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1. Introduction:

Automatic control has played an important role in the
advancement of engineering and science. In addition to its
extreme importance in space-vehicle, missile-guidance, and
aircraft-piloting systems, the application of automatic control
to ensure comfort and safety of civil engineering structures has
been explored in recent years. In earthquake-prone areas, all
structures must be designed to withstand a certain intensity of
ground motion without collapse. To-date, no well-designed tall
building has suffered collapse. However, large displacements due
to strong-motion earthquake can cause severe damage to these
structures. To reduce the displacement of the structures, one can
use either passive control devices and/or active control devices.
Although the idea of active control is not new, the application

of control theory to reduce motions of civil engineering struc-

tures 1is still being developed.

2. General Approach for n Degree—of-Freedom Systems:

A classical conirol technique was described in a recent
report [l]. A fundamental method of classical design of the con-
trol system consists of forcing the dominant closed-locop poles to
be suitably located in the s-plane. In this report, the design of
feedback compensators 1is considered for linear and constant-
coefficient multivariable systems. One of the basic design objec-
tive is to ensure satisfactory transient response by obtaining

suitable pole locations. This problem is analyzed, first under



the assumption that all state variables can be used in forming
feedback signals. An additional design objective is to obtain a
decoupled or noninteracting system, This means that each input

component affects just one output component or some prescribed

subset of output components.

Consider a system with following equations:

P
1]

‘AX + BU (1)

<
It

CX + DU

Where X is a nxl state vector, U is the rxl input vector,
and ¥ is the mxl output vector. The feedback gain matrix X is rxn
and is assumed to consist of constant elements. The input V is
assumed to be 1xl1 vector and feedback matrix F is also assumed to
be constant and is of dimension rxl. In civil engineering struc-
tures, we do not usually have input vector because the set point
of the system is fixed. In the case of earthquakes, we have a
base excitation, V. The block diagram of the modified system is
shown in Fig. 2, in which V is the disturbance force vector (Ixl)
and F 1s a feedback matrix (nxl) for the system. It is assumed,
at this point, that all state variables are measurable. There-
fore, the C matrix becomes an identity matrix, and the D matrix

becomes a null matrix. In this case, the system is represented

with the following equatiocns:

X = AX + BU + FV (2)

Y = X



Note also that several optimal contrel laws take the form of

a state feedback control. Optimal control laws will be discussed

later.

Let the control force be U=-KX,then the general form of

equation becomes:

5 .
it

AX - BKX + FV (3)

or
X = (A - BK)X + FV (4)

The stability of the open-loop system depends on the eigen~-
values of the A matrix. A system is stable if all eigenvalues of
the open-~loop system have a negative real part. By introducing
the negative feedback system, we will have a closed-~loop system
and the stability of the system depends on the eigenvalues of the
(A-BK) matrix. It means that to have a stable system, all poles
of (A-BK) must have a negative real part. The stability of a
linear time-invariant system depends only on the location of the
eigenvalues in the s-plane. For a open-loop system, a system is
stable if and only if all poles of the system be located on the
left-hand side of the s~-plane. This is also true for a closed-
loop system. Relocating the poles of a system 1is called pole-
assignment problem. In this method, we will find a XK matrix such
that the closed-loop system would have a desired eigenvalues and
performance. The pole-assignment method is reviewed in detail in
the Appendix. It has been proved that 1if and only if the open-

loop system (A,B) is completely controllable, then any set of



desired closed-loop eigenvalues can be achieved using a constant
state feedback matrix K. To synthesize the system with real
hardware, all elements of K must be real. It has been assumed
that all state variables are available in our study. However, it
is possible that we need to estimate these states., This method is
called state reconstruction. The main goal of this method is to
obtaln a good estimate of the states X(t)’ given a knowledge of
the output. In this case, the C matrix is not a square matrix. In
this method, we will construct another system which is called

observer. The input of the observer will depend on Y, U, and its

output should be a good estimate of X. The second system has the

form:

2
X =A X+B Y + Z (5)
c ¢
Where X is the nxl vector estimation to X and Ac and Z are

selected as:

A =A-8B .C | (6)

Bc is a nxm matrix that its elements are unknown. If all eigen-
values of the AC matrix have a negative real part, then as t*= we
will have X + X » In this case, we must find B  such that
(t) (t) c
all eigenvalues of the Ac matrix have a negative real part. This
problem is almost like pole-assignment method and one can use the
same approach to find the elements of Bc matrix. It is always
possible to find a Bc matrix which will yield any set of desired

poles for Ac if the original open-loop system be completely

obgservable. Now, we can use the observer system together with a



constant state feedback matrix K, The input of the state feedback
matrix is X rather than X, but we know that as time goes to
infinity, the error of the system becomes smaller or even
approaches to zero. Fig. 3 shows the block diagram of the compo-
site system, the order of the combined system is equal to Zan. By
proper selection of K and Bc, the system will have a desired per=
formance. It is obvious that selections of K and Bc matrices are
separate from each other., It means a separation principle. This
approach 1is described as follow: First, we select n desired
closed-loop eigenvalues for the system. By using the pole-
assignment method, one can find the K matrix. Second, we choose n
desired poles for the observer system and by the same method, one
is able to determine the elements of the B, matrix. The complete
controllability and observability of the open-loop system guaran-

tees to find at least one pair of K and Bc matrices.

The observer method described herein is called an identity
observer because we constructed a total state vector. It is pos-

sible to design a lower otder system, but we will not discuss it

in this study.

Experience shows that to have a good design, poles of the
observer should have a bigger real part than poles of closed-loop
system. We will show later that in civil engineering structures,
most eigenvalues of the closed-loop system will have a very small
real part when we neglect the effect of the damping duriang the

earthquake.



Consider a n~degree-of-freedom system as shown in Fig. 4,

the equation of motion can be written as follows:

L] .

mx + cx + kx = N + f (7)
Where m, ¢, and k are nxn mass, damping, and stiffness matrices
of the system respectively; N is a nxl external force induced by
the ground acceleration and f is a nxl control force. By using

the state space variable concept, Equation 7 can be written as:

i = AX + BU + FV (8)
To use the pole-assignment technique, the open-loop system must
be completely controllable. Then, to find a constant feedback
matrix, K, one should select the closgd-loop poles of the system
such that the performance of the system becomes desirable; The
solution of the problem is only unique when the B matrix has only
one column. It means that there is only one active control force
which has been applied at one of the nodes aof the system. The
total number of the active control force are r. Because the dura-
tion of earthquake is short enough, one can neglect the effect of
the damping. Then, Equation 7 can be written as follows:

mx + kx = N+ f (10)
In this case, it is possible to find a similarity transformation,
x=Tq, such that both mass and stiffness matrices become diagonal,

then Equation 10 can be written as following:

m q +k q=0N +f (11)
The matrices m and k are real symmetric and positive definite.

Since the eigenvalues are real and positive the sgquare root of



them are called the natural frequencies of the system. The eigen-
Qectors of the system are orthogonal and they may be normalized.
The left-hand side of Equation 1l is completely uncoupled but the
right-hand side of the equation may or may not be uncoupled. The
right~hand side of the equation is only uncoupled when the con-
trol force of each mode be a function of displacement and velo-

*
city of that mode, fi = f(qi,qi,t). On the other hand, if the

control force 1is assumed as a function of all states,

*
£, 0= f(ql,ql’...,qn,qn,t) then the right-hand side of the equa-

tion is coupled. When the right-hand side of the equation 1l is

coupled; the equation of motion can be written as following:

X =AX+BU+FYV (12)
By using a state feedback system, U=-KX, one can use the pole~-
assignment technique and find the elements of the K matrix. Note
that it is not necessary to neglect the damping of the system
when the pole-assignment method has been used. Because there is
no need to have a diagonal mass and stiffness matrices. This 1is
one of the advantages of the pole—assignment method compare to

another method that we will discuss later.

To have a completely uncoupled system, externally and inter-
nally, one can assume that the control force for each mode 1s a
function of the displacement and velocity of that mode. In this
case, we will have n single~degree freedom systems and each mode
can be controlled separately. It is possible to control few modes
of the system rather than all modes. The ith equation of Equation

11 can be written in the following:



* * * * (13)
myga gtk o9y =N+ T
* *
where fi = f(qi,qi,t) and by using the state space variable con-
cept for each equation, we will have:
X = A X + B U + ' 14
i i i i 1 Fi i ( )
where:
.
94 0o 1 0
Xl Tl Ai B 2 Bl B 1
-ql -wi 0 '"T*-
By
"0 X
Fi = v = —[Ki] Xi Vi = Ni (15)
%
m,
. L

Fig. 5 shows the block diagram of the ith mode. Gc(s) is
the transfer function of the controller. It may be assumed as a

constant gain or variable. The transfer function of controller

can be shown as:

K

= — P
Gc(s) I Ta S

(16)

In this case, one can consider the effect of time constant, T _,

on the system. G (s) is the transfer function of the plant for
P

the ith mode and may be written as following:

G _(8) = 7% (17)
P m S2 + k.,
i i
H(s) is the state feedback element and it has been shown as

optimal gain for each mode.

Note that it is not necessary to control all modes of a sys~-—

tem because first few modes of the civil engineering structures



are the most critical modes of the system. Equation !l can be
divided into two parts; first those modes that we want to control

and second those we do not want to control. Then Equation 1l camn

be written as follows:

* * k* N* f*
B 0 1 ¢ ¢ 0 1 c ¢
Nl + 1, *tl g ol B S (18)
0 m q 0 k u N £
u u u u
or
* °° * N* . f*
m. 9 . t+ kc 4. = % c
£ *° * * *
= 19
mu q u + ku qu Nu + fu l ( )
and the similarity transformaion can be written as [I] = [TCITu].
l
It means that the wmotion is almost a linear combination of the

controlled modes and may be some important umncontrolled modes.

In Equation 15, the K matrix for each mode has only two ele-

ments. The elements of this matrix are shown as

—
[k |c ]i = [B]i [K}i, then Equations 13 and 11 become respec~-

tively as follow:

K o P 20
m, q; + k; q;, = N, - ¢, q; - k; q (20)
* °° * * —% —%
m g +k qgq=N -¢ q -k ¢ (21)
—% —%

where ¢ and k are nxn diagonal matrices that each one has some

zere elements for those uncontrolled modes and some nonzero ele-~

ments corresponding to controlled modes of the system. By using
-1

the same simflarity transformation, q = T x, Equation 21 can be

written as follows:
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Bmx + c ; + (k + ¥)x = N (22)
where ¢ and (k+k) are nxn equivalent damping and stiffness of the
closed=-loop system. In this case, the K matrix for the control
law, U=~KX, can be found by using state space variable. Toc use
the state space variable both Equation 10 and 22 can be shown by

Equations 23 and 24 respectively:

X = AX + BU + ¥V (23)

X = AX + FV (24)

Where A = A - BK and the K matrixz can be found by using

Equation 25.

k = (373”1 8T (a-%) (25)

In next chapter, a four degree-of-freedom system has been
controlled by using this method and pole-assignment method. Note
that the modal superposition method is not used in this
approach;ft is only used as a tool to find the [K] matrix for the
control law. It is seen that this wmethod is more applicable to
civil engineering structures than pole- assignment method. To
apply this method, the damping of the open-loop system must be
neglected.But this method can be applied to underdamped struc-

tures although it has some approximate for these kind of struc~

tures.



Linear Optimal Control

We shall now consider the optimal problem that, given the

system equation X = AX + BU determine the matrix K of the control

vector U=-KX so as to minimize the performance index:

J = f; (x* o X + vt R U)de (26)
The matrices Q and R determine the relative importance of the
error and expenditure of this energy. In this case, we assume
that the control vector U is unconstrained. Without proof, the
linear control law given by U=-KX is the optimal control law,
Therefore, if the unknown elements of the matrix K are determined
80 as to minimize the performance index, then U=-KX 1is optimal

for any initial state., The optimal K matrix 1s given as follows:

K = R B P (27)

where P is the solution of the Riccati equationm [1].

The problem becomes easier when the system is Internally and
externally decoupled because in this case, P is a 2x2 matrix. Let
the number of controlled modes be r, then for each mode, there is

one optimal gain matrix Ki which satisfies the Riccati equation.

3. Numerical Examples:

In this chapter, we illustrate the application of the pole
assignment method with several numerical examples. First, con-
sider a two-story shear-type building which is subjected to

earthquakes loads. All possible combinations of active control
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forces are considered herein. 1In the first case (System I), two
active control forces are applied at each node of the system. -In
the second case {System I1), an,active control force is applied
at node one; and in the third case (System III1), an active con-
trol force is applied at node two. All three cases are shown in

Fig. 6, and the properties of the system are given as follows:

2
lb~-sec l1b-sec 1b
m, = m, = 0.3 —in % T ¢, = 0.5 in kl = k2 = 2.5 in

The equation of motion for this system can be written as
; = AX + BU + FV., 1In this example, the effect of the damping is
not neglected. Therefore, decoupling of the system 1is not always
possible. The active control forces are function of the all
states. It can be shown that all these three cases are com=-
pletely controllable and observable. Therefore, the pole assign-
ment method is applicable. The K matrix and control energy are
computed for each case. The control energy is a measure of the

control effort expanded and it is a part of the performance
tf T *
index, IO u u dt. Note that all elements of the K matrix must

be real. The solution of pole assignment method is unique for

cases II and III. However, it is not unique for case I. The

eigenvalues of the open-loop system are found to be

A = 2.18 * 4,131, and A = ~-,32 * 1,761 It is known that the
1,2 3,4

open-lcop system is always stable. To obtain a closed-loop sys-

tem with desired eigenvalues, many different closed-loop elgen-

values have been chosen and for each case both the K matrix and

the control energy are calculated. Then, the displacements and



- 13 -

velocities of both nodes are plotted. The maximum displacements

and velocitlies and control energy for the Case I are listed in

Table 1. The closed~loop eigenvalues are given along with com-

puted K matrix as follows:

C 1-A: A = -5, * 8, A = =-2.0 % 4,
ase 1,2 5 0i 3,4 2.0 4.01

25.59 2.27 9.37 2.57
(K1 =1 o0 .07 3.03 .43

Case 1-B: A = =5, % 8.1 A = -2.,0 * 4,01

47 0.00 1.05 .05
[Rl=hg .02 2.08 25.23 2.81

Case 2-A: A = =5, % 5.1 A = =2, * 2.1

18.55 3.03 22.81 5.67

T1-.83 -.,07 -4.16 -.33
c 2-B: A = -5. t 5, = 2. % 2.
ase 1,2 5 5.1 k3’4 2 2.1
3.40  1.04 .05 .18

b
]

T|=9.17 -4.92 14.06 1.66

Case 3-A: A = =7. £ 5,1 A = 3,0 t 2.01

23 .44 3.32 14.83 1.29

b
[

T1-.18 .15 -.26 1.18
C 3-B: A = =7, % 5.1 A = -3.0 £ 2.1
ase 1,2 5.1 3,64 3.0 2.1
3.88 1.06 .05 .13

[KI =1_.3.07 -1.95 20.40 3.44



Case

Case

Case

Case

Case

Case

Case

Case

1,2

[K]

[X]

(kK] =

= "'18-

{K] =

= "18-

+ .1 = -5, ¢+ .
5.4 33’4 5 2.1
31.67 4.40 5.15 .46

T131.57 4.40 5.15 .46

+ » )\ = = k5 .

5.1 3.4 5 2.1
8.18 2.02 =~,13 .18
“11.98 .13  29.53 4.88

+ 84 A = -5, % 4.1
81 3,4 5 4.1

43.62 4.49 10.83 1.53

- .47 19 0 9.07 2.41

+ i = - +
8i k3’4 5. 41
11.28 1.95 =.31 .16

T1 7.7 .71 41.7  4.95

k3 . A = =D, + .
5.1 %, 6 2.1
50.68 6.23 7.44 .80
T[-.57 .18 9.09 3.07
+ = i .'
5.1 A3,4 6. 2.1
]-l 034 2—60 "'l69 -15
3,73 .39 48.54 6.70
£ . = ~Je. x o
5.1 %, 9 2.4
104.78  9.85 14.25 1.37
-1.85 .17  22.38 4.85
t 5,1 A = 9. % 2.4

3,4
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24 .58 4,37 =-2,01 .14

K] =lg.80 .98 102.65 10.33

It can be seen that the closed~loop system is always stable
because each pole has a negative real part. It is known that
some changes in the K matrix may give a better result for the
control of the displacement. Because the main goal of this inves-
tigation is to control the displacements of the system and the
other performances of the system is not as important as the dis-
placement, one can choose the best closed-loop poles for the sys~
tem. For example, setting the negative elements of the K matrix
equal to zero in both Cases 2-A and 2-B will give a better
result. Cases 2-A-1 and 2-B-1 show the maximum displacements and
velocities of the Cases 2-A and 2-B when those negative elementsv
of the K matrix are set équal to zero. It is shown that the max-
imum displacements of these cases are smaller than the displace~-
ments of the original system. When the active control force has
been applied at node one, System II, these closed-loop eigen-

values have been assumed for the system:

. )\ = - » _' * )L = - . x 4.
C 20 A -~ ~ . - . i = = . - L]
C 3. A - . + 3. - 3- bt .

For each case, the K matrix has been computed and the displace-
ments and velocities of both nodes have been plotted. The K

matrices are shown as:
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Case 1: [K] = [29.69 2.70 36 .38 3.99]
Case 2: {[K] = {14.40 2.70 2.00 4,00}
Case 3: [K] = [22.28 4.50 14 .35 10.61]

The maximum displacements, velocities and control energy for
this case are shown in Table 2. For system III, when the active
control force has been applied at node two rather than node one;

these following closed-loop poles have been assumed for the sys-

tem:
H A = =- . * - = . + . i
Case 1 1,2 4 .46 ’12 i A3’4 2.54 4.641
Case 2: A = -5,  5.,i A = -2, * 2.1
1,2 3,4
M A = ""7 . i . A = - - i -
Case 3 1,2 5.1 3,4 3 2.1

The K matrix has been computed for each case. The results are

gilven as follows:

Case 1: [K] = [55.28 .00 53.99 2.70])
Case 2: [K] = [13.25 49 15.75 2.70]
Case 3: [K] = [32.24 6.30 21.96 4.5]

Table 3 shows the maximum displacements, velocities, and
control energy for system IIIL due.to these different K matrices.
There is another point that we should mention here. The selec~-
tion of desired closed-loop eigenvalues for the system 1s very

important. For example, shifting the closed-loop poles of the



system too far to the left of the s plane would not cause any
problem for system I but it would cause some problems for the
other two cases. Cases 4 thru 7 in both Tables 2 and 3 show that
by shifting the poles of the system farther to the left of the s
plane, the displacement of one node becomes larger than displace-
ment of the system without active control force, even though the
displacement of the other node is much smaller than the displace-
ment of the node without active control force. Therefore, to
design a control law, u = -KX, one has to be careful that the
open—loop poles of the system should not shift too far to the
left of the s plane. Of course, the problem can be solved by
using more active control force. To show this problem, these

following closed-loop eigenvalues have been chosen for Cases 4

thru 7 for both systems II and III.

Case 4: AI,Z = =9, * 5.1 k3,4 = =5, * 2.1
Case 35: XI,Z = =9, £ 8.1 AB,& = =5, * 4.1
Case 6: Al,2 = ~12. * 5.1 l3,4 = =6, ¥ 2.1
Case 7: ll,Z, = -18, * 5,1 A3’4 = =9, t 2.1

The [K] matrix for Systems II and III are given respectively

as follows:

Case &4:

[K] = [ 33.47 6.90 79.20 27 .42]



[K] = [106.29 21 .45 31.92 6.90]

Case 5:

[K}] = [ 46.85 6.90 169.13 28 .56

(K] = (202.93 10.54 65.40 6.90]

Case 6:

fX} = | 47.94 9.30 197 .39 49.09]
[K] = [235.30 38 .49 50.09 9.30]
Case 7:

(k] = (117.13 14 .70 953.49 107 .51}
[K] = [1034.,08 53.54 182.58 14 .70]

The maximum displacements, velocities and control energy of

these cases are shown in Table 2 and 3.

Consider a four degree freedom system shown in Fig. 7. The
maximum displacements and velocities of each floor without active
control force due to an artificial earthquake is shown in Table
4. Then, an active control force like a jet engine has been
applied at top of the system. It has been assumed that the con-
trol force is a function of all states, therefore, it is not pos~
sible to have a completely internal and external decoupled sys-
tem. In this case, the equation of motion can be written as

X = AX + BU + FV. It can be shown that there is a similarity
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transformation, [T], such that the A matrix becomes diagonal., It
can alsoc be shown that the system with one active control force
at the top is completely controllable. Because there is no zero
row in the T“IB matrix where T is the similarity transformation
of the system. In this case, the damping of the system is

neglected and the properties of the system are given as follows:

1b-s c2 1b
- = = ~se = £ = = —
m1 =mn, =m, =m = 0.3 — T k1 k2 k3 k4 2.5 I

The open-loop eigenvalues of the system are:

= I 5.431, = * 4,421, = % 2,891 and A = t i

A A A

1,2 3,4 5,6 7,8
Neglecting the damping of the system, the open—loop system is
marginally stable. To have a stable closed-loop system, the

closed~loop eigenvalues of the system are assumed as follows:

A = -1, % 5.431,

= =1, * 4.4
1,2 1 4,421

%34

)y = =1. % 2.891 A = =-1. i
5,6 2.89i and 7,8 1

It means that we have shifted all open~loop eigenvalues to the
left of the s plane. The control law has been assumed as u =
-KX. The pole assignment method is applicable because the open-

loop system, (A,B), is completely controllable. Then, the com~

puted K matrix is

fkl = [-19.,10 4.23 41.36 =~5.31 =54.63 .75 28.04 8.00]
Case 2 in Table 4 shows the maximum displacements and velocities
of the system with active control force. It 1s seen that the
system with active comntrol force has smaller displacement than

the system without active control force. As we mentioned earlier



the elements of K matrix must be always real.

Consider the same four degree-of~freedom system shown in

Fig.
be written as mx <+ kx =
mation,
x °° % *
m q +k g =N.

the right hand side of the equation is completely uncoupled.

this case,

The active control force for this mode is f4 = ~[1.0

7. The equation of motion without active control force can

N and by using the similarity transfor-

the equation of motion may be written as:

* *
Both m and k matrices are diagonal, then

In

active control is only used to control the first node.

9,
OII . e
9

—
Therefore, all elements of k 1is equal to zero except the last

element which it is equal to one.

e
Tk T 1

find the k¥ matrix which it is equal

.05199
_ {.o09771
(k] =

«13165
« 14970

knowing that the contrel law 1s equal to U

09771
18363

26741
+28134

Knowing that X is equal to

where T matrix 1is the similarity transformation;

to:

13164
24746

.33333
37905

one can

.14970
.28134

+37906
43104

-KX, by‘using Equa-

tion 25 the K matrix can be found as follows:

[.05199 0.  .09771
[K] = {.09771 0. .18363
.13165 0. .24741
:14970 0. .28134

The maximum displacements and

.13164
24740
-33333

«37905

velocities of

0. .14970 .0 |
0. .28134 .0
0.  .37906 .0
0. .43104 .0

this system

without active control force is shown by Case 1 in Table 4 and
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the maximum displacements and velocities of this system by using
the above active control force is shown by Case 3 in Table 4.
Note that it maybe useful to know that the natural frequencies of
this system without active control force are w, = 5,43, w,k =

1 2

4.42, w3 = 2.89 and v, - l. By using active control force the

natural frequencies of the system are W, = 5.43, w, = 4.42, w, =

2 3
2.89 and W4 = 2.0 It can be seen that the lowest natural fre-
quency has been increased, and there 1is no change in the other
natural frequencies of the system. It means that only two lowest
open—loop poles of the system have been shifted to the left of
the S plane and the other open-loop poles have not heen shifted,
This is one of the advantages of using this method rather than
pole assignment method. It can also be seen that the dimension
0of K matrix in control law, U = =KX, 1is 4x8 then the number of
control forces are equal to four., It means that we need an active
contrel force at each node of the structure, It is ‘shown that
the maximum displacements of Case 3 in Table 4 are greater than
the maximum displacements of Case 2 in the same Table. It 1s
possible to reduce the displacements of system in Case 3 either
by controlling more modes of the system or by using higher gain
for each mode or both at the same time. For example, in the Case

4 in Table 4, two lower modes of the same system are controlled.

i —

The nonzero elements of [k ] matrix in this case, are k33 = ,5
-— —

and k44 = 1. The [k] is computed for this case are follows:

-21866 «26438 .13164 -.01697
26438 435030 .24740 .11468
«13165 .24741  ,33333  .37906
-.01697 .11468 .37905 .59771

(k] =



—%
The [¢ ] matrix is assumed as a null matrix, then the final
[K] matrix of the control law, u = =KX, for this case 1s computed

as follows:

-

.21866 0.00  .26438 0. .13164 0. =-.01697 0. ]

{K) = | .26438  0.00  .35030 0. .24740 0. 11468 0.
.13165  0.00  .24741 0.  .33333 0. .37906 0.
-.01697  0.00  .11468 0. .37905 0. 59771 0.

The maximum displacement and velocity of each node fér this case
is shown 1In Case 4 of Table 4. It 1is shown that mazximum dis-
placements of each node is less than the maximum displacements of
each node without any active control force. To reduce the dis-
placement of each node, one can use higher gains for the system.

As an example, let consider the previous case again. In this

—%
case, both nonzero elements of the [k ] matrix have been

—% —
increased. These nonzera elements are given as k33 = 1. and k44

= 2. then the [k] matrix is computed as follows:

243732 +32875 .26329 ~-.03393
.52875 .70060 .49481 ,22935

(k) =1 L6329  .49482 .66667 .75812

-.03393 .,22935 .75809 1.19542

—%
Again, the [c¢ ] matrix is assumed as a null matrix and the final

[K] matrix for the control law is found as follows:

[ .43732  0.00  .52875 0.  .26329 0. -.03393 0. |
[K] = | .52875 0,00 .70060 0. .49481 O©. .22935 0,
y .26329  0.00  .49482 0.  .66667 0. .75812 0.

| -.03393  0.00  .22935 0. .75809 0, 1.19542 0.].

The maximum displacements and velocities of this system are shown
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in Case 5 of Table 4. It is seen that the displacement of each
node 1s less than the displacement of that node without active
control force and it can be seen that that the maximum displace~
ment of each node of this case is less than the maximum displace-
ment of Case 4. Note that the advantage of this method compare
to pole assignment method is obvious., Because by using higher
gains for each individual modes of the system, one can control
the displacement of the structure better tham using the pole
assignment method. Shifting the open-loop poles of the system to
the left of the s plane will not give an unique solution for ocur
problem. The application of pole assignment method for civil
engineering structure is a trial and error method, but the other
method will give an unique solution. It means to reduce the dis-
placement of the system, one can control more mode or use higher
gains or both at the same time. Note that in this report the
space—-state variable method is always used and the modal superpo-
sition method has been used as a tool. Because by introducing
the control law, we may not have an uncoupled closed-loop system.
Note also that the final control law for the system is a function
of all states. Th% displacements and velocities for all cases in

Tables 1, 2, 3 and 4 are shown in Figures 9 through 42.

4. Concluding Remarks

In this report, an attempt has been made to find a suitable
gain matrix for active control of structures. The application of

the pole-assignment method is discussed. Although it is easy to
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apply this method easily to any system which is completely con-
trollabl and observable, it does not provide a physical under-
standing of civil engineering problems. Because the pole-
assignment method is based on the shifting of the open-loop poles
further to the left-hand side of the s-plane, this method is most
applicable for mechanical or electrical systems. The second
method which is developed in this study has certain advantages
over the pole assignment method. The main advantages of this
second method is to provide physical understanding about the
active control of civil engineering structures, because several
modes of the system are controlled. The K matrix of the contral
law can be found such that the first few modes of the system héve
smaller displacements than tﬁe corresponding displacements of the
original system. Therefore, one can choose more modes or higher

gain or both to reduce substantially displacements of the system.

Results of numerical examples show the use of the pole-
assignment method requires the shifting of the open-loop poles of
the sjstem to the far left side of the s-plane and one still will
not always obtain much smaller displacements. Therefore, the

second method is the better one to use for the cntrol of civil

engineering structures.
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Appendix A:

Pole Assignment Method:

Consider the system with the following equations:

X = AX + BU + FV
U = -KX (A~1)

The eigenvalues of the closed-loop system are the root of

’
A(A)={A1-—A+BK{=O (A~2)
Equation (A-2) can be written as:

’

A (A)

1
(AI_-A) [I_ + (M _-A) = BK]

it

= AL =A . I +(AI -A) BK (A-3)
n n n

The eigenvalues of the open loop systewm are the root of

ACA) = AIn - A (A-4)

The Laplace transform of the open-loop transition matrix 1is:

oH = O - a7 (A-5)

Now, the equation (A~3) can be written as:

A (X)) = A(A)In + ¢$(2) BK = A(k)Ir + K¢{ A)B (A-6)
The matrix K must be selected so that A(Ai) = 0 for each Ai i=
1,2,...n. It means that the rxr determinant o¢f the equation (A-
6) must be equal to zero for each Ai because A{A) can not be
equal to zerco. It has been assumed that the desired c¢losed-loop

eigenvalues are different from the open-loop eigenvalue of the

system. The determinant of Ir + K ¢{A)B will be zero if any one
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row or column is zero. Define the jth colummn of I as 1.  and

3

define ?(Ai) = ¢(li)B, with the jth column being ?j. Then Ai is

a root of A (A) if K is selected to satisfy e + KYj(li) =0,

since this forces column j to be zero. Then,
KY¥Y (2 = - -
j( ;) e (A-7)

To determine K matrix, we must find an independent equation
of type (A-7) for each Ai. Because the open loop system, (A,B),
is completely controllable we will have at least one K matrix., If
all the desired ki are distinct, it will always possible to find

i b A ¥ Al)eeo, ¥
n linearly independent columns jl( 1), jz( 2) Yy

the columns of the nxnr matrix [PSI(AI) W(AZ) PN Y(An)], then

(A ) from
n n

K[le(ll) ‘l’jz(lz)...‘l'jn(ln)] = -[ejl ejz...ejn] (A-8_)

or

-1
K = -[ejl ejz...ejn][‘i‘jl(Al)‘l’jz(kz)...‘i’jn()\n)] (A-9)

This method can be modified for the repeated eigenvalues,

but will not discuss it in this paper.

The gain matrix, K, is not unique, and the remaining freedom

of choice may be useful in meeting other system specifications.
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Table 1: Maximum Displacements, Velocities, and Control
Energy for System I.

Case No. X1 MAX V1l MAX X2 MAX V2 MAX J

Open-Loop 4 .34 20.04 5.17 22 .84 -

I-4 1.89 23.57 3.08 23.78 13,825,
1-B 3.08 25.73 2.40 28 .05 16,719.
2-A- 4.15 38.12 3.43 25.02 29,276.
2-A-1% 4,38 33.99 3.20 25 .32 30,416.
2-B~ 2.45 22.53 6.36 43.89 7,662.
2-B~1% 2.23 19.43 2.29 21.48 3512,
3-A 1.48 20.74 2.05 20.06 8,819,
3-8 2.29 19.48 2.33 21.49 3,496,
4-4A 91 15.86 .99 16 .01 12,5427
4-38 1.69 18.60 1.02 16 .39 8,625.
5-4A .99 15 .47 1.72 18 .74 12,262,
5~B 1.70 20.11 92 15,67 11,599,
6-A 74 13.11 1.42 17 .58 11.774.
6-B 1.46 18.62 72 12,99 11,390,
7-A 47 8.69 1.01 15.77 16,211.

7-B .98 16 .06 .49 9.04 15,781.
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Table 2. Maximum Displacements, Velocities and Control
Energy for System 1II1.

Case No. X1 MAX V1l MAX X2 MAX V2 MAX J

Open-Loop 4 .34 20 .04 6,17 22 .84 -

1- 4.84 38 .47 3.46 26 .41 31,596,
2~ 2.44 22.15 3.02 24,19 15,453,
3- 4.32 38.69 2.43 22.79 51,046.
4— 7.23 79 .55 2.27 23.74 168,725.
5~ B.49 96.08 2.28 25.03 223,853.
6~ 8.76 116.75 1.85 23.90 314,765.
7~ 9.82 159.1¢4 1.30 21.91 652,149.

Table 3: Maximum Displacements, Velocities, and Control
Energy for System IIIL.

Case No. X1 MAX V1 MAX X2 MAX V2 MAX J

Open-Loop 4 .34 20.04 6.17 22 .84 -

1 2.23 25.72 4 .54 47 .89 44,745,

2 3.45 26 .02 2.67 26 .03 7,073.

3 2.86 22.82 3.59 30.45 - 33,920.

4 2.23 24.63 6.53 67 .91 139,277.

5 2.59 27 .57 7.1% 69 .04 119,040.

6 1.86 25.06 7.91 1¢3.58 251,385.

7 1.59 24 .34 8.34 120.95 353,657.

Table 4: Maximum Displacements, and velocities of a four-degree

~of~freedom System.
v X A X A X v
lmax imax 2max 2max 3max 3max 4max 4max
1 8 .55 27 .53 11.46 27 .48 16 .90 34 .92 21.85 31.53
2 4 .45 21.89 7.08 21 .66 6.97 22.25 7.49 19.91
3 8.87 26 .68 10.77 26,33 12.42 33.97 15.52 46 .06
4 6.57 28 .97 10.33 27 .01 12 «34 33.23 16 .07 46 .56

5 5.99 32.88 8.08 27 .53 11.25 35.73 12.82 38.85
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FIG. 2 State Variable Feedback for Civil Engineering Structures,
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can be found in the reference 1.
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The Maximum Displacements and Velocities of the Closed-Loop
System.

Note: Values Shown on the Plots are Maximum Positive Value.
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Fig. 4l-a Case 4 in Table 4‘

The Maximum Displacements and Velocities of the Closed-Loop
System.

Note: Values Shown on the Plots are Maximum Positive Value.
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Fig. 41-b Case 4 in Table 4

The Maximm Dlsplacements and Velocities of the Closed-loop
Sys tem.

Note: Values Shown on the Plots are Maximum Positlve Value.
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Fig, 42-a (ase 5-a in Table 4

The Maximum Displacements and Velocities of the Closed-Loop
System.

Note: Values Shown on the Plots are Maximum Positive Value.
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Pig. 42-b Case 5 in Table 4

The Maximum Displacements and Velocities of the Closed-Loop
System.

Note: Values Shown on the Plots are Maximum Positive Value.



