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I. INTRODUCTION

A•. Object i ve

Offshore production platforms have been manufactured predominantly as

fixed steel template jackets or concrete gravity structures for operations

in water depths up to 200 meters. Manufacturing, installation, and mainte­

nance costs of fi xed plat forms ri se rapi dly as water depths increase.

Recently, however, attention has been focused on the design of tension-leg

platforms. Relatively small increases in manufacturing and instailation

costs with added water depth make the tensi on-leg platform an attractive

al ternat i vee

The design of tension-leg production platforms requires an understand­

ing of the dynamic behavior of the structure during storm waves, wind,

ground motion conditions, etc. In order to design a reliable structure, it

is necessary for the engi neer to take into account the effect of platform

motion on personnel, equipment, and operations. It is also necessary to

take into account the anchoring system and the forces in the mooring legs

produced by wave actions and platform motions.

The primary objective of this research is to develop a complete and

accurate deterministic approach for the dynamic analysis of tension-leg

platforms (TLP's) subjected to wave forces and ground motion. A mathemati­

cal model is developed based on a set of coupled nonlinear differential

equations for sway, surge, heave, pitch, roll, and yaw motions. The non­

linearity of the coupled differential equations of motion makes a power

spectral analysis in the frequency domain infeasible. Thus, a time domain

analysis was selected for investigating the dynamic characteristics of the





anchored structure. The advantage of this approach is that nonlinear func­

tional relationships, which require approximations in the spectral models,

can be handled exactly in the time domain.

The time domain dynamic analysis model developed herein is capable of

obtaining the following:

1) Time histories of displacement response in the direction of all

degrees of freedom (surge, sway, heave, pitch, roll, and yaw) when

the platform is subjected to wave loading and/or ground motion.

2) Response spectra (i.e., variation of response amplitudes with res­

pect to wave period) for all degrees of freedom.

3) Effects of variations in several different parameters.

4) Effects of coupling and nonlinearities.

B. Research Plan

In order to accompli sh the objectives set forth in thi s project, the

following research plan was developed and undertaken:

1) Literature search and choice of the most appropriate dynamic anal-

ysis of TLP's.

2) The development of a deterministic dynamic analysis model.

3) Verification of mathematical model.

4) Parametric studies to identify design criteria.

Few attempts have been made in the literature to simulate, or calcu~

late, the dynamic response of tension-leg platforms. A review of previous

work was undertaken with the objective of sorting out the important parame­

ters influencing the structure's behavior. The previous attempts to model

the response of tension-leg platforms have neglected either coupling or

nonlinearities or both, and none have addressed the possible effects of

ground motion.
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The development of a complete deterministic dynamic analysis model

involves the formulation of a nonlinear stiffness matrix, selection of a

suitable wave theory, derivation of complete forcing functions, selection

of an efficient numerical method capable of carrying out the solution of

nonlinear coupled differential equations in the time domain, and develop­

ment of an appropriate computer code to perform the dynamic response calcu­

lations.

Wave forces and ground motion are two of the environmental loadings

which could be applied to the offshore structure. Time histories of the

comp lete response of the model to these envi ronmenta 1 forces are generat­

ed. A parametric study is carried out in an effort to determine the sig­

nificant design parameters that need to be considered in the design and

analysis of tension-leg platforms.

c. Review of Previous Research

Vari ous methods of dynami c ana lys is of offshore structu res subjected

to wave loading have been presented in recent technical literature (see for

example references. 1-11). Linear or piecewise linear mathematical models

to analyze response in the frequency domain have been employed by many

research~rs (Refs. 1,2,4,5,8, and 10); whereas nonlinear time domain analy­

ses were performed by other researchers (Refs. 3,6,7, and 9).

Frequency domain or spectral analysis models are based on a linear

formulation of the dynamic problem. Nonlinear terms inherent in the forc­

ing function, and the relative displacement, velocity, and acceleration

between the structure and the fluid particles are neglected. It is also

assumed that coup1i ng between degrees of freedom is negl ected. Moreover,

spectral models are capable only of finding maximum response amplitudes,

3





and not time histories of the response as is the case in time domain analy­

ses. Nonlinear and coupling effects are important and can have significant

effects on the structure1s dynamic behavior. Time domain (or determinis­

tic) models are capable of handling all kinds of nonlinearities. The bene­

fits of time domain analysis include the ability to incorporate any type of

nonlinearaity in force which can be adequately described, and the avail­

ability of response time histories to aid in assessment of the effects of

coup 1i ng between degrees of freedom. Such non 1i near and coupl i ng effects

cannot be easily included in a frequency domain even with approximations

such as equivalent linearization.

Previous nonlinear deterministic models did not account for all types

of nonlinearity and coupling. Typically they included a numerical integra­

tion of wave force equations along each segment of the platform at each

iteration for every time step. Some also included a nonlinear finite ele­

ment formulation to describe the nonlinear stiffness of the anchor lines.

These analyses are generally very expensive. The current model attempts to

eliminate or minimize the effects of the following assumptions which are

common to most published analyses:

1) Equivalent linearization of nonlinear terms in the anchoring

stiffness and fluid drag forces (some deterministic and all fre­

quency domain models).

2) Neglecting coupling effects between degrees of freedom (both fre­

quency domain and time domain models).

3) Numerical integration of wave forces at every time step.

4) Omission of ground motion in the forcing functions.

4





Frequency domain analysis is inexpensive and may be adequate for a

preliminary look at the dynamics of the problem but it is not sufficient

for a complete and accurate prediction of a coupled nonlinear response of

the structure. Hence, a deterministic approach is needed to account for

the nonlinear and coupled behavior involved in the problem. The complete

deterministic model presented in this research attempts to satisfy the

requirements listed above and to include the effects of ground motion as

well as water waves.

5





II. DEVELOPMENT OF DYNAMIC ANALYSIS MODEL

A. General

A review of previous work related to dynamic analysis of TLP's indi­

cates a need for a complete nonlinear deterministic analysis. The develop­

ment of such a model involves the formulation of a nonlinear stiffness

matri x whi ch descri bes the beha vi or of the anchori ng cables and buoyant

forces. The selection of a wave theory yielding a reasonable representa­

tion of the water waves in terms of particle velocity and acceleration, and

in terms of wave forces, and yet simple is also involved. Once a wave

theory is selected, a force calculation method which utilizes the fluid

particle velocities and accelerations derived from the wave theory can be

chosen to yield wave forces that agree with experimental results and best

represent the actual forces produced by the waves. After formulating the

nonlinear stiffness matrix and the wave forces on the structure, provided

the structure properties and dimensions are known, an efficient time domain

numerical method that is capable of handling all kinds of nonlinearities

and coupling is employed to integrate the equations of motion and obain

time histories of the response.

The structure considered in this research consists of four corner col­

umns which are linked to vertical tethers, four middle columns, two main

hulls, and two cross bracings (see Figure 1). Specifications of the struc­

ture dimensions, masses, mass moments of inertia, added masses, added mass

moments of inertia, center of gravity, water depth and draft are required

to complete the description of the TLP. The complex structure is assembled

from a group of simpler bodies whose individual hydrodynamic properties are

6





known. The total hydrodynamic force on the assembled structure is assumed

to be equal to the sum of the forces on the component bodies.

The model developed herein utilizes nonlinear stiffness coefficients

based on derived stiffness-displacement relationships which are functions

of the instantaneous position of the structure rather than a more expensive

finite element approach. These stiffness functions are coupled as well as

nonlinear. Coupling effects are ignored or neglected in frequency domain

models and in most time domain analyses. The effect of including coupling

effects in the stiffness matrix will be shown to be significant and, if

neglected, misleading results can be obtained.

The linear wave theory (Ref. 12) (sometimes called Airy wave theory)

has been found to gi ve wave forces close to those obtai ned usi ng hi gher

order wave theories, provided a proper method of calculating wave forces is

used with a suitable choice of the fluid added mass and drag coefficients

(Refs. 6,7, and 10). Linear wave theory provides good solutions in deep

water, i.e., for water-depth-to-wave length ratio greater or equal to 0.5

(Ref. 13). Airy linear wave theory is used in this model because it is

practical, easy to apply, and reliable over a large segment of the whole

wave regime (Ref. 14).

The forces on the structure are classified as hydrostatic (arising

from buoyancy), anchoring (restoring stiffness), hydrodynamic (inertia and

drag due to waves), and inertial (arising from ground motion). The hydro­

dynamic forces are computed with the Morison equation (Ref. 15), with velo­

cities and accelerations based on relative motion between structure and

water. Earthquake excitation consists of horizontal and vertical base

accelerations based on ground motion records.

7





The structure is represented by a mathematical model which can be

reduced to a system of coupled nonlinear differential equations that are

solved by direct numerical integration on a digital computer. The equa­

tions of motion are integrated in a stepwise manner using the Newmark

8-method (Ref. 15).

The equations of motion are represented by Equation 1 in matrix form

as

8

[M]{x} + [K]{x} = {F(x,x,x,t)}

where [M] is the mass matrix for all six degrees of freedom,

[ K] is a 6 x 6 nonlinear stiffness matrix,

{F} is the vector of forcing functions,

{x} is the struCtural displacement vector,

{X} is the structural velocity vector,

{x} is the structural acceleration vector, and

t is the time.

(1 )

This chapter presents details of the development of a complete nonlin­

ear coupled dynamic analysis model.

B. Derivation of Nonlinear Stiffness

1. Degrees of Freedom

Since the structure is considered as a rigid body, the motion will

consist of six degrees of freedom -- three translational and three rota­

tional. The coordinate axes and the degrees of freedom used in the analy­

sis are presented in Fig. 2. Surge, sway, and heave are defined as the





horizontal motion along the x-axis, the horizontal motion along the y-axis,

and the vertical motion along the z-axis, respectively. Pitch, roll, and

yaw are defined as the rotational motion about the y-axis, the rotational

motion about the x-axis, and the rotational motion about the z-axis, re-

spectively. The degrees of freedom are numbered as foll ows:

Surge: d.o.f. No.

Sway: d.o.f. No. 2

Heave: d.o.f. No. 3

Pitch: d.o.f. No. 4

Roll : d.o.f. No. 5

Yaw: d.o.f. No. 6

2. Derivation of Stiffness Coefficients

A nonlinear stiffness matrix [K] including all six degrees of freedom

is formulated, where kij is the force in degree of freedom "i ll due to an

arbitrary displacement in the direction of degree of freedom "j", with all

other degrees of freedom restrained. To derive the nonlinear stiffness

coefficients, each degree of freedom is given an arbitrary displacement and

the forces developed constitute the coefficients in the corresponding col­

umn of the stiffness matri x. The coeffi ci ents of the fi rst col umn of the

stiffness matrix are found by giving the structure an arbitrary displace­

ment x in the surge direction as shown in Figure 3•. The static equilibrium

forces exerted on the structure at its original position are shown in Fig-

ure 4. The static equilibrium forces are the weight of the structure, W,

the buoyancy force, F , and the initial tension (or pretensioning force),

4To . Through summation of forces in the vertical direction one obtains:

9

(2)





The forces acting on the structure with a displacement, x, in the direction

of surge are shown in Figure 5. A sum of forces in the x-direction yields:

10

+
~

EFx = 0

kll 2[2(To+ 1:IT,)x] = a

k" = 4(To+ 1:IT,)sin Yx (3)

where To is the value of the initial tension in each leg, 1:Ill, is the in­

crease in tension in each leg from the x-displacement, and Yx is the angle

of inclination of the 'egswith respect to the vertical, and it is given

by:

sin Y =~ = x
x l Il2 + x2

The elongation in the chain length is

1:Il, = l' - l = ;f2 + x2 - l,

hence

where kc is the stiffness of the chain for each leg.

Now, summing the forces in the vertical direction gives:

+HF = 0z

k3, + Fa - W- 2 2(To+ 1:IT,)z = a

k3, + (Fa - W) 4(To+ 1:IT,) cos Yx = 0

where
cos Y = Jr. = --;==,-===--­

X l Il2 + x2

Recalling Equation (2), Fa.;. W= 4To,

(4)





In summing the moments about the y-axis vertical forces produce no moment,

therefore only horizontal components of the tension in the chain are con-

sidered:
(+ MG = 0

k4l + 4{To+ ~Tl)x (h) = 0

k4l = -4{To+ ~Tl) sin)'x (h)

Combining this with Equation (3) yields:

11

(5)

The coefficients of the second column of the stiffness matrix are

found by giving the structure an arbitrary displacement in the sway direc­

tion with all other degrees of freedom (d.o.f.'s) restrained. The coeffi-

cients are identical to those of the first column with change in notations

as follows:

where

sin )'y = y

1,e2 + y2

cos )'y = 1
/,e2 + y2

and ~T kc (Ii + y2 - ,e)=

(6 )

(7)

(8)





The coefficients of the third column of the stiffness matrix are found

by giving the structure an arbitrary displacement in the heave direction,

keeping all other d.o.f.'s restrained. The corresponding forces acting on

the structure are shown in Figure 6. A sum of forces in the z-direction

yields:

+HF = az
k33 - W- 4(T6+ t.T3 ) + (FB - t.FB) = a

k33 + (FB - W- To) - t.FB - 4t.T3 = 0;

However, (FB - W- 4To) = a from Equation (2); therefore,

12

(9)

where t.FB = pgt.V, p is the mass density of water, g is the acceleration of

gravity, t.V is the change in submerged volume, and t.T3 is the change in

tension in each leg arising from heave.

The coefficients of the fourth column of the stiffness matrix are

found by giving the structure an arbitrary rotation about the y-axis with

a11 other d. o. f. 's restrai ned. Fi gure 7 shows the correspondi ng forces

acting on the structure. Summing the moments about the y-axis gives:

C+IMG = a

which can be written:

(lO)





where e4 is the eccentricity of the buoyancy force calculated according to
I

the formula e4 = ~ , where Iy is the moment of inertia of the cross sec-

tion of the structure intersecting the water surface, about the y-axis, and

V is the volume of the submerged portion of the structure. From geometry

(see Figure 7) d, r, s, 1/11, AL4, and AL4, are calculated as follows:

r = dl cos (1/1 - ay) ,

S = d1 cos (1/1 + cx.) ,
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and

Summing the forces in the vertical direction gives:

++ F = 0z
k34 + FB - 2(T + AT4) - 2(T - AT4) - w=0

k34 + (FB - 4T - W) - 2AT4 + 2AT4= 0

k34 = 2 AT4 - 2 6T4
where

The coefficients of the fifth column of the stiffness matrix are found

by imposing an arbitrary rotation about the x-axis, keeping all other

d.o.f.ls restrained. The resulting coefficients are identical to those of

the fourth column with a change in notation as follows:





where

d2 = Ih2
+,b2

u =d2 cos (W2 + ax)

v = d2 cos (W2 - ax) ,

Wz = tan-1 (h/b) ,

~L5 = h - d2 sin (WZ - ax) ,

-
~L5 =dZ sin (WZ + ax) - h ,

~T5 = kc ~L5 '

and
~T' = k ~L'5 c 5

(12 )

(13 )
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The coefficients of the sixth column of the stiffness matrix are found

by giving the structure a rotation about the z-axis with all other d.o.f.'s

restrained. The forces acting on the structure arising from yaw rotation

are depicted in Figure 8.

A sum of the moments about the z-axis gives:

+l:M = 0z

(14 )





where

sin cpt , and
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A summation of forces in the vertical direction gives:

t+rF = 0z

but, FB - W= 4To; therefore,

k36 = 4T (cos cpl - 1) + 4 ~T6 cos cpl

where

1

(15 )

(see Figure 9)

3•. Discussion

Two significant aspects can be noted concerning the derived stiffness

coefficients: coupling and nonlinearity. Coupling terms are the nondiago­

na1 coefficients of the stiffness matrix. Heave is coupled to surge, sway,

pitch, roll, and yaw, respectively (Equations (4), (7), (11), (13), and

(15)). Further, pitch is coupled to surge, (Equation (5)), and roll is

coupled to sway (Equation (8)).





The stiffness matrix, including all of the coupling terms detailed

above, is:

Surge kl1 a a a a a

Sway a k22 a a a a

Heave k31 k32 k33 k34 k35 k36

Pitch k41 0 0 k44 0 0

Roll a k52 a a k55 a

Yaw a a a a a k66

As will be shown later in this report, coupling has a significant ef­

fect on the calculated response of the structure. Coupled equations of mo­

tion are intractable in Frequency Domain models, and nonlinear time domain

analysis published in the literature generally neglected coupling effects.

As shown above, the stiffness matrix is asymmetric. This implies that

some degrees of freedom are coupled to other degrees of freedom, but not

vice versa. For example, this is apparent in the heave degree of freedom

(third row and third column of the stiffness matrix). The heave row con­

tains only nonzero terms; i.e., heave is coupled to surge, sway, pitch,

roll, and yaw. However, the heave column contains only one nonzero term

(k33); i.e., as the structure moves in the vertical direction (heaves),

there is no required motion in the other directions. By the same argument,

pitch is coupled to surge, and roll is coupled to sway, but not vice versa.

Moreover, other types of coupling occur between degrees of freedom as can

be seen later in the derivation of the forcing functions.





Another significant aspect of the stiffness matrix is the nonlinearity

of its coefficients. For example, sine and cosine terms and square and

total stiffness forcellKill of that particular degree of freedom. Hence,
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c. Derivation of Wave Forces

6
K. = L k ..

1 j=l 1J
(16 )

1. Selection of Wave Theory

Theoretical simulation of water waves, and of sea motion in general,

involves rigorous mathematical analysis. The basic hydrodynamic equations

that govern the wave kinematics are the equation of continuity (Laplace's

equation) and the equation of momentum (Bernoulli's equation). The form

and solution of these equations vary, depending on the intended appliction

of wave kinematics. However, in general, all solutions assume incompres-

sible, inviscid, and irrotational fluid particles. The simplest solution

of the hydrodynamic equations involves a further assumption, that the waves

are of small amplitude (Hj2) compared to the water depth (d) and the wave­

length (L). This solution was introduced by Airy (Reference 12), and

became known as the linear wave theory.

Higher order wave theori es are not based on the assumption of small

amplitude to solve the hydrodynamic equations. Instead, they include





higher order terms (terms higher than fi rst order) in the solution. Stokes

(Ref. 17) developed equations for waves of finite amplitude by accounting

for higher order terms. The Stokes wave theories have been developed for

terms up to fifth order. The successfully higher order theories give wave

surface profiles that are steeper in the crests and flatter in the trough

than those gi ven by the 1i near wave theory. Dean (Ref. 18) developed the

stream fu nct ion wa ve theory. Thi s theory, wh i ch is a nume ri ca lone, has

demonstrated good agreement with experimental wave channel test results for

a wide range of H/T2 ratios (Ref. 19). Many other analytical and numerical

wave theories have been developed and can be found in the literature (see

for example Refs. 20 - 23).

The relative· ranges of application for some of the prominent wave

theories are shown in Fig. 10 (see Ref. 24). It can be seen that, for d/T2

ratio of greater than about 1.0 (ft/s2), and for H/T2 ratio of less than

about .035, the linear wave theory applies. In this study, water depths

start at 200 m. Therefore, from the d/T2 = 1.0 ratio, the maximum wave

peri od that can be used with the 1i near wave theory is j 200 x 3.3 =

25.6 sec, which is large enough to cover the range of wave periods used in

this study. The maximum wave height that can be used is H ::: O.035T2. For

large values of wave period, say T = 25 sec, the wave height could be as

large as 22 ft (6.7 m). It should be noted that, while wave heights great­

er than those just described also were used in this study, the response is

linear with wave height over the range between the maximum wave height used

and those within the above guidelines. Further, it has been shown that the

predominant wave height for a 17 sec wave is approximately 15 m (Ref. 10)

and that surge and sway response are not si gnifi cantly affected by wave

steepness and agree well with 1i near wave theory predi ct ions (Ref. 9).
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Therefore, the linear wave theory is sufficient to obtain the kinematics of

the waves to be used in the dynamic analysis of tension-leg platforms in

deep water.

A schematic diagram of an elementary, sinusoidal progressive wave is

presented in Fig. 11 (Ref. 14). The velocity and acceleration of the fluid

particle at depth z below the mean water level are respectively given by

the linear wave theory as:

19

and

u = ~~ e- kz cos [k(X - ct)]

. 2·iH -kzu =~ e sin (k(X - ct)]
T

(16 )

(17)

where H, T, and c are the wave height, period, and celerity, respectively,

and k = 2 7T /wavelength.

2. Justifications for using Morison's Equation

Experimental studies by Morison, et ale (Ref. 15), led to the formula-

tion of a wave force equation that became known as Morison's equation.

This equation has been widely used for more than two decades in the calcu-

lation of wave forces on offshore structures. The equation consists of a

drag term, as in the case of flow of constant velocity. and an inertia term

due to the acceleration of the fluid particle.

The original form of Morison's equation is:

(18 )





where F is the force per unit length experienced by a cylinder; U and dU/dt

represent the undisturbed velocity and acceleration of the fluid, respec­

tively; and Cd and Cm are the drag and inertia coefficients.

Morison's equation has been widely accepted for force computations

because of good correlation with experimental results in a large number of

practical cases. However, the use of Morison's equation gave rise to a

great deal of discussion on what values of the two coefficients should be

used. Experimental results by different researchers were scattered and

divergent. However, the force transfer coefficients Cd and em, for one­

dimensional flow over a circular cylinder, have been well studied by

Satpkaya (Ref. 25) and Garrison (Ref. 13), and their experimental results

have produced a very promising approach for the systematic analysis of test

data.

Morison's equation provided a hypothesis that expresses the force both

as a function of time and other independent parameters, for the case where

the wave slope and associated pressure gradient are roughly constant across

the diameter of the cylinder and the wave scattering is negligible.

Morison also assumes that in the region near the cylinder the kinematics of

the undisturbed flow do not change in the incident wave di recti on. How­

ever, since the kinematics of the flow do vary with distance (as shown in

Fig. 12), the above assumptions restrict the OIL ratio to a small value.

Sarpkaya (Ref. 26) and Leonard, et ale (Ref. 19), suggested that the appli­

cation of Morison's equation be limited to OIL values of less than 0.2.

They also suggested that in cases where O/L;s larger than 0.2, wave dif­

fraction occurs. In the diffraction dominated region (see Fig. 13) the

total inertial force results from the sum of two components (Ref. 26): the
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force from the pressure field of the undisturbed fluid (the incident wave),

and that from the disturbances caused by the presence of the body (scat­

tered wave).

Diffraction forces arise from the scattering of incident waves by

structure. These forces become significant when the structural member

dimensions reach a substantial fraction of the wave length. Models for

descri bi ng the force ari sing from diffract i on have been developed by McCamy

and Fuchs (Ref. 27) and others, generally by the use of potential theory

with finite elements or finite difference methods. Significant contribu­

tions to the computation of hydrodynamic forces and moments on large

gravity-type platforms have been made by Hogben and Standing (Ref. 28),

Garrison, et ale (Ref. 29), Mei (Ref. 30) and others, using diffracion

theory.

In conclusion, the use of Morison's equation in wave force calcula­

tions is justified if the following conditions are met:

1) For OIL to be less than 0.2, with the largest diameter of 16

meters used in the analysis, the wave length should be larger than

50, i.e., 80 meters.

2) For a maximum diameter of 16 meters, the wave height should be

greater than 5 meters to avoid the diffraction dominated region

(see Fig. 14).

3} The original form of the equation should be modified in order to

account for the relative velocity and acceleration between the

oscillating structure and the fluid particles.

4) Reasonable values of the force transfer coefficients Cd and Cm may

be obtained from the literature (e.g., recommendations of Garrison

(Ref. 13) and Sarpkaya (Ref. 26)).
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3. Procedure for Wave Force Calculation--
In order to properly descri be the dynarni c response of the TLP, the

wave forces must be accurately calculated. The conditions listed in the

previous section for using Morison's equation in wave force calculations

. all have been met in this study. Hence, the wave forces are calculated

from a modified version of Morison's equation and include the relative

velocity and acceleration between the structure and the fluid particle.

Equation (18) is modified to account for the relative motion between the

structure and the fluid particle, and separated into drag and inertia

terms. The drag and inertia forces on an element dz along the length of

the cylinder become:
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(19)

and

(20)

where p is the mass density of the fluid, 0 is the diameter of the cylin­

der, Urel is the relative velocity given by

and

• -). 1 ·2Ure1 =u - [x - (z - Z a + 2 xia ] (21 )

(22)

Equations (21) and (22) are derived based on Figure 14 where i, i, &, ~ are

the velocity, acceleration, angular velocity, and angular acceleration of





the c~nter of gravity (in this case the center of rotation) of the struc-

ture, respectively, and x is the relative velocity of element dz of the

cylinder with respect to the water.

Substituting Equations (21) and (22) into Equations (19) and (20),

respectively, yields:

F PI· ( -). 1 ·2 I • -. 1 2o d = 2" Cd 0 u-[x- z-z a+ 2" xia ] {u-[x-(z-z) a+"2" xia ]}dz (23)

and
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2
F 'Il'D C • ( ).. ( -)" 1 2o I = PT [ m u - em-, {x- z-z a + 2 xia }]dz (24)

These two equations are integrated along the length of each column and hull

to obtain the total instantaneous force on the structure.

The moments of these forces about the axes of rotati on are found by

multiplying the force equations by the appropriate moment arms and then

integrating over the length of each cylinder to obtain the total moments.

It should be noted that despite the nonlinearity of the drag force and

moment equations and the coupling of pitch and surge or roll and sway in

both the inertia and drag equc:itions, a closed form integration can be car­

ried out by hand, thereby avoiding the need for time consuming numerical

integration. This method of force calculation is the major contributor to

the efficiency of the mathematical model and computer program developed in

this study.

A force calculation method similar to that of Kirk and Etok (Ref. 10)

is used with the following major changes:

1 - Inclusion of drag forces





2 - Incorporation of relative motion between structure and fluid

part i cl es

3 - Accounting for instantaneous position of structure

4 - Inclusion of coupling terms in wave force derivation

The following outline contains a complete description of the wave

force equations which must be derived:

1) Horizontal forces

a) Inertia forces on columns

b) Drag forces on columns

c) Inertia forces on hulls and cross braces

d) Drag forces on hulls and cross braces

2) Vert i ca1 forces

a) Vertical inertia forces on hulls

b) Vert; cal drag forces on hulls

c) Dynamic pressure on corner column bases

3) Moments of forces about x, y, and z axes

a) Moments due to inertia forces on columns

b) Moments due to drag forces on columns

~) Moments due to horizontal inertia forces on hulls

d) Moments due to horizontal drag forces on hulls

e) Moments due to vertical inertia forces on hulls

f) Moments due to vertical drag forces on hulls

g) Moments due to dynamic pressure on corner column bases

4. Summary of Wave Forces

Detail s of the complete deri vat i on of wave forces and moments are

presented in Appendix I. A summary of the resulting force equations is

given below:
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Horizontal forces

25

12
Surge (x-axi s) : FXT = l: (FIi .+ FO i ) cos a + F + F

i=5 X X

12 -Sway (y-axis): F
YT

= l: (FIi + FO·) sin ('( + F + F
i=5 1 Y Y

Vertical forces

(25)

, (26)

Heave (z-axis):

Moments

Pitch (about y-axis):

F = F + F + FzT v v cv (27)

12
= l: (MI. + MD.) cos a + Mv + MH + Mp

i =5 1 1 Y Y Y

Roll (about x-axis):

(28)

Yaw (about z-axis):
12

MZT = l: (F1i + F0
1
') Yi

i=5
(30)

12
where L is the summation over the corner columns (5-8) and the middle

i=5
columns (9-12), a is the orientation angle or angle of wave incidence, Fx

and rx are the x-components of the total horizontal inertia and drag forces

on the hulls, Fy and Fy are the y-components of the total horizontal iner­

tia and drag forces on the hulls, Fv and Fv are the total vertical inertia





and drag forces on the hulls, Fcv is the total vertical dynamic pressure

force on the bases of the corner columns, Mr and MO are the moments of the

horizontal forces on the columns about an axis perpendicular to the wave

direction, Mv and M
H

are the moments of the vertical and horizontal hull
y y

forces about the y-axis, M p is the moment of the dynamic pressure on the
y

bases of the corner col umns about the y-axi s, M and ~ are the moments
vx x

of the vertical and horizontal hull forces about the x axis M is the- , Px
moment of the dynamic pressure on the bases of the corner columns about the

x-axis, and Yi is the moment arm, of column i, for moments about the

z-axis.

o. Earthquake Forces

Platform motions are excited by an earthquake through the horizontal

and/or vertical translation of the ground where the legs are anchored. The

equations of motion are written with structural displacements {xr } re1a-

tive to the ground motion. This provides an earthquake forcing function

that is equal to the mass of the structure times the ground acceleration.

The effect of interaction of the structure with either calm water or waves

is also included. The equations of motion can be written as

26

(31 )

where {Xg} is the ground acceleration vector. The inertial force vector

due to ground acceleration, on the right-hand side of the equation of

motion, consists of all six degrees of freedom included in the analysis.

This means that the model is capable of handling not only horizontal ground

motion, but also vertical as well as rocking and torsional ground motions.

The derivation of the force vector arising from the interaction between

the structure and the fluid particles is listed in detail in Appendix II.





E. Mathematical Model

1. Equations of Motion

Now that the nonlinear stiffness equations have been derived and the

wave and earthquake forces are formulated, a set of coupled nonlinear dif­

ferential equations can be formed. These equations of motion form the ba­

sis for a mathematical model that performs the dynamic analysis of tension­

leg platforms.' The equations of motion (written in matrix form in Equation

(l)) are rewritten here in vector form as
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{m.x.} + {K.} = {F1.{x,x,x,t)}1 1 1 (32)

where {mi xi} is the inertial force vector in which mi is the structu­

ral -- plus added -- mass of degree of freedom lIi ll
, and xi is the accelera­

tion of the structure in the direction of degree of freedom lIi ll
, {Ki} is

the coupled nonlinear stiffness force vector developed in section (B) (see

Equation ,16), and {Fi{X,X,x,t)} is the vector of nonl i near external

forces (waves or earthquakes) developed in sections (C) and (O).' The equa-

tions of motion generally describe the dynamic equilibrium between the

inertia, the restoring, ~nd the exciting forces.

The structure used in the analysis is represented schematically in

Figure 3. The center of gravity of the platform is assumed to be located a

distance z from the mean water level and a coordinate system is attached at

its origin to the equilibrium position of the center of gravity. The cen-

ter of rotation (pitch, roll, yaw) is assumed to be located at the center

of gravity. The platform is modeled as a rigid body free to translate in

three directions (surge, sway, heave) and rotate in three directions





(pitch, roll, yaw), with restoring forces that model the legs (cables or

chains) and buoyant forces.

2. Solution Procedure

The equations of motion are both coupled and nonlinear. Hence a time

domain analysis method is required, as mentioned earlier in the report, to

calculate the response of the structure to various types of loading. The

general approach to solving nonlinear equations of motion is through an

integration of the acceleration and velocity curves in the time domain.

Two well known methods of integration have been widely used for time

domain dynamic analysis of fixed, or floating, offshore structures. The

fi rst one is the Newma rk-Beta method, and the second one is the Newton-

Raphson technique. The latter does not work well for heave, roll, or pitch

(see Ref. 7). The Newmark-Beta method is more general and is used as a

standard agai nst whi ch other methods are compared. The Beta method has

been used in time domain models for dynamic analyses of fixed offshore

structures, with good results (Ref. 3).

The Newmark-Beta method is used in this model to integrate, in a step-

wise manner, the e~uations of motion and to obtain time histories of the

structure1s response in an iterative manner. The iterative method can be

used to determine the accelerations, velocities, and displacements of the

structure at time t n+l based on corresponding values at time t n and the

accelerations at t n+l. The equations have the following form:
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Xi(tn+,) = xi(tn) + (1-y)6t xi(tn) + y6t xi(tn+,) ,

and

(33)

(34)





The value of Y is usually set to 1/2 by damping considerations and the

value of B is chosen in the range of 1/8 to 1/4 for reasons of conver­

gence. Values of Y and B of 1/2 and 1/6, respectively, are used in this

model. The vector of accelerations at time tn+l are found by substituting

the vectors of velocities_and displacements into the equations of motion as

follows:
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Equations (33L (34), and (35) are solved in an iterative manner.

(35)

An

assumed value of xi at tn+l is usually chosen equal to the value at the

previous time step. New values of xi and xi at tn+l are then calculated

from Equations (33) and (34), and a new value of xi is computed from

Equation (35). This process is repeated until the assumed and the calcu­

lated values of acceleration converge within a predetermined tolerance.

The value of the tolerance is established through compromise between accu­

racy and cost. The B-method accepts both continuous forcing functions (as

in case of waves) and discrete forcing functions (as in case of earth­

quakes), and is extended for the purpose of this study to three dimensions

and six degrees of freedom.

3. Computer Code

A compact and inexpensive computer program has been developed to per-

form the numerical calculations of the motion of anchored as well as f1oat-

ing structures subjected to the action of waves, currents, and earth-

quakes. A flow chart of the computer program is depicted in Figure 19.

The structural geometry, material properties, wave properties and

ground acceleration are input to the program. The displacement, velocity





and acceleration vectors are initialized and an assumption for the acceler­

ation vector is made for the next time step. New displacement and velocity

vectors are then calculated based on the assumed acceleration. The forces

and stiffnesses corresponding to these values of displacements, velocities,

and accelerations are then calculated. Finally, using the equations of

motion a new value of the acceleration is calculated and compared with the

assumed value. The process is repeated until the difference between the

calculated value and the assumed value of the acceleration is less than a

predetermined convergence factor. Once the equations of motion are satis­

fied, the final acceleration value for this time step becomes the assumed

value of the acceleration for the next time step, and the whole process is

repeated.

At each time step the program calculates:

- The six components of motion (surge, sway, heave, pitch, roll,

and yaw) together with velocities and accelerations.

- The total forces and moments due to waves or earthquake.

- The stiffness vector (restoring forces).

- The tension and tension variation of each leg.

At the end of the analysis the program calculates the maximum values of the

displacements, velocities, and accelerations of the structure, and the'max-

imum tension and tension variation of each of the four legs. If plots are

desired, the variables of interest can be scaled with respect to their max­

imum values and plotted versus time.

4. Data Used for Evaluation of Platform Motion

To provide a convenient comparison of results for the mathematical

model developed for the analysis of platform motion, the following data

taken from Kirk and Etok (Ref. 10) were used for the AKER TPP-4l:
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- Buoyancy = weight of displaced fluid = 436,810kN

- Water depth = 160 meters

Draft = depth of submerged portion of the structure = 35 m

- Mass of deck equipment = 18,000 tons

- Mass of one main hull + ballast = 2,000 tons

Total mass of TPP in air = 31,200 tons

- Structural and fluid added mass in heave = 56,000 tons

- Strucural and fluid added mass in sway = 82,700 tons

Structural and fluid added mass moment of inertia in roll = 1.49 x

108 ton-meter square (tm2)

Structural and fluid added mass moment of inertia in pitch = 9.68 x

107 tm2

Diameter of corner columns = 16 m

Diameter of middle columns = 3.5 m

- Diameter of cross braces = 6 m

- Depth and width of main hulls = 13 x 9.5 m

- Spacing of corner columns = 70 m

Height of platform center of gravity = 41.7 m

- Number of cables per leg = 3

- Number of wires per cable = 400

- Diameter of each wire = 7 mm

- Area of wire per leg = 46,180 mm2

- Cable length = 125 m, 200 m

- Initial tension per leg = 25,000 kN

Some of the above data are modified to meet the objectives of this

research. Such modifications include water depth, hull sizes, and masses.

31





F. Summary of Dynamic Analysis Model

A complete nonlinear deterministic dynamic analysis model has been

developed in this chapter. The model is based on a set of coupled nonlin­

ear differential.equations integrated in the time domain using Newmark's

Beta Method. Wave kinematics are calculated from the linear wave theory,

and wave forces are calculated from a modified form of Morisonls equation.

The coupling and nonlinearities of the equations of motion are contributed

by both the stiffness and the forcing functions.

A computer program is written to perform the numerical solution and

obtain time histories of the response in all degrees of freedom. The ten­

sion forces in the anchoring legs can be calculated from displacement time

histories of the different degrees of freedom, and time histories of these

forces can be generated.

Data used in the computer program are taken from one of the selected

references with slight changes in some cases for the sake of a complete and

meaningful testing of the model.
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III. RESPONSE OF THE MODEL

A. General

The major objective of the dynamic analysis model presented herein is

to simulate the response of tension-leg platforms to ocean-environment

loading. In this chapter, the model is tested by the application of wave

loading and earthquake forces. Time histories of surge, sway, heave,

pitch, roll, and yaw are calculated by the model. The relative importance

of design variables for tension-leg platforms is found through a parametric

analysis. Some of these parameters studied are:

1) Wave period (Response Spectra)

2) ·Wa ve hei ght

3) Water depth

4) Cable stiffness

5) Initial tension

6) Direction of wave propagation

The importance of coupling and nonlinearity. is demonstrated through

comparison of the response of the coupled system to that of the uncoupled,

and the response including nonlinear terms to that by existing linear

models. The effect of earthquakes on the motion of the platform is also

studied.

B. Response to Wave Forces

The platform data described in Chapter II were used to test the mathe­

matical model developed herein~ A coefficient of inertia (Cm) of 1.5 and a

coefficient of drag (Cd) of 1.0 were used in the wave force calculations of

Chapter II, and assumed to be constant throughout the analysis. A wave

hei ght of 15.0 meters and a wave peri od of 17 seconds were chosen to
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describe a "significant wave" to be used in the rest of the analysis. Sim­

ulation of various sea states of interest was done by varying the wave

height and the wave period.

1. Time Histories

Time histories of response in the direction of each of the six degrees

of freedom were obtained. Time histories of surge, sway, heave, pitch,

roll, and yaw, respectively, for the significant wave described above and

for a wave propagatfon angle of 35 degrees from the x-axis are. depicted in

Figures 20-25. Responses for all six degrees of freedom, with inertia and

without drag, are presented in Figures 26-31 for the same sea state. Com­

parisons between the responses including drag forces and those that exclude

drag show that the nonlinear drag forces (sometimes called interaction for­

ces) contribute a significant amount of damping to the displacement res­

ponse. The periods of vibration for all six degrees of freedom of the

structure for the sea state described above are shown in Table 1. Also

shown in Table 1 are the response amplitudes (or maximum values) of the

structure's six degrees of freedom for both cases (including drag and

excluding drag).

Velocity response time histories for all six degrees of freedom are

shown in Fi gures 32-37 for the si gnffi cant sea state (with drag forces

included). Time histories of acceleration responses are also calculated

and shown in Figures 38-43. Table 2 includes the maximum values of these

velocities and accelerations. The time histories of the motion (displace­

ments, velocities, and accelerations) are important input for analysis of

the tension in the anchor legs, as well as in analyzing the stresses in the

various members of the structure caused by hydrodynamic and earthquake for­

ces.
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2. Response Spectra

Plots of maximum amplitude of vibration versus wave period (or wave

frequency) will be referred to as response spectra. Two cases were studied

in order to develop response spectra for the six degrees of freedom of the

platform. Case 1 includes only fluid inertia forces (Le., excluding drag

forces), and case 2 includes both intertial and drag forces.

The response spectra for surge (ex = 00 ) and sway (ex = 900 ) are shown

in Figures 44 and 45, respectively. It can be seen that both surge and

sway amplitudes reach a peak at a wave period of approximately 5 seconds

and another peak at a period near 7 seconds. Zero response ampl itudes,

corresponding to zero resultant wave forces, occur at wave periods of 5.5

and 9.5 seconds at which the wave lengths are 47 and 140 meters, respec­

tively. This arises from a "force cancellation" caused by spacing of mid­

dle and corner columns. For wave periods greater than 9.5 seconds the res­

ponse amplitudes increase consistently (but not necessarily linearly) as

seen in the figures. The dashed lines in Figures 44 and 45 indicate the

response of surge and sway for case 1 (inertia forces only), whereas the

solid lines show the response spectra for case 2 (inertial and drag for­

ces). It is clear that drag forces result in a decreased response ampli­

tude throughout the range of wave periods. For example, for T = 16 seconds

the surge response ampl itude is approximately 11 meters for case 1 and 10

meters for case 2; i.e., drag accounts for a response reduction of about 10

percent. For a wave period of 8 seconds, however, the response amplitude

is 8.6 meters for case 1 and 5.5 meters for case 2; i.e., drag accounts for

a reduction of more than 35 percent in response. Therefore, a significant

overestimation of the response amplitude can result from neglecting drag.
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The response spectra of heave for a = 00 and a = 900 , respectively,

are illustrated in Figures 46 and 47. It can be seen that heave response

spectra show similar trends to those of surge and sway. This arises from a

strong coupling of heave and surge (a = 00) and heave and sway (a = 900)

in the stiffness equations as described in Chapter II. The calculations of

the cable tensions caused by the platform displacements in six degrees of

freedom can give misleading results if heave coupling to sway and surge is

ignored. The time histories for coupled and uncoupled heave response for

T = 17 seconds and H = 15 meters are shown in Fi gu res 48 and 49, respec­

tively. Based on a comparison of these dramatically different curves, the

authors conclude that coupling effects should not be neglected.

The results of response ampl itude calculations for pitch and roll

(Figures 50 and 51) indicate that at low wave periods the response for

pitch and roll reaches its maximum value. Pitch and roll also exhibit the

"force cancellation" phenomenon described for sway and surge. The effect

of drag on pitch and roll also can be seen in the figures, but the percent­

age of reduction in response amplitudes is small.

The response spectrum for yaw at ex = 35 0 is gi ven in Fi gure 52. A

sharp peak in yaw response amplitude occurs at a wave period of 6 seconds.

The response amplitude decreases rapidly for periods larger than 6 seconds

and is negligible for periods larger than 10 seconds.

3. Parametric Study

a) Wave Height

Wave heights were varied in the range 0-30 meters for a constant wave

period of 17 seconds. Response amplitude versus wave height plots for

surge, heave, and pitch are given in Figures 53-55. The plots indicate a

relationship that is essentially linear for small wave heights (i.e., for

36





wave heights smaller than about 15 meters}. For large wave heights,

however, this linearity does not hold true. For example, in Figure 56

there is a significant shift in slope for wave heights greater than ab.out

19 meters. Attempts to normalize response spectra with respect to wave

height, therefore, must consider only the range of wave heights where

linear relationships are applicable.

b} Water Depth

Water depths were varied in the range 100-1000 meters for the signifi­

cant sea state used in the rest of the analysis. Figures 56-58 illustrate

the variation of response amplitudes of sway, heave, and roll, respective­

ly, with water depth. As can be seen in the above plots, the roll response

amplitude increases linearly with water depth. The sway response ampli­

tude, however, does not vary linearly with water depth; i.e., the rate of

increase of surge is not constant with water depth. While sway and roll

amplitudes increase (linearly or otherwise) with water depth, that of heave

decreases sharply in the range 100-400 meters and then it starts to in­

crease slowly for depths greater than 400 meters (see Figure 57). Decrease

in heave for deeper water arises from the decrease in cable stiffness (k =

AE/L) corresponding to an increase in cable length. The less stiff the

cables, the smaller is the effect of coupling between heave and surge or

between heave and sway. Therefore, as the platform surges or sways in

increasing water depths, the heave is less dependent on sway or surge;

hence heave response amplitudes are smaller.

Surge and pitch response amplitude variations with water depth are

similar to those of sway and roll, respectively. Yaw response amplitude

variation with water depth was found to be small and hence can be neglect­

ed.

37





c) CableStiffness

The stiffness of the tension legs may be varied by increasing the num­

ber of chains per leg, the cross-sectional area, or the elastic modulus of

the chains. The variation of response amplitudes of surge, heave, and

pitch, respectively, with respect to cable stiffness, at a constant water

depthof 125 meters are shown in Figures 59-61. The plots show that the

response of the structure drops sharply with an increase in cable stiffness

up to about 20,000 kN for pitch and 12,000 kN for surge and heave. The

effect of additional stiffness decreases rapidly as seen in the figures.

d) Initial Tension

Changing the initial tension involves changes in other variables such

as buoyancy, added mass, draft (depth of submerged portion of platform),

and cable length. Since for a constant water depth the cable length plus

the draft should be equal to the water depth, the buoyancy, added mass, and

cable tension are calculated for different cable length-draft combina­

tions. The variables involved were changed in a manner such that the vari­

ation in cable tension ranged from zero to 100,000 kN per leg. Cable

stiffness was kept constant at 73,888 kN/m, and water depth was lfiO meters.

Response amplitudes for sway, heave, and roll, respectively, versus

initial cable tension are depicted in Figures 62-64 for a 90 0 wave inci­

dence angle. A significant decrease in response can be seen for initial

tensi ons of up to 45,000 kN/leg in the case of sway and heave, and 35,000

kN/leg in the case of roll. As the initial tension is increased further,

the response ampl itudes start to increase unti 1 they reach a peak and then

decrease again. While one would expect a continuous decrease in response

from an increase in initial tension, the results obtained here show that

this is not always the case. For the range of initial tensions where the
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response amplitudes increase, the structure's stiffness changes and the

natural periods of vibration reach a range where the forcing function can

cause resonance (see Figure 64).

e) Direction of Wave Propagation

In order to gain a better understanding of the effects of change in

direction of wave propagation on the response of the structure, the plat­

form properties and member dimensions were modified slightly such that the

structure becomes symmetric. The angle of wave propagation (a) was varied

in the range between zero and 900. Fi gu re 65 shows the response of su rge

and sway to direction oOf wave propagation. The shapes of the curves are

close to parabolic and, as is expected, symmetric about and with peak re­

sponse at a = 450.

The variation of heave response amplitude with respect to angle of

wave propagation is illustrated in Figure 66. The heave response is mini­

mum at both a = 00 and a = 900, maximum at a = 450 and symmetric about a =

45°. This plot is similar to a combined surge-sway plot because of the

coupling of heave to both surge and sway. The variation of pitch and roll

response amplitudes is presented in Figure 67. As shown in the plots,

pitch varies nearly parabolically for a < 450 and linearly for a > 450, and

roll varies linearly for a < 450 and parabolically for a > 45°. Pitch and

roll curves also are symmetric about a =450.

The yaw response variation with respect to is shown in Figure 68.

Zero yaw occurs at a = 00 , a = 900, and a = 450 (since the structure is

made symmetric). Maximum yaw occurs at a = 200 and a = 700 and the yaw

cu rve is symmet ri c about a = 450 •

4. Illustrations of Nonlinearity and Coupling

Drag terms have been shown to reduce maximum displacement response
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amplitudes by as much as 35 percent. Nonlinearities in the stiffness rela­

tionships also are significant. The variation of leg stiffnesses with

respect to surge displacement is shown in Figure 69. It can be seen that

the force-displacement relationship may be considered linear for surge dis­

placements of up to 5 meters without appreciable error. However, for lar­

ger displacements the computed forces differ significantly from those pro­

jected by an assumed linear stiffness.

The effect of coupling is apparent from a comparison of the responses

computed assuming coupled and uncoupled degrees of freedom, respectively.

A force-pitch displacement curve is presented in Figure 70. Whereas the

curve obtained assuming coupled pitch and surge exhibits a hysteretic char­

acteristic, the straight line represents the results if no coupling is

assumed. A similar comparison for heave displacement response is presented

in Figure 71. In both cases there is substantial difference between the

uncoupled and coupled to surge response.

5. Summary of Response to Waves

The dynamic analysis model developed as part of this research was tho­

roughly tested for response to water waves. A parametric analysis study

was performed in an effort to emphasize the relative importance of each

individual parameter to the behavior of tension-leg platforms. The dynamic

response in all of the structures six degrees of freedom were plotted ver­

sus each parameter. Important concepts can be obtained from these plots in

order to optimize the design of TLP's. In comparison with Ref. 10, the

general trends of the response amp1 itudes are found to be in agreement.

However, since the authors of Ref. 10 normalized their response amplitudes

with respect to the wave height, no attempt is made to compare numerical

values of response amplitudes for specific wave periods.
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C. Response to Earthquake Forces

The dynamic analysis model presented in this report was tested for

wave forces, and a parametric analysis was performed. The results obtained

show that the model successfully simulates the dynamic behavior of tension­

leg platforms subjected to ocean waves. In this section, the response

behavior of the platform subjected to ground motion is studied using the

above model.

Two cases were studied: case 1 for earthquakes occurring in a calm

sea, and case 2 for earthquakes and waves occurring simu·ltaneously. The

derivation of earthquake forces and corresponding fluid drag and inertial

forces arising from relative motion between structure and fluid particles

for a calm sea (case 1) is given elsewhere in the report. The forces for

case 2 are easily obtained by superimposing the inertial forces from ground

motion onto forces developed for waves only. The correctness of the forces

derived in case 1 was checked by comparing the response obtained from case

1 with that obtained from case 2 (setting wave height equal to zero to sim­

ulate a calm sea).

1. Time Histories

Earthquake excitation consists of horizontal and vertical base accel­

erations based on ground motion records. The primary earthquake record

used in the analysis was the E1 Centro earthquake of 1940. Figure 72 shows

the time history of the east-west component of the E1 Centro earthquake.

Other ground motion records used include Pacoima Dam and Kern County earth­

quakes.

Response time histories of surge, heave, and pitch for E1 Centro

earthquake occurring in a calm sea are shown in Figures 73-75. Surge

response during the 30-second duration of the earthquake reaches a maximum
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of 2 meters. At the end of the 30 seconds the structure attai ns some ve­

locity and displacement that act as initial values for the free vibration

of the platform. The surge response reaches a maximum of about 3.5 meters

in the free vibration region. Heave and pitch arise from the coupling ef­

fects that associate them with surge, but their magnitudes are found to be

small.Also, a time history of surge response to Pacoima Dam earthquake is

shown in Figure 76. The maximum surge in this case was about 0.6 meters.

Earthquakes may also occur simultaneously with waves. Figure 77 il­

lustrates the time history response of surge to a combined loading of El

Centro .(EW) earthquake and a 17-second wave. The response is dominated by

the wave forces rather than by the earthquake. While the effect of earth­

quakes on the displacement time history of surge is small for combined

waves and earthquakes, the effect on the acceleration time history is sig­

nificant. The maximum acceleration caused by the wave only is 0.7 m/sec2

and that from the earthquake and wave combined is 2.0 m/sec2• In this case

the increase of surge acceleration caused by the earthquake is found to be

as much as 300%.

2. Initial Conditions

Initial conditions for the combined earthquake and wave loading are of

two types: (1) initial displacement and velocity of the earthquake time

history, and (2) initial displacement, velocity, and acceleration of the

structure. The i niti al velocity and di sp1acement for the ground motion

record are on the order of few centimeters and centimeters per second,

respectively. The structure1s initial displacement and velocity arising

from wave action just before the earthquake occurs, however, are on the

order of meters and meters per second, respectively. Therefore any initial

cond.itions for the earthquake time history are negl i gi ble compared to those
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of the structure just before the earthquake occurs. Therefore, for sim-

plicity·s sake, zero initial conditions were assumed for the ground.

To emphasize the effect of initial conditions on the time history of

surge, fi rst the wave was started and then the earthquake was introduced

some time after the wave loading had started. The surge time history re­

sponses for a l7-second wave with El Centro (EW) earthquake introduced at

t = 7 seconds and at t = 16 seconds, after the onset of the wave, is shown

in Figure 78. It can be seen that the time histories are affected by the

initial conditions of the structure at the time of the earthquake. How­

ever, this does not seem to have a significant effect on the displacement

time histories because of the dominance of wave induced displacements.

3. Water Depth

The effect of variations in water depth for both earthquake and com­

bined wave and earthquake loading was studied. Atime history of surge re­

sponse to only earthquake motion for a water depth of 1000 meters is pre;..

sented in Figure 79. The maximum surge attained is 8.5 meters at the peri­

odof 170 seconds, while that for a 200-meter water depth (see Figure 72)

was 3.5 meters at a period of 75 seconds. Hence, both amplitude and period

of surge response increase with water depth. Surge response amplitudes are

plotted versus water depth for three cases (Fi gure 80): earthquake only,

wave only, and wave and earthquake combi ned. It can be seen that the re­

sponse amplitude varies nonlinearly with water depth for all three cases.

A similar plot for heave response amplitude versus water depth is presented

in Figure 81.

4. Campa ri son

A comparison of the time histories and response amplitudes for the
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above three cases is presented in order to evaluate the effect of earth­

quakes on the motion of the platform. Time histories of surge response to

waves and combined wave and earthquake forces in a water depth of 1000

meters are shown in Figure 82. The increase in response amplitude caused

by the inclusion of the earthquake is as much as 10 percent for this case.

The same percentage of increase as above can be seen in Fi gure 83 for a

200-meter water depth with the earthquake introduced at t = 200 seconds

(i.e., in the steady state region of the vibration).

Referring to Figures 80 and 81, it can be seen that to predict the re­

sponse amplitude for combined wave and earthquake loading, one cannot sim­

ply superpose the maximum response amplitude arising from only earthquake

forces to that arising from only wave forces. For example, at a water

depth of 1000 meters the maximum surge response amplitude caused by earth­

quake motion alone is 8.5 meters; that from wave action alone is 26.5

meters; and that associated with the combined loading is 29.0 meters.

Therefore, it would be too conservative to design for 35.0 meters (26.5 +

8.5) instead of for 29.0 meters. The reason that superposition does not

apply in this case is that the peak responses from earthquake forces are

out of phase with those caused by wave forces. Similarly, the maximum

heave res pose cannot be obtai ned from a superpos it i on of the separate

loadings; however, in some cases the sum of maximum heave response to indi­

vidual loadings is less than the value obtained for the combined loading

(see 800-meter water depth). This phenomena is another illustration of the

importance of coupling between heave and surge responses.

5. Summary

Time histories of response to earthquake loading and to combined wave

and earthquake forces were obtained. The displacement response from
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combi ned 1oadi ng was found to be domi nated by the wave. However, the

accelerations were significantly affected by the earthquake. The maximum

acceleration was found to be up to three times that caused by waves alone.

The earthquake was introduced at different time spacings measured from the

starting time of the wave in order to cover as many different initial con­

ditions as possible. Water depth was varied and its effect on the response

amplitudes was studied. An increase of about 10% in displacement response

ampl itudes due to earthquake forces was noti ced throughout the range of

water depths used in the analysis.
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IV. SUMMARY, CONCLUSIONS

AND RECOMMENDATIONS

A. Summary

In this study, a complete nonlinear deterministic dynamic analysis·

model for tension-leg platforms has been developed and response of the

platforms to wave and earthquake loadi ngs have been studi ed. The accom­

plishments in the development of the dynamic analysis model include:

1) The formulation of closed form nonlinear coupled stiffness coeffi­

cients and the formation of a stiffness force vector.

2) Derivation of closed form forcing functions for waves and earth­

quakes us in g Mori son's equation (modifi ed to include re1at i ve

motion between structure and fluid particles). Both inertial and

drag components of the forcing functions were included, and wave

kinematics were obtained from the linear wave theory. Integration

of the force equations along the length of each submerged member

of the platform was carried out manually, thereby reducing the

total cost of dynamic analysis significantly.

3) Development of a mathematical model based on a set of coupled non­

linear differential equations whose solution yields the dynamic

response of the platform.

4) Development of a compact and inexpensive computer code to perform

the numerical calculations of the motion of tension-leg platforms.

The computer progam employs Newmark's Beta method to integrate the

equations of motion sequentially in time and obtain time histories

of the response.

46





B. Concl usi ons

Response time histories for each of the six degrees of freedom of the

platform were obtained. A parametric analysis was carried out in order to

identify the important parameters involved in the behavior of tension-leg

platforms. The following conclusions can be made with regard to the plat­

form behavior and response to dynamic loading:

·1) Coupling can significantly affect the behavior of the structure.

The strongest coupl ing exists between heave and sway and between

heave and surge. The coupled heave response amplitude is several

times larger than the uncoupled amplitude. Therefore, neglecting

coupling can result in a significant underestimation of response.

2) Two types of nonlinearities are inherent in the analysis: (1) non­

linearity of stiffness force vector arising from large displace­

ments, and (2) nonlinearity of the forcing function arising from

the square of velocity terms in the drag force calculations. The

stiffness nonlinearity is found to be insignificant if surge and

sway are less than approximately 5 meters. However, for large

sway and surge, neglecting stiffness nonlinearity can lead to an

overestimation of the response amplitudes. Nonlinearity in drag

forces is found to be significant in that it represents the fluid

damping arising from the relative motion between the structure and

fluid particles and therefore leads to response reduction with

time.

3) Variation of wave period shows that surge, sway, and heave are

most significant for high wave periods (i.e., periods greater than

15 seconds) and pitch and ro 11 are most s i gnifi cant for peri ods

around 5 seconds.
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4) Variation of wave height shows linear relationships for wave

heights less than about 15 meters and becomes nonlinear for larger

wave heights.

5) Increasing the leg stiffness tends to decrease response; however,

for leg stiffness larger than 20,000 kN, little effect on response

was noticed.

6) Increasing water depth results in an increase in surge, sway,.

pitch, and roll response and a decrease in heave response.

7) Higher initial tensions tend to make the structure stiffer, hence

it reduces the response. However, as the stiffness increases, the

period of vibration decreases; and as it approaches that of the

wave, higher response amplitudes are observed.

8) Coupling between pitch or roll and surge or sway has been shown to

have a si gnifi cant effect on computed responses. The extent of

this coupling is dependent on the location of the center of

rotat ion, whi ch can be expected to mi grate with the 1eve1 of

response. Most results reported herein are based on rotations

centered at the base of the hulls, which minimizes the interaction

between pitch and surge. Further research is needed to establish

an appropriate location for the center of rotation or to determine

the expected variations of its location.

9) The displacement response to combined wave and earthquake loading

was found to be dominated by the wave. A uniform increase in re­

sponse of approximately 10% arising from the inclusion of earth­

quakes was observed. The accelerations, however, were signifi­

cantly affected by the earthquake. The maximum acceleration was

found to be three times that caused by waves alone.





c. Recommendations

The model developed herein is adapted to the response of tension-leg

platforms; however, the wave force section could be easily applied to any

problem. Several enhancements would allow the model to be adapted to a

wider range of problems (i.e os shallower water, larger members, larger wave

heights, etc.). These enhancements include:

1) Application of higher order wave theories.

2) Employing the diffraction theory for computing wave forces on

large members at low wave periods.

3) Aplication of a random sea state.

4) Varying coefficients of added mass and damping with respect to

time.

5) Variations in location of the center of rotation.
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TABLE 1. PERIODS OF VIBRATION AND
RESPONSE AMPLITUDES*

Degree of Peri ad Response Amplitude
Freedom (sec) Undamped Damped

Surge 70 16.45 m 14.17 m

Sway 70 14.00 m 10.41 m

Heave 5 .97 m .70 m

Pitch 6 .220 .21 0

Roll 6 .150 .1460

Yaw 6 .180 .160

*T = 17 sec
H = 15 meters

= 35 degrees

52





TABLE 2. MAXIMUM VALUES OF VELOCITY
AND ACCELERATION*

Degree of Maximum Maximum
Freedom Velocity Accel erat ion

Surge 2.51 m/s .722 m/s2

Sway 1.95 m/s .520 m/s2

Heave .173 m/s .076 m/s2

Pitch .1390Is .1190 /s 2

Roll .0950Is .0820 /s 2

Yaw .0320Is .011 0 /s 2

*T = 17 seconds

H = 15 meters
= 35 degrees
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Corner Column - 16 m

Middle Column - 3.5 m

Hulls - 13 x 9.5 m

Cross Braces - 16 m

Figure 1. Typical Tension-Leg Platform
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Figure 6. Restoring Forces: a) at Equilibrium Position
b) after Heave Displacement
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Figure 7. Restoring Forces Corresponding to a Pitch Rotation
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Figure 8. Horjzontal Restoring Forces Corresponding to a Yaw
Rotation

Figure 9. Leg Forces Resulting from a Yaw Rotation
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Input: Structure geometry, dimensions, spacings, weight, masses and add
masses, mass moments of inertia and added mass moments of inertia; draft
height; water depth; cable length and initial tension, cable stiffness;
buo anc . wave eriod and wave height; coefficients of drag and inertia

Initialize displacement, velocity
and acceleration vectors:

{xi ,1} = {xi,l} ={xi,l} = {O}

Assume acceleration vector
for next time step

{x' } = 0

Calculate displacement and velocity vectors for
next step according to Equations 33 and 34

Calculate forces and moments

Calculate stiffness force vector

64

Calcuate new values of accelerations
according to Equation 35

Assumed x· .1 ,J
= ..

Ca1cu 1ated xi,'
>e:

Calculate
maximum
va 1ues

Output: x,x,x, and
cable tension

No

Figure 19. Flow Chart of Computer Program
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Figure 20. Time History Plot of Surge Displacement (including
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Figure 23. Time History Plot of Pitch Displacement (including
Inertia and Drag Forces)
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Figure 24. Time History Plot of Roll Displacement (including
Inertia and Drag Forces)
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Figure 25. Time History Plot of Yaw Displacement (including
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Figure 26. Time History Plot of Surge Displacement (including
only Inertia Forces)
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only Inertia Forces)





70

tito
ci

<II
o
ci

-If)
z
a:­SO
a:'
a::.0

Ol+-.;....--..,.----r-----r--~--__,r__--r_--.,.....--_r___-_r_--...,
'0.0080.00 9 .00 100.00
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Figure 31. Time History Plot of Yaw Displacement (including
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Figure 32. Time History Plot of Surge Velocity (including
Inertia and Drag Forces).
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Figure 33. Time History Plot of Sway Velocity (including
Inertia and Drag Forces)
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Figure 35. Time History Plot of Pitch Velocity (including
Inertia and Drag Forces)
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Figure 36. Time History Plot of Roll Velocity (including
Inertia and Drag Forces)
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Fi gure 37. Time History Plot of Yaw Velocity (including
Inertia and Drag Forces)
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Figure 38. Time History Plot of Surge Acceleration (including
Inertia and Drag Forces)
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Figure 39. Time History Plot of Sway Acceleration (including
Inertia and Drag Forces)
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V. APPENDIX I: DERIVATION OF WAVE FORCES

1. Horizontal Forces

a) Inertia Force on Columns

The integration of the inertia force acting on element dz of column

11'0. 2
= P 1

-4

(Equation 24) yields:

Jh\CmU i - (Cm-l) {x - (z - Z)~ + 1/2 Xi Q2}]dz
o

Substituting from Equation (17) and rearranging terms gives:

F
1i

• p"D~2 {[Cm 2·~tl sin [k(X -~t)] ~i e- kz dz]
o

h·
- [(C -1)! 1 [X-(z-Z)(i+!~X.Ci2J dzJJm 1

a

(V-l)

.... (V-2)

which can be simplified by integrating and lumping coefficients as follows:

Fr. = a1D;2(1- e- khi ) sin [k(X -ct)J - a2Di2(~ + Z a+X i Ci 2 - hiCi)h i
1 -2- -2-

where

( V-3)

a = P11' 3CmH ,
1 2kF-

and

x = x + X••
1

Where X is the instantaneous position of the center of gravity of the

structure taken in the direction of the wave, and Xi is the x-coordinate of

each of the eight columns in the direction of the wave and calculated as

fall ows:
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X5 = b sin II - a cos II

X6 = a cos II + b sin II

Xl = -X6

Xa = -X5

X9 = b sin II

X10 = -X9

Xll = -a cos II

X12 = -Xll

with a and b equal to one-half the distance between the corner columns in

the x and y directions, respectively, and

measured from the x-axis (see Figure 15).

b) Drag Force on Columns

Equation (19) can be rewritten as

is the angle of wave direction

(V-4)

where the (+) sign depends on the sign of the relative fluid velocity,

Ure1·

Substituting urel (Equation 21) into Equation (V-4), and integrating

Qver the length of each cylinder gives:

Resolving the square and separating the z-terms gives:
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nH 'J [ -kZJr- cos [k(X - ct)]t(x + Z ~ + Xi~2) - Za e dz
-2-

+ Jhl(x + z~ +Xi~2)2 - 2(x + Z ~ + X
i
a 2)z~· 2';2]dz}

a ~ -2-

and

Fd. = (+)pCdD;) {[n2r~2 cos2 [k(X - ct)J__l__ (1 _ e-2kh ;)J
1 . 2 2k

-2[nrH cos [k(X - ct)J (~ + z~ + X1.~2) ( 1- e-khi) (1) _ ~nH (1 - e-khi)
K kT k k

-2-

By lumping parameters and rearranging terms one obtains:

2 - )J ( -2kh.) (1 -kh.)Fd. = (+) {b1 D; cos [k(X - ct 1-e ,. - b2 . b3 D; -e ,
1 1

cos [k(X - ct)J + D;b3~ t (l_e- kh
;) cos [k(x - ct)J - b3~ h;Di

e- kh ; cos [k(X - ct)J + b2
2 b D·h. - b2 bo~ h1·

2 + bo ;D;h;3}. a 1 1 i
1 3

and a collection of terms that contains: cos k(X-ct) (l_e- kh )Oi jields:

Fd. = (+) {cos [k(X - ct)J (1_e-2khi ) D; [b1 cos [k(Y - ct)J (1 + e- khi )
1

(V-5)





where
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= (x + Z ~ + X;~2)
I

-2-

c) Inertia Forces on Hulls and Cross Bracings

For hull No.1 in Figure 15 the normal component of the fluid acceler-

ation at point p, distance S from 01, for the section 0102 is:

Un = U sin a -khe sin [k(x - ct)J sin a

and a substitution for X in terms of S yields:

x = SiS + y'

where

13 1 = cos a, and yl = b sin a.

Since S is a positive quantity, the value of X for 0,03 becomes:

x = -SiS + yl

For hull No. " the inertia force in the y-direction is:

Fl =fa ' p'lTD2, em (2'IT2H e- kh sin [k(x - ct)]) sin a d X

Y 4 T2
-a

= a
y
fa' sin [k(-s'S+y'-ct)) d S + ay fa' sin [k(S'S + y' - ct)]d S

o 0

where ay = prr3 01 2H e- kh em sin a

2T2

Fl .= 1 ay {cos [-kB'S + k (y1~ct)J ,ai_cos [kS'S + k (yl-ct)] la'
yWoo

=~ {[cos [-ks'a l + k(yr-ct)] - cos [k (yl-ct)] ]
ks l

+ [-cos [ksla l
+ k (yl-ct)] + cos [k (y'-ct)] ] }
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using the trigonometric identity: cos(a-b)-cos(a+b) = 2 sin(a) cos(b), one

. obtai ns:

Fl = 2a sin (ks'a ' ) sin [k(y'-ct)Jyis¥-

Similarly, for hull No.2:

F2 = -2aysin (ks'a ' ) sin [k(y' + ct)J
y kS

(V-6)

(V-7)

Combi ni ng F,
y

hulls becomes:

and F2 ' the total horizontal inertia force on the
y

F = -4a sin (ks'a l
) cos (ky') sin (kct)y y

ke '
For the cross bracings (hulls No.3 and No.4),

. .
un = u cos CL ,

X = yll - 1311 s,

yll a cos CL ,

1311 = sin a. •

Integrating in the y-direction yields:
Fx = -4ax sin (kellb l

) cos (ky") sin (kct)
~

( V-8)

(V-9 )

where a = P1T 3C d 2Hx m 3
2F

-kFle cos a.





103

d) Drag'Forces on Hulls and Cross Bracings

The derivation of the drag forces on hulls and cross bracings is simi­

1ar to that of inert ia forces. For hu 11 No.1:

[u sin a]2 dS
n

[nH e- kh cos [k(x-ct)] sina]2dS
T

using the trigonometric identity: cos2a = .1 (cos2a+1)
2.

- f a'F1 = c1
Y -a'

(cos [2k(x-ct)]+1) dS

[sin[Zks'a' + Zk{yJ-ct)] - sin [-Zks'a' + 2k(y'-ct)J + Za']

a'
. Fly = c, [f (cos [2k(S'S+y'-ct)]+l)dS

a

+fa' }(cos[2k(-S'S+y'-ct)]+ 1) dS

-a'

= c, [sin [2kS'S + Zk(y'-ct)] + S - sin [-ZkS'S + 2k(y' - ct)] + S] I:'
2kS'

=. c, [{sin[2kS'a' + 2k{y'-ct)] - sin [2k{y'-ct)]}
2kS'

- { sin [-2kS'a' + 2k{y'-ct)] - sin [2k{y'-ct)]} +Za']

= c,
ZkS·

F, = c, sin (ZkS'a') cos [2k{y'-ct)J +2c a'
y kF





where C1 = (+) pCdOl n2H2

4 T2

-2kh . 2e sln a.
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Similarly, for hull No.2:

F2 =cl sin (2ke t a ' ) cos [2k(y'+ct)] + 2cl a'
y k8

(V-ll )

Combining r l and f 2 gives the total horizontal drag force on the hulls in
y y

the y-direction as:

Fy = 2cl sin (2ke'a') cos (2ky') cos (2kct) + 4c
l
a '

ka l

For the cross bracings(hulls No.3 and No.4),

Un = U cos a, X =a" -ailS, y" = a cos a , e" = sin a .

Through similar integration for hulls No.1 and No.2, one obtains:

Fx = 2c2 sin (2ka"b l
) cos (2kylf) cos (2kct) + 4c

2
b'

ka lf

where c2 =+ pn2H2Cd0
3

e-2kh cos 2 a

4T2

The total horizontal forces on the structure are:

(V-12)

(V-13)

(V-15)

(V-14)

For surge (x-direction):
12

F = )~ (Fr. + FO.) cos a + (Fx + Fx)
XT 1 1

;=5
For sway (y-direction):

12

FYT = ~(Fli + FOi ) sin a + (Fy + Fy)

i=5
where the corner columns are numbered 5-8, and the middle columns are

numbered 9-12. The instantaneous heights of the water on each column are:

for i = 5-8:

h. = h + H cos [k(X-ct)] + (i - Vi2 - x2 )
1 0 2"

(V-16)
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and for i = 9-12

h. = h + H cos [k(x-ct)] + (t - Vt2 - x2 )- Dh
10"2

2. Heave Forces

a) Vertical Inertia Force on Hulls

The vertical fluid acceleration at point p of Figure 16 is

(V-l7)

-kfle cos [k(x-ct)J (V-18)

For hull No.1: X =S'S+y' for 0102, and X = -s'S+y' for 0103. The vertical

inertia force on hull No.1 due to fluid acceleration is

cos [k(x-ct) J dS

2T2 -a'
a I a I

= -a
V1

{f cos [-ke'S + k (y1-ct)J dS +f
2 a a

cos [ke'S + k (yl-ct)] dS}

= -av,

. 'a I . a'
{[-sin [-ke'S + k(Y'-ct)]] + [sin [kS'S + k(Y'-ct)]' }

a ~o

{ [ -sin[-ke'a' + k(y'-ct)Jt sin [k(y'-ct)]]

+ [sin [kS'a' + Hy'-ct)J - sin [k(y'-ct)J ] }

= -a {sin [ks'a ' + k(y'-ct)] - sin [-ks'a' + k(y'-ct)]}VI

2kS'

= -a sin (kS'a') cos [k(y'-ct)]
VI

kS I

(V-19)





5imil arly, for hull No. 2

F = -a sin (ks'a ' ) cos [k(y'+ct)]
v2 VI

kB'

For hulls No.3 and 4:

FV3 = -aV2 sin (kSllb l
) cos [k(yll +ct)]

kS Il
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(V-20)

(V-21)

(V-22)

where

and

a = prr 30 2C H -kh
v, I m e

T2

a = prr3032C H -khe\(2 m
T2

Adding Equations (V-19) and (V-20) yields:

FVI 2 =-av, sin (ks'a ' ) [ cos [ky' - kct] + cOS.[ky' +kct] ],

=-2a sin (ks'a ' ) cos (ky') cos (kct)
VI

kS'

Adding Equations (V-21) and (V-22) gives:

F = -2a sin (kSllb l
) cos (ky") cos (kct)

v3,4 V2

k13 II

(V-23)

(V-24)
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The total vertical inertia forces on the hulls is obtained by adding

Equations (V-23) and (V-24):

F = F + F
V Vl,2 V3,4

= -2 cos (kct) [av, sin (ks'a ' ) cos (ky') + a sin (kSllb l
) cos (kyll)]

k V2
-B-'

.... (V-25)

b} Vertical Drag Force on Hulls

The vertical fluid velocity at point p of Figure 16 is

-khv = rrH e sin [k(x-ct)]
T

(V-26)

sin2 [k(x-ct)] dS

The vertical drag force on hull No.1 due to fluid velocity is
a l _

Fv, = (+) j P CdC] {.~ e-kh sin [k{x-ct)J)2 dS

-a 1 2

- a l

=(:!:.) pCdD, rr 2H2 e-2khf {1 - cos [2k(x-ct)]} dS

4T2 -a
l

a l

2 2 -2kh f= (:!:.) pCdD, rr H e

2T2 -a'

{l-cos [2ks ' S + 2k(y'-ct)]} dS

a l

{ [s -__1__ sin [2kS'S + 2k(Y'-ctl~.
2kS' a

a' }
+ [s + __,__ sin [-2kS ' S + 2k(Y'-ctl]]

2kS I 0

= c3

=c3 ft'
+[a' {l-cos [-2kB'S + k(y'-ct)]} dS

a

sin [-2kB'a ' + 2k(Y'-ct)] - sin [2kS'S + 2k(y'-ct)]}= 2 c
3

at + c3 {

2ks'

= 2 c
3
a' - c

3
sin (2ks 1 a') cos [2k(y ' - ct)]

-W

(V-27)
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Similarly, for hull No.2:

For hulls No.3 and 4:

F = 2c b' - c4 sin (2ke"b l
) cos [2k(y" + ct)]v3 4

i<B""

F
V4

=2 c4b' - c4 sin (2ke"b') cos [Zk(y" - ct)J
ke"

(V-28)

(V-29)

(V-30)

where c =(+)c.. 3

and c4 = (+) Cz
COS 2

(l

Adding Equations (V-27), (V-28), (V-29), and (V-30) results in the total

vertical drag force on the hulls:

F = Fv VI

=4 (c3a' + c4b l
) - 2 cos (2kct) [c3 sin (2ks'a') cos (2ky')

k sr

+ c4 sin (2ke"b l
) cos (2ky")J

7'
.... (V-31)
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c) Dynamic Pressure on Corner Column Bases

The dynamic pressure in the fluid is given by:

p. =.~ e-khi cos [k(X - ct)]
, 2,

The total dynamic pressure on all corner columns is
8 8

Fcv = '" p. (7TD.2) = 7TpgH '" d,.2 e- khi cos [k(X - ct)]6'_'_ 8~ .
i=5 4 i=5

The total vertical force on the structure becomes:

F =F+F+F
zT v v cv

(V-32)

(V-33)

(V-34)

3. Forces Producing Pitch and Roll

a) Moments Due to Inertia Force on Columns

In this analysis, it is assumed that pitch and roll take place about

horizontal axes passing through the center of gravity of the structure.

The moment about G of the inertia force on column; ;s

= z Fl. - a,D.2 (1 - e-khi - h. e- khi ) sin [k(X - ct)]
, , k '

+ a2 0i [(~ + Za + xi a
2)hi

2 - hi
3a ]

-2-2 -3-
(V-35)





b. Moments Due to Drag Force on Columns
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Jhi (- •
z - z) {u i - [x - (z - z)~ + X

i
Ci 2] }2dz

o -2-

z{~2H2 e-2kz
cos 2 [k(X - ct)]} dZ]-,=r

-2z [(~ + z~ + x.~2) - z~](~H e- kz cos [k(X - ct)]) dz, T
-y-

= (;) -pCdD i [lJ'+ [2] + [3J + ~ FO.,

Evaluate 1 , 2, 3 separately as follows:

[1] =fhi
.2H2 cos 2 [k(X - ctl lze-2kz dz

o T2

[21 = (i
o

-2Z{[(X + z~ + Xi~2) - z~] (~H e-kz cos [k(X - ct)])j dz
-2- r





111

= -ZnH cos [k(X - ct)] f(~ + z~ + Xi~Z) fhi Z e-kz ctz - ~fi Z2 e-kz ctz ]
-T- 2 0 0

= -Z~H cos [k(X - ct)] Ib
Zi
(~ (t - e-~hi - hi e-

khi
)

+ h. 2 e-khi _ 2 (1 _ e- khi . h, e- khi )}
, K f k '

- {. )(1 -khi h. e-khi ) _~h,2 e- khi ]= 27TH cos [k(X - ct)] (2a - b2: _- e, ,.
kT . k, k k

h. .

h,' r··· f '·2 3 df
. , -. .2)' 2 d + Z Z[3] = . [(x + z; + X;;2)2 Z dz - 2(x + Za + Xia aZ Z a

o 2 2 0o

~ MO. = (+) - 0,. {bl cos 2 [k(X - ct)] (1 - e-2khi - h. e-
2kh

i)
1 2k 2k 1

b [k(I - ct)J [(2; - b2 )(1 - e- khi - h,' e- khi ) -~h,. e-khiJ+ 3 cos k i k k

(V-36)

A positive rotational moment about the y-axis produces a positive

y-component (pitCh), and a negative x-component (roll), see Figure 16.

Hence,

M =y

and

from Equations (V-35) and (V-36),
12

~(Mo, + MI.) cos a
• , 1
'=5

(V-37)

(V-38)
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c) and d) Moments Due to Horizontal Inertia and Drag on Hulls

As shown in Figure 18, only hulls No.3 and 4 have pitching effects:

M3 4 = - (F + F ) (h" - ~
, Yh x x 2

(V-39)

where Fx and Fx are given in Equations (V-g) and (V-13), respectively.

Roll Moments

As shown in Figure 17, only hulls No.1 and 2 have rolling effects:·

(V-40)= (F + F ) (h - 0,)
y y 2"M

"Zx
h

where Fy and Fy are given in Equations (V-8) and (V-12). respectively.

e) and f) Moments Due to Vertical Inertia Forces on Hulls

Pitch Moments

The pitching moments caused by forces on hulls No.3 and 4 have a

constant mollient arm, a: (See Figure 18)

( V-4I)

The pitching moments arising from vertical forces on hulls No.1 and 2

have a variable moment arm S. Therefore, for hull No.1, the moment about

the y-axis of the vertical inertia force is

a'

M,y =f
-a'

pTTD,2
4

Cm (-ZTT2He-kh cos [k(x - ct)J) S d S
T
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a'
-~ S cos [ks'S + k(y' - ct)J d S }
a

.. I

= av, i[ S sin [k~'S + k(y' - ct)J +r1,- cos [kg'S ... k(y' - ct)JJa
2l<'S1 kS a

- [-S sin [-kS'S +k(y' - ct)J + 1 cos [-ke'S + k(y' - ct)J]
aI1

W .
. a

I

= a {[a sin [kela l + k(y' - ct)J + 1 cos [kelal + k(y' - ct)J
VI ---

2ka. ks'

- 1 cos [k(y' - ct)] ] - [ _al sin [-ks'a' + k(y' - ct)J + 1 ccs [-ke'a l

fi' ka '

+ k(y' - ct)] - 1 cos [k(y' - ct)J J }
ki'

= av, [ Cal cos (ke'a') sin [k(y' - ct)] -__'__[sin (k~'a') sin [k(y' - ct)] ]}
kS' kS

sin [k(y' - ct)] [ sin (ka'a') - al cos (kela ' )]
kS i

(V-42)

Similarly, for hull No.2:

M2 = a sin [k(y' + ct)J [ sin(ke'a ' ) - a l cos (ke'a')]
y VI ks l

~

(V-43)

Now, the moment about the y-axis of the vertical drag force for hull No.1

is
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a'

::: (+) rrCdD, rr 2H2 e-2kh f S sin 2 [k(x - ct)J dS
---;:<-- TL2 ,

I -aa
=c3 {~ - S (1 - cos [2kS'S + 2k(y' - ct)]) d S

o
a l

+r S (1 - cos [-2kSiS + 2k(y I - ct) J) d S

o

= c
3

)" [a' sin [2kS ' a ' + 2k(y' - ct)] + 1 cos [2kS'a' + 2k(y' - ct)J
( 2kS·

2kS '

- 1 cos [2k(y' - ct)J ] - [-a l sin [-2ks'a 1 + 2k(y' - ct)J
2kS'

+ 1 cos [-2ks!a ' +2k(y' - ct)J - 1 cos [2k(y' - ct)J J}
2kS i 2kS'

= -l[ 2a ' cos (2kS ' a') sin [2k(y' - ct)J - 1 sin (2ks'a ' ) sin [2k('(' - ct) f2
2kS' f6T ~

... M1y = c3 sin [2k(y' - ct)] Ca' cos (2ks'a ' ) - 1 sin (2ks ' a ' ) ]
2k o 'I(ST" I->

Similarly, for hull No.2:

M2 = -c3 sin [2k(y' + ct)J [al cos (2ks ' a') - 1 sin (2ks 1a l ) ]
y kS' 2kS'

(V-44)

(V-45)

The total pitching moment due to vertical drag and inertia forces on all

hulls is

(V-46)
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where M3 4 ,Ml ' t~2 ,Ml ,M
2

are as given in Equations (V-4l), V-4Z),
'y . y y y Y

(V-43), (V-44), and (V-45), respectively.

Roll Moments

As seen in Figure 13, the rolling moments due to hulls No.1 and Z

have a constant moment arm, b.

(V-47)

where F , F , F ,1= are as given in Equations (V-19), (V-ZO), (V-27),
Yl YZ Yl Vz

(V-28), respectively.

The rolling moments due to vertical forces on hulls No.3 and 4 are

derived by integration, in a similar way to the pitching moment.

=>
i

M. = -a sin [k(y'l + ttl] [ sin{kf3l1b l
) - b ' cos (kSllb l

)]
3x v2 ---;k-:(3:T

'
"'----'-

fSiI

Similarly, for drag:

(V-48)

(V-49)

M3 = c3 sin [2k( y" + ct) J [b' cos (2kf3"b l
) - 1 sin (2kl3 l1 b l )J (V-50)

x kB" 2kl3 11

\ = -c sin [2k(Y" - ct) ] [b I cos (Zkellb I) .:l.- sin (2kS"b l
)] (V-51)3x

kl3 11 2kS il





Finally, the total rolling moment due to vertical drag and inertia forces

on all hulls is
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(V-52)

where M, 2' M3 ' M4 ' JWf 3 ' and 114 are as given in Equations (V-47),
, x x x x x

(V-48), (V-49), (V-50), and (V-51), respectively.

g) Moments Due to Dynamic Pressure

Pitching Moment

The moment about the y-axis due to the dynamic pressure on the base of

the corner columns (5,6,7,8) is:

8

M = -P2!.9.!i a2:
Py 8 i=5

(_l)i 0. 2 e- kh ; cos [k(x - ct)J
1 (V-53)

Rolling Moment

Similarly, the rollinq moment (about x-axis) is:
6

Mp =P.92ili. b t (2: 0i 2 e- kh ; ccs [k(x - ct)J
x 8

8 ;=5

-2: 0. 2 -kh· [k(x - ct)]]1
e 1 cos (V-54)

i=7
4. Yaw Moments

The forces causing rotation about the vertical axis are those from

horizontal drag and inertia acting on the columns. The moment produced by

these forces is:

(V-55)





where: Y5 = a sin 0.+ b cos a

Y6 = b cos a.- a si n a

Y7 = -Y6

Ya = -Y5

Yg = b cos a

Y10 = -Yg

Yll = a sin a.

Y12 = -Yll

5. Limits for a =00 and a = 900
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The deri ved hull forces and moments contai n the terms Band B' in the

numerators and denominators, and y and y' in their numerators. These terms

are related to the wave direction (a.) as follows:

B' = cos a

811 = sin a

,
b si ny = a

yll = a cos a

As the wave direction (a) approaches 00 or ~ , a limiting case exists where

L'Hospital's rule must be applied to find the forces and moments associated

with these extreme values of a.

a) Limits of Hull Forces for a = 00

As 0.-0, Equation (V-56) becomes

BJ =

811 = 0

y' = 0

II
Y = a





Recalling Equations (V-8), (V-g), (V-12), (V-13) , (V-25), and (V-3l) and

rewriting them gives:

F = -4a. sin (k13 l1 b l
) cos (kyll) sin (kct)x x

W-

Fy = 2c, sin (2ks'a') cos (2ky') cos (2kct) + 4c1a'

ke'

F
x

= 2c2 sin (2k8I1 bl
) cos (2kyll) cos (2kct) + 4c2b'

kS"

Fv = -2 COk(kct) [av , sin (kS'a') cos (ky') + a
V2

sin (k8 I1 b') cos (kyll)]

-13-' 7

Fv =- 4 (c3a' + c4b ' ) - t cos (2kct) [c
3

sin (2ka'a') cos (2ky')

F

+ c4 sin (2kSll b') cos (2k'(")]

8"
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For CI. = 0:

~ ay = 0

and cl = 0

For y' = 0, cos
(ky

'
= 1

For S = 0, sin (kS"b l
) = b'

kl3"

Thus, the above equations become:

(by LI Hospital I s rule)

F =0y

F = 0y

F = -4a b l cos (ka) sin (kct)x x

Fx = 4c2b' [cos (2ka) cos (2kct) +lJ

Fv = -2 cos{kct) [ a . sin{ka ' ) + a b' cos (ka)J
VI V2

T

Fv =4(c3a ' + c4b' ) - 2 cos{2kct) [c3 sin(2ka ' ) + 2c4b' cos (nay]
k

Recalling Equations (V-4l), (V-42), (V-43), (V-44), and (V-45), and

oerforming similar operations with the abo.ve equations yields:

r'13,4y = 2ab' [a
V2

sin(ka)sin(kct) + 2c4sin(2ka)sin(2kct)J

M, = a sin (kct) [ sin (kat) - a' cos (kal)J
y _v~ k

k

M2 = av sin(kct) [ sin(ka ' ) - a l cos (ka')J
Y!f





M1 = -c3 sin (2kct) [al cos(2ka') -__1__ sin(2ka ' )]
y --k-- 2K

b) Limits of Hull Forces for a = 900

As a_900, Equation (V-56) becomes

13 1 = 0

13 11 = 1

y' = 6

yll = 0

Similar manipulations to those for a = 0, convert Equations (V-8), (V-9),

(V-12), (V-l3), (V-25), and (V-31) to:

Fy = -4ay a' cos (kb) sin (kct)

F = 4cI a l [cos(2kb) cos (2kct) + 1Jy

F =ax

F = 0x
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FV = -2 cos (kct) [al av• cos (kb) + a sin (kb')Jv2
-k-

FV = 4(c3a ' + c4b' ) -2 cos(2kct) [C4 sin(2kb l ) + 2c3a' cos(2kb)]
k





Similarly, the roll moments become:

Ml 2 = -2 alb [av• sin(kb) sin(kct) +2c3 sin(2kb) sin(2kct)]
, x

M3 = - a sin(kct) [sin(kb ' ) - b' cos(kb ' )]
x v2 k

-k-

M3 =c4 sin (2kct) [b l cos(2kb ' ) - 1 sin(2kb ' )]
x k IT
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APPENDIX II: DERIVATION OF EARTHQUAKE FORCES

1. Fluid Inertia and Drag Forces Due to Interaction

a) Inertia Forces on Columns

Assuming calm water (no waves), the inertia force from structural

motion can be calculated with Morison's equation as:

122

..
= _p~D.2 (em - 1) [xh. + Z ah. - ah. 2J

1 1 1 1
-4- -2-

and the moment caused by this force is:

(V-59)

.,

{O - (C - 1) [x - (z - Z)a ]} dzm

(C - l' [" 2 - 2"m I xh i + z hi a
-2- -2- (V-60)

The total fluid inertia force on columns is:

12

~
;=5

( V-61 )





and the total fluid inertia moment on columns is:
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(V-62)

b) Drag Forces on Columns

An application of Morison1s equation for drag forces on the columns

yi el ds:

h·
FO; = (sgn)p C~Di f 1 {O - [x - (z - z)~ ]}2 dz

o

= (sgn)o C~Di Ii [(it + z ~)2 - 2(it + z)~ z + Z2~2] dz

o

= (sgn) pCdD i
-2-

[(i + z ~)2 h. - (i + z ~)~h.2 + ~2h.3 ]
1 . 1 1

3

(V-63 )

The moment caused by the drag force is:

(z - z) [(x + z~) -z~ J2 dz

(V-64)
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where (sgn) = +i if (x + z~)< a and (x + z~ - h.~)< 0
1

(case 1)

and = -1 if (x + z » a and (x + z; - h.~» 0
1

(case 2)

If neither case 1 nor case 2 applies,

- .
x + Z a

1 +

a
i

= h. Ix+ z~ - hi ~ I
1~1 x + Z ~ o.

X + z; - h.;
1

and

f
h;-a;

{ [(x + Z ~)

o

h·
- z ~] z dz -f 1 [ (x + Z;;)

hi-ai

- z ~J2 dz }

=+ pcdD { 2[(x + Z ;)2 (h. - a.) - (x + z;) (h. - a.)2 ~ + ~2(h. - a.)3J
11 11 3' 11

T

- [(x + Z ~)h. - (x + Z ~)h.2 ~ + ~2 h. 3J }
1 1 3" 1

If case 1 or case 2 does not apply, MD. becomes:
1





2[(i + i ~)2 (hi - ai )2 - ~ (i + ~ ~);(hi - a i )3

2
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2 2 • -.) • ~ 1 4· 2Jh. --3(x+z aa h·-+-4 h. CL
1 1 1

2"

.... ('1-66)

where

(+) =+1 if (x + Z ~)< 0

and

= -1 if (i + z ~) >0

c) Inerti a Forces on Hull s

For Hulls No.1 and 2:

F
Y1

= -P1TO/ (em - 1) [2a'yJ = - P1T0,2(Cm- 1) at x sin .,
4 -2-

For Hulls No.3 and 4:

F = - D1TO 2 (em - 1) a' x cos CL
x3 -,f

F = Fx4 x3

Moments Due to Inertia Forces on Hulls

M, ,2x = (FY + FY ) (11 - 0,)
1 2 2"

M3 4 = (F + Fx ) (11 - 03)
, y x3 4 -

2

(V-67)

(V-68)

(V-69)

(V-70)





d) Drag Forces on Hulls

For Hulls No.1 and 2:

= (s9n) pCdD1 [x sin ~J2 (2a ' ) = (sgn) pCdD1a' x2 s;n2 ~

2

For Hulls No.3 and 4:

Moments Due to Drag Forces on Hulls:

(V-71 )

(V-72)

(V-73)

(V-74)
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(s9n) =+1 if x
ho

< a

e) Yaw Moments

12

= -1 if xho > a

(V-75)




