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Abstract

To reduce the effect of lateral earthquake ground motion on

structures, active control systems can be used. Several different

types of nonlinearities such as dead-zone, saturation, and combi­

nation of both are considered in this report. Using simulated

earthquake, it is shown that the probability of failure may be

reduced by using a perfect control system. However, there is

always a time lag between the time when a control force is needed

and the time when the required control force can be applied. The

effect of such delay time on the reliability of structural con­

trol is studied herein.
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*RELIABILITY ASPECTS OF STRUCTURAL CONTROL

by

M. A. Basharkhah and J. T. P. Yao

1. Introduction

Generally speaking, many different types of nonlinearities

exist in engineering systems. Depending upon whether the non­

linearity is inherent in the system or intentionally inserted

into the system, these nonlinearities affect the performance of

the system in various ways. For example, some types of nonlinear­

ity may cause instability in the system. However, certain non­

linearities are introduced into the system to improve the perfor­

mance of the system. Although these intentional nonlinearities

may improve the performance of the system under specified condi­

tions, they may not improve the performance of the system under

other conditions.

In civil engineering structures, we usually do not have much

stability problems. Nevertheless, when one wants to use active

control force to reduce the displacement of the response ; the

stability of the system may become a major problem. In practical

cases, we should be concerned with the stability of the nonlinear

control systems.

* Supported in part by the National Science Foundation

through Grant No. CME-8018963.
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Frequently, it is not necessary to obtain analytical solutions of

nonlinear differential equations. By using describing-function

method~ we may study the stability of simple nonlinear control

systems. This method provides stability information for systems

of any order, but it will not give exact information as to time-

response characteristics. Although the describing-function

method is quite useful in predicting the stability of unforced

systems, it is not practical to use this method for nonlinear

structures mostly encountered in civil engineering; because the

input of the nonlinear element is not usually sinusoidal. There-

fore, it is not practical to use this method for this type of

structures.

To analyze and design highly nonlinear systems [6,9,12,21],

actual or simplified nonlinear differential equation can be

solved by using the phase-plane method or the second method of

Liapunov. The phase-plane method provides information about

time-response and stability of the system. However, it is only

applicable to first and second-order system. In the phase-plane

analysis of second order systems, trajectories may be constructed

analytically or graphically. However, it is difficult to con-

struct the trajectory of the civil engineering structures analyt-

ically or graphically because the main inputs of these systems

are earthquakes. Therefore, the differential equations of the

system must be solved by using numerical methods. The Runge-Kutta

method can be used to solve nonlinear differential equations. The

5 5
error in the Runge-Kutta method is of order h = ~ t •
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method avoids the necessity of calculating derivatives and hence

excellent accuracy is obtained. Then, using the results of the

solution, the trajectory of the system may be constructed.

The second method of Liapunov (see Appendix A) may be

applied to any nonlinear system, but it is difficult to find

Liapunov function for certain complicated nonlinear sys­

tems[8,16,19]. If we are to examine asymptotic stability of

equilibrium states of nonlinear systems, stability analysis of

linearized models of nonlinear system is completely inadequate.

We must investigate nonlinear systems without linearization.

Several methods based on the second method of Liapunov are avail­

able for this purpose. They include Krasovskii's method (see

Appendix B) for testing sufficient conditions for asymptotic sta­

bility of the nonlinear systems and Lur'e"s method applicable to

stability analysis of certain nonlinear control systems. Suppose

a system is described by X =f(X). To use Krasovskii's method,

f(X) must be differentiable with respect to Xi where X. are the
. 1

states of the systems. Therefore, this method may not be applica-

ble to elastic-perfectly plastic systems. To use Lur'e's method,

the nonlinearities of the system must be continuous. In applying

these method to investigate the stability of the structures, one

must keep in mind the basic assumptions and all limitations.

2. Nonlinear Systems

In discussing the dynamic behavior of single degree-of­

freedom systems, we assume that in the model representing the
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structures, the resorting force is proportional to the displace-

ment and the energy dissipation is proportional to the velocity.

However, a linear model does not always adequately represent the

dynamic behavior of the structure. Therefore, the spring force

and damping force may not remain proportional to the displacement

and the velocity. In such cases, the equation of motion is no

longer linear. Such nonlinearities are·called inherent nonlinear-

ities. There is no general method for dealing with all nonlinear

systems. Exact solutions can be found only for certain types of

nonlinear differential equations[lO]. Numerical procedure can be

used for integration of nonlinear equation. As a first example,

we consider a single degree-of-freedom system which has only

inherent nonlinearity. Then, a nonlinear time invariant single

degree-of-freedom system under different types of intentional

nonlinearities will be discussed later.

Consider the model for a single degree-of-freedom system as

shown in Fig. 1. The dynamic equilibrium in the system without

active control force is established by setting to zero the sum of

the inertia force, the damping force, the spring force, and the

external force. The equilibrium of these forces at time t i is

expressed as follows:

+ F (t. )
D ].

= F ( t. )
].

( 1)

and the equilibrium of these forces at time t i +1 is expressed in

the following:

F
I

+ F (
D

+ F
S

( t
i
+1 ) = F(t

i
+1 ) ( 2)
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Where ~t=t - t is called time increment. The differential
i+l i

equation of motion in terms of increments can be found by sub-

tracting Equation 2 from Equation 1 and is given by:

(3)

To solve a nonlinear differential equation by using a numerical

method, one can use either linear acceleration step-by-step tech-

nique or Runge-Kutta method. In this report, the energy dissipa-

tion is assumed to be proportional to the velocity. Therefore,

the only inherent nonlinearity is the spring force. If any struc-

ture modeled as a single degree-of-freedom system is allowed to

yield plastically, then the resorting force is likely to be the

form shown in Fig. 2. There is a portion of the curve in which

linear elastic behavior occurs, whereupon for any further defor-

mation, plastic yielding takes place. When the structure is

unloaded, the behavior is again elastic until further reverse

loading produces compressive plastic yielding. This behavior is

often simplified by assuming an elastic- perfectly plastic

behavior. Therefore, the elastoplastic behavior of the system is

the only inherent nonlinearity that it is considered in this

report. The elastoplastic behavior of the system is shown in Fig.

3. The maximum displacement response of the system without any

active control force to the 1940 EI-Centro earthquake is shown as

case 1 in Table 1. To reduce the displacement of this system, one

can use a linear or nonlinear control system. As we mentioned

earlier, base excitation can be assumed as a disturbance force.

Therefore, the general form of the nonlinear equation of motion
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can be written by using the state space variable concept as fo1-

lows:

x = f(X,U,t) ( 4 )

Let us assume the control force to be a linear combination of the

displacement and the velocity of the system, then the control law

is given as follows:

U=-KX ( 5 )

Where X is a 2xl state vector and K is a lx2 gain matrix. Case 2

in table 1 shows the maximum displacement of the same system

under the same earthquake when it is subjected to an active con-

tro1 as described by Equation 5. It can be seen that the maximum

displacement of the system without active control force is

greater than the maximum displacement response of the same system

with active control force. The block diagram and numerical pro-

perties of the system is also shown in Fig. 4 and Fig. 5.

The stability of the open-loop system is not a major prob-

1em. If we take displacement and velocity as the coordinates of a

plane, to each state of the system there corresponds a point in

this plane. As time varies, this point describes a curve in this

plane. Such a curve is called trajectory. The system is stable if

trajectory of the system tend to one or more stable equilibrium

points.

Now, a nonlinear time invariant single degree-of-freedom

system is considered under different types of intentional non-

1inearities. The inherent nonlinearity of the open-loop system is
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an elastic-perfectly plastic spring. Three different types of

intentionally nonlinearities are examined in this study. First, a

dead-zone intentional nonlinearity is inserted into the system.

The block diagram of the closed-loop system is shown in Fig. 6.

The output of a dead-zone nonlinearity is equal to zero when the

absolute value of the displacement is less than Dl Otherwise,

it is a linear function of the displacement. The properties of

the dead-zone nonlinearity element which it is used are shown in

Fig. 7. These properties can be chosen such that the system per­

forms in the linear range. Thus, the displacement of the system

is always less than the displacement of the yield point. Second,

a saturation nonlinearity element is used for the system. The

block diagram of the system with saturation nonlinearity is shown

in Fig. 8. The properties of the nonlinearity element can be

assumed such that the behavior of the system remains in elastic

range. The output of the saturation nonlinearity is a linear

function of the input as long as the absolute value of the dis­

placement is less than D2 • When the absolute value of the dis­

placement is greater than D2 the output of the saturation non-

linearity element remains constant. Fig.9 shows the properties

of the saturation nonlinearity which they are used in this exam­

ple. Finally, the combination of a dead-zone and a saturation

nonlinearities is inserted into the system. The block diagram of

the closed-loop system with this kind of nonlinearity is shown in

Fig. 10. In this case, the output of the nonlinearity is equal to

zero as long as the absolute value of the displacement is less

than Dl When the absolute value of the displacement is greater
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than D2, the output of the nonlinearity becomes constant. Other­

wise, the output of the nonlinearity is proportional to its

input. Fig. 11 shows the properties of this kind of nonlinear-

ity. These constant can be chosen in such away that the induced

spring force will not increase the yield point. The maximum dis­

placement, velocity, acceleration, spring force, and active con­

trol force for each case are listed in Table 1 respectively. It

can be seen that the maximum displacement of the controlled sys­

tem is always less than the maximum displacement of the uncon­

trolled system. The displacement , velocity, and active control

force of these different cases are plotted in Fig. 14 th~ough

Fig. 18 respectively. For all cases, the trajectory and elasto­

plastic force-displacement are plotted. The phase-plane for each

case shows that the closed-loop system is stable because the tra­

jectory of each system converged to the equilibrium position. The

elastoplastic force-displacement for each case shows that the

closed-loop system has a nonlinear behavior. Moreover, Fig. 14

shows the trajectory of the open-loop system and the elastoplas­

tic behavior of the system. It can be seen that the open-loop

system is always stable.

3. Reliability of Control Systems

In this part of this report, the reliability aspect of con­

trol system is considered. In recent years, the idea of using

active devices to reduce the displacement of civil engineering

structure has been explored. Although such devices have been used
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in space- vehicle, missile-guidance, and aircraft-piloting; the

application of these devices to control the motion of the civil

engineering structures is still new. Many papers have been writ­

ten about the use of the active devices in civil engineering

structures. However, few, if any, of them dealt with the relia­

bility of these control systems. In other control problems, the

disturbance forces are not the major input of the system. Because

the disturbance forces can be the major input to civil engineer­

ing structures, it is important to design a control system such

that the probability of the failure due to any excitation should

not increase as a result of using control devices. Earthquake is

the major disturbance force under consideration, and it is

assumed as a nonstationary random process in this study [18,22].

In control systems, if one knows the properties of the dis­

turbance force, a feedforward system can be designed such that

the effect of these disturbance forces would vanish. In the real

world, no one can predict the exact properties of the next earth­

quake. Therefore, one has to assume these external forces as a

random process. In this report, a linear time-invariant single­

degree-of-freedom system as shown in Fig~ 12 is considered. The

properties of the system are assumed to be constant. To reduce

the displacement of this single-degree- freedom system, a linear

control law, U=-KX, is used. Note that the elements of the gain

matrix, K, are determined by solving the Riccati equation for the

system.



- 10 -

As a first example, the elements of the gain matrix are

chosen as a deterministic elements. The block diagram of the

closed-loop system and the properties of the system are shown in

Fig. 13, where G (s)
p

is the transfer function of the plant, and

is the transfer function of the controller, and it can beG (s)
c

assumed as a constant gain or variable. In this part of the

study, the transfer function of the controller is assumed as a

nondeterministic but can be either constant gain or variable. Let

the transfer function of the controller be in the form of:

G (s)
c

K
P

l+Ts
( 6 )

Where Kp .is a deterministic constant gain which it is determined

by the control law, and T is a random variable representing the

time constant of the controller. Let us assume an uniform proba-

bility density function [7,11] between interval zero and 0.1 for

the time constant, the effect of this time constant is very

important because by increasing its value the displacement of the

controlled system will increase. Due to a value of the time con-

stant, we have a cancellation of pole and zero in the system. The

cancellation pole and zero will decrease the order of the system

and will cause a higher displacement for the system. Therefore,

the probability of the failure will be increased.

Using a standard program [15] (PSEQGN), twenty artificial

earthquake records are generated. Then, the absolute value of the

maximum displacement response of the system without any control

force to each earthquake is computed. For the purpose of this

study, failure is said to occur when the maximum displacement of
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the system exceeds a certain level. In real world, this failure

level can be defined as the deformation at which the

material yields. For the purpose of comparison, the reference

failure level ,x
f

' is defined as the median value, for which the

probability of the failure for uncontrolled structure is equal

0.5 To find the value of ,x
f

' for the given system, one can

use the extreme-values probability distribution. To use the

extreme-values probability distribution, the maximum displacement

of the response of the structure to each earthquake is computed.

These values are listed in the first column of Table 2 The

analytical form of the extreme-values distribution function [5]

is given as follows:

F (x)
X

= Exp(-Exp(ax+b)) (7)

Where a and b are the distribution parameters. Data sampled from

this distribution function can be plotted as a straight line on

extreme value probability paper. Shown in Fig. 19 is the empiri-

cal distribution function of the maximum displacement of the

response without any active control system. A smooth curve was

drawn through the points. The parameters of this distribution for

the system without control are estimated by using the laast-

square method. These values are listed as case 1 in Table 3 • The

least-square method has been used for all cases in this investi-

gation. The resulting median value of xf for this system is

estimated as 1.53.

To find out how much the probability of failure can be

decreased by using control system, a perfect controller for the
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system is studied first. In this case, the time constant of the

transfer function for the controller is set to zero. Now, one can

find the probability distribution function for the controlled

system. To do this, the maximum displacement of the controlled

response due to all the artificial earthquakes are computed and

listed in the second column of Table 2. These data are plotted

as a straight line on extreme value probability paper. Shown in

Fig. 20 is the empirical distribution function of the maximum

displacement of the controlled response. A smooth curve was drawn

through the points. The parameters of the distribution are

estimated by using least-square method and listed as case 2 in

Table 3. By using this probability distribution function, the

probability of the failure for the system is computed as follows:

Pf = 1.-F(1.53)=.088 (8)

To show the effect of the time constant, 12 values for time con­

stant have been chosen randomly from an uniform distribution in

the interval (0.,0.1). Using each value of these time constants,

the maximum displacement of the response to these 20 artificial

earthquakes are computed as listed in Table 2. For each case, the

empirical distribution function of the maximum displacement of

the response has been plotted as shown in Fig. 21 through Fig.

32. A smooth curve was drawn through the points for each case

separately. By using the least-square method the parameters of

the distribution are calculated. These parameters are listed as

case 3 through case 14 in Table 3. To find a conditional distri­

bution function for the maximum displacement of the response
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given that the time constant of the system is given as a known

value, one has to find a relationship between the time constant

and "a" as well as the time constant and "b". Finally, a least-

square curve-fitting program is used to obtain the best func-

tional relationship between parameters "a", "b", and the time

constant as follows:

2
a(t)=-4.8737+10.912t+121.21t

(9 )

2
b(t)=4 .9169+18 .036t-227 .71t

Therefore, the conditional probability distribution of the max-

imum displacement of the response is given as following:

F
X1T

(xlt) = Exp(-Exp(a(t)x+b(t») ( 10)

And the pro b a biIi t Y dis t ributi 0 n fun c t ion [1 4 , 17] 0 f the ma x i mum

displacement is given as follows:

F (x)
X

(11 )

Where f
T

(t) is the probability density function for the time

constant which it is assume as an uniform distribution with

interval of (0. ,0.1). Therefore, one can find the probability

that the maximum peak of the response is less than the failure

level, x ,and the probability of the failure as follows:
f

Pf = 1.-F(1.53)=.375 (12)

It can be seen that the probability of the failure for a system

with random time constant is greater than the probability of

failure for the same system when the time constant of the con-

troller is equal to zero. But the probability of failure is less
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than 0.5. It means that the maximum displacement of the con-

trolled system is less than the maximum displacement of the same

system without active control force. However, this is not always

true. Because by increasing the interval of the time constant or

by changing the shape of the probability density function for the

time constant, we may obtain a higher probability of failure for

the controlled system than that for uncontrolled systems. There-

fore, one must be careful in applying an active control system

for civil engineering structures.

Alternatively, one can use another approach to find the pro-

bability distribution function for the maximum displacem~nt of

the response. For each value of the time constants, which have

been already generated randomly, one value of the maximum dis-

placement is picked at random from Table 2. In this case, 12 dif-

ferent values of the maximum displacement corresponding to 12

different time constant are picked. The empirical distribution

function is plotted on probability paper. A least-square method

has been used to find the parameters of this probability distri-

bution function. These parameters are shown as case 15 in Table

3. By using this probability distribution function, the probabil-

ity that the maximum displacement of the response not exceed the

failure level is given as follows:

p = 1.-F(I.53)=.460 (13)
f

The probability of failure for this approach is found to be

higher than the previous method. It is possible to use a larger

sample for the empirical distribution. For example, 240 points
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corresponding to all 12 different time constant have been chosen.

Then, the empirical distribution function has been plotted and

the parameters of the distribution function are computed by using

the least-square method. These parameters are shown as case 16 in

Table 3. The probability of failure for the system by using this

approach is given as follows:

p = 1.-F(I.S3)=.497
f

(14)

In this part of this study, another probability distribution

function is considered. For many cases, the extreme-values proba-

bility function will not yield a smooth curve through the empiri-

cal distribution function. In this case, another function is

introduced here and is given as follows:

(IS)= Exp(I.-Exp(Exp(ax+b»)F (X)
X

To use this probability distribution function, we have used the

same sample of 20 artificial earthquakes and the same values for

time constant. Therefore, all properties of the system remain the

same for the purposes of comparison. The maximum displacement

response for the system with these different values of the time

constant are given in Table 2. For each case, the empirical dis-

tribution function has been plotted on a probability paper and

the parameters corresponding to that particular time constant

have been computed as listed in Table 4. Fig. 33 through Fig. 46

show the empirical distribution for the uncontrolled system, the

controlled system with zero time constant, and all different time

constants. Finally, a least-square curve-fitting program is used
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to obtain the best functional relationship between parameters

"a", "b", and the time constant. The curve-fitting program yields

the coefficient of the best polynominal, and they are given as

follows:

2
a(t)=-3.864+7.619t+98.128t

(16 )

2
b(t)=3.467+16.129t-183.19t

Therefore, the conditional distribution function for the maximum

displacement of the response given that the time constant is

equal to a certain value is given as following:

F
X1T

(xlt) = Exp(l.-Exp(Exp(a(t)x+b(t»»

The probability distribution function of the maximum displacement

can be found as follows:

= fO
•

1
( I0. FX1T x t) (18 )

Where f
T

(t) is the probability density function of the time

constant which it is assumed as an uniform distribution with

interval of (0. ,0.1). Again, by using this last distribution,

the probability that the maximum displacement of the response not

to exceed the failure level and the probability of failure are

calculated as follows:

Pf = 1.-F(1.53)=.366

It can be seen that these values are almost the same as those

(19 )

values that they are computed by using the extreme-values distri-

bution.
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In this part of this report, a Markov process [1-4,20] has

been used to find the reliability of the system. By using this

process, a cumulative distribution function will be fitted

through the points of the empirical distribution function. First,

let us use a stationary B model to find a cumulative distribution

function. To use this method, those data which they have been

already generated are used. As we mentioned earlier, 12 different

values for time constant have been found randomly. The maximum

displacement of the response due to twenty artificial earthquakes

has been computed for each random time constant. These values are

listed in Table 2. Fig. 47 shows the empirical distribution func­

tion for these data. The mean and variance of this distribution

are given as follows:

mean=1.53 variance=.1374

By using a stationary B model for this process, the parameters of

the process are calculated as following:

b=18 r=89.17

Fig. 48 shows the cumulative distribution function for those data

which they are used in this process. It can be seen that the

cumulative distribution function is fitted perfectly to the

empirical distribution function. By using the cumulative distri-

bution function which it is found by the B model, the mean and

variance

lowing:

of the process are computed, and they are given as fol-

mean=1.53 variance=.1367

I t can be

ance of

seen that these calculated values of the mean and vari­

the cumulative distribution function are matched to
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corresponding values of the empirical distribution function. By

using this approach, one can find the probability that the max­

imum displacement of the response not to exceed the failure

level. This value is computed as 0.5 which it is less than those

values that they are found by using first method, extreme-values

distribution, 0.625, or the third approach, 0.634, but it is

almost equal to the value which it is found by the second pro­

cedure,0.503,.

Finally, let us as a final note describe the effect of the

time constant on the system. For this case, the maximum displace-

ment of the response due to the EI-Centro 1940 earthquake has

been computed for all different values of the time constant.

These values are shown in Table 5. It can be seen that by

increasing the value of the time constant, the maximum displace­

ment of the system will be increased. Fig. 49 shows the variation

of the maximum displacement with respect to the time constant.

4. Conclusion

Although it is a good idea to apply active control for the

reduction of displacement response of civil engineering struc-

tures, one must keep in mind all the basic assumption and limita-

t ions involved in such applications. In this report, the time

constant of the system is considered as a random variable. It has

been shown that by using a perfect control system (where the time

constant is zero), the probability of failure of the system is

minimum. In real world, however, there is no perfect control



- 19 -

system. Results of this investigation show that probabilities of

failure for real world systems are higher than those for ideal-

ized ones; which have been subjected by other investigators.

In the first part of this report, several nonlinear control

systems were studied. It is found that the use of those inten-

tional nonlinearities can be beneficial. For each type of non-

linearity, there are several parameters which can be assumed as

random variables. In addition, the elements of the gain matrix

for the controller can be assumed as a random variable. It is not

always easy to consider all parameters of the system as random

variables at the same time. Nevertheless, one can examine the

effect of each variable or a few of them at a time. In this

manner, a joint distribution function may be found for the sys-

tem. Another important subject is the shape of the probability

density function for the random variable. For example, the proba­

bility density function for the time constant in this report is

assumed to follow an uniform distribution. Changing the shape of

this distribution or even the size of the interval may alter the

probability of failure. Writers believe that it is very important

to consider the reliability aspect of structural control before

such systems can become practical. Because of the complexity of

real-world systems, more studies of this

needed.
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Appendix A: Concepts of Stability:

There are many definitions of stability, but they all basi­

cally are concerned with whether neighboring solutions of the

differential equation remain neighboring. Since there are an

infinite number of solutions, some of which may qualify as

"stable" and some as "unstable". We must recognize that "stabil­

ity" is a solution of a set of different·ial equations. It is not

precise to say that "a system is stable or unstable", but we are

precise to say a particular solution of a differential equation

is stable or unstable.

Second Method of Liapunov:

The second method of Liapunov attempts to give information

on the stability of equilibrium states of linear and nonlinear

systems without any knowledge of their solutions. The stability

information obtained by this method is precise and involves no

approximation. In this section we first present Liapunov's main

stability theorem. We assume that the equilibrium state under

consideration is at the origin of the state space. The essence of

the second method of Liapunov is given in the following main

theorem:

Theorem:

Let the system be defined as follows:

X=f(X,t)

Suppose that f(O,t)=O for all t and there exists

(A-I)

a scalar
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function V(X,t) which has continuous first partial derivatives~

If V(X,t) satisfies the following conditions:

1. V(X,t) is positive definite, namely, V(O,t)=O and

2. V(X,t) ) ex( IIXII) > 0 for all X * 0 and t where ex is a con­

tinuous, nondecreasing scalar function such that ex(O)=O.

3. The total derivative V is negative for all X *0 and all t, or

V( X, t) ,,- y ( I IXI I) <0 for a 11 X *0 an d all t where y i s a co n tinu ­

ous nondecreasing scalar function such that y(O)=O.

4. There exists a continuous, nondecreasing scalar function such

that S(O)=O and, for all t, V(X,t)( S(IIXII)

5. ex( IIXII) approaches infinity as IIXII increases indefinitely,

or ex( I IXI I) + ~ as I IXI I + ~

then the origin of the system, X=O, is uniformly asymptotically

stable in the large.

Theorem

If there exist a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X *0 in ~ and all t and V(O,t)=O for all t

(b) V (X,t) < 0 for all X *0 in ~ and all t V(O,t) =0 for all t

then the origin of the system is uniformly asymptotically stable.

If the foregoing conditions are satisfied in the whole state

space and either. V(X,t) + ~ as Ilxll + ~, or V(X,t) " -m < 0 for
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all I Ixi I => M and some m, M >0, then the origin is uniformly

asymptotically stable in the large.

Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions

(a) V(X,t) > 0 for all X * 0 in n and all t

V(O,t)=O for all t

(b) V(O,t) ( 0 for all X * 0 in n and all t

V(O,t)=O for all t

then the origin of the system is uniformly stable.

Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X *.0 in n and all t

V(O,t) 0 for all t

(b) V(X,t) > 0 for all X * 0 in n and all t

V(O,t)=O for all t or

(a') V(X,t) < 0 for all X * 0 in n and all t

V(O,t) 0 for all t

(b') V(X,t) < 0 for all X * 0 in n and all t

V(O,t)=O for all t then the origin of the system is

unstable. This theorem states that if both V(X,t) and V(X,t) are
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definite

and have the same sign, then the origin is unstable and the tra­

jectories near the origin diverge to a limiting value or infin­

ity.

Theorem

Suppose that there exist a scalar function V(X,t), with con­

tinuous first partial derivatives, satisfying the following con­

ditions:

(a) V(X,t) > ° for all X *0 and all t

V(O,t) = ° for all t

(b) V(X,t) ~ ° for all X *0 and all t

V(O,t) ° for all t

Let E be the set of all points where V(X,t)=O, and let M be the

maximum invariant set contained in E. Then every solution bounded

for t )0 approaches M as t + =. If, in addition, V(X,t) + = as

II Xii + =, then each solution is bounded for t )0, and all solu-

tions approaches M as t + =.

We say that X(t) approaches a set M as t approaches infinity

if for each £ > ° there is aT> ° with the property that, for

each t > T there is a state pin M with IIX(t)-pll < £; that is,

for all t > T the states X(t) are within a distance £ of M. If

the maximum invariant set contained in E is the origin, X = 0,

then we may state this theorem as follows:



- 25 -

Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X * 0 and all t

V(O,t) o for all t

(b) V(X,t) ~ 0 for all X * 0 and all t

V(O,t) o for all t

(c) V(~(t;Xo,tO),t) does not vanish identically in t ) to for any

to and any Xo * 0, where ~(t;Xo,tO) denotes the solution starting

from X
o

at to then the origin of the system is, uniformly asymp­

totically stable in the large.

This may be seen as follows: If V(X,t) is not negative

definite but only negative semidefinite, then the trajectory of

the representative point can become tangent to some particular

surface V(X,t) = C. Since V(~(t;Xo,tO),t) does not vanish identi­

cally in t ) to for any to and any X
o

* 0, the representative

point cannot remain at the tangent point and therefore must move

toward the origin.

Appendix B: Krasovskii's Method:

Consider the nonlinear system

X f(X) (B-l)

Where X is nxl state vector and f(X) is a vector whose elements

are nonlinear functions X the Jacobian matrix
n
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for the system is shown as F(X). In this nonlinear system there

may be more than one equilibrium state. It is, however, possible

to transfer the equilibrium state under consideration to the ori-

gin of the state space by an appropriate transformation of coor-

dinates. We shall, therefore, consider the equilibrium state

under consideration to be at the origin.

We shall now present Krasovskii's theorem.

Theorem:

Consider the system described by Equation B-1. Assume that

f(O)=O and that f(X) is differentiable with respect to Xi'

i=1,2, ••• , n. Define

F (X) *F (X) +F(X) (B-2)

*Where F(X) is the jacobian matrix and F (X) is the conjugate

transpose of F(X). If f(X) is real, then F(X) is real and

* F
T

F (X) can be written as (X) . F (X) is clearly Hermitian.

If F (X) is negative definite, then the equilibrium state X=O is

asymptotically stable. A liapunov function for this system is:

*V(X)=f (X)f(X)

*If, in addition f (X)f(X) goes to infinity as II Xii

(B-3)

goes to

infinity,

the large.

then the equilibrium state is asymptotically stable in
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Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

( a ) V(X,t) > 0 for all X "/- 0 and all t

V(O,t) 0 for all t

(b) V(X,t) <; 0 for all X "/- 0 and all t

V(O,t) 0 for all t

(c) V(\ll(t;Xo,tO),t) does not vanish identically in t ) to for any

to and any X "/- 0, where \ll(t;Xo,t O) denotes the solution starting
0

from X
o

at to then the origin of the system is. uniformly asymp­

totically stable in the large.

This may be seen as follows: If V(X,t) is not negative

definite but only negative semidefinite, then the trajectory of

the representative point can become tangent to some particular

surface V(X,t) = C. Since V(\ll(t;Xo,tO),t) does not vanish identi-

cally in t ) to for any to and any Xo
"/- 0, the representative

point cannot remain at the tangent point and therefore must move

toward the origin.

Appendix B: Krasovskii's Method:

Consider the nonlinear system

X = f(X) (B-l)

Where X is nxl state vector and f(X) is a vector whose elements

are nonlinear functions X the Jacobian matrix
n
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for the system is shown as F(X). In this nonlinear system there

may be more than one equilibrium state. It is, however, possible

to transfer the equilibrium state under consideration to the ori-

gin of the state space by an appropriate transformation of coor-

dinates. We shall, therefore, consider the equilibrium state

under consideration to be at the origin.

We shall now present Krasovskii's theorem.

Theorem:

Consider the system described by Equation B-1. Assume that

f(O)=O and that f(X) is differentiable with respect to Xi'

i=I,2, ••• , n. Define

*F (X) = F (X) +F(X)

*Where F(X) is the jacobian matrix and F (X)

(B-2)

is the conjugate

transpose of F(X). If f(X) is real, then F(X) is real and

* F
T

F (X) can be written as (X) . F (X) is clearly Hermitian.

If F (X) is negative definite, then the equilibrium state X:=O is

asymptotically stable. A liapunov function for this system is:

*V(X)=f (X)f(X)

*If, in addition f (X)f(X) goes to infinity as II xii

(B-3)

goes to

infinity,

the large.

then the equilibrium state is asymptotically stable in
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Table 1 : Maximum Displacement, Velocity, Acceleration,
Spring For ce , and Active Control For ce •

Case No. X V Acc F U
max max max S max

max

-------- ------ ------- -------- ------ -------

1 3.36 12 .11 127.86 5.00 0.00

2 2.58 12 .96 133.44 5.00 2.58

3 2.49 13 .06 131.98 5.00 3.72

4 2.60 13 .30 138.39 5.00 3.75

5 2.54 13 .06 131.98 5.00 2.50
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Table 3: Parameters of the probability Distribution Function.

Case No. Time constant a b

1 ----- -2.88 4.04

2 o.0000 -4.80 4.96

3 0.0068 -4.80 5.04

4 0.0178 -4.57 5.09

5 0.0399 -4.29 5.33

6 0.0439 -4.23 5.35

7 0.0441 -4.23 5.36

8 o.0517 -3.93 5.10

9 0.0680 -3.58 5.16

10 o .0794 -3.17 4.84

11 0.0811 -3.12 4.80

12 0.0876 -2.96 4.72

13 0.0906 -2.90 4.70

14 0.0985 -2.71 4.56

15 ----- -3.18 4.38

16 ----- -3.20 4.52
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Table 4: Parameters of the Probability Distribution Function.

Case No. Time Constant a b

1 ------ -2.37 2.92

2 0.0000 -3.81 3.51

3 0.0068 -3.82 3.59

4 0.0178 -3.63 3.62

5 0.0399 -3.44 3.85

6 0.0439 -3.39 3.89

7 0.0441 -3.39 3.89

8 0.0517 -3.18 3.72

9 0.0680 -2.90 3.78

10 0.0794 -2.58 3.53

11 0.0811 -2.54 3.50

12 0.0876 -2.42 3.45

13 0.0906 -2.38 3.44

14 0.0985 -2.23 3.34
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Table 5: Maximum Displacement of the system Due to the

El-Centro Earthquake.

Case No. Time Constant Maximum Displacement

--------- ------------- --------------------

1 0.0000 1 .79

2 0.0068 2.01

3 0.0178 2.38

4 0.0399 3.12

5 0.0439 3.25

6 0.0441 3.26

7 0.0517 3.51

8 0.0680 4.02

9 0.0794 4.35

10 0.0811 4.40

11 0.0876 4.59

12 0.0906 4.67

13 0.0985 4.89
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c=O.5

2
m=0.3 lb-sec/in

• ...

Force

____.c.:.;:;....;:o:.:..._.".. ..;,t;~_~j.t; lacement

-5.0 lb

Fig. 1 A Single Degree-of-Freedom System with Inherent
Nonlinearity.

Area=
Energy Dissipate

Fig. 2 :General Plastic Behavior of the Structural Model.

Restoring Force

Tension

Displacement

--y-rr-7'--*----L.-+---.....J----..... Displacement
y

max

Fig. 3 Elastoplastic Behavior of the Structural Model.
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t

rsturbance Force

Q:-..
Linear Controller

~
Plant Outpu

Fig. 4: Block Diagram of the Closed-loop Sys tern with Linear Controller.

Output

--__..;;...._-¥- --I_InputU=-(Kll KlZ) X

Kll =1.0

Fig. 5: Properties of the linear Control Law.

)is turbance Force

~
Dead-Zone Nonlinearity + Plant

~
Outp.ut

Fig. 6: Block Diagram of the Closed-Loop System with Dead-Zone Nonlinearity.
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Output

Dl=-l.O in
_____~"7"......--~f_--~c:..r__......-~Input

1n

Fig. 7: Properties of the read-Zone Nonlineari

~sturbance Force

~
Saturation Nonlinearity ~

Plant Output
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Fig. 14;Case 1 in Table 1.
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Fig. 14(con.): Case 1 in Table 1.
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Fig. 15: Case 2 in Table 1.
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Fig. 15(con.): Case 2 in Table 1.



- 43 -

EL-CENTRO E.Q.

lim

Vlt~RX= 10.40
V1MIN=-13.06

VELOC lTV OF THE 5V5TEM

2.Q00

.'160

-3.ooa

XlI"1RX= 1 0 76
X1~1IN= -2049

DISPLRCEMENT OF THE SV5TEM

~,(J(I(J

MOO

!~~l.aoo

"'-- ~ ,
-~.ooa

UMRX= 3072
U~lIN= -1 091

RCTIVE CONTROL FORCE

v V V v

Fig. 16: Case 3 in Table 1.
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Fig. 16(con.): Case 3 in Table 1.
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Fig. 17: Case 4 in Table 1.
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Fig. 17(con.): Case 4 in Table 1.
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Fig. 18(con.): Case 5 in Table 1.
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Fig. 19: Empirical Distribution of the Maximum Displacement
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Fig. 21 Through Fig. 26; Empirical Distribution of the ~nximum

Displacement of the Controlled Response.
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Fig. 29: Case 11 in Table 3. Fig. 32: Case 14 in Table 3.

Fig. 27 Through Fig. 321 Empirical Distribution of the Maximum

Displacement of the Controlled Response.
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Fig. 37: Case 5 in Table 4. Fig. 40: Case 8 in Table 4.

Fig. 35 Through Fig. 40: Empirical Distribution of the Maximum

Displacement of the Controlled Response.
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Fig. 43: Case 11 in Table 4. Fig. 46: Case 14 in Table 4.

Fig. 41 Through Fig. 46: Empirical Distribution of the Maximum

Displacement of the Controlled Response.
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