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ABSTRACT

A set of shell finite elements is adopted, modified or extended to

study the dynamic responses of complex thin shell structures in general,

and column supported cooling towers in particular, due to earthquake

excitation and wind loads. The elements are formulated intending to

achieve optimum finite element modeling of the column-supported cooling

towers according to the distributions of dominating bending and membrane

stresses and intending to model the vulnerable shell-column region using

discrete column elements and quadrilateral shell elements. The set

includes: a 16 d.o.f. column element; a 48 d.o.f. doubly-curved quadri-

lateral general shell element; a 42 d.o.f. doubly-curved general-membrane

transition element; a 21 d.o.f. and a 39 d.o~f. doubly-curved triangular

membrane filter element; and a 28 d.o.f. doubly-curved quadrilateral

membrane element.

Examples are illustrated to evaluate a single type, combined types

and the whole set of elements. The 48 d.o.f. high-order quadrilateral

curved shell element is employed to analyze: (1) a fixed base cooling

tower subjected to its own weight; (2) an orthotropic cylindrical shell

with both edges clamped subjected to internal pressure; (3) axisymmetric

free vibrations of a spherical cap with base clamped; (4) axisymmetric

buckling of a simply-supported cylinderical shell subjected to axial

compression; and (5) free vibration analysis of a fixed base cooling

tower with and without initial stresses. The 42 d.o.f. general-membrane

transition element is tested by employing it in conjunction with the

general 48 d.o.f. element and an existing 28 d.o.f. high-precision membrane

element to determine the first eccentric natural frequency of a fixed

" , ,
VIII
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base cooling tower. The 21 d.o.f. and the 39 d.D.f. membrane triangular

Ifiller ' elements are evaluated through their performance on two examples:

(1) axi symmetric free vibrati on of a spheri ca1 membrane cap with base on

"rollers ll
; and (2) first eccentric natural frequency of a fixed base

COO li ng tower.

The whole set of elements is then employed to determine the first

three eccentric natural frequencies of a column-supported cooling tower.

The mean stresses and displacements in a fixed base cooling tower

due to a wind velocity of 29 ft/sec. and assuming Batch and Hopley pres-

sure distribution along the circumference are also determined using the

48 d.o.f. general shell element. All results are found to be in excellent

agreement with the known alternative solutions.

The modeling may be used in seismic response analysis of cooling

towers for obtaining detail stress distribution in the vulnerable shell­

column region. This model may be extended to include material nonlinearity

in the shell-column region for the seismic response studies. This model

may also be used to study the dynamic response due to fluctuating compo-

nents of wind velocity.

,
IX





INTRODUCTION

Thin shell structures are built for a variety of functions. Natural

draught cooling towers are built up to 590 ft (180 meter) in height to

cool water heated up in the condensers so as to avoid thermal pollution

of rivers. lakes. and sea shores. Chimneys are vital to power plant

operation. The portion of the chimney containing flue openings behaves

like a shell and is analyzed using shell theory. Storage tanks and

pressure vessels are usually supported by slender columns and cylindrical

skirts to provide elevation. Domes, hangars, and hypars are built on

columns and walls for aesthetic and practical purposes.

Due to the slenderness of the supporting columns and the height and

large dimensions of the shells. such structures are vulnerable to earth­

quake and wind disturbances. Evidences of failure of shell structures

have not been uncommon. As recently as July 9. 1980, a shell hangar in

Waterloo. Iowa, collapsed due to a wind storm. The catastrophic failure

of the cooling towers at Ferrybridge. England in 1965 during a gust storm

(1) and the collapse of another cooling tower at Ardeer, Scotland in 1973

(2) are the evidences of the vulnerability of the cooling towers.

Many investigators have conducted studies to better understand the

stability and dynamic response behaviors of the cooling towers. Construc­

ions of these monumental structures in the zones of high seismic risk or

high wind have further intensified these investigations. In order to study

the dynamic response and to properly interpret the characteristics of the

loads in terms of their effect on the dynamic response of cooling towers,

accurate determination of the free vibration frequencies and modes is

necessary.
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Early free vibration analyses for cooling towers were conducted for

the cases of fixed bases. Carter, Robinson and Schnobrich (3) used numer­

cal integration method, Hashish and Abu~Sitta (4) used a modified finite

difference method, and Sen and Gould (5) developed a rotational shell

finite element for such studies. A review of free vibration analysis of

cooling towers can be found in Ref. 6. The presence of discrete column

supports, however, significantly alters the condition of the physical

restraint at the base and thereby greatly influences the dynamic response.

This makes an accurate modeling of the column supports highly imperative.

A number of efforts was made to model the base column supports.

Gould, Sen, and Suryoutomo (7) used a rotational shell element which

possesses averaged-out properties of the individual columns. Basu and

Gould (8) modified this approach and improved the results by developing

a series of open type axisymmetric shell elements to model the columns.

Gran and Yang (9, 10) used an alternative approach by using quadrilateral

flat plate finite elements to model the shell and discrete column elements

to model the columns. The advantage is that the columns were modeled

more accurately but the shell is obviously modeled less efficiently as

compared to that by using rotational shell elements (7,8). There appears

to be a need for the development of more accurate and efficient quadrila­

teral shell elements by including proper curvatures. The modeling using

quadrilateral shell elements and discrete column elements has the advan­

tage and capability of obtaining detail response results, for both linear

and materially nonlinear cases, in the vulnerable region of shell-column

joints.

In this study, a sophisticated 3-D column element is used to model

the discrete supporting columns. The response behavior of the cooling
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tower shell due to earthquake load is, in general, predominantly membrane

except in the vicinity of the base where bending behavior is also signifi­

cant. A highly efficient high-order quadrilateral membrane element was

developed by Gran and Yang (11) to be used in modeling the portion of

the shell dominated by membrane forces. This element is used in combina­

tion with a quadrilateral doubly-curved general shell element (12) to

model the cooling tower shell. An element formu1ative procedure, which

is slightly different from that used in Ref. 12, is given here. An exten­

sion of this element to the analysis of buckling and vibration of a cool­

ing tower shell under the effect of initial forces is also given. Thus

an efficient modeling can be achieved by using the membrane elements and

the general shell elements to model the regions dominated by membrane

forces alone and by combined bending and membrane forces, respectively.

Such efficient mixed modeling requires the use of a quadrilateral

transition element which is compatible with the general shell elements

at the lower edge and with the pure membrane elements at the upper edge.

This element is developed here.

The number of quadrilateral general shell elements needed to model

the base layer of the shell has to be the same as the number of the upper

joints of the supporting columns. This number can be quite high. On the

other hand, the number of membrane elements needed to model an upper layer

of the shell can be relatively less. A triangular membrane filler element

which can connect two nodal points at the base and one on the top, and

vi ce versa, is thus developed to fi 11 between a fi ne 1ayer and a coarse

layer of quadrilateral elements.

A schematic diagram showing the modeling of a cooling tower using

the five types of elements is given in Fig. 1. The five types are:
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Fi gure 1 An Efficient Modeling for a Column-Supported Cooling
Tower Using a Set of Elements. .
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(1) column element; (2) doubly-curved quadrilateral general shell

element; (3) doubly-curved quadrilateral general-membrane transition

element; (4) doubly-curved triangular filler membrane element; and

(5) doubly-curved quadrilateral membrane element.

All these elements are described in greater details along with their

formulative procedures in Chapter 1. A series of examples is chosen to

step-by-step evaluate the performance of the elements adopted, modified

and extended in this study. In Chapter 2, the whole set of elements is

employed in the free vibration analysis of a column supported cooling

tower. In Chapter 3, the stresses and displacements in a fixed base

cooling tower due to the static component of the wind load are determined.

Concluding remarks are made in Chapter 4. A brief description of the

research, presently in progress, is also given in this Chapter.
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CHAPTER 1

DESCRIPTION OF VARIOUS FINITE ELEMENTS
AND THEIR FORMULATIONS

THE COLUMN ELEMENT

Since the supporting columns are very critical components of the

cooling tower and their behavior is dominated by axial forces and axial

motions, it is desirable to use a sophisticated column element that con­

tains axial displacements as well as axial strains as degrees of freedom.

A four d.o.f. bar element having both the axial displacement and the axial

strain d.o.f.1s at each end was developed by Yang and Sun (13) which was

proven to be highly accurate and highly efficient for axial vibration

analysis. Such an element was extended in this study to the general

3-D form.

The present column element contains 8 d.o.f.1s at each of the two

joints: three orthogonal displacements, u, v~ and w in the n, ~ and s

directions, respectively; two strain components dU/dn and dV/d~ ; two

rotations dW/d~ and dW/dn and a rotation dV/dn about the s axis. The

curvilinear coordinates n, sand s are along the meridional, circumferen­

tial, and normal-to-surface directions, respectively, of the shell.

THE DOUBLY CURVED QUADRILATERAL SHELL ELEMENT

A comprehensive review of the developments of thin shell finite

elements is given by Ashwell and Gallagher (14). Most notable of the

developments of quadrilateral shell elements are: the 24 d.o.f. doubly­

curved quadrilateral element with two constant principal radii of curvature
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without rigid body modes by Gallagher (15) and a cylindrical version of

the same element with rigid body modes by Cantin and Clough (16); the 48

d.o.f. cylindrical element by Bogner, Fox and Schmit (17); the 48 d.o.f.

doubly-curved quadrilateral element by Greene et ale (18); the 48 d.o.f.

quadrilateral element with two principal and a twist constant radii of

curvature by Yang (19); the 48 d.o.f. quadrilateral shell of revolution

element by Fonder (12); and the 28 d.o.f. quadrilateral membrane shell

of revolution element by Gran and Yang (11).

The present doubly-curved quadrilateral shell element differs from

Yang's element (19) in that the two opposite edges are parallel circles

and the other two are along two meridional lines. The present element

is essentially the same as Fonder's element (12), but this element has

now been applied to perform free vibration analysis of a spherical cap,

free vibration analysis of a fixed base cooling tower under the effect

of initial stresses, and has also been used in combination with the other

four types o·f elements in free vibration analysis of column supported

cooling tower.

(a) Element Geometry

Fig. 2 shows a doubly-curved quadrilateral shell element and a

doubly-curved triangular membrane filler element. The former is describ-

ed in this section. The element is a quadrilateral defined by lines of

principal curvature; thus it is rectangular in the local curvilinear

coordinate system. The equations are specialized to general shells whose

reference surfaces are a portion of an axisymmetri c surface. An array of

eight mapping nodes specifies a cubic variation of Rand Z in the meridional

direction. This allows an initial element geometry to exactly model

meridional shapes that are third order or less. The interpolation
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functions for Rand Z are similar so only that for R will be shown.

Thus

where

4 8
= I M.(~,n)R. + I N.{~,n)R.

i =1 1 1 i =5 1 1
(1 )

(2)

The geometric parameters for the radius of curvature in meridional direc-

tion R~, and the first and second derivatives of the radius of curvature

in the circumferential direction R with respect to Z are given in Ref. 11.

Other geometric relations needed in this formulation but not given

i n Re f . 11 are ,

+ 3{CdR/dnHd2Z/dn2)2}
(dZ/dn)5

where

ii = (aR/an) _ (aR/an)
an (aR/a~) - R~ cos~

and the value of aR~/an is determined as

(4 )

(5)

(6 )
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Variation of 8 in the circumferential direction is implicitly assumed to

be linear. Hence

(7)

where M is the angle subtended by the shell element in the circumferential

direction.

To illustrate the preceding discussion, a spherical cap shown in a

later figure, will be examined. The cap subtends an angle of 5°-44' in

the meridional direction. If a portion of the shell, say 68 = 5°, is

modeled using one finite element, the following relations will be calcu-

lated at the central Gauss point: 3R/3n = 4.9937. 3~/3n = 0.050. and

a8/a~ = 0.0436. In this case the derivatives a~/an and 38/a~ will be

constant over the element surface.

(b) Displacement Functions

The element possesses 12 d.o.f.1s at each of the four vertices:

u; aU/3~; aU/3n; a2u/a~3n ; v; 3V/3~; 3v/an; 32v/3~3n; w; 3W/d~; 3w/an

a2w/d~an. The displacement functions for u. v, and ware assumed to be

of the same form. each consisting of a bicubic Hermite polynomial in ~ and

n. Development and justification of such assumed displacement functions

were given in Refs. 17. 18, 19 and 12.

(c) Element Formulation

The strain-displacement relations used in this study are based on

those from Love's theory and are given in Ref. 20 in the general form.

The equations are specialized for shallow shells of revolution by putting

Al = R~ and A2 = R. Al and A2 are the Lame's parameters. Furthermore,

the shell is assumed to be thin such that h/R and h/R. are negligible as



compared to unity, h being the thickness of the shell. The following

strain-displacement relations are used in the present study.

11

= cos p u + 1 ~ +~ W
E:s R R ae R (8)

( aw) 1 ~
u - ~ ~ acjJ

(9)

Eqs. 8 and 9 correspond to the mid-surface strains and the curvatures

respectively. The validity of the above strain-displacement relations

will be substantiated by the results presented subsequently. Various

derivatives required in the above expressions are in terms of global

coordinates. These can be determined by differentiating the shape func­

tions in local coordinates and then employing the coordinate transforma-

tion as given below.

{

aN/ae} = [JrSaN/a,}
aN/3cjJ L3N/dn

where the Jacobian matrix is given as

[J] = [3s/at;, 0 J
o 3cjJ/3n

(l0)

(11 )
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The second derivatives with respect to e and ~ are obtained as

(l2)

(13)

and

(14 )

Element stiffness matrix [k] is then obtained by performing the following

volume integration

(15 )

where [B] is a 6x48 matrix which relates the 6 components of the strain

vector to the 48 components of the elemental d.o.f.'s and D is a 6x6

stress-stra in matrix.

The differential volume dV is defined as

dV = hdA = hR~ d~ R de = hRR~IJI dsdn (l6)

The element stiffness matrix can now be determined using a 5 by 5 Gaussian

quadrature as

(l7)

where W. and W. are the Gauss weight factors at the 5x5 Gauss points.
1 J

The consistent mass matrix [m] and the incremental stiffness matrix

[n] are obtained as

(l8)
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[n] = I I

i=l j=l
(19 )

13

where N¢~ Ne~ and N¢e are the components of middle-surface stress resul­

tants. These stress resultants (also known as the "initial stresses")

can be obtained by using a simple pre-buckling membrane analysis or a

more rigorous iterative analysis as described by Gallagher and Yang (21).

Matrix [G] relates the two rotations and the 48 d.o.f. 's as

{::} "[G]{q}

The two rotations are defined as

(20)

o

sin ¢/R

-(Cl/Cl¢)/R¢] {U
wv

}

-(Cl/Cle)/R
(21)

It is felt that the compatibility of each of the three d.o.f. 's

(Cl2u/d~dn; d2v/d~dn; and d2w/d~dn) at each of the four vertices of an

element with that of the adjacent elements may be relaxed by writing them

in terms of the rest of the 36 d.o.f.'s at the element level before

assemblage. This can be done by matrix partitioning and substitution

with the assumption that the counterpart forces corresponding to these

cross derivative d.o.f.1s are zero.

The element stiffness, mass and incremental stiffness matrices thus

oqtained are in terms of local coordinates ~ and n. Transformation of

these three matrices as well as the nodal forces and the d.o.f. 's to those

with reference to global coordinates is performed before assemblage.
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Element load, stiffness, mass and incremental stiffness matrices are

then assembled in the usual manner to form the corresponding global

matrices in the following set of equations of motion.

[M]{q} + [K]{q} + [N]{q} = {P}

These equations reduce to

(22)

[K]{q}= {P} for static analysis;

[K]{q} [N]{q} = 0 for stability analysis;

[M]{q} + [K]{q} = 0 for free vibrations analysis; and
..

[M]{q} + [K+N]{q} = o for free vibrations analysis under the
effect of initial stresses.

(d) Evaluative Analysis

Before applying this element along with the other four types of ele-

ments to analyze the cooling towers, its performance to the shell problems

of static load, free vibration, buckling and free vibration under the

initial membrane stresses was evaluated.

(i) Rigid Body Modes - Finite element displacement functions must be so

chosen that mesh refinement results in monotonic and rapid convergence of

the solution.

An investigation on how well the rigid-body modes are included in

the displacement functions can be made by performing the eigenvalue

analysis of the element stiffness matrix.

[[k] - A[I]]{q} = 0 (23)

In the present study, the eigenvalue analysis of the stiffness matrix was

performed based on two sets of assumed parameters. The results are given

in Table 1. In each set of results, the presence of six rigid-body modes



TABLE 1. -- Eigenvalues of the 36 d.o.f. General
Shell Element
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Case 1
(l)

Case 2
(2)

10-8 _9
-1. 288 x 8.486 x 10

-9 1.716xlO-7-5.600 x 10

1.513 X 10- 5 3.594 X 10- 7

2.919 x 10- 5 2.921 X 10-4

2.923 X 10- 5 2.934 X 10-4

9.629 X 10- 5 1.244 X 10- 3

7.056 X 101 1.948 X 101

5.211 X 102 6.094 X 102

6.381 X 102 7.251 X 102

6.931 X 102 8.125 X 102

· .
·
· .

3.244 X 106 1.15 x 107

Spherical Element: Young's modulus = 107 psi;
(69.75 GN/m ); Poisson's ratio = 0.3; thickness
= 0.1 in. (2.54 mm); radii of curvature = 100 in.
(2.54 m); element length = width = 8 in. (20.32 cm)
for Case 1 and 16 in. (40.64 cm) for Case 2.
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is clearly demonstrated by the six near zero eigenvalues.

(ii) A Fixed-Base Cooling Tower Under its Own Weight -- This problem is

axisymmetric and predominated by membrane behavior. When quadrilateral

elements are used, only a strip of the shell need be analyzed. The

geometri c parameters were defined as: radi us at the base = 127.2 ft.

(38.77 m); radius at the throat = 70.29 ft. (21.42 m); radius at the

top = 73.10 ft. (22.28 m); height = 331.81 ft. (101.14 m); and the

height from the throat to top = 80.24 ft. (24.46 m); thickness = 0.5 ft.

(15.24 cm). Modulus of elasticity = 4.32 x 10 8 lbs/ft2 (20.92 GN/m2 );

the weight density = 150 lbs/ft 3 (23.837 KN/m 3 ); and Poisson's ratio

= 0.2.

This problem was analyzed by Larsen (22) using refined axisymmetric

elements and by Fonder and Clough (23) using 20 24-d.o.f. doubly-curved

quadrilateral shell elements (122 d.o.f.'s) to model a strip. Both

analyses gave almost identical results in membrane forces which are shown

in Fig. 3. Due to the negative Gaussian curvature, the explicit inclusion

of rigid-body modes, in Ref. 23, yielded erroneous results and thus they

were excluded in obtaining the correct solution.

Gran and Yang (11) used the quadrilateral high-order membrane ele­

ments to analyze this problem and the elements were proven to be highly

accurate and efficient. Their meridional membrane forces were in slight

error at the base of the shell becau~e their elements lacked the capability

of modeling the bending behavior.

In this analysis, a strip of the shell with a subtending angle of 5°

was analyzed. Three meshes were used: 3xl mesh (28 d.o.f. ·s): 5xl mesh

(44 d.o.f.'s) and 7xl mesh (60 d.o.f. 's). The results are also shown in

Fig. 3. It is seen that excellent results were obtained at the 3 element

level.
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The relaxation of the inter-nodal compatibility of the d.o.f.'s

containing the second order cross derivatives of the displacements was

also investigated. Because the cross-derivative d.o.f. IS were eliminated

at the element level, the boundary conditions that a2u/a¢a8 = a2v/a¢38 =

a2w/a¢38 = 0 could not be met. Although the results were acceptable,

the effect due to relaxation of such compatibility could not be deter­

mined with such an example.

(i i i) Orthotropic Cyl i ndri ca1 She11 Under Internal Pressure -- Thi s pro­

blem is described in Fig. 4. Four elements were used to model an octant

and the results for bending moment along the axial direction and the

circumferential stress resultants are plotted in Fig. 4. The analytical

solutions by Kraus (24) are also shown. Excellent agreement is seen.

(iv) Axisymmetric Vibration of a Clamped Spherical Cap -- The problem

was analyzed by Kalnins (25) who derived the frequency equations in terms

of Legendre's polynomials with complex indices. It was also solved numeri­

cally by Zarghamee and Robinson (26) using Holzer's method. In that

method, a value of the natural frequency is repeatedly assumed and the

governing two point boundary value problem is solved as a set of initial

value problems until all the boundary conditions are satisfied.

In this study, a sector with a subtending angle of 5° was analyzed.

Natural frequency for the lowest axisymmetric mode was obtained by using

both consistent and lumped mass matrices for gradually increasing number

of elements. The results are shown in Fig. 5. The frequency obtained

by usi ng consistent mass matrix converged to that of Ref. 26 at the 3

element level (22 d.o.f.'s) and the frequency obtained by using lumped

mass matrix is converging at a rather slow rate.
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(v) Axisymmetric Buckling of a Simply-Supported Cylindrical Shell

Under Uniform Axial Compressive Stress -- This example was chosen

to verify the accuracy of the incremental stiffness matrix. Only an

octant of the shell was modeled using one element in the circumferential

direction and different numbers of elements in the axial direction. The

simply supported boundary conditions were assumed such that all the

initial stress resultants other than that in the axial direction were

zero. The buckling stress was found to be 0.6077 Eh/a as compared to

the classical value of 0.6052 Eh/a (27), where E is the Modulus of

Elasticity, h is thickness and a is the mean radius of the cylinder.

The analysis was carried out using h = 1 in. and Eh/a = 1. The value

obtained was found to be about 0.4% higher than the classical value.

21

(vi) Free Vibrations of a Fixed Base Cooling Tower Without and With

Initial Stresses -- The geometry of the cooling tower is defined

as: radius at the base = 137 ft. (41.76 m); radius at the throat = 84

ft. (25.6 m); radius at the top = 87.4 ft. (26.64 m); height of the

tower = 330 ft. (100.59 m); height between the top and the throat =

60 ft. (18.29 m); and the thickness = 5 in. (12.7 cm). Material proper­

ties are: Modulus of Elasticity = 3xl06 psi (20.92 GN/m2 ); Poisson's

ratio = 0.15; and mass density = 0.000225 lbs-sec2/in4 (2406.5 kg/m 3 ).

The natural frequencies for various modes for this example were

obtained by using various methods (3,4,5). These results are given in

Table 2. A convergence study was first performed by using the 36 d.o.f.

elements (without the cross derivative d.o.f. IS) to model a half of the

cooling tower to obtain the natural frequencies for the first eccentric

mode (m=n=l). The values of these frequencies were found to be 3.400,

3.320, and 3.317 Hz. when the 4xl (50 d.o.f. IS), 4x2 (87 d.o.f.'s), and
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5x3 mesh (146 d.o.f.1s) were used, respectively, where MxN mesh is

defined as Melements in the meridional direction and N elements in

the circumferential direction, respectively. The values of natural

frequencies for this mode obtained in Refs. 3, 4 and 5 were 3.290,

3.335, and 3.291 Hz., respectively.

The natural frequencies for various modes were then studied by using

the 5x3 mesh to model two different kinds of strips: (1) a strip con­

taining half of circumferential wave, Le., from peak to valley of a

full wave and (2) a strip containing a quarter of a circumferential

wave. For strip 1, the two meridional edges have the same conditions:

v = dU/d~ = d2u/d~dn = dv/an = dw/a~ = d2w/d~dn = O. For strip 2, one

meridional edge has the same conditions as those for strip 1 but the

other edge has the conditions that u = aU/dn = w = dW/dn = dV/d~ =

d2v/d~dn = O. Although both the 48 and 36 d.o.f. elements were used,

the 36 d.o.f. elements could not satisfy the edge conditions when the

aforementioned second order cross derivatives of displacements vanish.

The results are given in Table 2. It is seen that all fhe results are

generally in good agreement with those obtained in Refs. 3, 4 and 5. The

results given in column 9 using the 48 d.o.f. elements for modeling 2

appear to be the most accurate ones and such model was used in the subse­

quent free vibration analysis when the initial stresses were considered.

Three types of initial stresses were then considered: uniform circum­

ferential compressive stress; uniform meridional compressive stress; and

membrane stresses due to self weight of the cooling tower.

The effects of uniform circumferential and meridional stresses on

the square of the frequency ratio (w/wO)2 for several modes are shown in

Figs. 6 and 7, respectively, where Wo is the frequency value with no
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TABLE 2 -- Natural Frequencies of a Fixed Bas.e Cooling Tower for Various Modes

(n = circumferential Wave number and m = Longitudinal Mode Number).

NATURAL FREQUENCY IN HERTZS

36 d.o.f. element 48 d.o.f. element

Hashish Sen Modeling 2t

Carter and and Modeling Modeling Modeling Without With
et a1. AbuSitta Gould

* 2t *
Se1 f- Self-

n m Ref-.(3) Ref. (4) Ref. (5) 1 1 Weight Weight
(1) (2 ) (3) (4) (5 ) (6) (7) (8) (9) (10) .

1 3.2897 3.3345 3.2910 3.3166 3.3137 3.2897 3.2901 3.2898
1 2 6.7932 6.8816 6.8176 7.1098 7.0656 6.7935 6.7958 6.7950

3 10.525 10.532 10.667 11.664 -- 10.604 10.624 10.616

1 1.7661 1.7848 1.7662 1.7744 1.7723 1.7684 1.7683 1.7666
2 2 3.6946 3.7234 3.6960 3.7607 3.7510 3.6919 3.6953 3.2926

3 6.9590 6.9553 7.0058 7.5649 7.4466 6.9607 6.9813 6.9769

1 1. 3755 1.3927 1.3802 1.3731 1.3821 1.3809 1.3732
3 2 1. 9912 2.0150 2.0228 1.9982 1.9986 1.9996 1.9927

3 4.3272 4.3353 4.4863 4.4536 4.3483 4.3595 4.3522

1 1. 1812 1.2003 1.1820 1.1677 1. 1512 1.1906 1.1885 1.1653
4 2 1.4481 1.4597 1.4491 1.4367 1. 4195 1.4629 1.4615 1.4498

3 2.7788 2.7762 2.7866 2.8072 2.7946 2.7902 2.7941 2.7814

1 1.0352 1. 0441 1.0354 -- -- 1.0522 1.0489 1. 0131
5 2 1.4299 1. 4417 1.4345 1.3834 1.3455 1.4509 1.4489 1.4181

3 2.0568 2.0558 2.0640 2.0365 2.0149 2.0721 2.0714 2.0558

1 1. 1472 1. 1544 1.1700 1.1667 1.1084
I6 2 1.3236 1.3335 1.3530 1.3560 1.3138

3 2.0149 2.0152 2.0345 2.0364 2.0104
1

1 1.3020 1.3055 1.3253 1.3224 1.2458
7 2 1.5140 1.5189 1.5482 1.5450 1.4943

3 1.9225 1.9200 1.9572 1.9553 1. 9162

*Modeling of a strip containing half of a circumferential wave.

t Mode1ing of a strip containing quarter of circumferential wave.
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initial stresses. This problem was studied previously by Deb Nath (28)

using revolutional type of shell elements. The present results in Figs.

6 and 7 are in total agreement with those given in Ref. 28, which are

thus not replotted here.

It is seen in Fig. 6 that for each mode considered, (w/wO)2 varies

linearly with the uniform circumferential stress, which is equal to its

buckling value as w becomes zero. This linear relation suggests that the

mode shapes do not change as the circumferential stress increases.

In Fig. 7, however~ (w/wO)2 for each mode varies nonilnearly with

the uniform meridional stress, suggesting that each mode changes its

shape as the meridional stress increases.

The frequency-stress relation shown in Fig. 7 for the first eccentric

mode (m=n=l) appears to be a horizontal straight line. No appreciable

change in the natural frequency corresponding to this mode was observed

even up to a uniform compressive force of 200 kips/ft. When the mode

shapes for u, v, and w displacements were plotted, they were found to be

the same as those shown in Refs. 3,4,9, and 11, respectively, and remain

almost independent of the level of meridional stress considered.

The frequency-stress relation for the mode (m=l, n=6) is nonlinear

and decreases rapidly. The meridional mode shape for w deflection was

plotted for four different values of meridional stresses in Fig. 8. The

effect of meridional stress on the shape for this mode is obvious.

The effect of self weight on the natural frequencies was studied

next. The membrane stresses due to the self weight were calculated at

all the 25 Gaussian points for every element. The use of numerical

integration allows this element to take into account the variable initial

stresses. The natural frequencies obtained for the cooling tower
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considering its own weight are shown in column 10 of Table 2. The

values were found to change very little due to self weight, at the most

a few percent for higher modes.

THE QUADRILATERAL GENERAL-MEMBRANE TRANSITION ELEMENT

Previous investigations on the dynamic response of a cooling tower

(9, 10) suggest that the behavior of the shell is predominantly membrane

except that near the base. It appears to be efficient to use two types

of elements, a membrane type and a general type, to model the upper

portion and the base portion of the shell, respectively. A high-order

and highly efficient quadrilateral membrane element was developed by

Gran and Yang (11) and a quadrilateral general shell element developed

by Fonder (12) was extended in this study. There is a need to develop

a quadrilateral bending-membrane transition element so that its upper

and lower edges are compatible with the membrane and general shell ele-

ments, respectively.

The geometry of this quadrilateral transition element is identical

to that of the membrane (11) or the general shell element (Fig. 2). Each

of the two upper corner points has the same 9 d.o.f.'s as those assumed

for the membrane element: u; au/Rae; oU/R¢o¢; a2u/RaeR¢a¢; v; ov/Rae; aV/R¢8¢;

a2v/RaeR¢o¢; and w. Each of the two lower corner points has the same

12 d.o.f.'s as those assumed for the present shell element.

The membrane displacement functions u and v for this transition

element are assumed to be the same as those for the membrane or the

general shell elements. The function describing the normal-to-the-

surface deflection is assumed as
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2
w = I [G·(s)G·(n)W. + H.(i;:)G·(n) (~~). + Gl·(i;:)Hl·(n)(~wn)l·i=l 1 1 1 1 1 a~ 1 a

(24)

where Gi = (-i;:i s3 + 3sis + 2)/4 and Hi = (s3+ sis2 - S - Si)/4

and subscript i indicates the nodal point number shown in Fig. 2.

This transition element has a total of 42 d.o.f. 's of which 10 are

for the second order cross derivatives of u, v, and w, respectively. The

inter-nodal point compatibility of the cross derivatives d.o.f.·s may be

relaxed by writing them in terms of the rest of the 32 d.o.f.'s.

The formulation of this transition element was evaluated by using

this type and the other two types of elements (the general shell elements

and the membrane elements) to compare the natural frequency for first

eccentric mode (m=n=l) for the fixed base cooling tower considered in

the previous section. This mode is the most dominant one in the earth­

quake response of cooling towers (29). Two modelings were used to model

half of the cooling tower: (1) 2 general shell elements at the base,

2x2membrane elements at the top, and 2 transition elements; (2) 3 gen-

eral shell elements at the base, 2x3 membrane elements at the top, and

3 transition elements. Both modelings gave the same natural frequency

of 3.32 Hz. This value appears to be accurate as compared to those

given in the first row of Table 2.

THE TRIANGULAR FILLER MEMBRANE ELEMENT

When the supporting columns of a cooling tower are modeled by using

discrete column elements, a layer of quadrilateral general shell elements
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providing the same number of joints at the base of the shell as that of

the top joints o~ the columns is needed. For more efficient modeling of

a cooling tower when its behavior is predominantly membrane, however, a

coarser mesh of the quadrilateral membrane elements may be used to model

the upper portion of the shell. There appears to be a need to develop a

triangular filler type of elements, as shown in Fig. 1, which can connect

the coarser mesh of the quadrilateral membrane elements to the finer mesh

of the quadrilateral general-membrane transition elements.

A number of doubly-curved general shell elements of triangular shape

are available (14). The ones that are pertinent to the present develop­

ment of the triangular filler elements are mentioned here. Cowper,

Lindberg, and Olson (30) developed a 36 d.o.f. triangular shallow shell

element. Each vertex contained 12 d.o.f. IS: u; au/a~; ag/an; v; av/a~;

avian; w; aw/a~, aw/an; a2w/a~2; a2w/a~an; and a2w/an2, where ~ and n are

the coordinates in the plane of the projection. The displacement function

for u or v was assumed as a complete cubic polynomial in ~ and n (10

constants) and that for w a complete quintic polynomial minus the ~4n term

to ensure that aw/an along the edge n = 0 is in the form of a cubic poly­

nomial in ~ (20 constants). Two extra d.D.f.'s were created at the

centroid of the element. The 40 constants exceed the 38 d.o.f. 's by 2.

Two further constraints were imposed to ensure that the slopes normal to

the remaining two edges (aw/e n) are also in the form of a cubic polynomial.

Thomas and Gallagher (31) developed a 27 d.o.f. triangular shell

element. Each vertex contained 9 d.o.f.'s: u, au/a~, au/an; v; av/a~; avian;

w; aw/a~; and aw/an where ~ and n are the curvilinear coordinates in the

middle surface. Each of the three displacement functions u, v, and w

was assumed as a complete cubic polynomial in ~ and n (10 constants).
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Three d.o.f.'s ofu, v and ware added at the centroid of the element

so that the 30 constants can be determined by the 30 d.o.f. 's. The

assumption of such a displacement field violates the conditions of

interelement compatibility, in that normal rotations are not continuous

across the element boundaries. This results in the global strain energy

being improperly defined. This difficulty was overcome by writing con­

straint equations which force the normal rotations at the mid-side of

each edge to be the same for adjacent elements. The constraint equations

produced in this manner were accounted for in the global analysis by the

use of the Lagrange multiplier technique. This is done by augmenting the

potential energy with the sum of the products of the respective constraint

conditions and their corresponding Lagrange multipliers.

Dawe (32) developed a 54 d.o.f. triangular shallow shell element.

Each vertex contained 18 d.o.f.'s: u; au/a~; au/an; a2u/a~2; a2u/a~an;

a2u/an2 ; and the similar six for v and w, respectively, where ~ and n are

the coordinates in the plane of the projection with ~ coinciding with one

edge of the element. Each of the three displacement functions u, v, and

w was assumed as a complete quintic polynomial in ~ and n minus the ~4n

term to ensure that the variation of each of the three slopes au/an, avian,

and aw/an along the edge ~ = 0 is in the form of a cubic polynomial

(20 constants). Six further constraints were imposed to ensure that the

derivatives of u, v, and w with respect to the axis normal to the other

two edges are also in the form of cubic polynomials.

Two types of triangular filler membrane elements were formulated in

this study. The formulation for the first type follows the developments

of Refs. 30 and 31 and that for the second type follows the development

of Ref. 32. Both types have the same geometry.
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(a) Element Geometry

The geometry of either type of the triangular membrane element is

shown in Fig. 2. The local curvilinear coordinates ~ and n lie along the

circumferential and meridional directions, respectively, of the surface

of a shell of revolution. The edge 2-3 lies on the t-axis and the n-axis

passes through nodal point 1.

The cylindrical coordinates Rand Z for an arbitrary point on the

element surface are described as

4
R = I

i=l
N.R.

1 1
(25)

where Rl , R2, R3, and R4 are the radii of the circles at n = 0, 1/3,2/3

and 1, respectively. The four geometric shape functions are given as

Nl = [27(1-n)3 - 27(1-n)2 + 6(1-n)]/6

N2 = 9n[3(1-n)2 - (1-n)]/2

N3 = 9n(3n- l )(1-n)/2

N4 = 3n(3n-l)(3n-2)/6

(26)

The various geometric parameters R~, RI
, R" , cos ~, sin ~, and a~/an,

etc. were defined in Ref. 11. Since, the coordinate s measures the

subtending angle s from the meridional axis, as/at = 1.

(b) Displacement Functions

The strain energy expression for a membrane shell can be written as

(27)

where all the SiS are defined in Eq. 8. This strain energy expression
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contains no derivative terms of w. Thus a linear function for w (with

3 constants) satisfies the interelement compatibility for w.

For the first type of triangular membrane element (21 d.o.f.'s),

each vertex has 7 d.o.f.'s: u; au/a~; au/an; v; aV/d~; avian; and w. Either of

the membrane displacement functions for u and v is a complete cubic poly-

nomial in ~ and n with 10 constants. Two extra d.o.f.'s of u and v are

added at the centroid of the element so that the 23 constants can be

determined uniquely by the 23 d.o.f.'s. The two centroidal d.o.f.'s

u and v are determined by writing them in terms of the rest of the d.o.f.'s.

For the second type of triangular membrane elements (39 d.o.f.'s),

each vertex has 13 d.o.f. IS: w; u; au/a~; au/an; a2u/a~2; a2u/a~an;

a2u/an2,and the similar six for v. The membrane displacement functions

for u and v are assumed the same as those by Dawe (32).

(c) Element Formulation

The formulation for the stiffness and mass matrices for the 21 d.o.f.

triangular membrane element are obtained by using the numerical integra­

tion expressions in the forms similar to those shown within the summation

signs in Eqs. 17 and 18, respectively. Within the triangular area, a

total of 13 integration points were used. The area coordinates of these

13 points along with the corresponding weight factors are given in Ref. 33.

The element formulation thus obtained is with reference to the local

coordinates. It is finally transformed to that with reference to the

global coordinates.

The formulative procedure for the 39 d.o.f. triangular membrane ele­

ment is the same as that for the 21 d.o.f. element. The u and v displace­

ment functions were assumed the same as those by Dawe (32) so that the

au/an and av/an along the edge n = 0 are in the form of a cubic polynomial
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in~. In addition, four constraints were imposed to ensure that the

derivatives of u and v with respect to the axis normal to the other two

edges also vary cubically along those edges.

(d) Evaluative Analysis

In order to evaluate the formulation for the 21 d.o.f. and the 39

d.o.f. triangular membrane elements, two examples were chosen.

(i) Axisymmetric Vibration of a Spherical Cap -- A spherical membrane

and its geometric material parameters are shown in Fig. 9. Kraus (24)

gave a solution of this problem using the shallow shell theory. It was

assumed that the expression for the change in the curvature of the

reference surface are identical to those of a flat circular plate. The

resulting simplified differential equation is a Bessel's equation of

first order. The natural frequencies for the present shell are given by

the roots of the equation

where

and

(28)

(29)

In the above equation a is the radius of the base circle of the spherical

cap and is equal to 0.5R for the present case. R = 100 feet which ;s

the radius of the sphere. The first five roots for ~ in Eq. 28 are

3.832, 7.016, 10.17, 13.32, and 16.47. By substituting these values of

~ into Eq. 29, one can obtain values of Q2 and hence w, the natural

frequency in rad/sec. For every value of ~, there are two values of w.

One of the value increases with ~ without bound, whereas the other value
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TABLE 3 - Natural Frequencies of Axisymmetric

Modes of a Spherical Cap

--

NATURAL FREQUENCY IN RADjSEC

Mode No Lower value Upper value
Kraus (24) Present Kraus (24) Present

(1) (2) (3 ) (4) (5)

1 25.44 25.15 210.4 197.8

2 25.70 25.62 381.4 357.2

3 25.77 25.73 551.7 515.2

4 25.79 25.78 721.9 674.2

5 25.80 25.81 892.2 835.5

36
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is very close to and approaches a limiting value of IE/p/R. Five pairs

of the natural frequency corresponding to the first five values of ~ or

the first five pair of modes are presented in Table 3. For each pair of

modes,the distribution for the normal deflection w is the same but the

distribution for the meridional displacement u is different.

When the present elements are used to solve the problem, only a small

segment of the shell with a subtending angle of 5° at the apex was analyzed

and both types of elements were used. The results for the natural frequen­

cy for the lowest axisymmetric mode are plotted against the number of

d.o.f.'s using both types of elements. The converged values were obtained

as 26.15 and 25.15 rad/sec. using the 21 and 39 d.o.f. elements, respec­

tively. The alternative analytical solution given by Kraus (24) yields

a value of 25.44 rad/sec. The results by using the quadrilateral membrane

elements by Gran and Yang (11) were also plotted in Fig. 9, with a converg­

ed value of 25.15 rad/sec. The converged result obtained by using 39 d.o.f.

triangular element is in good agreement with that obtained in Ref. 11.

The 39 d.o.f. element was thus used to obtain the natural frequencies

corresponding to the first five pair of modes. The first five pairs of

natural frequencies obtained using 19 such triangular elements (81 d.o.f.)

are also given in Table 3. Agreement between the analytical and the pre­

sent numerical results is good.

(ii) First Eccentric Frequency of a Fixed Based Cooling Tower -- The

same fixed-base cooling tower analyzed in Table 2 was examined using the

two types of triangular membrane elements. One half of the shell is

modeled by using five different meshes (lxl, 2x2, 3x3, 4x4, and 5x5) for

the 21 d.o.f. elements and four different meshes (lx2, 2x2, 2x3, and 3x3)
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for the 39 d.o.f. elements. The results for the natural frequency for

the first eccentric mode are plotted versus the number of d.o.f. 's in

Fig. 10. The converged values obtained by using the 21 and 39 d.o.f.

elements are 3.35 and 3.30 Hz, respectively. The results were also

obtained by using the 9 d.o.f. triangular membrane plate elements of

the NASTRAN Program. Four different mesh configurations (4x4, 6x6, 8x8

and 10xlO) were employed to model one half of the shell. The results

which converged to a value of 3.30 Hz are also shown in Fig. 10. The

results by using the 12 d.o.f. quadrilateral membrane plate elements of

the NASTRAN program and the 28 d.o.f. quadrilateral membrane shell ele­

ments (11) are also shown with the converged values being 3.28 and 3.27

Hz, respectively.

From the results obtained in Figs. 9 and 10, it is seen that both

types of triangular membrane elements are reasonably accurate and

efficient for use as filler elements in combination with the other two

types of elements developed or suggested here. Since the 39 d.o.f.

element contains the nodal derivative d.o.f.ls of 32U/3~2, 32u/3n2,

3 2V/3s2 and 32v/3n 2 , which the quadrilateral membrane elements (11)

do not have, only the 21 d.o.f. elements were used in the following

example where all types of elements were used.

39
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CHAPTER 2

THREE ECCENTRIC FREQUENCIES OF A COLUMN-SUPPORTED
COOLING TOWER USING THE WHOLE SET OF ELEMENTS

The cooling tower considered is defined by the following parameters:

radius at the base of the shell = 182.25 ft. (55.58 m); radius at the

throat = 116.5 ft. (35.5 m); radius at the top = 123 ft. (37.49 m);

height of the shell excluding the columns = 449.75 ft. (137.08 m); height

from the throat to the top of the shell 98.89 ft. (30.14 m); and thickness

= 12 in. (0.305 m); modulus of elasticity = 4xl06 psi (27.59 GN/m2 )

Poisson's ratio = 0.167; mass density = 0.225xlO- 3 lbs-sec 2/in4 (2.406

xl03 kg/m 3 ). The tower has 88 columns, each with the length of 41 ft.

(12.5 m) and cross section of 24 in (0.61 m) by 52 in. (1.32 m) in the

radial and circumferential directions, respectively. Each column inclines

with the meridional line at an angle of + 19°.

The modeling using the combination of the five types of elements is

shown in Fig. 1. Only a quadrant of the cooling tower is modeled and

the meshes for the five types of elements are shown in the figure.

The number of d.o.f.'s retained depends upon the boundary conditions

which are dictated by the mode shapes considered. In this example, the'

three fundamental eccentric modes were considered. It had been shown

that only these three modes are dominant in the earthquake response

behavior of a cooling tower (29,7,9,10). For such modes, the model shown

in Fig. 1 resulted in 412 d.D.f.'s. It is noted that if the general

shell elements were used to model the entire shell height, a total of
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641 d.o.f.1s would have to be used. Both lumped mass and consistent mass

matrices were used. The results for the natural frequencies are given in

Table 4.

This example was analyzed previously by Gould, Sen and Suryoutomo (7)

using 14 doubly curved rotational shell elements and a column equivalent

rotational shell element. It was also analyzed by Basu and Gould (8) using

11 doubly curved rotational shell elements and a modified open-type column

equivalent rotational shell element. Both sets of results are shown in

Table 4. It is seen that the agreements between the four sets of results

are quite good except for that of the second eccentric mode using lumped

mass model.



TABLE 4.-- Three Eccentric Natural Frequencies of a Column Supported
Cooling Tower.

NATURAL FREQUENCY IN. HERTZS
Longitu- Circum-
dinal ferential Goul d, Basu and Consistent Lumped
Node ~1ode Sen & Gould ~1ass Mass
Number Number Suryoutomo (Ref. 8)

m n (Ref. 7)
(1) (2) (3) (4) (5) (6 )

1 2.296 2.336 2.333 2.284
1 2 3.889 4.119 4.156 3.476

3 7.730 7.056 6.952 6.885

42
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CHAPTER 3

STATIC ANALYSIS OF A FIXED BASE
COOLING TOWER DUE TO WIND LOAD

Wind loading is the most significant environmental loading to which

a cooling tower is subjected to in its life span. Failure of the cooling

towers at Ferrybridge (1) and Ardeer (2) led to various research programs

towards the understanding of the nature of the wind loading (acting on

the cooling tower) itself and the resulting structural response of the

cooling towers. Billington and Abel (34) gave a reivew of the state-of­

the-art of the design of the cooling towers subjected to wind loads. At

present, the wind loading is essentially assumed to be quasi-static and

is given by the following expression (35)

(30)

where

p = effective velocity pressure in psf at height Z feet

above the ground level;

KZ = an exposure factor which determines the vertical profile

of the wind due to the boundary layer effects of the

ground and depends upon the terrain roughness;

G = gust response factor to take into account the dynamic

response of the structure to turbulence;

Cp(8) = a coefficient for the circumferential distribution of

the wind pressure and is determined from the test results; and
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2Q30 = 0.00256 Vf30

is the basic velocity pressure in psf at 30 feet (9.15 m) above ground

level obtained from the basic wind speed.

Abel and Billington (34) described these factors in great detail

along with the methods to obtain them.

Although the wind loads are assumed to be quasi-static in the design,

in reality, however, these loads are dynamic in nature. Furthermore,

they are highly random in both time as well as in space. For proper

understanding of the response of the cooling towers for the design pur­

poses, the wind loads must be represented as accurately as possible and

the theory of random vibrations must be used to account for the randomness

of the wind loads.

For a given wind velocity Va' the wind load effect Pw can be expres­

sed as

where W = static wind effect due to mean wind velocity V; and
S

WD= dynamic wind effect due to the fluctuating component

V-V.o

(31)

Based on the pressure distributions obtained directly from experi-

mental measurements made on a full scale tower at Martinis Creek, Pa.,

a procedure to establish the level and distribution of the design

dynamic wind pressure loading over a cooling tower, was given by

Sollenberger, Scanlan and Billington (36).

Dynamic responses of the structure due to the fluctuating component

were determined from a statistical response analysis (37, 38, 39) and
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from a deterministic time history response analysis (36, 40, 41). Such

responses have also been studied by measuring aeroelastic models in

wind tunnels (42, 43) and by measuring a full scale prototype (43).

The static response of the cooling tower due to the mean wind velo­

city can be determined by analyzing the cooling tower subjected to a basic

pressure gi ven by Eq. 30 wi th G = 1. In thi s study, the static response

of a cooling tower subjected to a given pressure distribution is deter-

mined. The cooling tower under consideration is the same as that analyzed

for natural frequencies in Table 2. This tower was previously analyzed

by Albasiny and lvlartin (44) using finite difference method and by Chan

and Firmin (45) using rotational-type shell finite element of the SABA

family. Gould and Sen (46) developed and used a refined mixed method

rotational type shell element to study the static response due to the

wind loads. In all the above studies, the circumferential distribution

of the pressure coefficient was assumed to be given by the Batch and

Hopley distribution (44). This distribution, including a 0.5 internal

suction, is given by

C (8) = -1.524 cos (1.89 e)p

= 0.69 sin [3.61 (9-47.6)J

for 00 < 8 < 47.6

for 47.6 < 8 < 1000 (32)

= -0.21 for 1000 < 8 < 1800

The distribution is shown in Fig. 11. In all the above studies the pres-

sure distribution was approximately represented by a ten term Fourier

Cosine series. For the present 48 d.o.f. general shell element, such a

decomposition is not necessary.

The vertical profile of the wind velocity is assumed to be constant

throughout the shell height (KZ = 1) and the value of q(=~pV2) is assumed
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to be 1 psf corresponding to V = 19.76 MPH.

Three different mesh configurations using the present 48 d.o.f.

general shell elements (4x4~ 5x5, and 6x6) were used to model one half

of the shell. Since the wind loading was assumed to be symmetric, it

suffices to model only one half of the shell. But if the pressure distri-

bution is not symmetric, as may be the case on an actual cooling tower,

the entire shell has to be modeled. In each of the meshes employed, the

elements at the base of the tower were of a height 1.8% of that of the

cooling tower. Elements of such a small shell height were necessary to

properly capture the abrupt variation of the meridional moment at the

base. The topmost elements in all the meshes were of a height 18.2% of

the shell height. Each element subtended equal angle in the circumferen­

tial direction. The pressure loads were converted into the nodal loads

using consistent load vector. The results for the maximum meridional

stress resultant N¢ at e = 0° as obtained in the present analysis for

three meshes are given in Fig. 12. It should be mentioned that the

meridional stress resultant should be determined as accurately as possible

because the amount of steel reinforcement in the shell is dependent upon

this resultant. Fig. 13 gives the variation of the meridional bending

moment along the shell height. The bending moment is negligible through­

out the shell height except for a narrow zone at the base. In both figures~

the results obtained by Gould and Sen (46) using a total of 19 rotational­

type shell elements are also shown. Excellent agreement between the two

sets of results is seen.

Variation of the maximum radial displacement at e = 0° along the

shell height is given in Fig. 14. Results obtained by Chan and Firmin

(45) are also shown. These results are obtained for a shell thickness
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of 7 in. (17.78 cm) rather than the shell thickness of 5 in. used in the deter­

mination of the stresses. Once again excellent agreement is seen.

Figure 15 shows the variation of the membrane stress resultants in

the circumferential direction at the base of the shell obtained using

6x6 mesh for half of the shell. This distribution is quite similar to

the pressure distribution shown in Fig. 11. The maximum tensile stress

which occurs at the windward meridian (e = 0°) is larger than the maximum.

compressive stress occurring at about 70° from the windward meridian.

From the above results, it can be concluded that the response of

the cooling tower can be accurately predicted using the present develop­

ments if the wind loads are assumed as quasi-static and known. Although

the results are obtained for a pressure distribution which is symmetric

about the direction of wind and is uniform along the shell height, the

results for non-symmetric and non-uniform pressure loads can be determined

just the same.
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CHAPTER 4

CONCLUDING REMARKS

In this study, a set of shell elements, with a capability to investi­

gate the stability and dynamic response of complex thin shell structures,

has been formulated. A computer program has been developed and evaluated

by solving a series of examples pertaining to shells of revolution. The

above set was developed with a view to adequately model and analyze column­

supported cooling towers subjected to wind and earthquake loadings in an

optimal fashion.

It has been learned from previous studies of some examples of seismic

response of column-supported cooling towers (9, 10) that the cooling tower

shell behaves primarily as a membrane. The only appreciable bending is

confined to a narrow band at the shell base. It has also been learned

that only the eccentric modes (n=l) are responsive to seismic disturbances

(29, 7, 9, 10).

As a first step to accurately and efficiently model the membrane

portion of such shells, a high-order doubly curved quadrilateral membrane

element was developed by Gran and Yang (11). Hith the intent to optimize

the finite element modeling of a column supported cooling tower for seismic

response analysis and with the intent to model each column discretely, a

family of finite elements as depicted in Fig. 1 has been adopted, modified,

or extended in this study: (1) a 16 d.o.f. column element; (2) a 48

d.o.f. doubly-curved quadrilateral general shell element: (3) a 42 d.o.f.

doubly-curved quadrilateral general-membrane transition element; (4) a 21
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d.o.f. and a 39 d.o.f. doubly-curved triangular membrane filler element;

and (5) a 28 d.o.f. doubly-curved quadrilateral membrane element.

Element (1) is a 3-D variation of that of Ref. 13. Element (2) is

the one that was developed in Ref. 12 but with some difference in formu­

lative procedures and with extensive application in this study to the

cooling tower analysis of buckling and vibration with initial stresses.

Element (3) is developed here. Elements (4) are the modified version of

those in Refs. 30 and 31 to fit the present need. Element (5) is adopted

from Ref. 11. Various examples have been demonstrated to evaluate an

individual type, a few combined types, and the whole set of elements and

the results are all quite good.

During a seismic disturbance, the regions containing the joints between

the columns and the base of the shell are vulnerable and it is highly de­

sirable that the state of the stress distributions in these regions at

certain critical moments be studied and understood. It is also highly

desirable that material nonlinearity be considered in such a study. For

these purposes, the modeling of the base regions by using the discrete

column elements and quadrilateral general shell elements is suggested.

Research is now being carried out to study the nonlinear stress

distribution in a cooling tower subjected to seismic disturbances. The

effect of wind loads is also being studied. As a first step,the response

of the cooling tower due to the mean wind velocity has already been

studied and the results obtained are in excellent agreement with the

alternatively available results. The cooling tower response due to the

fluctuating velocity component will be studied in collaboration with

Professor Y.K. Lin using the theory of random vibrations. For wind

disturbances, the breathing modes such as n = 6 are also important. For
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breathing modes with circumferential wave numbers equal to 4 or 5, or

above, the shell no longer behaves primarily as a membrane. The present

general shell elements must be used through the shell structure.

In addition to the adequate representation of the structural proper­

ties (mass, stiffness and damping) of the cooling tower, the characteris­

tics of the wind loading (spectral characteristics of the gust, spatial

distribution and correlation of pressure over the tower surface etc.) must

be accurately known. Efforts are now underway, under the direction of

Professor Anshel L. Schiff to determine the wind loads by performing

measurements on a full scale cooling tower. The dynamic response will

also be measured to corroborate the results with those obtained theoreti­

cally.
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