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ABSTRACT

This report represents essentially the thesis submitted by
D.S. Kadle in partial fulfillment of the requirements for the degree
of Master of Science in Mechanical Engineering at The University of
Iowa. Professor Allen T. Chwang was supervisor of the research pro-
ject and thesis advisor.

The present study deals with the hydrodynamic effect of earth-
quakes on a three-dimensional dam-reservoir system. Analytical solu-
tions in closed forms have been obtained when the reservoir is circu-
lar or semi-circular in shape. The effects of surface waves and compres-
sibility of the fluid in the reservoir have also been included. In
the case of no surface waves, it was found that the in-phase component
of the hydrodynamic pressure increases with the depth of the reservoir
and attains a maximum value at the base of the dam. In the presence
of surface waves, the in-phase component was slightly reduced for small
values of the wave-effect parameter C. However, for large values of C,
the pressure distribution was found to be oscillatory. Resonances were
found to occur when the ratio of the fluid depth to the period of the

ground motion was greater than 360 m/sec.
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I. INTRODUCTION

1.7 Review of Pertinent Literature

The hydrodynamic pressures developed during earthquakes play an
important role in the design of dams. During an earthquake, the dam
accelerates into and away from the reservoir, developing a hydrodynamic
pressure jn excess of the hydrostatic pressure. Depending on the
intensity of an earthquake, this pressure could be large enough to
cause a dam to collapse and have calamitous consequences on a dense
population downstream of the dam. The present work deals with some
aspects of this prbb1em.

The pioneering work in this field was conducted by Westergaard'
(1933). He derived an expression for the hydrodynamic pressure
exerted on the vertical upstream face of a rigid, infinitely long
dam, as a result of horizontal ground motion. He alsoc introduced the
"added mass" concept. A simple momentum-balance method was presented
by von Karmdn (1933) who obtained a distribution of the "added mass"
and consequently the hydrodynamic pressure along the upstream face
of a rigid dam. However, the Westergaard solution is valid only for
harmonic excitations greater than the fundamental natural freguency
of the reservair (Kotsubo, 1959).

The hydrodynamic pressures developed on dams whose upstream
face is not vertical was determined experimentally using an electrical

analogue {Zangar and Haefeli, 1952; Zangar, 1953). Von Kdrmén's



momentum-balance method was adopted by Chwang and Housner {1978) to
investigate the earthquake forces on a rigid dam having an inclined
-upstream face of constant slope. They concluded that the hydrodynamic
pressure, at any given height, increases with an increase in the

slope of the dam; the maximum value being attained for a vertical dam.
Later, Chwang (1978) approached the same problem by using a two-
dimensional potential-flow theory and found a reasonable agreement with
the momentum-balance method.

The effect of compressibility of fluid has received considerable
attention. While many authaors (Westergaard, 1933; von Kérmén,.1933;
Chwang, 1978) have assumed the fluid to be 1ncompressib]e, some authors
have taken into consideration the compressibility of the fluid (Chopra,
1967; Kotsubo, 1959; Huang 1980). It was found (Chopra, 1967) that
the compressibility effect becomes important if excitation frequency
is very high.

The problem of finite reservoirs has been analyzed by Werner and
Sundquist (1949) and Huang {1980). This problem was also solved by
Chwang {1979) who found that for horizontal accelerations, the pressure
reduces as the reservoir becomes smaller in size. He also found that
the effect of vertical acceleration is to adjust the hydrostatic
pressure by using an effective gravifationa] constant and this is true
for arbitrary shaped-reservoirs. The possibility of cavitation was

also explored in Chwangfs (1979) paper.



1.2 Assumptions

Essentially, the problem of hydrodynamic effect of earthquakes an
a dam-reservoir system can be divided into three broad categories:

(1) Response of the dam to earthquakes neglecting the hydro-

dynamic effects;

(2) Hydrodynamic effects of earthquakes on a rigid dam;

(3) Hydrodynamic effects of earthquakes on a f]exib]e,dam,'which

considers the interaction of the first two problems.

The present work is concerned with the second problem for a
cifcuiar and a semi-circular reservoir. These two problems are the
extreme cases for reservoirs having the shape of a sector of a circle
(see Fig.-1). The Hiwassee dam-reservoir compliex of the Tennessee
Valley Authority is approximately circular. The hydrodynamic
pressure will be the real part of the complex pressure due to
horizontal acceleration a eimt in the x direction.

The assumptions made are that the fluid is compressible and
inviscid and that the flow is irrotational with the presence of
surface waves. The dam and reservoir walls are assumed to be vertical
and rigid. The amplitude of the excitation is assumed to be small.

In this thesis, the effect of the wave-effect parameter, the compres-
sibility of the water and the dimensions of the dam on the hydrodynamic
pressure will be discussed in detail and presented graphically for

longitudinal excitations.



IT. CIRCULAR RESERVOIR-DAM SYSTEM

2.1 Governing Egquations and Boundafy Conditions

The dam-reservoir system under consideration is one in which the
reservoir is approximately circular in shape with constant depth h and
radius R. The dam height is H and the width is 2. The origin‘is
located at the center of the base of the dam. The x-axis is in a
direction perpendicular to the downstream face of the dam and Ties in
the horizontal ground plane. The y-axis is perpendicular to the x-axis
in the horizontal plane. The z-axis points vertically upwards. The
radial distance r is measured from the center of reservoir, as is

the angle ¢ (see Fig. 2). Thus,
X =r coss - R cos €y > y=r sing.

It is assumed that the ground acce1eration'is -e:\ei“’t along the positive
x direction and that there is no attenuation.

For irrotational motions of an inviscid, compressible fTuid, the
velocity vector has a scalar potential ¢. The effect of an earthquake
on this dam-reservoir system is to create a pressure wave which, under
the assumption of small amplitudes, is governed by a Tinearized wave

equation

2
gop = L 2B | (2.1)
7 7
<y st



where v2 is the Laplacian operator in the cylindrical polar
co-ordinate system (r,s, z) and Co is the constant velocity of sound in

undisturbed water given by

¢, N%E]s . C(2.2)

Here <, has been evaluated at constant entropy s and p is the density
of water. In the Tinearized theory of wave propagation, the hydro-
dynamic pressure P is related to the velocity potential ¢ by

P=-o, 22, (2.3)

where Py is the constant density of undisturbed water. Thus, by (2.1)
and (2.3), the velocity potential ¢ also satisfies the wave equation

(2.1),

2

e =L 2L (2.4)
c
o}

at

The boundary conditions for ¢ are as follows:

(i) zero normal velocity at the bottom of the reservoir,

8 =0 .
?il (Y‘,S,O,t) =0 s (2'5)

(i1) condition of symmetry,



(ii1) The linearized kinematic boundary condition at the free

surface (see Fig. 3},

i‘k:..a_ﬂ. = .
s ~5p at 2z h (2.7)

2
§—%-+ g 29 -0 at z=h. (2.9)
5t 0z ~

(v) This boundary condition is on the dam surface where

R cos 8y
r =——C—6-§-—é—--: [el < !90[ . (2.10)

If the width of the dam is very small in comparison with the radius of

the reservoir, &/R << 1, equation (2.,10) reduces to
r= R0+ 0 (£)%] - (2.17)
R s 8 = 0(2/R) .
and since

3¢ _ 39, _ 5ing 3¢ _ 3¢
ax o COS8 w36 = o + 0(4/R)

then the boundary condition on the rigid dam surface and reservoir

may be approximated by



2 (R,8,2,t) = ae 'Y cosg . (2.12)

E |

2.2 Velocity Potentjal and Pressure

Distribution

Solving (2.4) subject to the boundary conditions (2.5), (2.6),
(2.9) and (2.12), we obtain (see Appendix A)

PO cosh AoZ J1(por)

4ia cose Tt
2
1030(1 + CPO)LI, (u R) - 3p(ugRY]

s(r,e,2,t) = ="

M P cos Az J](umr)

m=1 Ay (1 = P (uR) = dp(igR)]

w P cosx z I (s r)
+ 7 m , (2.13)
m1 g (1 - CP I (8 R) + I,(g R)]

where AO satisfies

C th tanh th -1=0, (2.14)
Am satisfies

C Amh tanAmh +1=0 (m=1,2,3...) , (2.15)

P =sinh A_h , (2.16)

0 0

Pm = sin Amh (m=1,2,3...) , (2.17)



i =\/A02 +<C£>2 , (2.18)

= YE) - Wl = 12,3, | (2.19)

M+1, M+2,...) , (2.20)

0
1l
-
p]
N
]
—
|e
\_./N
-
=
1

M is the largest integer for which éi-g An» and the wave-effect

0
parameter C is given by

ce-f. ‘ (2.21)
w h

In equation (2.13), Jn(x) denotes the Bessel function of the first
kind, of order n, and In(x) denotes the modified Bessel function of
the first kind, of order n.
It should be noted that (2.14) and {2.271) give the usual dispersion

relation for surface waves,

o* = gr_ tanh A_ h . (2.22)

Since the freguency of the ground excitation o is given, equation (2.22)
uniquely determines the wave number AO and consequently the wavelength
of the surface wave produced by the vibration of the dam.

Neglecting terms of the order (2/R), the hydrodynamic pressure on

the upstream face of the dam is obtained from (2.3) and (2.13) as the



real part of -0, %% . Therefore,
r=R,8=0
4p a P cosh a_z J.(u_R)
p = hO caswt 0 0 170

bt (1 + DPOILI uR) = dy( )]

M Pm cosa_2 J](umR)

+ ’
m=1 iy (7 = CP2) [, (5 R) = 3, (3, R)]

o P cos 3z I;(8R)
) 2
m=h+1 a8 (1 - CPOII (8.R) + I,(g R)]

(2.23)

Defining the dimensionless pressure coefficient cP by

P{R,0,z,t)

oah = Cp cos wt , (2.24)

we obtain

%
P0 cosh AO* Z JT(“o*R*)

#(1 4 CPE)LT (15, *R%) = Jy( *R¥)]

M Pm cos Am*z* J1(um*R*)

m=1 2
At (1 = CPEVLI (u *R*) = Jp(u *R*)]

* -k F3ek s .
P cos X *z I](Bm R¥) ?

co

m=%+1 Am*Bm*(q' Cpﬁ)[Io(Bm*R*)4'12(Bm*R*)] S

R (2.25)



where
* = 3 h *
Ao AO s Am
%* = *
110 Uoh » Um
and
R* = R/h , z*

z/h .

If we define a dimensionless compressibility parameter B by

- wh
B = c .
0
then
2 2
* = *
Llo VB +}-0 3
m m
and

2 2
* = *&
B ‘ka 8

{(m

(m

An iﬁcompressib]e fluid requires B

[

1,2,...,M)

M+1, M+2,...) .

10

(2.26a)

(2.26b)

(2.26¢)

(2.27)

{2.28a)

(2.28b)

(2.28¢)
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2.3 Hydrodynamic Force and Moment Coefficients
The hydrodynamic force coefficient CF at the dam surface per unit

width can be obtained from

1 (h
Ce = FJ Cp dz . - {(2.29)
0
Thus,
2 *%
co=4 ; PO J'i (Uo R )
2
g1+ PO (u R 3y (g *RA)]
2 *D %
. M P J](um R*)

L
me1 oy *u H(1 = CPAL, Gy *R%) = 3y (3 *R%)]
R

) .
m=M+1 Am*zﬁn*(1 - Cpi)[lo(ﬁn*R*) + Iz(gm*R*)]

+

(2.30)

The hydrodynamic moment coefficient CM at the dam surface with

respect to its base can be obtained from

1 (N
Cy =5 I zC dz . (2.31)

M h™ ‘o

Thus,



12

* -
c 4 Poa* Py - 0, * 1).J1(uo*R*)
Ao* g (1 + CPILI (g *R%) = 3,y *R¥)]

. ? PO P+ Q= 1) Jp (ke *R¥)
! 3 : 5
m=1 A * Hn*(]"'cpm)[Jo(”m*R*) - oy *R*)]
o P{x*P +0Q -1) 1,0 *R*) 2
+ g m m 2m 1'm (2.32)
= *0p k(1 -
meffl g% (1 - CPEITI (8 #R*) + T(g *R¥) 1
where
QO = cosh th s _ (2.33)
Qm = cos Amh m=1,2,...) , (2.34)

and other dimensionless parameters xo*,xm*,u *"Jm*’ em*, R*, P0 and Pm

0
have been defined in equations (2.26), {2.16) and (2.17).
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ITI. SEMI-CIRCULAR RESERVOIR-DAM SYSTEM

3.1 Governing Equations and Boundary Conditions

In this chapter, the reservoir will be assumed to be semi-circular
in shape with constant depth h and radius R. The dimensions of the dam
are its height H and its width 2(2 = 2R). The origin is located at
the center of the base of the dam. The x-axis is in a direction
perpendicular to the upstream face of the dam and lies in the hori-
zontal ground plane. The y-axis is perpendicular to the x-axis in the
horizontal plane and the z-axis points vertically upwards. The radial

distance r is measured from the origin 0 as is the angle & (See Fig. 4).

It is assumed that the ground acceleration is aemt

in the positive
x-direction and that there is no attenuation.
As explained in Chapter II, there is a velocity potential

¢(r,e,z,t) which satisfies the wave equation (2.4),

2
o =1y 24, (3.1)
c

at
o

where v2 is again the Laplacian operator in cylindrical polar co-
ordinates (r,6,z).
The boundary conditions for ¢(r,s,z,t) are as follows:

3 - .
% (r’eﬁobt) =0 ] ) (3'2)
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2
5
SHragpe0 at zen, (3.3)
at
3% S A ¥ -
1 (R,G,Z,t) " ae cosé , (3.4)
and
139 g T R 17
S e (M tmaZyt) s t-ae | (3.5)

Let ¢(r,e,2,t) = ¢](r,e,z,t) + ¢2(r,e,z,t) + ¢3(r,e,z,t), where ¢,,

955 and ¢3 each satisfies the governing equation (3.1),

2

3%,
v2y, = —l-f——éi (i =1,2,3) . (3.6)

1 CO a3t
¢1(r,e,z,t) satisfies the boundary conditions (3.2) to (3.4) and

561
36

5 |

(ry +3,2,t) =0. (3.7)

¢2(r,e,z,t) and ¢3(r,e,z,t) each satisfies (3.2), (3.3) and also

1 8¢ T i et
F Y (rs '_!: 7 Z, t) = '_" E ae . (38)
9¢
1 °73 i _
FF(Y‘, i"z_a z, t) =0, (39)
and

364 oy 0
-ﬁ.' (R!eazst) = 'ﬁ— (R,S,Z,t) . (3.] )
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3.2 Velocity Potential and Pressure Distribution

The solutions of eq. (3.6) subject to the boundary conditions
(3.2) - (3.5) and (3.7) - (3.10) are obtained by the method of

separation of variables (see Appendix B) as

I
Hi~18

¢'l (Y’,e,z,t) =

rwh(8n® - 1)

4ia(-1)" % cos(Zne)e]wt
n=0

POJZn(uor)cosh Ay2

2y 11
xouo(i + CPO)JZH(UOR)

p J2n(umr) cos .z

M
+ ) >
= (1 - cP2)ay (u R)

m=1 Amum 2n

o P I, (g r)cos rz
+ z m2n'"m . m } , (3.11)
m=M+1 AmBm(1 - CPm)Izn(st)
iuor Coso
. P e cosh A_z
2 t
¢2(raeazst) = - UJ_ﬁ e1UJ 0 2 c
A b (1 + CPO)
i r coss
, ? ‘Pm e 'Hp : cos A Z
m=1 Kmum(1 - CPm)
-8 I COSH
©x ip e M cos A Z
- X o 5 m s {3.12)
m=M+1 Amgm(1 - CPm)
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and
¢3(r 8,2,t) = § { 21a 2, cos(zne) Qiut POFonJZn(Uor) cosh i z
2 H ] 4 2 '
n=0 Twh J\ouo('! + CPO)JZn(“oR)
o PF J, (ur)cosrz | v
T } (3.13)
m=1 xmum(1 - CP ) JZn(umR)
where B
& = ], 2 = 2 ‘FOY‘V n # 0 s (3._‘4)

m O,1,2...)
0,1,2.../

(3.15)

/2 ium R coss
F _=2 J cosg cos{2ng) e de {

n

AT1 the other parameters Aot Ap> Ho? Hp? ﬁn’ PO and Pm have been
defined in equations (2.14) - (2.20).

Let

=
I

= 0,1,2...
s (3.16)
n=20,1,2,..

_ ' .
where Amn and an are real for real M 'S From equation (3,15} we
obtain

A =

mn (-1)"™! [Eppoy gR) = Bppyq (pRI]

VT

r(-1)" Ey, (uR) (3.17)



17

where Ev is Weber's function given by

™
E (x) = l'j sin(ve - x sing)de . (3.18)
v T 0

The prime denotes differentiation with respect to the argument. Also,

- oo
When By = ism .
=9 !
B = inl) (gR) (3.20)

and Amn renains real. Hence, the integral an is real when the
argument umR is purely imaginary. This is evident from Eq. (3.15).

The hydrodynamic pressure on the upstream face of the dam can be

obtained as the real part of 0 %% . Therefore,
8 = 4+ ..11
=2
oo ' - !
P = ) {4p0a *n PoJZn(“oY‘)COSh A2 1 ) "EZn(”oR)
- 2\ 11 2 2
n=0 nhuoxo(1 + CPO)JZn(“oR) 4n°- -1
. M 4poa % PmJZn(umr)cos A2 ] _ wEZn(umR)
£ 24 5 7 - 7
m=1 Whum)\m“ - CPm)Jzn(umR) 4n~ -1
n
® 4p0a 2 PmIZH(smr)cos " 1 . (-1) Foin
+ 2

2yqi 2
maa] B (T - CPIIS (B R) 407 -1

{equation cont'd)



2p a P
+ f o__m 5= C0S Amz coswt
m=M+1 mmJ‘m(1 - Cpm)
© [20.a 2. P Jd, {ur)
+ 7 o n o an © _ cosh %
n=0 huoxo(? + CPO)
M 20a 2 P J, (ur)
+ z o . m 22 M cos Amz
m=1 humkm(1 - CPm)
2p a P M 2o a P
- 0_ 0 5 cosh Aoz + o ™ 2

huoko(1 + CPO

x Sinet

m=1 humim(l - CP

m
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cos Amz

(3.21)

We shall define the dimensionless in-phase component of the pressure

coefficient Cpi and the out-of-phase component Cp0 by

. C + i = =
Cp] oswt . Cpo singt Cp

We can also write this in fhe form

Cpi coswt + CpO Sinwt = Cp] cos(wt-a) ,

where

2

_ 42 _ -1
C ~7VC ., +C and o = tan (Cpo/cpi) .

p pi po

(3.22)

(3.23)

(3.24)



Thus,

{4 g P J (uo*r*)cosh(xo*z*)

A
O)Jzn (.].JO*R*)

. 1 _ WEén(“o*R*)
an® - 1 2

*r¥)cos (i *z*)
2
)

1 T, (i *R*)
. i
4n2- 1 2

M4 PmJZn(”m

m=1 ﬂum*Am*(1 - CpP

+

Jén(“m*R*)

n m2n

© Fyak *ok
4 3 P 1 (sm r )cos(Am z*) . 1
4n

mefi+l mg %1 *(1 ~CP§)1én(sm*R*) 2 4

(-1)7F o 2 p |
———E—Jlﬂ + 7 m 5= cos (A *z*)

= *y *(7 -
m=M+1 B A (1 CPm)

4

and

2P
Copn = - cosh( _*z*)
Po u A H(1 + ol o

o

2 Pm

+
Ine-—-13=

s,k
cos(km z*)

=1y (- cpé)
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(3.25)

(equation cont'd)



20

w } 2 5 P Jd, (p *r*)
n_o2n 02 cosh(Ao*z*)
n=0 uo*Ao*(l + CPO)

+

M 24 P J, (u *r*)
n_m2n “m 5 cos(lm*z*) . (3.26)
= * * -
m=1 o Am (1 CPm) .

+

where the dimensionless parameters AO*, Am*, uo*,-um*, qn*, R* and z*

have been defined in egs. (2.26) and
r* =r/h ., (3.27)

3.3 Hydrodynamic Force and Moment

Coefficients

We can evaluate the dimensioniess force coefficient from

1 h
C. = —-J C dz
F h o P
= CFi coswt + CFo sinut , (3.28)
where CFi is the in-phase component and CFO is the out-of-phase
component of the force coefficient. We can also write CF in the form
of
Ce = Cpy cos(ut - 8) (3.29)
where
C ={C2 + C2 and B = tan'l((: /Crs) (3.30)
F1 Fi Fo _ Fo’ “Fi :



substituting (3.22), (3.25) and (3.26) into (3.28), we obtain

o 2 *ypk

Cpy =
2
(

Fi

n=0 qu*AO* 1+ Cpg)dén(“o*R*)

| e (g *RY)
% -1 2

2
. M4, PmJZn(”m*r*)
4 2 2\ 1
mET (1 - O3 (i R)

1
o "EZn(“m*R*)
3 -
lln2 -1 2

, 2 sk
) ozc 4 .lln Pm IZn(Bm r*)
) 2 2 m
- * t *n%
m=M+1 Trsm*km (1 - Cpm)IZn(Bm R*)

n
N 1 ) (-1) an}
4n2 -1 2

o 2 p 2
I g e
m=M+ B A (1 - Pm

)

and

21

(3.31)
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2 p? M 2 p?
ot 7 7ot >
0 %y % < *y * -
g Ao (1 + CPO) m=1 M A (1 Cﬁn)
= 24 P§ (
2 2 2 2n'"o
= %y *
n=0 Mo AO (1-+CP0)
Mooz Pi
+ Jy (p *p*) . (3.32)
& I _ 2y 2n‘m
m=1 i km (1 CPm)

The dimensionless moment coefficient can similarly be evaluated

from
1 (h
Cy = ;@ Jo z Cp dz
= CMi coswt + CMO sinwt , (3.33)
where CMi is the in-phase component and CMo is the out-of-phase

component of the moment coefficient. We can also write CM in the form

CM = CM1 cos{wt - v) , (3.34)
where

c.. =¥c2. + 2 and = tan" (G, /C..) (3.35)

M1 Mi Mo Y Mo’ “Mi’/ * y

Thus,
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* *
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3(1 + CP
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« 21 __2n 2o
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4y P J, (u *r*)G

+

X

M

n'mY2n'*?

m

m=1
T,

A (1 CP )

JZn( m*R*)
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1 ﬁEZn(um*R*)
o - ?
4n- - 1
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m

1
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*
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+
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M
)
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u KO (1+ CPO

2
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*
Zn( m R¥)

3
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M 2Pm Gm

n
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Z 3
- k. *
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JZn(”o*r*)

m=1 M
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]

2
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(3.36)

(3.37)



where

and

n

u

* -
)‘m Pm+Qm 1

24

(3.38)

- (3.39)
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IV. DISCUSSION OF RESULTS

4,17 Circular Reservoir

The dimensionless pressure, force and moment coefficients are
given by eqs. (2.25), (2.30), and (2.32), respectively. The local
pressure coefficient Cp is dependent on the dimensionless parameters
R*, z*, C and B. The force and moment coefficients, however, are
independent of z* but depend on all the other parameters,

The period of the ground acceTeﬁation, T, during a typical
earthquake may range from 0.1 sec to 10 seconds. If the reservoir
height h is assumed to be 300 ft, then the maximum value of B 1is
approximately 4 and that of C is 0.27. §ince C is inversely propor-
tional to h and B is directly proportional to h, the value of B
increases and that of C decreases for a deeper reservoir. The maximum
value of z* is 1; however, R* has no maximum.

The pressure distribution at the dam surface is shown in Fig.

5 for an incompressible f1uid.with no surface wave (B =0, C = 0),

for Varying values of R*. It can be seen that the maximum value is
attained at the bottom of the reservoir {z* = 0). Also, since surface
waves are absent, the pressure at the surface is zero. The pressure,
at any given height, increases with an increase in R*, until it

reaches a maximum for a certain value of R*. Thenh, with further
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increase in R*, the pressure reduces and attains a finite value as
JR* + o, The pressure coefficient at the bottom as R* » = is 0.742.
This is exactly the value given by Westergaard (1933), Chwang (1978)
and Huang (1980) for an infinitely long reservoir with no surface
waves. The corresponding force and moment coefficients are 0.543 and
0.218 respectively, which are precisely the values obtained by'Huang
(1980},

The behavior of the pressure distribution with increase in R*¥ can
be explained. Initially, the pressure increases as the amount of fluid
in the reservoir increases, as long as the total mass 1n‘thé reservoir
is less than the "added" mass". It keeps increasing until the total
mass exceeds the "added mass®. There is another factor affecting the
pressure at the dam surface. This is the curvature of the side walls
near the dam. When the reservoir is small, there is a component of
the hydrodynamic pressure at the dam 5urface, due to the side walls.
However, when the reservoir is large enough, this effect is negligible.
Hence,.the'pressure reduces and stabilizes as R* -+ =,

In Fig. 6, the value of Cp at the bottom of the reservoir for
increasing values of R* is shown. It can be noted that Cp, as
R* > w, is 0.742 as already mentioned. The values of R* for which
Cp reaches a maximum at the bottom of the reservoir have been plotted
- (see Fig. 7) for increasing values of B, It is noted that, for
increasing B, the maximum Cp occurs at increasing values of R*.

The variation of the pressure coefficient Cp with the compressi-

bijlity parameter B can be seen in Fig. 8 {(R* = 5, C = 0). The pressure
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increases with B until it reaches resonant values of the reservoir.

The corresponding force and moment coefficients have been plotted in
Fig. 9. Figure 10 shows the same variation of Cp as in Fig. 8, but for
C = 0.05 and R* = 5. The correspanding force and moment coefficients
{see Fig. 11) are seen to reach resonant values.

Investigating tﬁe nature of the roots of eq. (2.14) from Fig. 12,
we notice that it yields only one root AO*. From Fig. 13, we see that
eq. (2.15) yields infinitely many roots Ag* (m=1,2,3...). These
roots Am* 1ie between (2m-1)x/2 and myx (m = 1,2,3...). When C = 0,
the roots are

_ (2m=1)7 _ ' ‘
.Am* = 5 (m=1,2,3...) . (4.1)

Hence, the series for m from 1 to M in eq. (2.25) exists only when
B> A%, When B > 3%, the term Jy(n *R%) - J,(u *R¥) [ = 20" (u *R¥)1,
will give rise to some rescnant frequencies. Let us consider the case
when C = 0 and R* = 5, Resonance occurs for B = 1,6134, 1.8985, .. .,
When C # 0, resonance will occur at slightly higher values of B. If
R* is very large, then resonance.occurs at B # Am* (m = 1,2,3...). When
C # 0, resonance also occurs when JT‘(uO*R*) vanishes,

The variation of Cp with the wave-effect parameter C is shown in
Fig. 14. It should be noted that the pressure at the water surface
is no longer zero when surface waves are present. In fact, the
surface waves can play an important role as seen in the curve for
C = 0.35. Also, the pressure distribution becomes osciliatory for

large values of C.



4.2 Semi-circular Reservoir

The pressure, force and moment coefficients are given by

eqs. (3.25), (3.26), (3.31), {3.32), (3.36) and (3.37). Also,

there is an out-of-<phase component for each of the three coefficients.

The pressure coefficient Cp{ is dependent on the dimensionless
parameters R*, v*, z*, C and B. The force and moment coefficients,
CF1 and CMT respectively, however, are indepéndent of z* but depend
on all the otﬁer parameters.

The in-phase component of the pressure coefficient Cpi at the
dam surface is shown in Fig. 15 for a reservoir of size R* = 1.0, at

varying Tocations r/R. The fluid is considered to be incompressible

with no surface waves (B =0, C = 0). The maximum value for any fixed

Tocation r/R is attained at the bottom of the reservoir (z* = 0).
Also, the maximum Cpi’ at any given height, cccurs at the central
plane of the dam {r/R = 0). For larger values of R¥, Cpi decreases
slightly as r/R increases from zero to one .at any fixed height. The
out-of-phase component CbO is zero for the values considered. Hence,
Fig. 15 is also a graph of the total pressure coefficient Cp1.

For different values of B and C, the out-of-phase coefficient
CpO’ was found to be negligible for small values of B and C. Its

maximum was found to occur at the surface of the reservoir {z* = 1)

~and goes to zero at the bottom {(z* = 0). Hence, the contribution of

the out-of-phase component CFO to the total force c¢oefficient CFT is

even smaller. For large values of R*, the out-of-phase pressure

28
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coefficient was found to be negligible for small r/R but oscillates
about a small finite value as r/R = 1 and R* » =,

At the centra1up1ane of the dam, the out-of-phase components of the
pressure, force and moment coefficients are identically zero. This
fact can be observed from egqs. (3.26), (3.32) and (3.37) respectively.
Thus, at the central plane of the dam (r* = 0), the in-phase component

of the pressure coefficient Cpi is the total coefficient € , with

pl
a = 0. Also, the in-phase components of the force and moment coef-
ficients, CFi and CMi respectively, are the total coefficients CF1

and C,- respectively with 8 = vy = 0. Al1 subsequent figufes have

M1
been drawn at the central plane of the dam.

The pressure distribution for varying values of R*, at the central
plane of the dam, is shown in Fig. 16. The fluid is considered to be
incompressible with no surface waves (B = 0, C = 0). The pressure, at
any given height, increases with R*. It attains a maximum value as
R* + =, The maximum value of the pressure coefficient Cpi at the
bottom of the reservoir is 0.742. The corresponding force and moment
coefficients have been plotted in Fig. 17. The maximum values of the
force and moment coefficients are 0.543 and 0.218 respectively.

The pressure distribution for a compressible fluid in the
presence of surface waves (B = 0.4, C = 0.05, r* = 0), for varying
yalues of R*; is shown in Fig. 18, Since surface waves are present,

the pressure at the undisturbed surface is (z* = 1) is not zerc. Also,

the pressure at any given height is Tess than that for an incompressible
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fluid. This is because the surface waves radiate some of the energy.
On the other hand, the same trend as in'Fig. 17 can be noticed in
Fig. 18,

The variétion of the pressure coefficient Cpi with the
compressibility parameter B is shown in Fig. 19 (R* = 5, r* = 0,

C = 0.05). The pressure increases with B till it reaches resonant
values. This can be clearly seen in Fig. 20 which shows the
corresponding force and moment coefficients. With further increase in
B, resonant frequencies are encountered. The trend followed with
increasing B is the same as 1in Fig; 11 except that resonance occurs -
at different values of B.

The roots A _* (m = 0,1,2,3,...) in eqs. {3.25), (3.26), (3.31),
(3.32), (3.36) and (3.37), are the same as those described in the
previous section and can be obtained as shown in Figs. 12 and 13.

When B >'Am*, the term J; (1 *R*) in eq. (3.25) will give rise to
resonance. If we consider the particular case shown in Fig. 19

(R* = 5, C = 0.05, r* = 0), we see that resonance occurs for
Jé(um*R*) =0or B =1.8421, 2.0075, ..., also for Jé(um*R*) =0 or
B = 1.7994, 1.9920;.}:, etc. Resonance also occurs when Jén(uO*R*)
vanishes.

The variation of Cpi with the wave-effect parameter C is shown
in Fig. 21 (B = 0.4, R* = 5, r* = 0). The pressure at the undisturbed
surface is no longer zero when C # 0. The wave-effect parameter C
causes the pressure distribution to be oscillatory and can be

important for large values of C.
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4.3 Comparison of Results

It can be noticed from Figs. 5 and 16 that for an incompressible
fluid with no surface waves (B = 0, C = 0), the pressure coefficient
attains a value of 0.742 at the base of a dam for an infinite reservoir.
The corresponding force and moment coefficients are 0.543 and 0.218
respectively. These values agree exactly with those obtained by
Westergaard (1933), Chwang (1978) and Huang (1980). However, in the
case of the circular reservoir, these are not the maximum values. This
is due to thé effect of the side walls, as already explained 1in
Section 4.1. In the case of the semi-circular reservoir, this effect,
at the central plane of the dam, is negligible. This is because the
walls in the vicinity are straight. Due to this effect, some variation
in pressure can be noticed for R* > 10 in the case of the circular
reservoir, which is not so for the semi-circular reservoir.

In the semi-circular reservoir, out-of-phase components of the
pressure, force and moment coefficients are present. However, these
are negligible for Tow va1des of C and B and vanish altogether at
the central plane of the dam. 1In the circular case, there is no
out-of-phase component since this is a symmetric case with no
discontinuities in the boundary.

Resonance 1in the circular case occurs for J]'(um*R*) = 0. For
€ =0.05, R* = 5, this corresponds to B = 1,7306, 1.9218, ..., . In
the semi-circular case, however, resonénce occurs for JO'(um*R*) = 0,

JZ‘(um*R*) = (0, etc. For C = 0.05, R* = 5, this corresponds to
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vatues of B = 1.7994, 1.8421, 1,9920, 2,0075, ..., etc. As can be
easily noticed, resonance occurs for slightly higher values of B.
Moreover, in the semi—c%rcular case, more resonant frequencieg are
existent. A1l in all, the results from the two cases considered are

quite similar,
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V. CONCLUSIONS AND RECOMMENDATIONS

The hydrodynamic effect of earthquakes on three-dimensional dam-
reservoir systems has been studied analytically in this thesis. The
effects of surface waves and compressibility of the fluid in the
reservoir have also been jncluded. In the case of the dam-reservoir
system with no surface waves, it was found that the in-phase component
of the hydrodynamic pressure increases with the depth of the reservoir
and -attains a maximum value at the bottom. In the presence.of surface
waves, for small C, these values were slightly reduced. However, for
larger values of C, the pressure distribution was found to be
oscillatory.

The hydrodynamic forces were found to be insensitive to R/h
when R/h was greater than 10. Only small reservoirs (R/h < 10) were
influenced considerably by R/h. These reservoir sizes, however, are
unusual in practice.

Resonances were found to occur for values of B greater than A1*,
whose minimum value was found to be /2. Taking the value of the
velocity of sound in water to be 1440 m/sec, we find that for dam-
reservoir systems having h/T greater than 360 m/sec, resonances can
occur. Here T is the time period of the‘ground motion. Hence, we
should have low dam designs whenever possible. However, for deeper

dam designs we can expect resonance to occur. Theoretically, the
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resonant values of the hydrodynamic forces are infinite. In actual
practice, there is some viscous damping in the fluid. Hence, these
values will not be as large as the fheoretica1 values. Also, con-
sidering the interaction between the dam and the reservoir might yie?d
finite values of forces at the natural frequencies.

In this thesis; the dam has been assumed to be rigid. This
assumption is good provided the fundamental ﬁaturaT frequency of the
dam is much higher than that of the reservocir. However, this
frequency may be close to that of the reservoir. Hence, the interaction
between the reservoir and.the flexible dam should be studied.

f The reservoirs considered were ones.with regular boundaries.
In actual practice, the reservoirs have irregular boundaries. Hence,
the hydrodynamic forces due to a dam-reservoir system with irregular

boundaries should be studied in the future.
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APPENDIX A
DERIVATION OF EQUATION (2.13)

In cylindrical co-ordinates, eq. {2.4) may be written as

2 2 2 2
8_%+l§2+7_232+33=]3¢, (A.1)
sl roar 2 o8 3z ¢ 2 atl

By the method of separation of variabies, we can obtain a solution of
(A.1) which satisfies the boundary conditions (2.5), (2.6), (2.9) and
the form of (2.12),

COSXh Z fut
o{r,0,z,t) = X{r) cose e s (A.2)
' ¢cosha z

where X{r) is given by the Bessel differential equation,
2 rE L2
roxt o+ pXt o+ (——2+>\>-1 X =20 (A.3)
c
0

and the primes denote derivatives with respect to the argument. The

+ signs are associated with cosix z and coshr z, respectively. Here

A

h (eq. (2.18)) with the + sign and » = (eq. (2.15)) with the

- sign. The solutions of (A.3) which are finite at r = 0 are then
2
2

J1(u0r) and J1(umr) or IT(er) according as 9§ - 2% 2 0, where oo Uy

c
and B, are defined in (2.18), (2.19) and (2.2%), respactively.
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Thus, we get ¢ of the form

M

!

¢ = {A) cosh 3 z J](uor) + L

A, cos x z J1(pmr)

i 3

1

+ ) cos . z I.(8.r)}coss e (A.4)
m=p+1 & m o
Substitution into eq. (2.12) yields
Ay , M Amu
0" 0 m
> cosh . [JO(uOR) - JZ(“oR)] + mz] 5— COS A Z
(0 GR) - 0, R)] ¢ T nfm
% u R} - U + cos X Z
o''m 2'"m m=h+] 2 m
21 et -
x [I (8. R) + I,(gR) = ~ ae (£.5)
cosh Aoz
Now, we will prove the orthogonality of { - over the interval
. cos A 2
0 to h.
h sin(x_-x Yh  sin{x_+x_)h
€os Az cos x. z dz = m p. + m_p
Jg m p Z(Am-kp) 2(xm+xp)

i (Am+4Egsin(Am~Ap)h + (Am-xb)sin(xm+xp)h
2
)

2
Z(Am - xp

Ams1n kmh cos Aph - Apcos Amh sin XEE
2 .
}\m - }\p2




Substituting for cos Aph and cos Amh from eq. (2.15), we obtain

h
z
JO cos Amz cos Ap dz

-Ams1nAmh[CAmhs1n§ph] + Ap[cxmhs1nxmh]s1nxph

=

2 2
A -;\p
=0 when m # P
Whenm = P,
h - sin 2)x_h
J cos® r z dz = g-+ _
0 m .

+ e
Amh sin Amh cos Amh
EAm

By using eq. (2.15) to replace cos Aghs we obtain

. 2
h doh = Ca h sin~A_h
2 m m m
J cos Amz dZ 3

n

0

h 'y 2
'2'(1 'Cpm )s

where P is defined in eg. {2.17).

Now consider
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JO cosh Aoz cos Amz dz

. . .
_ AOSTnh th‘cosxmh xm cosh th sin kmh

Substituting for cos Amh from eq. {2.15) and cosh th from eq. (2.14),

we obtain

h
JO cosh Aoz cos Amz dz

-A, sinh th[Ckmh sin Amh] + Am[CAOh sinh th]sin Agh

38
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Now consider

h
2 _h 2
JO cosh A2 dz = 5 (1 + CPO Y,
where P is given in eq. (2.18).

Using all the above orthogonality conditions, the solutien. to

eq. (A.5) is obtained as eqg. (2.13).
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APPENDIX B
DERIVATION OF EQUATIONS (3.11), (3.12) and (3.13)

The ve1dcity potential 91> which satisfies the‘governing differen-
tial equation (3.6) and the boundary conditions (3.2) to (3.4) and
(3.7), can be obtained by the method of separation of variables in

the form

CoSs AZ .
91 (r,6,2,t) = Y(r)cos(Zne){ } eluwt (8.1)
cosh Az
The factor cos{2ng)is obtained by using {3.7) and symmetry about 8 = 0.
The same procedure as in Appendix A can now be applied to obtain the
final form of (3.11).
The velocity potential 9o satisfies the governing differential
equation (A.1). The solution for 955 also found by separating
variables, is of the fqrm

cosh AZ?

6,(r,8,2z,t) = F(r,6) { elut, (B.2)

COS AZ f
where F(r,s) satisfies the Helmholtz equation

2 2
_3_F;+1__§_E+_1__3___E+u2;_-=0 ' (3.3)
2 r 2 .2
r r §]

3 ] a
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Solutions of eq. (B.3) are of the form e ""°°%% and '*'S1M®  Then, by

using eq. (3.5) and the same orthogonality properties as in Appendix A,

we get the final form for bo given in eq. (3.12).

94
Since 5;2 at r = R is not zero, an additional velocity potential

¢3 has been added such that

8¢3 3¢2
ET T
. iP - ju_Rcoss
- plot ‘"“‘9“'5* e © cosh A2
w A (1+CPy%)

[ M i Pm iuchose
+ Z ————*————E" e
m=1 Am( )

@ i Pm -Bchose
+ Z ——~——*~—~§; e cos.xmz‘} cose . (B.4)
M

Am(1 - CPm

By separating variables, we can show that ¢4 may be expressed in the

m=M+1

form
¢3(r?e,z,t) = nzo.{conJZn(uOP) cosh A2
? (u 1)
+ - C _do lur
me1  mn 2n*™m
s iwt
+ 7 CmnIZn(smr)J cosxmz} cos(2ng)e (B.5)



Then, using the same orthogonality properties for cos Xz and cosh Az
as in Appendix A, as also the orthogonality of cos(2ne) over the
interval --% to %-, we can evaluate the constants C__ and obtain the

final form of eq. (3.13).
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Figure 1. Schematic diagram of dam-reservoir systems
with partly circular boundaries.
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Figure 2. Schematic diagram of a circular dam-reservoir
system. {a) Elevation, (b) Plan.
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Figure 3. Schematic diagram of the free surface
with surface waves,
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Figure 4. Schematic diagram of a semi-circular dam-reservoir
system. (a) Elevation, (b) Plan.
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Figure 6. Variation of the pressure coefficient Cp at the bottom of the
reservoir (z = 0), with R¥. (Circular reservoir; C = 0.0,

B = 0.0).
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Figure 7.

Variation of P* with -the compressibility
parameter B, for maximum value of the
pressure coefficient Cp at z = 0.
(Circular reservoir; C = 0.0).
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R* = 5.0).
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Figure 10, Variation of the pressure coefficient Cy with z*, for different
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Cq respectively, with the compressibility parameter B.
(Circular reservoir; C = 0,05, R* = 5.0).
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Diagram showing the method of finding the
roots of Eq. (2.15).

3T

55



FigUre 14. Variation of the pressure coefficient C, with z*, for
different values of the wave-effect parameter C.
(Circular reservoir; B = 0,40, R* = 5.0).

I T T ] =
8 =0.40
R*:5
o2
O\\
(o]
o\O
§2)d
2, \&
)
o\o
W \&
L 1 1 \ 1 )
. 0.4 06 0.8 1.0 1.2 1.4
Co

99



0.8

0.6

04

0.2

r*: 10
C=0.0
B=0.0
' z
w7 “1olos} o5lo00
| | | | | | ] | 1
0.05 0.t 015 0.20 0.25 0.30 0.35 - 040
Cp‘
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Variation of the pressure coefficient Cpi with z*, for
different values of R*. (Semi-circular reservoir;

C=20.0,B=0.0,r=0).
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Figure 18. Variation of the pressure coefficient Cpi with z*, for different
values of R*. (Semi-circular reservoir; C = 0.05, B = 0.40,
r = 0). ’
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Figure 19. Variation of the pressure coefficient Cp. with z*, for different
values of the compressibility parameter B, (Semi-circular
reservoiry; C = 0.05, R* = 5.0, r = 0).
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Figure 20. Variation of the force and moment coefficients, Cpy and Cyy
respectively, with the compressibility parameter B. (Semi-
circular reservoir; C = 0,05, R* = 5,0, r = 0).
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