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ABSTRACT

An examination of recorded earthquake accelerograms indicates
their nonstationary characteristics, that is, their statistical pro-
perties, vary with time. The nonstationary characteristic takes a
special form when the strong motion part of the record is considered,
It is demonstrated in this study that within the strong motion dura-
tion the short time mean square value varies with time, whereas the
frequency structure of the record remains time-invarient. This con-
clusion leads to the assumption that the strong motion segments of
accelerograms can be considered to form a locally stationary random
process. The power spectral density of such a process is a function
of both time and frequency.

The time-dependent power spectral density for an ensemble of
accelerograms is estimated as the product of a normalized power spec-
tral density which is a function of frequency only and describes the
frequency structure of the ensemble; a normalized time-dependent scale
factor which is obtained from a short time averaging of mean square
acceleration; and finally the mean square acceleration itself. The
mean square acceleration is obtained from correlations between RMS
value and a variable which incorporates four important earthquake
parameters: peak ground acceleration, earthquake magnitude, epicentral

distance, and duration of strong motion.

iv



Time-dependent power spectral densities and correlations between
RMS of the records and the four earthquake parameters are obtained
for horizontal and veritical components of accelerograms recorded
on soft, intermediate, and hard sites. The findings are used to esti-
mate the power spectral density for a given geology, peak ground accele-
ration, earthquake magnitude, epicentral distance, and duration of
strong motion. The estimates are then used to predict the response
of a single degree of freedom system and to compare the results with
both the relative displacement, relative velocity and absolute accele-
ration computed directly from the record and the mean plus one standard

deviation response of the ensemble.
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CHAPTER 1

INTRODUCTION

1.1 BACKGRGUND

Among the approaches used in the seismic analysis and design of
structures and equipments is the response spectrum. The response spec-
trum introduced by Biot {1941, 1942) and Housner (1941), provides a
measure of the maximum response of a single degree of freedom system
to an excitation. Subjecting the system to a specific ground motion
of a recorded earthquake and computing its maximum response for a given
frequency and damping gives a point on the response spectrum curve.

For small damping, the relative velocity and absolute acceleration of
the system can be estimated from the relative displacement (Housner
1970b, Clough 1970). Such quantities are termed pseudo-velocity and
pseudo-acceleration, respectively. For engineering applications the
relative displacement, pseudo-velocity, and pseudo—acceleration are
plotted as a function of the period or frequency of the system on a
tripartite paper (four-way log paper). In seismic analysis such plots
are made for a specific recorded ground motion. To obtain a design
spectrum, the response spectra from individual records are normalized
and averaged at various frequencies or periods. The mean plus one stan-
dard deviation response has been generally used as a basis for design
spectrum (Blume et al., 1972; Mohraz et al., 1972; Newmark et al., 1973;
Mohraz 1976).



After 1971, studies were carried out to correlate the shape and
magnitude of response spectra to site geology, earthquake magnitude,
duration of strong motion, epicentral distance, and maximum ground ac-
celeration. Seed et al. (1976) and Mohraz (1976) independently studied
the influence of site geology on response spectra, and some of their
conclusions were incorporated in a joint report by the Applied Tech-
nology Council, the National Bureau of Standards and the National Science
Foundation (1978) for the development of seismic regulations for buil-
dings. In a statistical study, McGuire (1974) showed that long epicen-
tral distances tend to decrease the response at high frequencies. Later
Trifunac and Brady (1975) correlated the duration of strong motion with
the Modified Mercalli Intensity Scale, earthquake magnitude, epicentral
distance and site geology. Finally, Mohraz (1978a,b) showed that the
earthquake magnitude, peak ground acceleration and duration of strong
motion influence response spectra, and consequently the design spectra.

A different approach in seismic analysis and design of structure
is the use of random vibration theory. The simulation of earthquake
records by a random process has received a great deal of attention.

Both stationary and nonstationary random processes have been used to

model earthquake ground motion. Housner (1947, 1955), Thompson (1959),
Barstein (1960}, Bycroft (1960), Tajimi (1960), Rosenblueth and Bustamente
(1962), and Housner and Jennings (1964) used a stationary random process
while Cornell (1960), Bolotin (1960), Bogdanoff et al. (1961}, Shinozuka
and Sato (1967}, Amin and Ang (1968), Jennings et al. (1969), Iyengar

and Iyengar (1969), Liu (1970), and Trifunac (1971a} employed a nonsta-

tionary process. A special form of the nonstationary random process



in which an earthquake record is assumed to be & member of a stationary
random process modulated by a time-dependent intensity function has
been widely used by many investigators, for example, Amin and Ang (1968),
Jennings et al. (1968), Goto and Toki {1969), Ruiz and Penzien (1969),
Murakami and Penzien (1975), and Hsu and Bernard (1978). A nonstationary
random process in which the frequency structure of the records is as-
sumed to be time-dependent has been used by Trifunac (1971b), Saragoni
and Hart (1972), Kubo and Penzien (1976), and Wong and Trifunac (1979).

The majority of studies in earthquake motion simulation use either
a stationary or nonstationary random process has been to obtain a re-
sponse spectrum from artifically generated accelerograms. For example,
Bycroft (1960} used "white noise" to model earthquake ground motion
and related his result to Housner's (1959) standard velocity spectra.
Later Housner and Jennings (1964) used a stationary Gaussian random
process to generate artificial accelerograms from which they computed
response spectra. They demonstrated that the velocity spectra of the
real and artificially generated earthquake motion are similar in shape
and statistical properties. Using Rosenblueth and Bustamente's (1962)
approximate theory based on diffusion analysis and Kanai's (1957) and
Tajami's (1960) semi-empirical equation for power spectral density,
Housner and Jennings presented expressions for damped and undamped ve-
locity spectra in terms of power spectral density.

Although the use of random vibration theory in seismic analysis
and design is straightforward (see for example Hurty and Rubinstein, |
1964; Lin, 1967; and Penzien, 1970), this theory has not received the

wide attention that the response spectrum has. A random phenomenon,



such as an earthquake and its damage potential to a structure, may best
be described by probability statements. Once the ground motion is charac-
terized through its power spectiral density, the mean square response

of the system can be computed and probability statements regarding the
response exceeding a specified value be made by either the use of
Chebychve's inquality or a normal distribution function, if the process
can be assumed to be normal. Such probability statements provide useful
information regarding the susceptibility of a design to failure as well
as the means for improving it. A designer currently lacks such informa-
tion when using a response spectrum approach since it is a collection

of the peak responses and any probability statement based on a statis-
tical analysis of response spectra provides statements on peak rather
than on the response.

The difficulty in using the random vibration theory in seismic
analysis and design is the lack of a sufficient number of useful re-
corded ground motion and the remote possibility of having them in the
near future. Hence there is a need for a methodology based dn the avail-
able information which one can use with reasonable confidence. Param-
eters such as earthquake magnitude, peak ground motion, epicentral dis-
tance, duration of strong motion, energy release, etc., are random vari-
ables which characterize an earthquake and therefore should be considered
in the application of the random vibration to seismic design. Motion
recorded at different stations during the same event or at the same
station during differeht events differ in characteristics; nevertheless,
they should be considered as different realizations of the same random

process with some common underlying features.



The first phase in seismic design is to determine the probability
of occurrence of an earthquake at a given site for a specified set of
parameters, such as peak ground acceleration, earthquake magnitude,
epicentral distance, duration of strong motion, etc. The second phase
is to formulate an appropriate statistical description of the ground
motion. The response of a structure to a seismic disturbance can then
be obtained when the above two phases are completed. The determination
of the probability of occurrence of an earthquake has received the at-
tention of many investigators (see Esteva, 1976; Burridge and Knopoff,
1976), and is beyond the scope of this investigation. We will, there-
fore, restrict our attention to the formulation of statistical descrip-

tion of ground motions.

1.2 OBJECTIVE AND SCOPE

Power spectral density, the most useful statistical description
of a random process, is an essential part of seismic design of struc-
tures through the use of random vibration theory. As noted previously,
a number of parameters such as site geology, earthquake magnitude, epi-
central distance, duration of strong motion, and peak ground accelera-
tion influence earthquake ground moticn and response spectra. It is
believed that these parameters would also influence the power spectral
density of the recorded ground motion.

The objective of this investigation is to study the power spec-
tral densities of a number of recorded earthquake accelerograms. The
study considers the influence of earthquake parameters such as site

geology, earthquake magnitude, epicentral distance, duration of strong



motion, and peak ground acceleration on power spectral density. Rela-
tionships between the root mean square acceleration of the records and
an expression characterising the various earthquake parameters are es-
tablished. These relationships are used to estimate the power spectral
density of the motion for a set of specified earthquake parameters at

a site. Finally, the estimated power spectral density is used to obtain
the response of a éing]e degree of freedom system and the results are
compared with the response computed from the records directly. The
study includes horizontal as well as vertical ground motion.

Chapter 2 describes some preliminary concepts of random vibration
and the input-output relationship for a single degree of freedom system
subjected to ground motion which is used in this study. Chapter 3,
in a pilot study, shows that with an appropriate selected duration of
strong motion, most earthquake records may he classified as locally
stationary. Procedures for generating a time-dependent power spectral
density from a selected group of records and the feasibility of using
it to compute the response of a single degree of freedom system are
also discussed in that chapter. In Chapter 4 the correlation between
the RMS value of the record and a variable reflecting the effects of
earthquake magnitude, epicentral distance, peak ground acceleration
and duration of strong motion is investigated. Chapter 5 presents the
power spectral densities for the horiionta] and vertical components
of earthquake records for three geological classifications. In addition
the findings in Chapters 4 and 5 are used to compute the response of
a single degree of freedom system and the results are compared to those
obtained from the records directly. Summary and conclusions and the

recommendations for further studies are presented in Chapter 6.



1.3 NOMENCLATURE

The symbols are defined where they first appear. The majority are sum-

marized below for ease of reference:

a maximum ground acceleration

AA absolute acceleration of the mass in a SDOF system
CEq. (3.5)]

A, B constants

Be resclution bandwidth

Ci constants

D epicentral distance

L ] expected value of [ ]

f cyclic frequency

F(t) forcing function

G(f) one-sided power spectral density function

G(f) raw estimate of power spectral density function

G(f) estimate power spectral density function

h sampiing interval

H(f) frequency response function

tH(F) | Transmissibility function, gain factor

fHd(f)[ Transmissipility function--base accelerations as input,
relative displacement of the mass as output

‘Hv(f)l Transmissibility function--base acceleration as input, relative
velocity of the mass as output

]Ha(f)l Transmissibility function--base acceleration as input,
absolute acceleration of the mass as output

3 /-1, index

k index, constant



No
p
Pr( )

r

R (1), Ry (1)

R(t, t,)
RD

RV

1> Pos P3s Py

spring constant, number of records
number of consecutive frequency components
mass of a SDOF system-

earthquake magnitude

degrees-of-freedom associated with a random variable

number of data points in a record
number of added zeros to a record
constants

probability that ( )

correlation coefficient
autocorrelation function

nonstationary autocorrelation function

relative displacement of the mass in a SDOF system
(Eq. (3.3)] -

relative velocity of the mass in a SDOF system
[Eq. (3.4)]

two-sided power spectral density function
scale factor
arbitrary times

initial and final times in selecting duration of
strong motion

observation time
record length

relative displacement of the mass in a SDOF system
[Eq. (2.53)]

absolute displacement of the mass in a SDOF system
[Eq. (2.54)]

input and output random variable respectively

Fourier Transform of x{t)



absolute base acceleration of a SDOF system
[Eg. (2.53)]

a small probability, level of significance
duration of strong motion

random error

damping ratio

mean value

standard deviation

standard deviation of relative displacement response of
the mass of a SDOF system

standard deviation of relative velocity response of the
mass of a SDOF system

standard deviation of absolute acceleration response of
the mass of a SDOF system

variance

time lag

Chi-Square variable
root mean square
mean sguare

variable reflecting the combined effects of earthquake
earthquake parameters






CHAPTER 2

SOME PRELIMINARY CONCEPTS IN RANDOM VIBRATION

2.1 INTRODUCTORY REMARKS

This chapter presents a brief review and summary of some of the
concepts in random process which are used in this study. They can be
found in a number of texts, such as Crandall (1963), Lin (1967), Bendat
and Piersol (1971), and Clough and Penzien (1975). The definitions
of ergodic, stationary and locally stationary random processes are given
and means for describing a random process are outlined. The power spec-
tral density function, the most important descriptive characteristic
of a stationary random process, is given special attention. The use
of the Fast Fourier Transform (FFT) procedure in computing the power
spectral density is presented, and the errors in estimating it are dis-

cussed.

2.2 RANDOM PROCESS

A collection of data representing a physical random phenomencn
cannot be described by an explicit mathematical relationship because
each observation is unique and any observation is only one of the many
possible outcomes. A single time history representing a random phe-
nomenon is called a sample record, and a collection of sample records

constitutes a random process.

10
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The properties of a random process can be estimated at any time
by'computing average values over the collection of sample records.
Mean value and the autccorrelation function are usually the quantities
first calculated to study the stationary characteristics of a random
process. For the random process {x{t)}, where { } dénotes an ensemble
of sample records,fthe mean value “x(tl) and the autocorrelation func-

tion Rx(tl’ ty + t) at time t, are computed as:

K

1
p(ty) = Tim¢ Y x. (t.) (2.1)
%1 koo K g2 KL
( ) 1§()< ) (2.2)
R(t,, t, +7)=1im+ % (t X, {t, + 1 2.2
x'17 71 kco K k=1 k*17 Tkl

where the subscript k indicates the k™"

sample record of the ensemble
and v is a time lag. The random process {x{t)} is said to be nonsta-
tionary if ux(tl) and Rx(tl’ ty + T) vary as time ty varies. For the
special case where the mean value is constant and the autocorrelation
is only a function of the time lag, that is, ux(?l) =u and

Rx(tl, ty * T) = RX(T), the random process {x(t)} is said to be weakly
stationary or stationary in the wide sense. The mean value and the
autocorrelation function are conseguences of first and second order
probability distributions. If all possible probability distributions
are independent of time translation, the process is called strongly
stationary. For a Gaussian random process, where all possible distribu-

tions may be derived from the mean value and the autocorrelation func-

tion, stationary in a wide sense implies strong stationary character-
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jstics.

When the time-averaged mean value and the autocorrelation function

of the kth sample record as defined by
(k) = h'm%.-fT x, () dt (2.3)
Ro(kyr) = Tim= [1 o (t + 1) dt (2.4)

where T is the duration of the record, do not differ when computed over
different sample records, and are equal to those computed over the en-
semble, then the stationary random process {x(t)} is said to be ergodic.
Therefore, the statistical properties of an ergodic random process can
be obtained from a single sample record.

Even though the statjonary concept applies to a random process,
it is sometimes used to describe a single sample record. A different
interpretation of stationary characteristic is implied when a single
record is being described. In such cases it is generally meant that
the statistical properties computed over a short interval do not vary

significantiy from one interval to another,

2.3 STATIONARY RANDOM PROCESS

The following are used to describe the properties of random data:
(a) mean square values, (b) probability density function, (c) autocor-
relation function, and (d) power spectral density function. The mean
square value describes the intensity of the data. The probability den-

sity function describes the amplitude properties of the data. The auto-
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correlation and power spectral density functions, which are Fourier
transform pairs, provide the same information in time and frequency
domains, respectively. The autocorrelation function of a stationary
random process describes the general dependency of the data on each

other at different times and is defined as:
R () = Elx(t) x (t + 1)] (2.5)

The autocorrelation function is always a real-valued even function with

a maximum at t = Q, that is,
R (t) = R, (-1) (2.6)

R (0) > IRX(T)lfGP all t (277)

The autocorrelation function at time tv = 0 is equal to the mean square
value, whereas at t = = it approaches the square of the mean. In equa-

tion form

Perhaps the most importént single descriptive characteristic of
a stationary data is the power spectral density function, which describes
the frequency composition of the data in terms of its mean square value.
For linear systems with constant parameters (mass, stiffness and damping)
the output power spectrum is equal to the product of the input power

spectrum and the response function of the system. The mean square value
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of the data in a frequency range of jnterest is determined by the area
under the power spectrum in that range {note that ¢2 is the total area
under the power spectrum). The square root of the power spectrum at
zero frequency represents the mean value, u, of the data. The mean

and mean square values are expressed as:

J7 s, (F) o (2.10)

<
[}

=
|

. {f? 5, (F) df] 1/2 (2.11)

where the two sided power spectral density function Sx(f), is defined

as the Fourier transform of the autocorrelation function
S (f) = . R (1) e It (2.12)

From the symmetric property of the autocorrelation function, Eq. (2.6),

it follows that
Sx(f) = SX(-f) (2.13)

Using Eq. (2.13), Eq. {2.12) can be simplified to

S (f) =2 fm R (1) cos2nfrdr (2.14)
X 0 X

The use of Sx(f) defined over the frequency range of (-, =) and
the exponentials with imaginary components often simplify mathematical
formulations. The quantity measured in practice is the one sided power
spectral density Gx(f), where the frequency varies over (0,»), and is

defined as
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Gx(f) = ZSx(f) 0<f<w {2.15)

Usually a finite upper Timit on frequency range is imposed by the sam-
pling rate of the data. The quantity Gx(f) can be defined in terms

of the autocorrelation function as

6,(f) =4 R (1) cos2rfrdr 0<f<m (2.16)
X 0 X

An alternative way to define the power spectral density function
is to consider a sample record xk(t) of a stationary random process
in the time interval of 0 <t < T and let
*
(

S (k,F,T) = 2 X, (£,T) X (F,T) (2.17)

e L

where Xk(f,T) is the finite range Fourier transform of xk(t) defined
by

-j2nft (2.18)

X (F,T) = I; x, (1) e dt

* .
and Xk (f,t) is the complex conjugate of Xk(f,t). It should be noted
that an infinite range Fourier transform of xk(t) does not exist. How-
ever, by restricting the limits to the range of 0 to T, the finite range
Fourier transform can be obtained. |
Defining the power spectral density function of the process as
S {f) = Vim E[S_(k,f,T)] (2.19)
X X
T
where, E[Sx(k,f,T)} is the expected value operation over the ensemble

index k, and making use of Eq. (2.17), we obtain
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5,() = Iim L el (£,1)12) (2.20)

In terms of the one sided power spectral density function Eg. (2.20)

reduces to

G, (F) = 2 Tim  E[]x, (£,T)1%] (2.21)

where 0 < f < =,

2.4 LOCALLY STATIONARY RANDOM PROCESS

Nonstationary data is the class of data whose statistical proper-
ties vary with time. Time-varying mean value, time-varying mean square
value, and time-varying frequency structure of the data indicate the
nonstationary characteristic of the data. Such a conclusion is a nega-
tive statement denoting the lack of stationmary characteristic of the
data. Therefore, nonstationary random processes are defined as those
which do not qualify as a stationary random process, and their time-
dependent statistical properties are determined by time averaging across
the ensemble of records. A particular type of nonstaticnary random
process, whose frequency structure is time invariant is called a Tocally
stationary process (Page, 1952; Silverman, 1957; and Bendat and Piersol,
1971) which will be discussed later in this section.

The autocorrelation for a nonstationary process is generally de-

fined as

Rx(tl’ t2) = E[x(tl) x(tz)] (2.22)
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where t1 and t2 are two arbitrary times. A further insight in the com-

position of the autocorrelation function can be gained by the following

transformation:
e
tet T = t2 - tl and t = 5 (2.23)
i i = - L = T
which results in -tl =t 5 and t2 t+ 5 (2.24)

With these changes of variables, the autocorrelation function becomes

R (t,7) = E[x(t - —g) x(t + -';-)] (2.25)

In the above equation t denotes time and t represents a time lag. It
should be noted that Rx(t,r) evaluated at v = 0, gives the time-

dependent mean square value function.

R (t,0) = ELx(t) x (£)] = ¥ 2(t) (2.26)

For some processes it may be possible to decompose the autocorrelation

Rx(t,T) into a product of two functions,
Rx(t,T) = Rlx(T) R2x(t) (2.27)
where Rlx(T) is the stationary autocorrelation function, and sz(t)

is a slowly varying scale factor defined within a short time interval

as

e

R, (t) = C; ti g St <ty (2.28)

i-1
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Nonstationary random processes whose autocorrelation is in the form
of Eq. (2.27) are called locally stationary processes. When Rlx(T)

is normalized such that Rlx(o) = 1, then
R, (t) = v.2(t) (2.29)
2X

Therefore,

. .2
R (ta7) = v, °(t) Ry, (1) (2.30)
The Fourier transform of Eq. (2.30) gives the two sided time-dependent
power spectral density function
- 2 o0 -2jmfT 5 3
5, (8,F) = ¥, (t){m Ry (7) e dt (2.31)
In terms of the one sided time-dependent power spectral density func-
tion, Eq. (2.31) reduces to
6.(t,F) = ¥.2(t) 6. () 0<f<w (2.32)
b S X X -
where wi(t) is the time dependent mean square value function and Gx(f)
is the stationary power spectral density function of the process.
The power spectral density function given by Eq. (2.32) can be
estimated by first computing the time dependent mean square value func-
tion, which is averaged across the ensemble of records, and then esti-

mating Gx(f) in the same manner as for a stationary random process.

Since the total area under the power spectral density represents the
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mean square which is reflected in wxz(t), then one needs to normalize
the total area under the stationary power spectral density function

to unity.

e (f) =1 (2.33)

Before estimating the time-dependent power spectral density function,
Gx(t,f), one should demonstrate the validity of the assumption of Eq.
(2.27). To show that the local stationary assumption is a reasonable
one, the power spectral density estimates of different segments of a
record in the ensemble should exhibit similar shapes but have different
scales. In order to have confidence in the assumption, a sufficient
number of records in the ensemble should be tested for similarity of

their segmentally computed power spectral densities.

2.5 ESTIMATING POWER SPECTRAL DENSITY OF STATIONARY RANDOM PROCESS

Equation (2.21) defines the power spectral density of a stationary
random process. A stationary random process contains many sample rec-
ords with infinite duration, whereas the records of physical phenomenon
are few in number and short in duration. Therefore, one can only es-
timate the power spectral density function. In order for the power
spectral density function to reveal the characteristic of the data,
the record should be long enough to include all the pertinent frequencies
in the data and, further, the time interval used in the digitization
of the record should be short enough to allow the computation of power
spectral density with a good resolution.

An estimate of the power spectral density function is obtained
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by first computing the power spectral density function of each of the
sample records and then averaging the spectral components ék(f) at each
frequency over the ensemble. This averaging or smoothing operation

is intended to approximate the expected value operation in Eq. (2.21).

Thus, Eq. (2.21) is replaced by the following equations:

~ 2 2

G (f) =7 IXk(f,T)l (2.34)
. Lk

6, (F) = ¢ kzl G, (f) (2.35)

where ék(f) represents the raw estimate of the power spectral density

of the kth

sample record, and éx(f) is the estimate of the power spec-
tral density of the process {x{t)}.
Assuming that the records contain N data pcints spaced h seconds

apart and letting

X, = x (nh) n=0,1,2.. . N1 (2.36)

Eq. (2.18) can be expressed in discrete form as

N-1 .
R(ET) = ] X, g-J2rfnn (2.37)
n:

The discrete frequencies at which the Fourier transforms XK(f,t) are

”I P O, l’ 2 a + . N 1 (2038)

Substituting Eg. (2.38) into Eq. (2.37), one obtains
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N-l o ~ERRR
- N _
X (f,T)=h ] x_ e P=0,1,2. . .N-1 (2.39)
k''p n=0 "

It should be noted that when a continuous record is sampled such
that the time interval between sample values is h seconds, the highest
frequency which can be detected in the data is %F cps. The cut off

frequency

_1
f. =5 (2.40)

is called the Nyquist frequency. Therefore, when the N data points

in the record are h seconds apart, the Nyquist frequency occurs at

p :-g. Hence the raw estimates of the power spectral density is given
by

2

(f ,T)| k=1,2...K (2.41)

Be(F)) = §5 X (

kKY'p Nh

where the spectral components Xk(fP,T) are computed at the frequencies
=P - N
o = W P=0,1,2...5 (2.42)

The smallest frequency increment for which a change in the esti-
mate can be detected is called the resolution bandwidth which is defined

as

=L (2.43)

Be =7 = W

e

-

Equation (2.43) shows that the larger the number of data points in the

sample record, the finer the resolution bandwidth. Because of the na-
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ture of the Fast Fourier Transforms, one can add zeros to the record

to obtain a finer resolution bandwidth. When padding a record with
zeros, the spacing of the spectral components will be based on the aug-
mented rather than the original record length. The resolution bandwidth

is then given by

_ 1 '
Be TN+ NyIh (2.44)

where NO is the number of zeros added to the beginning or the end of
the record. In such a case the area under the power spectral density
is no Tonger equal to the mean square value of the original record,

but rather to the mean square value of the augmented record.

2.5.1 RANDOM ERROR IN POWER SPECTRAL DENSITY ESTIMATE

It can be shown (see Bendat and Piersol, 1971) that each compo-
nent of Gk(fp) is a chi-sguare variable with two degrees of freedom.
The random error of the estimate ék(fp) is the ratio of the standard

deviation to the mean value of the estimate:

= k
£ T —E;(—T-—R)‘ (2.45)

The mean and variance of a chi-square variable with n degrees of freedom
are n and 2n, respectively. Hence for two degrees of freedom, the ran-

dom error is

o ()] 3 (2.46)
& 7 Gk(fg) ) nn:E:I
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which indicates that the standard deviation of the estimate is as large
as the mean value which is obviously not desirable. In the next sec-

tion techniques for reducing the error are briefly described.

2.5.2 SMOOTHING OF POWER SPECTRAL DENSITY ESTIMATE

The random error associated with Eq. (2.34) in estimating the
power spectral density can be reduced in one of three ways. First is
the frequency smoothing, in which the result of % contiguous spectral
components of the estimate of a single sample record are averaged.
Second is the ensemble averaging, which is accomplished by computing
the estimate from K sample records and then averaging the estimates
at each frequency of the spectral components. The third approach uses

a combination of the two.

Frequency Smoothing. When % adjacent fregquency components are

averaged, the final spectral estimate Gi is given by

1 (2.47)

=2f

G,

(8 + 8y * - - i

There are N/2% such estimates which can be considered as representing
the midpoint of the Frequency interval between fi and f

XZ (Chi square) addition theorem for independent variables, (see Wagpole

s4g.1- BY the
and Myers, 1978) the quantity éi will be a x2 variable with roughly
n = 2¢ degrees of freedom. The final effective resolution bandwidth

will approximately be ¢/T. Therefore,
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n=2% {2.48a)
- 2

B, = & (2.48b)
-

e =gl (2.48¢c)
r 2

Ensemble Smoothing. Assuming that all sample records are of equal
length Tr’ the frequencies at which the spectral estimates for each
record are computed by the Fast Fourier Transform procedure will be
identical. Therefore, by averaging across the ensemble of K estimates,
the final spectral estimate is given as

8(f,) =

<l

[él(fp) ¥ éz(fp) b G(f)] (2.49)

The quantity é(fp) will be a x2 variable with approximately n = 2X

degrees of freedom. The effective resclution bandwidth will still be

%—. Therefore,
r

n =2k {2.50a)
R (2.50b)

e T

r

-4l
S (2.50c)

Usually the record lengths in an ensemble are not equal. In such
cases, one needs to pad the records with zeros to achieve equal record
tengths. The effect of adding zeros to records was discussed in section

2.5.
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Combined Smoothing. For a combination of frequency smoothing

and ensemble averaging, the final effective resolution bandwidth will

be %— and the resulting estimate will be a x2 variable with n = 22K
r
degrees of freedom. The random error in this case is given by e, = %E-,

2.5.3 EQUIVALENT POWER SPECTRAL ESTIMATES

When power spectral density estimates are obtained under different
conditions, e.g. from two parts of the same record or from two indepen-
dent sample records, they may be tested for equivalence. Bendat and
Piersol (1971) give a procedure to determine whether two estimates are
statistically equivalent over the same frequency interval. The test

is based on the statistic

N 2
5 nyn f Gy {(f.)
% =‘% (rﬁ+§ ) ) (log 11 ) (2.51)
1) =1 6,(F.)

having a chi-square distribution with Ne degrees of freedom. The region

of acceptance is

Zax @ n=N (2.52)

where the two estimates Gl(f) and Gz(f) have the same resolution band-
width, with ny and n, degrees of freedom, respectively; Nf is the number
of bandwidths to cover the frequency range of interest and a js the
Tevel of significance of the test.

It should be noted that this test is valid for the condition when

the power spectra are computed from two statistically independent records
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or segments of a record. This condition is not strictly satisfied when
overlapping segments of a record are used. However, when the overlap
is small, the segment and the entire record may be considered statis-

tically independent.

2.6 INPUT-QUTPUT RELATIONSHIP

For a single degree of freedom system subjected to a base motion

(Figure 2.1), the governing differential equation of motion is

.. . 2 _ e
u + angu + wo U = -Z (2.53)
where
u = relative displacement of mass m,
z = absolute displacement of the base,

g
u

-‘[.K_
n natural frequency = -
C

damping ratio = T

¥y
1]

The equation of motion of a single degree of freedom whose mass is sub-

jected to a forcing function is

2

Vot 2w Bt w oV o= F(t) (2.54)
where,
v = absolute displacement of the mass,
F{t) = forcing function per unit mass.

Since Eq. {2.53) and (2.54) are of the same form, the study of both

types of excitation can be combined into one. The base motion or the
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forcing function or a combination of both will be referred to as input.
Correspondingly, the induced response of the system, either absolute
or relative displacement, velocity and acceleration of the system will
be referred to as output.

Let us consider a single degree of freedom system with a constant
mass, stiffness, and damping subjected to a Gaussian staticnary input
x{t) with zero mean. Since the system is linear, the output y(t) will
also be Gaussian stationary with zero mean. The relationship between

the input and output power spectral density is given by
6, () = [H(F)|* 6, (F) (2.55)

where Gx(f) and Gy(f) are the one sided power spectral density of the
input and output, respectively, and the function ]H(f)|2 is the trans-
missibility function or the gain factor, which prescribes the portion
of the energy to be transmitted through the system at various frequen-

cies. It follows that the mean square value of the output is given

by

2.~ o 2
vy o= fo 6, (f)df = fO[H(f)l 6, (f)df - (2.56)

The integration of Eg. (2.56) for obtaining the mean square re-
sponse can be carried out in a clesed form if a mathematical expression
for Gx(f) js available; however, if Gx(f) is given in a tabular form,

a numerical integration is necessary. When Gx(f) is a smooth function
with no sharp peaks, a good approximation of equation (2.56) can be

obtained for small damping as follows: For small damping ratio &, the
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transmissibility function IH(f)!z is sharply peaked around the natural
frequency fn and it reduces considerably for small changes in frequency.
Therefore, the major contribution to the integral in eguation (2.56)
comes from the region around the natural frequency fn. In addition

if the power spectral density varies slowly in the vicinity of the natu-
ral freguency, then the contribution of Gx(f) to the integral outside
that vicinity is minimal. For such cases Gx(f) in Eq. (2.56) can be

taken outside the integral. Thus,

o«

- 2
by = 6, (F) jo [H(F)] < df (2.57)

Considering the relationship between the mean square, variance, and

the mean value

02262452 (2.58)

s =0 (2.59)

the variance of the output can be written as

5,° = G, (f) fz IH(£) |2 df (2.60)

The mean and the variance of a stationary Gaussian process are the only
quantities needed to describe the probability density function of the
process.

Since the excitation x{t) is random, the response y(t) is also

random, and it is conceivable that it may exceed a specified level Yimax®
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Consequently, the ocutput is described by making probability statements

regarding the response exceeding Ymax The probability of y{(t) exceed-

ing Yiax is
2
1 (y-r.)
R

® 1
Priy > yoa) = | 5 @ Y ody
ymax Y
ar

Pr(y > Yyax) =% [1 - erf (_ym?zax;u )]

where the error function is defined as

2 (X =P
erf(x) = 5= [7 ™ dp
Ty

Since Hy = 0, we can write equation (2.62) as

Y
Pr(y > Ypax) = %- [1 - erf (7?E§§~)]

(2.61)

(2.62)

(2.63)

(2.64)

In design the sign of y(t) is unimportant. The probability that

the absolute value of y(t) exceeds Ymax is

Ymax
Pr(]y] > ¥pay) =1 - erf (‘/Z"y) (2.65)
by allowing y = kg, where k =1, 2, 3, ..., we obtain the following

max y



30

probabiiity statements:

Prilyl > Gy) =1 - erf (7%) = 31.74%
Pr(ly| > Zcry) =1 - erf (7%-) = 4.56% (2.66)
Prly| = 30y) =1 - erf (7%) = 0.26%

It should be noted that the above probability statements result when
the mean and the variance of the output are known.

So far our discussion of the input-output relation has been gen-
eral. If we now consider support acceleration as input and the relative
displacement of the mass as output, we can formulate the transmissibility

function as

Upon substitution of Eg. (2.67) into Eg. (2.60) and integrating, we

obtain the variance of the relative displacement as

2 x‘'n
(¢3 D e——— (2.68)
Y o gan’ €fn3

where the subscripl x indicates that the power spectral density G)'('(f)
is obtained from the input acceleration. The transmissibility function
for support acceleration as input and the relative velocity as output

is
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2
Ho(F)]% = f (2.69)

C e ET A

Simitarly from Eq. (2.60), the variance of the relative velocity is

2 _ G;(fn)

co =
y lﬁﬂgfn

(2.70)

Finally the transmissibility function for support acceleration as input

and the absolute acceleration as output is

= ()]

2 _
[Hy(F)]° = 5 > (2.71)
fn fn .
the variance of the absolute acceleration is
,  wf (L1 +ag?) a(f ) (2.7
%a ~ 4E :

Knowing the mean and the variance of the output, it is a simple matter
to make probabi]ity‘statements such as those given by Eq. (2.66).

For a locally stationary random process the input power spectral
density is time-dependent (Egq. 2.32); therefore, the variance of the
output will also be time-dependent. In this case the time dependent

mean square value is

df {2.73)



32

and the relative displacement, velocity and the absolute acceleration

of a single degree of freedom system subjected to a base motion are

given by
oB (1), + XNy (2.74)
Y a7t

n

G (t,f.)

2 _ X T"?'q

) wf (14 2:2) 6o (£,F )

o“(t), = T (2.76)

Probability statements for output are cbtained from expressions similar

to those of Eg. (2.66). Thus,

Pr(ly] > ka(t) ) =1 - erf (75-) k=1,2,3, ... (2.77)

It is interesting to note that y and c(t)y on the left side of Eq. (2.74-
2.76) depend on time whereas the probability statements are not time
dependent. '

Equations (2.74-2.76) have been obtained under the assumption
of smooth or slow varying power spectral density (ideal white noise).
For cases where the power spectral density is not flat Eq. (2.56) must

be utilized in which case the response takes the following form:

oP(t)y = [ luy(F)1? Gy(t,6) of (2.78)
0

o2(t)s = L IR (E)2 Gu(t,f) df (2.79)
0 v X

&:
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208) = [ 1H_(F)] 6:(t.f) df (2.80)
a 0 a X ? :
where the functions |H(f)| are given in Eq. (2.67), (2.69), and (2.71),
respectively.
The materials presented in this chapter are employed in the sub-
sequent chapters to obtain a time-dependent power spectral density,
to predict the response of a single degree of freedom system to a set
of base excitations, and finally, to compare the predicted response

to the response of the system computed directly from the records.
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CHAPTER 3

TIME-DEPENDENT POWER SPECTRAL DENSITY OF
EIGHT SELECTED RECORDS

3.1 INTRODUCTQRY REMARKS

An examination of earthquake records reveals some of their general
characteristics. First, due to a finite energy release at the source
the resulting motion is transient. Second, this transitory phenomenon
manifests itself in three distinct zones in an accelerogram: an initial
build-up zone, an intermediate zone of strong motion, and a decaying
zone. Third, the acceleration oscillates around a zero line. These
general observations lead one to believe that earthquake records are
nonstationary. In fact, Amin and Ang (1968) confirm the nonstationary
characteristics of the eight earthquake records used originally by Housner
(1959) to establish a standard velocity reponse spectrum.

As mentioned in Section 2.4, the nonstationary characteristic
could manifest itself in the time-varying mean value, time-varying mean
square value, and time-varying frequency structure of the data. For
earthquake records one can readily eliminate the time-varying mean value
as a contributing factor to nonstationary characteristic. Time aver-
aging results show insignificant changes in the mean value as a function
of time, whereas significant changes are observed in the mean square
value and the frequency structure of the records.

Realizing that the low amplitude impulses which usually appear
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toward the beginning and the end of an earthquake accelerogram have
1ittle effect on the energy content within the strong motion duration
of the earthquake, we will consider only that part of an earthquake
record which contains the strong motion. We further assume that no
significant variation in the spectral composition occurs during the
strong motion segment of the record. Under such conditions it will

be justified to assume that the nonstationary earthquake random process
is of locally stationary form (Page 1952, Silverman 1957, Priestley
1965, Bendat and Piersol 1971).

In this chapter, using the eight selected records considered by
Housner (1959), we will show that it is possible to select a strong
motion segment of earthquake records during which its frequency struc-
ture remains reasonably constant. Using such selected segments for
the eight records a time-dependent power spectral density is formulated
whose frequency structure remains time-invariant, whereas its magnitude
(area under the power spectral density) becomes a function of time.
This time-dependent magnitude is the ensemble short time mean square
value of the eight records. Finally, we will show that a good correla-
tion exists between the RMS value of the selected duration, and a param-
eter reflecting peak ground acceleration, duration of strong motion,
earthquake magnitude and epicentral distance; thereby permitting one
to estimate the average magnitude of the time-dependent power spectral

density from the knowledge of the mentioned earthquake parameters.
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3.2 DURATION OF STRONG MOTION

The duration of strong motion is widely recognized as an important
characteristic of ground motion. Studies by Bolt (1974), Trifunac and
Brady (1975b), and McCann and Shah (1979) suggest that the duration
of strong motion depends on the purpose for which it is used. The in-
tention in this study is to determine the duration of strong motion
during which the frequency structure of the record remains nearly the
same.

The definition proposed by Bolt (1974), which is known as the
bracketed duration, is useful to find the duration of strong motion
during which the structure will be subjected to a level of accelera-
tion equal to or greater than a specified 1imit. Another definition,
which is related to the structural response, is that of Trifunac and
Brady (1975b) where they define the duration as the time interval during
which a significant contribution to the integral f;azdt takes place.

The first and last 5 percent contributions to this integral is omitted
and the remaining 90 percent is defined as the significant or the strong
motion contribution to the integral. The time interval between the

Tow and the high 5 percent cut-off points (5 and 95 percent, respec-
tively) is defined as the duration of strong motion.

The definition of strong motion suggested by McCann and Shah (1979)
is related to the average energy arrival rate and is obtained by consid-
ering the cumulative root-mean square function of the record. A search
is performed on the derivative of this function to identify the cut-
of f times. The final cut-off time, Tz, js taken as the last time at

which the derivative of cumulative root-mean square function is positive.
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To obtain the initial time Tl’ the same procedure is repeated except
the record is now considered from_the “tail-end."

The method proposed here is similar to McCann and Shah's (1979),
with one slight difference in the manner that the cut-off points are
determined. In this case the cut-off time is selected as the last time
at which the slope of the cumulative root mean square function is equal
to or greater than one cm/seczlsec. For accelerogram spacing of .02

2 in the cumulative

seconds, this corresponds to a change of .02 cm/sec
RMS function. The derivative of cumulative root mean square function,
in addition to sharp peaks and valleys, exhibits flat regions. The
selection of unity or any other appreciable slope instead of any posi-
tive slope (which could be extremely small) ensures that the cut-off
points are determined where the contribution to the cumulative RMS func-
tion is no longer significant. Two other slopes, 0.5 and 2.0 cm/secz/sec,
were also examined and it was determined that in general they did not
result in satisfactory durations of strong motion. As will be shown
later, the criteria used in this study provides durations of strong
motion for which the frequency structure of data remains time-invariant
more often than the methods proposed by either Trifunac and Brady (1975b)
or McCann and Shah {1979}.

Another procedure for determining the duration of strong motion
such that the frequency structure of the data would be time-invariant
is to apply the equivalent power spectral test (see Section 2.5.3) to
the normalized power spectra of two different segments of the accelero-

grams, If the two normalized power spectral densities are equivalent,

the frequency structure of the two accelerogram segments are the same;
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and therefore, time-invariant. [Establishing equivalency between the
norma1ized power spebtral densities of consecutive segments of an ac-
celerogram would give a duration for which the frequency structure re-
mains time-invariant. However, such a procedure is extremely time con-
suming and not economical when large number of records are to be ana-
lyzed. In addition, this method may or may not yield consecutive seg-
ments with consistent freguency structure. Therefore, this procedure

was not used.

3.3 COMPARISONS OF PROPOSED DURATIONS OF STRONG MOTION

In order to determine the suitability of the proposed method of
computing the duration of strong motion, the eight strong motion records
used originally by Housner (1959) were used to compute the durations
and compare them with those obtained using the procedures given by Trifunac
and Brady (1975b) and McCann and Shah (1979). Table 3.1 lists these
records and some of their properties. In Table 3.2 the initial time
Tl’ the final time TZ’ the duration of strong motion AT, the root-mean
square RMS, and the percent contribution to the integral _{azdt for
different procedures are presented and compared.

Figures 3.1 through 3.8 compare the duration of strong motion
for the three methods. The method proposed here consistently gives
shorter duration than either of the two other methods. As suspected,
for a given accelerogram, a shorter duration of strong motion results
in a larger RMS value. This is attributed not only to the insignificant
contribution of smaller pulses at the latter portion of the accelerogram

to the total RMS value, but also to the fact that fewer number of pulses
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are used in the computation as well.

It should be noted that a recomputation of the duration and the
RMS values by the procedure proposed by McCann and Shah (1979) did not
reproduce their reported values exactly. Their study includes six of
the eight components of the records used in this chapter. The dura-
tions and RMS values as reported by them and recomputed in this study
are presented in Table 3.3. Also shown are the values reported later
by McCann (1980). The values for E1 Centro 1940 are extremely close
to each other; however, large discrepencies are noted for the other
two records. It should be noted that the results reported by McCann
and Shah (1979) and by McCann (1980) are also slightly different from
each other. Although Trifunac and Brady (1975b) did not report dura-
tions and RMS values in their study, the values computed by McCann and
Shah (1979) using their procedure and those computed in this study for
the six records are in close agreement. The discrepency observed in
Table 3.3 may be attributed to the different methods of calculating
the derivatives of the cumulative RMS function. A centeral 3-point
difference formula was used in this study to obtain the derivative.

To check the durations computed by the three procedures for their
consistency of frequency structure, the equivalent power spectra test
of Section 2.5.3 was used. The test compares the normalized power spec-
tral density of consecutive segments of the selected duration with the
normalized power spectral density of the total selected duration. It
is necessary to normalize the power spectral densities, since we com-
pare their shapes (frequency structure) rather than their magnitudes.

The normalization is accomplished by setting the area under power spectral
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densities to unity. A brief description of the test procedure follows:

First, the power spectra] density of the selected duration is
estimated using the Fast Fourier T}ansform procedure {Bendat and Piersol
1971) and then it is smoothed and normalized. Next, a segment from
the selected duration is padded with zeros to make its length equal
to the length of the selected duration. The padding is performed in
order to obtain spectral estimates at the same frequencies as those
for the selected duration (see Section 2.5). The power spectral density
for this augmented segment is then estimated, smoothed and normalized.
The same degree of smoothing is performed on the power spectral density
of the augmented segment and the power spectral density of the selected
duration. The normalized power spectral density of the augmented seg-
ment is then compared with the normalized power spectral density of
the selected duration in the frequency range of 0 to 25 Hertz using
a Chi-square test with a 5 percent level of significance. Other con-
secutive segments are chosen and the procedure is repeated until the
selected duration is exhausted. With the exception of the last segment,
all segments are equal in length.

The above procedure was used to test the duration of the strong
motion for the eight records computed by the three methods. The results
of such comparisons for 2, 4, 6 and 10 second long segments are presented
in Figs. 3.9 through 3.16. The plots show the ratio of computed Chi-
square to the theoretical one. The two power spectral densities (for
the selected duration and the segment) are accepted as being equivalent
when this ratic is less than or equal to one (see Section 2.5}). Two

observations can be made from the result presented in Figs. 3.9 through
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3.16. First, the Chi-square ratio is less than one for most of the
recoerds, regardless of the method employed in determining the duration
of strong motion. Second, the Chi-sguare ratios for longer segments
(6 and 10 seconds) are closer to zero than the ratios for shorter seg-
ments (2 and 4 seconds) indicating that for longer segments the fre-
quency structure of the segment is closer to that of the selected dura-
tion. This is to be expected, since for longer segments more charac-
teristics of data are taken into account in the comparison. In the
1imit, when the length of the segment is equal to that of the selected
“duration, no difference in the frequency structure can be detected and
the Chi-square ratio would be zero {see Egq. 2.52) indicating identical
data sets.

These figures indicate that in the majority of cases even a two
second segment gives acceptable Chi-square ratios for three procedures.
As mentioned previocusly (Section 2.5.3) the equivalent spectra test
is more reliable when the segment length is short as compared to the
entire duration of the record. For this reason Chi-square ratios were
also computed for a one second segment of the selected duration as de-
termined by the three procedures as well as for the entire record length.
The results are shown in Figs. 3.17 through 3.24. The Chi-square ratios
for the entire record length of the eight records (Figs. 3.17 to 3.24)
clearly indicate that the frequency structure of the record changes
with time. The change is more pronounced towards the latter portion
of the records which correspond to the region of decaying activity.

The figures show that in a majority of cases the ratios computed using

the method proposed herein is within the acceptable limit more often
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than those computed by the other two procedures. Therefore, it was
decided to adopt the proposed procedure for determining the duration

of strong motion in this study. Since the spectrum of one second long
segments is equivalent to the spectrum of the selected duration of strong
motion, the locally stationary assumption for earthquake records is
Justified. Consequently, a one second segment is used in the computa-

tion of the magnitude of the time-dependent power spectral density.

3.4 TIME-DEPENDENT POWER SPECTRAL DENSITY

It was shown in Section 3.3 that the power spectral density com-
puted from cne second long segments of the records remains the same
for the selected duration for the eight records. This implies that
the normalized power spectral density for the selected duration is a
good representation of the local {one second long segment) normalized
power spectral densities. Since the frequency structure of the data
(the shape of power spectral density) remains time-independent, then
the time dependency of the power spectral density must manifest itself
in its magnitude. It should be noted that the term magnitude here is
referred to the area under the power spectral density curve, which is
also equal to the variance (mean square value when the mean of the rec-
ord is zera) of the record ({see Section 2.3).

An inspection of accelerograms indicates that the short time mean
square value of the records changes with time. If one estimates the
ensemble power spectral density of the eight records and normalizes
its area to unity, then its time-dependent magnitude should be computed

by performing a short time mean square operation on the ensemble of
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the records. Therefore, we may consider the time-debendent power spec-
tral density to be composed of the product of two functions--the nor-
malized power spectral density representing the frequency structure

of the data, and the time-dependent magnitude representing the area
under the power spectral density. The normalized power spectral density
is estimated from the ensemble of the records using the selected dura-
tions as if they were stationary records, and the magnitude is computed
using a one-second Tong mean square averaging on the ensemble of the
records.

When the magnitude is computed within the duration of the shor-
test record in the ensemble, it includes all records in the ensemble.
Beyond the shortest duration, fewer records are included in the computa-
tion resulting in a larger variance as the end of the Tongest record
is approached. To compute the time-dependent magnitude in a consistent
manner for the duration of longest record, the other records are padded
with zeros to make their length equal to that of the longest record
in the ensemble before the mean square averaging is‘carried out. How-
ever, with padding the average mean square value is no longer correct
and in fact, will be smaller than the average of the individual mean
square values of the records in the ensemble. This problem is overcome
by reducing the average value to one, and using the normalized time-
dependent magnitude as a scale factor which represents the variation
of the local magnitude (one second long mean square value) to an average
magnitude of unity. The scale factor can now be adjusted to reflect
the average mean square value of any record by multiplying the scale

factor by the record’'s mean square value which is computed from the
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selected duration of the record.

Therefore, one may consider the time-dependent power spectral
density to be composed of three parts. First a normalized power spec-
tral density which describes the frequency structure of the ensemble
and remains the same for the segments of the records considered; second,
a time-dependent scale factor, cobtained by performing a short time av-
eraging on the square of the acceleration and normalizing the mean of
the resulting function to one, thereby describing the normalized varia-
tion of the localized mean square acceleration; and finally the mean
square acceleration. Since the mean square acceleration can be computed
for each record, we can obtain a time-dependent power spectral density
corresponding to each of the records in the ensemble. Correlations
between the mean square acceleration and earthquake parameters would
enable one to estimate the time-dependent power spectral density for
a given set of earthquake parameters.

The most important ground motion parameter which is widely used
in design is the peak ground acceleration. As it will be shown Tater
in Chapter 4, a good correlation exists between the peak ground accelera-
tion and the RMS value. Nevertheless, a better correlation is obtained
when a combination of peak ground acceleration, earthquake magnitude,
duration of strong motion and epicentral distance is considered.

The procedure for computing the normalized power spectral density
is as follows: First the durations of strong motion are determined
based on the method proposed in this chapter (modified McCann and Shah's
method). Then enough zeros are added to the end of each record to make

their length equal to 120 seconds or 6000 data points (6000 data points
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would result in a fine resolution in the spectral estimates). Power
spectral density.of each augmented record is then estimated and norma-
lized (area is set equal to one). The ensemble smoothing procedure
similar to one presented in Section 2.5.2 is used to smooth the power
spectral density. The only difference is using a duration weighted
average to take into account the unequal durations of the unpadded rec-
ords. Figure 3.25(a) shows the normalized power spectral density of
the ensemble of the eight records in the frequency range of 0-25 Hz.
Because of a spacing of 0.02 seconds in the accelerograms, the power
spectral density is estimated in the frequency range of 0-25 Hz (see
Eq. 2.40); however, the dominant frequencies appear in the frequency
range of O to 10 Hz. Since we used a small number of records in this
‘ chapter, the random error associated with the estimated power spectral
density shown in Fig. 3.25(a) is quite high (sr = 0.35). To reduce
this random error, the frequency smoothing technique of Section 2.5.2
is applied to this estimate, where every 100 neighboring spectral or-
dinates are averaged. Figure 3.25(b) shows the power spectral density
after combined smoothing, where the random error is reduced to 0.035.
The ordinates in Fig. 3.25(b) are joined by straight lines where in
Fig. 3.25(c) third degree polynomial segments join them. The power
spectral density in Fig. 3.25(c) was obtained by using a cubic-spline
interpolation (DeBoor 1978).

The time-dependent scale factor is determined as foliows: The
longest duration was found to be almost 25 seconds. Therefore, the
other seven records are padded with zero up to 25 seconds in order for

all records to have the same length. The accelerations are then squared
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- and averaged across the ensemble at every 0.02 second interval. The
average value of this "biased" mean square function is reduced to one.
The normalized mean square function is shown in Fig. 3.26(a). Since
we showed that the spectrum remained time-independent for one second
long segments, we average the normalized mean square function at one
second intervals. The result of this short time averaging which are
joined by straight lines is shown in Fig. 3.26(b). Finally the scale
factor after using a cubic spline interpolation to join the ordinates
is presented in Fig. 3.26(c).

We have now determined the normalized power spectral density and
the scale factor which are shown in Figs. 3.25(c) and 3.26(c), respec-
tively. What remains is an estimate of the average magnitude of the
power spectral density (mean sgquare value) for a set of earthquake pa-
rameters generally specified in design. As will be discussed later
in Chapter 4, relationships between RMS values and eafthquake parameters
such as peak ground acceleration, earthquake magnitude, duration of
strong motion, and epicentral distance can be established which enables
one to estimate the RMS value or the mean square acceleration for a
given set of earthquake parameters. Such a relationship was established
for the eight earthguake records used in this chapter and the equation

of the regression line is given below:

41 75510
1.3 Y
_ 141.9468 M
v(a,M,T,D) = 10 [a(‘"—‘“"“D.oss T.31) ] (3.1)

where y is the predicted RMS value in cm/secz, a is the peak ground

acceleration in g, M is the earthgquake magnitude, T is the duration
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of strong motion in seconds, and D is the epicentral distance in kilo-
meters.

Tabie 3.4 lists the properties of the eight records used in this
pilot study as well as their actual and predicted RMS values using Eq.
(3.1). The actual and predicted RMS values are also shown in Fig. 3.27.
The correlation coefficient for the fit is 0.9278 which indicates that
nearly 86 percent of the variation in RMS values can be accounted for
by the above relationship. In the next chapter we will discuss in de-
tajl the correlation between RMS values and the ground motion parameters
for several larger groups of records with common site geology.

The time dependent power spectral density is formulated as:
6(a,M,T,0,t,%) = ¢& (a,M,7,0) S(t) G(F) (3.2)

where mz(a,M,T,D) is the average magnitude of the power spectral density
which can be obtained from Eq. (3.1) for a given set of ground motion
parameters; S(t) is the time-dependent scale factor representing the
variation of localized mean square to an average mean square of one,
Fig. 3.26(c); and G(f) is the normalized power spectral density, Fig.
3.25(c).

3.5 COMPARISON BETWEEN RESPONSES CALCULATED FROM THE TIME-DEPENDENT
POWER SPECTRAL DENSITY AND SPECTRAL DISPLACEMENT, VELOCITY AND
ACCELERATION

In Section 2.6, the mean and variance of relative displacement,
relative vé1ocity and absolute acceleration for a Gaussian stationary
and a nonstationary random process were formulated. The input-output

relationship presented in that section are applicable to a system which
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is subjected to an earthquake ground motion under the following two
assumptions: First, the individual earthquake records form a locally
stationary random process (see Section 2.4); and second, the process
is normal. Since we showed in Section 3.3 that the spectrum remained
time invariant even for as short as a one second long segment, it is
reasonable to assume that by selecting strong motion duration the earth-
quake records constifute a locally stationary random process. The as-
sumption of normality is accepted since it is generally recognized that
the motion recorded at a station results from the arrival of multiple
waves after many reflections and refractions of the initial disturbance
at the source of the earthguake.

With the above two assumptions, we can rewrite Egs. 2.78-2.80
to describe the relative displacement RD, relative velocity RY, and
absolute acceleration AA of a single degree of freedom system for a

given probability that the response may exceed a specified Tlimit. Thus,

11/2

RD, = ko, = k [o(a,M,7,0) S(t) 17 [H(F) (2 G(F) o (3.3)
A | 0 ] .
0 - B 172 .
RV, = koy = k Lw (a,M,T,D) S(t) [0 H,(F) &(f) df_ (3.4)
[ 2 . 2 L2
A = ko, =k -w (a,M,T,D) S(t) fo ]Ha(f)l G(f) df ] (3.5)

where y and } refer to relative displacement and velocity, respectively,
and a refers to absolute acceleration. It should be noted that Gi in
Egs. 2.78-2.80 has been replaced by its equivalent from Eq. 3.2.

Equations 3.3-3.5 were used to predict the response of a single
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degree of freedom system subjected to a base motion. The results for
two records (E1 Centro 1940, SOOE Component and Taft 1952, N21E£ Compo-
nent) at 3¢ Teye1 (k = 3) and for damping coefficients of 2, 5, 10 and
20 percent of critical are presented in Figs. 3128—3.350 With the knowl-
edge of earthquake parameters {peak ground acceleration a, earthquake
magnitude M, duration of strong motion T, and epicentral distance D)
for each of the two records, the appropriate value of mean sguare ac-
celeration ¢2(a,M,T,D) is estimated from either Eq; 3.1 or Fig. 3.27.
Also shown in the figures are the corresponding spectral relative dis-
placement, spectral relative velocity, and spectral absolute accelera-
tion as reported by Trifunac et atl., 72-75.

It should be noted that spectral response obtained from an earth-
guake record at a given frequency and damping is the absclute maximum
value of the response regardless of the time at which it occurs. The
probability that the response equals the maximum during the duration
of the record is very small {one over the number of points at which
the respanse is computed). In order to compare the results of this
study with the spéctra1 values one should select a low probability for
exceeding the response and account for the maximum response in the com-
putation. To achieve the maximum response, one should use the maximum
scale factor S(t). To reduce the probability for exceeding the response
one needs to compute the response at a high o level {(k = 3 or 4). The
maximum scale factor obtained from Fig. 3.26 is 3.49. Selecting a 3o
level (k = 3), the probability that the maximum response will be exceeded

is .0026. It should be noted a 3v level is also suggested by Penzien
(1970).
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In general the responses computed from the power spectral density
follow Fhe shape of the speciral curves and for the most part envelope
the curves even at higher damping ratios. In spite of the small sample
size of eight, the results obtained compare well with the spectral values
both in shape and magnitude. As mentioned previously, in the following
chapters similar results from a large number of records with various

geological classifications will be presented and discussed.
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COMPARISON OF DURATIONS AND ROOT MEAN SQUARE VALUES
FOR THE EIGHT RECORDS

T1

T2

AT

RMS

2
Record Comp. | Method* (sec) | (sec) (sec) (Cm/secz) fa dt
a 0.00 | 53,74 | 53.74 46.01 100
b 1,68 | 26.10 | 24.42 64,75 90
SOOE
o 0.88 | 26,32 | 25.44 65.60 96
d 1,38 | 26.30 | 24.92 65.88 95
ET Centro
1940
a 0.00 | 53.46 | 53.46 38.85 100
b 1.66 | 26.20 | 24.54 54,39 90
SO0W
c 0.80 [ 26.62 | 25,82 54,73 96
d 1.32 | 26.42 | 24,92 55.14 94
a 0.00 | 54,34 | 54,34 25.03 100
b 3.70 | 34,24 | 30.54 31.70 90
N21E
o 2.14 | 36.46 | 34.32 30.85 56
d 3.46 | 20.66 17.20 40,19 82
Taft
1952
a 0.00 | 54.38 | 54.38 26.10 100
b 3.66 | 32.52 | 28.86 33.96 a0
S69E
c 2.34 | 35.30 | 32.96 32.71 95
d 3.18 | 17,34 | 14.16 46.20 82
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TABLE 3.2 - continued
T1 T2 AT RMS 5
Record Comp. | Method* | o (sec) | (sec) (em/sec?) fasdt
a 0.00 | 90.28 | 90.28 19.48 100
b 2.82 | 23,92 | 21.10 38.27 90
SO0W ’
¢ 1.92 | 23.88 | 21.96 38.38 94
d 1.96 | 14,98 | 13.02 46.83 83
E1 Centro
1934
a 0.00 | 90.22 { 90.22 20.76 100
b 2.86 | 23.14 | 20.28 41,57 90
SI0W
¢ 1.62 | 20,10 | 18.48 44,26 93
d 2.00 | 17.78 ] 15.78 46.80 89
a 0.00 | 89.06 | 89.06 22.98 100
b 1.78 | 27.58 | 25.80 40.51 90
NO4W
< 0.08 | 23,02 | 22.94 43,73 93
d 1.06 | 20.18 | 19.12 46,59 88
Olympia
1949
a 0.00 | 89.02 | 89.02 28.10 100
b 4,34 | 22.42 | 18,08 59,22 30
N86E
o 0.28 | 21.80 | 21.52 55.48 94
d 4,34 | 20.46 | 16.12 61.50 87

Q.o oo

Entire Record

Trifunac and Brady's Method
McCann and Shah's Method
This Study
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TABLE 3.3

COMPARISON OF DURATION AND ROOT MEAN SQUARE
BY DIFFERENT METHODS

T1 T2 AT RMS
*
Record Comp. Method (sec) (sec) (sec) (cm/secz)
1.16 | 26.36 | 25.20 | 65.76
SOOE 1.36 | 26.20 | 24.84 | 65.63
£1 Centro c 0.88 | 26.32 | 25.44 | 65.60
1940 a 0.88 | 26.28 | 25.40 | 54.95
S9ON b 1.08 | 26.20 | 25.12 | 54.89
c 0.80 | 26.62 | 25.82 | 54.73
a 3.18 | 14.38 | 11.20 | 46.96
N21E b 3.38 | 14.40 | 11.02 | 47.15
2.14 | 36.46 | 34. 30.
rafe c 6.46 32 0.85
1952 3.20 | 15.80 | 12.60 | 48.24
S69E 3.40 | 15.80 | 12.40 | 48.16
c 2.34 | 35.30 | 32.96 | 32.71
2,00 | 15.00 | 13.00 | 46.80
SOOK 2.10 | 15.00 | 12.90 | 46.95
£1 Centro c 1.92 | 23.88 | 21.96 | 38.38
1934 2.00 | 17.60 | 15.60 | 46.72
S90W 2.24 | 17.60 | 15.36 | 46.59
c 1.62 | 20.10 | 18.48 | 44.26

* a - Reported by McCann (1980}
b -~ Reported by McCann and Shah (1979)
c - Computed in this study by McCann and Shah's (1979) method
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CHI-SQUARE RATIO (COMPUTED TO THEORETICAL)
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¥ 2 sec
i + 4 sec Strong motion duration
Trifunac & Brady (1975b)
& 6 sec
% 10 sec
¥ Fe3
+ -
*® + 3 * * 4
x X%y x 2 % g
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&
-i-lo x[ 1 1 L 1 1
] Y 8 i ig cl c¢Y 28 g
i Strong motion duration
McCann & Shah (1979)
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This study
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3] 4 B ig ig cll 24 28 iz

TIME, sec

FIG. 3.9. Equivalent spectra test tor 2, 4, 6 and 10 second
Tong segments (E71 Centro 1940, SOOE).
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CHI-SQUARE RATIO (COMPUTED TO THEORETICAL)
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¥ 2 sec
+ 4 sec Strong motion duration
o 6 sec Trifunac & Brady (1975b)
X 10 sec
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McCann & Shah (1979)
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TIME, sec

FIG. 3.10. Equivalent spectra test for 2, 4, 6 and 10 second
Tong segments (E1 Centro 1940, S9OW).
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* 2 sec
* 4 sec Strong motion duration
o 6 sec Trifunac & Brady {(1975b)
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FIG. 3.11. Equivalent spectra test for 2, 4, 6 and 10 second

long segments (Taft 1952, N21E).
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FIG. 3.12. Equivalent spectra test for 2, 4, 6 and 10 second

long segments (Taft 1952, S69E).
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CHI-SQUARE RATIO (COMPUTED TO THEORETICAL)
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FIG. 3.13. Equivalent spectra test for 2, 4, 6 and 10 second

Tong segments (E1 Centro 1934, SO0W).
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FIG. 3.14. Equivalent spectra test for 2, 4, 6 and 10 second

long segments (E1 Centro 1934, S9OW).



CHI-SQUARE RATIO (COMPUTED TO THEORETICAL)

r

FL}

71

*¥ 2 sec
+ 4 sec Strong motion duration
Trifunac & Brady (1975b)
¢ 6 sec
X 10 sec *
*
%
+ - S
b3 % 4
»x X X+ &
& + + ¥ +
i Xi i il 1 I i 1
4 B ic i 2 24 2B 32
Strong motion duration
McCann & Shah (1979)
»* ¥ 3¢ b
+
.
: _ v . Yz
® *x , = * + % + X 4
p:{ e 7 b
3 G g Iz t5 ig 2i a4
Strong motion duration
This study
X 5
%
+ % ¥
* )(+>€ % 23
&
&> f+ & = de
L 'E& A 1 1 1 ' }
= b g i2 ig 18- 2l 24
TIME, sec
FIG. 3.15.

Equivalent spectra test for 2, 4, 6 and 10 second

Tong segments (Olympia 1949, NO4W).
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FI1G. 3.16. Equivalent spectra test for 2, 4, 6 and 10 second

long segments (Olympia 1949, N86E).
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NORMALTZED POWER SPECTRAL DENSITY G(f), (cm/secz) /Hz x 101

81

(a) Raw

(b) Smoothed

g5

{(c) Splined

A

g ig = 1)
FREQUENCY, Hz

25

FIG. 3.25. Power spectral density for the ensembie of

the eight records used in the pilot study.



SCALE FACTOR S(t)

82

(a) Raw

i i5 - ¢l g5

{(b) One second average

g 5 ig g 2 25

(c) Splined

g 5 i 15 20 ¢h

TIME, sec

F1G. 3.26. Time variation of normalized mean square
value of the ensemblie of the eight records used in the pilot
study,
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FIG. 3.27. Correlation of RMS with

parameter n for eight horizontal components
of recorded accelerograms.
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a - Response at 3¢ level (this study)

b -~ Computed response (Trifunac et al., 1972)
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FREQUENCY, Hz

FIG. 3.28. Comparison of response for 2 percent of
critical damping for SOOE component of E1 Centro, Imperial
Valley Earthquake of May 18, 1840.
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Valley Earthguake of May 18, 1940.
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critical damping for SOOE component of E1 Centro, Imperial
Valley Earthquake of May 18, 1940.
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FIG. 3.31. Comparison of response for 20 percent of
critical damping for SO2E component of E1 Centro, Imperial
Valley Earthquake of May 18, 1940.
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FIG. 3.32. Comparison of response for 2 percent of
critical damping for N21E component of Taft, Kern County,
California Earthquake of July 21, 1952.
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FIG. 3.33. Comparison of response for 5 percent of
critical damping for N21E component of Taft, Kern County,
California Earthquake of July 21, 1952.
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FIG. 3.34. Comparison of response for 10 percent of
critical damping for N21E component of Taft, Kern County,
California Earthquake of July 21, 1952.
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CHAPTER 4

CORRELATION BETWEEN RMS VALUE
AND EARTHQUAKE PARAMETERS

4.1 INTRODUCTORY REMARKS

In Chapter 3 a correlation between the RMS values computed for
the selected duration and the combination of peak ground acceleration,
earthquake magnitude, epicentral distance and the duration of strong
motion was established. Even though the sample size of eight was small,
the correlation was excellent. In this chapter, we will compute the
duration of strong motion for a large number of records (see Section
3.2) and examine the correlation between the RMS values and the same
parameters for horizontal, vertical and combined components of records

with different geological classifications.

4.2 RECORD SELECTION AND CLASSIFICATION

The 987 components of the recorded earthgquake accelerograms com-
piled by the Earthquake Engineering Research Laboratory of California
Institute of Technology (Hudson, et al., 1971-1975) was used in this
study. Neither the records which were identified as after shocks, nor
those that were obtained from accelerographs mounted at the mid-heights
or upper stories of building were considered. Among the remaining ac-
celerograms those with at least one of the horizontal components having

a peak ground acceleration equal to or greater than .05 g were chosen.

92
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It should be noted that when one of the horizontal components had a
peak ground acceleration equal to or greather than .05 g the complete
set (all three components) were selected. Using the above criteria,
a total of 371 components (one of the horizontal components for Parkfield
California Earthquake of June 27, 1966, Cholame, Shandon Array No. 2
is not available) were selected.

It is generally recognized that the geological condition of the
area near the ground surface has an important influence on the nature
of the ground motion recorded there. Seed, Ugas, and Lysmer (1976)
and Mohraz (1976) show that the site geology influences the response
spectra to a significant degree. Therefore, it seems reasonable to
suspect that the geology of the recording station would also influence
the shape and the magnitude of power spectral density. For this reason,
both the horizontal and vertical components of the 371 selected records
were grouped according to the estimated geological condition of their
sites. Table 4.1 lists the geological descriptions and the locations
of the recording stations. The table has been arranged accqrding to
station number in ascending order. The descriptions were obtained from
four different sources when available, namely: Trifunac and Brady (1975a),
Hudson (1971), Seed, Ugas, and Lysmer (1976) and Mohraz (1976). It
should be noted that if no description is listed by the author's name,
his description is identical to the one given by Hudson (1971).

It is clear from Table 4.1 that it would be impossible to describe
the site geology precisely. For this reason the classification was
accomplished by considering the firmness of the underlying material

at the recording station. The three geological groups which were selected
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are soft, intermediate and hard. The geological descriptions given
in Table 4.1 were examined and the underlying material at each station
was identified as either soft, intermediate or hard. It should be men-
tioned that the boundaries between the three geological classifications
are not precisely defined and there is some overlap between the soft
and intermediate and the intermediate and hard classifications. Tables
4.2-4.4 1ist the records with their pertinent properties in chronological
order of the earthquakes for the three classifications. Also Tisted
in the tables are the Cal Tech identification number, epicentral dis-
tance, station number, peak ground acceleration and the record length.
The method of establishing the duration of strong motion discussed
in Section 3.2 was applied to the 371 records selected. The method
syccessfully determined the initial and final times and, therefore,
the duration of the strong motion for 367 of the 371 records. It failed
to determine the duration of strong motion for the following four rec-
ords: EI Alamo, Baja California Earthquake of Feb. 9, 1956 (A0l1);
Western Washington Earthquake of April 13, 1949 (B028); Northern Cali-
fornia Earthquake of June 5, 1960 (V308); and Torrence-Gardena Earth-
quake of November 14, 1941 (V316), where the initial cut-off time was
gregter than the final cut-off time. A possible explanation for the
failure could be the stringent condition that was specified for the
derivative of the cumulative RMS function {see Section 3.2). These

four records were not considered in the study.
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4.3 PREDICTION OF RMS VALUE

Seed, et al., (1976) and Mohraz (1976) in their statistical study
showed that the site geology influences the shape and magnitude of re-
sponse spectra to a significant degree. Using a regression analysis
McGuire (1974) studied the effect of earthquake magnitude and epicentral
distance on response spectra. The influence of earthquake magnitude,
peak ground acceleration and the duration of strong motion on response
spectra have also been studied by Mohraz (1978a, 1978b). The effect
of earthquake magnitude, epicentral distance and site geology on Fourier
amplitude spectra was first studied by Trifunac (1976). Later McGuire
(1978) presented an empirical model for estimating of Fourier amplitude
spectra and confirmed Trifunac's finding that site geology, earthuake
magnitude and epicentral distance influence the Fourier spectra.

The above studies indicate that parameters such as earthguake
magnitude, duration of strong motion, epicentral distance, site geology
and peak ground acceleraticn are important and should be considered
in design. Since these parameters influence response spectra in general
and the Fourier amplitude which is directly proportional to power spec-
tral density in particular, it is conceivable that these parameters
will also influence the power spectral density of the recorded accelero-
grams. In addition to the five parameters mentioned above, McGuire
(1974) suggests that other parameters such as stress drop, seismic mo-
ment, direction of propagation and length of rupture, etc., may be im-
portant and could be included in the study. However, at present there
is not enough documented information on these parameters to include

them in the analysis. The influence of site geology on the power spectral
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density will be accounted for by studying the three geological groups
separately. The effect of the other four parameters will be examined
by considering their correlation to the RMS value. Although the rela-
tionshiprbetween the RMS value and the peak ground acceleration, dura-
tion of strong motion, epicentral distance and earthquake magnitude
can individually be investigated, it will be extremely difficult to
combine the individual influences. Therefore, it is desirable to cor-
relate the RMS value with a combination of the four parameters, and

to ascertain the validity of predicting the RMS value from them.

In order to gain an insight as how to combine the four parameters
into one, the RMS value was correlated to each of the parameters using
all 371 selected records without regard to components and site geology.
Figures 4.1-4.4 show the correlation between the RMS value and each
of the four parameters. The figures show the scatter of the data and
regresssion line fitted to them. Also given in the figures is the cor-
relation coefficient r. The strongest correlation is obtained with
the peak ground acceleration where the correlation coefficient is .9404.
For the other parameters the correlation is very weak as indicated by
their correlation coefficients. Nevertheless from the sign of the cor-
relation coefficients, one can note that the RMS value is directly pro-
portional to peak ground acceleration and earthquake magnitude, and
inversely proportional to duration of strong moticn and epicentral dis-
tance. This observation led to the study of correlation between the
RMS value and the parameter aM/DT. The result of this correlation is
presented in Fig. 4.5, The correlation coefficienf for the regression

line is 0.6629 which indicates that there is a better correlation between
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the RMS value and the parameter aM/DT than any of the individual param-
eters with the exception of the peak ground acceleration.

Each of the four parameters (a, M, D and T) is related linearly
to the combined parameter aM/DT, which may not be the case for the best
possible correlation. In order to obtain a correlation as good as or
better than the one with acceleration, a nonlinear combination of the
parameters was considered. Consequently each of the four parameters

was raised to a different power as indicated in Eq. 4.1

—_a M
no= 4 (4.1)
Py

A correlation between the RMS value and n can be established for
a given set of power coeffic}ents Pl-P4, For a giveﬁ set of power co-
efficients the RMS values were correlated with n and the correlation
coefficient computed. A1l possible combinations of Pl-P4 were tried
and the set of power coefficients which resulted in the best correlation
was identified. The above procedure was repeated with different range
and increments for Pl'P4' The range, the increment and the selected
value of each power coefficient as well as the best correlation coef-
ficient are given in Table 4.5. It is noted from the table that all
correlation coefficients for the combination of power coefficients shown
are better than the one obtained when correlating with the peak ground
acceleration alone. The results indicate that the best correlation
is obtained for Pl = 1.53, P

=1.30, P, = .066, and Py = .31, The

2 3
correlation between the RMS value and n computed using the above powers

is shown in Fig. 4.6.
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Different sets of coefficients Pl-P4 can be obtained for various
geological classifications as well as ‘horizontal and vertical components
of the records. Since itrwou1d be difficult to compare four different
coefficients (PI'P4) for each category, it was decided to correlate
the RMS value with a new parameter n which is obtained by rewriting
Egq. 4.1 as
P .

(4.2)

where P =-é— . Retaining the same PZ—P4 of Eq. 4.1, the best correla-
tion betwee% the RMS value and n (Eq. 4.2) was established for P = .65
with a correlation coefficient of r = .96322 which is identical to the
correlation coefficiént presented in Table 4.5. The correlation with
the new parameter is shown in Fig. 4.7. Since previously the best cor-
relation between the RMS value and the individual parameters was ob-
tained for the peak ground acceleration (r = 0.9404), the improvement

(r = 0.9632) can be attributed to the quantity

P P

_wl
P, P

(4.3)

It should be noted that the expression for n presented in Eq.
4.2 is by no means the only expression that can be correlated with the
RMS value. The RMS value was also correlated with the following two

parameters:
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nE Pi ﬁz-ifl 22 (4-4)
D - T .
P
- (aM)
" pe200) 45 1-4(2P) (4.5)

The results are compared in Table 4.6. The table presents the power
coefficient P and the correlation coefficient r for each of the three
parameters n, n', n" for horizontal, vertical, and combined components
of the three geolegical classifications. The table indicates that in
general (Eq. 4.2) gives slightly better correlation with RMS than n'
and n". It is interesting to note that would also give a better cor-
relation coefficient than n' and n" for the eight records cohsidered
in Chapter 2. The results of this c0mparisoﬁ are given in Table 4.7,
The result of correlation between the RMS value and parameter
n (Eq. 4.2) for the twelve categories (soft, intermediate, hard and
combined geological classifications; horizontal, vertical and combined
components are presented in Table 4.8. Also shown are the number of
components of records used in the correlation N, the coefficient P,
the slope A, the intercept B and the percent variation of the RMS value
accounted for by n. The equation for the regression line can be ex-
pressed in arithmatic scale as ¢ = 10 (n)B. Table 4.8 indicates that
best correlations are obtained for the hard sites folilowed by the group
containing all 367 records. Figures 4.8-4.11 show the correlation for
the horizontal components of the records for soft, intermediate, hard

and combined geclogical classification. Shown in Figs. 4.12-4.15 are
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similar correlations for vertical components. The correlation for the
combination of horizontal and vertical components for the three geo-
logical classifications and for all 367 records are presented in Figs.
4,16-4.19, In Figs. 4.8-4.19 in addition to the regression line the

95% interval on the future observation (see Walpole and Myers, 1978)

are also presented. The RMS valhes predicted from the appropriate re-
gression line as well as the actual RMS (computed using the strong mo-
tion duration--see Chapter 3} for the horizontal components of the three
geological classifications are given in Tables 4.9-4.11. Also presented
in the tables are the initial and final times, the duration of strong
motion, the peak ground acceleration, the epicentral distance and the
earthquake magnitude. Similar information for the vertical components
are presented in Tables 4.12-4,14, (

Comparisons of the slope A and the intercept B of the regression
line given in Table 4.8 indicate that for large values of n, the pre-
dicted RMS value for the vertical components are greater than these
for the horizontal components for each geological classification. The
correlation coefficient given in Table 4.8 and repeated in Figs. 4.8-
4.19 indicate that the RMS values can reliably be predicted from the
parameter n. The correlation coefficient r indicates that IOOrZ percent
(see Walpole and Myers, 1978) of the variation of the RMS value is ac-
counted for by the combined seismic parameter n. The values of r listed
in this table are extremely close to unity {between .9453 to .9880)
indicating that between 89 to 96 percent of the variation of RMS is
accounted for by the relationship with parameter n. It is also observed

from Table 4.8 that in general better correlations are obtained for
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the "hard" geological classification than the other two geological clas-
sifications. The RMS value for any of the 12 categories listed in Table
4.8 can be predicted using the corresponding regression line for that
category. However, the last category which includes all 367 records
considered in the study results in a correlation coefficient whiéh is
just as good or better than most other categories and it is recommended
for predicting RMS values as it covers the largest range of data. It
should be noted that the plots presented in Figs. 4.8-4.19 should be

used for the range of n presented.
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TABLE 4.7

COMPARISON OF THE RMS PREDICTED FROM DIFFERENT n'S FOR
THE EIGHT HORIZONTAL COMPONENTS OF RECORDS USED IN CHAPTER 3

Predicted RMS From
Actual
Record Component RS N Nt "
r=.,9278 1 r = ,9098 | r = ,8907

£1 Centro |  SOOE 65.88 | 66.51 64.77 65.55
1940 S90W 55.14 | 50.88 51.80 52.29
_— N2 E 40.20 | 244.84 15.32 44.46
1952 S69E 46.20 | 49.03 49.58 47.30
51 centro | SO0 46.83 | 43.80 13.00 42.29
1934 90N 46.80 | 46.54 44,55 45.22
Olympia NO4W 46.59 |  45.42 47.41 47.07
1949 M86E 61.51 61.52 61.89 59.95
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PEAK ACCELERATION a, g

FIG. 4.1. Correlation of RMS with peak ground
acceleration for 367 horizontal and vertical components
of recorded accelerograms.
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EPTCENTRAL DISTANCE D, km

FIG. 4.2. Correlation of RMS with epicentral
distance for 367 horizontal and vertical components
of recorded accelerograms.
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DURATION OF STRONG MOTION T, sec.

FIG, 4.3. Correlation of RMS with duration of
strong motion for 367 horizontal and vertical components
of recorded accelerograms.
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EARTHQUAKE MAGNITUDE M

FIG. 4.4. Correlation of RMS with earthguake
magnitude for 367 horizontal and vertical components
of recorded accelerograms.
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CHAPTER 5

POWER SPECTRAL DENSITIES AND SCALE FACTORS
FOR DIFFERENT GEOLOGICAL CONDITIONS

5.1 INTRODUCTORY REMARKS

In a pilot study in Chapter 3, a power spectral density and a
scale factor for an ensemble of eight strong motion accelerograms were
estimated and used to compute the response of a single degree of freedom
system. Using the procedure outlined in that chapter, power spectral
densities and scale factors for the three geological classifications
(soft, intermediate, and hard) and for both the horizontal and vertical
components of a number of records are computed and presented in this
chapter. In Chapter 4, relationships between the RMS of the records
and a variable n reflecting the earthquake parameters were obtained
for different groupings of the records including the six used in this
chapter. The information presented in Chapter 4 and this chapter is
used to predict the response of a single degree of freedom system and
the results are compared with spectral relative displacement, relative

velocity and absolute acceleration computed directiy from several records.

5.2 POWER SPECTRAL DENSITIES AND SCALE FACTORS

Using the procedure outlined in Section 3.4, power spectral den-
sities were estimated for six different classifications of records.

Normalized power spectral densities for the ensemble of the horizontal

212
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components of accelerograms recorded on soft, intermediate, and hard
sites are shown in Figs. 5.1-5.3 respectively. Similar plots for the
vertical components are presented in Figs. 5.4-5.6. The accumulated
area under the power spectral density as a percentage of the total area
for the three site classifications and for the horizontal and vertical
components are given in Table 5.1. The peak ordinate for each of the
six power spectral densities and their corresponding frequency is shown
in Table 5.2.

From the shape of the power spectral densities in Figs. 5.1-5.6
and the rate of accumulation of areas in Table 5.1, one may make the
following observations: First, power spectral densities reach their
maximum values at low frequencies and practically vanish at frequencies
greater than 10-Hz indicating that the dominant fregquencies in earth-
quake accelerograms are within 0-10 Hz. Second, the power spectral
densities for accelerograms recorded on softer geology display fewer
peaks, whereas those recorded on harder sites show several peaks, in-
dicating that the geology of the recording station influences the fre-
quency structure of the data. Third, a comparison of the power spectral
densities for horizontal and vertical components shows a wider range
of dominant frequencies in the vertical components, indicating that
the energy contained in the horizontal motion is concentrated in a nar-
rower band than that in the vertical motion. This can also be seen
from Table 5.2, where the maximum ordinates of the power spectral den-
sities for the horizontal motion are consistently greater than those
corresponding to the vertical motion. Fourth, the rate of energy ac-

cumulation (see Table 5.1) is faster for the accelerograms recorded
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on softer geology and is also faster for the horizontal components than
their corresponding vertical components.

The scale factors {the normalized mean square acceleration) for
the six categories are computed using the procedure outlined in Section
3.4. The variation of the scale factor with time for the horizontal
components of accelerograms recorded on soft, intermediate, and hard
geology is présented in Figs. 5.7-5.9, respectively. Similar plots
for the vertical components are presented in Figs. 5.10-5.12. Table
5.3 lists the durations of the scale factors, their maximum ordinates
and the corresponding time at which they cccur. Some general observa-
tions regarding the scale factors can be made. The stiffer geological
classifications have shorter durations. This is true for both the hori-
zontal ahd the vertical components. In transient response of a single
degree of freedom, the duration of the scale factor could play an impor-
tant role. For a given mean square value, the shorter duration imparts
energy into the system in a shorter time than a longer one. The maximum
scale factors for the soft site are generally greater than those for

the stiffer sites and they occur at an earlier time.

5.3 RECORDS SELECTED FOR COMPARING THE RESPONSE

To study the application of the power spectral densities and scale
factors presented in Figs. 5.1-5.2 in'predicting the response of a single
degree of freedom system for a given set of earthquake parameters, a
total of twelve records--two records for each of the six classifications--
were selected, The records and some of their properties are Tisted

in Tables 5.4 and 5.5. The records were selected from five seismic
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events (Imperial Valley 1940, Kern County 1952, Eureka 1954, Northern
California 1952, and San Fernando 1971) with an earthquake magnitude
between 5.5 and 7.7. The records are from six different stations with
an epicentral distance ranging from 11 to 120 kilometers. For each
geological classification two records were selected, one with a high
peak horizontal acceleration and the other with a low peak horizontal
acceleration but a high peak velocity to peak acceleration ratio. As
seen from Table 5.4, the properties for the six horizontal records cover
a wide range; i.e. peak ground accelerations between .05 to 1.172 g,

peak ground velocities between 2.74 to 44.49 in./sec., peak ground dis-
placements between .80 to 14.84 in., durations of strong motion between
5.04 to 24.92 sec., and actual RMS values between 16.53 to 253.6 cm/secz.
A wide range of properties is also observed from Table 5.5 for the verti-

cal components.

5.4 COMPARISON OF PREDICTED AND COMPUTED RESPONSE

The expressions for computing the relative displacement, relative
velocity, and absolute acceleration of a single degree of freedom are
presented in Egs. 3.3-3.5. In addition, the relationships between the
RMS of the records and a variable n reflecting the earthquake parameters
(peak acceleration, earthquake magnitude, epicentral distance and the
duration of strong motion) for different geological groupings were de-
veloped and presented in Chapter 4. Using the normalized power spectral
densities and scale factors presented in this chapter and the informa-
tion given in Chapters 3 and 4, the response of a single degree of free-

dom for several specified sets of earthquake parameters is predicted
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and compared with that computed directly from the records. The mean

plus one standard deviation response {normal distribution) of the en-
semble, whicg is presently used as a basis in developing deéign spectrum,
is also compared with the response computed directly from the records
(Trifunac et al., 1972-1975).

Since a response spectrum represents the maximum response of a
system, the maximum scale factor and a low probability of exceeding
the maximum response (3¢ level) were used in the comparisons. »The re-
sults were compared for 2, 5 and 10 percent of critical damping; however
only 2 and 10 percent are presented here.

A comparison between the responses predicted using the power spec-
tral density and those computed directly from the six horizontal compo-
nents of the records Tisted in Table 5.4 is presented in Figs. 5.13-
5.36. Also shown (in separate figures) is the mean plus one standard
deviation response of the appropriate ensemble. The plots are arranged
in three sets. Figures 5.13-5.20 show the comparison of the response
for soft sites, Figs. 5.21-5.28 for the intermediate sites, and Figs.
5.29-5.36 for the hard sites. Figqures 5.37-5.60 show similar comparisons
for the vertical motion. In Figs. 5.13-5.60, each comparison between
the predicted and the computed response is immediately foilowed by a
comparison of the mean plus one standard deviation and the computed
response. The reason for separating the two comparisons is to provide
an easier examination of the figures.

Figures 5.13-5.60 indicate that in general there is a close agree-
ment between the shape of the predicted and the mean plus one standard

deviation response. In many instances this shape closely resembies



217

the shape of the computed response (see for example Fig. 5.29 and 5.35).
The response predicted from the power spectral density in the majority
of cases envelopes the computed response over the entire frequency range
of .06 to 25 Hz. This envelope seems to be closer to the computed re-
sponse in the higher frequency region and is particularly evident for

the horizontal components on hard geology. In the Tower frequency region
however, the predicted response seems to generally overestimate the
computed response. This is not true for all the comparisons. For example,
Fig. 5.35 shows a very good agreement between the predicted and computed
response for both high and low frequency regions. The agreement is
equally good for relative displacement, relative velocity and absolute
acceleration. Comparison of Figs. 5.35 and 5.36 indicates that the
computed response is closer to the predicted than to the mean plus one
standard deviation response. Figures 5.29-5.30 show a similar comparison.
Figures 5.27-5.28 and 5.49-5.50 show the comparison of the horizontal

and vertical components of Ferndale City Hall 1954 in which the relative
velocity predicted from PSD is much closer to the computed response

than the mean pius one standard deviation. The agreement between the
predicted and computed absolute acceleration is seen in Figs. 5.21-5.22
and 5.23-5.24. In general the predicted response for both horizontal

and vertical components of the records for all geological classifica-
tions compare well with the computed response., The difference noted
between the predicted and computed response at low frequencies, espe-
§1a11y for low damping, indicates that 3¢ level is too high for such
cases. Penzien (1970) has confirmed this result. As the probability

for exceeding the predicted response at 3o level (.26%) indicates, the



218

computed response should seldom exceed the predicted one. This can
easily be seen from the comparisons presented in Figs. 5.13-5.60. On
the other‘hand, the mean plus one standard deviation response which
represents the 84.1 percentile level is exceeded more often as expected.
The eight records used in the pilot study in Chapter 3 were clas-
sified in Chapter 4 in the soft category. It is interesting to compare
Figs. 3.28 and 5.17, and Figs. 3.30 and 5.19, where the computed re-
sponse for 2 and 10 percent of critical damping for ET Centro 1940 NS
component is compared with the predicted response. These figures in-
dicate that not only the predicted response in Chapter 5 is higher than
those of Chapter 3, but the shapes are different as well. The higher
values of response are attributed to higher predicted RMS value for
that record (75.64 vs. 51.56) and higher value of maximum scale factor
(4.29 vs. 3.49) used in Chapter 5. Further the shape of the predicted
responses are different because the power spectral densities (Fig. 3.25

and Fig. 5.1) are not the same.
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TABLE 5.1

ACCUMULATED AREA AS THE PERCENTAGE OF TOTAL AREA
UNDER THE POWER SPECTRAL DENSITY

Frequency Horizontal Vertical
Range
(Hz) Soft Inter. Hard Soft Inter. Hard

17.94 10.75 7.22 11.75 10.10 6.58
41.62 30.25 26.96 26.14 24.59 15.58
60.32 48.81 39.49 39.89 37.59 22.53
73.28 64.65 52.18 52.13 49.31 32.70
81.85 75.91 65.93 62.29 58.29 43.73
87.80 83.64 76.25 70.06 66.51 54.70
91.57 88.10 82.09 76.15 72.27 63.35
94.32 91.82 87.91 82.08 76.90 70.03
96.15 94.67 91.83 86.09 80.82 76.58
97.32 96.89 94.22 89.13 85.38 82.45
98.13 97.94 95.59 91.74 89.63 87.34
98.69 98.65 96.76 93.53 92.30 80.41
99.09 99.09 97.68 95.01 94.31 92.79
99.33 99.36 98.45 96.16 95.82 94.68
99.49 99.52 98.84 97.11 96.84 95.91
99.60 99.66 99.15 97.77 97.73 97.01
99.69 99.74 99.39 98.33 98.38 97.80
99.75 99.81 99.57 98.75 98.88 98.52
99.81 99.86 99.69 99.03 99.18 98.93
99.84 99.89 99.78 99.25 99.40 99.24
99.88 99.92 99.85 99.46 99.56 99.52
99.91 99.94 99.90 99.61 99.68 99.67
99.94 99.96 99.93 99.74 99.80 98.76
99.97 99.98 99.97 99.86 99.90 98.89
100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
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TABLE 5.2

MAXIMUM ORDINATES OF THE POWER SPECTRAL DENSITIES
AND THEIR CORRESPONDING FREQUENCIES

Frequency Peak Value
Classification | Geology Type 5.2
(Hz) (cm/sec™) /Hz

Soft 0.98 .2548
Horizontal Intermediate 1.55 . 1995
Hard 1.34 L2173
Soft 0.90 . 1587
Vertical Intermediate 1.14 L1547
Hard L1118

4.76
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TABLE 5.3

MAXIMUM VALUES OF SCALE FACTORS

Duration

Time

Classification | Geology Type Peak Value
{sec) (sec)

Soft 25 0.98 4.29

Horizontal Intermediate 14 0.84 4,07
Hard 14 5.57 2.21

Soft 27 0.86 3.91

Vertical Intermediate 15 0.88 3.11
Hard 13 5.49 3.61
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a - Response at 3¢ level (this study)

b - Computed response {Trifunac et al., 1972)
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FIG. 5.13. Comparison of predicted response ({soft)
and computed response for 2 percent damping, Hollywood
Storage P.E. Tot, 1952--N9QE.
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a = Mean plus one standard deviation rasponse

b - Computed response (Trifunac et al., 1972)
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FIG. 5.14. Comparison of mean plus one standard
deviation response (soft) and computed response for 2
percent damping, Hollywood Sterage P.E. lot, 1952--N9OE.
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a - Response at 3o Tevel (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.15. Comparison of predicted response (soft)
and computed response for 10 percent damping, Hollywood
Storage P.E. Tot, 1952--NOQE.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et ai., 1972)
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FIG. 5.16. Comparison of mean plus one stahdard
deviation response (soft) and computed response for
10 percent damping, Hollywood Storage P.E. lot, 1952--N9OE,
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a - Response at 3o level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.17. Comparison of predicted response {soft)
and computed response for 2 percent damping, E1 Centro,
1940--500E.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.18. Comparison of mean plus one standard
deviation response (soft) and computed response for
2 percent damping, E1 Centro, 1940--S00QE.
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a - Response at 3¢ level {this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.19. Comparison of predicted response (soft)
and computed response for 10 percent damping, E1 Centro,
1940--SO0E.
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FIG. 5.20. Comparison of mean plus one standard
deviation response (soft) and computed response for 10
percent damping, E1 Centro, 1940--S0O0E.
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a - Response at 30 level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.21. Comparison of predicted response
(intermediate) and computed response for 2 percent damping,
Ferndale City Hall, 1952--N44E. '
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.22. Comparison of mean plus one standard
deviation response (intermediate) and computed response
for 2 percent damping, Ferndale City Hall, 1952--N44E.
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a - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.23. Comparison of predicted response
(intermediate) and computed response for 10 percent damping,
Ferndale City Hall, 1952--Nd44E.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.24. Comparison of mean plus one standard
deviation response (intermediate) and computed response for

10 percent damping, Ferndale City Hall, 1952--N44E,
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a - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972}
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FIG. 5.25. Comparison of predicted response
(intermediate) and computed response for 2 percent damping,
Ferndale City Hall, 1954--N46W.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.26. Comparison of mean plus one standard
deviation response (intermediate) and computed response
for 2 percent damping, Ferndale City Hall, 1954--N46W.
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a - Respanse at 3¢ level (this study)

b - Computed response {Trifunac et al., 1972)
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FIG. 5.27. Comparison of predicted response
(intermediate) and computed response for 10 percent
damping, Ferndale City Hall, 1954--N46W.
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a - Mean plus one standard deviation response

b - Computed response {Trifunac et al., 1972)
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FIG. 5.28., Comparison of mean plus one standard
deviation response {intermediate) and computed response
for 10 percent damping, Ferndale City Hall, 1954--N4A6W.
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a - Response at 3o level {this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.29. Comparison of predicted response (hard)
and computed response for 2 percent damping, Lake Hughes
Station 1, 1971--S69E.
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a - Mean plus one standard deviation response

b ~ Computed response (Trifunac et al., 1972)
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FIG. 5.30. Comparison of mean plus one standard
deviation response {hard) and computed response for
2 percent damping, Lake Hughes Station 1, 1971--S69E.
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a - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972}
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FIG. 5.31. Comparison of predicted response {hard)
and computed response for 10 percent damping, Lake Hughes
Station 1, 1971--S69E.



s CH

RELATIVE DIS.

RELATIVE VEL., cm/sec

ABSOLUTE ACC., cm/sec?

45

=l

285

80

g5

255

a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.32. Comparison of mean plus one standard

deviation response {hard) and computed response for 10
percent damping, Lake Hughes Station 1, 1971--S69E.
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a - Response at 3o level {this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.33. Comparison of predicted response (hard)
and computed response for 2 percent damping, Pacoima Dam,
1971--S15W.
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FIG. 5.34. Comparison of mean plus one standard
deviation response (hard) and computed response for 2 per-
cent damping, Pacoima Dam, 1971--S15H.
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a - Response at 3o level {this study)

b - Computed response {Trifunac et al., 1972)
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FIG. 5.35. Comparison of predicted response (hard)
and computed response for 10 percent damping, Pacoima Dam,
1971-~S154.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.36. Comparison of mean plus one standard
deviation response (hard) and computed response for 10 per-
cent damping, Pacoima Dam, 1971--S15W.
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a - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.37. Comparison of predicted response {soft)
and computed response for 2 percent damping, Hollywood
Storage P.E. lot, 1952--vertical.
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a - Mean plus one standard deviation response

b -~ Computed response (Trifunac et al., 1972)
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FIG. 5.38. Comparison of mean plus one standard
deviation response {soft) and computed response for 2 per-
cent damping, Hollywood Storage P.E. lot, 1952--vertical.
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FIG. 5.39. Comparison of predicted response (soft)

and computed response for 10 percent damping, Hollywood
Storage P.E. lot, 1952--vertical.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.40. Comparison of mean plus one standard
deviation response (soft) and computed response for 10 per-
cent damping, Hollywood Storage P.E. lot, 1852--vertical.
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a - Response at 3o level (this study)

b - Computed response {Trifunac et al., 1972)
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FIG. 5.41. Comparison of predicted response (soft)
and computed response for 2 percent damping, E1 (Centro,
1940--vertical.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.42. Comparison of mean plus one standard

deviation response (soft) and computed response for 2
percent damping, E1 Centro, 1940--vertical.
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a - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.43. Comparison of predicted response {soft)
and computed response for 10 percent damping, E1 Centro,
1840~-vertical.
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FIG. 5.44. Comparison of mean plus one standard

deviation response {soft) and computed response for 10
percent damping, E1 Centro, 1940--vertical.
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a - Response at 30 level {(this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.45. Comparison of predicted response (inter-
mediate) and computed response for 2 percent damping,
Ferndale City Hall, 1952--vertical,.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.46., Comparison of mean plus one standard
deviation response (intermediate) and computed response for
2 percent damping, Ferndale City Hall, 1952--vertical.
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a ~ Response at 30 tevel (this study)-

b - Computed response (Trifunac et al., 1972)
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FIG. 5.47. Comparison of predicted response {inter-
mediate) and computed response for 10 percent damping,
Ferndale City Hall, 1952--vertical.
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a - Mean plus one standard deviation response

b ~ Computed response (Trifunac et al., 1972)
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FIG. 5.48. Comparison of mean plus one standard
deviation response (intermediate) and computed respanse for
10 percent damping, Ferndale City Hall, 1952--vertical,
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a - Response at 3o level {this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.49. Comparison of predicted response (inter-
mediate) and computed response for 2 percent damping,
Ferndale City Hall, 1954--vertical.
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a - Mean plus one standard deviation response

b - Computed response {Trifunac et al., 1972)
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FIG. 5.50. Comparison of mean plus one standard
deviation response (intermediate) and computed response for
2 percent damping, Ferndale City Hall, 1954-~-vertical.
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a8 - Response at 3¢ level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.51. Comparison of predicted response {inter-
mediate) and computed response for 10 percent damping,
Ferndale City Hall, 1954--vertical.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.52. Comparison of mean plus one standard
deviation response (intermediate) and computed response for
10 percent damping, Ferndale City Hall, 1954--vertical.
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a - Response at 3o level (this study)

b - Computed response (Trifunac et al., 1972)
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FIG. 5.53. Comparison of predicted response (hard)
and computed response for 2 percent damping, Lake Hughes
Station 1, 1971--vertical.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.54. Comparison of mean plus one standard
deviation response (hard) and computed response for 2
percent damping, Lake Hughes Station 1, 1971--vertical.
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a - Response at 30 level (this study)

b - Computed response {Trifunac et al., 1972)
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FIG. 5.55. Comparison of predicted response (hard)
and computed response for 10 percent damping, Lake Hughes
Station 1, 1971--vertical.
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a - Mean plus one standard deviation response

b - Computed response (Trifunac et al., 1972)
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FIG. 5.56. Comparison of mean plus one standard
deviation response (hard) and computed response for 10
percent damping, Lake Hughes Station 1, 1971--vertical.
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a - Response at 3o level (this study)
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FIG. 5.57. Comparison of predicted response (hard)
and computed response for 2 percent damping, Pacoima Dam,
1971--vertical.
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percent damping, Pacoima Dam, 1971--vertical.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 SUMMARY

A statistical study is used to estimate a time-dependent power
spectral density of recorded earthquake accelerograms. The study as-
sumes that the strong motion segments of accelerograms form a locally
stationary random process whose members exhibit a time-invariant fre-
quency structure. In Chapter 3, in a pilot study, the validity of
this assumption is examined. The pilot study shows that by selecting
the strong motion segment of the record, the power spectral density
estimates of the subsegments of that record exhibit shapes and frequency
structures similar to thaf of the strong motion segment of the record
itself. Using the strong motion segment of the records a time-dependent
powey spectral density is estimated which consists of three parts:

a normalized power spectral density which describes the frequency struc-
ture of the ensemble and remains the same for the subsegments of records
considered; a time-dependent scale factor which describes the variation
of local mean sgquare value; and finally the mean square value itself.
Normalized power spectral densities and scale factors for horizontal and
vertical components of accelerograms recorded on soft, intermediate and
hard geclogy are presented in Chapter 5. Correlation of RMS values with
a variable reflecting the four most commonly used design parameters,

peak ground acceleration, earthquake magnitude, epicentral distance, and
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the duration of strong motion are obtained and presented in Chapter 4.
Such correlations will make it possible to estimate a power spectral
density for a specific site and earthquake parameters. Correlations
were obtained for several ¢lassifications of records; however, no sig-
nificant changes on the correlation coefficients were observed due to
site geology or component classification. The estimated power spectral
densities are used to predict the response of a single degree of freedom
system at several sites and the results are compared with spectral rela-
tive displacement, relative velocity, and absolute acceleration computed
directly from the records.

The results of the study support the viability of using the random
vibration theory in earthquake resistant design of structures. There
are two features that make this study attractive for seismic analysis
~ and design. First, the results can be used to predict the response of
a system for a given probability that it may exceed a certain level, and
second, the prediction incorporates site geclogy as well as earthquake
magnitude, peak ground acceleration, epicentral distance and the duration
of strong motion. Finally, the findings can be used in the study of

artificially generated earthquake motion.

6.2 RECOMMENDATIONS FOR FURTHER STUDY

The following is a list of possible topics for future studies:

1. Inclusion of site geology in predicting the RMS values. Although
correlations between RMS and peak acceleration, earthquake magnitude,
epicentral distance and duration of strong motion are presented for

different geological classifications in this study, the possibility
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of obtaining a single correlation which would include the site

geology should be investigated.

Expressions for power spectral densities and scale factors. Ana-
lytical expressions should be developed for power spectral den-
sities and scale factors presented in Figs. 5.1-5.12. Such expres-
sions together with the regression equations in Chapter 4 for es-
timatiﬁg RMS values would be useful in seismic analysis and design

of structures and equipments.,

Generation of acceleration-time history from the power spectral
densities. A procedure which is widely used in seismic analysis of
complex structures is to subject the structure to an acceleration-
time history to compute its response. Scaled acceleration-time
histories from various seismic events as well as acceleration-time
histories generated from design response spectra have been used for
this purpose. Acceleration-time histories generated from the power
spectral densities would be valuable to design engineers and should

be considered.

Use of the entire acceleration-time history to estimate power spectral
density. In this study we used the strong motion part of the rec~
ords to obtain the power spectral aensities. An extension of this
study would be to consider the entire record length and estimate

the power spectral density in which both the magnitude and frequency
structure are time-dependent. One possible approach could be to
estimate power spectral densities for different portions of the

records.






REFERENCES

Amin, M. and H. -S. Ang (1968). Nonstationary stochastic model of earth-
quake motions, J. Eng. Mech. Div., ASCE 94, 559-583.

Amin, M., H. S. Tsao, and H. -S. Ang (1969). Significance of non-
stationarity of earthquake motions, Proc. World Conf. Earthquake
Eng. A-1, 4th, Santiago, Chile, 97-114.

Applied Technology Council, National Bureau of Standards, and the National
Science Foundation (1978). Tentative provisions for the develop-
ment of seismic regulations for buildings, ATC Publication ATC-
3-06, NBS Special Publication 510, NSF Publication 7/8-8.

Barstein, M. F. {1960). Application of probability methods for design-
the effect of seismic forces on engineering structures, Proc.
World Conf. Earthquake Eng. A-2, 2nd, Tokyo & Kyoto, Japan, 1467-
1482.

Bendat, J. S. and A. G. Piersol {1971). Random Data: Analysis and
Measurement Procedures, Wiley-Interscience, New York.

Biot, M. A. (1941). A mechanical analyzer for prediction of earthquake
stresses, Bull. Seism. Soc. Am. 31, 151-171.

Biot, M. A. {1942). Analytical and experimental methods in engineering
seismology, Proc. Am. Soc. Civil Eng, 68, 49-69,

Blume, J. A., R. L. Sharpe and J. S. Dalal (1972). Recommendations
for shape of earthquake response spectra, John A. Blume & Associates,
San Francisco, California (AEC Report WASH-12564 ).

Bogdanoff, J. L., J. E. Goldberg, and M, C. Bernard (1961). Response
of a single structure fo a random earthquake-1like disturbance,
Bull. Seism. Soc. Am. 51, 293-310.

Bolotin, V. V. (1960). Statistical theory of the seismic design of
structures, Proc. World Conf. Earthquake Eng. A-2, 2nd, Tokyo
& Kyoto, Japan, 1365-1374.

Bolt, B. A. {1974). Duration of strong motion, Proc. World Conf. Earth-
quake Eng. 30, 4th, Santiage, Chile, 1304-1315.

287



288

Burridge, R., and L. Knopoff (1975). Model and theoretical seismicity,
Bull. Seism. Soc. Am. 57, 341-371.

Bycroft, G. N. {1960). White naise representation of earthquakes, dJ.
Eng. Mech. Div., ASCE 86, 1-16.

Caughy, T. K. and H. J. Stumpf (1961). Transient response of a dynamic
system under excitation, J. Appl. Mech. 28, 563-566.

Clough, R. W. (1970). Earthquake response of structures, Chapter XII
in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-Hall,
Englewood Cliffs, N. J.

Clough, R. W. and J. Penzien (1975). Dynamics of Structures, McGraw-
Hi11, New York.

Chopra, A. K. and 0. A. Lopes (1979). Evaluation of simulated ground
motion for predicting elastic response of long period structures
and inelastic response of structures, Earthguake Eng. Struct.
Dynamics 7, 383-402.

Cornell, €. A. (1960). Stochastic process model in structural engi-
neering, Technical Report 34, Department of Civil Engineering,
Stanford University, Stanford, California.

Crandall, S. H. and W. D. Mark (1963). Random Vibration in Mechanical
Systems, Academic Press, New York.

DeBoor, C. (1978). A Practical Guide to Spline, Springer-Verlag, New
York.

Esteva, L. (1976). Seismicity, Chapter 6 in Seismic Risk and Engineering
Decision, C. Lomnitz and E. Rosenblueth, Editors, Elsevier Scientific
Publishing Company, New York, New York.

Goto, H. and K. Toki (1969). Structural response to nonstationary random
excitation, Proc. World Conf. Earthquake Eng. A-1l, 4th, Santiago,
Chile, 130-144.

Hammond, J. K. {1968). On the response of single and multidegree of
freedom systems to non-stationary random excitations, J. Sound
& Vibration 7, 393-416.

Housner, G. W. {1941). An investigation of the effects of earthquakes
on buildings, Ph.D. Thesis, California Institute of Technology,
Pasadena.

Housner, G. W. {(1947). Characteristics of strong motion earthquakes,
Bull. Seism. Soc. Am. 37, 19-37.




289

Housner, G. W. (1955). Properties of strong motion earthquakes, Bull.
Seism. Soc¢. Am. 45, 197-218.

Housner, G. W. (1956). Limit design of structures to resist earthquakes,
Proc. World Conf. Earthguake Eng., 1st, San Francisco, California.

Housner, 6. W. {1959). Behavior of structure during earthquakes, dJ.
Eng. Mech. Div., ASCE 85, 109-129.

Housner, G. W. and P. C. Jennings (1964). Generation of artificial
earthquakes, J. Eng. Mech. Div., ASCE 90, 113-150.

Housner, G. W. (1970a). Strong ground motion, Chapter IV in Earthquake
Engineering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cl1iffs,
N. J.

Housner, G. W. (1970b). Design spectrum, Chapter V in Earthquake Engi-
neering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cliffs,
N, J.

Hudson, D. E. (Ed.) (1971). Strong motion instrumental data on the
San Fernando earthquake of Feb. 9, 1971, Earthquake Engineering
Research Laboratory, California Institute of Technology, Pasadena.

Hudson, D. E., A. G. Brady, M. D. Trifunac and A. Vijayaraghavan (1971-
1975). Analysis of strong motion earthquake accelerograms--digi-
tized and plotted data, Vol. II: Corrected Accelerograms and
Integrated Ground Velocity and Displacement Curves, Parts A through
Y, Earthguake Engineering Research Laboratory, California Institute
of Technology, Pasadena.

Hsu, T. I. and M., C. Bernard (1978). A random process for earthquake
simulation, Earthquake Eng. Struct. Dynamics 6, 347-363.

Hurty, W. C. and M. F. Rubinstein (1964). Dynamics of Structures, Prentice-
Hall, Englewood Cliffs, N.J.

Iyengar, R. N. and K. T. Iyengar (1969). A nonstaticnary random process
mode] for earthquake accelerogram, Bull. Seism. Soc. Am. 59, 1163-
1188.

Iyengar, R. N. and P. N. Rao (1979). Generation of spectrum compatible
accelerograms, Earthquake Eng. Struct, Dynamics 7, 253-263.

Jennings, P. C., G. W. Housner and N. C. Tsai {1968). Simulated earth-
gquake motions, Earthquake Engineering Research Laboratory, EERL
68-10, California Institute of Technology, Pasadena.

Jennings, P. C., G. W. Housner and N. C. Tsai (1969). Simulated earth-
quake motion for design purposes, Proc. World Conf. Earthquake
Eng. A-1, 4th, Santiago, Chile, 145-160.




290

Kanai, K. (1957). Semi-empirical formula for the seismic characteristics
of the ground, Bull. Earthquake Research Institute 35, University
of Tokyo, Tokyo, Japan.

Kubo, T. and J. Penzien {1976). Time and frequency domain analysis
of three-dimensional ground motions, San Fernando earthquake,
Earthauake Engineering Research Center, EERC 76-6, University
of California, Berkeley.

Lin, Y. K. (1967). Probability Theory of Structural Dynamics, McGraw-
Hill, New York.

Liu, S. C. (1970). Evolutionary power spectral density of strong motion
earthquakes, Bull. Seism. Soc. Am. 60, 8%1-900.

McCann, Jr., W. M. and H. C. Shah (1879). Determining strong-motion
duration of earthquakes, Bull. Seism. Soc. Am. 69, 1253-1265.

McCann, Jr., W. M. (1980). RMS acceleration and duration of strong
ground motion, Department of Civil Engineering, Report 46, Stanford
University, Stanford, California.

McGuire, R. K. (1974). Seismic structural response risk analysis incor-
porating peak response regressions on earthquake magnitude and
distance, Structures Publication No. 399, Department of Civil
Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts.

McGuire, R. K. (1978). A simple model for estimating fourier amplitude
spectra of horizontal ground acceleration, Bull. Seism. Soc. Am.
68, 803-822.

McGuire, R. K. and T. C. Hanks (1980). RMS accelerations and spectral
amplitudes of strong ground motion during the San Fernando, Cali-
fornia, earthquake, Bull. Seism. Soc. Am. 70, 1907-1919.

Mohraz, B., W. J. Hall and N. M. Newmark (1972). Study of vertica)
and horizontal earthquake spectra, Nathan M. Newmark Consulting
Engineering Services, Urbana, I1linois (AEC Report Wash-1255).

Mohraz, B. (1976). A study of earthquake response spectra for different
geological conditions, Bull. Seism. Soc. Am. 6§, 915-935.

Mohraz, B. (1978a). Comments on earthquake response spectra, Nuclear
Eng. Design 45, No. 2.

Mohraz, B. (1978b}. Influences of the magnitude of earthquakes and
the duration of sirong motion on earthquake response spectra,
Proc. Central American Conf. Earthquake Eng., San Salvador.




291

Murakami, M. and J. Penzien {1875). Nonlinear response spectra for
probabilistic seismic design and damage assessment of reinforced
concrete structures, Earthguake Engineering Research Center, EERC
75-38, University of California, Berkeley.

Newmark, N. M., J. A. Blume and K. K. Kapur (1973). Seismic design
criteria for nuclear power plants, J. Power Div., ASCE 99, 287-
303.

Page, H. C. {1952). Instantaneous power spectra, J. Appl. Physics 23,
103-106.

Penzien, J. (1970). Application of random vibration theory, Chapter
XIII in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-
Hall, Engliewoed Cliffs, N. d. ‘

Power, D. V. (1969). Analysis of earth motions and seismic sources
by power spectral density, Bull. Seism. Soc. Am. 59, 1071-1091.

Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes.
Royal Statistical Society Journal B, 27, No. 2, 204-237.

Priestly, M, B, (1967). Power spectral analysis of non-stationary random
process, J. of Sound & Vibration 6, 86-97.

Ravara, A. {1965). Spectral analysis of seismic actions, Proc. Werlid
Conf. Earthguake Eng. A-1, 3rd, Auckland & Wellington, New Zealand,
111-195-204.

Rosenblueth, E. and J. Bustamente {1962). Distribution of structure
response to earthquakes, J. Eng. Mech, Div,, ASCE 88, 75-106.

Ruiz, P. and J. Penzien (1969). Probabilistic study of the behavior
of structure during earthquakes, Earthaquake Engineering Research
Center, LERC 69-3, University of California, Berkeley.

Sargoni, G. R. and G. C. Hart (1972). Nonstationary analysis and simu-
lation of earthquake ground motion, Technical Report UCLA-ENG-
7238, Mechanics & Structures Department, School of Engineering
and Applied Science, University of California, Los Angeles,

Seed, H. B., C. Ugas and J. Lysmer (1976). Site-dependent spectra for
earthquake resistance design, Bull. Seism. Soc. Am. 66, 221, 243

Shinozuka, M. and Y. Sato (1967). Simulation of nonstationary random
process, J. Ena. Mech. Div., ASCE 93, 11-40.

Siiverman, R. A. {1957). Locally stationary random process, IRE Trans-
action on Information Theory, 182-187.




292

Tajimi, H. (1960). A statistical method of determining the maximum
response of a building structure during an earthquake, Proc. World
Conf. Earthquake Eng. A-2, 2nd, Tokyo and Kyoto, Japan.

Thomson, W. T. (1959). Spectral aspect of earthquakes, Bull. Seism.
Soc. Am. 49, 91-98,

Thomson, W. T. (1972). Theary of Vibration with Application, Prentice-
Hall, Englewood C1iffs, N. J.

Trifunac, M. D. (1971a). Response envelope spectrum and interpretation
of strong earthquake ground motion, Bull. Seism. Soc. Am. 61,
343-356.

Trifunac, M. D. (1971b). A method for synthesizing realistic strong
ground motion, Bull. Sefsm, Soc. Am. 61, 1739-1753.

Trifunac, M. D., A. G. Brady and D. E. Hudson (1972-1975). Analysis
of strong-motion earthquake accelerograms, Vol. III1: Response
Spectra, Parts A through Y, Earthquake Engineering Research Labora-
tory, California Institute of Technology, Pasadena.

Trifunac, M. D. and A. G. Brady (1975a). On the correlation of seismic
intensity scales with the peak of recorded strong motion, Bull.
Seism. Soc. Am. 65, 139-162.

Trifunac, M. D. and A. G. Brady (1975b). A study of the duration of
strong earthquake ground motion, Bull. Seism, Soc. Am. 65, 581-
626,

Trifunac, M. D. (1976). Preliminary empirical model for scaling fourier
amplitude spectra of strong ground acceleration in terms of earth-
quake magnitude, source-to-station distance, and recorded site
conditions, Bull. Seism. Soc. Am. 66, 1343-1373.

Walpal, R. E. and R. H. Myers (1978). Probability and Statistics for
Engineers and Scientists, Macmillan Publishing Co., New York.

Wong, H. L. and M. D. Trifunac (1979). Generation of artificial strong
motion accelerograms, Earthquake Eng. Struct, Dynamics 7, 509-
527.




