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CHAPTER 1 

INTRODUCTION 

This study presents a systematic investigation of the 

effects of ground motion characteristics, especially its multi

directional character, on the response of torsionally coupled 

elastic structural systems. The ground motion model is proba

bilistic and is founded on the assumption of the existence of 

ground motion principal directions. The stru~tural systems 

considered are single-story and multi-story elastic shear beam 

models with stiffness eccentricity. 

1.1 General Remarks 

conventional dynamic response analyses of structures to 

earthquake ground motions have often employed planar structural 

models and a single horizontal component of earthquake ground 

motions. There certainly exist many situations in which this 

approach furnishes sufficiently accurate information for 

design. However, there are cases in which planar structural 

models are not adequate and in which, in addition, the multi

directional character of the ground motion should be considered. 

Nuclear reactor components, pipelines, bridges, and buildings 

with asymmetric plan configurations are important examples. It 

has also been widely recognized that multi-story buildings which 

are nominally symmetric in layout are seldom actually so. As 

a result, such buildings respond in coupled translational and 
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torsional motion when subjected to horizontal ground motions. , 

Building codes usually recognize such torsional response 

effects by specifying an eccentricity (a given percentage of 

the longest plan dimension of the structure) at which design 

horizontal forces are to be applied. The effects of multi-

directional ground motions are also recognized by recent codes 

of practice (3,6). ATC-3-06 [6] requires that structural 

elements be designed for 100 percent of the effects of seismic 

forces in one principal direction combined with 30 percent of 

the effects of seismic forces in the orthogonal direction. For 

offshore platforms, the API Recommended Practice [3J specifies 

that 2/3 of the spectral acceleration for the principal hori-

zontal axis be applied in the direction of the minor horizontal 

,axis. Each of the two principal axes must be considered as 

possible directions for the larger horizontal ground motion. 

1.2 Previous Work 

The effects of torsion in buildings appears to have first 

been considered by Ayre [7, 8] who examined coupled trans-

lational and torsional vibration in discrete and continuous 

shear beam models. Most of the research in the area has been 

done in the last four decades, either mathematically for 

specific models of building structures or through experiments, 

and much insight has been gained. 

A strong coupling effect can occur if corresponding natural 
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frequencies are close together, even when eccentricities are 

small [34~ 47~ 66, 77, 79]. A 95% increase in shear at the 

corner of a rectangular building was reported by Hoerner [34], 

as compared with 30% implied by 5% eccentricity in the code. 

The dynamic torque may be significantly larger than the product 

of horizontal shear times the eccentricity [47, 66, 71]. 

This effect arises from differences between dynamic and static 

methods of analysis, and is often associated with the term 

"dynamic magnification" of eccentricity. Rosenblueth and other 

authors [16,47,71] have concluded that horizontal shears are 

reduced as a result of torsional coupling. A second, distinct, 

cause of torsional response is "accidental" eccentricity 

resulting from inaccurate or imprecise knowledge of stiffness 

or mass distributions and the effects of the rotational compo

nents of ground motion (Newmark [58]). However, all these 

results are based on the assumption that ground motions are in 

the principal directions of the structure, and are uncorrelated. 

The overall response of buildings is sensitive to the orien

tation of the structure with respect to ground motion [26, 55]. 

Many papers have dealt with random process models for 

earthquake excitation. Commonly used models are discussed in 

standard texts [62]. Most early work modeled the ground motions 

as stationary random processes. The frequency characteristics 

are often modeled as white noise [17, 35] or filtered white 

noise [48, 81]. The time varying intensity is often handled by 
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modulating the stationary random process with a deterministic 

time varying function [2, 78]. 

Attention has only recently been given to modeling mUlti

directional ground motion [67]. Arias noted the existence of 

principal axes of ground motion. Later, Penzien and his 

colleagues [49, 67] found that "the uncorrelated components 

should be directed along a set of principal axes with the 

major principal axis being directed toward the expected 

epicenter and minor principal axis directed vertically". Thus, 

it may be reasonable to assume ground motion has principal 

axes, but these need not coincide with structure axes. with 

respect to the principal axes of the structure, the ground 

motion components are then statistically correlated. 

Recent studies [22, 47] of single story elastic systems 

have provided valuable insight into the general features of 

torsional coupling. These studies employ either a smoothed 

design spectrum or actual recorded earthquake motions to 

describe the ground motion input. They also deal primarily 

with "one-way" torsional coupling and consider only a single 

component of ground motion. In addition, most previous work 

employs certain rules for combining modal responses [71]. Such 

combination rules may not be accurate enough when frequencies 

are closely spaced and ground motion correlations are present. 

Therefore, a method which can account for the correlation 

between components of ground motion and which does not rely on 

an arbitrary rule for the combination of modal responses is 
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desirable. 

1.3 Object and Scope 

The object of this study is to systematically investigate 

the effect of ground motion characteristics on the response of 

torsionally coupled elastic systems. It was desired to arrive 

at results which are as generally applicable as possible. 

Therefore, a probabilistic approach was selected so that the 

use of a limited number of specific recorded earthquake motions 

could be avoided. 

The multi-directional ground motion model was based on 

the premise that a fixed set of ground motion principal direc

tions exist, along which the ground motion components are 

statistically uncorrelated. Other important characteristics of 

earthquake ground motions which were addressed were frequency 

content, and time-varying intensity and duration. Limited 

attention was also given to some peripheral issues: lack of 

spatial correlation of ground motion components resulting in 

an effective rotational ground motion input; and the presence 

of large isolated acceleration pulses in the ground motion. 

Before carrying out the primary objective, a concerted effort 

was made to examine the ground motion model and compare its 

predictions, behavior, and features with the existing body of 

knowledge on recorded earthquake motions and response spectra. 

In Chapter 2, the basic ground motion models used in this 
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study are presented. The characteristics of ground motions are 

discussed, commonly used stochastic models are re-examined and 

some properties necessary for later work are derived. 'Frequency 

content, time varying intensity and duration, and directionality 

are modeled. A previously unreported defect is revealed in a 

general class of ground motion models in which time varying 

intensity is modeled by modulating a stationary random process 

with a deterministic envelope function. Isolated acceleration 

pulses and ground motion spatial correlation characteristics 

are illustrated with a simple white noise model. 

In Chapter 3, the methods used for computing structural 

responses to the ground motion models are described. An 

efficient solution algorithm is devised for evaluating the 

nonstationary response statistics of general multi-degree-of

freedom (MDOF) systems to the excitations of various ground 

motion models. 

In Chapter 4, the effects of various ground motion charac

teristics on single-degree-of-freedom (SDOF) systems are 

discussed. Three frequency-content models described in Chapter 

2 are evaluated by comparing computed SDOF response spectra 

with typical deterministic earthquake response spectra. Rela

tions between mean square ground acceleration, velocity and 

displacement predicted by the ground motion model are compared 

with corresponding estimates proposed by Newmark and Hall [57]. 

Effects of ground motion frequency content and duration and 
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the presence of large acceleration pulses in the ground motion 

are also examined. 

In Chapter 5, the effects of ground motion on the response 

of single-story torsionally coupled systems are investigated. A 

wide range of structural parameters is considered using a 

white noise model. The effects of frequency content and time

varying intensity of the ground motion are also examined. 

Ground motion correlation and directionality effects are studied 

and compared with the provisions of a recent recommended code 

of practice. 

Lack of spatial correlation in the ground motion input 

is treated and related to the "accidental eccentricity" 

approach of Newmark [58]. 

In Chapter 6, the response of a special class of tor

sionally coupled tall buildings is considered and a numerical 

example for an 8 story structure is given. An approximate 

solution which yields a good approximation using only a few 

modes is discussed. 
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CHAPTER 2 

RANDOM PROCESS MODELS OF 
EARTHQUAKE GROUND MOTIONS 

Selection of an appropriate earthquake ground motion 

is an old and persistent problem facing earthquake engineering 

researchers who wish to carry out either analytical or 

experimental studies of structural response and behavior. 

Two common approaches to defining ground motion are: 

1). to assume that certain recorded ground motions are 

representative of future site ground motions. 2). to con~ider 

them as being sample funtions from stochastic processes having 

specified intensities and frequency contents. 

The use of a (small) set of recorded accelerograms has 

disadvantages. The question immediately arises as to how many 

accelerograms must be used in order that the results will not 

be unduly biased. There is also no guarantee that future 

ground motions at a given site will resemble ground motions 

previously observed at that site. The task of selecting a 

suitable set of recorded accelerograms would be much easier 

if more were known about the significant characteristics of 

earthquake ground motions as they relate to structural response 

and behavior. Thus the selection of a set of recorded accelero-

grams is often made in the hope rather than the certainty that 

the important characteristics of ground motions are represented. 
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The second approach involves stochastic modelling of 

ground motion. The stochastic models are devised to possess 

similar characteristics, insofar as they are known, to recorded 

ground motions. The obvious pitfall in this procedure is that, 

at the present state of knowledge, the significant characteris

tics may not have been fully recognized and so are not incor

porated in the ground motion model. However, despite this, the 

~dvantage of using a stochastic ground motion model is that its 

properties are well defined. As a result general conclusions 

regarding structural response can be drawn within the context 

of that well defined set of premises. It seems essential in 

such an approach to investigate carefully the characteristics 

of the stochastic ground motion model to make sure that it does 

in fact represent as well as possible the known characteristics 

of recorded ground motions. This is all the more important if 

the ground motion model is to used to study effects on structu

ral response of ground motion characteristics, since in effect 

such a study becomes a study of variations of the parameters 

defining the model. 

Two important characteristics which have received the 

most attention are: 1). frequency content 2). variation of 

intensities with time (nonstationarity). Many records have 

been analyzed to obtain information about these two character

istics and numerous models have been suggested [2, 10, 13, 14, 

42, 48, 78, 83]. In this chapter, some commonly used models 
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which are employed in this work will be summarized. Some 

properties associated with these models will be examined, 

and a previously unreported defect in a widely used class 

of ground motion models will be pointed out. Interested readers 

should refer to the original references for additional details. 

The model of ground motion acceleration, a(t), is taken 

in the general form 

aCt) = I(t) s(t) (2.1) 

where set) is a zero mean stationary random process, and I(t) 

is a deterministic envelope function. s(t) gives the desired 

frequency content defined by a specified power spectral den

sity function (PSDF) (Appendix [AJ), while I(t) accounts for 

the variation of ground motion intensity with time. The pro

cess a(t) in Eq. (2.1) is called a "locally stationary process". 

This process has been successfully used to model nonstationary 

random phenomena by many researchers [53, 64, 68]. The auto

correlation function [Appendix A] of a(t) is 

(2.2) 

where Rs<lt1-t21> is the autocorrelation function of s(t). 
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2.2 Duration 

The envelope function I(t) accounts for the variation of 

ground motion intensity with time. The simplest choice for the 

envelope function I(t) is a constant value. In this case, the 

ground motion is stationary. This assumption is not entirely 

reasonable from a physical standpoint. Nevertheless, it is of 

great importance because it leads to simple results which 

provide a great deal of insight. In addition, it often yields 

conservative estimates of the response of structural systems. 

A number of envelope functions which give time-varying 

intensities have been proposed [2, 13, 14, 43, 78]. In this 

study, the envelope function proposed by Shinozuka and Sato 

[78] is employed. This choice was made because the Shinozuka 

and Sato envelope function is simple, and involves only a 

single analytical expression which makes it possible to 

analytically evaluate responses in many cases. The envelope 

function has a double exponential form given by 

I(t) (2.3) 

in which 

is a normalizing constant chosen to make I(t) = 1. 
max 
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In the limiting case 0.+0, 6+00 , aCt) is stationary. The en-

velope functions for a = O.25/sec, 6 = O.75/sec and a = 0.101 

sec, 6 = 0.20/sec are shown in Fig. 2.1. These two sets of 

parameters were chosen to provide a "short duration" and a 

"long duration ll ground motion for the subsequent numerical 

work. 

The time at which I(t ) = 1 is . max 

In(~) 
a 

(2 .4) 
S - a 

Fig. 2.2 and Table 2.1 show the variation of at with 
max 

the ratio S/a of envelope parameters for a range of values of 

a and S. 

In order to describe the variation of ground motion in-

tensity with time by a single index with some physical meaning, 

the concept of IIduration" of strong ground motion is often used. 

Many definitions have been proposed, all of them rather arbi-

trary. 

Husid [40] proposed a method for studying the evolution of 

ground shaking intensity with time. He suggested that the ex-

pression 

h (t) 
(2.5) 
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be used as a measure of time-dependent intensity. In Eg. (2.5), 

t f is the total duration of the record. 

Trifunac and Brady [82] and Dobry et al [25] define sig-

nificant duration as the time interval between h(t) = 0.05 

and h(t) = 0.95. 

A parallel definition for time-dependent intensity for a 

probabilistic ground motion model is given by 

h(t) = J
t

o 
E[a 2 (t)]dt 

J: E[a
2
(t)]dt 

(2.6) 

For the ground motion model described by Eg. (2.1), the in ten-

sity h(t) reduces to the simple expression 

h(t) = fa
t 

I 2 (t)dt 

(2 ~ 7) 

in terms of the envelope function alone. 
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Note that 0 ~ h(t) ~ 1. For the ground motion model des

cribed by Egs. (2.1) and (2.3), it can easily be shown that 

h(t) 
~[1_e-2at] + ~[1- -2St] ___ 2 __ [1_e-(a+S)t] 

= 2a 26 e a+S (2.8) 
1 1 2 

[2a + 2S - (a+S)] 

The intensities h(t) for the two envelopes shown in Fig. 

2.1, are given in the "Husid Plots" shown in Fig. 2.3. The 

"short duration" envelope reaches the 95 percent intensity 

level after about 8 seconds, while the "long duration II enve-

lope reaches the 95 percent intensity level after about 23 

seconds. 

The corresponding Trifunac-Brady durations for the two 

envelope functions shown in Fig. 2.1 were calculated from 

Eg. (2.8) and are shown in the table below. 

Trifunac-Brady 
Envelope Duration DTB(Sec) 

Short Duration 7.24 

Long Duration 20.41 

Trifunac-Brady Durations for "Short" 
and "Long" Duration Envelopes 
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Table 2.1 shows the variation of duration DTB with the 

envelope parameters a and 6 and Fig. 2.2 shows the ratio 

tmax/DTB as a function of S/a, for a range of values of a 

and 6. 

Fig. 2.2 shows that the shape of the envelope (tmax/DTB) 

is primarily controlled by the ratio S/a. The peak time t max 

is then determined by the parameter a, given the desired shape 

of the envelope as specified by t /DTB max . 

A more commonly used envelope in earthquake engineering 

is the well known three segment envelope consisting of a 

segment with parabolic buildup, followed by a segment of cons-

tant intensity and a segment of exponential decay. However, 

the envelope I(t) given in Eq. (2.3) was much more convenient 

for the purpose of this study since many of the results were 

then obtainable in closed form. 
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2.3 Frequency Content 

The frequency content of the ground motion model is 

accounted for by the stationary random process ~(t) in Eg. 

(2.1). In this section several models for .~ (t), with diffe

rent levels of complexity and realism are presented. 

2.3.1 White Noise 

The simplest stochastic model for ~(t) is white noise. 

The white noise has a constant power spectral density func

tion (PSDF), 

S~(w) = So 

The corresponding autocorrelation function is 

R~ (T) = Sao (T) 

where O(T) is the Dirac delta function. 

2.3.2 Filtered White Noise 

2.3.2.1 Kanai-Tajimi Spectrum 

(2.9) 

(2.10) 

Frequency domain analyses of recorded strong motion ac

celerograms demonstrate that earthquake power spectra are not 



17 

independent of frequency. They tend to have predominant 

frequencies. This suggests that stationary filtered white 

noise is a more reasonable assumption for ~(t) than is 

stationary white noise. Kanai and Tajimi [4S, 81] have pro-

posed a semi-empirical power spectral density function 

W 2 2 
(1- (-) ) 

LL' 

So (2.11) St; (w) = 

g 

where w and ~ are low pass filter parameters. These g g 

parameters can be thought of as foundation properties in a 

situation where a white noise disturbance is applied at bedrock 

and the motion is transmitted to the ground surface through a 

soil layer. The corresponding ground surface motion ~(t) can 

be obtained by passing white noise of spectral density So 

through a low-pass filter [Appendix C]. The autocorrelation 

function of ~(t) [Appendix C] is 

S w2 
a g 

4w ~ g g (2.12) 
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where 

Ir----
= W / 1 1.;2 

g g 

-1 
<P = tan 

For firm soil conditions, Wg = 15.56 rad/sec, Sg = 0.64 have 

been recommended by Housner and Jennings [37] in the freq~ency 

range from W = 2.1 rad/sec to W = 21 rad/sec, corresponding 

to a period range from T = 0.3 sec to T = 3 sec. Ss(w) and RS(L) 

are shown in Fig. 2.4. 

The variance, cr~ = Rs(O), can be easily obtained as 

(2.13) 

2.3.2.2 Clough-Penzien Spectrum 

If ground acceleration set) is modeled as described in 

the previous section, then an inconsistency arises because 

the variances of ground velocity and ground displacement be-

come infinite as w+O. This can be seen from the relationships 

between power spectra for ground acceleration, velocity and 

displacement 



S (W) 
v = 

19 

S~{W) 
(2.14) 

In Eq. (2.14) Sv(w) and Sd(w) are respectively the ground 

velocity power spectrum and the ground displacement power 

spectrum. To remove the singularity at 00 = 0, Clough and 

Penzien modified the Kanai-Tajimi formulation. Clough and 

Penzien suggest the power spectral density function 

~r 
1 + 4Z;2(~)2 (~) 4 

So g W Wf S; (00) 
g 

2 2 (2.15) l (1 - (~) 2) + 4Z;2(~)2 (1 - (~) 2) + 4Z;2(~)2 
00 g Wg Wf f Wf g 

where wf and ~f are high-pass filter parameters [Appendix C). 

The ground acceleration set) can be obtained by passing white 

noise successively through the Kanai-Tajimi filter and then 

through the Clough-Penzien filter. The corresponding autocor-

relation function RS(T) has the general form 
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R~ (L) 
-W z: Il I d 

= So {A~e g g cos (wg III - ¢) 

(2.16 ) 
-wfZ:flll d 

+ B~e cos(wflll - e)} 

where A"B,,¢, e are functions of W , z: , w f ' and 1:; f' Analy-ssg g 

tical expressions for these parameters are given in Appendix 

[C] • 

The variance of C; is equal to RC; (0) . 

Ruiz and Penzien [75] analyzed several ground acceleration 

records for firm soil site conditions and obtained an average 

transfer function linking the motions of bedrock and ground 

surface [Fig. 2.5). The two horizontal components of the four 

ground acceleration records indicated in Fig. 2.5 were used. 

They were normalized to unit spectral intensity as defined 

by Housner [39]. An optimization routine was used in [33] to fit 

the Clough-Penzien spectrum to the average transfer function. 

The filter parameters obtained in this way are Wg = 15.46 rad 

/sec, Sg = 0.623, wf = 1.636 rad/sec, ~f = 0.619. For these 

filter parameters and So = 1.0 m2 /sec 3
, 

A = 
S 

16.0895 m2 /sec4 
¢ = -0.1657 rad 

B = 0.8459 m2 /sec4 e = 4.2591 rad 
S 

The corresponding Sc; (w) and RC; (l ) are shown in Fig 2.6 • 
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For the same filter parameters, the autocorrelation function 

corresponding to the Kanai-Tajimi spectrum gives 

R~(T) 
-w 1:: I T I . 

= 16.0690 egg cos(wdlTI - (-0.1724» 
g 

which is almost identical to the first term in Eq. (2.16). 

The second term of Eq. (2.16), although quite small in 

magnitude, contributes significantly to the response of 

systems with low natural frequency. 
wf 1:: f 

The curve for Wg = 5n 

rad/sec, s = 0.6, W- = 0.1, r- = 1 
g g "'g 

is also shown in Fig. 2.4. 

For these rounded parameters and So 

m2 /sec 4
, ~ = -0.1291 rad, B~= 0.8228 m2 /sec 4 , and 8 = 4.3336 

rad. 

The auto-correlation function of ground velocity and 

ground displacement for the Clough-Penzien spectrum are 

R (T) 
V 

-W 1:: T d 
+ AsDse g g sin(wgT-~) 

+ B~F~e-WfSfTsin(W~T-e)}So 

(2.17) 



\'lhere T f; 0 , and 

1:
2 

..:.5! C~ = 
w2 

9 
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{wd
)2 

~ 
lJ.l1+ 

g 

D~ == 

F,.. = 
c; 

d 
2w g Sg 

w3 

g 

In order to relate the properties of the probabilistic 

ground motion model to the body of existing information on 

recorded ground motions, three sets of filter parameters for 

the Clough-Penzien spectrum are chosen as follows: 

Ground Filter Parameters 
Motion 

No. So 
w (rad) 

g sec Sg w (rad) 
f sec sf 

1 1.0 2n 0.400 0.2n 0.400 

2 1.0 15.46 0.623 1. 636 0.619 

3 1.0 IOn 0.800 'IT 0.800 

The three cases are selected to represent ground motions 

having different characteristic frequencies, The corresponding 

spectrum shapes are shown in Fig. 2.7. 

The variances of these ground motions are 
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Variance 
Ground 
Motion a 

0 2 0 2 0 2 0C;Od V -
No. ~ v d at;, 

0 2 
v (in/sec/g) 

1 6.63 1.101 2.5695 3.75 157.44 

2 15.50 0.270 0.0941 4.48 50.96 
I 

3 33.36 0.107 0.0102 5.49 21. 84 

in which 0'2 = R (0) 0 2 = Rv(O), O' d
2 = Rd(O) 

t;, 's ' v 

A parameter equal to the product of peak acceleration 

times peak displacement divided by the square of peak velocity 

is found to be about 6 for a large number of recorded earth-

quakes [30]. However, the value appears to be somewhat less 

for close-in earthquakes and the value was taken as 4 in the 

development of design spectra for the Diablo Canyon reactor 

facility [60]. Newmark and Hall [61] recommended the ratio 

of maximum velocity to maximum acceleration be taken as 48 

in/sec/g and 36 in/sec/g for competent soil conditions and 

rock respectively. These values, based on analyses of recorded 

earthquakes, are intended for use in constructing smooth 

design spectra, given an estimate of peak ground acceleration. 

The coefficients O't;,0d/ov and 0v/0t;, for ground motion No.2 

show good agreement with the corresponding deterministic quanti-

ties recommended by Newmark and Hall. Fig. 2.8 shows the R.M.S. 

ground motion on a tripartite logarithmic plot (see also 

Figs. 4.1 and 4.2) 
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From the above discussion, one can see that the Clough-

Penzien spectrum is quite flexible and can realistically model 

the frequency content of earthquake ground motions. Analytical 

expressions for the statistics (variances) of the ground 

motion can be easily obtained as functions of the filter 

parameters. 

2.4 Low Frequency Behavior 

In this section, the adequacy of the class of ground 

motion models specified by Eq. (2.1), for studying the response 

of very low frequency structural systems is examined. It 

appears that there is a fundamental defect in this class of 

ground motion models which has not previously been noted. 

It is well known [62] that elastic response spectra for 

real ground motions exhibit a certain asymptotic behavior at 

low and high system frequencies. For very low system frequency 

the spectral displacement Sd approaches the peak ground 

displacement. For very high system frequency, the spectral 

pseudo-acceleration approaches the peak ground acceleration. 

The low frequency behavior of the elastic response 

spectrum is dependent on the fact that for any real ground 

motion the relation 

f
T 

a(t) dt = v(T) - v(O) = 0 
)0 

(2.18 ) 

must hold, where T is the ,total duration of the ground motion. 
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Recorded accelerograms may not precisely satisfy this relation 

for a variety of reasons, including the presence of recording 

and digitizing errors. As a result, it is necessary to perform 

base-line adjustments on recorded accelerograms. If accelero-

grams are not adjusted to satisfy Eq. (2.18), then below some 

limiting frequency response calculations for low frequency 

systems are unreliable. The limiting frequency is dependent on 

the tolerance to which Eq. (2.18) is satisfied. If the 

tolerance is kept small enough, the limiting frequency can be 

kept below frequencies of practical interest. Pecknold and 

Riddell [65] estimate the limiting frequency as 

f.Q,~ vo/2nd m (2.19) 

~nere Vo = I J: a (t) dt I 
and d = peak ground displacement m 

Chopra and Lopez [18] recently evaluated the suitability 

of simulated ground motions for studying response of long 

period structures. They developed a set of 8 simulated ground 

motions by generating samples of stationary Gaussian white 

noise, applying the 3-segment duration function described 

earlier and then passing the signal through a second order 

filter corresponding to the Kanai-Tajimi spectrum. They then 

applied two different base line correction procedures to the 

simulated motions and computed elastic response spectra. 
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Comparisons were made with elastic response spectra for a 

set of 8 recorded ground motions which had been subjected to 

the same base line correction procedures. The low frequency 

behavior of the set of simulated ground motions was quite 

different from that of the set of recorded ground motions, 

which was inevitable since they had different maximum ground 

displacements. 

It should be expected that the simulated motions would 

not behave particularly well at low frequency since, as already 

noted, the Kanai-Tajimi spectrum is not realistic at low 

frequency. Perhaps all that the findings quoted above mean, 

in the context of this study, is that the base line correction 

procedures studied by Chopra and Lopez can not completely 

correct a gross vilation of relation Eq. (2.18) as was probably 

the case for the simulated ground motions. 

The surprising fact which emerged during the course of 

this study is that even if the Clough-Penzien spectrum is used, 

which gives realistic behavior at low frequency, the basic form 

of the ground motion model 

a(t) = I(t)s(t) (2.1) 

introduces some low frequency error. 

This may be shown as follows. Systems with extremely low 

natural frequencies "see" the ground motion as an impulse. 
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Consider then the impulse 

x = foo a(t)dt = Jooo I(t)s(t)dt 
·0 

(2.20) 

Note that E[X] = O. However, the M.S. value of X is 

(2.21) 

If I(t) = 1, then E[X 2
] = 0 for the Clough-Penzien 

spectrum. If a time varying envelope I(t) is used, it seems 

extremely unlikely that E[X 2
] = O. For the double exponential 

envelope function and the Clough-Penzien spectrum, Eq. (2.21) 

can be put in the form 

in which 

f(a,S) 

= C 2 {f(a,a) - f(a,(3) - f«(3,a) + f(6,6)} 
e 

w d 2 - (a. +w S ) (w S - (3 ) 
9 9 9 9 9 ) 

CM 

W~2_ (a.+wfs f ) (wfsf-B) 
~----~~~~~---) 

d 
w 

+ [_f_ 
0.+ B 

DM 

(2.22) 

cos(¢) 

cos (e) 
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and 

Cp 
1 CM { (CI. +w Z; ) 2 + d 2} = = Wg d g g (w l; -S)2+W 2 g g g 

Dp 
1 

DM {(CI.+Wfl: f ) 2 + d 2 } = -_.. ) 2 d 2 
= Wf 

(Wfl;f-S +W f 

Thus the impulse X is a zero mean random variable with 

a non-zero variance, which is evaluated explicitly for the 

Clough-Penzien spectrum and double exponential envelope 

function. 

While it has not been explicitly evaluated for any other 

cases, it seems virtually certain that 

is a general property of the class of ground motion models 

a (t) = I (t) ~ (t) (2.1 ) 

The manner in which this quantity is related to structural 

response of low frequency systems is explained below. 

If the system frequency is very low, the ground motion 

impulse becomes an initial velocity for the free vibration 

response of the system [65]. If the initial velocity is 
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the maximum displacement of the system is 

(2.23) 

where 

is a factor which depends on system damping as shown in the 

table below 

Fraction of 
Critical Function 
Damping 

S 
f 1 (1',;) 

0 1.0 

.01 .9845 

.05 .9267 

.10 .8626 

thus the spectral pseudo velocity 

is independent of system frequency at low frequency. 

Therefore the R.M.S. response spectrum asymptotically 

approaches the limit 
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at low frequency, rather than the limit 

These asymptotes are shown in Fig. 2.9, for the Clough-

Penzien Ground Motion No. 2 and the short duration envelope. 

An estimate of the frequency at which this spurious 

asymptotic behavior is likely to become evident can be made 

by finding the frequency at which the two asymptotes (for 

zero damping) intersect. This gives the frequency limit 

(2.24) 

which is analagous to the result quoted by Pecknold and 

Riddell [65]. 

f~ (Hertz) 
Clough-Penzien 
Ground Motion 

No. 1 No. 2 No. 3 

short Duration .104 .151 .171 

Long Duration .053 .058 .060 

Fig. 2.10 shows the variation of the low frequency limit 

~~ with a range of values of the envelope parameters a and B 

for the Clough-Penzien Ground Motion No.2. (see also Table 2.1). 
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The frequency limit, f~, seems to be primarily a function 

of t and the "spurious" low frequency behavior is quite max 

evident for ground motions with small t max . 

With the aid of Figs. 2.2 and 2.10 it is possible to 

choose a set of envelope parameters which provide the desired 

envelope shape, and to immediately determine an approximate 

system frequency above which the "spurious effect" mentioned 

above will be insignificant. 

2.5 Individual Large Pulses 

There has been speculation from time to time about the 

effect on structures of large isolated acceleration pulses 

in ground motions. For example, the 1971 Pacoima Dam record 

contains three acceleration pulses each lasting about 2/3 

seconds between 2-4 seconds after the start of the record. 

These pulses have peak accelerations ranging from about 

0.2 g to 0.7 g and contribute greatly to the structural 

response (Bertero [12]). In this study an attempt was made to 

incorporate pulses in the ground motion model and to study 

the effects of such motions on simple structural systems. 

This phase of the study is rather limited because no satis-

factory method was found of relating model parameters describing 

the pulses to actual ground motion characteristics. Chopra and 

Lopez [18] compared a set of 8 artificially generated earth

quake with a set of 8 recorded earthquakes. They found that 
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the ensemble of artifically generated earthquake had more 

zero crossings than the ensemble of recorded earthquakes 

and that the ensemble of recorded earthquakes' had a greater 

number of large acceleration pulses (defined as the area 

under the accelerogram between successive zero crossings) 

than did the ensemble of artficial earthquakes. 

This section outlines a method for including the effects 

of pulses in the ground motion model. A later section presents 

a limited parameter study on the effects of pulses on struc

tural response. 

The three ground motion models discussed above can all 

be obtained by passing white noise through linear filters. 

If the probability distribution of the white noise is Gaussian, 

then the linearly filtered motions are also Gaussian. In this 

case, the second-order moment statistics are sufficient to 

characterize the probability distribution of the ground motion. 

Previous studies of earthquake response [2, 52, 62] have assumed 

that the earthquake acceleration consists of a series of 

(filtered) impulses distributed randomly in time. If the 

average number of impulses per second, A, tends to infinity, 

and the variance of the impulse magnitude 0 2 tends to zero 

in such a manner that A~ is constant, then the impulses can 

be shown using the central limit theorem [64] to be Gaussian 

white noise. Therefore, small impulses with a relatively 

high incidence rate are properly modeled as Gaussian white 
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noise. However, large less frequent pulses are not well 

represented as Gaussian white driven processes. A filtered 

compound Poisson process provides a better model for large 

pulses [Appendix D]. Therefore, it is perhaps more realistic 

to model ground motions as a combination of (filtered) 

Gaussian white noise and (filtered) compound Poisson impulses. 

The Poisson pulses are white, that is, they have a 

constant PSDF; however, they do not have a Gaussian probability 

distribution. Hence, the response to this input is not 

Gaussian and the second order statistics do not therefore 

provide a complete description of the response. The details 

of the compound Poisson process are presented in Appendix D. 

Response of SDOF systems to this ground motion model are 

presented in Chapter 4. 

2.6 Multi-Directional Ground Motion 

An important factor in the response of structures to 

earthquakes is the multi-directional character of the ground 

motion. Recent recommended codes of practice such as ATC-3-06 

[6] and API RP2A [3] provide methods for accounting for effects 

of multi-directional ground motions. However, these recommen

dations are not as solidly based on experience or research 

results as are other aspects of earthquake resistant design 

procedures. In this study, the effects of multi-directional 

ground motion on simple structures is studied in a systematic 

manner. This section presents the multi-directional ground mo

tion model which was used. 
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Modelling of multi-directional ground motion is much 

more complicated than one-directional motion because the co

rrelation between the components in various directions must 

be taken into account. 

At any instant of time, the covariance matrix for multi

directional ground motion is symmetric and positive definite. 

Therefore, a set of orthogonal axes can always be found along 

which the components are uncorrelated statistically. These 

axes are defined as principal axes for ground motion. The 

determination of principal axes of ground motion is .identical 

to that for principal axes of stress via Mohr's circle, which 

is familiar to structural engineers. 

Unfortunately, the directions of principal axes for ground 

motion are time dependent. However, Penzien and his coworkers 

[49, 67) examined the San Fernando accelerograms and found that 

the directions of ground motion principal axes are relatively 

constant over time, particularly during the period of high 

intensity ground motion. They conclude that "the major 

principal direction points in the general direction of the 

epicentre and the minor principal axis is nearly vertical. 

It is concluded that artifically generated components of 

ground motion need not be correlated statistically provided 

that they are directed along a set of principal axes". There

fore, it seems reasonable to assume that translational ground 

motion has principal axes with constant directions, but these 

obviously need not coincide with the principal axes of the 
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structure. 

Because insufficient data are available on rotational 

components of ground motion, they are not considered in this 

study. The only exception to this is the case in which spatial 

variability of translational ground motion can produce, for 

structures with large horizontal dimensions, an effective ro-

tational ground motion input to the structure. This is dis-

cussed in Section 2.7. Since this work is focused on the in-

teraction of lateral-torsional motions, vertical motions are 

also not considered. Hence, two uncorrelated horizontal com-

ponents of ground motion directed along a set of principal 

axes are considered in this study. Each component is modeled 

as indicated in Eq. (2.1), with the same envelope function 

and frequency content. 

Let e and d be the ground motion principal directions 

as shown in Fig. 2.1l Then the ground motion accelerations 

in these directions are modeled as 

The autocorrelation functions for ae(t) and ad(t) are 

= Ie(tl)Ie(t2)R~ (It 1 - t 21) 
e 

(2.25) 
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where subscripts e and d indicate that the quantities are 

associated with e and d directions respectively. 

The assumption of constant principal axis directions im-

plies only that the cross-correlation function is zero at a 

given instant of time. It is further assumed in this study 

that the cross-correlation function 

(2.26 ) 

at different times t l , t 2 . There is not sufficient information 

available about the cross-correlation function to clearly jus-

tify this assumption. However, real earthquake accelerograms 

demonstrate a rapid loss in correlation with increasing values 

It I - t2 I· This suggests that the influence of Raead<tl,t2) 

is negligible and that the assumption given in Eq. (2.26) 

is reasonable. 

Let X and Y denote the principal axes of the structure, 

and let 8 be the angle between the X direction and the e di-

rection (Fig. 2.1]. Then, the correlation functions of ground 

motions, ax(t) and ay(t), in the structure principal axes are 

= R (t 1 ,t 2)sin 2 (8) + Ra (t1,t 2 )COS 2 (0) 
a e d 

(2.27) 

= {Ra (tl,t Z ) - R (t1,tz)}sin(o)cos(o) 
e ad 
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The covariance R (t,t) achieves its maximum value (R (t,t)-a a a 
x y e 

R (t,t})/2 at 0 = TI/4. The normalized covariance, the cross
ad 

correlation coefficient, p (t) is obtained through the relaxy 

tion 

Pxy(t) = 

Ra a (t,t) 
x y 

~R (t,t)R (t,t) a a x y 

(2.28) 

and takes values in the range (-1, 1). Pxy is a good indicator 

of linear dependency of two random variables. Kubo and Penzien 

[49] studied the San Fernando 3-directional ground motion re-

cords and determined statistical properties of principal vari-

ances for different geological classifications~These properties 

are summarized in Tables 2.2 and 2.3. Since the minor principal 

9irection is nearly vertical during the strong motion period, 

the major and intermediate principal directions are approxi-

mately horizontal. Table 2.3 shows that for hard soil condi-

tions the average major principal variance is about .61/.26 

= 2.35 times the average intermediate principal variance. 

This corresponds to an average cross-correlation coefficient 

(Rl-Rz}/(Rl+Rz) = 1.35/3.35 = 0.40 for ground motions in a 

set of axes rotated 45 degrees with respect to the ground 

motion principal directions. Therefore, treating ground motions 
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as independent quantities in the structure principal directions 

may sometimes be quite unconservative. 

The variances R (t,t) and Ray(t,t) are plotted as 
ax 

functions of angle of incidence 0 in Fig. 2.12, in which the 

principal variances R (t,t) and R (t,t) are assigned values 
a e ad 

1 and 1/2.35 = .425~ respectively. As shown in Fig. 2.12, 

at 6 = n/4 and 0 = n/8 R (t,t) and R (t,t) are equal and 
ax a y 

Ra a (t,t) reaches its maximum absolute value. 
x y 

2.7 Spatial Correlation 

For structures which have large horizontal dimensions, 

spatial differences in translational ground motion can produce 

an effective rotational ground motion input to the structure. 

Newmark [55, 59] used a travelling wave model to derive an ex-

pression for rotational ground motion input. 

In this section, the spatial correlation of translation 

ground motion components is accounted for, which results in a 

probabilistic model for rotational ground motion,. analogous 

to that of Newmark [59]. 

The ground motion models discussed up to this point are 

assumed to be uniform over the structure base. Previous re-

search on spatial correlation [1, 33] showed that correlation 

of ground motion decays with the increase in distance. There-

fore, the full correlation assumption is probably not appro

priate for structures with very large base dimensions. The 
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partial correlation of ground motion may cause torsional ex

citation. To illustrate this, c6nsider a structure being sub-

jected to a one-directional translational base excitation 

shown in Fig. 2.13. The foundation is assumed to be rigid. The 

free-field ground motion at location y is designated as 

" 
~x(t,y). The effective translational excitation ~x(t) averaged 

over the foundation dimension, is 

A 

1 Jb
/

2 
= - ~(t,y)dy 

b -b/2 x 
(2.29) 

The effective torsional excitation scp(t) is obtained by 

finding a s¢(t) which minimizes the expression 

J 
b/2 

[~t,y) - ~x (t) - y~,/, (t)] 2dy 
-b/2 'I' 

(2. 30) 

After simple calculations, ~¢(t) is obtained as 

~cp (t) = 12 J b/2 

b 3 
~x(t,y)y dy 

-b/2 
(2.31) 
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It is emphasized that this effective torsional excitation 

is due to the smoothing effect of a rigid structural base on 

free-field translational ground motion which is not perfectly 

correlated spatially. It is also assumed that the wave shape 

is not affected by the presence of the structure, which 

may be questionable. 

If ground motion ~. (t,y) is assumed to be stationary and 
x 

spatially homogeneous, then the PSDF of ~ (t,y) can be denoted x 
A A 

as Ss (T,r), where r is IY1-YZ I. The PSDF of sx(t) and Se(t) 
A x 

:: bS<jJ are then 

1 J b/2 J b/2 
SA (w) = s~ (W,IY1-Yzl)dy1dyz 

~x b Z -b/2 -b/2 x 

(2.32) 

144 b/2 J b/2 
s" (w) = J-b / 2 

Y1YZS~ (W,IY1-Yzl)dYldyz 
~8 b 4 -b/2 x 

In the absence of information about the form of spatial 

correlation, a convenient expression is chosen. Suppose 

Ss (w,r) takes the form 
x 

Ss (w,r) = S(w)R(w,r) 
x 

(2. 33) 
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where sew) is a local spectrum and R(w,r) is a normalized 

cross spectrum. R(w,r) is conveniently described by 

R(w,r) !.hl m = exp[-c s ( V ) ] 
. s (2.34) 

where V = shear wave velocity of soil and c = a constant. s s 

The shear wave velocity, V , is in general greater than s 

600 m/sec for firm soil conditions and is less than 600 m/sec 

for soft soil conditions. The parameter C s accounts for the 

spatial correlation effects. A value of Cs = 0 corresponds to 

perfect spatial correlation. A value of Cs = 0.5/2n was used 

in the study by Hindy and Novak [33] and is shown to be 

acceptable according to some ray measurements. This value 

corresponds to a correlation length of about (10 sec) x Vs 

for acceleration and (45 sec) x Vs for displacement. The 

correlation length is a characteristic length indicating 

how fast the spatial correlation decays. Interested readers 

should refer to Hindy and Novak et al [33] for details. 

For m = 1, the following relations result 
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S€ (z) = ~{1 + i(e-
z 

- 1) }S(w) 
x 

S~ (z) 
e 

(2.35) 

= 288 { 1~Z - ~(e -z) - _l_(1+e- z ) + ~(1-e -z) } S (w) 
Z3 4Z2 . Z4 

in which the dimensionless variable z - For example, 

if c = 0.5/2n, V = 600 m/sec, b = 100 s s m, w = 10n rad/sec, 

then z = 0.41667 and S~ (z) = 0.874 and S~ (z) = 0.844. 
x e 

Therefore, for systems with a large natural frequency and huge 

base dimensions, the torsional excitation is quite significant. 

s~ (z) and s~ (z) are plotted in Fig. 2.14 against z. s~ (z) 
x e x 

decreases with increasing z. However, S~ (z) increases with 
e 

increasing z up to z = IfI:5 = 3.39 and then decreases after-

ward. It is noted that the radius of gyration of a bar element 

is r = ~ , so the torsional spectrum reaches a maximum 
V 

approximately when the relation 

2.8 Summary and Discussion 

s 
c s 

= b 

II2 
= r holds. 

In this chapter, a class of stochastic ground motion 

models (Eq. (2.1» was examined. 

(1) Time varying intensity was modeled by means of a 

double exponential envelope proposed by Shinozuka and Sato. 

Time to peak intensity, t ,and Trifunac-Brady duration, 
max 

DTB were related to the envelope parameters. 

(2) Three different frequency content models were 
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considered: white noise, the Kanai-Tajimi spectrum, and the 

Clough-Penzien spectrum. Ground motion R.M.S. accelerations, 

velocities and displacements were calculated and appropriate 

ratios were compared with values recommended by Newmark and 

Hall for use in constructing smoothed design spectra given an 

estimate of peak ground acceleration. 

(3). It was shown that ground motion acceleration models 

of the general form of Eq. (2.1) possess a previously unreported 

deficiency. Care should be taken in using such stochastic 

ground motion models in studies of structural response of very 

low frequency elastic systems. 

(4). A multi-directional ground motion model based on the 

premise of the existence of fixed ground motion principal 

directions was discussed. 

(5). The presence of large individual acceleration pulses 

in the ground motion was modeled, although there is not suffi

cient information available to select a reasonable range of 

parameters. 

(6). Lack of spatial correlation in the translational 

ground acceleration resulting in an effective rotational ground 

motion input was modeled using a travelling wave model originally 

introduced by Newmark [59]. 
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CHAPTER 3 

RESPONSE OF LINEAR SYSTEMS 
TO SEISMIC EXCITATION 

This chapter introduces and summarizes the methods used 

in this study for computing structural responses to the ground 

motion models described in Chapter 2. 

The ground motion models used ln this study are zero mean 

random processes. The response to this ground motion of any 

linear structural system is therefore also random and has zero 
-

mean. Therefore, a great deal of information is contained in 

the second-order moment statistics of the response. Most of 

the response calculations carried out in this study involve 

determination of displacement and velocity response covariances. 

Special consideration is given to systems with closely 

spaced frequencies, since such a situation arises in systems 

with lateral-torsional coupling. It is well known that conven-

tiona 1 procedures experience accuracy problems when applied to 

systems with nearly equal natural frequencies [41, 47, 58, 71]. 

In this chapter, the effect on response of close frequen-

cies is illustrated by considering the stationary response of 

systems excited by white noise; expressions are derived for 

covariances of response for general multi-DOF systems in terms 

of system properties and ground motion parameters; an efficient 

and accurate time domain response calculation procedure is 



45 

developed; and the probable response, which blends information 

on various response covariances into a better indicator of 

structural response is discussed. 

It is assumed that damping in the structural model may be 

specified as a fraction of critical damping in each mode of 

vibration . For simplicity it is assumed that each mode has 

the same value of damping. Therefore, the well known normal 

mode method is employed. Throughout the study, the systems are 

assumed to have zero initial conditions. However, other initial 

conditions can be incorporated into the analysis if so desired. 

3.2 Normal Mode Method for Multi-DOF Systems 

This section contains a brief summary of the well known 

normal mode method for linear systems, in order to introduce 

notation. 

Consider a general discrete, lumped mass system with N 

DOF subjected to ground motion excitation a(t). The equation 

of motion of the system is 

[M]{li} + [C]{u} + [K]{u} = -[M}{r}a (3.1) 

where [M], [K] and [Cl are mass, stiffness, and damping 

matrices of order NxN. {u}, {li} and {li} are respectively 

displacement, velocity, and acceleration vectors relative 



46 

to the base. {r} is a vector which represents the displace-

ments resulting from a unit base displacement. 

Let {~j} be the j-th free vibration mode of the system 

satisfying 

(3.2) 

and the orthogonality conditions 

if j~k (3.3) 

where Wj is the natural frequency of mode j. 

Let [~] denote the modal matrix whose columns contain 

the mode shapes 

The displacement {u} is transformed into mode shape co-

ordinates {q} through 
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or (3.4) 

{u} = ['¥] {q} 

where {q} is a vector of modal displacements. Eg. (3.1) becomes 

[M]['¥]{g} + [C) ['¥]{q} +[K] ['¥]{g} = [M]{r}a 

Premultiplication of Eg. (3.5) by (~]T, produces 

where 
[~] = [,¥]T[M] ('11] 

[Crn] = [,¥]T[C] ['¥] 

[tn] = (,¥]T[K] ['11] 

(3.5) 

(3.6) 

[Mm] , [Cm] and [Km] are respectively modal mass, damping and 

stiffness matrices. They are all diagonal matrices as a re

sult of the orthogonality property of the mode shape vectors, 

and the modal damping assumption. Therefore, the method trans-
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forms complicated systems into a set of N independent SDOF 

systems in the mode shape coordinates. From Eq. (3.2), one 

has k~. /m~. = w~ , in which k .. and m .. are j-th diagonal 
JJ JJ J JJ JJ 

elements of [K
m

] and [M
m

] matrices respectively. 

3.3 Multi DOF Systems with Closely Spaced Frequencies 

In dynamic analyses of structures, closely spaced modes 

typically arise from symmetry or near-symmetry in buildings. 

The interaction between modes with nearly coincident frequen-

cies may account for a significant increase in response. To 

illustrate the effect of close natural frequencies, consider 

linear systems excited by white noise. The equation of motion 

in the mode shape coordinates can be written as 

\~ll c
ll ~ll 

a · •• I c .. q. , qi 1 ~~ ~ 

1 ~j \ 
· ( + + · 

c .. 

~j I 0 JJ 

'. J I •• l qN 
C NN qN 

(3.7) 

• 2 w
ll ql Wl 

0 • 
w~ . q. W. 
~~ ~ ~ . 

= = W . · w~ . q. 

l? 0 JJ J . . 
w 2 

'IN WN NN 
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. 
where c kk :: 2w

kk
1',;, W is a vector of white noises with 

s ----------s 11 IN 
s .. 
~J 

symm. 

where S .. is cross-spectral intensity. 
~J 

<5 (t-s) 
(3.8) 

Rewrite Eq. (3.7) in a state variable representation and 

consider only the i-th and j-th modes, leading to 

1 o o 

o o 
= dt + dt (3.9) 

o o 1 

o -w~ . 
JJ 

-c .. 
JJ 

Applying Eq. (B.18), the second moment evolutionary 

equations, which give the time variation of the second moments 

of response, are written as follows 

E[g.q.] + E[q.g.] 
~ J ~ J (3.10) 

E[g.g.] - w~. E[q.q.] - c .. E[q.q.] 
1. ) 1.1. 1.) 1.~ ~) 

(3.11) 
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E [q . q . J - w ~. E [q . g .] - c.. E [g . q . 1 
~ J JJ ~ J JJ ~ J (3.12) 

-w 7. E [q. q .] - w ~. E [q . q . ] 
~~ ~ J JJ ~ J 

(3.13) 

- (c.. + c .. ) E [ei . ei .] + s .. 
~~ J J ~ J ~J 

If only stationary response is considered, the time deriva-

tives appearing in Eq. (3.10) to Eq. (3.13) are replaced by 

zero. These equations can then be easily solved for the cova-

riances as follows. From Eg. (3.10) 

Brei.g.) = - E[g.g.) 
~ J ~ J 

(3.14) 

Subtraction of Eq. (3.11) from Eg. (3.12) and use of Eq. 

(3.14) yields 

E[q.q .] = 
~ J 

(w ~ . -w: .) 
~~ JJ 

(c .. +c .. ) 
1.1. JJ 

E[q.q.] 
~ J (3.15) 

Addition of C jj times Eq. (3.11) plus c ii times Eq. (3.12), 

yields 

. . 
E[q.q.] = 

~ ) 

(c . . w~ .+c . . w: .) 
JJ 1.~ ~~ JJ 

(c .. +c .. ) 
~~ JJ 

E[g.g.] 
1. J (3.16) 
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Substitution of Eqs. (3.14), (3.15), and (3.16) into Eq. 

(3.13), then gives 

in which 

E[q.q.] 
~ J 

S .. 
= -ll 

!I'ij 

(w ~ . -w ~ . ) 2 
T .. =c .. w~. +c .. w~. + __ ~_~_ ...... J ...... J_ 
~J ~~ JJ JJ ~~ c .. +c .. 

~~ JJ 

= [2 ~ (w .. w •• ) + -21 
(w .. -w .. ) 2] (w .. +w .. ) 

~~ JJ ~ ~~ JJ ~~ JJ 

(3.17) 

T.·, which is completely determined by system properties, 
~J 

is analogous to stiffness in static analysis, while S .. is 
~J 

analogous to force description. 

For the variance, i = j and 

T .. = T.. = 2c .. w •. = 4 r;;w ~ . 
~~ JJ ~~ ~~ ~~ 

(3.18) 

which is a familiar result for SDOF systems. 
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Consider the effect on the response of mode i of a second 

mode j with the same frequency, W .. = w ..• If the cross term 
JJ 1.1. 

S .. in the input spectrum is of the same order of magnitude as 
1.J 

S .. , then E[q.q.] is of the same order of magnitude as E[q1.~] 1.1. 1. J 

and has an important effect on the response. 

To see the effect of nearly equal frequencies, define the 

parameter y 

y -
T .. 1.) 

4 r,;w ~ • 1.1. 

{ 
_1 (Wjj ) + 1 W;; 2 W;; = -(1- -J...oL) } (1 + ~) 
2 wii 81;;2 Wii Wii 

which is the ratio of E [q1.~] to E [q1.' q).] if S .. = S ... 1.1. 1.J 

(3.19) 

The parameter y is shown in Fig. 3.1 as a function of 

W . . /w .. for damping 1',; = .02, .05, and .10. The figure shows 
JJ 1.1. 

W •• 

clearly that y increases rapidly with increasing -12 for 
w .. 1.1. 

small damping, thus, it is reasonable to omit cross modal 

response for systems having separated natural frequencies 

providing that damping is small. Eq. (3.19) can be used 

as a quantitative measure of the feasibility of omitting the 

cross modal response. 
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3.4 Covariance of Responses 

Since modal damping is assumed, a system is completely 

characterized by mode shapes and natural frequencies. Let 

ljJ .• = i-th 
1.J 

element of j-th mode shape 

qlj = j-th element of modal response {ql} 

q2k = k-th element of modal response {q2 } 

Q. = j-th generalized input 
J 

X. 
1. = i-th component of response {X} 

Yp = p-th component of response {Y} 

F. = j-th 
J 

component of input 

M. 
J 

= j-th modal mass 

N = number of degrees of freedom of structure. 

h Ij = impulse response function of modal response 

h2k = impulse response function of modal response 

For displacement response 

1 
-W./:;,T 

sin (W~T) h (T) J = 
wd e z· 

J j 

For velocity response 

h (1") z. 
J 

where 

Then 

-W./:;,T d 
= e J cos (w. T) 

J 

1 -W./:;,T d 
J . ( - w./:;,- e S1.n WJ'T) 

J w~ 
J 

z = 1 or 2 

qlj 

q2k 

(3.20) 
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~ 
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The covariance of Xi and Yp is then 

1 
R ( t , t) = L L L L ,10 ," 1jJ .1jJ k MY' k n ( t ) o/ijo/pk ~J m J.Mk J ,Nm 

XiYp jk£m 

Y'k n (t) J ,Nm 

(3.21) 

(3.22) 

If the input is stationary, the stationary form of Eq. (3.22) 

can be written as 

(3.23) 
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where H(w) is the transfer function of the response and * 

denotes complex conjugation. 

Eq. (3.22) involves double integrals. It is prohibitive 

to evaluate these integrals numerically due to high computa

tional cost. In the past, the covariances of responses have 

been obtained via frequency domain analysis. Since ground 

motions are assumed to be locally stationary, the evolutionary 

power spectral technique by Priestley enables one to evaluate 

Eq. (3.22) numerically by performing a series of one-dimen

sional discrete Fourier transforms and numerical integrations 

rather than by evaluating double integrals [68, 69, 89]. Ne

vertheless these procedures are still quite expensive and 

numerical errors are difficult to assess. In order to evaluate 

nonstationary covariance of responses efficiently and accura

tely, it is desirable to obtain an analytical expression for 

double integrals. For the ground motion considered, this can 

be done in a straightforward manner due to the simple, well 

structured, integrable autocorrelation function of the input. 

Therefore, computational cost can be cut drastically. 

In seismic building analysis, one significant advantage 

associated with normal mode analysis is that a good approxi

mation of displacement or velocity can usually be achieved 

using only a few modes. Hence, another reduction in compu

tational cost can be made by establishing criteria for selec

tion of significant mode pairs to yield results with the 

specified accuracy. More details will be discussed in Chapter 

6. 
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3.5 Analytical Evaluation of Response Covariances 

If ~(t) is white, the double integrals in Eq. (3.22) 

automatically reduce to single integrals which can easily be 

carried out analytically. If the Kanai-Tajimi or Clough-Penzien 

spectra are used, it is only necessary to evaluate expressions 

of the form 

-w ~ IT -T I 
. egg 1 2 • 

(3.24) 

For most envelope functions which have been proposed, Eq. 

(3.24) can be integrated. The analytical expressions for dis-

placement response, velocity response, and displacement-

velocity joint response are given in Appendix E, in which the 

Shinozuka-Sato envelope function is employed. 

3.6 Maximum Response 

In previous sections, the covariances of various responses 

are derived. These response statistics contain much of the 

information concerning structural response characteristics. 

They represent the mean square responses. However, in struc-

tural analyses, maximum responses are of particular importance. 

Since the structural response in this formulation is random, 

maximum response can only be discussed in terms of probability. 

A meaningful way to phrase the problem of finding extreme res-
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ponses is to determine the probability that a prescribed dis-

placement threshold, d*, will not be exceeded by structural 

random response [Fig. 3.2]. This is known as the First-Passage 

problem. It is perhaps more useful to solve the problem the 

other way around; prescribe a probability of no exceedance and 

to determine the corresponding threshold (level). The response 

threshold associated with a fixed probability of no exceedance 

will be called Probable Response. For instance, the threshold 

corresponding to 90 percent probability of no exceedance is 

called 90 percent Probable Response and denoted as d~.9. 

3.6.1 probability of No Exceedance (Reliability) 

Let d be the random response of interest. Then the proba-

bility of no exceedance ~(d*, t) of level d* in the time in-

terval 0 ~ T ~ t is defined by 

* ~(d ,t) = P {T>t * d(T) ~ d for the first time} (3.25) 

If the ground motion is assumed to be Gaussian, then all response 

qua~tities are Gaussian. However, so far no solution has been 

obtained for ~(d*, t). Consequently, it is necessary to employ 

approximate methods. A number of approximation methods have 

been devised [54, 70, 84]. In this study the Poisson process 

(crossing assumption) approximation is used because of its 
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simplicity. This approximation is often conservative for nar-

row band Gaussian processes [21] which is the case in this 

study. The approximation assumes that the number of crossings 

at time t is a Poisson process. Accordingly, the probability 

of no exceedance is 

(3.26) 

where vd*(T) is expected rate of upcrossings of level d* given 

by [70] 

Pdd h) d* 
d*¢[ ] 

(3.27) 

0d (T) / I-P~d 

2 

P~a (T) d* 
----~---]} 

20ci (l-p ~ci (or) ) 

where °d(or) , and 0d(T) are respectively the standard deviation 

of d and d, and Pdd(or) is the correlation coefficient. ¢[.] 

denotes the cumulative distribution function of the unit nor-

mal distribution. In structural analysis, the absolute value 

of d, Idl, is of particular concern and 
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= exp [-Ito v *(T) dt] 
Id I 

(3.28) 

The above approximation involves only response covariances 

(first order probability information), and correlation infor-

mation for two different time instants is not considered. 

For stationary response, Pdd in Eq. (3.27) is zero, and 

A( \d*\, t) becomes 

(3.29) 

* lHld l,t) = 
0· 2 

exp{-2t ___ d_ exp[- ~]} 
2nod 202 

d 

In Eq. (3.29), knowledge of ad' ad and duration t is re

quired. In the nonstationary case, the response will die out 

eventually and duration of response can be omitted. However, 

Pdct is no longer zero for the nonstationary case. 

3.6.2 Probable Response 

For a fixed duration, A( Id*l, t) is a monotonic increasing 

function of Id*l. Therefore, Id* I can always be obtained 

numerically by an iteration process. Let Id*1 be expressed in 
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terms of M.S. displacement as 

for stationary case 

for nonstationary case 

in which c will be termed the Multiplication Constant. From 

Eq. (3.29), c for stationary response is 

O· 
~t 
0d ~2 

c = [ 2 In ] 
-nInA 

(3.30) 

3.7 Summary and Discussion 

The methods used in this study for computing structural 

response of linear MDOF systems to ground motion input were 

presented. 

For stationary white noise input, modal covariances 

were computed using Eq. (B. IS). For stationary and nonstationary 

response to Kanai-Tajimi and Clough-Penzien spectra input, 

responses were computed using the auto-correlation function. 

Expressions for time-varying modal displacement and velocity 
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variances and covariances were evaluated analytically. 

Eq. (3.22) gives the general form for time-varying response 

covariance, and Eq. (3.23) gives the stationary response 

covariance. The canonical form of the double integrals which 

are involved in the analytical evaluation of covariances, is 

displayed in Eg. (3.24) and evaluated in Appendix E. 

The closed form expressions for response covariances 

were incorporated into a normal mode analysis procedure for 

linear elastic MDOF systems. 

Rice's approximation [70] for maximum response (with 

a specified probability of no exceedence) was also summarized. 
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CHAPTER 4 

EFFECTS OF GROUND MOTION CHARACTERISTICS ON 
THE RESPONSE OF SINGLE DEGREE OF 

FREEDOM (SDOF) ELASTIC SYSTEMS 

4.1 Introduction 

In this chapter, the ground motion models described in 

Chapter 2 are used as input to single degree of freedom (SDOF) 

elastic oscillators. 

SDOF systems are studied in order to provide some insight, 

in as simple a context as possible, into the effects on res-

ponse of various ground motion characteristics. In addition, 

a thorough understanding of the response of SDOF systems is 

fundamental to the understanding of more complicated systems. 

Response spectra, which contain important information on 

the response characteristics of SDOF systems, have been widely 

used in earthquake engineering . A typical response spectrum 

(EI Centro (1940 EW» is shown in Fig. 4.1. The smoothed 

design spectrum obtained by applying the rules due to Newmark 

and Hall [57] and Newmark [56] is shown in Fig. 4.2. This 

spectrum may be thought of as an expected response spectrum . 

The figures indicate the general pattern of response of SDOF 

systems to ground motion shaking. The spectral shape illus-

trated in Figures 4.1 and 4.2 is typical of earthquake ground 

motions recorded at medium epicentral distances on firm soil 

or rock sites. These deterministic spectra provide a frame of 

reference for evaluating the stochastic ground motion models 
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used in this study. 

The most important general characteristics of the ground 

motion models discussed in Chapter 2 are frequency content and 

nonstationarity or duration. 

Three commonly used models for the frequency content of 

strong ground motions were discussed in Chapter 2. These models 

provide varying degrees of realism in spectral shape when 

compared with response spectra of recorded motions. The three 

models, ranked in order from most realistic to least realistic, 

are: 

1) Clough-Penzien spectrum 

2) Kanai-Tajimi spectrum 

3) White noise 

Conversely, a ranking of the models on the basis of simplicity 

and convenience would reverse the order shown above. 

Likewise, the introduction of a nonstationary envelope 

function may provide a realistic variation of ground motion 

intensity at the expense of complicating the problem. In 

structural analyses, it is the response that really counts. 

The use of a more realistic model may (sometimes) lead to 

analytical difficulties and make it impossible to draw useful 

general conclusions. On the other hand, the simpler models may 

not yield reasonable results in the range of interest. A ba

lance must be reached between these conflicting objectives. 

Therefore, the ranges of applicability and the adequacy of the 

models must be carefully investigated. 
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In this chapter, R.M.S. responses to the ground excita-

tions are computed and plotted on tripartite spectral charts 

so that 1). the effects of ground motion characteristics 

(frequency content and duration) on structural response can 

be clearly seen, and 2). comparision can be made with actual 

earthquake response spectra, so that the models can be evalu-

ated. 

Since linear structures are of concern, the responses 

are proportional to the spectral level, So. Another advantage 

of plotting the results on tripartite logarithmic paper is 

that the response spectra are merely shifted when different 

spectral levels So are used, and therefore, So can be chosen 

quite arbitarily. 

The effect of individual large pulses on the response 

will be illustrated using the white noise model because its 

simplicity. 

4.2 Response of SDOP System 

Consider the SDOP system shown in Fig. 4.3. The equation 

of motion is 

(4.1) 

where u is the displacement of the mass relative to the base, 

Wo and ~ are respectively natural circular frequency and 
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damping, and a(t) is the ground acceleration. In earthquake 

engineering applications, the natural frequency fo ( = wo!2TI) 

is normally in the range from 0.05 cps to 20 cps. The damping 

coefficient ~ depends on the type and condition of the struc

ture. In this chapter, only 5 percent critical damping 

(~ = 0.05) is considered. 

4.2.1 M.S. Responses 

As will be seen later, the effect of frequency content 

and duration (nonstationarity) will be illustrated through 

the stationary and nonstationary R •. M.S. displacement and 

velocity responses of snOF systems. The stationary response 

is the response at t~oo to a stationary excitation. The non-

stationary response discussed in this research implies that 

the oscillator is at rest initially and the excitation is a 

locally stationary process as descibed in Eq. (2.1). 

For the convenience of later discussion, let a (t) and 
u 

au(t) denote respectively the R.M.S. displacement and velo-

city response. (a. (t»max denotes the maximum over the time 

history and t denotes the time at which the maximum occurs. 
p 

0. (00) denotes the stationary result. 

If the ground acceleration a(t) is Gaussian white noise, 

applying Eq. (B. IS) , the second moment evolutionary equations, 

which are a set of coupled ordinary differential equations 

which give the time history of the second moments of response, 

can be derived as follows 
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[E[U:Jl 0 2 0 E[U:Jl r 
0 

a (4.2) 
at r[UUJ = -w 2 -2w z; 1 E[uu] + 

[1 2 (:)SO E[U 2 JJ 
0 0 I 

l 0 
-2w 2 -4w Z; E[U 2 ]J. 

0 0 

where So is the spectral level of ~(t). If stationary responses 

are of concern, one immediately obtains the familiar result 

So 
= 4w 3 z; 

o 

So 
(4.3) 

After some calculation, the nonstationary response can be ex-

pressed as 

E[U 2
] </l (t--r) 

1 3 

E[uu] = soI: </l (t--r) I 2 (1')d1' (4.4) 
2 3 

E[u 2
] </l (t-1') 

3 3 

in which 

</l (t) = 
1 3 
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cp (t):: 
23 

-2w z;t 
o w z; /--

e {+[cOS(2Wo/1-Z;2 t) -1] 
w2 (1-Z;2) 

o 

(4.5) 

cP (t) = 
3 3 

Eq. (4.4) can be evaluated analytically [Appendix F]. 

The M.S. responses of systems to ground motions having 

Kanai-Tajimi or Clough-Penzien spectrum characteristics can be 

obtained by specializing Eqs. (3.22-3.24) and Appendix E. The 

stationary results are obtained by keeping only those terms 

At involving e in Appendix E since all the other terms die out 

as t+oo. 

The stationary R.M.S. displacement and velocity responses 

to ground motion with the Kanai-Tajimi spectrum characteristics 

can then be arranged in the following simple forms: 

w Z; w2 (1-4z;2) 
0 = E [u 2] = 2 {w 2 (1 +~)~ + [ 9: 9: - 2w Z; ] ~ } 

U W2~ g woZ; 1 2w Z; g g 2 
0 

0 
(4.6) 

E [~2] -1 3 + w2(1-4Z;2)~ } 0· = = 2 Z;~ { 21; w ~ u w g g 1 g g 2 
0 
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in which 

f:. = _(W 2 _W 2 )2_ 4 (w Z; W 2 +W Z; W 2) (W z;; +W Z; ) 
o 9 ggo 0 go gg 

So 
f:. = {W 2 _ W2 + 8 w Z; (w Z; +w Z; )} 

1 4w g(,g 0 9 9 9 0 gg 

So 
f:. = { 4w 3 z;; + 2w w (W Z;;-W Z; )} 

2 4w g1';g 9 9 0 9 gog 

The stationary R.M.S. displacement and velocity res

ponses to ground motion with Clough-Penzien spectral character

istics can be evaluated using the expressions given in 

Appedix E but are too lengthy to repeat here. 

4.3 Effects of Ground Motion Characteristics 

4.3.1 Effect of Frequency Content 

In this section the stationary responses to the three 

types of input spectra (white noise, Kanai-Tajimi, Clough

Penzien) are examined to determine how well the general 

characteristics of the response spectra agree with the 

response spectra computed from actual earthquakes. Then, 

using the Clough-Penzien input spectrum, the effect of 

dominant ground motion frequency is examined. 

The stationary responses 0u(oo) and 0u(oo) to ground 

motions with white noise, Kanai-Tajimi, and Clough-Penzien 

frequency content characteristics are shown in Figs. 4.4 
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and 4.5. In these figures, So= 10000 in2/sec 3 and filter 

parameters of Wg = 15.46 rad/sec, ~g = 0.623, wf = 1.636 

rad/sec, and ~f = 0.619 are used. 

The figures reveal that the general shape of the 

R.M.S. displacement and velocity response spectra for 

the Clough-Penzien input closely resembles the El Centro 

response spectrum shown in Fig. 4.1. This general shape 

is typical of earthquake response spectra. As expected, 

the response spectra for the Kanai-Tajimi and white noise 

input tend to diverge as the natural frequency approaches 

zero. However, for very low frequency systems, the displacement 

response should be equal to the ground displacement. For the 

Clough-Penzien spectrum with rounded parameters W =5n rad/sec, g 

W =0.6, wf/w =0.1, ~f/~ =1.0, and So=1.0 in2 /sec 3 (Fig. 2.5), g g g 

the R.M.S. ground displacement is computed as 0.3308 in. from 

Eq. (2.17). For the same set of parameters, the R.M.S. displace-

ment response for a system with very low.natural frequency, 

say fo = 0.01/2n cps, is obtained through Eq. (3.24) and 

expressions given in Appendix E as 0.3426 in. This confirms 

that the Clough-Penzien spectrum provides a reasonable ground 

motion model especially in the low frequency range. 

The responses cr (00) and cr. (00) due to white noise are 
u u 

identical straight lines on the spectral charts. This can 

easily be seen from Eq. (4.3) which shows that the pseudo-

velocity response (defined as wocru ) is equal to velocity 
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response 0u (oo). For the same spectral level, the white noise 

input yields higher response in the low and high frequency 

range, but smaller response in the mid-frequency range when 

compared with those from Clough-Penzien spectrum input. 

The response for the Kanai-Tajimi spectrum input are 

virtually the same as those for white noise in the low 

frequency range. In the mid and high frequency range, the 

responses are very close to those for the Clough-Penzien 

spectrum input. 

From the above discussion and in view of Figs. 4.4 

and 4.5, it is clear that the white noise model represents 

the effects of ground motion. well only if the natural 

frequencies of the structural system fall within a very 

limited range. The Kanai-Tajimi spectrum yields reasonable 

results if the system natural frequencies are not in the 

low frequency range. In much of the subsequent work reported 

in this study, the Clough-Penzien spectrum will be used to 

represent ground motion frequency content. However, in a 

few cases, the white noise model will be used for the sake 

of simplicity. 

The displacement and velocity response spectra for 

Clough-Penzien spectrum input are in general quite similar. 

In the mid frequency range, the pseudo-velocity w ° (00) is o u 

approximately the same as velocity 0 U(OO). The pseudo-

velocity w ° (00) underestimates the velocity 0~(oo) in the o u u 

low frequency range, but overestimates the velocity in the 
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high frequency range. 

To compare the effect of ground motion dominant fre

quency, the R.M.S. displacement response sp~ctra for the three 

ground motions with Clough-Penzien spectra (Fig. 2.7) are 

plotted in Figs. 4.6 to 4.8. Applying the Newmark-Hall 

approach, [57] for the construction of spectra, R.M.S. ground 

acceleration, R.M.S. ground velocity, and R.M.S. ground 

displacement are employed as control parameters to separate 

the frequency range into three regions. Amplification 

factors are indicated in the figures. It is evident that 

the amplification patterns over the three regions are quite 

similar for the three spectra used despite the fact that 

the spectral shapes of the three ground motion inputs are 

quite different. This suggests that one can adequately 

estimate response spectra using only M.S. ground acceleration, 

velocity, and displacement. These quantities can be obtained 

analytically for the ground motion model with Clough-penzien 

spectrum characteristics using Eqs. (2.16) and (2.17). 

The relations 0~0d/0v2 and 0v/0~ are quite different 

for the three ground motions used (Refer to Sec. 2.3.2.2). 

Therefore, a single set of numerical value of these quantities 

does not seem appropriate for ground motions with significantly 

different frequency content. 

4.3.2 Effect of Duration 

In this section, the effect on response of ground motion 

duration is considered. 
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First, a short-duration earthquake (Trifunac-Brady 

duration = 7.2 sec., Sec. 2.2) is considered, with fre-

quency content characteristics corresponding to white 

noise, Kanai-Tajimi and Clough-Penzien spectra. For the 

same set of filter parameters used in the previous section 

and So = 10000 in 2 Jsec 3 
, the maximum responses (ou(t»max 

and (ou(t)max are shown in Figs. 4.9 and 4.10. In all cases, 

the stationary response levels are attained if the system 

natural frequency is in the high frequency range. (Compare 

Figs. 4.4 and 4.9 and Figs. 4.5 and 4.10) In the mid and 

low frequency ranges, the maximum nonstationary responses 

are generally smaller than the corresponding stationary 

results. 

Unlike the response for white noise or the Kanai-

Tajimi spectrum, the maximum displacement response (ou(t»max 

for the Clough-Penzien spectrum exhibits some unusual be-

havior. (0 (t» starts to depart from the stationary u max 

response 0 (00) at about f = 2 cps. As f decreases further 
u 0 0 

the divergence first becomes larger, then becomes smaller. 

This can be explained by the fact that the transient res-

ponse of low frequency systems can greatly overshoot the 

stationary response. This is demonstrated in Fig.4.11 which 

shows the response history of a SDOF system having f = 
o 

0.05 cps to stationary input with the Clough-Penzien spectrum 

(Ground Motion No.2). Note that the M.S. impulse of the ground 

motion (Chapter 2) is zero for the stationary Clough-Penzien 

spectrum input so that at low frequency the correct asymptotic 
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behavior is observed. 

Second, a ground motion with Clough-Penzien spectral 

characteristics is considered. Two durations, designated 

as "short" and "long" in Sec. 2.2 with Trifunac-Brady 

durations equal to 7.2 seconds and 20.4 seconds, respectively, 

are used. Figs 4.12 and 4.13 show displacement and velocity 

response spectra, i.e., (0 (t» and (cr.(t» for u max u max, 

So=lOOOO in 2 /sec 3 • 

In Fig. 4.12, the short duration response curve is 

beginning to show evidence of approaching its (spurious) 

horizontal low frequency asymptote, which for 5 per cent 

damping, is Sv=27.03. The low frequency limit f~ (Eq. (2.24» 

gives 0.151 cps as an estimate of the frequency below which 

the nonstationary responses are likely to be inaccurate 

because of deficiencies in the ground motion model. This 

estimate appears to agree well with one's visual impression 

of Fig. 4.12. 

The probable response has been discussed in Sec. 3.6 

as a more useful quantity than R.M.S. response in structural 

engineering. It blends the information of the statistics of 

structural random responses and duration into a single mean-

ingful index. For convenience, the probable response is often 

expressed in terms of R.M.S. response, 0 (00) or (0 (t» u u max 

by introducing the multiplication constant described in Sec. 

3.6.2. 
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The 90 percent probable responses of SDOF oscillators are 

obtained for the aforementioned ground motions according to 

the formula and approximation described in Sec. 3.6. For 

the nonstationary cases (short duration and long duration) 

the "t" in Eq. (3.26) is chosen to be sufficiently large 

so that vd*(t) in Eq. (3.26) becomes virtually zero. The 

probable response for the stationary case is obtained 

through Eq. (3.30) using t=10 seconds. The multiplication 

constants for the three cases are shown in Table 4.1. Table 

4.1 shows that the multiplication constant for a system is 

greater if earthquake duration is longer as expected. 

It is worth noting that the probability of no excee

dance according to a instant response probability distri

bution (shaded area in Fig. 4.14) should be greater than 

the probability of no exceedance over an entire duration. 

The probabilty obtained from a instant response distribution 

will be refered as Instant Probability of No Exceedance. 

For example, a multiplication constant c = 2.807 is obtained 

for fo = 1 cps, short duration, and 90 percent probable response 

(Table 4.1). This corresponds to a 99.75 percent instant proba-

bility of no exceedance if the Gaussian assumption is valid. 

The 90 percent probable responses are shown in Fig.4.15. The 

figure shows that in the frequency range plotted, the probable 

responses are consistently larger for the long duration mo-

tion than for the short duration motion. At lower frequencies, 
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the spurious low frequency behavior due to the short duration 

envelope is again evident. 

Since many important structures such as pipelines and 

offshore platforms may have very low natural frequencies, care 

should be taken in using stochastic ground motion models of 

the form given by Eq. (2.1) for studies of such structures. 

It is entirely possible that the more commonly used 3-segment 

intensity envelope may not produce as severe an effect at low 

frequencies. This remains to be demonstrated however. 

4.3.3 Effect of Pulses 

In this section, the effect of large acceleration pulses 

in the ground motion is considered. As mentioned in Sec. 2.4, 

no satisfactory way was found to relate the parameters of the 

pulse model to observable properties of recorded ground mo

tions. Thus, in the absence of a method of determining a 

reasonable range for the ground motion model parameters, only 

a very limited study of the effects of acceleration pulses 

on system response was undertaken. Nevertheless, the results 

do show that pulses increase the probable response of SDOF 

elastic systems. 

Unless,the response is assumed to have a Gaussian 

Probability distribution, the M.S. response is not sufficient 

to characterize the response distribution. For non-Gaussian 

cases, besides M. S. response t' Sk-=wness (third m6ment~). and 
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Kertosis (fourth moment) are quite important in determining 

the response probability distribution. As discussed in 

Sec. 2.4, let the ground acceleration a(t) consist of a 

combination of Gaussian white noise (continuous) with spectral 

level So, and marked poisson pulses (discontinuous) with 

intensity A, and zero mean symmetrically distributed mark H. 

The marked poisson pulses are employed to model individual 

large acceleration pulses in the ground motion with random 

arrival time. 

Applying Eq. (B.18), the second moment evolutionary 

equations are the same as Eq. (4.4) except that So is 

replaced by So + AE[H2
]. Since all quantities are assumed 

to be zero mean and symmetrically distributed, all third 

moments are zero. The fourth moment evolutionary equations 

are as follows 

'I 

E[u 4 0 4 0 0 0 E[u 4 

E[U 3U ] -w 2 -2w Z; 3 0 0 E[U 3 U 
0 0 

Cl E[U 2U2] 0 -2w 2 -4(;) Z; 2 0 E[U2~2]l 
Clt = a 0 

E [u u 3] 0 0 -3w 2 -6w Z; 1 E [u ~ 3] 

lj 
a a 

E[~4 0 0 0 -4w 2 -8w Z; lE [u 4 
a a 
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0 \ 0 

0 0 

+ Itt (t) 

1 

0 + So 1 E[u' 1 
12 (t) (4. 7) 

0 3E[u ~ ] 

l6E [~2 lE[Htt]J ] 

in v;hich S;:= So + .\E [HZ] 

The contribution to E[utt ] of I2(t)SJ{E[u2 ],3E[ud] ,6E[62]}T 

is denoted as E[UttJ G and is equal to 3E2[U 2
] (as in the 

Gaussian case). i.e., E[utt]G is the fourth moment of response 

u excited by Gaussian white noise of spectral density S~. 

The contribution to E[u 4
] of I 4 (t)E[H4

] is denoted as E[utt]p 

and is equal to 

(4. 8) 

It can be shown that the transfer function 9p (t) is 

(4. 9) 
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The fourth moment E[U 4 ]p is always positive and Eq. 

(4.8) can be integrated in c~osed form [Appendix F]. Thus, 

for same total input spectral level, the existence of acce-

leration pulses produces a response distribution which is 

flatter than a gaussian distribution (as illustrated in 

Fig. 4.16). The increase of fourth moment of response can be 

expressed by the ratio 

r = (4.10) 

For the stationary case 

(4.11) 

then 

(4.12 ) 
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The parameter p is a measure of the proportion of the 

ground motion power contained in the pulses. The parameter 

q characterizes the probability distribution of the pulse 

intensity. 

In order to compute probable responses, a response 

probability distribution must be assumed. A family of 

distributions due to Karl Pearson is selected for this 

purpose. Some background on the Pearson family of distri

butions is given in Appendix G. 

As mentioned above, the presence of pulses always yields 

a response distribution which is flatter than a gaussian 

distribution if the total spectral level is fixed. However, 

the M.S. response 0u(t) remains the same. Therefore, the 

response level corresponding to a fixed instant probability 

of no exceedance is always greater than if the response was 

Gaussian (Fig. 4.16]. Fig. 4.17 shows the probable stationary 

response(99.75 percent instant probability of no exceedance) to 

white noise excitation. In the figure, the pulses are assumed 

to account for one third of the total spectral level, i.e., 

p = 1/3, and H is assumed to have a wide distribution with 

q = 9 (q = 3 for a gaussian distribution). The intensity of 

pulses is assumed to be A = O.5/sec. It is emphasized that 

the choice p = 1/3 is entirely arbitrary and is made simply 

to demonstrate the positive effect of large pulses on response. 

These limited results show that acceleration pulses do 

increase the probable response, although it is difficult to 

conclude very much more than that until a way is found to 
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establish physically reasonable values for the parameters 

p and q which characterize the pulse model used in this 

study. 

4.4 An Approximation - Equivalent White Noise 

The stationary response to white noise excitation, 

Eqs. (3.15-3.17) or Eq. (4.3), is easily computed. Since 

the response transfer function is narrow banded and the 

ground motion model has a broad spectrum, (except for the 

Clough-Penzien spectrum in the low frequency range) Eq. (3.23) 

may be approximated as 

R (t,t) x.y 
1 p 

(4.13) 

* Hx (w ) H (w ) dw 
j Yk 

If ~(t) has the Kanai-Tajimi spectrum characteristics 

with filter parameters Wg and Sg' SF F (w) in Eq. (3.23) 
~ m 

can be in general expressed as (Refer to Eqs. (2.11), (2.27) 

and (3.21- 3 . 23) ) 

(4.14) 

in which S~m is the spectral level. 
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In this case, EQ n (w.,wk ) in Eq. (4.13) can be chosen as 
)(, ,m J 

(4.15 ) 

Eq. (4.13) physically means that the system is excited 

by white noise with a frequency dependent spectral level 

equal to EQ n (w.,wk ) [Fig.4.18]. Table 4.2 shows the displacement 
)(, ,m J 

response computed using the equivalent white noise appro-

ximation, for a series of SDOF systems with different natural 

frequencies and damping. The results are expressed as a 

ratio of exact to approximate M.S. responses. 

The approximation appears to be quite good. 
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4.5 Summary and Discussion 

Effects of ground motion characteristics on the response 

of SDOF elastic systems were examined. 

(1) The SDOF elastic response spectra computed using 

the C1ough-Penzien input ground motion agree qualitatively 

with actual earthquake response spectra. The ground motion 

model also predicts relations between mean square ground 

acceleration, velocity and displacement which agree well with 

corresponding estimates proposed by Newmark and Hall [57]. 

(2) To study the effects of variations in ground motion 

frequency content on the response of SDOF elastic systems, 

the filter parameters controlling the Clough-Penzien spectrum 

were varied to simulate different "predominant" ground motion 

frequencies. The corresponding response spectra exhibited 

response amplification factors (relative to mean square ground 

motions) which were insensitive to quite large changes in 

ground motion frequency content. It is noted that this is a 

prediction of the model rather than an established fact, and 

it remains to be verified by comparison with recorded earthquake 

motions. 

(3) The effect of time-varying intensity and duration 

of the ground acceleration was modelled by means of an 

exponential envelope function proposed by Shinozuka and Sato. 

Mean square responses were sensitive to duration only for 

medium and low frequency systems. Mean square displacement 

response to the long duration motion consistently exceeded 

the response to the short duration motion except 
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for very low frequency systems in which the "spurious" low 

frequency behavior mentioned in Chapt~r 2 is quite evident. 

Maximum (90% probability of no exceedence) responses show a 

slight dependence on duration for high frequency systems as 

well. 

(4) Limited results obtained using a white noise ground 

motion model suggest that for ground motions of the same 

general intensity level, those containing large individual 

acceleration pulses produce large maximum responses than those 

without such acceleration pulses. 
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CHAPTER 5 

EFFECTS OF MULTI-DIRECTIONAL GROUND MOTION ON 
THE RESPONSE OF ONE-STORY TORSIONALLY 

COUPLED ELASTIC SYSTEMS 

5.1 Introduction 

An understanding of the response characteristics of 

SDOF-systems is prerequisite to understanding the behavior 

of more complex systems. For this reason, torsional coupling 

in a simple one-story structure is investigated in this 

chapter. A subsequent chapter (Chapter 6) will consider 

torsional coupling in multi-story structures. 

Newmark and Rosenblueth [62] separate the causes of 

torsional coupling in buildings into two categories. 

The first category arises even in nominally symmetric 

buildings and includes calculation errors, inaccuracies or 

imprecise knowledge of stiffness and mass distributions, and 

also the effects of rotational components of ground motion 

which are normally not considered. These are termed 

"accidental eccentricities". On the basis of studies of 

idealized single story systems, combined with estimates of 

the effect of rotational ground motion components, Newmark 

[58] found that an accidental eccentricity of 5 per cent of 

the longer plan building dimension was reasonable for 

framed buildings with fundamental period greater than about 

0.6 seconds or shear wall buildings with fundamental period 
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exceeding about 1.0 seconds. For shorter fundamental periods, 

accidental eccentricities of about 10 to 15 per cent of the 

longer plan building dimension were reasonable. These 

accidental eccentricities compensate for the torsional effects 

of rotational ground motion components only. 

Accidental eccentricity due to rotational ground motion 

components is studied in this chapter. The rotational component 

of ground motion is assumed to arise from the lack of spatial 

correlation in the translational component of ground motion. 

This is the stochastic counterpart of the model for rotational 

ground motion introduced by Newmark [58]. 

The second category involves the difference between static 

and dynamic methods of analysis, and is termed "dynamic magni

fication" of eccentricity. 

The dynamic magnification of eccentricity is studied in 

detail by considering a series of single story structures with 

a full range of structural parameters and eccentricities. 

The effect of torsion in buildings has beeen studied in 

the past either mathematically for specific models of build

ing structures or through experiments [7, 8, 16, 26, 29, 34, 

41, 47, 58, 71, 79, 89]. However, previous studies are based 

on the assumption that ground motions are in the principal 

directions of the structure, and are uncorrelated. The over

all response of a building is sensitive to the orientation 

of the structure with respect to the ground motion [26, 55]. 

A systematic evaluation of the effects of ground motion cor-
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relation and incidence direction is not available in the 

literature. This chapter addresses this need. In addition, 

most previous work employs a certain rule for combining 

modal responses [16, 41, 47]. Such combination rules may not 

be accurate enough when structural frequencies are closely 

spaced and ground motion correlations are present. In this 

chapter, single story buildings modeled as a lumped mass 

shear beam subjected to the ground excitations described in 

Chapter 2 are analyzed. The M.S. responses of systems are 

obtained without recourse to modal combination rules, and both 

system and ground motion coupling are incorporated in the 

analysis. Parameter studies are conducted of stationary 

system response to white noise excitation to serve as a bench 

mark for other more realistic excitations. Since the Clough

Penzien spectrum was shown in Chapter 4 to accurately model 

actual ground excitations, stationary and nonstationary res

ponses of the system to the Clough-Penzien spectrum input are 

then calculated and compared with the white noise results. 

5.2 Equations of Motion 

A one-story structure (Fig. 5.1) idealized as a rigid 

diaphragm on massless columns is considered. Throughout this 

study, only elastic systems are considered. 

The structure principal directions are designated as 

the X, Y axes. The system has 3 DOF. They are: 
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u = translational displacement of the mass center in the 
x 

X direction. 

u = translational displacement of the mass center in the 
y 

y direction. 

Us = rotation about the vertical (Z) axis. 

The stiffnesses of the i-th resistance element (column) are: 

(k ). = translational stiffness in X direction x ~ 

(k ). = translational stiffness in Y direction y ~ 

The coordinates of the i-th resistance element with 

respect to the center of mass are (x., y.). 
~ ~ 

in 

The structure stiffness properties are then expressed 

terms of element properties as: 

K = stiffness in X direction = ~ (k ). 
x x ~ 

~ 

K = stiffness in Y direction = I (k ). 
y i Y ~ 

Ke = rotational stiffness about the mass center 

= I x ~ (k ). + y ~ (k ). 
i ~ Y ~ ~ x ~ 

The coordinates of the center of rigidity (C.R.) with 

respect to the mass center are (ex' e y ). 

The idealized lumped mass, three dimensional shear beam 

model is shown schematically in Fig. 5.2. Three dashpots with 

linear damping constants Cx' cy ' and Ce are used to take 

account of structural damping. Let M denote the mass and I 

denote moment of inertia of the rigid diaphragm. The equa

tions of motion of the system are 
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MtiX + CX(UX - eyU e } + K (u - eyu e) = -Ma 
x x x 

ltie 
. . . -Ia + Ceue C u e + C u e + KeUe- K e u + K e u = 

x x y y y x x y x y x y e 

Mu + C (U + eXU e ) + K (u + exu e ) = -Ma (5. 1) 
Y Y y Y Y Y 

in which 

a = ground acceleration in X direction. 
x 

a = ground acceleration in Y direction. 
y 

a e = rotational ground acceleration 

In terms of the parameters w x' w y' wS ' r defined by 

Wx = /5 
M 

Wy = h M 

we = !5 
I 

r = = radius of gyration 

Eqs. (5.1) can be expressed as 

{U} + [C] {to + [K] {U} = - {a} (5.2) 

in which 

{U} = { u }T ux ' rUe' y 

{a} 
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and 

e 
1 _3... 0 r 

e lJ.l lJ.l e 
[K] = lJ.l2 _3... (..JZ. )2 (J)2 ~ 

x r lJ.l x lJ.l r 
x 

lJ.l e w 

J 
0 (.:Y)2 ~ , (-..:.:t. )2 

lJ.lx r Wx 

..... 
e 

1 _.-Y 
r 0 

e lJ.l w e 
2w 

_J.. e (-Y) x 
[C] = x~ r w Wx r x 

W e 
~ 0 (-:1) x -

w r 0..\ 
x x 

in which 

C C C e x y 
~ = 2wM = 2wM = 2weI x y 

Wx ' lJ.ly and we are respectively the natural frequencies in 

the X, Y and e directions for the case when eccentricities 

vanish (e = e = 0). They will be termed "uncoupled natural x y 
frequencies" in the X, Y, and e directions. The matrices [K] 

and [C] will be termed "stiffness" and "damping" matrices 

although they have been normalized with respect to mass M. 

The foregoing relationships can also be written in terms 

of displacements referred to the center of rigidity (C.R.). 

Let the displacements of the C.R. be denoted 
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The quantities {U} are related to the displacement {u} referred 

to the center of mass (C.M.) by the relationships 

{U} = [A] nn (5.3) 

in which 

e 

1 
1, J 0 r ' 

[A] = 0, 1 , 0 

J 
e 

0, x 1 -7' 

Eq. (5.2) can then be easily transformed to 

in which 

e 
1 , .J.. 0 r 

[A] T [I] [A] 
e e 2 e 2 e 

[M] = = J... 1+ (~) + (J...) , x 
r ' r r r 

e 
0 

x 1 , --r 



and 

(K) = (A)T[K] [A] 

[e] = [AI T [C] [AI 

T 
= [AI {a} = 

W2 - e 

= 

1, 

0, 

0, 

... 

-a x 

ev -a ..-l... 
x r 

-a 
y 
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0 

-2 
We 

UJ2 ' x 

0 , 

-ra e 

.... 
I 

0 

0 

·W 2 
(-1) 

W 
x 

1 e I 

+a x ~ 

y r J 

The equations of motion are therefore in a form (by 

referring quantities to the C.R.) in which the stiffness 

terms uncouple. However, if this is done, mass coupling is 

introduced and in addition the input acceleration vector 

has a more complicated form, with translational accelerations 

and eccentricity terms entering the rotational equation of 

motion. 
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In dynamic analysis, modal damping is normally used, 

and the damping matrix is implicitly specified in the mode 

shape coordinates. In the following, the damping matrix in 

Eq. (5.2) will be referred to as the "special damping" 

matrix. The frequency ratios, as will be seen later are quite 

important in determining the degree of torsional coupling. 

Three common types of layout of the resistance elements of 

buildings are shown in Fig. 5.3. In general, buildings with 

a central core, uniformly distributed columns, or peripheral 

shear walls tend to have respectively lower, nearly equal or 

higher torsional frequencies than corresponding lateral 

natural frequencies. Frequency ratios for one story buildings 

with resistance patterns shown in Fig. 5.4 are tabulated in 

Table 5.1. 

As a result of interaction between lateral and torsional 

motions, columns at the perimeter of buildings may have sig

nificantly larger displacements than when the motion is un

coupled. Consider the columns at locations E, W, N, S shown 

in Fig. 5.5 The displacements in the X direction are 

u 
x 

(US)x = Ux + (b/2) u e = Ux + (b/2r) (rue) 

(uN)X = Ux - (b/2r) (rue) 

The displacements in the Y direction are 

(5.4) 
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(uE) y = Uy + ( a / 2 r) (ru e ) 

(uW)Y = u - ( a / 2 r) (ru e ) y 

(uN)y = (us)y = u y 

Thus the shape of the floor diaphragm and the distances to 

the outer columns are also quite important. For the same 

systems shown in Fig. 5.4, the ratio of the floor dimension 

to radius of gyration of the floor, ~, are listed in Table 
r 

5.2. 

5.3 stationary Response to White Noise Excitation 

From the discussion in the previous section, it is 

evident that there are many parameters involved even for the 

idealized model of a one story building. A great deal of 

simplicity in the presentation of results can be achieved by 

examining the stationary response to white noise excitation. 

In this case, the results depend only on ratios of system 

frequencies and not on their absolute values. This is due, 

of course, to the frequency independent white noise power 

spectrum. Although the white noise model for ground excita-

tion has some deficiencies, as discussed in Section 4.3, 

it provides a convenient framework within which to study 

response to the more reasonable Clough-Penzien spectrum. 

The solution algorithm has been discussed in Sections 
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3.2 and 3.3 for modal damping. Therefore, the derivation 

which follows, unless otherwise specified, is for special 

damping (Section 5.2). 

In Eq. (5.2), let the ground acceleration, {a}, be 

stationary and white with covariance 

(5.5) 

Then, it can be shown (see Appendix H) that the stationary 

displacement responses are given by the solution of the 

system of linear equations 

[r] {§} = {p} (5.6) 

in which 

{§} 

{p} = {Sxx See ~ S } T 
2 '--2-' 2' Sxe' Sxy' ye 

[r] is a symmetric (6 x 6) matrix with constant elements 

given in Appendix H. 
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The M.S. response quantities of Eq. (5.4) can then be 

obtained. For example, 

E[ (uS)~) = E[U~] + (.1.-) (..£..)2 E [(ru ) 2] + (..£..) E[ (uxrue)] 
4 r e r 

(5.7) 

E [ (uN) ~ 1 = E [u 21 + x 
(i-) (~)2 E[ (rUe) 2) - (..£..) E(uxru e)l r 

In addition to the M.S. translational and rotational 

responses of the center of mass, the correlation between 

them is also important in determining the response of the 

columns on the periphery. 

Let 

= Base shear in X direction. 

= Base shear in Y direction. 

= Torque about C.M. tl) 

Then the covariance of forces can be expressed as 

E [F~] , E[F T E[F F ] E [u 2] , E [rue ux ] , E[u u ] x r-], x y x x y 

E((.1:...)2) 
r ' E[F y 

.1:...] 
r = [K1 E[r 2u 2] E[rueuy ] e 

symm. E[F~] symm. E[U~] 
..... 

(1) The torque T about the C.R. is T = T + e F - e F y x x y 

1 
I 

[K] T 

(5.8) 
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5.3.1 One-Way Torsionally Coupled Systems 

To obtain a better intuitive understanding about the 

effects of torsional coupling on response, an even simpler 

one-way torsionally coupled system is first considered. In 

this model torsional motion is coupled with lateral motion 

in only one direction. Most previous studies on torsional 

coupling have been concerned with this special system [7, 8, 

26, 71, 77]~ However, the previous work on this class of 

torsionally coupled systems has employed a deterministic 

approach. 

In this section, one-way torsionally coupled systems 

are investigated in depth using random white noise excita

tion. Both special damping and modal damping are discussed, 

and comparisons of responses with these two forms of damping 

are made. Figure 5.6 shows the one-way torsionally coupled 

system in which ex = O. In this case, the coefficient matrix 

[f] of Eq. (5.6) takes the special form 

f11 f12 0 f14 0 0 

f22 0 f24 0 0 

r~3 0 0 0 
[f] = f44 0 0 (5.9) 

s~. f55 f56 

f66 
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where the r .. are given in Appendix H. As expected, the M.S. 
1J 

torsional response is coupled with the M.S. translational 

response in the X direction. The M.S. response in the Y 

direction is uncoupled. In the following discussion, only 

quantities associated with torsional and X direction motion 

are considered. Since Eq. (5.6) is a set of linear equations, 

superposition holds. Therefore, the responses due to indivi-

dual components of {p} can be considered separately. It 

should, however, be clearly understood that cross spectral 

levels S e x , 

exist alone 

S ,and S ~ in{p}cannot, on a 
xy y~ 

without proper spectral levels 

physical basis, 

S ,S88' and S . xx yy 

The responses due to individual cross spectral levels should 

be interpreted as response influence functions for the va-

rious input spectral values, from which responses to physi-

cally realizable inputs can be constructed by superposition. 

5.3.1.1 The Effect of Spectral Level Sx 

One-dimensional ground motion input in the X direction 

corresponds to a nonzero value of Sx with other spectral 

inputs equal to zero. Sx induces lateral response in the X 

direction as well as torsional response because of coupling. 

For special damping, the analytical expression for the dis-

placement responses are obtained in a straight forward 

manner and are given by 
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f::, 
x =-

(5.10) 

where 
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S e 
/). e = - 2

X 
{( -;-)2 [- 413 * ( 13 * + 1) r;, 2 - 1 + 13 * - 13 ~] + 

/). 
x 

e 
(-f) 3 [( S *2+ 1 ) - 1 + 2 S * - 4 S * ( 13 * + 1) i:; 2 ] } 

The base shear and torgue can then be obtained through Eg. 

(5.8) as 

(5.11) 



E[(~}2] = w x 

100 

e e 
.1... { Q 4 A 2 Q 2 (J) 6 + (J)2 6 } 
6 ~*ue - ~* r ex r x 

We 
computed responses are plotted against -- for three 

Wx 

small eccentricities (ey/r = 0.05, 0.10, 0.15) in Fig. 5.7 

and three relatively large eccentricities (ey/r = 0.2, 0.3, 

0.4) in Fig. 5.8 for special damping. Figures 5.9 and 5.10 

present similar results for modal damping. Section 5.3.1.1.3 

presents the computational procedure for modal damping using 

a Mohr's circle approach. Damping values ~ = 0.02 (solid-line) 

and 0.05 (dashed-line) are used for special damping, and damping 

equal to 2 percent (solid-line) and 5 percent (dashed-line) of 

critical damping are used for modal damping. All responses are 

normalized by the M.S. X directional response of the uncoupled 

system, so that the effects of coupling can be better visualized. 

For displacement response, the normalizing constant is 
w S 

For force response, the normalizing constant is ~ 
4~ . 

Sx 
4r;wi • 
The 

normalized results are denoted as EN(·). The general charac

teristics of response with the two types of damping are similar. 

However, numerical differences between the two cases increase 

with increasing eccentricity. 

5.3.1.1.1 Force Responses for One-Dimensional Input 

Before discussing individual force responses, an inte-

resting interaction relationship for the forces given by 

Kan and Chopra for the deterministic case [47] is presented. 
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Define 

p2 + p2 + (T)2 
X Y r 

SUMP = ---------------
(Fx)~ncouPled 

in which (F ) 1 d denotes the base shear in the X direc-x uncoup e 

tion for the corresponding uncoupled systems (no eccentri-

city). They have shown that SUMP based on the combination 

rule given by Rosenblueth [71] is always equal to one for two 

types of response spectra (hyperbolic and constant) . 

A quantity parallel to SUMP in the stochastic sense is 

SUMF = (5.12) 

WxSx in which ~ is the M.S. base shear in the X direction for 

the corresponding uncoupled systems. 

In one-way torsionally coupled systems, E(F 2
) = O. For y 

special damping, SUMF can be analytically expressed as 



l02 

= w S (--7t) 
(5.13) 

If there is no eccentricity, SUMF is always one. SUMF is 
we we 

also equal to one if -- = 1. For other values of -- SUMF w W ' x x 
is close to 1 if the eccentricity is not large. (Fig. S.7.e 

and S.B.e). For modal damping, SUMP is very close to 1 for 
we ,:y 

all values of -- and (Fig. S.9.e and S.lO.e). These 
Wx r 

results show that the existence of eccentricity produces a 

redistribution of forces. This relation implies that the 

base shear is reduced as a result of torsional coupling, 

which has also been found in several other studies [16, 47, 

71]. The question is how much of the force is transferred to 

the torsional mode. From the numerical results, the M.S. 
we 

torsional force reaches its maximum when -- is close to one. 
Wx 

Consider an extreme case in which the eccentricity is so large 
e 

that the system is almost unstable, i.e., ~ is just slightly 
we we 

less than -- If -- = 1, then 68 ~ 6 
Wx Wx x 

of damping. From Eq. (5.11), E [ (~) 2] -

~ 6ex and is independent 

E[F 2 ] and is independent 
x 

of damping. This shows that a maximum of about 50 percent of 

the M.S. force may be transfered to the torsional mode as a 

result of torsional coupling. For small eccentricity, the amount 

of redistribution is quite sensitive to damping. This sensitivity 

decreases with increasing eccentricity. From Eqs. (5.10) and 
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(5.11), it can easily be verified that 
w 

for ~ = 1 and s + 0, 
Wx 

the normalized torsional force is 0.5. Therefore, the coupl-

ing may be quite strong for small damping even if the eccen-

tricity is very small. The results show that the normalized 

torsional force may be close to 0.5 for small eccentricity 
we 

if the damping is small and -- is near 1 (Fig. 5.7.a, 5.9.a). 
W 

x 
For larger values of eccentricity (Fig 5.8.a, S.10.a), the 

normalized torsional force can approach 0.5 over a wider 
we 

interval of frequency ratio --. The ratio, R, of dynamic 
Wx 

torque about the center of rigidity to the product of uncoupled 

base shear times eccentricity is defined as 

= 
T 2 

E [(~ ](..E-) = 
N r e y 

(5.14) 

in which TCR denotes the torsional force about the center of 

rigidity. 

The product R·e can be interpreted as a "dynamic eccentriy 

city". When the maximum amount of redistribution occurs, the 

normalized torsional force approaches 0.5. In this case, the 

dynamic eccentricity can greatly exceed the static eccentricity. 

The dynamic amplification of eccentricity, R, can approach 

(0.707)/(e /r) for small damping, when we/w is near 1. y x 
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The table below shows values of R at we/wx = 1, for 

different values of damping and eccentricity. 

I e /r y 
~ 

I ! .05 .10 .15 

0.02 11.08 6.64 4.66 

0.05 6.38 5.09 4.04 

0.10 3.53 3.28 2.98 

Dynamic Amplification of Eccentricity (R) for 

One-Way Torsionally Coupled System (We/wx = 1) 

Rosenblueth and Elorduy [71] presented a plot of dynamic 

magnification factor for eccentricity for a one-way torsionally 

coupled system subjected to flat and hyperbolic ground accele-

ration spectra. 

5.3.1.1.2 Displacement Responses for One-Dimensional 

Input 

A relationship for the change due to torsional coupling 

of total M.S. displacement response exists which is similar 

to that for SUMF. Define 
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{ E [ (ru 6) 2] + E [u~] + E [u~] } 

S 
(_x_) 

4~W3 x 

(5.15) 

SUMD is always greater than one and asympototically approaches 
we 

one as -- tends to ro (Fig 5.7f). SUMD increases greatly with 
Wx 

increasing eccentricity (Fig 5.8f) and is almost independent 

of damping. This implies that the system is effectively softer 

due to torsional coupling. The phenomenon can be explained 

using Mohr's circle plots presented later. The value of SU~ID 

for special damping is generally greater than that for modal 

damping for the frequency ratios of interest. 

The figures show that there is a peak in torsional res
we 

ponse near -- = 1 for small eccentricities. However, the peak 
Wx 

becomes less pronounced as eccentricity increases. For small 

eccentricities, the two system natural frequencies are quite 

close, so the large torsional response is the result of 

beating. For large eccentricity, the beating phenomenon is 

less significant. However, in this case the lowest natural 

frequency is much lower than the uncoupled natural frequency. 

Therefore, the response is significantly greater than that 

of the uncoupled system because of the fact that the response 

to white noise is proportional to the inverse of natural 

frequency to the third power. 
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No consistent trend is found for lateral displacement at 

the center of mass when eccentricity is large (Fig. 5.8.d). M.S. 

displacement at the center of rigidity is obtained through 

the relation, 

(5.16) 

The normalized result is, of course, the same as the norma-

lized lateral force (Eqs. (5.10),(5.11». 

The M.S. displacement responses at locations Nand S are 

obtained through Eq. (5.7). The maximum of the two responses, 
W 

E[U~Jmaxf is plotted against ~ in Figs. 5.7 - 5.10 (g&h) 
Wx 

for square and rectangular floor geometry. For a square floor 
e 

diaphragm, blr = 16 = 2.45, and values of -Y.. = 0.05, 0.10, 0.15 
r e v 

then correspond to b = 0.0204, 0.0408, and 0.0612 respec-

tively. An aspect ratio of ~ = 2 is used for the rectangular 
e 

floor geometry. In this case, b = 3.10 and -Y = 0.05, 0.10, 
r e r 

and 0.15 corresponds respectively to ~ = 0.016, 0.032 and 

0.048. The figures indicate that the response at the outer 

edges of the building is significantly increased. For large 

eccentricity the results are again insensitive to damping. 

The figures also show that the greatest response of the outer 
we 

columns may not occur near -- = 1, although the greatest 
Wx we 

torsional response occurs at around = 1. 
Wx 
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5.3.1.1.3 Use of Mohr's Circle plots for Presentation 

and Interpretation of Responses - Modal Damping 

For one-way torsionally coupled systems with modal damp-

ing, the eigenvalue analysis and coordinate transformations 

involved in the modal analysis method can be represented by 

means of Mohr's Circle. 

Let eccentricity in the X direction, e = O. The equax 
tions of motion for a one-way torsionally coupled system 

subjected to white noise excitation, W , in the X direction 
x 

are 

in 

modal 
{u·} + [ damping ]{u} + [K]{u} = { 

matrix 

which 

e 
1 _J 

r 
[K] = w2 

x e w 
_J (~)2 

r w x 

E[W (t)W (s)] = s o(t-s) x x x 

. 
1'\1 

x } (5.17) 
o 

with reference to Eqs. (3.2) to (3.6), the stiffness 

matrix and correlation function of white noise excitation in 

the mode shape coordinate, [Km] and ~[Rm (t-s)] can be expressed 

in the form of 
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Eq. (5.27) shows again that for very small damping, EN[r2u~] 

tends to E[U~]. 

For square floor geometry, £ = 16, the maximum of the two 
r 

M.S. displacements, max ( EN [ (uS)~]' EN [ (uN)~] ) , at the outer 

edges of the building is [Eq. (5.7)] 

(5.28) 

= (5-2
4

16 )EN[q~] + (5+2
4

16 )EN[q~] - t E[qlq2] 

1 1 
= i {(5-2 16) + (5+2 vb )-----

[ f+ (.f) ] 3 [/1- (.f) ] 3 

} 

Since the last term in Eq. (5.28) tends to zero for small 

damping (~~ 0.1), thus for small damping 

(5.29) 

1 - "8 {(5-2 vb) + (5+2 16 )-----

[/1+ (-1) ] 3 [/1- (~) ] 3 

1 1 
} 
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5.3.1.2 The Effect of Cross Spectral Level Sxe 

Although the effect of Sxe is not of primary concern in 

this research, this section is presented for completeness. 

The M.S. displacement responses due to Sxe are given by 

for special damping by 

The sum of M.S. forces due to Sx8' normalized by 

is given by 

= w S 
( x xe) 

4z:; 

(5.30) 

SeL..l x x 
41;; 

(5.31) 
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We 
1, the of M.S. forces due is exactly When - = sum to Sxe W x we 

zero. For other - the normalized sum of H.S. forces is 
Wx 

close to zero if the eccentricity is not very large (Table 

5.3). This indicates that excitation correlation also redis-

tributes the forces. This relation will be further discussed 

in the next section. 

5.3.2 Two-Way Torsionally Coupled Systems 

For a particular value of damping and stationary white 

noise excitation in the X direction, the effects of one-way 
W 

torsional coupling on stationary responses depend on we and 
e x 
-Y . In two-way torsionally coupled systems, the results 
r . w e 

depend also on -l and ~ . In this section, numerical results w r 
x 

are obtained for 5 percent modal damping. As in one-way 

torsionally coupled systems, torsional coupling is very 

sensitive to damping at low damping levels. 

For convenience, the influence on response of the com-

ponents of the input spectrum are obtained separately and 

combined later, as appropriate. 

5.3.2.1 The Effect of Spectral Level Sx on Response 

The responses 

shown in Fig. 5.15 

due to S for 5 percent x 
~ to Fig. 5.18 for w 

modal damping are 
Wv = 1 and -L = /2 as 

x 
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functions 
e 

w 
of ~ 

Wx 

e
v 

_ 

. In the figures, -L is fixed, and three values 
r 

x of - are r used. In all cases, the quantity SUMP is virtually 

equal to 1. This again shows that torsional coupling simply 

redistributes the force. A similar relation was found by Kan 

and Chopra [47]. As in one-way coupled systems; SUMD is always 
e 

greater than 1. For fixed ....:i. , the peak torsional response 
r 

e 
decreases with increasing :. This decrease is more pronounced 

W 

when :y is near 1. This trend was also observed by Kan and 
Wx 

Chopra. They also concluded that 1) the base shear in the 
W 

direction of ground motion is essentially independent of ~ 
e Wx 

and :' i. e. , . this component of base shear is about the same 

as in the corresponding one-way torsionally coupled system. 
W 

2) except for a relatively narrow band of ~ , 
Wx 

the normalized torque is about the same as in a 

W 

around ~ = 1, 
Wx 

corresponding 

one-way coupled system. However, the results of this study 

show that these conclusions hold only when eccentricities are 

relatively small. Figures 5.15b, 5.16b, 5.17b, and 5.18b 

pertain to conclusion (1) above. Figures 5.17a and 5.18a 

pertain to conclusion (2) above. 
W 

In addition, it may be noted that the value of ~ for peak 
Wx 

torsional response shifts away from that of the corresponding 
e 

uncoupled system as ~ increases [Fig. 5.18]. 
r 

5.3.2.2 The Effect of Cross Spectral Level Sxy on 

Response 

Since the ground motion may be correlated with respect 
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to the structure principal directions, it is necessary to 

examine the effect on structural response of this correlation. 

Once again it is emphasized that a spectrum level S cannot xy 

exist by itself. A physically realizable ground motion input 

which has uncorrelated components in directions which do not 

coincide with the structure principal directions, will in 

general have nonzero values of S , S ,S . Results obtained x y xy 

separately for inputs S ,S are combined appropriately to x xy 

give results for general ground motions. Numerical results 

for the same systems discussed in the previous section are 

shown in Figs. 5.19 to Fig. 5.22. SUMF due to Sxy is essen

tial zero for general torsionally coupled systems. This shows 

that the ground motion correlation only redistributes the 

force. The effect on torsional response of the ground motion 

correlation may be very significant for systems having very 

close uncoupled frequencies and equal eccentricities in both 

principal directions, i.e., Wx = Wy = we and e~ = ~ e y (Fig. 

5.l9.a and Fig. 5.20.a ). 

5.3.3 Effect on Response of Ground Motion Directionality 

The principal directions of ground motion obviously need 

not coincide with the structure principal directions. This 

section examines the effect on response of ground motion di-

rectionality (Fig. 2.11). 

Symmetric structures (w = w ) with square geometry x y 

(b/r = 16) are considered. Numerical results are obtained 
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for the following two structures: 

e e 
STRUCTURE I x 0.2 J... O. - = = r r 

modal damping 

e e 5% of critical 
STRUCTURE II x 0.2 J.. 0.2 - - = = r r 

Let SE and SD be major and minor (intermediate) principal 

intensities. They can be decomposed into spectral levels Sx 

and Sy and a cross-spectral level S in the structural prin
xy 

cipal axes [Eq. (2.27)]. The structural response to this 

excitation is a linear superposition of the responses to 

individual spectral levels. [Figs. 5.15 to 5.22]. 

The R.M.S. displacement responses are normalized by 

ISE/4w~ z: • The maximum normalized displacement responses 

in the X and Y directions over all we/w of interest for the 
x 

four locations N, S, E, W at the perimeter of the building are 

denoted as (ox)max and (Oy)max . (Ox)max and (Oy)max for 

STRUCTURE I and STRUCTURE II are shown in Figs. 5.23 and 

5.24 as functions of the angle of incidence 0 (Fig. 2.11). In 

the figures, ratios of principal variances Sn/SE = 1.0, 0.5 

and 0.0 are used. (2) 

The figures show that the values of (ox)max and (Oy)max 

increase with increasing SD/SE ratio for a fixed angle of 

(2) Note that these ratios correspond to "relative strengths" 
of the ground motion components equal to 1, .707, 0 res
pectively. 
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incidence o. When So and SE are of equal strength (SO/SE = 1), 

as is easily seen, the response is the same for all angles of 

incidence. 

In practice, the angle of incidence 8 is not known. 

However, design must allow for the worst case. The figures 

show that the response for the worst case SO/SE = 1 is not 

that much greater than the response for Sn/SE = O. In Fig. 

5.23 (STRUCTURE I), the worst case for (a ) occurs at y max 

o = 90°. At 8 = 90° the response is the same for all SO/SE 

since it really just the one-way system response to SE 

excitation. For STRUCTURE II, the worst case obtained for 

sn/SE = 0 is about 90% of the worst case for SO/SE = 1. 

Therefore, the use of Sn/SE = 1 leads to results which are not 

overly conservative. 

STRUCTURE I and II are in fact one-way torsionally 

coupled systems (rotate the axes of STRUCTURE II by 45°) with 

eccentricities 0.2 and 12 x 0.2 respectively. The response for 

sn/SE = 1 can be obtained through the equations in Sec. 5.3.1. 

The analytical expressions for the responses of structures 
w 

with frequency ratio ~ = 1 are quite simple [Eq. (5.25) -
Wx 

(5.29)]. Although the maximum response at the outer edges of 
we 

buildings does not occur at a frequency ratio -- = 1 [Figs. 
Wx w 

(5.7) - (5.10) g & h], the results obtained by setting ~ = 1 
Wx 

estimate the maximum responses reasonably well. (a) and x max 

(ay)max for STRUCTURE I are respectively 1.31 and 1.39. The 
we 

results obtained by setting = 1 give 1.29 and 1.30. For 
Wx 
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STRUCTURE II, (crx)max = (cryl max = 1.44 and the X and Y R.M.S. 
w 

response at E and S for ~ = 1 is 1.42. 
Wx 

With reference to Fig. 5.25, the normalized displacement 
we 

response uSW at south west corner for = 1 can be easily 
Wx 

obtained from Eqs. (5.25) - (5.27) as 

} 

(5.32) 

in which 

e e v 
For STRUCTURE II (~ = -L = 0.2), cr 

r r u SW 
equals 

1.75 which is 1.23 times the X or Y R.M.S. response at W or S. 
e 

Note that ~ = 12 : = 0.283 corresponds to ~ = 0.115, and more 

than a 75 percent increase may arise as a result of torsional 

coupling. 

The orthogonal effects have been considered by current 

codes. In the ATC-3 code [6], it is required that structural 

elements be designed for 100 percent of the effects of seismic 

forces in one principal direction combined with 30 percent of 

the effects of seismic forces in the orthogonal direction. 
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The maximum of the two responses 

o. (6 = 0) + 0.30. (6 = 90°) 

o. (8 = 90°) + 0.30. (8 = 0°) 
(5.33) 

for the case SD/SE = 0 corresponds to the ATC-3 recommendation. 

For STRUCTURE I, (0) and (0) obtained from Eq. 
x max y max 

(5.33) 

are 1.25 and 1.39. The worst case from the analysis gives 

respectively 1.31 and 1.39. For STRUCTURE II, Eg. (5.33) gives 

(Ox>max = (Oy)max = 1.49. The worst case shown in Fig. 5.22 is 

1.44. Therefore, the method of accounting for orthogonal 

effects proposed in the ATC-3 code seems quite reasonable. 

Rosenblueth [72] assumed equal intensity ground motions 

in two orthogonal directions, and excluded the case of closely 

spaced frequencies. He recommended combining 100 percent of 

the seismic force effect in one direction with 30 percent in 

the orthogonal direction except for towers and chimney stacks. 

In that case, he recommended that 50 percent of the seismic 

force effect in the second direction be used. 

5.4 Response to Clough-Penzien Spectrum Excitation 

As discussed, the effects of torsion are dependent only 
We 

on the frequency ratios,-- and 
W 

x 
~ , when white noise excita
Wx 

tion is used. This is due to the uniform frequency content 

of white noise. This section considers the effect of non-

uniform frequency content and time varying intensity in the 

ground motion input on the response of torsionally coupled 

systems. 
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5.4.1 One-Way Torsionally Coupled Systems 
e 

The normalized results for systems with ~ = 0.15 subjected 

to ground motion excitation in the X direction are shown in Fig. 

5.26 to Fig. 5.31. Three uncoupled frequencies in X direction, 

f = 0.2 cps, 1.0 cps, and 5 cps are employed to represent x 

respectively soft, medium, and stiff systems. 5 percent modal 

damping is assumed. For nonstationary response, the short 

duration envelope is used (a = 0.25, B = 0.75). The M.S. 

responses are normalized by the (maximum) M.S. response of the 

corresponding uncoupled system. The response of the systems to 

white noise excitation is also presented in the figures for 

comparison. The figures show that in general the stationary 

white noise results can be used to predict the effects of 

coupling for the Clough-Penzien spectrum input. The effect of 

coupling for fx = 1 cps is quite close to that of white noise 

especially when stationary responses are of concern. However, 

for the stiff system, fx = 5 cps, the white noise result 

under-estimates the outer edge response. For the soft system, 

f = 0.2 cps, the effect of coupling is not as strong as for 
x 

white noise. The effect of coupling on the soft system is 

even less important when nonstationary response is considered. 

This can be seen from the response time history shown in Fig. 
w 

5.32 inwhich -fr = 1.0 is used. It shows that there is a time 
Wx 

lag (about 1.5 period) between the maximum torsional response 

and maximum lateral response. 

From the figures, one may observe that the frequency 

ratio at which peak torsional response occurs shifts to the 
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right for soft systems and to the left for stiff systems when 

compared with white noise results. 

The multiplication constants, c, for the probable res-

ponses of the outer edge columns are tabulated in Table 5.3 

and Table 5.4. For a fixed probability of no exceedance I the 

constants are almost the same as those of the corresponding 

uncoupled system. This suggests that the probable response 

of torsionally coupled systems can be approximately obtained 

as the product of the M.S. displacement and the multiplica-

tion constant of the corresponding uncoupled systems. There-

fore 1·1. S. displacement response is a good indicator of maximum 

response. 

5.5 The Effects of Spatial Correlation 

To illustrate the effect of (the lack of) ground motion 

spatial correlation on response, we consider only one story 

structures with no eccentricity and the ground motion des-

cribed in Section 2.7. 

The translational M.S. response and rotational M.S. 

responses are 

1 f 00 E[U 2 ] :: -
X 2n_00 

(5.34) 
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where Hx(w) and He(w) are transfer functions. 

If the ground motion is fully spatially correlated, 

i . e ., c s = 0, then SA ( w) = S 0 
~x 

to the familiar result E[u 2 ] = 
x 

This leads 

= O. If the 

ground motion is partially correlated, the responses are 

approximately 

S" (w ) 
1 f_: E,;x x 

E[u 2 ] - SA (w ) 
2n 

1 H (w) 12 dw = x e- X X 4w 3
Z;; "'x x 

(5.35) 

J_: 
s'" (We) 

E [ (rue) 2] SA (We) 
1 IHe(w) 12 dw 

t:e 
- 2n = 

~e 4w 3 z;; e 

Therefore, the lack of correlation of ground motion results 

in torsional response and a reduction of translational res-

ponse. By referring to Eq. (2.29), (2.31) and (2.35) and Fig. 

(2.14), one can see immediately that the magnitude of the 

torsional response and the reduction of translational response 

increases with building size and frequency. 

"Accidental eccentricity" i is defined so that the trans-
- y e 

lational force times :y applied as a torsional force to the 
r 

uncoupled system produces the same torsional response as the 

rotational ground motion component [58]. Using the approximate 

responses of Eg. (5.35) I 
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s~ (z) 
x 

bc w 
s x 

V = 2nc tb f , 
s s x 

b 
t =-

b Vs 

(5.36) 

Plots of accidental eccentricity are shown in Figs. 5.33 

and 5.34 for C s = DinS' together with Newmark's results [53]. 

Newmark's results, which are based on realist~~ response 

spectral shapes, show a roughly linear relationship between 

accidental eccentricity e Ib and the parameter tbf . The white y x 

noise model used here does not have a very realistic ground 

motion frequency content, and in addition, the spatial corre-

lation parameter Cs has been arbitarily selected. Although the 

white noise model does not predict a straight line relationship 

between ey/b and tbfx ' the white noise results are in general 

agreement with Newmark's results over the significant range of 

tb f x. 
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5.6 Summary and Discussion 

The effect of torsion in one-story systems was studied. 

The stationary responses to white noise excitation for one-way 

and two-way torsionally coupled systems were evaluated and 
we 

plotted as functions of 
Wx 

The following results are drawn based on the numerical 

results : 

(1) One-way torsionally coupled systems show an increase 

in torsional response and a reduction in translational response 

when the uncoupled torsional and translational frequencies are 

nearly equal. The peak torsional response increases as eccen-

tricity increases and damping decreases. (See, for example, 

Fig. 5.9) 

(2) The sum of the mean square torsional and translational 

forces (normalized by the value for zero eccentricity) remains 

essentially equal to one indicating that the torsional coupling 

merely produces a redistribution of forces. 

(3) The maximum normalized torsional force is 0.5 and this 

large redistribution occurs even when the eccentricity is small, 

if the damping is small and the torsional/translational frequency 

ratio is near one. 

(4) The sum of the normalized mean square torsional and 

translational displacement responses is independent of damping 

and always greater than one indicating that the system is 

effectively softened by the torsional coupling. 
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(5) The dynamic eccentr.icity (defined as the eccentricity 

at which the base shear in the uncoupled system must be applied 

in order to produce the dynamic torsional force) can greatly 
w 

exceed the static eccentricity if ~ is near 1 and the damping w x 
and static eccentricity are small. (For example, the dynamic 

eccentricity is 11.08 times as large as the static eccentricity 
e 

for ~ = 0.05 and 2 percent modal damping) 

(6) Compared to uncoupled translational response, the 

maximum root mean square responses at the periphery of the 

single story model are increased by about 40 percent for an 

eccentricity equal to about 6 percent of the floor plan 

dimension. For a two-way coupled system with equal eccentri-

cities equal to about 8 percent of the floor plan dimension, 

the maximum root mean square response at the corner of the 

floor diaphragm increased by about 75 percent. 

(7) For two-way torsionally coupled systems subjected to 

one-directional ground motion, eccentricities in the direction 

of the ground motion reduce the peak torsional response. Some 

conclusions drawn by Kan and Chopra [47] relating the response 

of two-way torsionally coupled systems to one-way torsionally 

coupled systems were shown to be valid only when the eccentri-

cities are quite small. 

(8) Ground motion directionality was considered by varying 

the incidence angle of the ground motion principal directions 

with respect to the structure. Results computed for different 

relative strengths of the two ground motion components showed 

that when the governing incidence angle for each case is taken 
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into account the maximum responses at the periphery of the 

floor diaphragm are relatively insensitive to the relative 

strengths of the two ground motion components. The "worst 

case", that of two components of ground motion of equal 

intensity, is not grossly overconservative. Comparison with 

the procedure recommended by the ATC-3 Code for recognizing 

orthogonal effects showed that that procedure is quite 

reasonable. 

(9) The stationary and nonstationary responses of a one-way 
e 

torsionally coupled system with -Y = 0.15 to Clough-Penzien 
r 

spectrum excitation were computed and compared with the 

corresponding white noise results. The comparison showed that 

in general the stationary white noise results can be used to 

predict the effect of coupling for more realistic (Clough-

Penzien spectrum) inputs. However, the white noise result tends 

to underestimate the outer edge response for stiff systems. 

The effect of coupling for soft systems is overestimated by 

the white noise results. The effect is further reduced for soft 

systems when non stationary response is considered. 

(10) The effect of ground spatial correlation was considered 

using an approximate solution. The response due to the resulting 

rotational component of ground motion input was determined in 

terms of an accidental eccentricity. A comparison with results 

given by Newmark [58] shows general agreement. 



130 

CHAPTER 6 

THE EFFECT OF EARTHQUAKES ON TORSIONALLY 
COUPLED MULTI-STORY BUILDINGS 

6.1 Introduction 

The response of tall buildings under earthquake excitations 

has drawn much attention recently because the number of tall 

buildings in seismic regions has increased rapidly. Previous 

chapters have shown that the response at the outer edges of a 

one-story building is significantly increased by the existence 

of coupling between translation and rotation. Most previous 

studies of torsional coupling have also involved only single 

story systems ([47), [58), [71) and the general results have 

been assumed to be valid for multi-story systems. The purpose 

of this chapter is to investigate the effect of torsional 

coupling on the response of a multi-story building and to 

verify that the general trends observed for single story systems 

can indeed be extrapolated to multi-story structures. 

A particular class of buildings excited by two horizontal 

ground motion components is considered. The ground motions are 

assumed to be uniform over the base of the structure, however, 

they may have principal axes different from those of the 

structure. In the numerical example presented, the ground motion 

is assumed to have equal intensity in two orthogonal directions 

since that assumption was shown previously to produce not overly 

conservative "worst case" results. The frequency content of the 
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ground motion is described by the Clough Penzien spectrum and 

its time varying intensity by the short duration envelope. 

Since torsional coupling may result in a significant 

increase in response at the perimeter of the building, the 

interstory drifts at the outer edges of a torsionally coupled 

building are obtained and compared with those of a corres-

ponding uncoupled building. As was mentioned in Section 3.4, 

it is desirable to consider dominant participating mode pairs 

from which response can be obtained with sufficient accuracy. 

In this chapter, some general guidelines concerning the 

selection of modes are discussed. 

6.2 Equations of Motion 

Consider a particular class of N-story buildings (Figure 

6.1) in which the floor mass centers lie on a single vertical 

axis and which has identically oriented principal axes in all 

stories. The buildings are idealized as lumped mass, shear 

beams with two translational DOFs and one rotational DOF 

associated with each mass. Let K " K , and Ke' represent 
x~ y~ ~ 

respectively the translational stiffnesses in the structure 

principal directions X and Y and the torsional stiffness of 

the i-th story. Then 

K , 
X~ 

= L k ,(j) 
j Xl. , 

K , 
y~ 

::: t ky i (j ) , 
) 

::: ~ [ kxi (j) y i (j) + ky i (j ) Xi (j ) ] 
] 

(6.1 ) 
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where k . (j) and k . (j) are the translational stiffnesses of 
Xl. yl. 

the j-th resisting element connecting floors (i-I) and i. 

(xi(j), Yi(j» is the position of the element with respect to 

the line of mass centers. Let exi and e yi be the static 

eccentricities of the stiffness elements connecting floors 

(i-I) and i. 

e . 
Xl. 

e . 
yl. 

= 

= 

1 
~ 

yl. (6.2) 
I Xi (j)k . (j) 
j yl. 

1 
K--:-

Xl. 

The undamped equations of motion for the structure sub-

jected to horizontal ground accelerations a (t) and a (t), 
X y 

are 

li K K a "I u m 1 a -x -xx -xO -x x 

m ~e + KT 
~80 -x 

KT 
~e -y = a (6.3) 

m li -y a ~ye K -yy u -y m 1 a y 

In Eq. (6.3), the displacement sub-vectors are 
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u lx 
r l 

u le Uly 

u 2x r 2 u 20 
u 2y 

u = ~e = u = .r -y -x 

uNx rN uNe 
uNy 

where r. is the radius of gyration of the i-th floor about a 
1. 

vertical axis through the center of mass; the mass sub-matrix 

~ 
I 

m = 

where mi is the lumped mass of floor i; all elements of the 

column vector 1 are unity; and the stiffness sub-matrices are 



K. = -xx 

K = -yy 

~oo = 

-K x2 

-K y2 

-K x3 
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__ l_K 
r 1 r 2 62 

-K x3 

-K xN 

-K yN 

(/ ) 2 (K
e2

+K
o3

) 
2 

-K xN 

-K yN 



K =-x8 

K = -y8 

1 
--(e 1K 1+e 2K 2) r

1 
y x y x 
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1 - -e K r 2 y2 x2 

1 --e K 
r 1 y2 x2 

1 
-(e 2K 2+e 3K 3) r

2 
y x y x 

1 - --e K 
r 3 y3 x3 

1 
--(e lK 1+e 2K 2) r

1 
x y x y 

1 1 

1 -e K r 2 y3 x3 

1 - -e K 
r 2 x2 y2 

1 --- e K 
r N- 1 yN xN 

1 -e K 
rN yN xN 

--e K 
r

1 
x2 y2 -(e 2K 2+e 3K 3) r

2 
x y x y 

1 --e K 
r 3 x3 y3 

1 - -e K r 2 x3 y3 

1 --- e K 
r N- 1 xN yN 
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6.3 Response Covariances 

6.3.1 Frequencies and Mode Shapes 

The response covariances of the system can be obtained 

by using the formulas given in sections 3.4 and 3.5. The 

first step is to find the natural frequencies and mode shapes 

of the system. In general this requires the solution of an 

eigen-problem of order 3N. However, if all stories have the 

same radius of gyration, eccentricities, and stiffness ratios, 

then the eigen problem can be split into two smaller problems, 

one of order N and the other of order 3. Such simplification 

in modal extraction was noticed by Shiga [76] and employed in 

the work of Kan and Chopra [47]. More specifically, let rl = r2 

= --- = rN = r, e
X1 

= e
X2 

= --- = e xN = ex' e
Y1 

= e
Y2 

= --- = 
e = e

y
, K_ 88 = 6 K , K = 6 K . Then the natural frequencies, yN 8-xx -yy y-xx 

w , and mode shapes of the coupled system, ~ , can be obtained mn mn 

as follows: 

w = Q w 
mn m xn 

m = 1,2,3 

¢xm ~xn 1 , 2 ,3, • • • N (6.4} n = 
~mn = ¢em ~xn 

¢ym ~xn 

where W n and ~ n are the natural frequencies and mode shapes x -x 
of the N DOF system 
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(K - W
2 m) ~ = 0 -x xn- -xn n = 1, 2, ••• N (6.5) 

T and nm and {<pxm ' <Pem' <Pym} are determined from the 3 DOF 

eigen-value problem 

e 
(1 - n~) , _J 0 <Pxm r 

, 

e e 
J (Be 0 2 ) 

x 
By <Pem 0 m =1,2,3 (6.6) - = r , m ' r 

e 
0 x 

By (By )"; 2 ) <Pym , - , -r m 

For a uniform structure, i. e. , ml = ro2 = --- = ~. = ro, K 
N Xl 

= K = Ki the eigenvalues and eigenvectors of xN 

the N DOF system of Eg. (6.5) can be analytically expressed 

as 

= 

(6.7) 

~ }T = {~nl, 1J! n2, ••• ~ ni ••• nN 



in which 

and (2n - 1) 1T 
Sn = 2N + 1 
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n = 1, 2, .000 N 

6.3.2 Jnput Cross Correlation Function 

For the systems described in Eq. (6.3), the input corre

lation function in Eq. (3.22) is 

RF F (T 1, Tz) = mQ.mm R (T 1 , 1"2) Q, = 1, 2, N 
a Q, m x = 1, 2, N m ... 

~Q,Fm (T 1, T 2 ) = m • m R h 1, T 2) Q,-2N m-2N a 
y 

Q, = 2N+l, 2N+2, 3N 

m = 2N+l, 2N+2, 3N 

Q, = 2N+l, 2N+2, ••• 3N 

m = 1, 2, ••• N 

Q, = 1, 2, ••• N 

m = 2N+l, 2N+2, ••• 3N 
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Otherwise 

where Ra (Tl, T2), Ra (Tl, T2) and Ra a (Tl, T2) are described 
x y x y 

in Eq. ( 2 • 21 ) 

6.3.3 Displacement Covariances and Interstory-Drifts 

The displacement (of centers of mass relative to base) 

covariance can be obtained by Eq. (3.22). The interstory 

drifts, in the structure principal axes, of i-th story at 

center of mass are 

d . (0,0) = u xi - u 
Xl. xi-l 

(6.9) 
d yi(O,O) = u yi - u yi-l 

at location E, Ware (refer to Fig. 5.5) 

a. a. a. 
1 (u . 1 

(u . 1 ± l. 
u ei - 1 ) d . (± 2' 0) = ± 2 Ul'.) - 2 Yl. yl til Yl-

a. 
(6.10) 

1 
= (u . - u . 1) ± (uei - u ei- 1 ) (2) 

yl. Yl.-
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and at location N, S are\ 

I 

d (0 +.E..) . , - 2 Xl. 

(6.11) 

= (u . - u . 1) 
Xl. Xl.-

Therefore, the M. S. inters tory drifts can be obtained with 

the knowledge of mass center displacement covariances. In 

this study the M.S. interstory drifts d . (+a/2,O) and 
yl. -

dxi(O, ±b/2) are obtained and compared with the M.S. drifts 

of the corresponding uncoupled system to show the importance 

of torsional coupling. 

6.4 Approximate Solution 

For tall building analyses, a good approximation of dis-

placement response can be achieved by considering only a few 

of the lower modes. Some general guidelines regarding the 

selection of modes are suggested so that a good approximation 
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can be obtained using a small fraction of the computation 

time and storage needed for an exact solution. 

In the low frequency end of the response spectrum, the 

displacement responses are nearly constant. For this reason 

all the modes in the low frequency range are considered, 

although, strictly speaking, the contribution of each mode 

to the response depends also on the modal participation 

factor. The knee frequency, f*, below which the displacement 

response is nearly constant is dependent on the ground motion 

characteristics and can be determined in advance. For the 

Clough-Penzien spectrum parameters used previously, the knee 

frequency is about 0.33 cps. For those modes having frequencies 

above f*, say fl' the displacement response is close to that 

of the Kanai-Tajimi spectrum. Using the equivalent white 

noise analogy, the M.S. modal displacement is (refer to Sec

tion 4.4) 

(6.12) 

where Sl is the modal spectral level. 

For the filter parameters used, EQ(2nf l , 2nf 1 ) is less 

than 1.75. Let fc (reference frequency) be the maximum of fo 

and f* in which fo is the fundamental natural frequency. Then 
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EQ(2'ITf , 2'ITf ) c c 
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f S 
1.75 {fC)3_

S
1 

1 c 
(6. 13) 

For the shear beam structural model, the participation 

T factors, {~i} [M]{l}, of the first few modes are generally 

greater than those of higher modes. Therefore, the contribu-

tion of the higher modes is approximately inversely propor-

tional to frequency raised to the third power. 

In Eq. (3.21), Eq. (3.22), in order to obtain covariance, 

one needs to calculate the double integrals for all partici-

pating mode pairs. It is desirable to calculate only those 

participating mode pairs which have a significant influence 

on response. Using white noise results and considering the 

mode pair (i,j), one can see immediately that 

r .. 
~J 

(f.+f.) (f.-f.)2 
~ J ~ J 

8[2f3 , C 

(6.14) 
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For the same modal intensity, the contribution due to 

8z:;f 3 

mately less than 1.75/p* of thatCof reference mode. 

the mode pair satisfying 
(f. +f.) (f. -f.) 2 

1. J 1. J > p* is approxi-

With these guide rules, most of the terms in Eq. (3.22) 

can be eliminated without seriously affecting the accuracy of 

the results. This saves a great deal of computational time 

as well as data storage. 

6.5 Numerical Example 

An 8-story building with a special type of stiffness 

"taper" is now considered. It is assumed that the ground motion 

has equal intensity in the two principal directions. This 

assumption was shown in Section 5.3.3 to produce reasonable 

upper bounds to the responses due to other ground motion 

intensity ratios for the governing ground motion incidence angle. 

The ground motion frequency content is described by the Clough-

Penzien spectrum (Ground Motion No.2 of Chapter 2) and the short 

duration envelope is used for the nonstationary results. The 

system properties are: 



1) . m
1 = 

K. 
2) . l. = m 

3) . !e8 

K -yy 

e . 
4) • 

Xl. 

r 
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m2 = --- =ITN = m 

1075, 

= 6 K e-xx 

= P K 
f-J y- xx 

= 0.2 

1045, 985, 896, 

and 

and 

Be = (1.3) 2 

p 
"y = (1.15) 

e . 
~ = 0.3 

r 

5). damping is 5% critical 

776, 627, 448, 239 

= 1. 69 

= 1. 3225 

for all floors 

a. 
6) • all floors are assumed to be square. i.e., l. a = b. b 

l. 

= 1. . 

The floor to floor variation of stiffness is such that 

the system has a'linear first mode for the corresponding 

uncoupled system. The mode shapes and natural frequencies for 

the uncoupled system are shown in Fig. 6.2. 

For this example, the results of eigen-value problem in 

Eq. (6. 6) are 

nl = 0.9305, n; = 1.113, n3 = 1.381; 

and 

¢Xl' ¢X2' ¢X3 0.8884, 0.3573, -0.2882 

¢Sl' ¢S2' ¢S3 = 0.3972, -0.2837, 0.8728 

¢Yl' ¢Y2' ¢Y3 -0.2301, 0.8899, 0.3940 
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The natural frequencies and mode shape of the coupled 

system are obtained through Eq. (6.4). The natural frequencies 

of the system are 5.08, 6.08, 7.55, 12.46, 14.90, 18.49, 

19.69, 23.55, 26.91, 29.24, 32.18, 34.11, 39.95, 40.79, 41.31, 

48.50, 49.40, 50.64, 55.70, 58.00, 61.32, 66.60, 72.01, and 

82.69 rad/sec. The mode shape for the first mode is obtained 

as 

I/JT = {0.062, 0.124, 0.187, 0.249, 0.311, 0.373, 0.435, 
-11 

0.498, 0.028, 0.056, 0.083, 0.111, 0.139, 0.167, 

0.195, 0.223, -0.016, -0.032, -0.048, -0.064, 

-0.081, -0.097, -0.113, -0.129} 

The structural responses to ground excitation are sum-

marized in Tables 6.1 to 6.5 and Figs. 6.3 and 6.4. The 

Clough-Penzien spectrum and filter parameters Wg = 15.46 

rad/sec, ~g = 0.623, wf = 1.636 rad/sec, ~f = 0.619 and 

So = 1 m2 /sec 3 are used (Ground motion No.2 of Chapter 2). 

Non-stationary responses are computed using the "short 

duration" envelope (a = 0.25/sec, B = O.75/sec, see Chapter 

2). Notation used in the tables is defined as follows: 

a xi = /E[d~i(O,O)] a = I E [d~ i (0 , 0) ] yi 

aEi = I E [ d~ i (~ , 0) ] a
Wi = I 2 a E [dy i (- "2 ,0) ] 

/E[d~i (O,~)] /E[d 2
• (0, b 

aNi = a
Si = - - ) ] 

x~ 2 
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The results show that the inters tory drifts are quite 

uniform below the 6th floor. In the top story, the drifts are 

about 25 percent larger than the average values. The smallest 

interstory drifts occur between the 3rd and 4th floor and 

exceed the corresponding results for a single story structure 

by about 1 percent. The largest interstory drift, at the top 

story, exceeds the single story structure drift by about 35 

percent in the stationary case and 42 percent in the nonsta

tionary case. The spatial distribution of response drifts 

is undoubtedly dependent on the fact that the stiffness 

distribution was selected to produce a linear fundamental mode 

shape. 

It is of greater significance to establish whether or not 

the relative effects of torsional coupling in the multistory 

structure are predicted by the results for single story struc

tures. As in single story systems, the translational displace

ments at the center of the mass decrease as the result of 

torsional coupling. The responses at the outer edges of the 

building are significantly greater than those of the corres

ponding uncoupled system by amounts ranging from 39 percent 

to 55 percent (Fig. 6.3 and 6.4). In the corresponding single 

story system (Table 6.5) the outer edge responses exceed the 

uncoupled responses by 39 - 50 percent. The amplification of 

response due to torsional coupling is virtually the same for 

the short duration motion as for the stationary case (compare 

Figs. 6.3 and 6.4). However, the magnitudes of the inters tory 
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drifts for the short duration motion are reduced by about 

15 - 20 percent as compared to the stationary case (compare 

Table 6.1 and 6.2). For the single story structure the short 

duration drifts are reduced by about 12 - 16 percent as compared 

to the stationary case. 

From these comparisons, it is apparent that the general 

trends which were observed for torsionally coupled single 

story structures carryover to multistory structures, in which 

there is not much variability of response from story to story. 

That is , the average response in the multistory structure is 

well predicted by the single story model. For multistory 

structures with signif~cant changes of stiffness, mass, or 

eccentricity from floor to floor, the spatial distribution 

of interstory drifts would be expected to be quite nonuniform. 

In such cases, extrapolation of single story results is ques-

tionable. 

A good approximation is obtained by considering only a 

few important modes (pairs). The numerical results shown in 

Tables 6.3 and 6.4 are obtained by neglecting all the modes 

satisfying (fl/ fc) ~ 4.0 and all the mode pairs satisfying 

(fi+fj) (fi-f j)2 ~ 250. The approximate results are very close 
8sf~ 

to the exact results. Table 6.5 shows the results obtained by 

considering only the first three modes (one in each direction). 

The approximation is quite good except at the top two floors, 

and the drifts are the same at every floor. 
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6.5.2 Computational Considerations 

In order to obtain the exact solution, all 24 modes are 

considered. If advantage is taken of symmetry , 300 mode pairs 

in Eq. (3.22) are needed. If one is interested in the results 

for 10 instants of time, there are 3000 double integrals to 

be calculated. The cost of such calculation would be prohibi

tive. With the algorithm described in Chapter 3, all the co

variance of displacement responses at the mass center and all 

drift information (stationary and nonstationary) sampled at 

10 arbitrary time instants was obtained in less than 20 

seconds of CPU time on the University of Illinois Cyber 175. 

The approximate solution (15 mode pairs involved) takes only 

about 1 second of CPU time to obtain the same information. 

Therefore the algorithm which has been presented is very 

efficient for the calculation of the response of general M-DOF 

systems to earthquake ground excitations. A significant ad

vantage of this algorithm is that one can directly obtain the 

responses at the time instant of interest. One can always use 

the approximate solution to compute the nonstationary results 

cheaply, and then compute the exact solution in a reduced 

time interval of interest. 
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6.6 Summary and Discussion 

stationary and nonstationary responses were computed for 

an 8-story shear beam model with fundamental frequency = 
0.81 cps. The structure had a stiffness taper which produced 

a linear first mode shape, and the floor centers of mass and 

ceters of rigidity were assumed to lie on vertical lines. 

The ground motion input had equal intensity in two orthogonal 

directions. Its frequency content was described by the 

Clough-Penzien spectrum, and its duration by the short duration 

envelope. 

Interstory drifts were quite uniform except in the top 

two stories. The top story drift exceeded the average inter

.story drift by about 25 percent. The spatial distribution of 

interstory drifts is, of course, quite dependent on the stiff

ness and mass distributions selected but the average drifts 

and the effects of torsional coupling in the 8 story structure 

were well predicted by the responses of the corresponding 

single story structure. 

For multistory structures with significant changes of 

stiffness, mass, or eccentricity from story to story the 

extrapolation of single story results is probably not justified. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The effects of ground motion characteristics on the res

ponse of simple elastic structural systems are systematically 

investigated using stochastic ground motion models. 

The characteristics of commonly used stochastic models 

for ground motion are first investigated in Chapter 2. These 

include white noise and filtered white noise models (Kanai

Tajimi spectrum and Clough-Penzien spectrum) for frequency 

content and a double exponential envelope function for inten

sity and ~uration. Qualitative comparisons are made with re

corded ground motions. Multi-directional ground motions are 

considered assuming the existence of ground motion principal 

directions. 

Time domain nonstationary response analysis is considered 

in Chapter 3. Modelling of isolated large acceleration pulses 

and ground motion spatial correlation are illustrated by white 

noise model in Chapter 2 and their effects are discussed respec

tively in Chapter 4 and Chapter 5. The effect of close natural 

freqeuncies is illustrated with white noise input in Chapter 3. 

In the same chapter, an efficient solution algorithm is 

6btained for evaluating nonstationary response of systems to 

Kanai-Tajimi and Clough-Penzien spectrum excitation. This 
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makes it feasible to systematically investigate the structural 

response characteristics for a variety of ground motion input 

and structural characteristics. The effects of various ground 

motion characteristics on the response of SDOF elastic system 

are discussed in Chapter 4. These include the effects of 

frequency content, temporal variation of intensity, duration 

and the presence of individual large acceleration pulses in 

the ground motion. In Chapter 5, the effects of modal coupling 

and multi-directional ground motions are studied through simple 

one story torsionally coupled structural systems. An extensive 

parameter study is conducted with white noise input. Effects 

of ground motion frequency content and duration are also 

investigated. 

A class of tall buildings is considered in Chapter 6. 

Numerical comparisons for interstory drifts between coupled 

and uncoupled systems are presented. Exact solutions as well 

as approximate solutions are obtained and the accuracy and 

computational cost are discussed. 

7.2 Conclusions 

The following conclusions are drawn based on the results 

of this study: 

1. Ground Motion Model 

a) The ground motion model with frequency content spe

cified by the Clough-Penzien spectrum realistically models 
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earthquake ground motions. SDOF elastic response spectra com

puted using this input ground motion agree qualitatively with 

actual earthquake response spectra. The ground motion model 

also predicts relations between mean square ground acceleration, 

velocity and displacement which agree well with corresponding 

estimates proposed by Newmark and Hall [57]. 

b) Effects of variations in ground motion frequency 

content and duration on the response of SDOF elastic systems 

were studied. The filter parameters controlling the Clough

Penzien spectrum were varied to simulate different "Predominant II 

ground motion frequencies. The corresponding response spectra 

exhibited response amplification factors (relative to mean 

square ground motions) which were insensitive to quite large 

changes in ground motion frequency content. It is noted that 

this is a prediction of the model rather than an established 

fact, and it remains to be verified by comparison with recorded 

earthquake motions. 

c) The effect of time-varying intensity and duration 

of the ground acceleration was modelled by means of an exponen

tial envelope function proposed by Shinozuka and Sato. Mean 

square responses were sensitive to duration only for medium 

and low frequency systems. Mean square displacement response 

to the long duration motion consistently exceeded the response 

to the short duration motion. Maximum (90% probability of 

exceedence) responses show a slight dependence on duration for 



153 

high frequency systems as well. 

It was demonstrated that when the ground motion 

is modeled using a time varying intensity function as an 

envelope to modulate a stationary random process, a previously 

unreported defect appears in the ground motion model. The 

behavior of very low frequency elastic systems may not be 

accurately portrayed using such ground motion models. 

d) Limited results obtained using a white noise ground 

motion model suggest that for ground motions of the same 

general intensity level, those containing large individual 

acceleration pulses produce larger maximum responses than 

those without such acceleration pulses. 

2. Response of Single Story Torsionally Coupled System 

The response of a single story elastic system with 

stiffness eccentricity was studied extensively using both a 

white noise and a Clough-Penzien frequency content model for 

the ground motion. 

Some general results obtained in previous studies 

[47] using a deterministic approach were confirmed. 

a} One-way torsionally coupled systems show an in

crease in torsional response and a reduction in translational 

response when the uncoupled torsional and translational fre

quencies are nearly equal. The peak torsional response increase 

as eccentricity increases and damping decreases. (See, for 

example, Fig. 5.9) 
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b) The sum of the mean square torsional and trans-

lational forces (normalized by the value for zero eccentricity) 

remains essentially equal to one indicating that the torsional 

coupling merely produces a redistribution of forces. 

c) The maximum normalized torsional force is 0.5 and 

this large redistribution occurs even when the eccentricity is 

small, if the damping is small and the torsional/translational 

frequency ratio is near one. 

d) The sum of the normalized mean square torsional 

and translational displacement responses is always greater 

than one and is independent of damping indicating that the 

system is effectively softened by the torsional coupling. 

e) The dynamic eccentricity, defined as the eccen-

tricity at which the base shear in the uncoupled system must 

be applied in order to produce the dynamic torque, can greatly 

exceed the static eccentricity if the torsional/translational 

frequency ratio is near one and the damping and static eccen-

tricity are small. For example, for 2 percent modal damping 
e 

and static eccentricity -Y = 0.05, the dynamic eccentricity 
r 

is 11.08 times the static eccentricity. 

f) Compared to uncoupled translational response, the 

maximum root mean square displacement responses at the peri-

phery'of the single story model are increased by about 40 per-

cent for an eccentricity equal to about 6 percent of the floor 

plan dimension. For a two-way coupled system with equal 
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eccentricities equal to about 8 percent of the floor plan 

dimension, the maximum root mean square responses at the 

corner of the floor diaphragm increased by about 75 percent. 

g) For two-way torsionally coupled systems subjected 

to one-directional ground motion, eccentricities in the 

direction of the ground motion reduce the peak torsional res

ponse. Some conclusions drawn by Kan and Chopra [47] relating 

the response of two-way torsionally coupled systems to one-way 

torsionally coupled systems were shown in this study to be 

valid only when the eccentricities are quite small. 

h) Ground motion directionality was considered by 

varying the incidence angle of the ground motion principal 

directions with respect to the structure. Results computed for 

different relative strengths of the two ground motion compo

nents showed that when the governing incidence angle for each 

case is taken into account the maximum responses at the peri

phery of the floor diaphragm are relatively insensitive to the 

relative strengths of the two ground motion components. The 

"worst case", that of two components of ground motion of equal 

intensity, is not grossly overconservative. Comparison with 

the procedure recommended by the ATC-3 Code for recognizing 

orthogonal effects showed that that procedure is quite 

reasonable for this simple structural model. 

j) Effects of ground motion frequency content and 

duration were investigated to determine vvhether the general 
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trends found for the white noise ground motion model can be 

assumed to hold for the more realistic ground motion models. 

The results for the medium frequency system (f = 1 cps) were 
x 

quite close to the white noise results. For the stiff system 

(f = 5 cps) the column response at the periphery is under
x 

estimated by the white noise model. For the soft system 

(f = 0.2 cps) the effect of coupling is overemphasized by 
x 

the white noise model. When the time-varying intensity of the 

ground motion is considered, the effect of torsional coupling 

on soft systems is reduced further due to the time lag between 

maximum torsional and translational response. The frequency 

ratio at which peak torsional response occurs shifts toward 

We > Wx for soft systems and towards we < Wx for stiff systems. 

(j) Accidental eccentricity arising from lack of 

spatial correlation of ground motion was calculated using a 

white noise approximation. The results show general agreement 

with those of Newmark [58]. 

3. Response of Multi-story Torsionally Coupled Systems 

A special class of multi-story structures was con-

sidered in which floor mass centers lie on a single vertical 

axis and floor mass principal axes have identical orientations 

at all floors. 

A computationally efficient procedure for computing 

the responses was developed, and a numerical example was 

presented for an 8 story structure, with fundemantal frequency 
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f = 0.81 cps, and with a stiffness "taper" such that the first 

mode was linear for the uncoupled system. The Clough-Penzien 

spectrum and the short duration envelope were used to model 

the ground motion. 

Root mean square interstory drifts computed at the 

periphery of the floor diaphragms were greater than those of 

the uncoupled system by amounts ranging from 39% to 55%. 

Interstory drifts were quite uniform except in the top two 

stories, and the effects of torsional coupling were well 

predicted by the responses of the corresponding single story 

structure. However, for multi-story structures with significant 

changes of stiffness mass or eccentricity from story to story 

the extrapolation of single story results is not justified. 
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System Natural Frequency (cps) 

0.05 0.10 0.20 0.50 1.00 2.00 5.00 

Short 2.01 2.23 2.51 2.67 2.807 2.95 3.17 Duration 
Long 2.54 2.67 2.73 2.90 3.07 3.25 3.48 Duration 

Stationary 2.61 2.60 2.74 3.03 3.24 3.44 3.68 (10 sec. ) 

Table 4.1 The Multiplication Constant c for 
90% Probability of No Exceedance 

w = 15.6/sec g 

E [u 2] 
_ Kanai 

r = E[U 2 ]Eq.White = 

10.00 

3.34 

3.63 

3.83 

.Exact 
Approx. 

-- System Natural Frequency (rad/sec) 
.~-, . w 

'----, --_ .. 8 
1;;~\ r 1.0 5.0 10.0 14.0 20.0 24.0 30.0 

" 
0.02 1.000 0.998 0.988 0.985 1.008 1. 030 1. 060 

Damping 
0.05 1.000 0.995 0.970 0.964 1. 019 1.071 1.144 

0.10 1.000 0.989 0.944 0.934 1.032 1.128 1. 270 

Table 4.2 Equivalent White Noise Approximation for 
M.S. Response to Ground Motion with 
Kanai-Tajimi Spectral Characteristics 



Condition 

alb L:k I L:k y x 

1.0 1.0 

0.5 1.0 

0.0 all 
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Resistance Pattern 
Quantity 

Uniform Perimeter 9-Column 

we/wx 1 1. 732 1.414 

we/wx 1 1. 897 1. 414 

we/wx 1 1. 732 1.414 

Table 5.1 Frequency Ratios for Building 

Resistance Patterns shown in 

Fig. 5.4 (After Newmark [62]) 

alb b/r 

1.0 16 = 2.45 

0.5 /4875 = 3.10 

0.0 ill = 3.46 

Table 5.2 Ratio of Floor Dimension 

to Radius of Gyration for 

Rectangular Floor Diaphragms 

4-Column 

1. 732 

1. 732 

1. 732 
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Fig. 2.7 Clough-Penzien Spectra with Different 

Dominant Frequencies 
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Accelerations (Clough-Penzien Spectra, So=10000 
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Fig. 2.9 R.M.S. Response Spectrum Asymptotes 
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So=10000 in2/sec 3 , Short Duration Envelope) 
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Fig. 2.11 Principal Axes of Structure and Ground Motion 
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Fig. 2.14 Spectra of Effective Translational and 
Rotational Ground Motion with Partial Spatial Correlation 
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SPECTRUM AMPLIFICATION FACTORS FOR HORIZONTAL ELASTIC RESPONSE 

Damping, One Sigma (84.1%) Median (50%) 
% Critical 

A V D A V D 

0.5 5.10 3.84 3.04 3.68 2.59 2.01 
1 4.38 3.38 2.73 3.21 2.31 1. 82 
2 3.66 2.92 2.42 2.74 2.03 1. 63 
3 3.24 2.64 2.24 2.46 1. 86 1.52 
5 2.71 2.30 2.01 2.12 1. 65 1.39 
7 2.36 2.08 1. 85 1. 89 1.51 1.29 

10 1. 99 1. 84 1.69 1. 64 1. 37 1. 20 
20 1.26 1.37 1. 38 1.17 1.08 1.01 

Frequency. hertz 

Fig. 4.2 Smoothed Earthquake Design Spectrum (0.5g Max. 

Accel., 5% Damping, 84.1% Cumulative Probability) 

(after Newmark and Hall, [61]) 
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Fig. 4.3 Single Degree of Freedom Elastic Oscillator 
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Fig. 4.4 Effect of Ground Motion Frequency Content 

on Stationary Displacement Response 
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Fig. 4.5 Effect of Ground Motion Frequency Content 

on Stationary Velocity Response 
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on Stationary R.M.S. Displacement Response 

- Input: Clough-Penzien Spectrum with w = 
g 

2n rad/sec (Ground Motion No.1, Fig. 2.7) 
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Fig. 4.7 Effect of Dominant Ground Motion Frequency 

on stationary R.M.S. Displacement Response 

- Input: Clough-Penzien Spectrum with w = g 
15.46 rad/sec (Ground Motion No. 2,Fig.2.7) 
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Fig. 4.8 Effect of Dominant Ground Motion Frequency 

on Stationary R.M.S. Displacement Response 

- Input: Clough-Penzien Spectrum with w = g 
10n rad/sec (Ground Motion No.3, Fig. 2.7) 
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Fig. 4.9 Effect of Ground Motion Frequency Content and 

Duration on Nonstationary Displacement Response 

("Short Duration" Ground Motion, Trifunac-Brady 

Duration = 7.2 sec) 
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Fig. 5.1 One-Story Structural Model 
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0) b) 

I 
b 

1 
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a) Uniform resistance 
b) Resistance on perimeter only 
c) Nine-column building 
d) Four-column building 

Fig. 5.4 Building Resistance Patterns 

after Newmark [62] 
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Fig. 5.5 Locations at the Perimeter of Building 
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C
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Fig. 5.6 One-Way Torsionally Coupled System 
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APPENDIX A 

CORRELATION AND POWER SPECTRAL 
DENSITY FUNCTION 

Some basic definitions used in this study are summarized 

here. [64] 

A.I Mean; Cross-Correlation; Cross-Covariance 

The following functions are basic in the study of sto-

chastic processes. 

The mean n(t) of a process ~(t) is the expected value 

of the random variable ~(t): 

n(t) = E[~(t)] (A. 1 ) 

where E[·] denotes ensemble average. 

The Cross-Correlation R~1~2 (t 1l t 2 ) of two processes 

~l(t) and ~2(t) is the joint moment of the random variables 

and their cross-covariance, C~1~2 (tl l t 2) is the joint cen-
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tral moment of the random variables ~l(t) and ~z(t): 

(A. 3) 

If 1;:1 (t) = sz (t) = s (t), then R~l~Z ~tl ,t z) == Rs (tl,t Z) , and 

C
S1SZ 

(t1,t Z) = Cs (t 1,t 2 ) are respectively called the auto

correlation and autocovariance of s(t). 

In earthquake engineering, zero mean random processes 

are of concern. In this case, correlation is the same as co-

variance. Therefore, only the correlation function is dis-

cussed. For convenience, if tl = tz = t then Rs(t,t) will be 

called the variance of the random variable s(t), and R
S1SZ 

(t,t) will be called the covariance of two random variables 

Sl (t) and SZ (t). 

A.2 Power Spectrum of Stationary Processes 

A process s(t) is said to be stationary in the wide 

sense (weakly stationary), if its mean is a constant and its 

autocorrelation depends only on tz - tl : 

E[S(t)] = n = constant 
(A. 4) 

E[S(t+T)S,(t)] = Rs(T) 
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Two processes are jointly stationary in the wide sense 

if each satisfies (A-4) , and their cross-correlation depends 

only on It 1 -t 2 I: 

(A. 5) 

The power spectrum (or spectral density) S~(w) of a pro

cess ~(t) is the Fourier transform of its autocorrelation: 

-iwT e (A. 6) 

and the cross-power spectrum S~1~2 (w) of two processes ~l(t) 

and ~2 (t) is 

-iwT e 

From the Fourier inversion formula it follows that 

iWT 
e S~(w)dw/21T 

(A. 7) 

(A. 8) 



and 

iw'l" e 

265 

s ~ (w ) dw / 21T 
t;;lS2 

physically, S~(w) describes the distribution of total mean 

square value (energy) over the frequency domain. 
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APPENDIX B 

DIFFUSION OPERATORS 

In this section, a brief summary of some fundamental 

background information needed for this work is presented. 

Emphasis is on intuitive justification rather than mathema

tical rigor. Interested readers may refer to [24, 28, 46, 50, 

85] for fuller details. 

B.1 State Variable Representation [28] 

Early work in stochastic theory involved system descrip

tion and analysis in the frequency domain. In contrast to 

these efforts, most of recent advances have involved system 

description in the time domain. The formulation used in this 

study employs state-variable notation, which is particularly 

useful in providing statistical descriptions of system beha

vior. 

Many physical systems can be represented by a differen

tial equation of the form 

~l (t) =! (~l (t), ~2 (t), t) (B.1 ) 

where X2 (t) is a bandlimited (nonwhite) random forcing func

tion having bounded variance, i.e., white noise is physically 
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unrealizable. We shall model ~2(t) as a gaussian random pro

cess generated by the linear system 

(B. 2) 

in which ~(t) is gaussian white noise and is formally ex-

pressed by 

. 
~ (t) = 

d~{t) 

dt 

where ~(t) is Wiener (Brownian) process. 

Combining Eqs. (B-1) and (B-2) and defining 

~1 (t) 

~(t) = 
~2(t) 

we obtain the augumented equation of motion 

(B. 3) 



X(t) = 

!(~l (t), ~2 (t), t) 

[F (t) ]~2 (t) 

or d~(t) = ~(~,t)dt + [0(t)]d~'(t) 

268 

+ 

! (~l (t), ~2 (t), t) 

where ~ (~, t) = 
[F (t) ]~2 (t) 

0 0 

[0(t)] = 
0 [G(t)] 

o 
(B. 4) 

[G(t) ]~(t) 

w'" (t) = [w~t) 

B.2 Diffusion Operators and Moment Evolutionary Equation 

The conventional rules of calculus are not valid for 

stochastic processes because conventional calculus is based 

on the assumption that "Bounded Variation" exists. However, 

this may not be true for stochastic problems. To illustrate 

this, let X(t) be a scalar random process given by 



269 

dX = m(X,t)dt + a(t)dW(t) (B. 5) 

and let Q(X) be any functional differentiable once with 

respect to t and twice with respect to X, then 

dQ(X) = Q(X + dX) - Q(X) 

a 1 a 2 2 = Q(X) + ax Q(X)dX +"2 Q(X) (dX) + •.• -Q(X) 
ax2 (B.6) 

3 1 3 2 
2 = ~o' x Q (X) dX + 2 Q (X) (dX) + ••. 

ax2 

The conventional differential rule holds only when all higher 

order terms, (dX)2, (dX) 3, etc., are negligible when compared 

with dX. However, in this case 

(dX) 2 = [m (X, t) ] 2 (dX) 2 + a 2 (t) (W (t) d t) 2 

(B. 7) 

+ 2m (X , t) a (t) W ( t) (d t) 2 

which has expectation 

E [ (dX) 2] = 0 ( (d t) 2) + a 2 (t) s 0 0 (0) (d t) 2 (B. 8) 
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where So is white noise spectral level. 

Since 

I 
dt/2 

lim o(h)dh = 1 
dt-+O -dt/2 

we can write formally 

0(0 ) 1 = dt 

therefore 

E [ (dX) 2] = cr 5 (t) Sod t 

which is of the same order of magnitude as the term involving 

(dX). So, in Wiener process driven stochastic problems, it is 

necessary to carry up to second order differential terms. It 

can be easily verified that terms involving (dX)3, (dX)~, etc. 

can be neglected. 

Consider 

Q (X) 
iuX _ e 
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then 

(B. 9) 

"-

Let (.) denote 

where P(XIX o), t~to, is the conditional probability density 

function. Then 

A 

dQ(X) ~ = iue~u dX 

(B.10) 

-------= iue1UXm(X,t)dt 

Take the inverse Fourier transform, leading to 

~t p(XIXo) = - ~x {m(X,t)p(Xlxo)} + 
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(B.II) 

which is the Fokker-Planck equation. 

Define the forward diffusion operator L*(-(X» as 

* L (-(X» = (B.12) 

Then :t p(XIX o ) satisfies the forward diffusion equation. The 

adjoint operator of L* is the backward diffusion operator, L, 

which satisfies following relation 

J v(X)L(u(X»dX = J * u(X)L (v(X»dX (B. 13) 

It can be easily shown that 

L(-(X» (B.14) 

Since 



273 

then 

thus 

- ~t p(X1IX) = L(p(X1IX)) (B.1S) 

The results derived above are also true for the vector case. 

In the vector case, let 

dX. = m. (X, t) d t + 
J J - CI. 

L a. dW 
JCI. CI. (B.16) 
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Repeating the same argument in Eqs. (B.9) to (B.1S), the 

diffusion operators are 

* - L a + .!. L L 
a 2 _ 

L ( . ) = ax. {mj (~, t) (.) } a x j a X
k 

{ b j k ( • ) ] 
j 

2 j k J 

L 
d + .!. I I b

jk 

a 2 
{ ( . ) } L ( . ) = mj(~,t) ax. {(.)} 2 axjaxk j J j k 

where 

b
J
' k = I I a. a·oS (3 

a (3 Ja J I-> a 

Consider the conditional moment 
~ 
x~ xX: 
~ J 

a ~ 
J x~ xX: d 

p (~I~o) d~ a:t(X i Xj ) =:;: 

at ~ J 

J X~ xX: * (p (~ I ~ 0 ) ) d~ = L 
~ J 

J ------m xX:)p(XiXo)dX L(X~ xX:) = L(X
i 

=:;: 

J - - - J. J 

(B. 17) 

(B .18) 
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(B.18) shows that the evolution of conditional moments satis

fies the backward diffusion operator. 
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APPENDIX C 

AUTOCORRELATION FUNCTION 
OF RATIONAL POWER SPECTRA 

C.l Rational Power Spectra 

A set of random processes of interest are stationary and 

have spectra that can be written as a ratio of two polynomials 

(C. 1) 

in which N(w 2
) is a polynomial of order q in w2 and D(w 2 ) is 

a polynomial of order p in w2 and q < p. These spectra are 

called rational spectra. The Kanai-Tajimi spectrum and Clough-

Penzien spectrum are in this category. 

C.2 Differential Equation Representation of Random Process 

Generation 

Random processes set) having rational spectra can always 

be obtained as stationary outputs from a linear system driven 

by white noise in terms of the state variable representation. 

dX(t) = FX(t)dt + GdW(t) (C. 2) 
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t,; (t) = cx (t) (C.3} 

where X(t) is a vector of state variable, F, G, and Care 

constant matrices, and wet) is a vector of Wiener process. 

C.3 state Transition Matrix 

Consider the homogeneous solution of Eq. (C.2) 

dX 
dt = FX(t) 

then (C. 4) 

X(t) = 4>(t-to)X(to) 

where X(t o) is the initial condition, 4>(t-t o) is called the 

state transition matrix of the system. It can easily be shown 

that 4> satisfies the equation 

d4>(T) = F4>(T) 
dT (C. 5) 
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The solution to Eq. (C.S) is easily obtained by using coven-

tional Laplace transform techniques. 

(C. 6) 

where L- 1 (.) denotes the inverse Laplace transform, and I is 

the identity matrix. 

C.4 Autocorrelation Function 

The autocorrelation function of ~(t) in Eq. (C.3) can be 

easily derived as 

T 
R~(tl,t2) = C¢(tl-t2)RX(t2,t2)C 

T T = C RX(t1,t 1)¢ (t2-t l)C 

(C. 7) 

where .T denotes matrix transpose. Since only the stationary 

case is considered, 

lim 
T < 0 R~ ('r) = R~(t2-tl) = C¢(-'[) RX(S,S)C '[ 

s+ro (C. 8) 
T 'r > 0 = C lim RX(S,S)¢ (-r)C -r 

S+ro 
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where lim Rx(S,s) can be obtained by applying Eq. (B.lS) in 
s-+co 

Appendix B. For a real stationary process, 

(C. 9) 

This allows us to examine only the case T > o. 

C.4.1 Autocorrelation Function of Kanai-Tajimi Spectrum 

The generating differential equation for a process having 

the Kanai-Tajimi spectrum can be written as 

x 0 I X 0 

= dt + . _w 2 
. 

X -2(,; w X dW 
g' g g 

(C.IO) 

X 
t,; (t) = So {w z

, n w J g g g . 
X 

Using (C.?), after simple algebraic manipulation, one obtains 

¢ (T) = (C.ll) 
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where 

-z;; W T 
d _ Z;;g 

sin (wd T )} q,ll (T) = egg {cos (wg T ) + 

11-Z;;'~ 
9 

-Z;; W T 
d 1';;g 

sin(wdT)} q,22 (T) = egg {cos (w T) -
9 11-Z;;~ 9 

-Z;; W T 
{_l_ sin (wd T ) } q,:2(T) = egg 

d 9 W 
9 

-Z;; W T _w 2 

sin(wd T )} q,21 (T) = egg {~ 
d 9 w 
9 

The steady-state covariance matrix 

1. 0 

lim RX(S,S) = 1 (C.12) 

s-+oo o 
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substitution of Eqs. (C.11) and (C.12) into (C.8), gives 

(C.13) 

C.4.2 Autocorrelation Function of Clough-Penzien Spectrum 

The state variable representation for random processes 

~(t) having the Clough-Penzien spectrum can be obtained as 

Xf 
0 1 0 0 Xf 

0 

. 
-w 2 -2 sfwf 0 0 Xf 

dW Xf f dt + d = 
X 0 0 0 1 X 0 

-w 2 
. 

dW . _w 2 -2 sfwf 
-2t;; w X X f g g g 

(c. 14) 

. 
X 
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Let 

(C .15) 

By application of Eq. (C.6), it can be shown that ~ .. takes 
~J 

the general form 

-w l',; T d - b .. sin (w dT ) } ~ .. h) = 2 egg {a .. cos (w T) 
~J ~J g ~J g 

-wfl',; fT d - dijsin(w~T)} + 2 e {c .. cos (w{r) 
~J 

i = 1, 2, 3, 4 j = 1, 2, 3, 4 
(C .16) 

Let 

lim RX(S'S) (C .17) 
s-+oo 

~ubstitution of Eqs. (C.17), (C.lS), and (C.14) into (C.8), 

leads to 

(C.18) 
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Let 

(C.19) 

then, the quantities required for evaluating Eq. (C.18) are 

_W 2 
f {w 2 a = - c = 2D 3 1 . 31 f 

_w 2 

b 
f 

= 
3 1 

2DJl-s~ 
-w 2 

d 
f 

= 
3 1 ;----

2D/l-s f 

a = C = 
3 2 3 2 

a = 0.5 
3 3 

{l;;g(Wf 

{I;; f (wi 

w2} - g 

+ w2 ) - 2w gWf l;;f} g 

+ w2 ) 2w f w I;; } -g g g 
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-l.: 
b = 9: 

3 3 

2/1-l.:~ 

c = d = 0 
3 3 3 3 

d = c = d = 0 
3 '+ 3 '+ 3 '+ 

b 
-1 = ----a: 3 '+ 2w 

9 

_W 2 

f 
{WgWf{Wgl.:f - W

f 
Z;;g} } a = - C = 

'+ 1 '+ 1 D 

W2 

b 
f {W {W 2 _ W2 } + 2 W w

f 
l.: (W

f 
Z;; - Wg l.:f)} = 

'+ 1 

2D~ Z;;; 
9 9 f 9 9 9 

(02 

d 
f 

{wf {W; - W 2} + 2 W 9 wf l.:f { W 9 l.:f w
f 

l.:g}} = -
'+ 1 

2D /1- s; 
9 

2w w
f 

{w l.: - w
f l.: f }{w f s-2w l.:,j:} - 2w l.: [wfw (Wfl.: -w sf)]} 

9 9 9 9 9 J. 9 9 9 9 9 

b 
- 1 = ----"'"--

'+ 2 

2w Wf (W l.: -Wfl.: f ) (WfZ;; -2w Z;;f) + 2w (l-l.: 2) WfW {Wfl.: -W Z;;f}} 
9 9 9 9 9 9 9 9 9 9 
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" 2 

a 
" 3 

b 
" 3 

a 

" " 

b 

" " 

c 
" " 

R 
14 
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- 1 =----

= c = d = 0 
" 3 " 3 

W 

= 9 

2/1-S~ 

= 0.5 

= S9 

20 I 9 

= d = 0 

" " 

= -1 

2 (W~_W~)2+ 4wg wf (wgS g +WfS f ) (wfi';g +wgi';f) 
= R 

2 3 
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R -1 wf + 2w Wf(Wfs +W sf)R } = 4r;f 24 (W 2 _W 2 ) g 9 g 14 
g f 

1 w2 

R {1 + f [2w 2 = - -3 3 4w gr;g W2_W 2 f 
g f 

8w S W W 
f f 9 f(W ~ +W ~ )]R } 

2 2 f 9 9 f 14 
W -W 

9 f 

R = R = 0 
3 4 43 

R 1 {R + 2wf~fRl4 w2 R } = WZ -44 g 3 3 f 13 

denote: 

4 4 
a. = I a R f3 = I b R 3 3 i=1 3i i3 3 3 i=l 3i i3 

4 4 
Y = I c R. <5 = I d 3i Ri3 3 3 i=1 3i ~3 3 3 i=l 

4 4 
a. = I a R. f3 = I b R. 44 i=1 4i ~4 44 i=1 Ifi ~4 

4 4 
Y = .1 c R 0 = I d R. 44 ~=1 4i i4 44 i=1 4i ~4 
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then, (c.18) becomes 

R (T) 
~ 

where 

A 

B 

t,; 

t,; 

-W S TAd A d 
= 2 egg {acos(w T) - 6sin(w T)} 

g g 

2 /"2 "2 ¢ tan 
-1 -6 

+ = = 6 " ; a a 

-0 /"2 />.2 e -1 
2; + = tan -= 0 " y y 

(C.20) 
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APPENDIX D 

COMPOUND POISSON PROCESS 

In this section, only intuitive arguments are employed 

in the discussion. Interested readers should refer to [50] 

for complete details. 

D.l Poisson Process (Poisson Counting Process) 

A stochastic process by definition is a time parametered 

family of random variables. The Poisson process is an impor

tant class of random counting processes in which the random 

variables can take only integer values, i.e., the random va

riable is the count of the occurrence of events during a 

fixed time interval. The Poisson process satisfies the follow

ing assumptions: 

1. Independent increment; the probability of a random 

occurrence is any subinterval t is independent of previous 

occurrence. 

2. unit jump; the probability of an occurrence in a 

interval (t,t+dt) is A(t)dt, where ACt) is positive. The 

probability of more than one occurrence in the interval is 

zero. 

For a homogeneous Poisson process, A(t) = A = constant, 

is independent of absolute time. A nonhomogeneous Poisson 

process can always be reduced to a homogeneous process by the 
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nonlinear time transformation 

1 = J: A(slds (D. 1) 

Therefore, it suffices to consider only the homogeneous case, 

A(t) = A . From the assumption, the probability of k occur-

rences in (O,t) satisfies 

p(k;t) = p(k-l;t-dt)Adt + p(k;t-dt) (l-Adt) (D. 2) 

Eq. (D.2) can be rearranged as 

dp(k:t) __ p(k:t) - p(k;t-dt) __ 
-dt - dt - -Ap(kit) + Ap(k-l,t) (D.3) 

from which p(k;t) can be determined as 

p(ki t ) 
-At e (D. 4) 
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The parameter A can be easily shown from assumption 2 to be 

the expected rate of occurrence normally referred to as 

intensity or incidence rate of the process. 

D.2 Compound Poisson Process 

A marked counting process is a counting process with an 

auxiliary variable, called a mark, associated with each 

ccurrence. If the counting process is Poisson, and the marks 

{H.} are a sequence of mutually independent, identically dis
~ 

tributed random variables which are also independent of the 

counting process, then the process is termed a compound 

Poisson process. 

It is noted that for a Poisson counting process the in-

cidence rate, A , is sufficient to characterize the process. 

For a compound Poisson process, we introduce another mark 

random variable H. 

D.3 Moment Evolutionary Equation 

Let N(t) denote a Poisson counting process having inten-

sity A, and P(t) = HN(t) denote a compound Poisson process 

with mark variable H. The Poisson impulse P(t) is formally 

expressed as 

= dP(t) 
dt 

(D.S) 
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As discussed in section B-2, conventional calculus does 

not hold here. For Gaussian white noise, one must carry up to 

second-order differential terms to obtain the correct result. 

For a (compound) Poisson process not all higher order diffe

rential terms can be neglected. To illustrate this, consider 

a scalar Poisson driven process X(t) given by 

dX(t) = aX(t)dt + a(t)dP(t) (D. 6) 

Since 

E[dP(t)] = E[H]dt 

E [ (dP (t) ) 2] = E [H 2 ] d t 

(D. 7) 

Eq. (D-7) can be immediately obtained from assumption 2 for 

a poisson process and the independence assumption between the 

Poisson process and mark variable. Therefore, much informa

tion is contained in the higher order differential terms and 

should not be neglected. This is due to the highly disconti-
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nuous nature of the process and is analogous to the Gibbs 

phenomenon in Fourier integrals or series. 

The differentiation rule of Dolean-Dade and Meyer (1970) 

can account for this discontinuous process. Let X(t) be a 

scalar process described in Eq. (D-6), and Q(X) be any diffe-

rentiable functional of X. The differentiation rule gives 

dQ(X(t» = ~x Q(X(t )dX + d I [Q(Xs ) - Q(Xs ) -
to;s;t 

(D.8) 

The summation is carried out over those values of s where X 

iuX(t) 
jumps. Again, let Q(X(t» = e , and apply the diffe-

rentiation rule to give 

dQ(X(t» = iueiuX(t) [aX(t)dt + o(t)dP(t)] 

+ d I 
to~s~t 

iu[X +o(s)H 
s -

{e - - e 

iuX s 
iuX s 

- iue -[o(s)H]} 

where Xs - Xs = o(s)H if a jump occurs at s. 

Since for any function ~, one has 

(D.9) 
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= dJt I/I(X )dN(s) = 1/1 (.Xt)dN(t) 
to s 

Eq. (D.9) may be written as 

dQ(X(t» = iuaX(t)eiuX(t)dt + 

eiuX(t) (eiuo(t)H _ l)dN(t) 

Rearrange the right-hand side of (D-11) as 

dQ(X(t» = iuaX(t)eiuX(t)dt + ~~iuX(t) [eiua(t)H 

+ e i uX (t) [e i u a (t ) H _ 1] [dN (t) - Ad t ] 

A 

Let (.) denote 

(D .10) 

(D. 11) 

l]dt 

(D.12) 
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where G(H) is the distribution function of H. Then 

~ 
dQ(X(t» 

~ 
= iuaX(t)eiuX(t)dt + 

--------AeiuX(t) [eiua(t)H _ l]dt 

Take the inverse Fourier Transform, leading to 

~t p(X!Xo) = - ~x {aX(t)p(xlxo)} + 

* = L (p(xIXo» 

where L* is forward diffusion operator given by 

* a . 
L (. (X» = - ax { aX [ • (X) ] } + 

A J _: [. (X-a (t) H) ] dG (H) - A [. (X) ] 

(0.13) 

(0.14) 

(0.15 ) 
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then the backward diffusion operator L, the adjoint operator 

of L, is easily obtained as 

L(·(X» 
3 = aX ax (. (X» + 

(D.16) 

By the same argument as used in Eq. (B.21), the conditional 

moment evolution satisfies backward diffusion equation. The 

derivation can be easily extended to vector processes. 
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APPENDIX E 

ANALYTICAL EVALUATION OF 
RESPONSE COVARIANCES 

This appendix gives some formulas required for the eva-

luation of displacement, velocity, and displacement-velocity 

joint response covariances Yjk(t) in Eq. (3.24). It is 

sufficient to consider the following three cases. 

Case I: 

Case II: 

-W 1',;1: 
= 1 e k sin ( w

k
d 

1: ) 

wd 
k 

-w.l',;1: 
= e J COS(W~T) 

J 

-w I',;T 
= e k COS(W~T) 
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-W.~1 

= ~ e J sin(w~1) 
w. J 

J 

-W ~1 
= e k 

The Yjk(t) for Case I and II can be expressed as 

Yjk (t) 
-(W.Z;;+Wk~)t 

= e J { f (w . ,w
k 

I ex. , ex ) - f (w . ,wk a, S ) 
J J I 

- f (w j I wk I B I ex) + f (w j I wk I B,B) 

(E. 1 ) 
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where for Case I 

f (WI ,W2 ,n, 8) = d1 d { eAt { 't'JIcoscp + W2sincp } 
WjWk 

for Case 2 

(E. 2) 

(E. 3) 
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"-

The Yjk(t) for Case III can be expressed as 

Yjk(t) 
-(W.l;,+Wkl;,)t 

= e J {f (w., w
k 

' a , (),) - f (w., wk ' a , S ) 
a J a J 

- f (w., wk ' 8 , a) + f (w., wk ' i3 , 8 ) 
a J a J 

(E. 4) 

where 

f ( ) 1 { At{ . } aWl' W 2' n, 0 = dew 21 cos¢ + W 2 2 s~n¢ 

Wj 

(E. 5) 



300 

f
b

(Wl,W2,n,o) = ld {eAt {W 23 COS¢ +W24sin¢} 
w. 

J 

+evt {-vhSCOS¢l +l'h,sin¢l} 

+ e vt { W2 OCOS¢2 - Wlssin¢2} (E. G) 

+ {WsCOS(P3 - W,sin¢3 + WlOCOS¢4 - W9sin¢d 

The parameters used in (E.l) to (E.G) are defined as 

follows: 

A = 
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F2 = 
4 

1 
Dl = --------~~---,---d d 2 

A 2 + ( -w 1 + W 2 ) 

1 

1 

1 
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APPENDIX F 

THE SECOND AND FOURTH MOMENTS OF 
RESPONSE OF SDOF SYSTEMS TO 

WHITE NOISE EXCITATION 

F.l Second Moments 

Eq. (4.5) can be integrated as follows for the envelope 

function described in Eq. (2.3) 

C2 

E[u 2 (t)] = __ e __ { h(2a)+h(2S)-2h(a+S)-f(2a)-f(2B) 
2w2 (l-Z;; 2) 

o 

+2f(a+13)} 

C 2 Ul Z;; 
E[u(t)u(t)] = __ e __ {+[f(2a)+f(2S)-2f(a+S)-h(2a)-h(2S) 

w 2 (1-Z;;2) 
o 

W \/1-Z;;2 
+2h(a+S) + 0 2 [g(2a)+g(2S)-2g(a+S)]} 

z:; P [g (2 a) +g (2 S) - 2 9 (a+ B) + i [h (2 a) + h (2 B ) - 2h (a+ B) ] } 

in which 



f(~) 

1 -~t -2w st 
--=---,-{ e S _ eO} = 2w Z;;-~ 

o 

= 

308 

,-- ,--
-2w

o
/ l-z;;2 Sin(2w

o
/ l-r; 2t)]} 
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F.2 Fourth Moment 

Eq. (4.11) is obtained in a straightforward manner as 

E[u 4 (t») = F(4a)-4F(3a+B)+6F(2a+2B)-4F(a+3S)+F(4B) 
p 

where 

{1. F (E,;) - -2
1 

F (E,;) + l F (E,;)} 
8 1 2 8 3 

-4w z:;t 

(F. 2) 

F (~) ::: - e 0 [(4("; z:;-o • 
1 o 

F (0 = 
2 

1 -4w z:;t 
- e 0 [(4w z:;-~) 

o 

F (0 = _1 __ { e-E,;t 
3 4w z:;-t;: 

-4w z:;t 
_ eO} 

o 
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APPENDIX G [32, 45] 

PEARSON DISTRIBUTIONS 

Frequently, there are insufficient theoretical grounds 

for selecting appropriate probability distributions. In 

this situation, very often empirical distributions are used 

in evaluating system performance. Standard probability dis-

tribution models do lead to a wide variety of distribution 

shapes. However, they do not provide the degree of generality 

that is frequently desirable. Therefore it is useful to have 

available more general techniques for representing data. 

A group of distribution families due to Karl Pearson, 

which is defined by the first four central moments of a 

random vari'able, is employed in this work. 

G.l The Pearson Law 

It can be easily verified that the probability density 

function p(X) of the Gaussian distribution is the solution 

to 

1 dp (X) = 
p(X) dX 

X-u 
(G. 1) 

The law, therefore, has the properties that dp(X)/dX vanishes 
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in the limit when p(X) tends to 0, and at one intermediate 

value of X, namely, V. If we consider the generalized form 

1 dp (X) = 
p(X) dX 

X - a 
(G. 2) 

the same properties will usually hold, but we now have two 

more parameters available und are able to represent a wider 

range of probability distribution shapes. The integral of 

Eq. (G.2) can in general be written in the form 

(G. 3) 

where Co will be fixed by the condition that the integral of 

p(X) is 1, and Cl and C2 are the zeros of the denominator in 

Eq. (G. 2) • 

This generalized law was proposed by Karl Pearson [32]. 

The solution of Eq. (G.3) leads to a large number of distri-

bution families including all the standard probability dis-

tributions. A plot of the regions in the (Bl, B2 ) plane cor-

responding to various Pearson distributions is shown in Fig. 
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G.1, where 

u 2 

u 4 
81 = __ 3_ 82 = 

u 3 u 2 
2 2 

and ~ denotes the n-th central moment of a random variable. 
n 

This chart shows the wide diversity of Pearson distribution 

shapes and may be used to select the appropriate approximation 

for a given variate, based on knowledge of 81 and 82. The ex-

pressions for the probability density functions for the va-

rious Pearson distributions are given in [45]. 
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Fig. G.1 Region in (Sl,S2) Plane for Various Type 

Pearson Distributions. Letters U and J 

Denote U-Shaped and J-Shaped Distribution. 

(From E.S. Pearson, Seminars, Princeton 

University, 1960) 
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APPENDIX H 

COEFFICIENTS OF MATRIX [f] 

Applying Eq. (B.18), a set of 21 evolutionary equations 

are obtained for second moments. If the stationary displacement 

responses are considered, Eq. (5.6) is obtained by condensing 

out all terms other than displacement responses. The coeffi-

cients of matrix [r] in Eq. (5.6) are as follows: 

.. 
u 

r = w
X
3 { 2l,; + 1 

11 2l,;6" 

f 
14 

e 
{_l_[_u" (13 2 -1) 

e e 
r = w 3 (-Y) - u"S 2 (~) - u"(-Y)]} 

1 5 X r 2r,6" 3 Y 1 Y r 2 r 

e 
{_l_[_u .. (13 2 -13 2 ) 

e 
r = (;.)3 (-Y) - u" (-Y) ] } 

16 X r 2r,6" 2 Y e . 3 r 

e e e e 
r = (;.)3 { 2S3l,; + -1-[u" (-.Y) 2 + 2U"S2 (~) (-Y) + V"S4(~)2]} 

22 x e 2 [,6 " 1 r 2 y r r 2 y r 
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r 
3 1+ 

r 
3 6 
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r 
- If If 

r =w 3 {28 s(ex ) (1+S ) +_1_[U-'(1-Se)(1-S2) + 
If 5 X Y r y 21;,6 -' 3 Y 
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e e 
where 6-' = (1+6 e ) (Se+6y) (1+Sy ) - (3~ ( S e + 6 y) ( rX) 2 (1+6 ) (-.Y) 2 

cl 1: 

e 
u = ( S e+ S ) (1-1 S ) - (.-Y) 2 

1 y Y r 

e 
v = (1+6

y
) (1+6 e ) (32(~)2 

2 Y r 

e 
~ = (1+6 e )(:) w 
2 

w = (1+6 e ) (Be+ 6y) 
3 

e e 
u = -6 (~) (J) 

2 Y r r 

e x 
u = -(6 e+Sy )Sy(r) 

3 
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