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X1

NOTATION

spacing between corner and middle columns in the x and y
directions, respectively

lengths of hulls and cross braces

wave speed or celerity

water depth

diameter of ith column

degree of freedom

depth of centerline of hulls below mean water surface
eccentricity of buoyancy forces

vector of forcing functions

buoyancy force

change in buoyancy force

total vertical force of dynamic préssure on corner column
bases

horizontal inertia force on ith column

horizontal drag force on ith column’

total vertical inertia and drag forces on hulls

x and y éomponents of inertia forces on the hulls, respec-
tively

x and y components of drag forces on the hulls, respectively
total horizontal forces on columprs and hulls in the x and y
directions, respectively

total vertical forces

center of gravity of platform

acceleration of gravity






K%

TLP:

ATy

platform depth in water

distance from the center of gravity to base of the hulls
distance from instantaneous water level to base of ith
column |

wave height

wave number = 2n/L

leg stiffness (longitudinal)

stiffness matrix

stiffness coefficients

stiffness force vector

cable length

wave length

matrix of structural plus added masses

moments of' dynamic pressure on corner column basés about
x-axis and y-axis, respectively

moments about the x-axis of vertical and horizontal forces
on the hulls

moments about the y-axis of vertical and horizontal forces
on the hulls

total moments about x-, y-, and z-axe§

moment of the inertia forces on columns

moment of the drag forces on columns

time

wave period

cable tension

tension-leg platform

change in cable tension






u:

u:
Urel:
We
XsY,2:

X4 ,y-i:
{x}, {X}, {X}:

{-x‘g]':

{xp}:

x111

fluid particle velocity

fluid particle acceleration

relative velocity between structure and fluid partic]e
weight of platform

coordinate axes

coordinates of ith column measured in direction of and per-
pendicular to wave propagation, respectively

vectors of structural displacements, velocities, and accel-
erations, respectively

vector of ground accelerations

vector of structural displacements with respect to ground
motion |

distance between center of gravity and mean water level
direction of wave propagation measured from the x-axis

used in Newmark B-method solution procedure

used in force calculations as cosa and sina, respectively
used in g-method equation

used in force calculations as (bsina) and (acosa), respec-
tively | |

fluid density












[. INTRODUCTION

A. _Objective

. Offshore production platforms have been manufactured predominantly as
fixed steel template jackets or concrete gravity structures for operations
in water depths up to 200 meters. Manufacturing, installation, and mainte-
nance costs of fixed platforms rise rapidly as water depths increase.
Recently, however, attention has been focused on the design of tension-leg
platforms. Relatively smé]l increases in manufacturing and installation
costs with added water depth make the tension-leg platform an attractive
a1ternafive. |

The design of tension-leg production platforms.reqUires an understand-
ing of the dynamic behavior of the structure duriné storm waves, wind,
ground motion conditions, etc. In order to design a reliable structure, it
is necessary for the engineer to take into account the effect of'plathrm‘
motion on personnel, equipment, and operations. It is also necessary to
take into account the anchoring system and the forces in the mooring legs
produced by wave actions and platform motions.,

The primary objective of this research is toldevelop a complete and
accurate deterministic approach for the dynamic analysis of tension-leg
piatforms (TLP's) subjected to wave forces and ground motion. A mathemati-
cal model is developed based on a set of coupled nonlinear diffefentiaT
equations for sway, surge, heave, pitch, roll, and yaw motions. The non-
Tinearity of the coupled differential equations of motion makes a power
spectral analysis in the frequency domain infeasibie. Thus, a time domain

analysis was selected for investigating the dynamic characteristics of the






anchored structure. The advantage of this approach is that nonlinear func-
tional relationships, which require approximations in the spectral models,
can be handled exactly in the time domain.

The time domain dynamic analysis model developed herein is capable of

obtaihing the following:

1) Time histories of displacement résponse in the direction of all
degrees of freedom (surge, sway, heave, pitch, roll, and yaw)} when
the ptatform is subjected to wave loading and/or ground motion.

2) Response spectra (i.e., variation of response amplitudes with res-

. pect to wave period) for all degrees of freedom,
3) Effects of variations'in several-different parameters,

4) Effects of coupling and nonlinearities,

B. Research Plan

In order to accompTish'the objectives set forth in this project, the

following research plan was developed and undertaken: |
' _1) Literature search and choice of the most appropriate dynamic anal-
ysis of TLP's,

2) The development of a deterministic dynamic analysis model.

3) Verification of ‘mathematical model.

4) Parametric studies to identify design criteria.

Few attempts have been made in the literature to simulate, or calcu-
late, the dynamic response of tension-leg platforms. A review of previous
work was undertaken with the objective of sorting out the important parame-
ters influencing the structure's behavior. The previous attempts to model
the response of tension-leg platforms have neglected either coup]fng or
non]ineérities or both, and none have addressed the possible effects of

ground motion.






The déveiopment of a complete deterministic dynamic analysis model
involves the formulation of a nonlinear stiffness matrix, selection of a
suitable wave theory, derivation of complete forcing functions, selection
of an efficient numerical method capable of carrying out the solution of
nonlineér coupled differential equations in the timé domain, and develop-
ment of an appropriate computer code to perform the dynamic. response calcu-
lations. | |

Wave forces and ground motion are two of the environmental toadings
which could be applied to the offshore structure. Time histories of the
complete response of the model to these environmental forces are generat-
ed. A pafametric study is carried out in an effort to determine the sig-
nificant design parameters that need to be considered in the design and

analysis of tension-leg platforms.

C. Review of Previous Research

Various methods of dynamic analysis of offshore structures subjected
to wave loading have been presented in recent technical literature (see for
example references 1-11). Linear or piecewise linear mathématica} models
to analyze response in‘the frequency domain have- been employed by many
researchers (Refs. 1,2,4;5,8, and 10); whereas nonlinear time domain analy-
ses were performed by other researcherﬁ (Refs. 3,6,7, and 9).

Frequency domain or spectral analysis mode]slare based on a linear
formulation of the dynamic problem. Nonlinear terms inherent in. the forc-
ing function, and the relative displacement, velocity, and acceleration
between the structure and the fluid particles are neglected. It is also
assumed that coupling between degrees of freedom is neglected. Moreover,

spectral models are capable only of finding maximum response amplitudes,






and nbt time histories of the response as is the case in time domain analy-
ses. Nonlinear and coupling effects are important and can have significant
effects on the structure's dynamic behavior. Time domain (or determinis-
tic) modé1s are capable of handling all kinds of nonlinearities. The bene-
f1t§ of time domain analysis include the ability to incorporate any type of
nonlinearaity in force which can be adequately described, and the avail-
ability of response time histories to aid in assessment of the effects of
coupling between degrees of freedom. Such nonlinear and coupling effects
cannot be easily included in a frequency domain even with approximations
such as equivalent linearization.

Previous nonlinear deterministic models did not account for all:types
of nonlinearity and coupling. Typically they included a numerical integra-
tion of wéve force equations along each segment of the platform at each
iteration for every time step. Some also included a noﬁ]inear finite ele-
ment formulation to describe the nonlinear stiffness of the ahéhor 1ines;
These analyses are generaily very expensive. The current model attempts to
eliminate or minimize the effects of the following assumptions which are
common to most published analyses:

1) Equivalent 1linearization of nonlinear terms in the anchoring
stiffness and fluid drag forces (some deterministic and all fre-
quencyvdomain models).

2) Neglecting coupling effects between degrees of freedom (both fre;
quency domain and time domain models).

3) Numerical integration of wave forces at every time step.

4) Omission of ground motion in the forcing functions.






Frequenqy domain analysis 1is inexpensive and may be adequate for a
preliminary look at the dynamics of the problem but it is not sufficient
for a complete and accuratevprediction of a coupled nonlinear response of
the structure. Hence, a deterministic approach is needed to account for
the nonlinear and coupled behavior involved in the problem. The .complete
deterministic model presented in this research attempts to satisfy the
requirements listed above and to include the effects of ground motion as

well as water waves.






II. DEVELOPMENT OF DYNAMIC ANALYSIS MODEL

A. General

A review of previous work related to dynamic analysis of TLP's indi-
cates a need for a complete nonltinear deterministic analysis. The develop-
ment of -such a model involves the formulation of a nonlinear stiffness
matrix which describes the behavior of the anchoring cables and buoyant
forces, The selection of a wave theory yielding a reasonable representa-
tion of the water waves in terms of particle velocity and acceleration, and
in terms of wave forces, and yet simple 1is also involved. Once a wave
theory is selected, a force calculation method which utilizes the fluid
particle velocities and accelerations derived from the wave theory can be
chosen to yield wave forces.that agree with experimental results and best-
represent the actual forces produced by the waves. After formulating thel
nonlinear stiffness matrix and the wave forces on the structure; provided
the structure properties and dimensions are known, an efficient time domain
numerical method that is capable of handling all kinds of nonlinearities
and coup1jng is employed to integrate the equations of motion and obain
time histories of the response.

The structure considered in this research consists of four corner col-
umns which are linked to vertical tethers, four middle columns, two main
hulls, and two cross bracings (see Fiqure 1). Specifications of the struc-
ture dimensions, masses, mass moments of inertia, added masses, added mass
moments of inertia, center of gravity, water depth and draft are required -
to compiete the description of the TLP. The compiex structure is assembled

from a group of simpler bodies whose individual hydrodynamic properties are






known. The tdta] hydrodynamic force on the assembled structure is aéﬁumed
to be equal to the sum of the forces on the component bodies.

The model developed herein utilizes nonlinear stiffness coefficients
based on derived stiffness-displacement relationships which are functions
of the instantaneous position of the structure rather than a more expensive
finite element approach. These stiffness functions are coupled as well as.
nonlinear. Coupling effects are ignored or neqlected in frequency domain
models and in most time domain analyses. The effect of including coupling
effects in the stiffness matrix will be shown to be significant and, if
neglected, mis]eadihg results can be obtained.

The linear wave theory (Ref. 12) (sometimes called Airy wave theory)
has been found to give wave forces close to those obtained using higher
order wave theories, provided a proper method of calculating wave forces is
used with a suitable choice of the fluid added mass and drag coefficients
(Refs. 6,7, and 10), Linear wave theory provides good solutions in deep
water, i.e., for water-depth-to-wave length ratio greater or equal to 0.5
(Ref. 13). Airy Tinear wavé theory is used in this model because it is
practical, easy to apply, and reliable over a large segment of the whole
wave regime (Ref. 14). _

The forces on the structure are classified as hydrostatic (arising
from buoyancy), énchoring (restoring stiffness), hydrodynamic (inertia and
drag due to waves), and inertial (arising from ground motion). The hydro-"
dynamic forces are computed with the Morison equation (Ref. 15), with velo-
cities and accelerations bésed on relative motion between structure and
water, Earthquake excitation consists of horizontal and vertical base

accelerations based on ground motion records.






The structure is represented by a mathematical model which can be
reduced to a system of coupled nonlinear differential equations that are
solved by direct numerical integration on a digital computer. The equa-
tions of motion are integrated in a stepwise manner using the Newmark
B -method (Ref. 15).

The equations of motion are represented by Equation 1 in matrix form

ds
[MI{X} + [K]{X} = {F(X,X,X,t)} (M)

where [M] is the mass matrix for all six degrees of freedom,
[K] is a 6 x 6 nonlinear stiffness matrix,
{F} is the vector of forcing functions, .
{x} is the structural displacement vector,
{x} s the structural velocity vector,
{x} s the structural acceleration vector, and

t is the time.

* This chapter presents details of the development of a complete nonlin-

ear coupled dynamic analysis model.

B. Derivation of Nonlinear Stiffness

1. Degrees of Freedom

Since the structure is considered as a rigid body, the motion will
consist of six degrees of freedom -- three translational and three rota-
tional. The coordinate axes and the degrees of freedom used in the analy-

 sis are presented in Fig. 2. Surge, sway, and heave are defined as the






horizontal mofjbn along the x-axis, the horizontal motion along the y-axis,
and the vertical motion along the z-axis, respectively. - Pitch, roll, and
yaw are defined as the rotational motion about the y-axis, the rotationaT
motion about the x-axis, and the rotational motion about the z-axis,‘fe-
- spectively. The degrees of freedom are numbered as follows:

Surge: d.o.f, No. 1

Sway: d.o.f. No. 2

Heave: d.o.f, No. 3

Pitch: d.,o.f. No. 4

Roll: d.o.f. No. 5

Yaw: d.,o.f, No. 6

2. Derivation of Stiffness Coefficients

A nonlinear stiffness matrix [K] including all six degrees of freedom
is formulated, where kjj is the force in degree of freedom "i" due to an
arbitrary displacement in the direction of degree of freedom "j", with all
other degrees of freedom restrained. To derive the nonlinear stiffness
coefficients, each degree of freedom is given an arbitrary displacement and
the forces developed constitute the coefficients in the corresponding col-
umn of the stiffness matrix. -The coefficients of the first column of the
stiffness matrix are found by giving the structure an arbitrary displace-
ment x in the surge direction as shown in Figure 3. The static equilibrium
forces exerted on the structure at its original position are sho&n in Fig-
ure 4, The static equilibrium forces are the weight of the structure, W,
the buoyancy force, F , and the initial tension (or pretensioning force),
4To. Through summation of forces in the vertical direction one obtains:

++EFZ =0
Fg - 4Tp- W =10 (2)
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The forces acting on the structure with a displacement, x, in the direction
of surge'are shown in Figure 5. A sum of forces in the x-direction yields:
X _
-
%

b = 0

kyp - 212(T,+ ATI)X] =0

kjp = MTo* aT )sin v, | | (3)
where Ty is the value of the initial tension in each leg, ATy, is the in-
crease in tension in each leg from thelx§disp1acement, and Yy is the angle

of inclination of the legs with respect to the vertical, and it is given

by:

The elongation in the chain tength is

AK] =p' -2 = 15+ X" -,

hence

ATy = k. By,
where k¢ is the stiffness of the chain for each leg.
Now, summing the forces in the vertical direction gives:
+1xF, = 0
kyy + Fp - W= 22(Tg+ aTy), =0
kgy + (Fg = W) - 4(T,+ aTy) cos v, = 0

where 1

1
€Cos vy = =
x I' %2 T <2

Recalling Equation (2), Fg "= W = 4T,

kqy =8T(cos v, - 1) + & AT, cos Ty (4)
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In summing the moments about the y-axis vertical forces produce no moment,
therefore only horizontal components of the tension in the chain are con-

sidered:
Gim, =0
k41 + 4(TO+ ATI)X (h) =0

Combining this with Equation (3) yields:

kg1 = -Nkyy (5)
The coefficients of the second column of the stiffness matrix are

found by giving the structure an arbitrary displacement in the sway direc-

tion with all other degrees of freedom (d.o.f.'s) restrained. The coeffi-

cients are identical to those of the first column with change in notations

as follows:
Koy = 4(Tg+ AT,) sin Yy (6)
k3o = 4Tb(cos Yy - 1) + AT, cos Yy (7)
kep = + h Ky, (8)
where

"
>
=

™3
+
15
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{
~
—
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The coefficients of the third column of the stiffness matrix are found

by giving the structure an arbitrary displacement in the heave direction,

keeping all other d.o.f.'s restrained. The correqundfng forces acting on

the structure are shown in Figure 6.

yields:

However, (Fg - W - 4T,)

+42F, =0
kg = W = 4(Tg+ aT4) + (Fg - AFg) = 0
Kyg + (Fp = W - Tg) - aFp - 44T, = O3

0 from Equation (2); therefore,

I

k33 = AFB + 4AT3 s

A sum of forces in the z-direction

12

(9)

where AFg = pgtV, p is the mass density of water, g is the acceleration of

gravity, AV is the change in submerged volume, and 4T3 is the change in

tension in each leg arising from heave.

The coefficients of the fourth column of the stiffness matrix are

found by giving the structure an arbitrary rotation about the y-axis with

all other d.o.f.'s restrained.

acting on the structure. Summing the moments about the y-axis gives:

C+zMG = 0

44

which can be written:

k

44

=Fpey + 24T,y r+24T)+ 27 (r-s),

- Fp ey - 2(To+ aTy) v + 2(Ty- aT4) s = 0

Figure 7 shows the corresponding forces

(10)






where e4 is the eccentricity of the buoyancy force calculated according to
I _
the formula eg = L, where Iy is the moment of jnertia of the cross sec-

Vv
tion of the structure intersecting the water surface, about the y-axis, and
V is the volume of the submerged portion of the structure. From geometry

(see Figure 7) d, r, s, V1, ALgq, and ALy are calculated as follows:

d, -ViZ+ a® ,

r = d] cos {y - ay) ,

s =d;cos (y + qy) ,
Uy = tan™! (R/a) ,
AL, = h - dy sin (p - a.) ,
and 4 1 Y
AL& = dy sin (0 +a) -h.

y

Summing the forces in the vertical direction gives:
+ F, =0

kag + Fg - 2(T + ATg) - 2(T - aTz) - W =0
k34 + (FB - 4T -« W) - 2AT4 + 2AT& =0

- ' b 1
where AT4 = kC AL4 and AT4 = kc AL4

The coefficients of the fifth column of the stiffness matrix are found
by imposing an arbitrary rotation about the x-axis, keeping all other
deo.f.'s restrained. The resulting coefficients are identical to those of

the fourth column with a change in notation as follows:

13






where

and

kgg = Fg €5 + 2 4Tg u + 2 aTg v + 2T(u. - v) - (12)
= - ' 13
Kyg = 2 AT - 2 AT¢ (13)
-2
d, = Vi +b? |
u = dz cos (y, + @)
v =d, cos (wz - ax) ,

slg = h - dy sin (g, - a,)
aLf = d, sin (yy +a) - h,
AT5 = kC AL5 s

ATé = kC ALé

The coefficients of the sixth column of the stiffness matrix are found

by giving the structure a rotation about the z-axis with all other-d.o.f.‘s

restrained. The forces acting on the structure arising from yaw rotation

are depicted in Figure 8,

A sum of the moments about the z-axis gives:

+M, = 0
kgg = 4(T + aTg), / a% + b = 0

s(a® + b2)
//’2+¢%a2 . bz)

2

k66 = 4(T + AT

6) (14)

14






where
s+ al + bl

124 d)2(a2ﬂ+ b2)

= sin ¢’ , and

5T = k. (/1% + 62 (a2 + ) 1)
A summation of forces in the vertical direction gives:

MIF, = 0

k36+FB"w"4(T+AT6)COS¢l=O

but, Fg - W = 4T,; therefore,

k36 = 4T (cos @‘ -1)+4 ATg cos ¢

where

o]
cos o' =‘//{2 N 551a2 + b2) (see Figure 9)

3. - Discussion

(15)

Two significant aspects can be noted concerning the derived stiffness

coefficients: coupling and nonlinearity. Coupling terms are the nondiago-

nal coefficients of the stiffness matrix. Heave is coupled to surge, sway,

pitch, roll, and yaw, respectively (Equations (4), (7), (11}, (13), and

(15)). Further, pitch is coupled to surge, (Equation (5)), and roll is

coupled to sway (Equation (8)).

15






The stiffness matrix,

including all

of the coupling terms detailed

above, is:
Surge [ K11 0 0 0 0 0
Sway 0 koo 0 0 0 0
Heave k31 k32 k33 k34 k3s k36
Pitch k41 0 0 ka4 0 0
Roll 0 k5o 0 0 kss 0
Yaw ] 0 0 0 -0 0 k66 |

As will be shown later in this report, coupling has a significant ef-
fect on the calculated response of the structure. Coupled equations of mo-
tion are intractable in Frequency Domain models, and nonlinear time domain
analysis published in the literature generally neglected coupling effects.

As shown above, the stiffness matrix is asymmetric. This implies that
some degrees of freedom are coupled to other degrees of freedom, but not
vice versa. For example, this is apparent in the heave degree of freedom
{third row and third column of the stiffness matrix). The heave row con-
tains only nonzero termg; i.e., heave is coupled to surge, sway, pitch,
roll, and yaw. However, the heave column contains only one nonzero term

{k33); f.e., as the structure moves in the vertical direction (heaves),

there is no required motion in the other directions. By the same argument,

pitch is coupled to surge, and roll is coupled to sway, but not vice versa. -

Moreover, other types of coupling occur between degrees of freedom as can

be seen later in the derivation of the forcing functions.






. Another significant aspect of the stiffnes§ matrix is the nonlinearity
of ‘its coefficients. For example, sine and cosine terms and square and
square root terms contribute to the nonlinearities of the stiffness coeffi-
cients (see Equations (2) through (15))}. Since each coefficient kij is
equal to the stiffness force at degree of freedom "i" due to an arbitrary
(and not a unit) displacement in the direction of degree of freedom "j",

the sum of coefficients in each row of the stiffness matrix will give the

total stiffness force “Ki" of that particular degree of freedom. Hence,

&~ Oh

K. (16)

C. Derivation of Wave Forces

1. SeIection'gf Wave Theory

Theoretical simulation of water waves, and of sea motion in general,
invo1ves rigorous mathematical analysis. The basic hydrodynamic equations
that govern the wave kinematics are the equation of continuity (Laplace's
equation) and the equation of momentum (Bernoulli's equation). The form
and solution of these equations vary, depending on the intended appliction
of wave kinematics. However, in general, all solutions assume incompres-
sible, inviscid, and irrotational fluid particles. The simplest solution
of the hydrodynamic equations involves a further assumption, that the waves
are of small amplitude (H/2) compared to the water depth (d) and the wave-
length (L). This solution was introduced by Airy (Reference 12), and
became known as the linear wave theory.

Higher order wave theories are not based on the assumption of small

amplitude to solve the hydrodynamic equations. Instead, they include

17






higher order térms (terms higher than first order) in the solution. Stokes
(Ref. 17) developed equations for waves of finite amplitude by accounting
for higher order terms. The Stokes wave theories have been developed for
terms up to fifth order. The successfully higher'order theories give wave
surface profiles that are steeper in the.crests and f]atter {n the trough
than those given by the linear wave theory. Dean (Ref. 18) developed the
stream function wave theory. This theory, which is a numerical one, has
demonstrated good agreement with experimental wave channel test results for
a wide range of H/T2 ratios (Ref. 19). Many other analytical and numerical
wave theories have been developed and can be found in the literature (see
for example Refs. 20 - 23). |

The relative ranges of application for some of the prominent wave
theories are shown in Fig. 10 (see Ref. 24). It can be seen that, for d/T2
ratio of greater than about 1.0 (ft/sz), and for H/T2 ratio of tless than
about .035, the linear wave theory applies. 1In this'study, water depths

start at 200 m. Therefore, from the d/T2 = 1.0 ratio, the maximum wave

18

period that can be used with the linear wave theory is /200 x 3.3.=

25.6 sec, which is large enough to cover the range of wave periods used in
this study. The maximum_wave height that can be used is H = 0.035T2;. For
Targe values of wave period, say T = 25 sec, the wave height could be as
large as 22 ft (6.7 m). It should be noted that, while wave heights great-

er than those just described also were used in this study, the response is

Tinear with wave height over the range between the maximum wave height used

and those within the above guidelines. Further, it has been shown that the
predominant wave height for a 17 sec wave is approximately 15 m (Ref. 10)
and that surge and sway response are not significantly affected by wave

steepness and agree well with linear wave theory predictions (Ref. 9).






Therefore, thé linear wave theory is sufficient to obtain the kinematics of
the waves to be used in the dynamic analysis of tension-leg platforms in
deep water.

A schematic diagram of an elementary, sinusoidal progressive wave is
presented in Fig. 11 (Ref, 14). The velocity and acceleration of the fluid
particle at depth z below the mean water level are respectively given by

the linear wave theory as:

mH _~kz

U= e " cos [k(i - ct)] ‘ (16)
and

- 2w2H -kz _. -

u = —;ﬁ— e sin [k(X - ct)] an

where H, T, and ¢ are the wave height, period, and celerity, respectively,

and k = 2 m/wavelength.

2. Justifications for using Morison's Equation

~ Experimental studies by Morison, et al. (Ref, 15), led to the formula-
tion of a wave force equation that became known as Morison's equation.
This.equation has been widely used for more than two decades in the calcu-
lation of wave forces on offshore structures; The equation consists of a
drag term, as in the case of flow of constant velocity, and an inertia term
due to the acceleration of the fluid particle.

The original form of Morison's equation is:

| 2, dU
F=0.50C,0 [UJU+C om D/4 55 (18)
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where F is the force per unit length experienced by a cylinder; U and du/dt
represent the undisturbed velocity and acceleration of the fluid, respec-
tively; and Cq and Cy are the drag and inertia coefficients. |

Morison's equation has been widely accepted for force computations
because of good correlation with experimental results in a large number of
practical cases. However, the use of Morison's equation gave rise to a

great deal of discussion on what values of the two coefficients should be

20

used. ~Experimental results by different researchers were scattered and '

divergent. However, the force transfer coefficients Cq and Cp, for one-
dimensional flow over.a circular ‘cylinder, have been well studied by
Sarpkaya (Ref. 25) and Garrison (Ref. 13), and their experimental results
have produced a very promising approach for the systematic analysis of test
data,

Morison's equation provided a hypothesis that expresses the force both
as a function of time and other independent parameters, for the case where
the wave slope and associated pressure gradient are roughly constant across

the diameter of the cylinder and the wave scattering is negligible.

Morison also assumes that in the region near the cylinder the kinematics of

the undisturbed flow do not change in the incident wave direcﬁion. How-
ever, since the kinematics of the flow do vary with-distance (as shown in
Fig. 12), the above assumptions restrict the D/L ratio to a small value.
Sarpkaya (Ref. 26) and Leonard, et al. (Ref. 19), suggested that the appli-
cation of Morison's equation be limited to D/L values of less than 0.2.

They also suggested that in cases where D/L is larger than 0.2, wave dif-

fraction occurs. In the diffraction dominated region (see Fig. 13) the

total inertial force results from the sum of . two components (Ref, 26): the






force from the pressure field of the undisturbed fluid (the incident wave),
and that from the disturbances caused by the presence of the body (scat-
tered wave).

Diffraction forces arise from the scattering of incident waves by
structure. These forces become significant when the structural member
dimensions reach a substantial fraction of the wave length. Models for
describing the force arising from diffraction have been developed by McCamy
and Fuchs (Ref. 27) and others, generally by the use of potential theory
with finite elements or finite difference methods, Significant contribu-
tions to the computation of hydrodynamic forces and moments on large
gravity-type platforms have been made by Hogben and Standing (Ref. 28),
Garrison, et al. (Ref. 29), Mei (Ref. 30) and others, using diffracion
theory.

In conclusion, the use of Morison's equation in wave force calcula-
tions is justified if the following conditions are met: |

| 1) For D/L to be less than 0.2, with the largest diameter of 16
meters used in the analysis, the wave length should be larger than
5D, i.e., 80 meters.
2) For a maximum diameter of 16 meters, the wave height should be
greater than 5 meters to avoid the diffraction dominated region
(see Fig. 14).

3) The original form of the equation should be modified in order to
account for the relative velocity and acceleration between the
oscillating structure and the fluid particles.

4) Reasonable values of the force transfer coefficients Cq and Cy may

be obtained from the literature {e.g., recommendations of Garrison"

(Ref. 13) and Sarpkaya {(Ref. 26)).
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3. Procedure for Wave Force Calculation

In order to properiy describe the dynami¢ response of the TLP, the
wave forces must be accurately calculated. The conditions listed in the
- previous section for using Morison’s equation in wave force calculations
“all have been met in this study. Hence, the wave forces éré calculated

from a modified version of Morison‘s equation and include the relative
velocity and acceleration between the structure and fhe fluid particle.
Equation (18) is modified to account for. the relative motion between the

structure and the f]uid particie, and separated into drag and inertia

terms. The drag and inertia forces on an element dz along the length of

the cylinder become:

6Fg =5 Cp 0 Upgy Upey 42 (19)
and ' '

sF, = 0% [c U-(c
I~ °7F i'n

m " 1) x] dz | (20)
where o 1is the mass density of the fluid, D is the diameter of the cylin-
der, Upey is the retative velocity given by

Upgy = U = [x - (2 - 2)a +4% X, 4] (2n)

“and
X=X -(z-3)d+gxi (22)

Equations (21) and (22) are derived based on Figure 14 where x, X, &, & are

the velocity, acceleration, angular velocity, and angular acceleration of
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the center of gravity (in this case the center of rotation) of the struc-
ture, respectively, and x is the relative velocity of element dz of the

cylinder with respect to the water.

Substituting Equations (21) and (22) into Equations (19) and (20),

respectively, yields:

$Fg = § Cg Dlu-li-(2-2) &+ 3 x Y tuelhe(2-2) a+ 7 x;&8 1z (o)

and

It

8Fp = oM [C - (Co1) im(2-2) &+ 5 x,32)]dz (24)

Theﬁe two equations are integrated along the length of each column and hull
to obtain the total 1nsﬁantaneous force on the structure.

The moments of these forces about the axes of rotation are found by
multiplying the force equations by the appropriate moment arms.and then
integrating over the length of each cylinder to obtain the total moments.
It should be noted that despite the nonlinearity of the drag force and
moment equations and the coupling of pitch and surge or roll and sway in
both the inertia and drag equations, a closed form {ntegration can be car-

ried out by hand, thereby avoiding the need for time consuming numerical

integration. This method of force calculation is the major contributor to

the efficiency of the mathematical model and computer program developed in
this study.

A force calculation method similar to that of Kirk and Etok (Ref. 10)
is used with the following major changes:

1 - Inclusion of drag forces
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2 - Incorporation

particles

of

relative motion between structure and fluid

3 - Accounting for instantaneous position of structure

4 - Inclusion of coupling terms in wave force derivation

The following outline contains a complete description of the wave

force equations which must be derived:

1) Horizontal forces

a)
b)

c)

d)

Inertia forces on columns

Drag forces on columns

Inertia forces on hulls and cross braces

Drag forces on hulls and cross braces

2) Vertical forces

a)

Vertical inertia forces on hulls

b) Vertical drag forces on hulls

c)

Dynamic pressure on corner column bases

3) Moments of forces about x, y, and z axes

a)
)

[~

o

)
d)
e)
f)

g)

Moments
Moments
Moments
Moments
Moments
Moments

Momenté

due
due
due
due
due
due

due

to
to
to
to
to
to

to

4. Summary of Wave Forces

inertia forces on columns

drag forces on columns

horizontal inertia forces on hulls
horizontal drag forﬁes on hulls
vertical inertia forces on hulls
vertfcal drag forces on hulls

dynamic pressure on corner column bases

Details of the complete derivation of wave forces and moments are

presented in Appendix I.

given below:

A summary of the resulting force equations is
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Horizontal forces

12
S -axis): = F
urge (x-axis) Fyr 125 (F1; # Fp,) cos a + F + F (25)
12 -
Swa -axis): = .+ i .
y (y-axis) FVT 155 (FI1 ng) sin o + Fy + Fy (26)
Vertical forces
Heave (z-axis): : FZT = Fv + Fv + FCV . (27)
Moments
Pitch (about y-axis):
12
My = & (My, +Mn.) cos o + M, + My + 28
yT i=5 I'I . D'I a Vy Hy Mpy ( )
Roll {about x-axis}):
12 ' _
MXT = 155 - (Mli + MDi) sin o + M‘VX + MHX + Mpy (29)
12
Yaw (about z-axis): Mzr = E (Fry + FDi) ¥; (30)

12
where £ 1is the summation over the corner columns (5-8) and the middle
=5

i
columns (9-12), o is the orientation angle or angle of wave incidence, Fy
and Fy are the x-components of the total horizontal inertia and drag forces
on the hulls, Fy and ?y are the y-components of the total horizontal iner-

tia and drag forces on the hulls, Fy and ?} are the total vertfca] inertia






and drag forces on the hulls, F., is the total vertical dynamic pressure
force on the bases of the corner columns, MI and MD are the moments of the
horizontal forces on the columns about an axis perpendicular to the wave

direction, Mv and M are the moments of the vertical and horizontal hull

H

forces about the y-axis, M is the moment of the dynamic pressure on the

P
bases of the corner columns ggout the y-axis, va and “ﬂ< are the moments
of the vertical and horizontal hull forces about the x-axis, Mp is the
moment of the dynamic pressure on the bases of the corner co1umhsxabout the
x-axis, and yj is the moment arm, of column i, for moments about the

z=axis.

D. Earthguake Forces

Platform motions are excited by an earthquake through the horizontal
and/or vertical translation of the ground where the legs are anchored. The
equatfons of motion are written with structural disp]aceménts {xp} rela-
tive to the ground motion. This provides an éarthquake'forcing function
that is equal to the mass of the structure times the ground acceleration,
The effect of interaction of the structure with efther calm water or waves

is also included. The equations of motion can be written as

MK} + [KTOx) = (F(t,4,K)) - (M (5} | (31)

where {;g} is the ground acceleration vector., The inertial force vector
due to ground acceleration, on the right-hand side of the équation of
motion, consists of all six degrees of freedom included in the analysis.
This means that the model is capable of hand}ing not only horizontal ground
motion, but also vertical as well as rocking and torsional ground motions.

The derivation of the force vector arising from the interaction between

the structure and the fluid particles is listed in detail in Appendix II.
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E. Mathematical Model

1. Equations of Motion .

Now that the nonlinear stiffness equations have been derived and the
wave and earthquake force§ are formulated, a set of toup1ed nonlinear dif-
ferential equations can be formed. These equations of motion form the ba-
sis for a mathematical model that performs the dynamic analysis of tension-
leg'platforms.: The equations of motion (written in matrix form in Equation

(1)) are rewritten here in vector form as
{mx;} + K3 = {Fi(x.,X,t)) (32)

where {mj x;} is the inertial force vector in which m; is the structu-
ral -- plus added -- mass of degree of freedom "i", and ;1 is the accelera-
tion of thg,structure in the direction of degree of freedom "i", (K} is
the coupled nbn1inear stiffness force veétof developed in section (B) (see
Equation 16), and {Fi(x,x,X,t)} is the vector of nonlinear extérna1
forces (waves or earthquakes) developed in sections (C) and (D).--The equa-
tions of motibn generally describe the dynamic equilibrium between the

inertia, the restoring, and the exciting forces.

The strucﬁdre used in the analysis 1is represented schematically in |

Figure 3. The center of gravity of the platform is assumed to be located a
distance z from the mean wafer level and a coordinate system is attached at
its origin to the equilibrium position of the center of gravity. The cen-
ter of rotation (pitch, roll, yaw) is assumed to be located at the center
of gravity. The platform is modeled as a rigid body free to translate in

three directions (surge, sway, 'heave) and rotate in three directions
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(pitch, roll, yaw), with restoring forces that model the legs (cables or

chains) and buoyant forces.

2. Solution Procedure

28

The equations of motion are both coupled and nonlinear. Hence a time -

domain analysis method is required, as mentioned earlier in the report, to
calculate the response of the structure to various types of loading., The
general approach to solving nonlinear equations of motion is through an
integration of the acceleration and velocity curves in the time domain.

Two well known.methods of integratfon have been widely use& for time
domain dynamic analysis of fixed, or floating, offshore structures, The
first one is the Newmark-Beta method, and the second one is the Newton-
Raphson technique. The latter does not work well for heave, roll, or pitch
(see Ref. 7). The Newmark-Beta method is more general and is used as a
standard against which other methods are compared., The Beta method has
been used in time domain models for dynamié analyses of fixed offshore

structures, with good results (Ref. 3).

The Newmark-Beta method is used in this model to integrate, in a step-

wise manner, the equations of motion and to obtain time histories of the
structure's response in an iterative manner. The iterativé method can be
used to determine the accelerations, velocities, and displacements of thé
structure at time tp+i based on corresponding values at time t, and the

accelerations at tp+1. The equations have the following form:

kit = Xyt + (-y)at K(t) + vat ¥(t4) (33)

and |

ko (t 1) = x (8 ) + ot x:(t ) + (- 8)at? % (t ) + sat? X, (t o) (34)
it n+] ithn ittn K ithn it n+]






The value of Y 1is usually set to 1/2 by damping considerations and the
value of B 1is chosen in the range of 1/8 to 1/4 for reasons of conver-
gente. Values of y and B8 of 1/2 and 1/6, respectively, are used in this
model. The vector of accelerations at time t,+; are found by substituting
the vectors of velocities-and displacements into the equations of motion as
follows: |

. 1 . .
{X.]} = ﬁ: {{F(X.i(tn+]): xi(tnﬂ)’ Xi(tnﬂ)’ tn.,.]}

- (K (x5t DN (3)
Equations (33), (34), and (35) are solved in an iterative manner. An
assumed value of xj at tp+1 is usually chosen equal to the value at the
previous time step. New values of xji and xj at tp+] are then calculated
from Equations (33) and (34), and a new value of xj is computed from
Equation (35). This process is repeated until the assumed and the calcu-
lated values of acceleration converge within a predetermined tolerance.
The value of the tolerance is established through compromise between accu-
racy and cost. The B-method accepts both continuous forcing functions (as
in case of waves) and discrete forcing functions {as in case of earth-
'quakes), and is extended for the purpose of this study to three dimensions

and six degrees of freedom.

3. Computer Code

A compact and inexpensive computer program has been developed to per-
form the numerical calculations of the motion of énchored.as well as float-
ing structures subjected to the action of waves, currents, and earth-
quakes. A flow chart of the computer program is depicted in Figure 19,

The structural geometry, material properties, wave properties and

ground acceleration are input to the program. The displacement, velocity
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and acceleration vectors are initialized and an assumption for the acceler-
ation vector is made for the next time step. New displacemént and velocity
vectors are then calculated based on the assumed acceleration. The forces
and stiffnesses corresponding to these values of displacements, velocities,
and accelerations are then calculated. Finally, using the equationé of
motion a new value of the acceleration is calculated and compared with the
assumed value. The process is repeated until the difference between the
calculated value and the assumed value of the acceleration is less than a
predétermined convergence factpr. Once the equations of motion are satis-
fied, the final acceleration value for this time step becomes the assumed
value of the acceleration for the next time step, and the whole process is
repeated,
At each_time step the program calculates:

The six components of motion (surge, sway, heave, pitch, roll,

and yaw) together with velocities and accelerations.

The total forces and moments due to waves or earthquake.

The stiffness vector (restoring forces).

The tension and tension variation of each leg.

At the end of the analysis the program calculates the maximum values of the
displacements, velocities, and accelerations of the stfucture, and the max-
imum tension and tension variation of each of the four legs, If plots are
desired, the variables of interest can be scaled with respect to their max-

imum values and plotted versus time.

ﬂ; Data Used for Evaluation of Platform Motion

To provide a convenient comparison of results for the mathematical
model developed for the analysis of platform motion, the following data

taken from Kirk and Etok (Ref. 10) were used for the AKER TPP-41:
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- Buoyancy = weight of displaced fluid = 436,810kN

- Water depth = 160 meters

- Draft = depth of Submefged portion of the structure = 35 m

- Mass of deck equipment = 18,000 tons

- Mass of one main hull + ballast = 2,000 tons

- Total mass of TPP in air = 31,200 tons

- Structura]/and fluid added mass in heave = 56,000 tons

- Strucural and fluid added mass in sway = 82,700 tons

- Structural and fluid added mass moment of inertia in roll = 1.49 x
108 ton-meter square (tmz)

- Structural and fluid added mass moment of inertia in pitch = 9,68 x

107 tme
- Diameter of corner coIUmns =16m
- Diameter of middle columns = 3.5 m

- Diameter of cross braces = 6 m

- Depth and width of main hulls = 13 x 9.5 m

- Spacing of corner columns = 70 m

- Height of platform center of gravity = 41.7 m
- Number of cables per leg = 3

- Numbef of wires per cable = 400

- Diameter of each wire = 7 mm

- Area of wire per leg = 46,180 mm?

- Cable length = 125 m, 200 m

- Inifial tension per leg = 25,000 kN

Some of the above data are modified to meet the objectives of this

research, Such modifications include water depth, hull sizes, and masses.






F. Summary of Dynamic Analysis Model

A complete nonlinear deterministic dynamic analysis model has been
developed in this chapter. The model is based on a set of coupled nonlin-
ear differential_equation§ integrated in the time domain usiﬁg Newmark's
Beta Method. Wave kinematics are calculated from the linear wave theory,

and wave forces are calculated from a modified form of Morison's equation.

The coupling and nonTinearities of the equations of motion are contributed .

by both the stiffness and the forcing functions.

A computer program is written to perform the numerical solution and
obtain time hisfories of the response in all degrees of freedom. The ten-
sion forces in the anchoring legs can be calculated from displacement time
histories of the different degrees of freedom, and time histories of these
forces can be generated.

Data used in the computer program are taken from one of the selected
referenées with slight changes in somé cases for the sake of a complete and

meaningful testing of the model.
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[I1. RESPONSE OF THE MODEL

A. General

The major objective of the dynamic analysis model presented herein is
to simulate the response of tension-leg platforms to ocean-environment
loading. In this chaptef, the model is tested by the application of wave
loading and earthquake forces. Time hispories of surge, sway, heave,
pitch, rol1; and yaw are calculated by the model, The relative importance
of design variables for tension-leg platforms is found through a parametrit
analysis. Some of these parameters studied are:

1) Wave period (Résponse Spectra)

2) MWave height

3) Water depth

4) Cable stiffness

5) Initial tension

6) Direction of wave propagation

The impoftance of coupling and nonlinearity is demonstrated through
comparison of the response of the coupled system to that of the uncoupled,
and the response including noniinear terms to that by existing linear
models. The effect of earthquakes on the motion of the platform is also

studied.

B. Rgggonse to Wave Forces

The platform data described in Chapter Il were used to test the mathe-
matical model developed herein. A coefficient of inertia (Cp) of 1.5 and a
coefficient of drag (Cq) of 1.0 were used in the wave force calculations of
Chapter II, and assumed to be constant throughout the analysis. A wave

height of 15.0 meters and a wave period of 17 seconds were chosen to
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describe a "significant wave" to be used in the rest of the analysis. Sim~
ulation of various sea states of interest was done by varying the wave

height and the wave period.

1. Time Histories

Time histories of response in the direction of each of the sik degrees
of freedbm were obtained. Time histories of surge, sway, heave, pitch,
rotl, and yaw, respectively, for the significant wave described above and
for a wave propagation angle of 35 degrees from the x-axis are depicted in
Figures 20-25. Résponses for all six degrees of freedom, with inertia and
without drag, are presented in Figures 26-31 for the same Sea state. Com-
parisons between the responses including drag forces and those that exclude
drag show that the nonlinear drag forces (sometimes called interaction for-
ces) contribute a significant amount of damping to the displacement res-
ponse. The periods of vibration for all six degrees of freedom of the
structure for the sea state described above are shown in Table 1. Also
shown in Table 1 are the response amplitudes {or maximum values) of the
structure's six degrees of freedom for both cases (including drag and
exctuding drag).

Ve]ocify response time histories for all six degrees of freedom are
shown in Figures 32-37 for the significant sea state (with drag forces
included). Time histories of acceleration responses are also calculated
and shown in Figures 38-43.v Table 2 includes the maximum values of these
velocities and accelerations. The time histories of the motion (displace-
ments, velocities, and accelerations) are important input for analysis of
the tension in the anchor legs, as well as in analyzing the Stresses in the
various members of the structure caused by hydrodynamit and earthquake for-

ces.
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2. Response Spectra

Plots of maximum amplitude of vibration versus wave period (or wave

frequency) will be referred to as response spectra. Two cases were studied
in order to develop response spectra for the six degrees of freedom of the
platform, Case 1 includes only fluid inertia forces (i.e., excluding drag
forces), and case 2 includes both intertial and drag forces.

The response spectra for surge (o = 0°) and sway (o = 90°) are shown
in Figures 44 and 45, respectively. It can be seen that both surge and
sway amplitudes reach a peak at a wave period of approximately 5 seconds
and another peak at a period near 7 seconds. Zero response amplitudes,
corresponding to zero resultant wave forces, occur at wave periods of 5.5
and 9.5 seconds at which the wave lengths are 47 and 140 meters, respec-
tively. This arises from a “force cancellation" caused by spacing of mid-
dle and corher columns, For wave periods greater than 9.5 secondé the res-
ponse amplitudes increase consistently (but not'netessarily 1inearly) as
seen in the figures. The dashed lines in Figureés 44 and 45 indicate the
response of surge and sway for case 1 (inertia'forées only), whereas the
solid lines show the response spectra for case 2 (inertial and drag for-
ces), It is clear that drag forces result in a decreased response ampli-
tude throughout the range of wave periods. For example, for T = 16 seconds
the surge response amplitude is approximately 11 meters for case 1 and 10
meters for case 2; i.e., drag accounts.for a response reduction of about 10
percent. For a wave period of 8 seconds, however, the response amplitude
is 8.6 meters for case 1 and 5.5 meters for case 2; i.e., drag accounts for
a reduction of more than 35 percent in response. Therefore, a significant

overestimation of the response amplitude can result from neglecting drag.
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The%response spectra of heave for o =A0° and a = 900, respectively,
are illustrated in Figures 46 and 47. It can be'seen that heave response
spectra show similar trends to those of surge and sway. This arises from a
strong coupling of heave and surge { & = 09) and heave and sway (o = 900)
in the stiffness equations as described in Chapter II. The calculations of
the cable tensions caused by the platform displacements in six degrees of
freedom can give misleading results if heave coupling to sway and surge is
ignored. The time histories for coupled and uncoupled heave response for
" T = 17 seconds and H = 15 meters are shown in Figures 48 and 49, respec-
tively. Based on a comparison of these dramgticaily different curves, the
authors conclude that coupling effects should not be neglected,

The results of response amplitude calculations for pitch and roll
(Figures 50 and 51) indicate that at low wave periods the response for
pitch and roll reaches its maximum value. Pitch and roll also exhibit the
“force cancellation” bhenomenon described for sway and surge. The effect
of drag on pitch and roll alsc can be seen in the figures, but the percent-

age of reduction in response ampiitudes is small.

The response spectrum for yaw at « = 350 is given in. Figure 52. A

sharp peak in yaw response amplitude occurs at a wave period of 6 seconds.
The response amplitude decreases rapidly for periods larger than 6 seconds

and is negligible for periods larger than 10 seconds.

3. Parametric Study

a) Wave Height

Wave heights were varied in the range 0-30 meters for a constant wave
period of 17 seconds. Response amplitude versus wave height plots for
surge, heave, and pitch are given in Figures 53-55. The plots indicate a

relationship that is essentially linear for small wave heights {(i.e., for
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wave heights smaller than about 15 meters). For large wave heights,
however, this linearity does not hold true. For example, in Figure 56

there is a significant shift in slope for wave heights greater than about

19 meters. Attempts to normalize response spectra with respect to wave

height, therefore, must consider only the range of wave heights where
linear relationships are applicable.

b) Water Depth

Water depths were varied in the range 100-1000 meters for the signifi-
cant sea state used in the rest of the analysis. Figures 56-58 i]]ustrafe
the variation of response amplitudes of sway, heave, and roll, reépective-
ly, with water depth. As can be seen in the above plots, the roll response
amplitude increases linearly with water depth., The sway response ampli-
tude, however, does not vary linearly with water depth; i.e., the rate of
increase of surge is not constant with water depth, While sway and roll
amplitudes increase (linearly or otherwise) with water depth, that of heave
decreases sharply in the range 100-400 meters and then it starts to in-
crease slowly for depths greater than 400 meters (see Figure 57). Decrease
in heave for deeper water arises from the decrease in cable stiffness (k =
AE/L)} corresponding to an increase in cable 1en§th. The less stiff the
cables, the smaller is the effect of coupling between heave and surge or
between heave and sway.. Therefore, as the platform surges or sways in
increasing water depths, the heave is less dependent on sway or surge;
hence heave response amplitudes are smaller,

’Surge and pitch response amplitude variations with water depth are
similar to those of sway and roll, respectively. Yaw respbnse amplitude
variation with water depth was found to be small and hence can be neglect-

ed.
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c) Cable Stiffness

The stiffness of the tension legs may be varied by increasing the num-
ber of chains per leg, the cross-sectional area, or the elastic modulus of
the chains. The variation of response amplitudes of surge, heave, and
pitch, respectively, with respect to cable stiffness, at a constant water
depth of 125 meters are shown in Figures 59-61. The plots show that the
response of the structure drops sharply with an increase in cable stiffness
up to about 20,000 kN for pitch dnd 12,000 kN for surge and heave. The
effect of additional stiffness decreases rapidly as seen in the figures.

d) Initial Tension

Changing the initial tension involves changes in other variéb]es such
as buoyancy, added mass, draft (depth of submerged portion of platform),
and cable length., Since for a constant water depth the cable length plus
the draft should be equal to the water depth, the buoyancy, added méss, and
cable tension are calculated for different cable length-draft combina-
tions. The variables involved were changed in a manner such that the vari-
ation in cable tension ranged from zero to 100,000 kN per leg. Cable
stiffness was kept cqnstant at 73,888 kN/m, and water deptﬁ was 160 meters,

Response amplitudes for sway, heave, and roll, respectively, versus
initial cable tension are depicted in Figures 62-64 for a 90© wave inci-
dence angle. A stgnificant decrease in response éan be seen for initial
tensions of up to 45,000 kN/leg in the case of sway and heave, and 35,000
kN/leg in the case of roll. As the initial tension is increased further,
thé reSponSe amplitudes start to increase until they reach a peak and then
decrease again. While one would expect a continuous decrease in response
from an increase in initial tension, the results obtained here show that

this is not always the case. For the range of initial tensions where the
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response amplitudes increase, the structure's stiffness changes and the
natural periods of vibration reach a range where the forcing function can
cause resonance (see Figure 64).

e) Direction of Wave Propagation

In order to gain a better understanding of the effects of change in
direction of wave propagation on the response of the structure, the plat-
form properties and member dimensions were modified s]ighfly such that the
structure becomeé symmetric. The angle of wave propagation (a) was varied
in the range between zero and 900, Figure 65 shows'the response of surge
. and sway to direction of wave propagation. The shapes of the curves are
close to parabolic and, as is expected, symmetffc about and with peak re-
sponse at o= 450,

The variation of heave response amplitude with respect to angle of
wave propagation is illustrated in Figure 66. The heave response is mini-
mum at both @ = 00 and a = 909, maximum at o= 450 and symmetric about a =
450, This plof is similar to a combined surge-sway plot because of the
coupling of heave to both surge and sway. The variation of pitch and roll
response amplitudes is presented in Figuke 67. As shown in the plots,
pitch varies'near1y parabolically for a < 459 and 1ﬁnear]y for o > 459, and
.roll varies linearly for o < 450 and parabolically for o > 450, Pitch and
Eol] curves also are symmetric about o = 450,

The yaw response variation with respect to is shown in Figure 68.
Zero yaw occurs at o = 00, o =909, and o = 450 (since the structure is
made symmetric). Maximum yaw occurs at o = 200 and o« = 700 and the yaw

curve is symmetric about o = 450,

4. TIllustrations of Nonlinearity and Coupling

Drag terms have been shown to reduce maximum displacement response
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‘amplitudes by as much as 35 percent, Nonlinearities in the stiffness rela-
tfonships also are significant. The variation of leg stiffnesses with
respect to surge displacement is shown in Figure 69. It can be seen that
the force-displacement relationship may be considered linear for surge dis-
placements of up to 5 meters without appreciable error. However, for lar-
gér displacements the computed forces differ significantly from those pro-
jected by an assumed linear stiffness.

The -effect of coupling is apparent from a comparison of the responses
computed assuming coupted and uncoupled degrees of freedom, respectively.
A force-pitch displacement curve is presented in Fidure 70. Whereas the
curve obtained assuming coupled pitch and surge‘eihibits a hysteretic char-
acteristic, the straight line represents the results if no coupling is
a#sumed. A similar comparison for heave displacement response is presented
in Figure 71. In both caées there is substantial difference between the

uncoupled and coupled to surge response.

5. Summary of Response to Waves

The dynamic analysis model developed as part of this research was thd-
roughly tested for response to water waves. A parametric analysis study
was performed in an effort to emphasize the relative importance of each
individual parameter to the behavior of tension-leg platforms. The dynamic
response in all of the structures six degrees of freedom were plotted ver-
sus»each parameter. Important concepts can be obtained from these plots in
order to optimize the design of TLP's. In comparison with Ref. 10, thé
general trends of the response amplitudes are found to be 1in agreement.
However, since the authors of Ref. 10 normalized their response amplitudes
with respect to the wave height, no attempt is made to compare numerical

values of response amplitudes for specific wave periods,
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C. Response to Earthquake Forces

The dynamic analysis model presented in this report was tested for
wave forces, and a parametric analysis was performed. The results cbtained
show that the model successfully simulates the dynamic behavior of tension-
leg platforms subjected to ocean waves, In this section, the response
behavior of the platform subjected to ground motion is étudied using the
above model.

Two cases were studied: case 1 for earthqﬁakes occurring in a calm
sea, and case 2 for earthquakes and waves occurring simultanecusly. The
derivation of earthquake forces and corresponding fluid drag and inertial
forces arising from relative motion between structure and fluid particles
for a calm sea (case 1) is given elsewhere iﬁ the report. The forces for
case 2 are easily obtained by superimposing the inertial forces from ground
motion onto forces developed for waves only. The correctnéss of the forces
derived in case 1 was checked by comparing the response obtained from case
1 with that obtained from case 2 (setting wave height equal to zero to sim-
ulate a calm sea).

1. Time Histories

Earthquake excitation consists of horizontal and vertical base accel-
erations based on ground motion records. Thé primary earthquake record
used in the analysis was the El Centro earthquake of 1940. Figure 72 shows
the time history of the east-west component of the E1 Centro earthguake.
Other ground motion records used include Pacoima Dam and Kern County earth-
quakes;

Response time histories of surge, heave, and pitch for El1 Centro
earthquake occurring in a calm sea are shown in Figures 73-75. Surge

response during the 30-second duration of the earthquake reaches a maximum
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of 2 meters. At the end of the 30 seconds the structure attains some ve-
locity and displacement that act as initial values for the free vibration
of the platform. The surge response reaches a maximum of about 3.5 meters
in the free vibration region. Heave and pitch arise from the coupling ef-
fects that associate them with surge, but their magnitudes are found to be
smé11.Also, a time history of surge responée to Pacoima Dam earthquake is
shown in Figure 76. The maximum surge in this case was about 0.6 meters.
Earthquakes may also occur simultaneously with waves. Figure 77 il-
lustrates the time history response of surge to a combined loading of El
Centro (EW) earthquake and a 17-second wave. The response is dominated by
the wave forces rather than by the earthquake. While the effect of earth-
quakes on the displacement time history of surge is small for combined
waves and earthquakes, the effect on the acceleration time hfstony is sig-
nificant. The maximum acceleration caused by the wave only is 0.7 m/sec2
and that from the earthquake and wave combined is 2,0 m/sec?, In this case
the increase of surge acceleration caused by the earthquake is found to be

as much as 300%.

2. Initial Conditions

Initial conditions for the combined earthquake and wéve loading are of
two types: (1) initial displacement and velocity of the earthquake time
history, and (2) initial displacement, velocity, and acceleration of the
structure. The initial velocity and displacement for the ground motion
record are on the order of few centimeters and centimeters per second,
respectively. The structure's initial displacement and velocity arising
from wave action just before the earthquake occurs, however, are on the
order of meters and meters pér second, respectively. Therefore any initial

conditions for the earthquake time history are negligible compared to those
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of the structure just before the earthquake occurs. Therefore, for sim-
plicity's sake, zero initial conditions were assumed for the ground.
To emphasize the effect of initial conditions on the time history of

surge, first the wave was started and then the earthquake was introduced

some time after the wave loading had started. The surge time history fe~

sponses for a 17-second wave with E1 Centro (EW) earthquake introduced at
t = 7 seconds and at t = 16 seconds, after the onset of the wave, is shown
in Figure 78, It can be seen that the time histories are affected by tﬁe
. initial conditions of the structure at the time of the earthquake. How-
_ever, this does not seem to have a significant effect on the displacement

time histories because of the dominance of wave induced displacements.

3. Water Depth

The effect of variations in water depth for both earthquake and com-
bined wave and earthquake loading was studied. A time history of surge re-
sponse to only earthquake motion for a water depth of 1000 meters is pre-
sented in Figure 79. The maximum surge attained is 8.5 meters at the peri-
‘od‘of 170 seconds, while that for a 200-meter water depth (see Figure 72)
was 3.5 meters at a period of 75 seconds. Hence, both amplitude and period
of surge response increase with water depth, Surge response amplitudes are
plotted versus water depth for three cases (Figure B0): earthquake only,
wave only, and wave and earthquake combined., It can be seen that the re-
sponse amplitude varies nonlinearly with water depth for all three cases.
A similar plot for heave response amplitude versus water depth is presented

in Figure 81,

4. Comparison

A comparison of the time histories and response amplitudes for the
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above three cases is presented in order to evaluate the effect of earth-

quakes on the motion of the platform. Time histories of surge response to

waves and combined wave and earthquake forces in a water depth of 1000

meters are shown in Figure 82, The increase in response amplitude caused
by the inclusion of the earthquake is as much as 10 percent for this case.
The same percentage of increase as above can be seen in Figure 83 for a
200-meter water depth with the earthquake introduced at t = 200 seconds
(i.e., in the steady state region of the vibration).

Referring to Figures 80 and 81, it can be seen that to predict the re-
sponse amplitude for combined wave and earthquake loading, one cannot sim-
ply superpose the maximum response amplitude arising from only earthquake
forces to that arising from only wave forces. For example, at a water
depth pf 1000 meters the maximum surge response amplitude caused by earth-
quake motion alone is 8.5 meters; that from wave action alone is 26.5
meters; and that associated with the combined Toading is 29.0 meters,
Thefefore, it would be too conservative to design for 35.0 meters (26.5 +
8.5) instead of for 29.0 meters. The reason that superposition does not
apb]y in this casevis.tﬁat the peak responses from earthquake forces are
out of phase with those caused by wave forces. Similarly, the maximum
heave respose cannot be obtained from a superposition of the separate
loadings; however, in some cases the sum of maximum heave response to indi-
vidual Toadings is less than the value obtained for the combined loading
(see 800-meter water depth). This phenomena is another illustration of the

importance of coupling between heave and surge responses.

5. Summary

Time histories of response to earthquake loading and to combined wave

and earthquake forces were obtained. The displacement response from
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combined loading was found to be dominated by the wave. However, the
accelerations were significantly affected by the earthquake. The maximum
acceleration was found to be up to three times that caused by waves alone,
The earthquake was introduced at different time spacings measured frém the
starting time of the wave in order to cover as many different initial con-
ditions as possible. Water depth was varied and its effect on the response
amp]itude;_was studied. An increase of about 10% in displacement response
amplitudes due to earthquake forces was noticed throughout the range of

water depths used in the analysis.
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IV, SUMMARY, CONCLUSIONS

AND RECOMMENDATIONS

A. Summarz

In this study, a complete nonlinear dgterministic dynamic analysis

model for tension-leg platforms has been developed and response of the

platforms to wave and earthquake loadings have been studied., The accom-

plishments in the development of the dynamic analysis model include:

1)

2)

3)

4)

The formulation of closed form nonlinear coupled stiffness coeffi-
cients and the formation of a stiffness force vector.

Derivation of closed form forcing functions for waves and earth-
guakes using Morison's equation (modified to 1nc1ude relative
motion between struéture and fluid particles). Both fnertial and
drag components of the forcing functions were‘inc1uded, and wave
kinematics were obtained from the linear wave theory. Integration
of the force equations a]bng the length of each submerged member
of the platform was carried out manually, thereby reducing the
tota1 cost of dynamic analysis significantly.

Development of a mathematical model based on a set of coupled non-
Tinear differential equations whose solution yields the dynamic
response of the platform.

Development of a compact and inexpensive computer code to perform

the numerical calculations of the motion of tension-leg platforms.

The computer progam employs Newmark's Beta method to integrate the
equations of motion sequentially in time and obtain time histories

of the response.
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B. Conclusions

Response time histories for each of the six degrees of freedom of the

platform were obtained. A parametric analysis was carried out in order to

identify the important parameters involved in the behavior of tension-leg

platferms. The following conclusions can be made with regard to the plat-

form behavior and response to dynamic loading:

"1) Coupling can significantly affect the behavior of the structure.

The strongest coupling exists between heave and sway and between

heave and surge. The coupled heave response ampiitude is several

“times larger than the uncoupled amplitude. Therefore, neglecting

coupling can result in a significant underestimation of response.
Two types of nonlinearities are inherent in the analysis: (1) non-
Tinearity of stiffness force vector arising from large displace-
ments, and {2) nonlinearity of the forcing function arising from
the square of velocity terms in the drag force calculations. The
stiffness non]ineérity is found to be insignificant if surge and
sway are less than approximately 5 meters. However, for large
sway and surge, neglecting stiffness nonlinearity can lead tb an
overestimation of the response amplitudes. Nonlinearity'in drag
forces is found to be significant in that it represents the fluid
damping arising from the relative motion between the structure‘and
fluid particles and therefore leads to response reduction with
time. |

Variation of wave period shows that surge, sway, and heave are
most significant for high wave periods (i.e.,‘periods greater than
15 seconds) and pitch and roll are most significant for peribds

around 5 seconds.
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5)

7)

Variation of wave height shows 1linear relationships for wave
heights less than about 15 meters and becomes nonlinear for larger
wave heights.

Increasing the leg stiffness tends to decrease response; however,
for leg stiffness larger than 20,000 kN, little effect on response

was noticed.

Increasing water depth results in an increase in surge, sway, -

pitch, and roll response and a decrease in heave response.
Higher initial tensions tend to make the structure stiffer, hence

it reduces the response. However, as the stiffness increases, the
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period of vibration decreases; and as it approaches that of the

wave, higher response amplitudes are observed.

Coupling between pitch or roll and surge or sway has been shown to
have a significant effect on computed.responses. The extenﬁ of
this coupling is dependent on the Tocation of the center of
rotation, which can be expected to migrate with the level of
response. Most results reported herein are based on rotations
centered at the base of the hulls, which minimizes the interaction

between pitch and surge. Further research is needed to establish

 an appfopriate location for the center of rotation or to determine

the expected variations of its location,

The displacement response to combined wave and earthquake loading
was found to be dominated by the wave. A uniform increase in re-
sponse of approximately 10% arising from the inclusion of earth-
quakes was observed. The accelerations, however, were signifi-
cantiy-affected by the earthquake. The maximum acceleration was

found to be three times that caused by waves alone,
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C. Recommendations

The model developed herein is adapted to the response of tenéion-]eg
platforms; however, the wave force section could be easily applied to any
problem, Several enphancements would allow the modei to be adapted to a
wider range of problems (i.e., shallower water, larger members; larger wave
heights, etc.). These enhancements include:

1) Application of higher order wave theories.

2) Employing the diffraction theory for éomputing wave forces on

large members at low wave periods.

3) Aplication of a random sea state.

4) Vanyiné cbefficientsbof added mass and damping with respect to

time.

5) Variations in location of the center of rotation.
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TABLE 1.

RESPONSE AMPLITUDES*

PERIODS OF VIBRATION AND

Degree of Period Response Amplitude

Freedom {sec) Undamped Damped
Surge 70 16.45 m 1417 m
Sway 70 14,00 m 10.41 m
Heave 5 97 m J0m
Pitch 6 .220 .219
Roll . 6 .150 .1460
Yaw 6 .180 .169

*T = 17 sec
H = 15 meters

35 degrees
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TABLE 2. MAXIMUM VALUES OF VELOCITY
AND ACCELERATION*
Degree of Maximum Maximum
Freedom Velocity Acceleration
Surge 2.51 m/s 722 m/s2
Sway 1.95 m/s .520 m/s2
Heave 73 m/s. .076 m/s2
Pitch .1390/5 .1199/s2
Roll .0950/s .0820/s2
Yaw .0320/s ,0110/52
*T = 17 seconds
H = 15 meters

)

35 degfees
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Figure

1.

Typical Tension-leg Platform

Corner Column
Middle Column
Huils

Cross Braces

t

54

16 m

3.5m

13 x 9.5m
16 m






55

| Heave /

JY“ . ' Sway
Pitch

/’ .

1 - ——

Rol

Figure 2. Coordinate System and Structural Degrees of Freedom

I x N
_/ﬂe i ;———L"———: gml.
n, ﬂ G | |
. )________7
/
/ /
/ /-
/ /
/ /.
/ /
e / /
/ /
/
/ /
/ /
Vi 1. /
/ Y
// /

W

Figure 3. Buoy with a Unit Displacement in the Surge Direction
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Figure 6. Restoring Forces: .a) at Equilibrium Position
b) after Heave Displacement
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Figure 7. Restoring Forces Corresponding to a Pitch Rotation






2a
R \\‘(TO+ T6)¢
2b G
$
A /202
R N4
ot

Figure 8. Horizontal Restoring Forces Corresponding to a Yaw
Rotation

a2+b2)
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Figure 12. Variations of Wave Kinematics with Respect to Member
Diameters
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Input: Structure geometry, dimensions, spacings, weight, masses and add
masses, mass moments of inertia and added mass moments of inertia; draft
height; water depth; cable length and initial tension, cable stiffness;
buoyancy: wave period and wave height; coefficients of drag and inertia

Initialize displacement, velocity
and acceleration vectors:

) {X'] 31}= {x'ivl}:{x'[’l} = {0}

|

j=1

xj,2} =

Assume acceleration vector
for next time step

0

j=i+1

Calculate displacement and velocity vectors for
next step according to Equations 33 and 34

Calculate forces and moments

[ Calculate stiffness force vector ]

Calcuate new values of accelerations No
according to Equation 35
Assumed ;i j N Compare <e ‘
= ; ¢ calculated and Check if t = tfipal
Calculated xy,j assumed accel-
erations
_ — Yes
Plot Calculate Qutput: x,x,x, and
[Results maximum cable tension
: values
Figure 19, Flow Chart of Computer Program
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Figure 78. Time History of Surge Response to Combined 17 Second
Wave and E1 Centro Earthquake Loading with Earthquake

Introduced at Different Times






12.00

.00

L)

4, 00

IMETERS)

0,00

DISPLACEMENT
-4.00

-9.00

12,00

120,00 140,00 150.00  180.00

.00 20.00 .00 8b.00 80.00 100. 00
TIHME (SECONDS) -

Figure 79. Time History of Surge Response to E1 Centro.in 1000 m
Water Depth

30
28
Combined Wave
and Earthquake
26 e
T
r“‘/ -
24 e
22
Wave Dnly

20

18 4
CIETS
o] 7
A M /

12

10 4

Earthquake Only
e s s ————_

? L e

6 | -

LS / - —

2 - — v . v v v v v v — -—

100 200 300 400 500 €00 100 800 900 1000
Mater Depth (m)

Figure 80. Variation of Surge Respanse with Water Depth for
17 Second Wave, E1 Centro Earthquake, and Combined
Loading

95






HEAVE (m)

N\
0.8 }
0.6 ]
Combined Wave
and farthquake
4 ' — — ' -~
0.4 - o~ s — — - s e -—
Wave Only
0.2

Earthquake Only

[ v " v v v v — —_

100 200 300 . 400 500 500 100 00 900

Water Depth (m)

Figure 81. Variation of Heave Response with Water Depth for
17 Second Wave, E1 Centro Earthquake, and Combined
Loading

0,09

~8.00

16.00

A

DISPLACEHENT = (METERS)

Earthquake + Wave'

...z‘.ao

32.00

.00 t0.00  2b.00 30.60 40.00 sb. 00 80.00 70.00 8b. oo 9b.00
TIME (SECONDS)

Figure 82. Comparison of Surge Response to 17 Second Wave with
that from Combined Loading in 1000 m Water Depth

96






(=]

o

=

N

o

o

o

e WAVE
a9 oneY
e /

i N /\
= Iy ~

- \ [}

n—g. ! \
& \ \
= \} v U
g A

33

&0,

AN EARTHQUAKE
bl + WAVE
jm )

b4

o

w

""u

[+]

[~}

-

f:" Y T T T T T 1
0.00 40.00 80. 00 120.00 160.00 200.00 - 240.00 280.00 320.00 360.00 400

TIME (SECONGS)

Figure 83, Time History of Surge Response to 17 Second Wave and

Combined Loadings with E1 Centro Earthquake Introduced
at t = 200 Seconds _

97






V. APPENDIX I: DERIVATION OF WAVE FORCES

1. Horizontal Forces

a) Inertia Force on Columns

98

The integration of the inertia force acting on element dz of column i

(Equation 24) yields:

. hi ) . )
F. = o™ [{:mu,i - (Cm-l) {x~(z-2)a+ 1/2 X5 a?}]dz

Substituting from Equation (17) and rearranging terms gives:

e e

. 2 2 —_ i -
Foo= o™ e 220 sin [k(Y -ct)] e k2 41
Ii 7 m T

0

hi .
- Le,e1) f "Ik (z-T)amgat] dz])

o}

...(V~2)

which can be simplified by integrating and lumping coefficients as follows:

= 2(1. _~kh. ; Y - '2 M- %
FIi a0, (1- o 1) sin [&(X ct)] - 3,02 (x + 2 a+iii - Eii)hi
2 2
where
3
a_[ = PT CmH ’ a2 = pTl'(Cm-]) s
2kT2 4
and
K=ot X,

i

(V-3)

Where X is the instantaneous position of the center of gravity of the

structure taken in the direction of the wave, and Xy is the x-coordinate of

each of the eight columns in the direction of the wave and calculated as

follows:
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Xg =b sina-acos a
X = a cos a+ b sina
X7 = -Xg

Xg = -Xg

Xg =b sin a

X10 = -Xg

X171 = -2 cos «

X12 = -k

with a and b equal to one-half the distance between the corner columns in
the x and y directions, respectively, and is the angle of wave direction
measured from the x-axis (see Figure 15).

b) Drag Force on Columns

Equation {19) can be rewritten as

§Fy = (7)) °Ld (u

2

re1)2 dz | ‘ - (v-4)

where the (F) sign depends on the sign of the relative fluid velocity,
Urei- .
Substituting upey (Equation 21) into Equation (V-4), and integrating

aver the length of each cylinder gives:

Fq. = (+) pCdg'l /fh1 {3% e K cos k(X - ct)] - [x - (z-Z) & + Xiciz]}2 dz
; —5=
0 2

Resolving the square and separating the z-terms gives:
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{[72H2 cos? [k(X - ct)]jhT e"2k2 dz] -
TZ
o .

D.
Fg. = (MPl)
1 2
h1 wH = e — . . . -kz
ZJ/ 7-c0s [kiX - ct)l(X+Za+ Xiaz) - za] [ 7F] dz
° 2
, o |
: j [+ T #4,32)2 - 2(k + 7 & + Xa?)zd + 2%321d2)
0 2 2
and
C,D, 2 He - -
Fa " (I)“_gil) ([T cos? [K(X - 1l (1 - 2K,y
| — ‘ . . . . l-— . 1 . "kh‘
-ﬂ#cm[HX-anu+2a+M&)(}-e“n(b-%ﬁ(z-ekﬂ
5 . %
_ C . Co— 24 37
cos [k{X - ¢ct)I1 + [{x +z ot Xiaz)z hy - (x+zat Xiaz)hiza + o 0y
2 2 3

By lumping parameters and rearranging terms one obtains:
‘ ~2kh, -kh,

= (%) {by D; cos2[k(X - ct)] (1

F —
4
cos [K(T - ct)] + D,bas 1 (1-"<"4) cos [k(x - ct)] - bod h.Di
Rl 3%
K - . ‘nh.3
e kN3 cos [K(X - ct)] + bg? bo0shy - bziboCt hy? + By 3D;hy”
3
and a collection of terms that contains: cos k{X-ct) (1-e=KN }D; ,ieids:
F, = (%) (cos [K(X - ct)] (1-e72KM) o, [by cos [k(F - ct)] (1 + &™)
i
khi g k(X - ct) ] +b,2b 0D h,
B 21 0 i

k

- tNn.2 o+ ) . 3
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where b,=1/2¢0¢C by, = w2H2 b
o] d 1 W 0
b, = (x +Z a+ Xsa?) by = 27H b
1 —z— kT

c¢) Inertia Forces on Hulls and Cross Bracings

For hull No. 1 in Figure 15 the normal component of the fluid acceler-

ation at point p, distance S from 07, for the section 010y is:

o - -kh . — .
U, =usineg = 2¥2H e sin [k(x - ¢ct)] sin «

and a substitution for X in terms of S yields:
X = 8'S +y!
where .
B' = cos a, and y' = b sin a.
Since S is a positive quantity, the vaIue'of X for 0703 becomes:
X = =B'S + v’

For hull No. 1, the inertia force in the y-direction is:

! -kh _. - . -

Foo= (2 onD20 € (272H e " sin [k(X - ct)]) sin a d x
]y /( 7 1 m —Tz——
‘a
a' ' a' ) ‘ .
=a, /(' sin [k(-g'S+y'-ct)] d s + ay‘J/ sin [k(g's + y' - ct)]d S
.0 ‘ | o
where 2y = prip1?y e kN Cm sin a
272

F]y. = 2y {cos [-k8'S + k (y'-ct)] |2 -cos [ke'S + k (y'-ct)] [g'

'=_lT
B .
= ;%' ([eos [-ks'a' + k(v'-ct)] - cos [k (v'-ct)] ]

+ [-cos [kg'a' + k (y'-ct)] + cos [k (v'-ct)] 11
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using the trigonometric identity: cos({a-b)-cos(a+h) = 2 sin(a) cos(b), one

'obtains:
- : [} : LI V-s
F EE¥ sin (kg'a') sin [k{y'-ct)] (V-6)
Y %

Similarly, for hull No. 2:

F, = -2a sin (ks'af) sin [k(y' + ct)] | (v-7)
k8 '

-

Combining F-I and F2 , the total horizontal inertia force on the
Y

Y
hulls becomes:

Fy = -4a_ sin (kg*a') cos (ky') sin (kct) (v-8)
kg’
For the cross bracings {(hulls No. 3 and No. 4),
ﬁn = U cos ¢ ,
X = YIl - B“S’
y' = a cos g,
g" = Sih O e
Integrating in the y-direction yields:
Fo = -4, sin (kg"b') cos (ky") sin (ket) (V-9)
ksli
where a, = pw3Cmd32H e kM cos o

it
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d) Drangorces on Hulls and Cross Bracings

The derivation of the drag forces on hulls and cross bracings 'is simi-

lar to that of inertia forces. For hull No. 1:

a
y = (¥) pC4Dy [ u sin «]? dS
2

F
-a'

v a ‘ e .
= (+) oCy0y .J/ [1¥ RLUIP [k{x~ct)] sina]2ds
2 -
“a

- a' _
= (+) 0CyDy 242 @ 2KN gip2 a/f/ cos? [k(x-ct)] ds
T2
2 -a’

using the trigonometric identity: cos?a = ?% (cos2a+1)

- a -
F ¢ J/ (cos [2k(x-ct)]+1) dS

-n
1)

1 ¢ g’/j/ : (cos [2k(B'S+y'-ct)]+1)dS

0

+fa' (cos[2k(-5'Sty' ~ct) ]+ 1) ds}
_a'

= ¢ [sin [2k8'S + 2k(y'-ct)] + S - sin [-2k3'S + 2k(y' - ct)] + 5] {2
2kg'

= ¢ [ {sin[2ka'a' + 2k(y'-ct)] - sin [2k(y'-ct)]}

—————

2kg’
- { sin [-2kp'a’ + 2k(y'-ct)] - sin [2k(y'-ct)]} +2a*]
[sin[2ks'a’ + 2k{y'-ct)] - sin [-2kg'a‘ + 2k(y'-ct)] + 2a']

Fy

y

2ka’
= ¢y sin (2k3'a') cos [2k(y'-ct)] +2¢ a
kg'

(v-10)
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where ¢ = (F) oCyDy 240 e sin? a.
4 T*
Similarly, for hull No. 2:
?é = ¢y sin (2kp'a') cos [2k(y'+ct)] + 2¢qa’ (V-11)

Y ks

Combining F} and Fé gives the total horizontal drag force on the hulls in

y
the y-direction as:

?} = ic] sin (2kg'a') cos (2ky') cos (2ket) + dcqa (v-12)
B[

For the cross bracings (hulls No. 3 and No. 4),
U, = u cos a, X =" -8"S, y" =acosa , 8" =sina .

Through simi]ér integration for hulls No. 1 and No. 2, one obtains:

F, = 2c, sin (2k"b') cos (2ky") cos (2kct) + beyb! (V-13)
ksll
where c, = :'pwszcdua e~2kh o2 a

472

The total horizontal forces on the structure aré:

For surge {x=-direction):
12

1 ‘ —_
o ZEJ(Fli *Fp)cos ot (R4 Ry (v-14)
i=5 ' '
For sway (y-direction):
12 : :
+ Py o 7 -
. V-15
ZE; D;) sina + (F +F) (v-15)

where the corner coTumns. are numbered 5-8, and the middle columns are
numbered 9-12. The instantaneous heights of the water on each column are:

for 1 = 5-8:

h, = h_ + H cos [k(Rlct)]l+ (£ - V&2 - x?) | (V-16)
1 0 "2- .
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and for i = 9-12

hy = h +Hocos [k(Xet)]+ (£ - VB2 -753)- 0y (V-17)
2 .
2. Heave Forces
a) Vertical Inertia Force on Hulls
The vertical fluid acceleration at point p of Figure 16 is
kh :
(V-18)

v =212 e " cos [k{x-ct)]

T2

" For hull No. 1: X =g'S+y' for 0702, and X = -g'S+y' for 0703. The vertical

inertia force on hull No. 1 due to fluid acceleration is

a
F,. = omDy2 € {-2n2H e cos [k(%-ct)]} d
’ i T2

-a'
) _ a’ .
= -om3D,2C H e kﬁ-/j’ cos [k(X-ct)] dS
272 -8

a' a
= -a, {J/ cos [-kg'S + k {y'-ct)] dS +,// cos [kg'S + k (y'-ct)] dS}
1 .
(6}

? 0

. oa! ’ .
= Ay, {Fsin [-ke's + k(y'=ct)]] + [sin [kg'S + k(Y'—ct)j]a }
Q .
2kg' °
= -a, ([ -sin[-kg'a’ + k{y'-ct)]+ sin [k(y'-ct)]]
Zkg" |

+ [sin [ke'a' *+ #(y'-ct)] - sin [k(y'-ct)]]

= -a,  (sin [ks'a' + k(y'-ct)] - sin [-kg'a' + k(v'-ct)]}
2ks’

= -a, sin (kg'a') cos [k{y'-ct)] (v-19)
kg' '
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Simitarly, for hull No. 2

F = .a  sin (kg*a') cos [k(y'+ct)] | (v-20)

For hutls No, 3 and 4:

Fv = -avz sin (ks"b') cos [k(v" +ct)]

32 (v-21)
ksll
Fv4 = -av2 sin (kg"b') cos [k{y"-ct)] (V-22)
kg™
_ ) R
where av] = DW3D‘2CmH o h
T2
and avz = pw3032CmH e-kh
T2
Adding Equations (V=19) and (V-20) yields:
Fvl’z = Qavl sin (kg'a') [ cos [ky' - ket] + cos [ky' +ket] ]
kg'
= -2a_ sin'(kg'a'} cos (ky') cos (kct
e (ky') (ket) (v-23)
g
Adding Equations (V-21) and (V-22) gives:
F = _ : Iy} " . -
Vo, 2av2 sin (ks"b'} cos {ky") cos (kct) ,(V 24)

T






107

The totél vertical inertia forces on the hulls is obtained by adding
Equations (V-23) and (V-24):

F, =F, +F
v Visa V3,

-2 cos (kct) [a -

sin {(kg'a') cos (ky') + 3y, sin (kg"b') cos (ky")]

k Ve
F -
ceea (V-25)
b) Vertical Drag Force on Hulls ’
The vertical fluid velocity at point p of Figure 16 is
- -kh _.
v = %ﬂ e sin [k(x-ct)] (v-26)

The vertical drag force on hull No. 1 due to fluid velocity is
a' —
. =) p CDy { nH e™M sin [k(X-ct)])2 ds
'y T
' 2
-3

_ - ra _
(4) acpyreh2 & 2R [0 - cos [2k(Rect)]s ds
472 -’
. al .
(%) pCyDqm2H2 e-2kh'J/ sin2 [k(X-ct)] dS
212 -a’

= Cq { f/a {1-cos [2kg'S + 2k(y'-ct)]} dS
0

+j/a' {1-cos [-2kg'S + k(y'-ct)]} dS
o

¢y {'[s 1 sin [2k8'S + 2k(y'-ct)]]
2kg' 0

a'

al
+ '[s + 1 sin [-2kg'S + 2k(Y'—ct)]] }
2kg' 0

{ sin [-ckg'a' + 2k(y'-ct)] - sin [2ks'S. + 2k{v'-ct)]}

2 Cq a' + C3
2kg"

F, =2c5' - ¢4 sin (2kg'a') cos [2k(y' - ct)] (v-27)
Vi

ka'
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Similarly, for hull No. 2:

?Q = 2 c3a' - Cq sin (2kg'a') cos [2k(y' + ct)] (V-28)
2 Ke" |

For hulls No. 3 and 4:

?& = 2c4b‘ - ¢, sin (2kg"b'} cos [2k(y" + ct)] (v-29)
’ ke
F, =2’ - ¢, sin (2ke"b') cos [2k(y" - ct)] (V-30)
4 —
kB" .
where €y = (I)*c;
sinZa
and C4 = (:) C2
c0s2q

Adding Equations (V-27), (V-28), (V-29), and (V-30) results in the total

vertical drag force on the hulls:

-n
]
-
+
.
+

=4 (c3a' + c4b‘) - % cos (2kct) [El sin (2kg'a') cos (2ky')
Bl

+ ¢4 sin (2kg"b') cos (2ky")] e (V-31)
IBll ! "






¢) Dynamic Pressure on Corner Column Bases

The dynamic pressure in the fluid is given by:

= g%ﬂ e'khi cos [k(Y - ct)]

109

(V-32)
The total dynamic pressure on all corner columns is
8
Zp (1052) = rogh Z d.2 &K cos [k(T - ct)] (V-33)
i=5 4
The total vertical force on the structure becomes:
fa TR R R (V-34)

3. Forces Producing Pitch and Roll

a) Moments Due to Inertia Force on Columns

In this analysis, it is assumed that pitch and roll take place about
horizontal axes bassing through the center of gravity of the structure.:

The moment about G of the inertia force on column 1 is

has N . - o
My, oDy f bz -2 Doy g - (gt Dxo- (2 - Z)u x? ] 1z
4 0

z Fr. - an 2 {2¢, 72H sin [k(Y - ct)]')/ e K2 4z
i
Ta

-1)J(h (x + z8 + xig?) - 78] dz}

=T F - a2 (1-e M ng ™M) sin [k(X - ct)]
1‘ K -

+ a, D, [(x + za + x;82)h,2 - h;3a ]
2 Z 3

(v-35)






b. Moments Due to Drag Force on Columns

MD = (+) -pCdD1

hs — . .
] Yz -72) tug = [x - (2 - Z)a + x,42]) %z

Zz

h.
= (%) -oCyD, {[ 1 ngzﬁ e 2 052 [K(X - ct)]y dzJ
0
+ [[ -2z [(x + Za + x;82) - zal(aH e cos [K(T - ct)]) dz
T ' .

“?“_

hy ..+ — . . -
+[f 12[(X + Zg + Xiaz) - za]2 dz]} + z FD
2 :

.i

[13+ [2]+ [3] +7Fy,

1

Evaluate 1, 2 , 3 separately as follows:

(1]

2
0

= m2H2 cos? [k(X - ct)] (1
2kT2 2K

hi - _
’f/ k 72H? cos2 [k(X - ct)]ze
-

e‘2khi - h e

- - ;

[2] = f" -2z{ [(x + & + X{a?) - za] (M e™% cos [K(X - ct))§ dz

o Z

T
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>

RN

* . h i e - 1 -
= -2uH cos [k{X - ct)] {(x + za + X].otz)/(T 2 e X 4z - a//dh 22 o K2 dzi}
T . )

~N
o

Q
-khj -khs
= -27H cos [k(X - ct)] {b, () (1-e"7- h; e 1)
71 1 k X k
b2 ek o2 (1 ek, e
1 — —
v K k k
~khj kh -kh-i}>
= 2qH cos [k(X -~ ct)] {(2a Rl hy eT¥M) -in.Z e
KT | Tk
hi e M sy
{31 = j, [{x + o+ X;02)2 z dz - JA] 2(x +Za + X;a?)az? dz + a2 z
0 2 o 0
= 2 hi2 o " 3 L oh4
= (bz.) hy 2 bzia hi_ + 0o El_
g 3 4
Mo =

+

+ (b
i

A positive rotational

y-component

2
5. )

= (¥ - D, (by cos? k(T - ct)] (1_- o2khi o -2Khy)
’ 1 2k 2k |

Ty !

_ . ks . -kRsy e khs
b, cos k(Y - ct)] [(g%_f bz;)(i - e Y. h; e 1) - ah; e 1]

ik k

TR R -36
hi? =20y ahgd+ah® } ez Fy (v-36)
2 T 73 3

moment about the y-axis produces a positive

(pitch), and a negative x-component (roll), see Figure 16,

Hence, from Equations (V-35) and (V-36),

12
My = :E:(MDi + MIi) CoS o (V-37)
- i=5
and
‘ 12 |
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c) and d) Moments Due to Horizontal Inertia and Drag on Hulls

As shown in Figure 18, only hulls No. 3 and 4 have pitching effects:

Mg = - (Fp +F) (h - D_g) (V-39)

where Fy and Fy are given in Equations (V-9) and (V-13), respectively.

Roll Moments

" As shown in Figure 17, only hulls No. 1 and 2 have rolling effects:

M

1o =R AF) (-2 | | (v-40)

xh 2

where Fy and f& are given in Equations (V-8) and (V-12), respectively.

e) and f) Moments Due to Vertical Inertia Forces on Hulls

Pitch Moments

The pitching moments caused by forces on hulls No. 3 and 4 have a

constant moment arm, a: {See Figure 18)

.M3,4y =[(FV_3 + ?\13 ) - (FV4 + de)]a : . (v-41)

where F ,F ,F ,TF are as given in Equations (V-21), (V-29), (V-22),
Y3 V3 Vg, Yy
and (v-30), respectively.

The pitching moments arising from vertical forces on hulls No. 1 and 2
have a variable moment arm S. Therefore, for hull No. 1, the moment about
the y-axis of the vertical inertia force is

a|

kR -
> M =/f oD ¢ c_ (-2n%H e 7" cos [k(x - ct)]) S d S
Y B L e '

1

~-a
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al

= (pnD,2 cm)(-ZwZH e'kh) {if’ S cos [-kg'S +k(v" -ct)] d S
T

7
o

a' '
i}/ S cos [ks'S + k{y' ~ct)ldS ;
O .

= a g[. S sin [kB'S + k( LR Ct)] + 1 [ ale . t a'
v, Y cos [kg'S + k(v' - ct)
e R 1

- [~S sin [-k8'S + k(y' - ct)] +E%T_cos [-kB'S + k(y' - Ct?]Ja i}

0
=3, {la sin[ks'a’ + k(y' - ct)] + 1 cos [ks'a' + k(y' - ct}]
2kg' kg'
-E%l cos [k(Y‘ = Ct)] ] = [ 'a‘ sin [-kB'a' + k(Y' - Ct)] + ] cos [_kglat
Ka"

*k{y' = ct)] -1 cos [kiy' - ct)] ]
: kg' ‘
=a, { [a' cos (kg'a') sin [k(y' - ct)] - 1 [sin {kg'a®) sin [k(y‘ -ct)l Iy
e ke |
=-a, sin [k(y' - ct)] [ sin (kg'a') - a' cos (kB'a')] : (V-42)
kg
ka' '
Similarly, for hull No. 2: ‘
sz = av"sin [k(y' + ct)] 5 sinégs'a'z‘- a' cos {kg'a')] (V-43)

Kg'

Now, the moment about the y-axis of the vertical drag force for hull. No. I

is

M, = (ﬂf €0, [ e sin k(X - ct)] 125 ¢ 5
i
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aI

: C D] 2 2 -ZkF ) -
(+) = q nTH e S sin? [k(x - ct)] dS

5 )
a' a
¢y {/{ - (1 - cos [2ka'S + 2k(y' - ct)]) d S
0

+’f/a S (1 - cos [-2kg'S + 2k(y' - ct)]) d S

o.
al
= ¢t [ S sin [2ke'S + 2k(y' - ct)] + 1 cos [2ka'S' + 2k(y' - ct)]
35’ 2kg' . _ - (2kg") _ 4)
. Y
- [ -5 sin [-2ks'S + 2k{y' - ct)] + 1 cos [-2k8'S + 2k{vy"' - ct)j] }
2kg' (2ks") | o
? a' sin [2kg'a' + 2k(y' - ct)] +_ 1  cos [2k8'a’ + 2k{y' - ct)]
s {1 { Zke"
2kp’
- 1 cos [2k{y" - ct)] ] - [-a' sin [-2k8'a' + 2k(v' - ct)]
kR' '

+ 1 cos [-2kg*'a’ +2k(y' - ct)] - 1 cos [2k(y' - ct)] ]}

2kg 2ks’

= 4 { 2a’ ;os (2kg'a') sin [2k(y' - ct)]

- 1 sin (stka‘) sin [2k(y"' - ct)
2KE’ kT | {}
2> M, = C3 sin [2k(y' - ct)] fa' cos (2kg'a') - 1 sin (2ks'a") ] (v-44)
Y —EBT 2[(8'

Simitarly, for hull No., 2:

M, = -cgsin [2k{y' + ct)] [a' cos (2kg'a') -
Y TEr
ks

1 sin (2kg'a‘) ] {VY-45)
2kg' :
The total pitching moment due to vertical drag and inertia forces on all

hulls is

(v-46)
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where M3 4 ) M] . M2 s My ﬁé are as given in Equations (V-41), V-42),

y v
(v-43), (V-44), and (V-45), respectively.

Rol1 Moments

As seen in Figure 13, the rolling moments due to hulls No. 1 and 2

have a constant moment arm, b.

= M]’Zx = [(FV1 - sz) + (F‘v1 - sz) 1b (V-47)

where F , F ,F ,F are as given in Equations (V-19), (V-20), (V-27),
Vit vyt vy Vo
(V-28), respectively.

The rolling moments due to vertical forces on hulls Mo. 3 and 4 are

derived by integration, in a similar way to the pitching moment.

=3 M3x = ~av sin [k(y" + Ct 1L s1n§k6"b'2 b' cos (kg"b')] (V-48)
o
qu = aV2 sin [k{y" - ct ] [s 1n£g§"b'2 - b' cos (ks"b )] (V-49)
ke

Similarly, for drag:

My =cy sin [2k(y" + ct)] [b' cos (2ke"b') - 1 sin (2ks"b')] (V-50)
X T 7kg"

qu = -c3 sin [2k(y" - ct)] [b' cos (2ke"b') é; sin (2kg"b')] (V-51)
an B"
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Finally, the total rolling moment due to vertical drag and inertia forces

on all hulls is

M{/ =M],2 My o+ M, +M +M | (v-52)

where M'i,Z; h13x , M 4x ,'M‘BX . and'ﬂ4x are as given in Equations {(V-47),
{v-48), (V-49), (V-50), and (V-51), respectively.

g) Moments Due to Dynamic Pressure

Pitching Moment

The moment about the y-axis due to the dynamic pressure on the base of

the corner columns (5,6,7,8) is:

8
My = comhay (D)7 0,2 &M cos [k(x - o1)] (V-53)
Y 8 i=5 l

Rolling Moment

Similarly, the rolling moment (about x-axis) is:

e
- : -khj
Mpx pg%ﬂ_ b { [ :E: DW.2 e 1 ces [kix - ct)]
8 i=5
) 2 "kh' ‘
- Di e 1 cos [k(x - ct)]} (V-54)
i=7
4. Yaw Moments

The forces causing rotation about the vertical axis are those from
‘horizontal drag and inertia acting on the columns. The moment produced by

these forces is:
12

", = Z (FIT. * FDT.) ' | | (V-55)

i=5
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a sin a+ b ¢os «

"

where: Yg

Yo =b cos a- a sina
Y7 = =Yg

Yg = -Yg

Yg =b cos a

Yig = -¥g

Y11 = a sin «

—

—

~N
i

= -

5. Limits for @ = 09 and « = 90°

The derived hull forces. and moments contain the terms 8 and 8' in the
numerators and denominators, and y and v' in their numerators. These terms

are related to the wave direction (o) as follows:

' = cos a
B" - >

= sin o
y' = b sin o
Y" = a cos a

As the wave direction («) approaches 00 or %,’ a limiting case exists where
L'Hospital's rule must be applied to find the forces and moments associated
with these extreme values of o.

a) Limits of Hull Forces for o = 0©

As o —0, Equation (V~56) becomes

g' = 1
B|l=0
¥' =0






Recailing Equations (V-8), (V-9), (V-12), (v-13), (v-25), and (V-31) and

rewriting them gives:

'Fy = -da, sin (ka'a') cos (ky') sin (ko)
kg'
Fx = -4ax sin (kg"b') cos (ky") sin (kct)
F} = 2¢; sin (2kg'a') cos (2ky') cos (2ket) + beqa'
kg’ :
?; = 2c,  sin (2%8"b') cos (2ky") cos {2kct) + LI
an

sin (kg"b') cos {(ky")]

v V2

8" | G

F = -2.cc§ (kect) [av' sin (kp'a') cos (ky') + a

?v=-4 (c3a' + c4b') - 2 cos (2kct) [c3.sin (2kg'a') cos (2ky')
‘ k B

* ¢y sin (2ks"b') cos (2ky")]

BE‘

8
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For o = 0:

= ay = 0

and cp =0

For v' =0, cos (ky} =1

For B =0, sin kgﬁ"b' = b (by L'Hospital's rule)

Fy =0
Fy=0
F, = -4a,b' cos (ka) sin (ket)
F, = dc,b' [cos (2ka) cos (2Zket) +1]
Fy = -2 cos(ket) [ a,. sin(ka') + a,, b' cos (ka)]
&
Fy = 4(cga' + ¢ b') - 2 cos(2ket) [c3 sin(2ka') + 2¢;b" cos (2ka)]

k

Recalling Equations (V-41), (Vv-42), (v-43), (v-44), and (V-45), and
nerforming simi]af operations with the above equations yields:

M3,4y = 2ab’ [aV2 sin(ka)sin(kct) + 2c,sin(2ka)sin(2kct)]

M} =_de sin (ket) [ sinégka') - a' cos (ka‘)]
’ ;

My = a, sin(ket) [ sin(ka') - a' cos (ka')]
Y I
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M; = -cg sin (2kct) [a' cos(2ka') - 1 sin(2ka')]

1
2K

b) Limits of Hull Forces for o = 900

As o —900, Equation (V-56) becomes

g' =0
B"=]
v =6
y' =10

Similar manipulations to those for ¢ = 0, convert Equations (V-8), (V-9),

(v-12), (V-13), (Vv-25), and (V-31) to:

-
1]

-4a  a' cos (kb) sin (ket)

Y Y
?& = 4c, a' [cos(2kb) cos (2kct) + 1]
Fo=0
Fv = -2 cos (kct) [a' a, . cos (kb) + a_ sin (kb')]
1 Vz
X
?& = 4(c3a' + cqb') -2 cos(2kct) [c4 sin(2kb') + 2c3a' cos(2kh)]

k
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Similarly, the roll moments become:

M]'z = -2 a'b [a, sin(kb) sin(kct) +2c, sin(2kb) sin(2kct}]
] X . I

M3x = - av2 sin(kct) [sinékb') - b' cos(kb')]
&
M, =M
&y 3y
M, =c¢ | sin (2kct) [b‘.cos(Zkb') - 1 sin(2kb")]
3, _{% 5%
My = M3






APPENDIX II: DERIVATION QOF EARTHQUAKE FORCES

1. Fluid Inertia and Drag Forces Due to Interaction

a) Inertia Forces on Columns

Assuming calm water (no waves), the inertia force from structural

motion can be calculated with Morison's equation as:

Fy = pud,2 /fh’{o - - 1) [x - (z - Dal} dz

4%

= ‘9"912 (cm - 1) [xhi + E'ahi -'fﬂif] (V-59)

4 Z

and the moment caused by this force is:

ny
M= - pnD,2 j/ (z-2) 0-(C -1)[x-(z-2ald
i 7 |
0
= oaD.2 _ 1) Tun 2 2 3
va1 (Cm 1) EXhi b4 h1 o _ #ii ]+ 7 FI (V-60)
T 7 2 3 i |

Fl = :E: (Fr) (V-61)
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and the total fluid inertia moment on columns is:

2 f
M= j;: (My ) _ (V-62)

i=5

b) Drag Forces on Columns
An applicatioh of Morison's equation for draé forces on the columns

yields:

FD1 (sgn)o d J/ 0-[x-{z- z) 132 dz
2
0

1]

“%bcﬁifi [(x +Z&)2 - 2lx + D z + 222] dz
T .

0

(sgn) oC D, [(x + E7é)2 hs - (x +'E'&)&hi2 + &2h13 ] - {V-63)
2 3

The moment caused by the drag force is:

=
[}

o, = (san) (-oc D {J/ (z -2) [(x+2za) - za ]2 dz

h; . - . :
(sgn) {=pcyD.) Vlz(x + 7 a)2 - 222(x + za) + z342] dz + E'FD
. j

1]

1

(sgn) (°DCdDi) [(x + 2z &)h].2 - S (X + za )h13 + E.-azhiu] + 5 F

2

w)ro

0

I\)I

(V-64)
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where (sgnj = +1 if {x + za)< 0 and (x + za - hi&)< 0 {case 1)

and = -1 if (x+2)>0and {(x + za - hi&)> 0 (case 2)

If neither case 1 nor case 2 applies,

)‘(‘l'-i-&-hi(;
d: = h
1 1 —
X+ 2 a
X + 7a - h.o
1+ 1
X+ 2zZa
and
hi-a;5 hs

Fy = ¥ pc D {f [(iﬁa)-za]zdz-f’ [(x +2Z) - 242 dz }

0 : hj-aj

If case 1 or case 2 does not apply, MD. becomes:
i
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My =7 (-oCD ) 2[(x +Z3)2 (hy - ;)2 - Sk + T84 (hy - ay)8
T 2z -7
e (h-aph el - DR+ T ) b - F (ke TN gy i)
2
+ZF (V-66)
D;
where
(F) = +1 if (x +Z a)< 0
and
= -1 if (X + Z o) >0
c) lnertia Forces on Hulls
For Hulls No. 1 and 2:
Fy] = -pnD. 2 (Cp - 1) [2a'y] = - onD 2(c_ - 1) &' ¥ sin - (V-67)
.4 2
Foo=F
.Vz yT'
For Hulls No. 3 and 4:
Fx = "°"D32 (Cm - 1) a' X COS a (V-68)
T
F, =F
'X4 X3
Moments Due to Inertia Forces on Hulls
M =(F +F H-D
My g = (F+F ) (h - D) (V-70)






d) Drag Forces on Hulls

For Hulls No. 1 and 2:

2

F
Yo N

For Hulls No. 3 and 4:

?g3 = (sgn) pCdD3 b’ x2 cos2 o

M =(F +F ) (h-D)
M =(F, +F, ) (h-D,)
3’4y X3 Xy Eg
(sgn) = +1 if x, . <0

e) Yaw Moments

o (sgn) eCDy [x sin ]2 (22') = (sgn) pCyD.a' % sin2 o

>0
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(V-71)

(v-72)

(V-73)

(y-74)

(V-75)






