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ABSTRACT -

A formulation for the analysis of pile groups in layered semi-
infinite media is presented. The formulation was based on the intro-
duction of a soil flexibility matrix as well as on dynamic stiffness
and flexibility matrices of the piles, in order to relate the discre-
tized uniform forces to the corresponding displacements at the pile-
soil interface.

The result of pile group analyses showed that the pile group be-
havior is highly frequency-dependent as the result of wave interfer-
ences taking place between the various piles in the group. Large
values for stiffnesses as well as targe magnification factors for the
force dn certain piles is expected at some frequencies. As for the
seismic response, pile groups essentially follow the Tow-freguency
components of the ground motion, and the rotational.component is negli-
gible for typical dimensions of the foundation. |

A numerical study on the accuracy of the approximate superposition
method as well as the quasi-three-dimensional formulation in which the
pile-soil compatibility conditions are accounted for in the formulation
only in the direction of vibration, showed that these solutions compare
very well with the full three-dimensional solution.
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CHAPTER 1 - INTRODUCTION

A pile is a structural element installed in the ground which is
comnected to the structural frame, either directly or through a founda-
tion block, in order to transfer the loads from the superstructure to
the ground. Piles are seldom used singly; more often, they are used in
groups or clusters, in which case they are connected tc a common founda-
tion block (pite cap).

Pile foundations, under certain circumstances, are preferred over
shallow foundations; for instance, in sites where near-surface soil strata
are so weak that either soil properties do not have the required strength,
or the settlement and/or movements of a shallow footing on such ground
would be intolerable.

Behavior of pile foundations, sometimes referred to as deen founda-
tions, has been a subject of considerable research. Most studies have
focussed primarily on short- and Tong-term static pile behavior, pile-
installation effects, estimation of ultimate load capacity and settlement,
prediction of ultimate lateral resistance, and estimation of lateral
deflection. Extensive field testings and experimental investigations
on different aspects of pile behavior have resulted in a number of empir-
ical and approximéte analytical methads for the pile-foundation design.

In addition, other studies have resulted in more rigorous schemes for
pile analysis. Among these studies the works of Poulos (1968), Poulos
and Mattes (1971), Poulos (1971), Butterfield and Banerjee (1971) and
Banerjee (1978) are related to the present study. These researchers dis-
cretized the piles into several segments and related the displacements

of the segments to the corresponding forces in both the soil medium, using
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Mindlin's fundamental solution (1936) and in the piles, using pile dif-
ferential equations (in discretized form). Introduction of the condition
of displacement compatibility between the scil and the piles and imposi-
tion of appropriate boundary conditions lead to the desired pile solution.
The results of these studies, especially by Poulos and his colleaques,
have highlighted the important aspects of static pile-group behavior, in-
cluding distribution of Toads among the piles in a group, stiffnesses of
pile groups, and the variation of these quantities with geometric param-
eters (spacing, length, and number of piles) as well as material proper-
ties.  For a comprehensive review of these results and other analytical
and empirical techniques of static pile-foundation analysis see Poulos
(1980).

The fact that static pile behavior studies were unable to provide any
qualitative information on dynamic aspects of the problem, along with an
increasing demand for the construction of nuclear power plants and off-
shore structures, have stimulated extensive research on dynamic pile be-
havior. For these studies, which have dealt primarily with the behavior
of single piles, a variety of different models and solution schemes have
been used. Tajimi (1969), Nogami and Novak (1976), Novak and Nogami
(1977), Kobori, Minai and Baba (1977, 1981). Kagawa and Kraft (1981)
have obtained analytical solutions for the response of dynamically-excited
single piles. Finite-element techniques, on the other hand, have been
used by Blaney, Kausel and Roesset (1976) and Kuhlemeyer (1979, 1979b).
In addition, less involved models based on the theory of beams on elastic
foundations, commonly referred to as the subgrade-reaction approach, were

used by Novak (1974), Matlock (1970),Reese, Cox and Koop {1974) and Reese

and Welch (1975). The advantage of this technique is that the results
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of field testing can be directly incorporated in the model ("p-y" and
"t-w" techniques).

In spite of considerable achievements in characterizing the dynamic
response of single piles, the dynamic behavior of pile groups is not yet
well understood. In fact, only a few attempts have been made to study
this problem. The earlier contributions are due to Wolf and Von Arx
(1978), and to Nogami {1979). Wolf and Von Arx used an axisymmetric finite-
element scheme to abtain Green functions for ring loads which were used to
form the soil flexibility matrix. The dynamic stiffness matrix of the
pile-soil system was then obtained by simply assembling those of the soil
and piles. Using this formulation, Wolf and VYon Arx studied some charac-
teristics of horizontal as well as vertical dynamic stiffnesses of pile
groups in a layered soil stratum resting on a rigid bedrock. Later this
methodology was employed by Waas and Hartmann {1981), who implemented an
efficient and rigorous technigue for the computation of the Green's func-
tions (Waas, 1980), to study the behavior of pile groups in lateral vibra-
tion.

On the other hand, the vertical vibration characteristics of pile
groups in a uniform soil stratum underlain by a rigid. bedrock has been
studied analytically by Nogami (1979). To incorporate in his model the
interaction of piles through the soil medium, Nogami used an analytical
solution to the axisymmetric vibration of the stratum obtained earlier by
Nogami and Novak (1976). Later he extended his studies‘to the case of
layered strata (Nogami, 1980). For this case, however, the interaction
effects were obtained using an analiytical expression for the displacement
field due to the axial vibration of an infinitely long rigid cylinder in

an infinite medium {Novak, Nogémi and AbouT-E1Ta, 1978).
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The results of these studies 1ndicate that: 1) behavior of pile
groups is strongly frequency-dependent; 2) spacing and number of piles
have a considerable effect on dynamic stiffnesses, but only a minor ef-
fect on the lateral seismic response; and 3} interaction effects are
stronger for more flexible soil media.

The objective of the present work is to study the three-dimensional

dynamic behavior of pile groups in layered sémi-infinite media and to

investigate the accuracy of certain approximate approaches. Chapter 2
of this report is devoted to the formulation and the associated analyt-
ical derivations. In Chapter 3 the results of the three-dimensional
analyses are presented. These results include dynamic stiffnesses and
seismic response of pile groups as well as the distribution of loads
among the piles in the group. Special attention is paid to the effect
of frequency, spacing, and number of piles on these quantities. In Chap-
ter 4 the accuracy of a "quasi three-dimensional" solution is investi-
gated (a quasi three-dimensional solution here refers to the solution
obtained for symmetric rectanguliar arrangement of piles by assuming that
the dynamic effects in the vertical and in the two horizontal directions
of symmetry are uncoupled from one another).

The applicability of the superposition scheme to dynamic pile-group
analysis is examined in Chabter 5. In addition, the characteristics of
dynamic interaction curves (the influence of vibration of one pile on
another for a group of two piles) and their connection to pile-group be-
havior are studied.

Finally, Chapter 6 includes a summary of the important aspects of
the pile-group behavior as well as conclusions on the applicability of

approximate solution schemes.
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CHAPTER 2 - FORMULATION AND ANALYTICAL DERIVATTONS

In the present study it is assumed that 1) the soil medium is a
viscoelastic layered halfspace, 2} the piles are made of lTinear elastic
materials, and 3) there is no loss of bondage between the piles and the
soil; however, the frictional effects due to torsion and bending of piles
are neglected. (The overall pile group behavior is controlled primarily
by the frictional and lateral forces caused by axial motion and bending
of the piles, respectively.)

In what follows, the formulation of the problem.along with the associ-
ated analytical derivations and their numerical implementation, are pre-
sented. Any time-dependent variable such as u(t) used in this formulation
is of the form u(t) = u exp (iwt), in which u 1is a complex quantity, w is
the frequency of steady-state harmonic vibration, and i = y/~1. However,
the factor exp (iwt) is deleted in the equations, since it is shared by all

time-dependent variables involved in the problem.

2.1 Formulation

Consider the pile group shown in Fig. 2.1. The actual distribution
of lateral as well as frictional forces developed at the pile-soil inter-
face are shown for one of the piles-in the group (pile j}.

The pile is discretized into % arbitrary segments, and the pile-tip
is considered to be segment (2+1). The pile head and the center of the
pile segments define then (2+2) "nodes" which are assigned numbers 0, 1,
2, «.o 5 (241), respectively. Subsequently, the actual force distributions
are replaced by piecewise constant distributions which are also shown in
the figure. These forces are assumed positive if they ave in the positive

direction of axes.
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Consider first the equilibrium of pile j under the pile-soil interface
forces. If one denotes the vector of the resultant of these forces by pd
that is:

NI J J J 17

J_orad
o= Doy, pyy P e Plar)x Plast)y Plodl)z (2.1)

and the vector of displacements of nodes 1 through (2+1) by UJ, that is:

Jord Jd 0 J J J T

U [u1x Uty Yz »ooeoee a1 )x Yas1)y u(2+1)z] (2.2)
Then Uj can be expressed as the summation of the displacements caused by
the translations and rotations of the two pile ends when there are no
loads on the pile, and the displacements caused by forces on the piles
(-PY) when the two ends of the pile are clamped. This can be expressed

as:

J_Jdgd _dpd
R Fo P (2.3)

in which Ug is the vector of end displacements for pile j, given by:

Sord 33 g i d i d T
Ue = [uox Pox Yoy ¢oy Yoz “(a+1)x dJ(zﬂ)x a1y ¢(R&])y u(ﬂﬁ])z] (2.4)

@j is a (3(g+1) x 10) matrix defining displacements of the center of seg-
ments {nodes 1 through {2+1) due to end displacements of the pile when p

th column of ?j defines the

are not present (to be more specific, the i
three components of translation at the center of the segments due to a
unit harmonic pile end displacement associated with the ith component of
ul). and Fg is the flexibility matrix of pile j associated with nodes 1

through (4+1), for the fixed-end condition. (Since the ends of the pile
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are fixed, the entries in Fg corresponding to node (y+1) are zero.)

If, in addition, one denotes the dynamic stiffness matrix of pile j
by Kg, and the vector of external forces and moments at the two ends of
this pile by PJ, that is

Jorpd o pd o wd pd Rl J J J J
Pe B [Rox Mox Roy Moy Roz R(£+1)x M(2+])x R(R+1)y M(2+])y R(5L+1)Z]T (2.5)

Then one can write
. .. T .
J - wd J J
Pe Kp Ue +yd P (2.6)

The first term in Eq. (2.6) corresponds to pile-end forces due to
pile-end displacements (Ug) when there are no loads on the pile, and the
second term corresponds to pile-end forces due to Toads on the pile (~Pj)
when the two ends of the pile are fixed. Since the forces at the pile
tips are included in PY and matrices Fg and wj_are constructed such that
they contain the effects of forces and displacements at this point, one
has to set R%£+1)x’ R%2+])y and_R{z+1)z equal to zero. In addition, for

floating piles M and M) are taken to be zero as well.
( (@+1)y

9 +1)x
| Defining now the global load and displacement vectors for the N piles

in the group:

p! u! [ P ul
p? v | pZ | 02|
P=1: i U=3 3 Py = { : ;o Uy = : (2.7)
PN UN pN UN
/ e e

as well as the matrices:
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(K,
K= ] 5 ., }
L KI; )
( F:; ‘
Fy= F r (2.8)
L )
p
!
Y o=4 TZ s
L K J

One can then write the following equations for the ensemble of piles in

the group (compare with eqns. (2.3) and (2.6)):

e
tl

yU -F P
¢ P (2.9)

T
Kp Ue +y P

©
1l

Consider next the equilibrium of the soil mass ynder forces P (dis-
tributed uniformly over each segment; see Fig. 2.1). If FS denotes the
f]eXibi]ity matrix of the soil medium, relating piecewise-constant seg-

mental Toads to the average displacements along the segments, then

u =F_P (2.10)
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Finally combining eqns. (2.9) and (2.10) one gets:

_ T -1 -
P = [k + ¢ (Fg + F )7 wlU, = K U (2.11)

Ke is a (10N x T0N) matrix which relates only the five components of
forces at each end of the piles to their corresponding displacements. In
other words, the degrees of freedom along the pile length have been con-
densed out without forming a complete stiffness matrix. It is also impor-
tant to notice that in the solution of eq. (2.11) it is not necessary
to invert (FS + Fp) as indicated; instead, one only needs to perform a
triangular decomposition of this matrix.

Matrix ke relates forces and displacements at the pile ends in a
group of unreéstrained piles. In order to obtain dynamic stiffnesses of
a rigid foundation (pile cap)} to which the piles are conrnected, one needs
to impose the appropriate geometric (kinematic) and force boundary condi-
tions at the pile heads and pile tips. (The boundary conditions at pile
tips, as discussed earlier, are zero forces at these points for floating
piles.} At pile heads, on the other hand, the boundary conditions are in
generé1 a combination of geometric and force conditions, unless ail the
piles are rigidly connected to the foundation, in which case only geome-
tric conditions should be considered. Once the pile head forces for the
possible modes of vibration (horizontal, vertical, rocking and torsional)
are computed, dynamic stiffnesses of the foundation'at a prescribed point
are obtained by simply calculating, in each mode, the resultant of these
forces at the prescribed point.

To extend the formulation to seismic analysis, one only needs to

express the displacements U as the summation of seismic displacements
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in the medium when the piles are removed (i.e., soil with cavities) U,

and the displacements caused by pile-soil interface forces P, that is:

U=10+ FS P (2.12)

Combination of egns. (2.8) and (2.12) results in

_ T =1 T -1
Pe = [Kp +y (FS + Fp) y] Ue -y (FS + Fp) U (2.13)
or ’

P =K, U, +P (2.14)

where Ke (as in eq. (2.11}) is the dynamic stiffness for the ensemble of
piles associated with the degrees of freedom at pile heads and pile tips,
and ?é = - wT (FS + Fp)q] U defines consistent fictitious forces at
these points which reproduce the seismic effects.

In order to calculate the response of the rigid foundation to which
the piles are connected, one has to impose the necessary geometric and
force boundary conditions. (The procedure is similar to that described
for the calculation of foundation stiffnesses, except that for the seis-
mic case one has to use the fact that the resultant of pile-head forces
on the foundation is zero.)

From the development of the preceding formulation it is clear that
FS is the flexibility of a soil mass which results from the removal of
the piles; in other words, Fs corresponds to the soil mass with N cavi-
ties. Similarly, U refers to the seismic displacements in the medium

with the cavities. Due to the fact that evaluation of the same quanti-

ties in a uniform soil mass, in which the cavities have been filled with



22

the soil, requires much less computational effort than the original
problem, it is very desirable to modify the formulation in order to make
use of this numerical efficiency. .The following discussion pertains to
such a modification.

Consider the semi-infinite soil medium and the pile shown in Fig.
2.2a. It is assumed that p(z) and u{z) define lateral soil pressure and
lateral pile displacement, respectively. (For convenience, only one pile
and one type of force at the pile-soil interface are considered. The modi-
fication procedure, however, is independent of the number of piles and the
type of interaction force.) For a pile element shown in Fig. 2.2b, one
can write the equilibrium equation as:

dv 2
az"’pp Awu = P (2']5)

in which A and pp denote the cross-sectional area and mass density of the
pile, respectively.

Next, consider the same soil medium except that the pile is removed
and the resulting cavity is filled with soil such that the original uni-
form soil .mass (before the installation of the pile) is obtained. The
dashed line in Fig. 2.2c shows the periphery of the added soil column.
Further, supbose that f(z) defines a force distribution along the height
of the soil column which causes approximately the same displacement u(z)
at the centerline of this soil column. Now consider the equilibrium of
forces on a soil differential element shown in Fig. 2.2d. (The vertical
sides of this elemént extend just beyond the dashed 1ine); one can then

write:

dv’ 2 :
O+ AU+ F=p (2.16)
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where p' is the lateral force on the element. This eduation implies
that one can remove the soil column and apply the distributed force p'
on the cavity's wail‘to preserve the equilibrium of the soil mass. (This
is clearly an approximate scheme, since the effects of frictional forces
due to the lateral displacement of the soil column are neglected.)

If one takes p' to be equal to p, eq. (2.16) can be rewritten as

%%?!+ Py APy + f = p (2.17)

Thus the disp]acemeht u{z) due to a distributed force p{z) in the soil
mass with the cavity can be reproduced by the application of the distri-
buted force f(z) to the uniform (no cavity) soil medium. f(z) is given
by:

} 2 dv
f*p—psAwU"‘Hz— (2.]8)

Similarly, the equitibrium of the differential pile element can be ex-
pressed in terms of the distributed force f; introducing eq. (2.17) into

eq. (2.15), one gets:
4 vov'y + (o - o )Atu = f (2.19)
dz p s :

Eq. (2.19) can be interpreted as the differential equation of a beam with
a mass density (Dp - DS) and a modulus of elasticity (Ep - ES) and sub-
jected to a distributed force f(z). (ES is the elasticity modulus of
the soil.)

The approximate scheme presented here suggests that if one replaces

P in egns. (2.9) and (2.70) by the vectorial equivalent of the distributed

forces f (say, F)}, then the soil flexibility matrix F, should be taken
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as that corresponding to a uniform (no cavity) soil mass and the matri-
ces Kp, Fp and ¥ corresponding to piles with reduced mass density and
elasticity modulus (obtained by subtracting the mass density and elas-
ticity modulus of the soil from the corresponding quantities of the
piles). The final expression relating pile-head forces with displace-
ments is then of the same form as that given by eq. (2.11), except that

FS corresponds to a soil without cavities, and K Fp, ¥ to piles with

P
reduced properties.

A similar modification appiies to the seismic analysis. In addition,
the seismic displacements in the soil mass with the cavities (U in eq.
2.12)) can be related to the associated free-field (no cavity) seismic
displacements. If the free-field displacements are denoted by U* and
the corresponding free-field forces are denoted by P*, then one can write:
(since P = 0):

Ug=Uu - Fo P (2.20)

However, the effect of free-field forces, in most pile-soil interaction
problems, can be neglected. Therefore one might approximate U by U* in
the formulation of the seismic problem.

In what follows a numerical technique to evaluate a soil flexibility
matrix is presented, and expressions for the elements of Kpg Fp and ¥

are derived.
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2.2 Responseof Viscoelastic Layered Soil1 Media to Dynamic Stress

Jistributions

The formulation presented in Sec. 2.1 requires the evaluation of
a dynamic flexibility matrix, Fs’ for the soil medium. This matrix de-
fines a relationship between piecewise-uniform 1oads distributed over
cylindrical or circular surfaces {corresponding to pile shafts and pile
tips) and the average displacement of these regions. Although there
are a number of ways to obtain a value to represent the displacement of
a loaded region, the weighted averaging, originally proposed by Arnold,
Bycroft and Warburton (1955), is believed to provide the most meaningful
displacement value. In order to understand the basis for the weighted
average displacement, consider the response of a medium to a set of
distributed loads 9ys Qoo vn-- acting on regions D], 02 .... 4 PESpEC-
tively. Suppose a virtual displacement v(x,y,z) is introduced in the
medium. If the component of this displacement in the direction of q;
is denoted by vi(x;y,z), then the virtual work done by the total dynamic

force Qi = J 9; dA 1is given‘by:

Dy

Q v; = JD_ q;. vy dA (2.21)

where V} is the weighted average virtual displacement in region Di‘ Equa-
tion (2.21) shows that, on the basis of the work done by the total force,
the weighted average displacement is the most approbriate quantity to
represent the displacement field. For uniformly distributed loads, as
eq. (2.21) indicates, the weighted average displacementis identical to

the average displacement in the region.
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The objective of this sectian is to present details of a numerical
technique which enables one to compute displacements caused by Toads
uniformly distributed over cylindrical or circular surfaces in layered
viscoelastic soil media. The types of load involved in the problem are
shown in Fig. 2.3; the loads on cylindrical surfaces are associated with
stresses on pile shaft and those on circular surfaces correspond to pile
tip stresses.

The method used here for response calculation is similar to that
presented by Apsel (1980). For the present work, however, the stiffness

approach, based on assemblage of layer stiffness matrices, is used.

2.2.1 - Solution of the equations of motion

If Upo Uy and u, are the displacements in the radial, tangential,
and vertical directions, and fr’ fe and fz are the associated external
Toads per unit volume, the equations of motion of an elastic body in

cylindrical coordinates are:

OF2n)ge - 5% g T2z Yo el FL =0
1 3 Bwr ow, , 2 . )
VoGew) p B au e a2 o+ F =0 (2.22)
qw
on _ 2H 2 2u "ro, 2 -
Ot2ukz - 5 ar () #5075 oy +F, = 0

where  and u are Lamé's constant, p is the mass density, and w is the
frequency of steady-state vibration; the dilatation A and the rotations

Wps g and w, are given by:
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Fig. 2.3 - The Type of Loads in the Soil Medium.



29

au 3u
_1a 1M Yy
A= Y or (rur) Yv3e T a
L - lA[] auz Bue:I
r 2 *r 08 a3z
< w :l[aur_iu_z
6~ 7 L3z ar
du
21 a r
9 = o Loy (ig) - 55

(2.23)

(2.24)

For a viscoelastic medium with an internal energy dissipative be-

havior of the hysteretic type, one only needs to replace A and 1 in Egns.

(2.22) by the complex Lame moduli given by:

- a1 + 281)

P
1)

c
u

1

u(1 + 281)

(2.25)

where B is commonly referred to as the fraction of critical damping.

The first step in the solution of Egns. (2.22) is to separate

variables. This can be achieved by expanding displacements and body

forces in a Fourier series in tangential direction, that is

v oD
u,. (r,0,z) = z Ui (r,z) cos
n=0
u, (r,0,z) = Z Ugn (r,z) sin
n=0
o]
u, (r,0,z) = ) u,. (r,z) cos
n=0

o
f. (r,0,z) = 7}
n=0 "rn

Ty (r,0,z) = {r,z) sin

1
IIMS
o~y
@]
=

I
r~18
-+

f_{r,0,z) = (r,z) cos
Lz

f (r,z) cos

no

ne

nt

no

né

ng

(2.26)
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Introduction of these expansions, along with Egns. (2.23) and

(2.24), into Egns.- (2.22) leads to

) { 0 Upy 1 9% nzﬁ'l 3 Uy 94
-n 1ML oo - u.. + 1+ () ==
n=0 ar2 r ar r2 rn az2 ar
n -
- 2u ;?'uen TwoplUy,t frn} cos ng = 0 (2.27)
2 2
o0 3 U U 2 3 U
gn , 1 pn- n +1 n n
ul == - 5w, ———] - (Atu) <A
ngo { arz roer r2 on 322 ron
n : -
-2y ;7 Uy W o Ugn + fen} sinng = 0 (2.28)
0 2 2
3u au 2 3 u 3A
) { oz . 1%zn n zn n
1 - u, + 1 + (3+u)
=0 arz r o ar r2 n 322 9z
+ 2 =
w p Uy, * fzn cos ng = 0 (2.29)
where
2u
=123 n zn
T (rurn) FrlUon T3z (2.30)

In order that Eans. (2.27), (2.28) and (2.29) be satisfied, it is
‘necessary that the terms in accolades be identically zero. If, in addi-
tion, one combines the two equations resulting from (2.27) and (2.28),
then the following three conditions, to be satified for any value of n,

are obtained:

[82 (u, +u )+s L (u +u )~—(”—+l—)i(u +u )+—£(u +u, )]
“‘;;7 rn “on’ Y Br ‘“rn “on 2 rn” Ten’ T2 Yen” en

0 n

F Ot = )+ o (g +ug) + (F + F) =0 (2.31)
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2 2 2
3 13 (n-1)" d
pl-s (u, ~u, Y+ (u~u ) -t (U )RS (U - )]
oy rn  an rar ‘"rn  “on Y‘2 rn “an 322 rn ‘on
POt T e D T2 (u mu )t - ) =0 (2.32)
ATH g Ty Apd T Wy = U rn an’ :
2 2
3 u au 2 3 u A
n , 1 Zzn n “zZn n 2
ul + - - 4oy + ] + (k) =+ wou_ + f, =0 (2.33)
ar2 roar r? zn 5z’ 0z zn zn
If now the following Hankel Transforms are defined
[ Uy, (kez) +ug, (k,2) = Jo (upy + ugy) Jppq (kr) rdr
pre:]
- Uy, (k,z) + Uan (k,z) = J, (urn - uen) Jn—] {kr) rdr
rOO
U, (k,z) = J Uy Jn (kr) rdr
: o (2.34)
fin (kyz) + fa, (kyz) = J (frn + fen) VIR (kr) rdr
- fi, (k,z) + fan (k,z) = Jo (frn - fen) Jn-l (kr) rdr
£ (kuz) = L} £ (k) rdr
L

th

where Jn (kr) is the n~" order Bessel function of the 1St kind, and if

the following identities are used,
{ 1 53 m 3 d 2
[+l 2 M0 8900 (ke) rdr = (S5 - & )j b J_(kr) rdr
JO 3}"2 roar Y‘Z 3z m dz™ 0 m

(2.35)
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J (G = W6 9y (k) rar = -k r.‘(b I (kr) rdr (2.36)

o o

[ (é%~+ gj(me_] (kr) rdr = k [ ¢ J (kr) rdr (2.37)
0 0

Then one can show that application of Hankel Transforms to Eqns. (2.31),

(2.32) and (2.33) leads to:

2

(i -2y 2R )<k A" -

“[21? K™ + w u](“]n*“an)*(”“)( ko)t f, +f3 =0 (2.38)
) [jfi,_ k2 + 2 E](—u +u, )+ (+u) (k Ai)- f, +f, =0 (2.39)

H 422 W I Y3 H n’” "In" "3n :

2
d 2 2 p d ' _
Lu[—;—k + ﬂ] Uy + (W) g7 Ay + oy = 0 (2.40)
where A; = [ A, Jn (kr) rdr is the nth order Hankel Transform of A
0

Using Egns. (2.36) and (2.37) and the following property of Bessel func-

tions,
Ty (kr) = 2 g g (ke) + k3, (kr) (2.41)
one can shbw that
A = kup, + oy (2.42)

Finally, if one introduces Eq. {2.42) into Eqns. (2.38) - (2.40),
and Egns. (2.38) and (2.39) are combined (by adding and subtracting

them), the following ordinary differential equations are obtained:
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2

d 2 2 d _
[M—sz - k5 G2) vpw T ug - W) kgzup, tFy, = 0 (2.43)
d 42 2. 2
O+ k gz up, + [OF2Y) i wk™ +p0 T u, +f, =0 (2.44)
( ifi - uk 4 5u0) + f, =0 (2.45)
o " pw ) Uzy T T3y :

Equations (2.43) and (2.44) define a system of two ordinary linear dif-
ferential equations for Uty and Uppe Ugps O the other hand, is un-
coupled from Usn and Us and can be obtained by solving Eq. (2.45).

It is convenient at this point to introduce the following two
arameters: PO  aa—
p o = 3 E(Z - JILL)E = kz - @-2__
A+21 CZ
: D
K™ = km - %5 2.47
m \/ Y, (2.47)

s
are the velocities of shear waves and pressure waves,

(2.46)

I

'Y -
where CS and Cp

respectively. {For viscoelastic materials CS and C_ are complex guanti-

p
ties). Introduction of these parameters into Egns. (2.43), (2.44) and

(2.45) leads to:

(2 )[<_;Eﬂ<§g_ - 2] - {3+n) k d + f,. =0 (2.48a)
Al 53o 2 ¢ Y ATU) Kg7 Uon T Ty »oa
Gy kK Lou, o+ [——~—A+2“d2-= 21 +f, =0 (2.48b
ATH dz Y1 T ML E;? Y 4 Uy n -48b)
d2 2
W) g+ £y, = 0 (2.49)
z

In order to obtain the homogenous solution of Eqns. (2.48), one

can take Uppy = Ae" and Uo, = Be™ and substitute in Egns. {2.48). The
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resulting system of algebraic equations for n and A/B yields four sets
of solutions, which can be used to define the general homogeneous solu-

tions for Uy and Uops Following this procedure, one obtains:

H _ -z ‘ -yz ¥4 Y2
Uy (k,z) = - k Cypy © + oy CZn e -k C3nve + oy C4n e
y (2.50)
- 0z ~YZ oz _ Yz
Usp (k,z) a Gy, © + k C2n e + a C3n e ka,1 e

where C]n(k)’ CZn(k)’ C3n(k) and C4n(k) are unknown constants. To ob-

tain a particular solution one can use the method of variation of

parameters; however, for the loadings involved in the present problem,

... and on, as will be shown in section 2.2.4, are independent of z;

Tn
therefore particular solutions can be obtained by inspection. One

and Uy, are:

such set of solutions for “1n

uP = -?—J—-—-— f
In o (X"zu) In
- (2.51)
P _ 1
Uop = _?“'on
Y U
Finally, the solutions of Eqns. (2.48) are given by:
r - o2
Tn
- - Yz 2
Uy, (k,z) ‘k Yy -k vy C2n ) fin/® (L +2u) (2.52)
= | { oz o+ 2
Uzn (k,Z) -o koo -k C3n e r fzn/Y u
vZ
\ C4n e

A similar procedure applied to Eq. {2.49) leads to the solution of

this equation:
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3

2z
j CSn e
1 + o (2.53)

U, (k,z} =11
3n i : YZ
L C6n e YU

2.2.2 - Layer and halfspace stiffness matrices

In order to determine the unknown constants in Egns. (2.52)
and (2.53) it is necessary to use the appropriate kinematic and force
boundary conditions of the problem. Since Egns. (2.52) and (2.53) ex-
press displacements in the transformed space, it is necessary to derive
expressions for the associated transformed stresses.
The three components of stress on a plane perpendicular to the z-

axis in cylindrical coordinates are given by:

( ol au

= oz s T
Urz'“(ar * az)
ou au
1 Z
1 % = il ) (2.54)
BUZ
| U2z = 2“—52_+ A4

[f the Fourier expansion of Uy ue and u,,» given by Eq. {2.26},

are used in the above equations, one gets

UPZH ces ng

Q
fl

n=0

sin neo

e
Q
it

[~1

Ygzn (2.55)

n=0

0 Oézn“CUS ne

NQ
N
1
Il ~-18

\ n
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where g and g are given by

rzn® %ozn zzn

{ au u

~ zn roy
Opzn ~ ul Y RRY: )
Vo ey n
gzn u 9z r Zn
ou
o, 9zp
L Ozzn = 2W 37 T A4,

and Ay, is given by Eg. (2.30).

(2.56)

(2.57)

(2.58)

By combining Eqns. (2.56) and (2.57) and reordering Eq. (2.58), one

can write:
{ %zn * Tozn " [3:? - g * g (g ¥ )]
{ %zn ~ %gzn [B:in ? Uzn * é%‘(urn Ugp) ]
{ Iypn = (A2u) E;EE * A(Eggﬂ'+ E%ﬂ +‘%'uen)

If the following Hankel Transforms are defined,

00

1pks2) + gz (ksz) = Jo (Gpzn + Tgzn) e (kr) rdr

- OGZH) Jn_1(kr) rdr

=1 (ks2) + 03, (ksz) = JO (opzn

(44]

Oy (K,2). = JO. 6, I (kr) rdr

Then Hankel transforms of Egns. (2.59) leads to:

(2.59)

(2.60)
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i} d
( Oapy t Tpg, =M= ks + 35 (ug, + ug )]

§ d
1=0p10 + Opa =Ulkug + 35 (= up + U )] (2.61)
| Topy = (21 2+ Ak )

Finally by using the expressions obtained for Uyne Yops and u3n

(Egns. (2.52) and (2.53)), one can express the transformed stresses

9210 T23p> and Tpp, aS:
r =07 A
C]n
Uny (k,z) 20k —(k2¥Y2) -2ok (k2¥Y2) C e_‘Yz
" TR 2 2,.2 | L
~ Qi
{ Tpan(k2)[ ) ek (B ek c,, &
Yz
| C4n © )
'kun/Yz
+ > (2.62)
Akfy 7S (A+2u)
n
_.YZ
e
_ Con
Opaplksz) =u -y 7] ooz (2.63)
‘ 6n

At this point it is convenient to distinguish between the solutions

corresponding to u, _ and sy and those corresponding to u Since the

3n’
solution of Usn involves only v, all quantities associated with Us, will

in

be identified as "SH-wave" quantities. In a similar manner, "SV-P waves"

will be used to refer to quantities associated with u,_and Up e

In
Consider the layered soil medium shown in Fig. 2.4a. The medium

consists of M Tayers resting oh a halfspace. Fig. 2.4b shows the jth
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Fig, 2.4 - A Layered Soil Medium.
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layer confined between the two planes denoted by A and B, and Fig.
2.4c shows the halfspace bounded by the plane C. The cbjective is now
to obtain a relationship between the transformed stresses on the two
planes A and B in Fig. 2.4b and the transformed displacements of these
planes. Such a relationship can be used to define layer "stiffness
matrices” as well as layer "fixed-end stresses." In a similar manner,
a relationship between stresses and displacements for plane C in Fig.
2.4c results in halfspace stiffness matrices. For a given value of k,
the stiffness matrices of the layers and the halfspace and the associ-
ated force vectors can be used to assemble the stiffness matrix and
the Toad vector for the layered medium; the resulting system of equa-
tions then yields the transformed displacements Utne Yop and Us, at

Tayer interfaces.

Layer stiffness matrix and load vector for SV-P waves

For the layer shown in Fig. 2.4b, one can use Eq. (2.52) to obtain
the expressions for the transformed displacements Uy and Uy, OF the
two planes A and B associated with local coordinates z' =0, and z' = h;

the result can be written in matrix form as

(- ) [ K ¥ LU B
“ Ugn " Van _ ¢ K a -k * Con \
u?n - E}n ) k0N YG—Yh _keoh Yeyh C3n; (2.64)
L ug“ " Uzn L,-ae-uh e e erh ] Can
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where U}n and Gén are given by:
T =, foa2(x+2u) (2.65)
In  "n/® U '
T = fo /2 (2.66)
2n 2n/Y ¥ .

Similarly, Eq. (2.62) can

%211 and Opopn ON the exterior side of planes A and B as:

be used to express the transformed stresses

A — N 2.2 2.2
[ f . -
091 + Oo1p [ -2ak (k"+Y%) 2ak (k“+y") n
A — 2
J Opppn GZZ”L . (k #y 2 2vk (k +Y°) 2vk L4 Con |
B - -ah -vh _ 2.2, Yh
910 = 91 2eke (k Y& ) Zuke (k +1%)e 3n
B — 2.2y ~ah “th 2.2y oh . Yh
where Eé]n and o,,  are given by: (2.67)
Tor. = -kf, P (2.68)
21n 2n ’
— _ 2
Toop = Akf-ln/oz {(x+2u) (2.69)

Finally a relationship between the transformed stresses (UZ]n and

022n) on planes A and B and the transformed displacements (”]n and uzn)
of these planes can be obtained by deleting the unknown constants C1n,
(2.64) and (2.67).

CZn’ C3n and C4n between Egns. The result can be

weitten in the form

{OQE-P} = [Keo_p] { ugy. D} {BQS_P} (2.70)
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where {ogg_p} and {“ég-P} denote the  transformed stress and

displacement vectors, that is

A A
r O21n UIn
A A
AB _ 10 . AB ~ |u
{GSV-P} - L {USV_P} = |v2n | (2.71)
B B
921n Y1n
B B
O22n J Wan

{&QS—P} is the vector of "fixed-end stresses" given by

r-u-' 3 ¢

Tn - %21n
u. -G
CRRNCTE I I ) B
u1n %1n
L Yan S2n

and the elements of the symmetric 4 x 4 layer stiffness matrix [Ké%_P]

are given by the following expressions: (AB and SV-P are omitted.)

Ky = 3 vk v7) Toys%Y - KPsYee]
g = ok Lar(3KE+42) (€% - 1) - (k* + 1By% + 205F) 5%T]
K1 = g uall® - ¥°) [K%sT - s

K1 = 5 keey(K® = v7) [CY - €]

I

O ot

Kop = piv( 2 . 72 [aySYC™ - K2SUY ]

32 = = Kq
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Ky, = %—uy(k2 - v2) K3 - aysY]
K33 = Kpq
Kg3 = &2
Kyq = Kpp (2.73)
In these expressions
D = ay[-2k? + 2k%c%CY - szgvt_ki SOSY] (2.74)

and Ca, CY, Sa and 5Y are used to denote the following quantities:

¢ = cosh{oh) s S

a

sinh(ah)

11

(2.75)

¢’ = cosh(yh) ;ST = sinh{yh)

fll

For the case in which E%_A << 1, one might use the asymptotic

values of these expressions to avoid 1oss of significant digits in the
operations (in fact for w=0 the above stiffness terms become indefinite;

j.e., zero divided by zero). For this case, one can show that

) |
K1~ 57 wklkn(1-€7) - (1+¢%) skck

Ke o2 22, 292 2. 2. 2
21 ~ v kK (1-69)2 - (1) (sK)2
Kaq ~ 2 uk[(1+9)S¢ - kh(1-¢2)C¥]

31~

Ky ~ - él Wkkh(1-62)5K]
_ 2

22 7 U7 uk[kh(1-£7) + (1+€%) skckg
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Ky ~ 2 uk[(146°)8K + kn(1-c2)ck] (2.76)
D
where
' 2
D = kW2(1-")? - (14e2)2(s%)? . (2.77)
c = CS/Cp and Ck and Sk denote the following quantities

k k -

C" = cosh (kh) 3 5" = sinh(kh) (2.78)

Halfspace stiffness matrix for SV-P waves

To evaluate transformed displacements and stresses in a halfspace,
one can use Eqns. (2.52) and (2.62) provided that, for the Forced-
vibration problems, the radiation conditions are satisfied. That is,
as z approaches infinity, the value of stresses and displacements should
tend to zero. This requires that the unknown constants CSn and C4n in
Egns. (2.52) and {2.62) be set equal to zero. (The real part of o and vy
is positive). Thus, for the halfspace shown in Fig. 2.4c, one can write
the following expressions for ithe transformed displacements and stresses

at plane C (surface of the halfspace) associated with the local coordin-

ate z = 0; (f1n = fon = 0)
C
( Y1n [;k v C1n
1 = - (2.79)
C
Uzn {7& K Con
C . 2 2
I 21n {;Zak Ky Cin
=u
: 2.80)
¢ [; 2.2 (
( o (k“+Y7)  2vk Cap

Combining Eqns. (2.79) and (2.80), one gets:
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c C

92In{ c "n
L_SV~%} (2.81)
og ‘ C
Zn u2n
where the symmetric 2 x 2 halfspace stiffness matrix is given by:
m(kz - YZ) k(k2 + YZ - 2ay)
(kS _pl = (2.82)
and for the case in which E%L-<< 1 by
' s
2
C 1 . 2uk €
[K ] = (2.83)
SV-P ]+€2 2 I

and ¢ = (JIS/C]3 .

Layer stiffness matrix and load vector for SH waves

Follewing the procedure described for SV-P waves, one can use Egns.

(2.53) and (2.63) to express transformed displacements and external

stresses associated with planes A and B in Fig. 2.4b as

A — [
Usp = Usgp 1 1 CSn
= : (2.84)

B — -y vh

u3 - u3n e e C6n

A C

923n Y ~Y 5n

B e ¥ e C
%23n | i 6n

where ug . = f3n/Y2U- (2.86)
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Combining Eqns. (2.84) and (2.85), one gets

(- e - B (2.07

where {Uéﬁ } and {uéﬁ } denote the stress and displacement vectors,

that is
UA UA
Z23n 3n
AB ) _ ) AB }
{OSH } B ; {USH } 1B (2.88)
923n Usn

{523} is the vector of “fixed-end stresses" expressed as

) 141 ) o
SH SH Uz, '

and the 2 x 2 Tayer stiffness matrix is given by:

coshy

AB? v cosh vh -1
[KSHJ - sinhiYnj -1 }J (2.90)

Halfspace stiffness constant for SH waves

The use of Egns. (2. 53) and (2.63) with the imposition of the
radiation condition leads to the following expressions for the trans-

formed stress and displacement of plane C (Fig. 2.4¢),

¢ _
W= g, (2.91)
o =vug (2.92)
23n bn :

Therefore, transformed stresses and displacements at the surface of the
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haTlfspace for SH waves are related by the following expression

C

GSBH = yuusg, (2.93)

2.2.3 - Displacements within-a Layer

In order to obtain the average displacement in the layer one
needs to compute the displacements at a number of points within the
layer; these displacement values along with those at the two planes
confining the layer can be used to define a displacement pattern across
the layer.

Consider again the layer shown in Fig. 2.4b. Having computed the
transformed displacements of planes A and B, one can use Eqns. (2.64)
and (2.84) to evaluate the unknown constants Cip> +-+ » Cgye Then the
transformed displacements at a point within the layer can be evaluated
by using Egns. (2.52) and (2.53).

For the present study, in addition to layer interfaces, the displace-
ments of the middle of Tlayers are computed. These displacement values
for each layer are used to define a Z"d degree polynomial to approxi-
mate the variation of displacements across that layer. The average
value obtained by using this interpolation function corresponds to the
well-known Simpson's Rule.

Explicit expressions for the mid-layer transformed displacements are

given next.

Mid~layer displacements for SV-P Waves

The transformed displacements of the mid-plane of the Tayer shown in
Fig. 2.4b (Plane E) are related to those of planes A and B by the follow-

ing expression:
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;A -
£ u;n Uin m
u ‘ — In
Tn u - U
BRI B B4 B N (2.94)
E Sy-Pp B B B
Yoy ) u1n u]n u2n
B —
{ u2n - uZn

where the elements of the [T§V=P] are given by (E and SV-P are omitted):

Tyy = b LoykB(COCY/ 2w ¢VBeT) - B 2502 A2V (M2 4 (V2]

1

Toy = ak[uy(CYSa/z - c¥/es™y kZ(SY/ZCa _ gyca/z) + k2572 a2 q

+ 0yYS

=

Ty, = g k[ar(CsY/2 - Y28V 4 (B(sWECY - s W2y 4 (B2 4 oysY/2
T,y = & Lok2(CYCY 2 4 ¢Y/2%) - Py 2YsW/2 L\ Aer/250_ o 2(cY/2 4 c¥/2)]

T

13="1
To3 = - Ty
g =~ T2
Tog = Top (2.95)

In these expressions, in addition to the previously-defined symbols,

D, ¢ CY, s%and SV (Eqns. (2.74) and (2.75)), ¢¥2, ¢¥/2, s¥2 44
v/2

S are used to denote the following quantities:
(03
¢¥2 = cosh (ah/2) $ 72 = sinh (oh/2)
(2.96)
¢Y/2 = cosh (vh/2) s/~ sinn (yh/2)
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Also E}n and Uén are given by Egqns. (2.65) and (2.66), respec-

tively.

For E%L' << 1, one can show that the following expressions define
S

the asymptotic value of the elements of [Tgv_P].

k/2
Ty~ — [khe (€%-1) + 25%/2(14e?) TTkn(e2-1) - 20%/ 25K/ 2 (1462)]
2D’
Tyy - == kh(1-e2)s%/ 2[2(1+¢2)sK/ 22 L kn(1-¢2)]
20
T, - 1 kh(1-62)sM 212 (146%) M 2R 2 4 kn(1-€)
20

]

Tp ~-§%—7[khck/2(1~az)4‘25k/2(1+52)][kh(]-52)- ock/25k/2(14.2)]

(2.97)
where D', CK, and SK and ¢ are defined by Egns. (2.77) and (2.78), and
Ck/2 and Sk/2 denote the following quantities:

k2 = cosh (kh/2) . s 2 ginh (kny2) (2.98)

Mid-layer transformed displacement for SH waves

The following expression defines the transformed displacement of
plane E in terms of the transformed displacement of planes A and B (see

Fig. 2.4b),

E 1 A B — —
Ugp = (u3n * Uy, - 2u3n) * U3y (2.99)

vh
2 cosh (TT)

where Eén is given by Eq. (2.86).
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2.2.4 Integral Representation and Numerical Evaluation of Displacements

The preceding anaiytical solution scheme can be used to evaluate
the displacements in layered soil media caused by uniform Toad distribu-
tions over cylindrical or circular surfaces (see Fig. 2.3). For this
purpose, it is necessary to divide the soil medium into a number of lay-
ers such that each Tlayer contains only one of the cylindrical Toad distri-
butions. In this way, the loads on the cylindrical surfaces can be trea-
ted as body forces for which the "fixed-end stresses," (see sec. 2.2.3)
can be evaluated. whereas the loads on circular surfaces can be considered
as external forces at the interface of two layers.

Consider the uniform horizontal and vertical Toads on cylindrical and
circular surfaces shown in Fig. 2.3. The loads on cylindrical surfaces
are associated with forces developed along the pile shafts, whereas the
loads on circular surfaces correspond to pile-tip forces. In the follow-
ing analysis, the radii of the cylinders and circular areas will be de-
noted by R, and the height of the cyiinders by h. (R is the radius of the
piles, and h is the thickness of a layer). The load distribution in Fig.
2.3a (lateral Toad on a cylindrical surface) can be expressed in cylindri-

cal coordinates as

[ f (r,8,z) = 21 P s(r-R) cos ¢

r RN,
1 fo(r.e.2) = S S(r=R) sin o (2.100)
T,(r.0,z) =0

where 6 is the Kronecker delta function.
Comparing Egns. (2.100) with the expansion of loads in Egns. (2.26),

one can write
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. 1 :
fY‘] - Zﬂﬁh (S(Y“'R)
4 _ =1
fg1 = Z7mR S (r-R) (2.101)
L fz1 =0
and
g = fon = fzn = 0 3 forn # 1 {(2.102)

Since the amplitudes of the Fourier expansion of this Tpad for values
of n other than one are zero, the corresponding displacements are similarly
contributed only by the terms associated with n=1; therefore the displace-

ment expansions reduce to the following expressions:

It

(r,6,2z) = u,;{r,z) cos o

Uy ri

i

(r.8:2) = ug{r,z) sin o (2.103)

e
uz(r,e,z) = uz1(r,z) cos 6

On the other hand, application of Hankel transforms, according to

Egns. (2.34), to fr1’ fe1,and f ¢ given by Eqns. (2.101) leads to

J (kR)
fir = - =3
11 27h
f21 0 (2.104)
J _{kR)
frr = —o
31 27h

The transformed displacements associated with these transformed
forces can be obtained by the techniques described in secs. 2.2.2 and
2.2.3. If uyys Upy and uyy are the transformed displacements correspond-

ing to fH = f3] =-7%H‘ and f21,= 0, then actual transformed displace-
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ment associated with fy,, f,, and f3; in Eqns. (2.104) are given by

—JO(kR)

Upqs HJO(kR) Unq and JO(kR) Usqs thus the Hankel transform of

displacements in Egns. (2.34) can be written as (n=1)

to:

’-JO(kR) Ugq * JO(kR) Ugq = Jo (uM + ue]) Jz(kr) rdr

§ 9 (KR) uyq + I (R) ugy = JO (upq = Ugp) Jolkr) rdr (2.105)

-JO(kR) Upy = !0 uZ1J](kr) rdr

The application of inverse Hankel transform to these equations Teads

( Uy * Ugp = Jo (—u]] + u31) JO(kR) Jz(kr) kdk
T, L (ugy * ugy) J_(KR) 3 (ke) kdk (2.106)
Ch Jo (-uyy) 3y (kR) 3y (kr) kdk

Finally, by using the recurrence relations for the Bessel functions,

one can obtain the following integral representation for Uys Ugy and Uyge

Jq (kr)

[u kr

T - J: [u-” Jo(k}") JO(kR) + (u3.I —uﬂ) Jo(kR)] kdk

J'(kr)

8

8

Uy kR) kdk (2.107)
0

z1

= 1
1 Y1 * JO [ugq 9o Ckr) J (kR) + (Uyq = uzy) o J (kR)Ikdk
-
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A similar procedure can be followed to obtain the integral repre-
sentation of displacements for the locad distribution shown in Fig. 2.3b
(frictional force on a cylindrical surface). For this case, the load

distribution can be expressed as

1
<

[ £,(r,0,2)

4 fe(r,e,z) =0 (2.108)

v fo(ri0,2) = ggﬁﬁ-a(r-R)

Comparison of these eguations with the expansion for the loads in

Eqns. (2.26) leads to

( fPO =0
| oo = 0 (2.109)
| 4 s §(r-R)
and |
f.=f. . =f =03 n#0 (2.110)

Since the only nonzero term in the load expansion corresponds to
n=0, Tikewise, in the displacement expansion, only the n=0 term will have
non-zero value, and all other terms will vanish; that is,
u.(r,6,z) = u, (r,z)
uo(r,6,z) = 0 (2.111)

u,(rs8,2) = u, (r,z)
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Following a procedure similar to the one described for horizontal
lcading, one can show that if Uyg and Uy are transformed displacements

and u,, are

0

- R
due to transformed loads flO = 0 and f20 = ooh b then Upo

given by

Ium - F Uy dq (kr) 3, (KR) kdk
0
(2.112)

l U,o = J: Usg Jo(kr) Jo(kR) kdk

For the loads distributed over circular surfaces (Fig. 2.3¢ and
2.3d) it is necessary to evaluate the corresponding transformed forces
directly. Consider first the load distribution shown in Fig. 2.3c (fric-
tional force on a circular surface). One can represent this Toading by

the following expressions:

R =——C0$8
rz TTR2
o — __-—;:I.— .
Oy, = nRz sin 9 r<R (2.113)
L aéz =0
Tyz = Oz =0,, = 0: r> R

If a Fourier expansion of these loads, similar to the expansion of
stresses in Eqns. (2.55), is compared with Eqns. (2.113), it can be con-

cluded that

(G =
vzl TFR2
le - (2.114)
o = — 2.114
0z 1 TFRZ
\6‘ :0

zz1
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and

Oyzn = azn = %zzn - 0; for n# 1 (2.115)

Therefore one only needs to consider the terms associated with n=1 in

the expansion of displacements; that is, Ups U, and u, can be expressed
by eqns. (2.103). The transformed loads associated with 5}21, Eéz] and
3221 in Egns. (2.114) can be obtained by the application of Hankel trans-

forms according to Eqns. (2.60), the result is:

SIS A (1)
911 T "% T KR

1 5., =0 (2.116)
0221 :
o 9qkR)

CO3] T TRR

A procedure similar to the one described for the 1oads on cylindri-
cal surfaces leads to the integral representation of Upps Ugy and U1
similar to those presented by Eqns. (2.107) except that the term Jo(kR)
should be replaced by Elé;El . The transformed displacements Upps Upq
and Uy in these equations then correspond to transformed applied stres-
SeS Gy1 =y > Tppy = 0and Gy = .

Finally for the load distribution shown in Fig. 2.3d (vertical force
on a circular surface) one can show that forces and displacements are
contributed only by the terms associated with n=0 in the Fourier expan-
sions and that expressions for displacements are given by Eqns. (2.112)

except that in these equations the term JO(kR) should be replaced by

J](kR)/kR; transformed dispiaements U1g and Ung in these equations then

A [

correspond to transformed applied stresses %10 © 0 and Ipog =
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The expressions for displacements obtained in this section involve,

in general, integrals of the form

I - fo £ (kr) 9 (KR) dk (2.117)

in which the kernel, f, represents a function of k and is associated
with transformed displacements, and n and m are integers that can take
on values of zero and one.

The first step in the numerical evaluation of the above expression
is to approximate the semi-infinite integral by a finite integral, that

is: ku
C J F o (kr) 9 (KR) dk (2.118)
0

in which ku is an upper limit of integration which can be defined on
the basis of the integrand's rate of decay. The next step is to divide
the integration domain (0, ku)g into a number of discrete intervals and
to use, in each interval, the value of the integrand at a number of
points in order to define an interpolation function. These functions,
which approximate the actual variation of the integrand, are used to per-
form the integration in each interval analytically. The final step is
then to sum the fésu1ts of the numerical integration over the intervals.
Before describing the quadrature implemented in the present work,
it may be instructive to examine certain characteristics of the kernel f
(Eg. 2.118). This function represents a transformed displacement associ-
ated with a load distribution in the medium. Fig. 2.5a shows the plot
of the real part of Upg at the surface of a layered halfspace caused by

a uniform frictional Toad on a cylindrical surface in the top layer. The
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Fig. 2.5 - Transformed Displacements of the Surface of
a Layered Medium.
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medium consists of 5 layers resting on a viscoelastic halfspace; the

following table gives the properties of this medium.

Layer Thickness Shear wave Mass density Damping Poisson ratio

velocity

Top 1.0 1.0 1.0 0.05 0.40
2nd 1.5 1.5 1.0 0.05 0.40
3rd 2.0 2.0 1.0 0.05 0.40
Lth 3.0 2.5 1.0 0.05 0.40
5th 4.0 3.0 1.0 0.05 0.40
Half- — 4.0 1.0 0.05 0.40
space

In addition, the frequency of vibration, w, is 1 rad/sec. Fig.
2.5b shows the plot of the real part of Uqq at the surface of this
medium caused by a uniform lateral load on a cylindrical surface in the
top layer. In the ensuing paragraphs, the region which contains the
peaks of the kernel f will be referred to as "region I," and the remain-
ing domain will be referred to as "region II." (Region I extends to
values of k which are of the order of éi-g where CS is the shear wave
velocity of the layer in which the 1oadsis applied.)

The plots in Fig. 2.5 show that the kernel f in region I is charac-
tarized by proncunced peaks. These peaks, which are associated with
surface wave modes, become sharper as the material damping in the medium
dacreases. In addition, more peaks appear in the variation of the kernel
as the number of layers increases. These plots suggest that for the pur-

pose of numerical integration in region I, one has to select, in general,
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small intervals, so that the erratic nature of the integrand can be cap-
tured by the interpolation functions.

On the other hand, the variation of the kernel in region II, which
contains the decaying branch of the kernel, is very smooth (see Figs.
2.5a and 2.5b). The kernel, in this region, approaches zerc ever faster
as the relative distance between the layer at which f is evaluated and
the layer in which the load is applied increases. This can be verified
by examining Figs. 2.6a and 2,.6b, which show the variation of Usg and
Uy at the surface of the halfspace for the same medium and load condi-
tion associated with Figs. 2.5a and 2.5%b, respectively. These observa-
tions suggest that, as far as the variation of the kernel is concerned,
for numerical integration one may select larger intervals in region II
than in region I.

As for the Bessel functions in the integrand, one has to make sure
that, for small arguments (kR and kr smaller than, say 4.0), the size
of the interval is small enough to allow a sufficiently accurate repre-
sentation of these functions at the integration points. (Since the wave-
length of a Bessel function is approximately 27, in order to have, say,
10 intervals in a cycle, it is necessary that the size of the interval,
Ak, be selected such that (Ak)r 5_%% and (Ak)R S.%%9= On the other hand,
for 1arge_érguments, one may use Hankel's asymptotic expansion to approxi-
mate the Bessel functions. Hankel's asymptotic expansion for Jv(y) for
large argument is given by:

3,0 =/ PPloay) cos x - Qv,y) sin x] (2.119)

where
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X=Yy- (%\H};) T, (2.120)

P(v.y) ~ ? ()% (wa22) g (u-1)(=9) | (u-1)(1-9)(n-25) (u-49)

250 (2y)2* 21(8y)° 41 (8y)"*
(2.121)
(voy) - J (np 2Bl el (e1e9)(e28) (2.122)
2=0 (2y) 31(8y)°
In these expressions u = NG
Eq. (2.119) can be rewritten as:
J,(¥) = A (y) cos y + B (y) siny (2.123)
in which Av(y) and Bv(yF are given by
ALY = 1—% [P(vay) cos (Fv + Jhm + Qv,y) sin ( vt —)Tr]
(2.123)

B,(y) = 1/ [P(v.y) sin (bv + Pn - Q(v.y) cos (ot ]

Now consider an interval of integration between kT and k3 on the
k-axis. In addition, for the present study, an integration point with
k=k2 is used at the center of the interval so that a quadratic poly-
nomial can be defined to interpolate the integrand between these three
values of k. Depending on the value of k]R and k]r, one of the follow-
jng four integration procedures is then applicable: (In the following,
8 is used as reference value to distinguish between small and large val-

ues of the argument for Bessel functions.)

1) kR<sand kyr < §: IfFy, F,and Fy denote the value of the

integrand, f Jn(kr) Jm(kR), at k1, k2 and k3, respectively, then one can
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obtain the quadratic polynomial which is defined by these values. It

can be shown that this polynomial is given by

Fk) = PO 0k ¢S 5 k< k< kg
in which
»
[P = —— [F; - 2F, + F,]
(Aé}f 1 2 3
4 T .
Q = [ky(4F, - Fy - 3F,) + k,(4F, - 3F, - F.)] (2.126
(Z Wl By 30 kg 8F, - 3R - )
S = [k Py + K2 Fy - ky Ko(4F, = Fy - Fa)]l
\ (Ak)z 1°3 371 17372 1 3
and 4k = k, ~ ky. The integration of the polynomial F(k) over the
37 Fy o+ 4F, + Fy
interval [k]»k3] then results in Simpson's rule (Ak x g ).

2) k1R < § and k1r > 81 For this case one can replace Jn(kr) by

Hankel's asymptotic expansion given by Eq. (2.123); thus one can write:

1 (k3fk J_{kr) J (KR} dk
R (OF RN

K

k
3
=J £(k) 9 (KR)[A, (kr) cos (kr) + B (kr) sin(kr)] dk
k1,
ks
= [ £ 3,0@) A (kr) cos (kr) dk
k

. [k f(k) 3 (kR) B (kr) sin (kr) dk

(2.125)

(2.127)
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Consider the first integral in Eq. (2.127): One can approximate
the coefficient of cos(kr) in this integral by a guadratic polynomial,
as described in the previous case. (In this case, however, Fys F2 and
F are the value of f(k) Jm(kR) An(kr) at kq» 'k2 and ks, respectively).
Therefore this integral is approximated by an integral of the form
[

) (Pk2 + Qk + $§ ) cos(kr) dk, which can be evaluated explicitly.
k1

Since the oscillatory nature of the Bessel function is accounted
for by the trigonometric functions, the size of the interval is con-
trolled only by the degree of smoothness of the other functions in the

integrand.

3) k1R > & and k]r < &: The procedure for this case is similar to

that of the previous one, except that now one has to use the asymptotic

expansion for Jm(kR).

4) k]R > & and k1r > & : In this case one can use the asymptotic ex-

pansion for both Bessel functions in the integrand. Then, in the final

results, one gets integrals of the form:
k3 5 cos{kR) . cos{kr)
J ) (Pk™ + Qk + S ) { { dk, in which the poly-

I sin(kR)  sin{kr)

nomial (Pk2 + Qk + S ) has replaced the actual functions appearing with
the trigonometric functions in the integrand. These integrals also can

be evaluated explicitly.
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2.3 Lateral and Axial Vibration of Prismatic Members

in Sec. 2.1 certain response quantities of a dynamically excited
prismatic member (pile) were used to formulate the pile group problems.
More specifically, the formulation was based on the evaluation of the
dynamic stiffness matrix of the piles Kp, the dynamic flexibility matrix
of clamped-end piles, Fp, and the dynamic flexibility matrix of clamped-
end piles for harmonic end displacements, Wp, The objective of this sec-

tion is to derive the expressions for the response quantities that are

needed to construct these matrices.

2.3.1 - Lateral vibration

The equilibrium equations for a differential element of a beam in
lateral vibration, including the effect of axial force, are given by

(see Fig. 2.7b):

dv 2

g tmwu = 0 (2.128)
dM du - _
vV + i + H =z 0 (2.129)

in which m denotes mass per unit length of the beam and H is the constant

axial force in the beam. Using Eqns. (2.128) and (2.129) along with the

2
moment-curvature relationship, M = EI §~%; (EI being the bending rigidity
dz
of the beam), one gets:
4 2 2
d H )
St G S5 - =0 (2.130)

The solTution of this differential equation can be expressed as:

u = C] cos(nz) + Czsin(nz) + Cq cosh(ez) + C, sinh(£z) (2.131)

4
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(a)

L ]
(c)

Fig. 2.7 - A Beam in the Lateral Vibration.



65

in which:

' 2 2.1/2 1/2

_ H i H

ﬂ'{ Lopp) + Frd *“"251}

(2.132)
2 2 172 1/2
- H m H
g_{[(EI) +£JI] - EI}

In order to evaluate the elements of Wp associated with the lateral
degrees of freedom, one needs to derive the expression for the lateral

displacement of the beam caused by the displacements at the two ends,

Up» ép> g and ¢3. To achieve this, one may use the equation for u (Eq.
2.131) along with its derivative to express the end displacements in
terms of C], CZ’ C3 and C4, If now the resulting equations are solved

for thase unknown constants, one gets:

1
¢y = TT; [T+ 5Ty ug + % 90y + (€7 = C%)uy - (% S" - £ 57451

Com [ Ty L meg + 57+ EsRuy + L (- cFyg]
(2.133)
] 1 oo ¢k I1gn_ 18
Cy= o LT Tdug = oty = (67 Chug (7 57 2570
1 ] 1 n ﬁ 1M 2
Cy= T;'[TZUA 3 (ﬁ Tyt g Yop - (g st + Sg)uB 5 (C° - €7 )épl

In these expressions To’ T15 T29 T3 and T4 are given by :

_ooenel _om . EveneE
o 2 - 2C'"C (g - n)S S

_ AMpE 1 NG
-i—CC +gSS

—
K
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- ek 1 <N
T2 CiS5+ F S'C

= ¢Neb_ N encE
T3 S'C £ c''s

= <Nck_ N penpk (2.134)
T4 SHS E c'c

and €1, s", c& and S% are used to denote the following quantities:

1

€N = cos (nL) ; ST = sin (nL)

(2.135)
€

m

C

il

cosh (EL) st = sinh (L)

and L.is the length of the beam. Finally, the desired expression can
be obtained by introducing Egns. (2.133} into Egns. (2.131). (The ele-
ments of Wp associated with a point € of the beam are then the coeffi-
cients of uzs ¢ps ug and ¢p in the expression for the displacement of
voint C).

The dynamic stiffness matrix of the beam is obtained by expressing
the forces at the two ends of the beam in terms of the displacements of
these points. This can be achieved by using Eq. (2.129) and the moment-
curvature relationship along with Eqns. (2.131) and {2.133); the result

can be written as:

4 4 B
VA Uy
M op

: = K ) [ (2.136)
Vg Up,

L Mg . ¢p

in which the elements of the symmetric 4 x 4 dynamic stiffness matrix, K,

are given by:
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Ky = 5= (0" + £ (nsn c8 + g cn 58)
Y

EL;, 2 2 n e
Kyq = T;'[(” - )1 - AN ed) +2nes 5]

%1='%*¥+5%m5”+5¢)

El 2, 2
K1 =To_ (n° + £°)(c& - ¢cM)
~El 4 & £_nchsé
Koo = T (F+ g shes-mets)
n
Ky = - %1_(n2 + g2)(CE - ¢M)

o

.

Kjp = 7 (2 + 5)(ns® - ¢ s

4]
K33 = K4
Ke3 = - Ky
Kaq = Kpp (2.137)

In order to evaluate the elements of Fp associated with the lateral
degrees of freedom, it is necessary to derive the expressions for the
lateral disp1acehent caused by a lateral point load in a fixed-end beam.
Consider the beam shown in Fig. 2.7c subjected to a point force, p, at

z = a, One can use Eq. {2.131) to express the displacements of the beam

as:

s
I

A]cos(nz) + Azsin(nz) + A3cosh(gz) + Agsinh{gz) 0<z<a

(2.138)
L

=
|

= B1cos(nz) + By sin(nz) + B3cosh(gz) + B4sinh(€z) a<z

| A
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where n and £ are given by Egns. (2.132). The unknown constants A],
A2, vor By, B4, can be determined by imposing the kinematic boundary
conditions at the two ends (zero translation and rotation) along with
the displacement compatibility and equilibrium conditions at the point

of application of the load. The result is:

A] = EIn(n2p+ EZ)TO [?3(C05h(ga) - cos{ma)) + (T] - 1) sinO\;)
| -+ D sinh(ga):[
A, = ;P (T, - )cosh(za) - {1 + & 1,) cos(na)
2 EIp(g? + gZ)TO [ 1T eoes n 4 CO%m
+ Tz(% sin(na) - sinh(Ea){}
Ay = - A
Ay = - gAZ
B] - 2p 2 | [I (cosh(&a) - cos(ma)) + (T, + D-)(§-s1‘n(na)
EIn(n™ + £7)T, |3 4 t'n
- sinh(ga))]
B, = P (Ty - 1){cosh(za) - cos(na))
2 Elnln® + gz)To [ ! cosh(za) - cos(na)
+ Tk sin(ra) - sinh(&;a))]
By=-"Ty B -T3B
84 = T2 B1 + T4 82 (2.139)

2.3.2 Axial vibration

The equilibrium equétion for a differential element of a beam in

axial vibration §s given by (see Fig. 2.8b):
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dF 2
Fimwv = 0 (2.7140)

Introduction of the force-displacement relationship F = EA %%-into

Eq. (2.140) leads to:
2
dv m 2 B
wd22+—__EAm v = 0 (2.141)

The selection of this differential equation can be written as

v = C] cos(zz) + C2 sin(zz) (2.142)
in which: i mw21]/2 (2.143)
: C= [ﬁ—J .

Following the procedure described for Tateral vibration, one can
derive the expressions for C-l and 02 in terms of the end displacements

of the beam:

17 Y

C, = srer - coslel) vy + vg] (2.144)

Therefore Eq. (2.142), with C1 and CZ defined by Eqns. (2.144), can
" be used to obtain the elements of wp associated with axial degrees of
freedom. |

Similariy, the axial dynamic stiffness matrix of the beam can be
obtained following the procedure outlined in the previous section: one
can show that:

FA cos(zl) -1 Va
EAC

S (2.145)

FB -1 cos(cL) Vg

Finally, the axial displacement in a fixed-end beam caused by an axial
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point Toad p {see Fig. 2.8c) is given by:

<
1

= A] eos(rz) + A2 sin{zz) D<z<a
(2.146)

<
f

B1 cos(gz) + B, sin(zz) a <z <L

The unknown constants A], AZ, B, and B, can be found by using the
kinematic boundary conditions at the two ends of the beam together with
compatibility and equilibrium conditions at the point of the application

of the Toad; one cah show that:

[ A

1
jew]

1

A, = B [cos(za) - cotan(zL) sin(za)]

172  EAC
(2.147)
B, = F%E’ sin{za)

, = Eﬁ% cotan(zL) sin(za)

1

| B

Egns. (2.146) with A], AZ’ B] and By defined by Egns. (2.147) can
be used to obtain elements of Fp associated with axial degrees of freedom.
The expressions derived in this section apply to the dynamic excita-
tion. The corresponding expressions for the static case are available

in the literature and therefore are not repeated here.
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CHAPTER 3 - DYNAMIC BEHAYIOR OF PILE GROUPS

The objective of this chapter is to present the numerical results
cbtained with the formulation outlined in chapter 2, and to investigate
certain characteristics of the vibration of pile groups. The quantities
of interest in this study are: 1) The dynamic stiffnesses of pile groups
corresponding to the horizontal, vertical, rocking and torsional modes
of vibrationy 2) the seismic responée of pile groups; and 3) the dis-
tribution of an applied load (horizontal or vertical) on the pile cap
among the piles in the group. While information on the distribution of
loads among the piles is: necessary for the deéign of the piles' section,
the stiffnesses, along with the transfer function of the pile cap associ-
ated with a seismic excitation, can be used, in the analysis of the super-
structure, to account for the foundation-structure interaction effects.
(In a conventional foundation-structure interaction analysis for seismic
excitation, first the stiffnesses of the foundation are evaluated (soil
springs): next the motions of the foundation in the absence of the super-
structure are obtained (kinematic interaction), and finally the dynamic
response of the superstructure mounted on soil springs and subjected at
the base to the motion obtained from the kinematic interaction analysis
is computed {inertial interaction). For details see, for example, Kausel
and Roesset (1974)).

Although the results presented in this chapter cover only a Timited
range of parameters, it is believed that they can be used to draw general
conclusions about certain aspects of the problem. In addition, these
results, along with those of chapter 5, can be helpful in gaining insight

into the mechanism of the dynamic behavior of pile groups.
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In this chapter, as well as in chapters 4 and 5, the elasticity
modulus, mass density, poisson ratic and material damping of the soil
are denoted by Es’ Pgs vs.and BS, respectively; and the corresponding

quantities for the piles are denoted by E v.. and Bp‘ In addition,

p* Pp, p
A 1 L and d are used to denote the cross-sectional area, moment of

Ps p*?

inertia, length and diameter of the piles, respectively. Also, N refers
to the total number of piles and s to the distance between adjacent piles.
Finally, a, defines the nondimensional frequency, i.e., 3, = %§3 in which
w is the frequency of harmonic vibration and CS is the ]argestsshear—wave
velocity of the soil profile.

In order to verify the numerical solution scheme developed in the
present study, the following comparisons with the results of previous
investigations are presented. Figure 3.1 shows the horizontal and ver-
tical static stiffnesses of 3 x 3 pile groups in an elastic halfspace ob-
tained by Poulos and Davis (1980). The same quantities evaluated by the
present method are also shown in this figure (dashed 1ine). These re-
sults correspogd to %—= 25 and Eﬁgq =103
to %-= 25 and Eé': 1073 for thegzerticaT case. The figure shows that the

for the horizontal case, and

results of the present method for the vertical stiffness agree very well
with those qf Poulos. For the horizontal case, on the other hand, the
results of the two studies display some discrepancies; these results, how-
ever, do not differ by more than 20%. Therefore it can be concluded that,
in general, there is a fairly good agreement4between the present solution
and the Poulos solution.

Figure 3.2 displays a comparison between the results of the present

study and those reported by Nogami (1979) for the vertical stiffness and
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damping of a 2 x 2 pile group. The soil medium in this case is a uni-

form viscoelastic Stratum, with thickness H = 75 d, resting on a rigid

2
bedrock, and the piles are characterized by-% = 37.5 and ;ELK =1 (M is
p

the shear modulus of the soil); also §-= 5. The figure shows that the
agreement between the two solutions is fairly good. The small discrep-
ancy observed between the two solutions is believed to be partly due to
the fact that, in the analysis of friction piles, Nogami introduced a
soil column beneatﬁ each pile so that he could use the formulation devel-
oped for end-bearing piles.

In the results presented in this chapter, as well as in chapters
4 and 5, it is assumed that the so0il medium is a viscoelastic halfspace

with Ve = 0.40 and Bs = 0,05, and the piles are made of elastic materi-

g
als with vp = 0.25 and Bp = 0.00. 1In addition, it is assumed that 5§~=
p
0.70 and %‘= 15. The response quantities examined in this chapter are

evaluated for a number of pile spacings (%—= 2, 5 and 10) and group for-

mations (2 x 2, 3 x 3 and 4 x 4 square groups), as well as two soil con-

ditions (soft soil: E§»= 10’3; stiff soil: EEA: 10"2)
p

of pile-to-cap connection {fixed or hinged).

, and the two types

3.1 Dynamic Stiffnesses of Pile Groups

The stiffness functions, obtained with the present formulation, are

complex quantities which can be expressed as:

K=k+ia0C (3.1)

For horizontal and torsional cases, the dynamic stiffnesses are

normalized with respect to the horizontal static stiffness of a single
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pile in the gr‘oup,,kix{a0 = 0) , whereas for the vertical and rocking

dynamic stiffnesses the vertical static stiffness of a single pile,

k;z(ao = 0) , has been used for the normalization. More specifically,

the normalization factor for the horizontal, vertical, rocking and tor-

: . . . 3 - s -
sional dynamic stiffnesses are: kax(a 0), Nkzz(a0 0),

2 .S
in kzz(a

0
= 2.5 _ - s
= 0), and Zri kxx(a0 = 0), respectively: in these factors

0
x and r refer to the Cartesian and polar pile coordinates, respectively.
{In order to d%stinguish between the stiffnesses of pile groups and
single pi]és, a superscript "G" is used for the former and a superscript
"s" for the latter.)

Figure 3.3 shows the horizontal and vertical stiffnesses and damp-
ings of a 2 x 2 pile group embedded in a halfspace, for different pile
spacing (s/d = 2, 5 and 10) and for ES/Ep = 10"3. This figure shows
that the behavior of a pile group for very close spacings and up to a
certain frequency, is very similar to that of a rigid footing; that is,
stiffnesses decrease with frequency and even become negative, indicat-
ing a behavior dominated by inertia effects, and radiation dampings dis-
play a fregquency-independent characteristic. On the other hand, inter-
action effects among the piles start to dominate the overall behavior
of the group'as frequency exceeds a certain‘1imit. This can be verified
by examining the changes in the patterns of kxx and kZZ for different
pile spacings. (For example, for s/d = 5, the figure shows that kxx and
kzz first decrease up to a certain frequency and then start to change

their pattern). The transition between the two modes of behavior occurs

at smaller frequencies as the distance between the piles increases.
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Fig. 3.3 - Horizontal and Vertical Dynamic Stiffnesses of 2 x 2 Pile
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Figures 3.4 and 3.5 present the results for the horizontal and
vertical dynamic stiffnesses of 3 x 3 and 4 x 4 pile groups for the
same soil and pile parameters used for the 2 x 2 group (Fig. 3.3). In
addition to the general characteristics observed in Fig. 3.3, these
figures display a more pronounced group behavior as the number of piles
increases. Moreover, with an increase in the number of piles, more
peaks are introduced in the variation of stiffnesses and dampings.

An interesting common feature of these results is the very large
interaction effect in the group; if there had been no interaction, the
curves would have coincided with those of a single pile, the real part
of which deviates only slightly from unity in the frequency range con-
sidered (dashed line in Fig. 3.3). The large interaction effects, which
seem to be stronger for the vertical vibration than for the horizontal,
are essentially due to the out-of-phase vibrationlof piles. This point
will be discussed again when the superposition scheme is examined in
chapter 5.

Figure 3.6 shows the horizontal as well as vertical stiffnesses
and dampings of 3 x 3 pile groups in which the piles are hinged to the
cap. Comparing the results in this figure with those in Fig. 3.4 (cor-
responding to groups in which the piles are rigidly connected to the
cap), one can see that there s a considerable reduction in the hori-
zontal stiffnesses and dampings, as expected. These guantities, however,
have the same features as were displayed by plots of kXX and Cyy in
Fig. 3.4,

Figure 3.7 shows the horizontal and vertical dynamic stiffnesses

for a stiffer halfspace (Es/Ep = 10'2) and for groups with different
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number of piles (2 x 2, 3 x 3 and 4 x 4). For all these pile groups,
s/d = 5. This figure displays basically the same features chserved for
the groups in the soft soil medium (Figs. 3.3, 3.4 and 3.5j. How-
ever, the interaction effects seem to be less pronounced for the stiffer
s0i1 medium.

Another interesting characteristic of these resuits is that, for
low frequencies, the radiation damping increases as the width of the
foundation {pile cap) is increased.

Figures 3.8 to 3.12 show the rocking and torsional dynamic stiff-
nesses associated with groups for which the horizontal and vertical
dynamic stiffnesses were presented in Figs. 3.3, 3.4, 3.5, 3.6
and 3.7, respectively. {The pile and soil parameters are indicated
in the figures.) Most of the observations on the characteristics of the
horizontal and vertical dynamic stiffnesses, such as the dependence of
group stiffnesses and dampings on the pile spacing, the number of piles
and the stiffness of the soil medium, apply to the torsional and rocking
dynamic stiffnesses as well. Greater interaction effects for these cases
are, however, associated with the inephase vibration of piles.

An important characteristic that differentiates between the behavior
of pile groups and single piles is associated with the concept of a
pressure bulb. ‘The pressure bulb is defined here as the zone in the
neighborhood of the foundation where stresses {and strains) are signifi-
cant. As a result, the characteristics of this zone play a major role
in the behavior of the foundation. Since this zone extends to depths
which are comparable to the size of the foundation, one 1% led to expect

that the characteristics of the deeper layers influence, to a greater
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extent, the overall response of pile groups than they do the response
of single piles, where behavior is controlled primarily by the near-
surface soil-pile properties. This can be verified, in fact, by examin-
ing the results in Fig. 3.13. In this figure the ratio of the absolute
values of the sfiffnesses of a pile group, embedded in two different
soil media, are compared. The first medium is a homogeneous halfspace
2

with Es/Ep = 10"“, and the second, a halfspace similar to the former,

but overlain by a surface layer with thickness h=d and stiffness ratio

_ -3
ES/Ep = 10

(i.e., 10 times softer). This second case might also be
considered as a simple model to account for the nonlinear effects that
may be expected in the neighborhood of the pile heads as a result of
soil yielding and pile-soil separation. The results clearly show that,
as the number of piles increases, the stiffness ratio at low frequencies
increases, and approaches unity. Therefore, pile groups are less influ-
enced by conditions near the surface than single piles are. This obser-
vation also bears on the accuracy of the techniques which use the re-
sult of single-pile nonlinear analyses (or field tests on single piles)

along with the empirical group reduction factors to derive group stiff-

nesses.

3.2 Seismic Response of Pile Groups

As was stated earlier in this chapter, for a conventional founda-
tion-structure interaction analysis for seismic excitationg.onetneeds to
evaluate the motions of the foundation (pile cap) in the absence of the
superstructure. In the present study, it is assumed that the seismic

motion is due to vertically propagating shear waves in the halfspace that
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produce a free-field ground-surface displacement uga These waves in-
duce both a translation and a rotation in.the pile cap. The transfer
functions for these quantities are complex-valued functions and will
be presented in terms of their absolute values.

Figure 3.14 presents the absolute value of the transfer functions
for the horizontal displacement, u, and rotation, ¢, of the pile cap
for 2 x 2 pile groups with different pile spacings (s/d =2, 5 and 10)
and with Es/Ep = 10_3 (these are the same pile groups for which the
stiffness characteristics were studied in Fig. 3.3) . The transfer func-
tion for the pile-head displacement of a single pile is also shown in
the figure (the dashed 1ine). This figure shows that as the foundation
width increases, the absolute value of the transfer function for the
translation, [ul/ug, approaches unity at low-frequency values. This
implies that the pile cap essentially follows the ground motion, although
it filters out to some degree its high-frequency content. For example,
if C. = 70 m/sec (soft soil), d =T mand s =10 m {s/d = 10), then the

fact that the values of |u|/ug up to a_ = 0.2 are very close to one,

o
implies that the filter function is essentially unity up to the frequency
f =2.25. Since the seismic motion at the qfound surface for the soft
5011 medium considered here will be characterized by low-frequency com-
ponents, it can be conciuded that the motion of the pile cap and the soil
will be very similar.

On the other hand, the figure displays a significant dependence of
|| on the width of the foundation. More specifically, as the foundation
width increases, |¢| tends rapidly to zero. This implies that for foun-

dations having large width, one can neglect the rotation of the foundation

in seismic analyses.
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in a Soft Soil Medium.
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Figures 3.15 and .3.16 present the absolute value of transfer
functions for the tran$1at10n and rotation of the pile cap for 3 x 3
and 4 x 4 pile groups for the same soil and pile parameters considered
for the 2 x 2 group. These figures, in general, exhibit the same char-
acteristics that were displayed by Fig. 3.14. It is especially inter-
esting to note the significant reduction in |¢| for s/d = 10 in Fig.
3.16 (the 4 x 4 group).

Fig. 3.17 shows the variation of |u] and }¢] for 3 x 3 pile groups
in which the piles are hinged to the cap-As pile spacing increases in
this case, values of |u| for the group approach those of a single pile;
hence the foundation tends to amplify Tow-frequency components of the
earthquake. On the other hand, values of |¢| are considerably smaller
for these groups than for groups with rigid pile-to-cap connections
(compare with Fig. 3.15).

Finally, Fig. 3.18 presents the transfer functions for groups with
different numbers of piles with s/d = 5, embedded in a stiff halfspace,

"2. (The parameters'in this figure are the same as those in

Es/Ep =10
Fig. 3.7). Comparing these results with those for soft soil conditions

(Figs. 3.14, 3.15 and 3.16), one caﬁ conclude that pile groups in stiffer
media follow more closely the ground motion and that they filter out only
the high-frequency content of the earthquake (]u[/ug is essentially unity

up to a, = 0.4 in this figure)

3.3 Distribution of Loads in Pile Groups

With the present formulation the forces (reactions) developed at

the pile heads due to harmonic Torces applied on the pile cap are complex
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quantities which can be expressed as:

R = |R] e iV (3.2)

where |[R| is the maximum value of the reaction and y defines the phase
lag between the reaction and the applied force. In this section a num-
ber of examples are investigated in order to determine the variation of
|Rl with pile spacing, pile-to-cap fixity condition and frequency, for
the different.bi1es in a group. The fact that, at a given frequency,
the value of ¥ is not the same for the different piles in the group im-
p]ies that the forces on the pile heads do not attain their maximum
values at the same time: One-might have then to consider this fact in
interpreting the results to be presented.

Figure 3.19 shows the distribution of loads among the piles of the

3 x 3 group studied in Fig. 3.4 (E'S/Ep = 10'3).

The four plots in the
top correspond to the shear, RX, and the moment, Mx’ at the pile heads
due to a horizontal force, FX, on the cap. The results are normalized
with respect to the shear that would be observed in each pile if there
were no interaction effects (i.e., FX/N). These plots show that for the.
static case, the corner piles carry the largest portion of the load,
while the piTes closest to the center carry the smallest. However, this
observation-is no longer valid in the dynamic case. In fact, for some
frequencies, a load distribution favorable to the corner piles may take
place. This can be verified, for instance, by examining the variation
with freguency of the shear force on piles I and IV for s/d = 5. The

plots for these two cases show that the maximum shear in pile IV, for

values o1 a, between 0.6 and 0.8, is almost twice the maximum shear
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in pile I. These resu]ts reveal that the magnification factor at these
frequencies is considerably larger for the piles closest to the center
than the corner piles. The piles on the edges of the cap, on the other
hand, seem to be only slightly affected in their share of the applied
Toad. As far as the moment at the pile heads is considered, the plots
in Fig. 3.19 show that this quantity displays essentially the same char-
acteristics as the shear does. It is very interesting to note that the
plots of moment very closely follow the patterns exhibited by the plots
of shear.

The remaining plots in Fig. 3.19 correspond to the axial forces,
st observed at piTe-head level, caused by a vertical force, FZ, on the
pile caps; the results are normalized with respect to the average verti-
cal force (FZ/N). These plots show basically the same characteristics
that were observed in the distribution of a horizontal force. The dy-
namic effects are, however, more pronounced for the vertical case {for
example, observe the significant dynamic amplification of the axial force
for some frequencies, which fs as large as 4, on pile IV for s/d = 5).

Figure 3.20 presents the distribution of horizontal as well as
vertical forces in 4 x 4 pile groups. The plots in this figure exhibit
the general features of load distribution that were observed for the
3 x3 group;

Finally, Fig. 3.21 shows the distribution of forces in 3 x 3 pile
groups in which the piles are hinged to the cap. Comparing this figure
with Fig. 3.19, one can see that there is only a slight change in the
distribution of shear as a result of the change in the pile-head fixity
condition. There is, however, no change in the distribution of axial

force, as expected.
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CHAPTER 4

THREE-DIMENSIONAL VS. QUASI-THREE-DIMENSIONAL SOLUTIONS

In the formulation outlined in chapter 2, it was assumed that the
forces developed at the pile-soil interface consisted of lateral for-
ces in the x-and y-directions, as well as frictional forces in the z-
direction. These forces were then related to their corresponding dis-
placements in the soil mass through a soil flexibility matrix. Similarly,
these forces and the corresppnding displacements in the piles were related
by certain pile "flexibility matrices." The final step in the formulation

was the imposition of the compatibility between the displacements in the

soil medium and in the piles.

Clearly, for a three-dimensional pile group analysis one has to de-

velop & formulation which gquarantees the full compatibility between the
soil and the piles in all three directions (the formulation presented in
chapter 2, which was briefly described above, is an exampie of a three-

dimensional solution.) A quasi-three-dimensional solution, on the other

hand, refers here to a formulation in which the compatibility condition

in at least one direction is relaxed. An example of such a formulation

is the one for the analysis of vertical vibration of pile groups in

which only the frictional forces at the pile-so0il interface and the
associated displacements are taken into consideration. Most of the
existing pile group solutions ara, in fact, of the quasi-three-dimen-
sional type. The underlying assumption for quasi-three-dimensional analy-
ses is that the forces in the direction for which the compatibility con-

dition is relaxed hardly affect the displacements in the main direction.
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Clearly, a quasi-three-dimensional formulation requires much Tess compu-
tational effort than a three-dimensional one does; this is due to the
fact that the former involves fewer degrees of freedom. Therefore, if
Jjustified, a quasi-three-dimensional solution is preferred over a fully
three-dimensional one. It is important to point out that quasi-three-
dimensional formulations are useful only for the analysis of symmetric
pile groups. This is due to the fact that the motions of an unsymmetric
pile group in the principal directions are coupled, and a quasi-three-
dimensional formulation is not, in general, capable of modeling the
coupling effect.

In what follows the results of a number of quasi-three-dimensional
solutions are presented and compared with their three-dimensional counter-
parts, which were presented in chapter 3.

Figure 4.1 shows the horizontal and vertical dynamic stiffnesses
for 4 x 4 pile groups in the soft soil medium (Es/Ep = 10"3). The hori-
zontal dynamic stiffness is obtained by considering, in the formulation,
only the horizontal pile-soil interface forces in the direction for which
the stiffness is evaluated, whereas the vertical dynamic stiffness is ob-
tained by considering only the vertical forces at the pile-soil interface
(frictions and pile-tip forces). Comparison between this figure and Fig.
3.5, which was obtained by the three-dimensional formulation, shows that
the two solutions are almost identical, evén for c¢lose spacing.

Figure 4.2 presents the horizontal and vertical dynamic stiffnesses
for pile groups with s/d = 5 in the stiff soil medium (Eg/E) = 10). Com-
parison of these results with those in Fig. 3.7 again shows an excellent

agreement between the two solutions.
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For the rocking mode of vibration, both the horizontal and ver-
tical forces at the pile soil interface have nonnegligible effects on
the behavior of the group; therefore, for a quasi-three-dimensional
analysis, it is assumed that the vertical forces as well as the horizon-
tal forces in the direction of rocking are present. In addition, in
order to introduce the basic assumption of quasi-three-dimensional solu-
tions, it is assumed that horizontal forces produce only horizontal dis-
placements and vertical forces cause only vertical displacements. Simi-
larly, for the torsional mode of vibration, only the two components of
the horizontal forces at the pile-soil interface, which are assumed to
be uncoupled, are included in the analysis. Fig. 4.3 shows the rocking
and torsional dynamic stiffnesses for 4 x 4 groups in the soft soil med-
ium, and Fig. 4.4 shows the same quantities for groups with s/d = 5 in
the stiff soil medium. Comparison of these results with the correspond-
ing results by the three-dimensional analysis (Figs. 3.10 and 3.12, re-
spectively) suggests that the results of these two solutions agree fairly
well, except fbr a slight discrepancy observed in the torsional stiff-
nesses.

Finally, Figs. 4.5 and 4.6 present a number of examples for seismic
analyses by a quasi-three-dimensional formulation, similar to the one
used for the evaluation of rocking stiffnesses. Fig. 4.5 shows the abso-
Tute value of the transtfer functions for displacement and rotation of the
pile cap for the 4 x 4 group in the soft soil medium and Fig. 4.6 shows
the same quantities for different pile groups with s/d = 5 in the stiff
s0il medium. Comparing ptots in Figs. 4.5 and 4.6 with those in Figs. |

3.16 and 3.18 . one can conciude that the results of the two solutions
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agree fairly well in the‘frequency range of interest for seismic anal-
ses.

Therefore, in general, quasi-three-dimensional formulations are
capable of accurately characterizing the dynamic responses of symmetric
pile groups and they can replace the more involved three-dimensional

solutions.
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CHAPTER 5 - THE SUPERPOSITION METHOD

The three-dimensional formulation presented in chapter 2, as well
as the modified version of it, namely the quasi-three-dimensional formu-
lation described in chapter 4, require, in general, solution of a large
system of equations. This is due to the fact that on each pile segment
there are a number of unknown interaction forces that have to be related
to their corresponding displacements, through the soil or pile flexibil-
ity matrices. As the number of piles in a group increases, the size of
these matrices poses considerable computational difficulties on the analy-
sis. Therefore, it is highly desirable to develop simplified solution
schemes which enable one to analyze large pile group systems by reducing
them to smaller and simpler systems. The superposition method is an
example of such simplified pile group solution schemes.

The superposition method originally proposed by Poulos (1968, 1971)
is frequently used to formulate pile group problems. In this approximate
scheme, only two piles are considered at a time in the formation of a
global flexibitity matrix which relates the forces and displacements only
at the pile heads. The method clearly relies on the observation that the
presence of other piles does not significantly affect the motion of the
two piles under consideration.

The entries in the global flexibility matrix are usually obtained
from tabulated solutions for two piles that are commonly referred to as
interaction factors:; these factors are presented in terms of the distance
separating the piles and the material properties of the system.

The available tabulated solutions for the interaction factors are

for static loads only. In order to extend the applicability of the method
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to dynamic Toads it is necessary to develop appropriate factors for
this purpose.

A dynamic interaction factor for two piles (in which a unit harmon-
ic load is applied on the first pile and the displacements are evaluated
for the second one) is defined as follows:

Dynamic displacement of pile 2

Static displacement of pile 1,
considered individually

Interaction factor =

in which the word displacement is used to denote either a translation
or a rotation. In addition to interaction factors, for the purpose of
assembling the global flexibility matrix of the group, one also:needs the
dynamic load facters for individually Toaded piles (single piles), which
are available in the Titerature.

Figures 5.1 and 5.2 present interaction factors for the piles embed-
ded in an elastic halfspace with Es/Ep = 10_3 and for s/d = 2, 5 and 10,
(These parameters are the same as those used for the pile groups for
which the stiffness characteristics were examined in Figs. 3.3, 3.4 and

3.5). 1In Fig. 5.1, quFx
due to the horizontal force on pile 1. Other interaction factors: I

refers to the horizontal displacement of pile 2

uze,
I and I define, in a similar manner, the connection between the
uxMx ¢xMx

applied force and the induced displacement.

The plots in Figs. 5.1 and 5.2 give the interaction curves for 6=0
and 6=1/2 only. For any other angle, the interaction factors can be ob-
tained from those for 6=0 and @§=n/2. Consider the two piles shown in
Fig. 5.3a. If Fx and Fy are the two components of the horizontal force

on pile 1, then one can write
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(a) perspective

'Y

(b) plan view

Fig. 5.3 - Forces and Displacements at the Head
of Two Piles.
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F. cos § s$in g FX

= (5.1)

Fe -sin g cos § Fy

where Fr and Fe are the components of fhe horizontal force in the radial
and tangential directions. If Uy and u, are the radial and tangential
components of the displacement of pile 2, then one can use the inter-
action factors for g=0 and g=r/2 in order to relate Uy, and ue to Fr

and Fe. If thé interaction factors for 9=0 and &=n/2 are denoted by IO

and 190, respectively, then one can write

ur IO 0 Fye
- (5.2)
ue L 0 I9O FE
On the other hand, Uy and uy are related to U, and Ug as
U cos 8 -sin® U,
= (5.3)
uy sin © cos B Uq
Finally, combining Egns. (5.1), (5.2) and (5.3), one gets:
U I cosze + 1 sin2 0 (I.-1,4) cOs g sin F
[ue) 1o 90 0~ Igg 6 sing] [ F,
= . ‘ (5.4)
Uy (IO- 190) cos g sin o IO sinzei- 190 cosze Fy
Therefore, for an arbitrary angle o, quFie) is given by:
I _(0) =1 . (0) cos?® + T - (1/2) sino (5.5)
uF u F u F AT :

X X X X X X
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The relation in (5,4). can be used for other interaction factors
involving horizontal fdrces or moments, as well. For the vertical
forces, on the other hand, the interaction factors are independent of 5.

Once the global flexibility matrix bf the group is assembled, the
foundation (pile cap) stiffnesses are obtained in a manner similar to
that outlined in chapter 2 (by imposing kinematic and force boundary
conditions at pile heads). Figures 5.4 and 5.5 show the dynamic stiff-
nesses (horizontal, vertical, rocking and torsional) for the same pile
groups of Figs. 3.5 and 3.10 (4 x 4 groups in the soft soil medium,
Es/Ep = 1053) but computed using the superposition method. Comparison
of these figures shows that the approximate superposition method yields
results that are in good general agreement with those obtained from the
full three-dimensional analysis. The accuracy of the method improves as
the pile spacing is increased, as expected. Also, Figs 5.6 and 5.7 pre-
sent the dynamic stiffnesses for the same groups of Figs. 3.7 and 3.12
(groups with s/d = 5 in the stiff soil medium, Es/Ep = 10-2)° Again,

the results of the superposition analysis agree very well with those of

the three-dimensional analysis.

The dynamic‘interaction curves are also helpful in gaining insight
into the behavior of pile groups. Certain important aspects of thé prob-
lem, such as the large peaks in the variation of dynamic stiffnesses and
the considerable dynamic amplification of forces on certain piles can,
in fact, be physically interpreted with the help of interaction curves.

Consider, for example, the variation of horizontal stiffness in
Fig. 3.3, for s/d = 5. This figure displays a large peak at a frequency

a, = 0.8. At this frequency the interaction factor, Iu e (0.0} +n Fig.5.1
X X
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is a real, negativg number, the physical meaning of which is that the

waves set up by the loaded pile excite the second pile in an antiphase
motion. Therefore, a larger force (stiffness) must be applied on the

piles in the group to enforce the condition of uniform displacement of
the pile heads required by the presence of the pile cap.

It is also possible to interpret the similarity between the plots
of stiffnesses for different spacings by the similarity between the cor-
responding inferaction curves. In addition, the fact that the inter-
action effects diminish with an increase in spacing, accounts for the
less pronounced variation in stiffnesses for larger spacings. Using
these observations, one can then predict that the plot of horizontal
stiffness for s/d = 2 in Fig. 3.3 has a peak at a = 2, which is larger
than the one corresponding to s/d = 5.

As far as the force distribution is concerned, Fig. 3.19 shows that
the dynamic ampiification factor for pile IV and s/d = 5 is a maximum
again at a,~ 0.80. An argument similar to the one for the stiffness

can be brought forward to explain this phenomenon too.
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CHAPTER 6 - SUMMARY AND CONCLUSIONS

The purpose of the work presented in the preceding chapters was to
investigate the dynamic behavior of pile groups in semi-infinite media and
te examine the validity of certain solution schemes.

The formulation was based on the introduction of a soil flexibility
matrix as well as dynamic stiffness and flexibility matrices of the piles,
in order to relate the discretized uniform forces to the corresponding
displacements at the pile-soil interface. A numerical solution for the
evaluation of the soil flexibility matrix, along with analytical solutions
for the pile stiffness and flexibility matrices were then presented.

The results of pile group analyses presented in chapter 3 suggested

the following:

1)  The dynamic pile group behavior is high]y frequency-dependent. This
is due to the characteristics of the waves generated by the piles and

the interference of these waves with the different piles of the group.

2) For close spacings the characteristics of group stiffnesses are simi-
Tar to those of footings; for large spacings., however, the group be-

havior is dominated by the interactions among the piles.
3) Interaction effects are stronger for softer so0il media.
4) Radiation damping generally increases with foundation size.

5) Pile groups subjected to seismic excitations essentially follow the
low-frequency components c¢f the ground motion, while filtering to a

large extent its intermediate and high-frequency components. The
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rotational component, on the other hand, is negligible for typical

dimensions of the foundation.

The distribution of applied dynamic Toads on the pile cap is differ-
ent from that of static loads. For certain frequency intervals, the
piles closest to the center take the largest portion of the load.

Also, Targe dynamic amplification factors for the forces in these piles

are ekpected;

Pile groups are less influenced by conditions near the ground sur-
face than single piles are. Therefore, the accuracy of the tech-
niques, which use the result of single-pile nonlinear analyses, or
field tests on single piles, along with empirical group reduction

factors to derive group stiffnesses is less than expected,

Other subjects addressed in this study were the questioné on the accur-
of the quasi-three-dimensional method, and the superposition method for

solution of pile groups. These studies showed that:

Quasi-three-dimensional solutions, in which the pile-soil compatibil-
ity conditions in a given direction are relaxed and only the effect of
pile-soil interface forces in the other directions are taken into

account, compare very well with the full three-dimensional solution.

The superposition scheme suggested first by Poulos gives reasonable

results not only for static loads, but for dynamic loads, as well.
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