638 IF(DIRC)TIO0, 1200 639 1100 630 IDO 631 DIRC=DIRC+360.0 641 C 642	615		COMMON/HEAD/CORTIL(2000)
61// C RADIUS OF EARTH (EQUIVALENT SPHERE) 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=ABS(FLOAT)+COS(0BLAT))*(OBLON-EPLON) 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 IF(DIRC)1100,1200,1200 637 DIRC=DIRC+360.0 638 IF(DIRC)1100,1200 639 1100 639 1100 639 1200 639 1100 641 C 642 RET	616	0	COMMON/A/FCOR(100), ACCEL(5000), TCOR(100)
618 C RADIUS OF EARTH (EQUIVALENT SPRERE) 619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON*EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 IF(DIRC)1100,1200,1200 637 DIRC=ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 639 1100 639 1200 641 C 642 RETURN	617	C	DADIUS OF CARTH (FOULVALENT SPHERE)
619 C 620 DATA RR/6371.2213/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 1100 DIRC=DIRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C RETURN	618	L C	RADIUS OF EARTH (EQUIVALENT STREAC)
620 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 621 DATA PAIA, PAIB/1.745329252E-2,57.29577951/ 622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 IF(DIRC)1100, 1200, 1200 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 1100 DIRC=DIRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C	619	U U	DATA DD/6271 2212/
621 DATA TATA,	620		DATA NA/03/1.2213/ DATA DALA DALB/1 7053202525-2 57 29577051/
622 C 623 EPLAT=FLOAT(ICOR(16))+FLOAT(ICOR(17))/60.0+FLOAT(ICOR(18))/3600.0 624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 1100 DIRC=DIRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C RETURN	622	C	DATA FATA, FATD/ 1, 14352322C-2, 31, 233113317
624 EPLON=ABS(FLOAT(ICOR(19)))+FLOAT(ICOR(20))/60.0+ 625 %FLOAT(ICOR(21))/3600.0 626 OBLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100, 1200, 1200 639 1100 DIRC=DIRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C	623	U	FP(AT = F(OAT(1COR(16)) + F(OAT(1COR(17))/60, 0 + F(OAT(1COR(18))/3600, 0))
625 %FLOAT(ICOR(21))/3600.0 626 0BLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 0BLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 0BLAT=0BLAT*PAIA 631 0BLON=0BLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=0BLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(0BLAT))*(0BLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 639 1100 641 C 642 RETURN	624		$E_{PL}(N=aBS(E_{L}) = (10)(10)(10)(1+E_{L})(1+E_{L}) = (10)(10)(1+E_{L})($
625 0BLAT=FLOAT(ICOR(10))+FLOAT(ICOR(11))/60.0+FLOAT(ICOR(12))/3600.0 627 0BLAT=SLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 0BLAT=OBLAT*PAIA 631 0BLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 639 1100 641 C 642 RETURN	625		
627 OBLON=ABS(FLOAT(ICOR(13)))+FLOAT(ICOR(14))/60.0+ 628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 639 1100 641 C 642 RETURN	626		OBLAT = FLOAT(COR(10)) + FLOAT(COR(11))/60, 0 + FLOAT(COR(12))/3600, 0
628 %FLOAT(ICOR(15))/3600.0 629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 639 1100 641 C 642 RETURN	627		$OB_{OB} = ABS(FLOAT(COR(13)) + FLOAT(COR(14))/60.0+$
629 C 630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 634 C 638 IF(DIRC)100,1200,1200 639 1100 641 C 642 RETURN	628		%FLOAT(1COR(15))/3600.0
630 OBLAT=OBLAT*PAIA 631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	629	С	
631 OBLON=OBLON*PAIA 632 EPLAT=EPLAT*PAIA 633 EPLON=EPLAT*PAIA 633 EPLON=EPLAT*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	630		OBLAT=OBLAT*PATA
632 EPLAT=EPLAT*PAIA 633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	631		OBLON=OBLON*PATA
633 EPLON=EPLON*PAIA 634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	632		EPLAT=EPLAT*PATA
634 C 635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200 639 1100 640 1200 641 C 642 RETURN	633		EPLON=EPLON*PATA
635 AA=OBLAT-EPLAT 636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB, AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	634	С	
636 BB=0.5*(COS(EPLAT)+COS(OBLAT))*(OBLON-EPLON) 637 DIRC=-ATAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 640 1200 641 C 642 RETURN	635		AA=OBLAT-EPLAT
637 DIRC=-AIAN2(BB,AA)*PAIB 638 IF(DIRC)1100,1200,1200 639 1100 DIRC=0IRC+360.0 640 1200 DIST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	636		BB=0.5*(COS(EPLAI)+COS(OBLAI))*(OBLON-EPLON)
638 IF(DTRC)1100,1200,1200 639 1100 DTRC=DTRC+360.0 640 1200 DTST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	637		DIRC=-AIAN2(BB,AA)*PAIB
639 1100 DTRC=DTRC+360.0 640 1200 DTST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	638	1100	TF(DIRC)1100,1200,1200
640 1200 DTST=RR*SQRT(AA*AA+BB*BB) 641 C 642 RETURN	639	1100	
642 RETURN	640	1200	J JIST=KK"SYKT(AA"AATBB"BB)
042 021000	041	U	DETURN
6h3 END	642		
		FILE	

,

,