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Abstract

To reduce the effect of lateral earthquake ground motion on
structures, active control systems can be used. Several different
types of nonlinearities such as dead-zone, saturation, and combi-
nation of both are considered in this report. Using simulated
earthquake, it is shown that the probability of faiiure may be
reduced by using a perfect control system. However, there is
always a time lag between the time.when a control force 1is needed
and the time when the required control force can be applied. The

effect of such delay time on the reliability of structural con-

trol is studied herein.
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*
RELIABILITY ASPECTS OF STRUCTURAL CONTROL

by

M. A. Basharkhah and J. T, P. Yao

1. Introduction

Generally speaking, many different types of nonlinearities
exist in engineering systems. Depending upon whether the non-
linearity is inherent in the system or intentionally inserted
into the system, these nonlinearities affect the performance of
the system in various ways. For example, some types of nonlinear-
ity may cause 1instability in the system. However, certain non-~
linearities are introduced into the system to improve the perfor-
mance of the system. Although these intentional nonlinearities
may improve the performance of the system under specified condi-

tions, they may not improve the performance of the system under

other conditions.

In civil engineering structures, we usually do not have much
stability problems. Nevertheless, when one wants to use active
control force to reduce the diéplacement of the response ; the
stability of the system may become a major problem. In practical
cases, we should be concerned with the stability of the nonlinear

control systems.

*
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Frequently, it is not necessary to obtain analytiéal solutions of
nonlinear differential equations. By using describing-function
method, we may study the stability of simple nonlinear control
systems. This method provides stability information for systems
of any order, but it will not give exact information as to time-
response characteristics. Although the describing-function
method is quite useful in predicting the stability of unforced
systems, it 1s not practical to use this method for nonlinear
structures mostly encountered in civil engineering; because the
input of the nonlinear element is not usually sinusoidal. There-

fore, it 1is not practical to use this method for this type of

structures.

To analyze and design highly nonlinear systems [6,9,12,21],
actual or simplified nonlinear différential equation can be
solved.by using the phase-plane method or the second method of
Liapunov. The phase-plane method provides information about
time~-response and stability of the system, However, it is only
applicable to first and second-order system. In the phase-plane
analysis of second order systems, trajectories may be constructed
analytically or graphically. However, it is difficult to con-
struct the trajectory of the civil engineering structures analyt-
ically or graphically because the main inputs of these systems
are earthquakes. Therefore, the differential equations of the
system must be solved by using numerical methods. The Runge~Kutta
method can be used to solve nonlinear differential equations. The

5 5
error in the Runge-Kutta method is of order h = A t . Also, the



method avoids the necessity of calculating derivatives and hence
excellent accuracy 1s obtained. Then, using the results of the

solution, the trajectory of the system may be constructed.

The second method of Liapunov (see Appendix A) may be
applied to any nonlinear system, but it is difficult to find
Liapunov function for certain complicated nonlinear sys-—
tems{8,16,19]. If we are to examine asymptotic stability of
equilibrium states of nonlinear systems, stability analysis of
linearized models of nonlinear system is completely inadequate.
We must investigate nonlinear systems without linearization.
Several methods based on the second method éf Liapunov are avail-
able for this purpose. They include Krasovskii’s method (see
Appendix B) for testing sufficient conditicns for asymptotic sta-
bility of the nonlinear systems and Lur’e‘s method applicable to
stability analysis of certain nonlinear control systems. Suppose
a system 1s described by i =f{X). To use Krasovskii’s method,
f(X) must be differentiable with respect to Xi where Xi are the
states of the systems. Therefore, this method may not be applica-
ble to elastic-perfectly plastic systems. To use Lur‘e’s method,
the nonlinearities of the system must be continuous. In applying
these method to investigate the stability of the structures, one

must keep in mind the basic assumptions and all limitations.

2. Nonlinear Systems

In discussing the dynamic behavior of single degree-of-

freedom systems, we assume that in the model representing the



structures, the resorting force is proportional to the displace~
ment and the energy dissipation is proportional to the velocity.
However, a linear model does not always adequately represent the
dynamic behavior of the structure. Therefore, the spring force
and damping force may not remain proportional to the displacement
and the velocity. In such cases, the equation of motion is no
longer linear. Such nonlinearities are called inherent nonlinear-
ities. There is no general method for dealing with all nonlinear
systems. Exact solutions can be found only for certain types of
nonlinear differential equations[10]. Numerical procedure can be
used for integration of nonlinear equation. As a first example,
we consider a single degree—of-freedom system which has only
inherent nonlinearity. Then, a nonlinear time invariant single

degree-of-freedom system under different types of intentional

nonlinearities will be discussed later.

Consider the model for a single degree-of-freedom system as
shown in Fig. 1. The dynamic equilibrium in the system without
active control force is established by setting to zero the sum of
the inertia force, the damping force, the spring force , and the
external force. The equilibrium of these forces at time»ti is
expressed as follows:

FI ( t, )y o+ FD ( ty ) o+ FS ( t, ) = TF ( t, ) (1)
and the equilibrium of these forces at time tie is expressed in
the following:

.F {( t ) +F (t ) +F (¢t ) = F(ti

2
I i+l D i+l S i+l ) (2)

+1



Where At=t_+1 = t, is called time increment. The differential
i i .

equation of motion in terms of increments can be found by sub-

tracting Equation 2 from Equation I and is given by:

AFI + AFD + AFS = AF (3)
To solve a nonlinear differential equation by using a numerical
method, one can use elther limnear acceleration step-by-step tech-
nique or Runge-Kutta method. 1In this report, the energy dissipa-
tion is assumed to be proportional to the velocity. Therefore,
the only inherent nonlinearity is the spring force. If any struc-~
ture modeled as a single degree—of-freedom system is allowed to
yvield plastically, then the resorting force is likely to be the
form shown in Flg. 2. There is a portion of the curve in which
linear elastic behavior occurs, whereupon for any further defor-
mation, plastic yielding takes place, When the structure is
unloaded, the behavior 1s agaln elastic until further reverse
loading produces compressive plastic yielding. This behavior is
often simplified by assuming an elastic- perfectly plastic
behavior. Therefore, the elastoplastic behavior of the system is
the only inherent nonlinearity that it is considered in this
report. The elastoplastic behavior of the system is shown in Fig.
3. The maximum displacement response of the system without any
active control force to the 1940 El-Centro earthquake is shown as
case 1 in Table 1. To reduce the displacement of this system, one
can use a linear or nonlinear control system. As we mentioned
earlier, base excitation can be assumed as a distutrbance force.

Therefore, the general form of the nonlinear equation of motion



can be written by using the state space variable concept as fol~-

lows:

X = £(X,U,t) (4)
Let us assume the control force to be a linear combination of the
displacement and the velocity of the system, then the control law

is given as follows:

U=~KX (5)
Where X is a 2xl state vector and K is a 1x2 gain matrix. Case 2
in table 1 shows the maximum displacement of the same system
under the same earthguake when it is subjected to an active con-
trol as described by Equation 5. It can be seen that the maxinmum
displacement of the system without active control force is
greater than the maximum displacement response of the same system
with active control force. The block diagram and numerical pro=-

perties of the system is also shown in Fig. 4 and Fig. 5.

The stability of the open—~loop system is not a ma jor prob-
lem. If we take displacement and velocity as the coordinates of a
plane, to each state of the system there corresponds a point in
this plane. As time varies, this point describes a curve in this
plane. Such a curve is called trajectory. The system is stable if
trajectory of the system tend to one or more stable equilibrium
peints.

-

Now, a nonlinear time invariant single degree-of-freedom
system is considered under different types of intentional non-

linearities. The inherent nonlinearity of the open-loop system is



an elastic—-perfectly plastic spring. Three different types of
intentionally nonlinearities are examined in this study. First, a
dead~zone intentional nonlinearity is inserted into the system.
The block diagram of the closed-loocp system is shown in Fig. 6.
The output of a dead-zone nonlinearity is equal to zero when the
absolute value of the displacement is less than DI , Otherwise,
it is a linear function of the displacement. The properties of
the dead-zone nonlinearity element which it is used are shown in
Fig. 7. These properties can be chosen such that the system per-
forms in the linear range. Thus, the displacement of the system
is always less than the displacement of the yield point. Second,
a saturation nonlinearity element is used for the system. The
block diagram of the system with saturation nonlinearity is shown
in Fig. 8. The properties of the nonlinearity element can be
assumed such that the behavior of the system remains in elastic
range. The output.of the saturation nonlinearity is a linear
function of the input as long as the absolute value of the dis-
placement is lesgs than D2 . When the absolute value of the dis-
placement is greater than D2 the output of the saturation non-
linearity element remains constant. Fig.9 shows the properties
of the saturation nonlinearity which they are used in this exam-
ple. Finally, the combination of a dead—-zone and a saturation
nonlinearities is inserted into the system. The block diagram of
the closed-loop system with this kind of mnonlinearity is shown in
Fige. 10. In this case, the output of the nonlinearity is equal to
zero as long as the absolute value of the displacement is less

than D1 . When the absolute value of the displacement is greater



than D2, the output of the nonlinearity becomes constant. Other-
wise, the output of the ﬁonlinearity is proportional to its
input. Fig. 1l shows the properties of this kind of nonlinear-
ity. These constant can be chesen in such away that the induced
spring force will not increase the yield point. The maximum dis-
placement, velocity, acceleration, spring force, and active con-
trol force for each case are listed in Table 1 respectively. It
‘can be seen that the maximum displacement of the controlled sys-
tem is always less than the maximum displacement of the uncon-
trolled system. The displacement , velocity, and active control
force of these different cases are plotted in Fig. 14 through
Fig. 18 respectively. For all cases, the trajectory and elasto-
plastic force-displacement are plotted. The phase-plane for each
case shows that the closed-loop system is stable because the tra-
jectory of each system converged to the equilibrium position. The
elastoplastic force—displacemeﬁt for each case shows that the
closed-loop system has a nonlinear behavior. Moreover, Fig. 14
shows the trajectory of the open-loop system and the elastoplas-

tic behavior of the system., It can be seen that the open-loop

system is always stable.

3. Reliability of Control Systems

In this part of this report, the reliability aspect of con=-
trol system is considered. In recent years, the idea of using
active devices to reduce the displacement of «civil engineering

structure has been explored. Although such devices have been used



in space~ vehicle, missile-guidance, and aircraft-piloting; the
application of these devices to control the motion of the civil
engineering structures is still new. Many papers have been writ-
ten about the use of the active devices in civil engineering
structures. However, few, if any, of them dealt with the relia-
bility of these contrdl systems. In other control problems, the
disturbance forces are not the major input of the system. Because
the disturbance forces can be the major input to civil engineer-
ing structures, it is important to design a control system such
that the probability of the failure due to any excitation should
not increase as a result of using control devices. Earthquake 1is
the major disturbance force under consideration, and it is

assumed as a nonstationary random process in this study [18,22].

In control systems, if one knows the properties of the dis-
turbance force, a feedforward system can be designed such that
the effect of these disturbance forces would vanish. In the real
world, no one can predict the exact properties of the next earth-
quake. Therefore, one has to assume these external forces as a
random process. In this report, a linear time—-invariant single-
degree—-of-freedom system as shown in Fig. 12 is considered. The
properties of the system are assumed to be constant. To reduce
the displacement of this single~degree—~ freedom system, a linear
control law, U=-KX, is used. Note that the elements of the gain

matrix, K, are determined by solving the Riccati equation for the

system.
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As a first example, the elements of the gain matrix are
chosen as a deterministic elements. The block diagram of the
closed~lcop system and the properties of the system are shown in
Fig. 13, where Gp (s) 1is the transfer function of the plant, and
GC (s) 1is the transfer function of the controller, and it can be
assumed as a constant gain or variable. In this part of the
study, the transfer function of the controller is assumed as a
nondeterministic but can be either constant gain or variable. Let

the transfer function of the controller be in the form of:

K
- P ‘

Where Kp 1s a deterministic constant gain which it is determined
by fhe control law, and T is a random variable representing the
time constant of the controller. Let us assume an uniform proba-
bility density function [7,11] between interval zero and 0.1 for
the time constant, the effect of this time constant is very
important because by increasing its value the displacement of the
controlled system will increase. Due to a value of the time con-
stant, we have a cancellation of pole and zero in the system. The
cancellation pole and zero will decrease the order of the system
and will cause a higher displacement for the system. Therefore,

the probability of the failure will be increased.

Using a standard program [15] (PSEQGN), twenty artificial
earthquake records are generated. Then, the absolute value of the
maximum displacement response of the system without any control
force to each earthquake is computed. For the purpose of this

study, failure is said to occur when the maximum displacement of
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the system exceeds a certain level. In real world, this failure
level ,xf, can be defined as the deformation at which the
material yields. For the purpose of comparison, the reference
failure level ,xf, is defined as the median value, for which the
probability of the failure for uncontrolled structure is eqgual
0.5 . To find the value of X e for the given system, one can
use the extreme-values probability distribution. To use the
extreme=-values probability distribution, the maximum displacement
of the response of the structure to each earthquake 1s computed.
These values are listed in the first column of Table 2 . The
analytical form of the extreme-values distribution function [5]

is given as follows:

F_ {(x) = Exp(=Exp(ax+b)) (7)
Where a and b are the distribution parameters. Data sampled from
this distribution function can be plotted as a straight line on
extreme value probability paper. Shown in Fig. 19 is the empiri-
cal distribution function of the maximum displacement of the
response without any active control system. A smooth curve was
drawn through the points. The pafameters of this distribution for
the system without control are estimated by using the least-
square method. These values are listed as case 1 in Table 3 . The
least—-square method has been used for all cases in this investi-

gation. The resulting median value of Xg for this system 1is

estimated as 1.53.

To find out how much the probability of failure can be

decreased by using control system, a perfect controller for the



system is studied first. In this case, the time constant of the
transfer function for the controller is set to zero. Now, one can
find the probability distribution function for the controlled
system. To do this, the maximum displacement of the controlled
response due to all the artificial earthquakes are computed and
listed in the second column of Table 2. These data are plotted
as a straight line on extreme value probability paper. Shown in
Fig. 20 is the empirical distribution function of the maximum
displacement of the controlled response. A smooth curve was drawn
through the peoints. The parameters of the distribution are
estimated by using least-square method and listed as case 2 in
Table 3. By using this probability distributibn function, the

probability of the failure for the system is computed as follows:

pf = 1.~F(1.53)=.088 ‘ (8)
To show the effect of the time constant, 12 values for time con-
stant have been chosen randomly from an uniform distribution in
the interval (0.,0.1). Using each value of these time constants,
the maximum displacement of the response to these 20 artificial
earthquakes are computed as listed in Table 2. For each case, the
empirical distribution function of the maximum displacement of
the response has been plotted as shown in Fig. 21 through Fig.
32. A smooth curve was drawn through the points for each case
separately. By using the least-square method the parameters of
the distribution are calculated. These parameters are listed as
case 3 through case 14 in Table 3. To find a conditional distri=-

bution function for the maximum displacement of the response
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given that the time constant of the system is given as a known
value, one has to find a relationship between the time constant
and "a'" as well as the time constant and "b". Finally, a least~
square curve—fitting program is used to obtain the best func-

tional relationship between parameters "a", "b", and the time

constant as follows:

2
a(t)=—4.8737+10.912¢t+121.21¢

(9)
2
b(t)=4.9169+18.036¢t-227 .71t
Therefore, the conditional probability distribution of the max-~
imum displacement of the response is given as following:
FXIT (x]t) = Exp(-Exp(a(t)x+b(t))) (10)

And the probability distribution function [14,17] of the maximum

displacement is given as follows:

0.1
F = F t) £ t) dt 11
(x) fo. X|T (x|t) p (€D (11)
Where fT (t) is the probability density function for the time
constant which it i1s assume as an uniform distribution with
interval of (0. ,0.1). Therefore, one can find the probability

that the maximum peak of the response is less than the failure

level, xf ,and the probability of the failure as follows:

P. = 1,~-F(1.53)=,375 (12)
It can be seen that the probability of the failure for a system
with random time constant is greater than the probability of
failure for the same system when the time constant of the con-

troller is equal to zero. But the probability of failure is less
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than 0.5. It means that the maximum displacement of the con=-
trolled system is less than the maximum displacement of the same
system without active control force. However, this is not always
true. Because by increasing the interval of the time constant or
by changing the shape of the probability density function for the
time constant, we may obtain a higher probability of failure for
the controlled system than that for uncontrolled systems. There-
fore, one must be careful in applying an active control systen

for civil engineering structures.

Alternatively, one can use another approach to find the pro-
bability distribution function for the maximum displacement of
the response. For each value of the time constants, which have
been already generated randomly, one value of the maximum dis-
placement is picked at random from Table 2. In this case, 12 dif-
ferent values of the maximum displacement corresponding to 12
different time constant are picked. The empirical distribution
function is plotted on probability paper. A least-square method
has been used to find the parameters of this probability distri-
butioen function. These parameters are shown as case 15 ir Table
3. By using this probability distribution function, the probabil-
ity that the maximum displacement of the response not exceed the

failure level is given as follows:

pf = 1.-F(1.53)=.460 (13)
The probability of failure for this approach is found to be
higher than the previous method. It is possible to use a larger

sample for the empirical distribution. For example, 240 points



corresponding to all 12 different time constant have been chosen.
Then, the empirical distribution function has been plotted and
the parameters of the distribution function are computed by using
the least-square method. These parameters are shown as case 16 in
Table 3. The probability of failure for the system by using this

approach is given as follows:
pf = 1,~F(1.53)=,497 (14)

In this part of this study, another probability distribution
function is considered. For many cases, the extreme-values proba-
bility function will not yield a smooth curve through the empiri-
cal distribution function. In this case, another function is

introduced here and is given as follows:

FX (X) = Fxp(l.-Exp{Exp(ax+b))) (15)
To use this probability distribution function, we have used the
same sample of 20 artificial earthquakes and the same values for
time constant. Therefore, all properties of the system remain the
same for the purposes of comparison. The maximum displacement
response for the system with these different values of the time
constant are given in Table 2. For each case, the empirical dis-
tribution function has been plotted on a probability paper and
the parameters corresponding to that particular time constant
have been computed as listed in Table 4. Fig. 33 through Fig. 46
show the empirical distribution for the uncontrolled system, the

controlled system with zero time constant, and all different time

constants. Finally, a least-square curve—-fitting program is used



to obtain the best functional relationship between parameters
"a", "b", and the time constant. The curve-fitting program yields

the coefficient of the best polynominal, and they are given as

follows:

2
a(t)=-3.864+7.619t+98.128¢t
(16)
2
b(t)=3.467+16.129t-183.,19¢
Therefore, the conditional distribution function for the maximunm
displacement of the response given that the time constant is

equal to a certain value is given as following:
FXIT (x|t) = Exp(l.-Exp(Exp(a(t)x+b(t)))) (17)

The probability distribution function of the maximum displacement

can be found as follows:

0.1
IS Felr (x]t) £, (£) dat (18)

Where fT (t) 1is the probability density function of the time

F X
X()
constant which it is assumed as an uniform distribution with
interval of (0. ,0.1). Again, by using this last distribution,
the probability that the maximum displacement of the response not

to exceed the failure level and the probability of failure are

calculated as follows:

pf = l.-F(1.53)=.366 (19)
It can be seen that these values are almost the same as those

values that they are computed by using the extreme=-values distri=-

bution.



In this part of this report, a Markov process [1-4,20] has
been used to find the reliability of the system. By using this
process, a cumulative distribution function will be fitted
through the points of the empirical distribution function. First,
let us use a stationary B model to find a cumulative distribution
function. To use this method, those data which they have been
already generated are used. As we mentioned earlier, 12 different
values for time constant have been found randomly. The maximum
displacement of the response due to twenty artificial earthquakes
has been computed‘for each random time constant. These values are
listed in Table 2. Fig. 47 shows the empirical distribution func-

tion for these data. The mean and variance of this distribution

are given as follows:

mean=1.53 variance=.1374
By using a stationary B model for this process, the parameters of
the process are calculated as following:

b=18 r=89.17
Fig. 48 shows the cumulative distribution function for those data
which they are wused in this process. It can be seen that the
cumulative distribution function is fitted perfectly to the
empirical distribution function. By using the cumulative distri-
bution function which it is found by the B model, the mean and
variance of the process are computed, and they are given as fol-
lowing:

mean=].53 variance=.1367
It can be seen that these calculated values of the mean and vari-

ance of the cumulative distribution function are matched to



corresponding values of the empirical distribution functiom. By
using this approach, one can fina the probability that the max-
imum displacement of the response not to exceed the failure
level. This value 1s computed as 0.5 which it is less than those
values that they are found by using first method, extreme-values
distribution, 0.625, or the third approach, 0.634, but it is
almost equal to the value which it is found by the second pro-

cedure,0.503,,

Finally, let us as a final note describe the effect of the
time constant on the system. For this case, the maximum displace-
ment of the response due to the El-Centre 1940 earthquake has
been computed for all different values of the time constant.
These values are shown in Table 5. It <c¢an be seen that by
increasing the value of the time constant, the maximum displace-
ment of the system will be increased. Fip. 49 shows the variation

of the maximum displacement with tespect to the time constant.

4, Conclusion

Although it is a good idea to apply active control for the
reduction of displacement response of civil engineering struc-
tures, one must keep in mind all the basic assumption and limita-
tions involved im such applications. In this report, the time
constant of the system is considered as a random variable. It has
been shown that by using a perfect control system (where the time
constant is zero), the probability of failure of the system is

minimum. In real world, however, there is no perfect control



system. Results of this investigation show that probabilities of
failure for real world systems are higher than those for ideal-

ized ones; which have been subjected by other investigators.

In the first part of this report, seVeral nonlinear control
systems were studied. It is found that the use of those inten-
tional nonlinearities can be beneficial. For each type of non-
linearity, there are several parameters which can be assumed as
random variables. In addition, the elements of the gain matrix
for the controller can be assumed as a random variable., It is not
always easy to consider all parameters of the system as random
variables at the same time. Nevertheless, one can exgmine the
effect of each variable or a few of them at a time. In this
manner, a joint distribution function may be found for the sys-
tem. Another important subject 1is the shape of the probability
density function for the random variable. For example, the proba-
bility demsity function for the time constant in this report 1s
assumed to follow an uniform distribution. Changing the shape of
this distribution or even the size of the interval may alter the
probability of failure. Writers believe that it is very Important
to consider the reliability aspect of structural control Dbefore
such systems can become practical. Because of the complexity of

real-world systems, more studies of this important problem are

needed.
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Appendix A: Concepts of Stability:

There are many definitions of stability, but they all basi-
cally are concerned with whether neighboring solutions of the
differential equation remain neighboring, Since there are an
infinite number of solutions, some of which may qualify as
"stable” and some as "unstable". We must recognize that "étabil-
ity" is a solution of a set of differential eqﬁations. It is not
precise to say that ™a system is stable or unstable", but we are

precise to say a particular solution of a differential equation

is stable or unstable.

Second Method of Liapunov:

The second method of Liapunov attempts to give information
on the stability of equilibrium states of linear and nonlinear
systems without any knowledge of their solutions. The stability
information obtained by this method is precise and involves no
approximation. In this section we first present Liapunov’s main
stability theorem. We assume that the equilibrium state under
consideration is at the origin of the state space. The essence of

the second method of Liapunov 1is given in the following main

theorem:

Theorem:
Let the system be defined as follows:

).(=f(X,t) (A-1)

Suppose that £{(0,t)=0 for all t and there exists a scalar
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function V(X,t) which has continuous first partial derivatives.

If V(X,t) satisfies the following conditions:
1. V(X,t) is positive definite, namely, v(0,t)=0 and

2. V(X,t) > a(||X}|) > O for all X # 0 and t where a is a con-
tinuous, nondecreasing scalar function such that a(0)=0.

»

3. The total derivative V is negative for all X #0 and all t, or

V(X,t) <=v(||X}|) <O for all X #0 and all t where Y is a continu-

‘ous nondecreasing scalar function such that Y(0)=0.

4. There exists a continuous, nondecreasing scalar function such

that B(0)=0 and, for all t, V(X,t)< B(||X|])

5. a(]|Xx}|) approaches infinity as ||X|| increases indefinitely,

or a{[|X}[]) » = as [[X]] » =

then the origin of the system, X=0, is wuniformly asymptotically

stable in the large.
Theorem

If there exist a scalar function V(X,t), with continuous
first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X #0 in & and all t and V(0,t)=0 for all ¢t

(b) V (X,t) < 0 for all X #0 in @ and all t V(0,t) =0 for all t
then the origin of the system is uniformly asymptotically stable.
If the foregoing conditions are satisfied in the whole state

space and either V(X,t) + « as ||X]| * », or V(X,t) € -m < O for
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all ||X|| => M and some m, M >0, then the origin 1is wuniformly

asymptotically stable in the large.

Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions
(a) V(X,t) > 0 for all X # 0 in & and all t

v(0,t)=0 for all t

(b) v{(0,t) €« 0 for all X # 0 in @ and all t

V(0,t)=0 for all t

then the origin of the system 1is uniformly stable.

Theorem

If there exists a scalar function V(X,t), with continuous
first partial derivatives, satisfying the following conditicns:
(a) V(X,t) > 0 for all X # 0 in Q and all t

v(0,t) = 0 for all t

(b) V(X,t) > 0 for all X # 0 in f and all t

v{0,t)=0 for all t or

(a’) V(X,t) < 0 for all X # 0 in & and all t

V(0,t) 0 for all t

(b’) V(X,t) < 0 for all X # 0 in & and all t

V(0,t)=0 for all t then the origin of the system 1is

unstable. This theorem states that if both V(X,t) and V(X,t) are



definite

and have the same sign, then the origin is unstable and the tra-
jectories mnear the origin diverge to a limiting value or infin-

ity.
Theorem

Suppose that there exist a scalar function V(X,t), with con-
tiﬁuous first partial derivatives, satisfying the following con-

ditions:

(a) V(X,t) > 0 for all X #0 and all t

0 for all t

1

v(0,t)

(b) V(X,t) < 0 for all

P

#0 and all t

V(0,t) 0 for all ¢t

Let E be the set of all points where V(X,t)=0, and let M be the
maximum invariant set contained in E. Then every solution bounded
for t 20 approaches M as t + =, If, in additioﬁ,.V(X,tj > *® as

||Xl[ + @ then each solution is bounded for t »0, and all solu-

tions approaches M as t > =,

We say that X(t) approaches a set M as t approaches infinity
if for each € > 0 there is a T > 0 with the property that, for
each t > T there is a state p in M with ||X(t)-p|| < &; that is,
for all t > T the states X(t) are within a distance é of M. I1f
the maximum invariant set contained in E is the origin, X = 0,

then we may state this theorem as follows:



Theorem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X # 0 and all ¢t

v({o,t) 0 for all t

(b) V(X,t) € 0 for all X # 0 and all t

f

v(o,t) 0 for all t

(¢) V(@(t;XO,tO),t) does not vanish identically in t 2 ty for any
to and any XO # 0, where @(t;XO,tO) denotes the solution starting

from XO at tO then the origin of the system is  uniformly asymp-~-

totically stable in the large.

This may be seen as follows: If &(X,t) is not nmnegative
definite but only negative semidefinite, then the trajectory of
the representative point can become tangent to some particular
surface V(X,t) = C. Since ;(¢(t;xo,to),t) does not vanish identi-
cally in t 2 to for any tO and any XO # .0, the representative

point cannot remain at the tangent point and therefore must nmove

toward the origin.

Appendix B: Krasovskii’s Method:

Consider the nonlinear systemn

X = £(X) (B~1)
Where X is nxl state vector and f{X) is a vector whose elements

are nonlinear functions of Xl’ XZ’ ve ey Xn the Jacobian matrix
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for the system is shown as F(X). In this nonlinear system there
may be more than one equilibrium state. It is, however, possible
to transfer the eqéilibrium state under consideration to the ori-
gin of the state space by an appropriate transformation of coor-
dinates. We shall, therefore, consider the equilibrium state

under consideration to be at the origin.
We shall now present Krasovskii’s theorem.
Theorem:

Consider the system described by Equation B-1l. Assume that
f(0)=0 and that £(X) is differentiable with respect toVXi,

i=l,2,40¢, n. Define"

F(X) = F (X) +F(X) (B-2)
Where F(X) is the jacobian matrix and F* (X) is the conjugate
transpose of F(X). If f(X) is real, then F(X) is real and
F* (X) can be written as FT (XD . F (X) 1is clearly Hefmitian.
If F (X) 1is negative definite, then the equilibrium state X=0 is

asymptotically stable. A liapunov function for this system is:

*
V(X)=f (X)f(X) (B-3)
%
If, in addition £ (X)f(X) goes to infinity as ||X|] goes to
infinity, then the equilibrium state 1s asymptotically stable in

the large.



Theorxem

If there exists a scalar function V(X,t), with continuous

first partial derivatives, satisfying the following conditions:

(a) V(X,t) > 0 for all X # 0 and all t

V(0,t) = 0 for all t
(b) V(X,t) € 0 for all X # 0 and all t
V(0,t) = 0 for all t

(c) V(Q(t;XO,tO),t) does not vanish identically in t 2 ty for any

t and any XO # 0, where ¢(t;X

0 O,tO) denotes the solution starting

from XO at tO then the origin of the system is uniformly asymp-

totically stable in the large.

This may be seen as follows: If &(X,t) is not negative
definite but only negative semidefinite, then the trajectory of
the representative point can become tangent to some particular
surface V(X,t) = C. Since %(@(t;xo,to),t) does not vanish identi-
cally in t 2 to for any tO and any XO # 0, the representative

point <cannot remain at the tangent point and therefore must move

toward the origin.

Appendix B: Krasovskii’s Method:

Consider the nonlinear system

X = f£(X) (B-1)
Where X is nxl state vector and f(X) is a vector whose elements

are mnonlinear functions of XI’ XZ’ e n,y Xn the Jacobian matrix
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for the system is shown as F(X). In this nonlinear system there
may be more than one equilibrium state. It is, however, possible
to trénsfer the eqﬁilibrium state under consideration to the ori-
gin of the state space by an appropriate transformation of coor-
dinates. We shall, therefore, consider the equilibrium state

under consideration to be at the origin.
We shall now present Krasovskii’s theorem.
Theorem:

Consider the system described by Equation B-1. Assume that
f{(0)=0 and that f(X) 1is differentiable with resﬁect to Xi’

i=1,2,..., ne Define

F (X) = F (X) +F(X) (B~2)
Where F(X) is the jacobian matrix and F* (x) is the éonjugate
transpose of F(X). If £(X) 1is real, then F(X) is real and
F* (X) «c¢an be written as FT (xX) . F (X) 1is «clearly Hermitian.
If F (X) 1is negative definite, then the equilibrium state X=0 ié

asymptotically stable. A liapunov function for this system is:

*
V(X)=f (X)f(X) (B=3)
*
I1f, in addition f (X)f(X) goes to infinity as |[X|| @goes to
infinity, then the equilibrium state is asymptotically stable in

the large.
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Table 1: Maximum Displacement, Velocity, Acceleration,
Spring Force, and Active Control Force.

Case No. X v Acc F U
max max max S max
max
1 3.36 12,11 127 .86 5.00 0.00
2 2.58 12 .96 133 .44 5.00 2.58
3 2.49 13.06 131.98 5.00 3.72
4 2.60 13.30 138.39 5.00 3.75

5 2.54 13.06 131.98 5.00 2.50
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Table 3: Parameters of the probability Distribution Function.

Case No. Time constant a b
e -2.88 4.04
2 0.,0000 -4,80 4.96
3 0.0068 -4.80 5.04
4 0.0178 -4,57 5.09
5 0.0399 -4,29 5.33
6 0.0439 -4.23 5.35
7 0.0441 -4.,23 5.36
8 0.0517 -3.93 5.10
9 0.0680 -3.58 5.16
10 0.0794 -3.17 4 .84
11 0.0811 -3.12 4 .80
12 0.0876 -2.96 4.72
13 00,0906 -2.90 4.70
14 0.0985 -2.71 4.56
15 = -3,18 4.38

) S -3.20 4.52
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Table 4: Parameters of the Probability Distribution Function.

Case No. Time Constant av b
1 e ~2.37 2.92
2 0.0000 ~3.81 3.51
3 0.0068 -3.82 3.59
4 0.0178 -3.63 3.62
5 0.0399 -3.44 3.85
6 0.0439 -3.39 3.89
7 0.0441 -3.39 3.89
8 0.0517 -3.18 3.72
9 0.0680 ~2.90 3,78
10 0.0794 -2.58 3,53
11 0.0811 -2.54 3,50
12 0.0876 -2.42 3.45
13 0.0906 -2.38 3.44

14 0.0985 -2.,23 3.34
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Table 5: Maximum Displacement of the system Due to the

El-Centro Earthquake.

Case No; Time Constant Maximum Displacement
1 0.0000 1.79
2 0.0068 2.01
3 0.0178 2.38
4 0.0399 3.12
5 0.0439 3.25
6 0.0441 3.26
7 0.0517 3,51
8 0.0680 4,02
9 0.0794 4,35

10 0.0811  4.40
11 0.0876 4.59
12 0.0906 4.67

13 : 0.,0985 4.89
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isturbance Force

Linear Controller + Plant Output

. O+ .

Fig. 4: Block Diagram of the Closed-loop System with Linear Controller.

JFMtput
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U=-(Ky; Kyp) X . Input
K11 =1.0
K12 =0.

Fig. 5: Properties of the linear Control Law.

isturbance Force

Dead-Zone Nonlinearity + Plant Output

Fig. 6: Block Diagram of the Closed-Loop System with Dead-Zone Nonlinearity.



- 36 -

1lOutput
Slope=2.5
D,=-1.0 in
- Input
D=1.0 i~
Slope=2.5
Fig., 7: Properties of the Dead-Zone Nonlinearity
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Fig. 8: Block Diagram of the Closed-Loop System with Saturation Nonlinearity.
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Fig. 9: Properties of the Saturation Noniinearity.
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Combination of Dead-Zone | - Plant Output
- and Saturation Nonlinearity
Iig. 10: Block Diagram of the Closed-Loop System with Combination
of Dead-Zone and Saturation Nonlinearity.
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v 4 |- »Input
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Fig. 11: Properties of the Combination of Dead-zone and Saturation
Nonlinearity.
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Fig. 12: A Linear Time Invariant Single-Degree-of-Freedom System.
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Fig. 18: Case 5 in Table 1.
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Fig. 19: Bupirical Distribution of the Maximum Displacement

of the Uncontrolled Response.
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Fig. 23: Case 5 in Table 3. Tig. 26: Case 8§ in Table 3.

Fig. 21 Through Fig. 26; Bmpirical Distribution of the Maximum

Displacement of the Controlled Response,
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Fig. 28: Case 10 in Table 3. Fig. 31: Case 13 in Table 3.
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Fig. 29: Case 11 in Table 3. Fig, 32: Case 14 in Table 3.

Fig. 27 Through Fig. 324 Empirical Distribution of the Maximum

Displacement of the Controlled Response.
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Fig. 34: Empirical Distribution of the Maximum Displacement

of the Controlled Response.
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Fig. 40: Case 8 in Table 4.

Fig. 35 Through Fig. 40: Empirical Distribution of the Maximum

Displacement of the Controlled Responsc.
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Fig. 46: Case 14 in Table 4,

Fig. 41 Through Fig. 46: Bnpirical Distribution of the Maximum

Displacement of the Controlled Response.
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Fig. 47: Empirical Distribution Function.
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