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ABSTRACT

This report summarizes the results obtained by the Eavthqhake
Engineering Research Center (EERC) during a cooperative investigation of
the dynamic behavior of Techi Dam, conducted jointly by the EERC and the
Center for Earthquake Engineering Research of National Taiwan University,
Taipei. The report is presented in three parts, corresponding to three
phases of the research effort. Part I describes a field study of Techi
Dam, a doubly curved arch dam 590 ft. high located in central Taiwan.
Rotating mass vibration generators were used, and the measured vibration
mode shapes, freguencies, and damping ratios are reported. Part II
describes the analysis of the vibration mode shapes and freqguencies using
the computer program ADAP. In addition to the ADAP finite element models
of the dam and foundation, this analysis also made use of a subroutine
RSVOIR, which modeled the incompressible reservoir interaction effects
both by an extended Westergaard procedure and also with liquid finite
elements. Part III presents the stresses calculated in Techi Dam when
subjected to the Desigﬁ Basis Earthquake which was formulated for this
site by the CEER of National Taiwan University.

The principal conclusions of the investigations are that the
finite element model of the reservoir is significantly better than the
extended Westergaard model, and that Techi Dam is safe against damage

during the Design Basis Earthquake, which has a return period of 100 years.
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INTRODUCTION

In 1979, a cooperative research project was initiated by the Earth-
quake Engineering Research Center (EERC) of the University of California,
Berkeley and the Center for Earthquake Engineering Research (CEER) of
National Taiwan University, Taipei. Funding for the EERC part of the
investigation was provided by the National Science Foundation as part of
the U.S.-Taiwan Cooperative Research Program in Earthguake Engineering,
while the funding for CEER was similarly provided by the National Science
Council of Taiwan. The general purpose of the project was to improve and
verify analysis procedures for predicting the response behavior of
concrete arch dams when subjected to severe earthquake motions.

A major component of the research program involved the study of
Techi Dam, a doubly curved thin shell arch dam nearly 600 ft. high Tocated
on the Tachia River about 100 km south of Tajpei. This structure,
completed in 1974, is considered to represent good modern design practice
for a rather large dam, and therefore is appropriate for demonstrating
current capabilities for performing earthquake response analyses of arch
dams. The study of Techi Dam was divided into three phases: (1) field
measurement of its actual vibration mode shapes and frequencies, (2)
calculation of the vibration mode shapes and frequencies, and correlation
with the measured results, and (3) calculation of the dynamic response
te the Design Basis Earthquake, an event having a 100 year return period
at the dam site. The field measurement phase of the work included forced
vibration studies using EERC vibration generators and performed by EERC
personnel with the assistance of CEER researchers, as well as a series
of ambient vibration measurement programs carried out by CEER personnel.

Analytical studies were carried out both at EERC in Berkeley and at CEER



in Taipei. The seismic risk analysis for the dam site was conducted by
the CEER personnel in Taipei; this led to the definition of the response
spectrum for the Design Basis Earthquake that was used in the dynamic
analysis of the dam.

The purpose of this report is to describe the work done by EERC
personnel in the study of Techi Dam. It is divided into three parts,
corresponding to the three phases of the investigation listed above.

Part I describes the forced vibration study of the dam and presents the
mode shape and frequency results from that phase of the work. Principal
Development Engineer R. M. Stephen of EERC was in charge of that measure-
ment program, and he prepared Part I of the report. Part II describes
the analytical investigation of the mode shapes and frequencies performed
in Berkeley. This work was done by Research Assistant James S.-H. Kuo

as part of his Ph.D. dissertation research, and the details of the
analytical procedures are described in his report (1); only the essential
results are presented here, including correlation of the analytical
predictions with the measured data. In this correlation, results from
the ambient vibration study performed at the CEER, NTU (2) are discussed,
as well as the EERC data presented in Part I. In Part III the dynamic
response analysis of the Techi Dam is described briefly, and the expected
stress state due to the Design Base Earthquake combined with the static
gravity and water load effects is summarized. This analysis also was
performed by Research Assistant J. S.-H. Kuo as part of his doctoral
dissertation. The combined report integrating these various components

was written by the senior author.
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PART I  FORCED VIBRATION STUDY

GENERAL DESCRIPTIQN OF TECHI DAM

The Techi Dam is located on the upper reaches of the Tachia River
approximately 50 km east of Taichung and 100 km south of Taipei (Fig. 1).
The objective of the forced vibration study was to determine the resonant
frequencies and mode shapes of the dam.

The dam is a 180 m (590 ft.) high double-curvature, thin-arch
concrete structure, as shown in Fig., 2. It has a crest Tength of 290 m
(951 ft.) with the radius at the crest varying from approximately 115 m
(377 ft.) to 235 m (772 ft.). The thickness is 4.5 m {(14.8 ft.) at the
crest and 20 m (65.6 ft.) at the base. The overflow spillway located
near the center of the dam is 55 m (180.4 ft.) long and is depressed 7.75
m (25.4 ft.) below the normal crest elevation. Fig. 3 is a plan view of
the dam showing locations of the shaking machines and of the measurement
stations. Fig. 4 is an elevation view of the structure locking upstream.
The dam construction was completed in September 1974. The forced vibration

study was carried out and completed in June 1979.

FORCED VIBRATION TEST EQUIPMENT

Vibration Generators: Forced vibrations were produced by two rotating-mass
vibration generators or shaking machines, one of which is shown in Fig. 5
lTocated adjacent to station 10. These machines were developed at the
California Institute of Technology under the supervision of the Earthquake
Engineering Research Institute for the 0ffice of Architecture and
Construction, State of California (3). Each machine consists of an electric
motor driving two pie-shaped baskets or rotors, each of which produces a
centrifugal force as a result of the rotation. The two rotors are mounted

on a common vertical shaft and rotate in opposite directions so that the
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resu1£ant of their centrifugal forces is a sinusoidal rectilinear force.
When the baskets are lined up, a peak value of the sinusoidal force will
be exerted. The structural design of the machines Timits the peak

value of force to 5,000 1bs. This maximum force may be attained at

a number of combinations of eccentric mass and rotational speed, since the
output force is proportional to the square of the rotational speed as
well as the mass of the baskets and the lead plates inserted in the
baskets. The maximum force of 5,000 1bs. can be reached for a minimum
rotational speed of 2.5 cps when all the lead plates are placed in the
baskets. At higher speeds the eccentric mass must be reduced in order
not to surpass the maximum force of 5,000 1bs. The maximum opefating
speed is 10 cps, and the minimum practical speed is approximately 0.5
cps. At 0.5 cps with all lead plates in the baskets, a force of 200
1bs. can be generated. The relationship between output force and
frequency of rotation of the baskets for different basket loads is shown
in Fig. 6.

The speed of rotation of each motor driving the baskets is controlled
by an electronic amplidyne housed in a control unit. The control unit
allows the machines to be synchronized or operated 1807 out-of-phase. This
makes it convenient, in structures with a line of symmetry, to excite
either symmetric or anti-symmetric vibrations without changing the position
of either machine.

The vibration generators are located on the dam crest approximately
200 ft. apart. One vibration generator was bolted to the dam crest adjacent
to station 10. This was the master generator during the test program; the
other generator or “"slave" was bolted to the crest of the dam adjacent to
station 7. The location of this equipment on the crest of the dam oriented

to apply radial exciting forces, is shown in Fig. 3.



Accelerometers: Generally the transducers used to detect horizontal

accelerations produced by these shakers are Statham Model A4 Tlinear
accelerometers, with a maximum rating of + 0.25 g and a natural frequency
of approximately 15 Hz. However, in this experiment it was noted that a
Targe amount of noise was recorded when these accelerometers were used.

It was Tater found that the intake system on the dam generated a vibrational
frequency at between 16 and 20 Hz and because this was very close to the
natural frequency of the accelerameters, they were not operable. A single
+ 0.5 g Statham accelerometer was available with a natural frequency of
approximately 21 Hz and this was used in some cases to verify the frequency

response curves determined using the Ranger Seismometers.

Seismometers: When it was found that the + 0.25 g Statham accelerometers

would not respond properly, it was decided to use the Kinemetrics Ranger
Seismometers Model SS-1 as the vibration pickups because six of these

were available at the dam site. The Model $S-1 seismometer has a strong,
permanent magnet as the seismic inertial mass moving within a stationary
coil attached to the seismometer case. Small rod magnets at the periphery
of the coil produce a reversed field which provides a destabilizing force

to extend the natural period of the mass and its suspension. The resulting
seismometer frequency is 1 Hz, and damping is set at 0.7 critical. The
output for a given velocity is a constant voltage at all frequencies greater
than 1 Hz and falls off at 12 dB/octave for frequencies less than 1 Hz.

The Kinemetrics Signal Conditioner, Model SC-1, was used to amplify
and control simultaneously four seismometer signals. The four input
channels have isolated circuitry to integrate and differentiate the
amplified input signal. ATl outputs are simultaneously or independently

available for recording. A modification to the signal conditioner allows



for outputing each channel separately or for taking the sum or difference
on two channels and outputing the average of those channels. Each channel
provides a nominal maximum gain of 100,000. An 18 dB/octave low pass
filter is available with a cut-off frequency continuously selectable
between 1 Hz and 100 Hz for each channel. During these tests the filter
was set at approximately 8 Hz. A second signal conditioner supplied by
the National Taiwan University was used to amplify and control the
additional two seismometers.

In general for this study the amplifiers were set on the integrated

mode so that the output was proportional to the measured displacements.

Equipment for Measurement of Frequency: The vibration excitation frequen-

cies provided by the shaking machines were determined by measurement of

the speed of rotation of the electric motor driving the baskets. A tachometer,
attached to a rotating shaft driven by a transmission belt from the motor,
generated a sinusoidal signal of frequency 300 times the frequency of
rotation of the baskets. Hence, the maximum accuracy of frequency measure-
ments was + 1 count in the total number of counts in a period of 1 second
(the gating period), i.e., + 1/3 of 1% at 1 cps and + 1/9 of 1% at 3

cps.

Recording Equipment: A Rockland FFT 512/S Real-Time Spectrum Analyzer

was used to facilitate the rapid determination of the moda1‘frequencies.
This unit is a single channel analyzer that calculates 512 spectral values
from any given analog signal but displays only 400 to reduce aliasing
errors. Twelve analysis ranges are provided from 0-2 Hz to 0-10 KHz.

This equipment was used to obtain a preliminary estimate of the dam
frequencies, using ambient vibration signals from two seismometers as

described in the following section.



During the forced vibration tests, the electrical signals from
the signal conditioners were fed to a Honeywell Model 1858 Graphic Data
Acquisition System with 8-in. wide chart. In frequency-response tests,
the digital counter reading was observed and recorded manually on the

chart alongside the associated traces.

EXPERIMENTAL PROCEDURE AND DATA REDUCTION

Evaluation of Modal Frequencies: To measure the vibration frequencies

of the dam, two seismometers were mounted on the crest near stations 7
and 10, First a preliminary estimate of the frequencies was determined
using the ambient vibratory motion of the dam. For this purpose, the
output from the two seismometers was first summed and fed to the
spectrum analyzer to get the symmetric modal frequencies, and secondly
the output was differenced to get the anti-symmetric modal frequencies.
With the ambient modal frequencies known, the forced vibration generators
were used to determine the resonant frequencies by sweeping the freqguency
ranges noted from the ambient study.

The sweeping technique involves increasing the exciting frequency
siowly until traces on the recording chart are large enough for
measurement. Above this level, the frequency is increased in steps
until the upper speed 1imit of the machine is reached. Near resonance,
where the slope of the fregeuncy-response curve is changing rapidly,
the freguency-interval steps are as small as the speed control permits;
however, in frequency ranges away from resonance these steps are
relatively large. Fach time the frequency is set to a particular value,
the vibration response is given sufficient time to become steady-state
before the traces are recorded. At the same time, the frequency of

vibration, as recorded on a digital counter, is observed and written on



8

the chart with its corresponding traces. Plotting the vibration
response at each frequency step results in the freguency-response curve.
In the case where the accelerometer was used, frequency-response
curves in the form of acceleration amplitude versus existing frequency
could have been plotted directly from the data on the recording chart.
However, such curves represent response to a force which increases with
the square of the excifing frequency; to obtain the so-called normalized
curves for constant force, each acceleration amplitude should be divided
by the square of its corresponding exciting frequency (assuming linear
stiffness and damping for the structural system). If the original accele-
ration amplitudes are divided by the fourth power of the frequency, the
displacement frequency-response curve for constant exciting force is

obtained.

Measurement of Mode Shapes: Once the resonant frequencies of the structure

were found, the mode shapes at each cf these frequencies were determined.
Because there were insufficient transducers to measure the vibration
amplitude of all the required points simultaneously, it was necessary,
after recording the amplitudes of a number of points, to stop the
vibration, shift the instruments to new positions, and then vibrate the
structure at resonance once more. This procedure was repeated until the
vibration amplitude of all reguired points had been recorded.

Because the structure may not vibrate at exactly the same amplitude
in each test run, it was necessary to maintain one reference instrument
(near a point of maximum displacement) during all the mode shape measure-
ments for a particular mode. Subsequently, all measured modal vibration
amplitudes were adjusted to a constant value of the reference amplitude.

It was necessary to make corrections to the recorded amplitudes

to compensate for differences between calibration factors for each



seismometer. However, absolute calibration was not required to deter-
mine the mode shapes; cross-calibration was sufficient, The seismometers
and all equipment associated with them in their respective recording
channels were cross-calibrated simply by placing them all together and
measuring the vibration amplitude of all of the seismometers when the

structure was vibrated at each of the resonant frequencies.

Determination of Modal Damping Ratios: Damping ratios were found from

the normalized frequency-response curves by the formula:

= o
where
£ = damping ratio for a selected mode
f = resonant frequency for that mode
Af = difference in frequency of the two points on the resonance

curve for that mode with amplitudes of 1/ /2 times the
resonant (peak) amplitude.
Strictly, the expression for £ is only applicable to the displace-

ment resonance curve of a Tinear, single degree-of-freedom system with
a small amount of viscous damping. However, it has been used widely
for systems differing appreciably from that for which the formula was
derived, and it has become accepted as a reasonable measure of damping.
In this respect, it should be remembered that in the case of typical
civil engineering structures, generally it is not necessary to measure
damping precisely in a percentage sense; it is sufficient to know the
range in which an equivalent viscous damping coefficient lies. Mean-
ingful ranges for an arch dam might be defined as: under 1%, 1-2%, 2-5%,

5-10%, over 10%.
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EXPERIMENTAL RESULTS

Modal Frequencies and Damping Ratios: In searching for the resonant

frequencies, the seismometer or accelerometer (as the case may have
been) was located at either station 7 or 10; in most cases station 7
was used. The initial frequency search was started on June 7, 1979,
but it was not until June 8 that data actually used in the frequency
response curves was taken. The water elevation on this day was 1393.4
m (4570.4 ft.), some 17.6 m (57.7 ft.) below the crest elevation of
the dam.

The frequency response curves determined in the regions of the
ambient frequency measurements are plotted in Figs. 7 through 13.
Symmetric or antisymmetric excitation was used for each case, as noted
on the figure. The curves in each case are plotted .in the form of
normaiized displacement amplitude versus exciting fregquency. For
convenience, the actual peak exciting force (Fr) and maximum displace-
ment amplitude (Ur) for each of the excited resonant frequencies are
shown on the plot along.with the date the data was taken and the water
elevation on that date.

It is interesting to note that the frequency response curves
plotted in Figs. 7 and 11 both represent essentially the same mode
(f = 3.24 to 3.26 Hz), even though the first was produced by symmetric
excitation and the other by antisymmetric excitation. As may be seen
from the mode shape plots presented in the following section, significant
energy is put into the structure when vibrating with this mode shape
if either symmetric or antisymmetric excitation is applied.

The resonant frequencies and damping factors evaluated from the

response curves are listed in Tables 1 and 2, respectively. The
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exciting force generated by each shaking machine and the corresponding

peak displacement amplitude induced at each resonant frequency are

given in Tables 3 and 4, respectively.

TABLE 1 MODAL. FREQUENCIES (Hz)
] Mode

Excitation 1 » E 3 4 5 6
Symmetric 3.24 | 4.80 5.55
Anti-Symmetric 2.65 3.26 5.04 6.84

TABLE 2 DAMPING RATIOS (%) FROM

RESONANCE CURVES
] _ Mode

Excitation 1 9 3 z 5 6
Symmetric 6.0 6.9-9.7 4.1-5.5
Anti-Symmetric { 2.4-4.314.6 4,1-5.1 2.9

TABLE 3 APPLIED EXCITING FORCE (Tb)

(Each Machine)
Mode

Excitation 1 2 3 4 5 6
Symmetric 2088 8464 7120
Anti-Symmetric 7246 6972 8464 4964

TABLE 4 PEAK DISPLACEMENT AMPLITUDES

(x 1072 in).
Mode

Excitation 1 2 3 4 5 6
Symmetric 0.268 0.233 0.180
Anti-Symmetric 0.449 | 0.351 0.230 0.051
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Mode Shapes: Once the resonant frequencies were determined, the modal
displacements of the crest and of vertical sections at stations 4, 7,
and 11 were found. Both radial and tangential readings were taken.
The seismometer readings were normalized and then corrected with the
appropriate calibration factors. For both the crest and the vertical
sections, the readings were normalized relative to the readings at
station 7.

The crest mode shapes are plotted in Figs. 14 through 20 and the
vertical section mode shapes are shown in Figs. 21 through 29. As was
noted above, the mode shape produced by symmetric excitation (Fig. 14)
is essentially the same as that produced by antisymmetric excitation
(Fig. 18). Also it may be seen that the positions of the shakers are
such that significant energy is supplied whether the two machines are

operating in-phase or out-of-phase.

Discussion of the Results: During the initial stages of the test

program the water elevation was rather constant. However, starting the
week of June 11 steady heavy rains fell in the watershed for the
reservoir, and the water level rose from 1395.45 m (4577.1 ft.) on

June 11 to 1401.1 m (4595.6 ft.) on June 15, a rise of some 5.65 m
(18.5 ft.). The large rise in water level took place after most of the
resonant frequencies had been determined, but before the mode shapes
were measured. Time did not permit redoing the frequency response
curves, so the mode shapes were determined using the resonant frequencies
which had already been determined.‘ It was noted during the mode shape
runs that the peak or maximum response on the seismometers were at a
somewhat lower frequency than had previously been determined during

the response curve determinations. However, these differences
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were not very large, and it is felt that the measured mode shapes are

a good reflection of the true mode shapes.
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PART IT  ANALYSIS OF VIBRATION PROPERTIES

FORMULATION OF MATHEMATICAL MODEL

Type of Model Selected: Because an arch dam is a complex three-dimensional

system of arbitrary geometric form, the finite element method is the only
analytical procedure suitable for implementation into a general purpose
arch dam analysis program. Such a general purpose program, called

ADAP (4), was developed in 1972-73 by the EERC under a research grant
from the U.S. Bureau of Reclamation; it was considered to be the best
program available for use in this project, and therefore, was selected for
the analysis of Techi Dam,

ADAP provides a variety of 3D solid elements for modeling the body
of a concrete arch dam. These include thickshell elements (THKSHL),
based on an isoparameteric formulation which provides for quadratic
geometric form and displacements in the two faces that represent the dam
extrados and intrados, but only Tinearconfigurations and displacement
patterns through the thickness of the dam. These elements use reduced
integration to improve their ability to model the bending mechanism of
the shell. Also included in ADAP are transition elements that facilitate
the attachment of the dam to the foundation rock; such elements are
needed because the foundation rock is modeled by 8-node brick elements.
In addition, a three dimensional shell element (3DSHEL) is provided
that is similar in character to THKSHL, but expresses the nodal displace-
ments in rectangular coordinates rather than reducing them to mid-surface
translations and rotations.

Because the ADAP development project was not extended te include
the reservoir interaction mechanism (as originally planned), the program

described in Reference 4 takes no account of reservoir interaction in
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the dynamic response analysis. Therefore, an important part of the
present cooperative research program was the development of pre-
processor subroutines for representing the reservoir effect. Two
such subroutines were prepared, both contained in a program with the
name RSVOIR. A detailed description of this program is contained in the
report by J. S.-H. Kuo (1} so only a brief general description will
be provided here.

In both of the RSVOIR subroutines, it is assumed that the reservoir
water is incompressible, so its effect on the dynamic response of the
dam can be represented by an "added mass" matrix; in each subroutine
‘the added mass matrix is evaluated in a form suitable to be combined
with the mass matrix of the concrete dam elements evaluated by ADAP.

The simpler subroutine is merely an extension of the Westergaard procedure
originally developed for gravity dams (5). The mass associated with

each node of the dam face is based on the Westergaard pressure distri-
bution formula, but is modified by pre- and post-multiplying by the
direction cosine vector to account for the orientation of the dam face
relative to the rectangular coordinate axes.

In the second subroutine, the reservoir is discretized as an
assemblage of fluid elements in which the nodal quantity is the hydro-
dynamic pressure. Because the interaction mechanism is represented by
the liquid pressure at the dam face, all other nodes in the reservoir
model can be eliminated and the interface pressures can then be converted
into the added mass matrix. The liquid elements used to model the
reservoir are of the same type as the 3DSHEL elements available for
modeling the concrete. The major difference between the added mass
matrices produced by the two subroutines is that the finite element

result is fully coupled while the Westergaard matrix has no nodal coupling.
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In other words, when using the finite element matrix, an acceleration
at any dam face node will induce a change of pressure at all other face
nodes; with the Westergaard model the change of pressure is indicated

only at the node that is accelerated.

Material Properties: The mechanical properties used in formulating

the finite element models of dam and foundation were as follows:

Property Dam Concrete Foundation Rock Units
Youngs Modulus, E 5.677 x 10° 8.516 x 10°  psi
Poisson’s Ratio, v . 0.21 0.21 ---
Unit Weight, p 150 162 - pcf
Compressive Strength, O h365 21,000 psi

Tensile Strength, o 500 930 psi

t
No data was available for determination of temperature changes in the
dam, therefore thermal stresses were ignored. This is equivalent to
assuming that all stresses induced by temperature changes have been
eliminated by creep effects.

The only property of the reservoir water that need be considered
in evaluating the reservoir added mass matrix is its unit weight; this

was taken as 62.3 pcf.

Finite Element Mesh Arrangements: In defining the finite element model

for analysis of Techi Dam, the element mesh arrangements must be
established for the concrete dam body, for the foundation rock in
contact with the concrete, and for the reservoir water if the finite
element reservoir model is used. The meshes used for each of these

componenté are described in the following sub-sections.
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(1) Dam Body: The ADAP program includes a mesh generator subroutine
intended to simplify the development of the mesh of 3-dimensional
elements representing the dam body. The basic concept of this generator
is that all nodes are arranged in horizontal sections of the dam and in
vertical Tines projected up from the intersection of these horizontal
lines with the canyon wall. 1In the case of Techi Dam, however, a
pulvino block forms the contact with the abutment rock, and a perimetral
joint surface is provided between this block and the dam body, as shown
in Fig. 4. Also, the contraction joints between the blocks of the dam
body are inclined rather than vertical. Consequently, the standard
mesh generator was not appropriate to model this dam, and it was necessary
to use the option of defining directly the nodal point coordinates for
the dam body mesh.

For this purpose, it was decided to use horizontal node Tines as
in the mesh generator approach, but to provide joints at the dam-
pulvino block interface, and to use inclined (rather than vertical) node
lines to obtain more favorable element shapes. A preliminary arrangement
was based on four horizontal section Tines and defined the pulvino block
by appropriately positioned nodes along these sections (plus additional
block nodes in the canyon base). However, preliminary studies demon-
strated that the resulting highly skewed pulvino block elements did not
perform well, so the inner block nodes were shifted upwards to make the
sides of the block elements normal to the abutment. The final mesh
arrangement for the dam concrete is shown in Fig. 30; it contains 26
elements in the dam body and 10 elements in the pulvino block. Both
THKSHL and 3DSHEL elements were considered in the dam body for preliminary
studies, but the mesh finallyselected employed only 3DSHEL elements in

the body and pulvino block.
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(2) Froundation Rock: ADAP also includes a mesh generation option to
model the foundation rock, and provides for three different degrees of
refinement. The foundation mesh is constructed on planes cut into the
rock normal to the dam-rock contact surface at the interface node
locations. Figure 31 shows the trace of these normal planes as they
intersect the X-Z plane of the dam coordinate axes in the Techi Dam model.
On each of these normal section planes, a semi-circle is drawn from the
concrete-rock interface with radius equal to the dam height. Six nodes
equally spaced around this semi-circle then define the boundary of the
foundation rock. Figure 32 shows these boundary nodes for the six
sections associated with the negative "X" portion of the foundation rock.

Three different degrees of refinement of the foundation element mesh
are available in the ADAP subroutine. In the coarsest mesh, nodés are
located only in a local three element system at the dam interface, and
at the outer boundary of the rock, while in the intermediate level of
refinement additional nodes are interposed between the local elements
and the boundary positions. Preliminary analyses indicated that the inter-
mediate mesh provided adequately for the foundation flexibility, so it was
adopted for all analyses. Thus, the foundation model consisted of 130
eight node brick elements. The rock beyond this foundation zone was
assumed to be rigid, so the boundary nodes (shown in Fig. 32) were all
fixed in position.

In carrying out dynamic analyses, the foundation rock could be
considered to have mass, and thus contribute to the inertial forces
acting in the structural system; or it can be treated as massless and
thus introduce only a flexibility effect to the system behavior as it
does in static analyses. Because the seismic input applied to the dam

represents a free-field surface effect (not the motion at the foundation
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block boundary} it is more consistent to assume the rock is massless
and thus avoid wave propagation effects in the foundation block. This
approach also is more efficient computationally because the interior
nodes in the foundation rock can be eliminated by static condensation,
and thus do not increase the number of system degrees of freedom. For
these reasons, the foundation elements were assumed to be massless in

these analyses.

(3) Reservoir Water: As was mentioned earlier, added mass matrices
representing the reservoir interaction effects were evaluated using both
a modified Westergaard model and a finite element model. The Westergaard
mass coefficients depend cn the water pressure expressed by the Wester-
gaard parabolic formula multiplied by the dam surface area tributary to
each dam interface nodal point; these values are then modified to account
for the orientation of the dam face. Obviously, no finite element mesh
is required for the reservoir water in this approach; it depends only on
the mesh arrangement for the dam face.

Where the reservoir hydrodynamic pressures are expressed by the
finite element method, nowever, it is necessary to mode] an adequate
portion of the reservoir as an assemblage of 1iquid elements. In
preliminary studies it was determined that a reservoir model extending
upstream for a distance three times the dam height showed little effect
from the assumed upstream boundary, so this size reservoir was adopted
in this investigation. As was noted earlier, the reservoir elements were
of the same form as the 3DSHEL elements in the dam body. They have two
quadratically curved surfaces each defined by eight nodes {(corner nodes
and mid-side nodes). The other surfaces are defined by straight lines

interconnecting corresponding pairs of nodes on the curved surfaces. The
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reservoir mesh was formed by projecting these straight node lines upstream
from the nodes at the dam interface; five layers of water elements were
defined, with the upstream dimension increased gradually from layer to
layer, as shown in Fig. 33. Boundary nodes at the rock interface on the
sides of the reservoir and at the upstream end of the model were assumed
fixed (immovable), and the pressure was assumed zero at the top surface
nodes (waves neglected).

If the reservoir level happens to coincide with the horizontal level
of a line of concrete dam nodes, the evaluation of the reservoir added
mass coefficients is straightforward, However, when dealing with
practical vibration analyses, the reservoir may be at any arbitrary level,
and it is necessary to define the vertical dimension of the top layer of
reservoir elements to represent the actual water depth. Thus the upper
nodes of these elements are not consistent with the elevation of the
corresponding concrete interface nodes, and the integration procedures
used to evaluate the added mass coefficients must be modified. The
technique used in RSVOIR (1) involves merely defining the concrete interface
accelerations at the locations of thé standard fluid element integration.

points, using the concrete element interpolation functions.

RESULTS OF ANALYSES

General Comments: The basic purpose of the vibration analyses of Techi

Dam was to obtain a reliable set of modal coordinates to be used in the
mode-superposition earthquake response analysis of the structure. The
purpose of the vibration measurement program was to provide comparative
data for use in refining the mathematical model to be used in the
vibration analysis, and ultimately to give confidence in the earthquake

response analysis results. The principal assumptions made in formulating
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the mathematical model that needed verification or refinement were the
type of reservoir model to be used (finite element or Westergaard), the
Young's Moduli of the dam concrete and foundation rock, and the mesh
arrangement.

To decide on the optimum mesh arrangement for the dam body and
foundation rock, a series of eigenproblem analyses were performed, using
the subspace iteration method incorporated in ADAP. Analyses of the
system without foundation or reservoir led to the choice of the dam body
mesh (Fig. 30), and analyses of this dam model with two levels of
foundation refinement led to the choice of the foundation model discussed
above.

Both the Westergaard and the finite element reservoir model were
used for most vibration analyses so that both could be used for correla-
tion with the measured vibration results. However, it soon became apparent
that the Westergaard model tended to exaggerate the reservoir interaction
effect and that the finite element results were more reliable. Consequently,
the Young's Modulus used for the dam and foundation rock was verified by
satisfactory agreement between the measured vibration frequencies and the
analytical results using the finite element model, as wiil be demonstrated
later.

Another comparison between the Westergaard and the finite element
reservoir models was made by assuming that the dam was rigid and sub-
jecting it to a unit acceleration in the upstream direction. The pressure
distribution indicated by the two forms of added mass matrix are depicted
in Fig. 34. This figure clearly shows that the Westergaard model indicates
excessive reservoir interaction; this conclusion will be verified later

by comparisen of analytical results with the measured vibration frequencies.
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Correlation of Vibration Frequencies: Because the level of water in the

reservoir has a major effect on the Qibration frequencies and because the
water level changed considerably during the vibration measurement program,
it was necessary to carry out the vibration analysis of the dam for a
suitable range of water levels. In Fig. 35 is shown the variations of
first mode frequency with the water level, expressed as the percentage

of the empty reservoir frequency. Analytical results for both the
Westergaard and the finite element model are shown, and the excessive
reservoir influence shown by the Westergaard model is apparent. Also
shown is the corresponding result from a study of a typical gravity dam(6).
The fact that the influence of the upper part of the reservoir is similar
for the arch and gravity dams is interesting, but probably the curve for
an arch dam in a wider valley would have a steeper slope.

The changes of frequency as a function of water level are presented
in different form in Fig. 36, which shows analytical and experimental
results for the first four vibration modes. Agreement between analysis
and experiment is quite good for the 90% reservoir Tevel, but it is
evident that the finite element model tends to exaggerate the reservoir
interaction for the full reservoir. Also, the results shown for the
Westergaard model clearly overestimate the reservoir interaction for all
water levels. The complete set of analytical and measured frequencies

for all modes, based on the 90% water level, is presented in Table 5.

Correiation of Vibration Mode Shapes: Although the mode shapes do not

provide a quantitative correlation between analytical and experimental
results, it is important to compare the shapes for each mode in order
to ensure that the same mode actually is being compared. Plots of the
measured and calculated radial displacement components along the crest

of the dam for modes 1 through 7 are presented in Fig. 37 a through g,
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TABLE 5 CORRELATION OF VIBRATION FREQUENCIES (Hz)

Reservoir at 90% Depth (538 ft.)

—

§ Mode Experimental Analytical
No. | Type Forced Ambient FEM Westergaard**

1 AS 2.65 2.64 2.76 2.27
2 s 3.6 3.27 3.10 2.71
3 S 4.56* | 460 | 4.75 4.06

4 AS 5.03 é 4.87 i 5.06 4.57

5 AS 5.53 é 5.74 % 5.43 4.65

6 ) (Missed) 5.96 ; 5.79 4,79

7 S 6.82 6.85 % 6.52 5.47

*Mcde shapa not found.

*k
By interpolation for 90% depth.
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respectively. Also shown on the same sheets are the radial displacement
patterns at vertical sections through stations 4, 7, and 11. It will be
noted that the experimental mode shapes were not obtained for modes 3
and 6, although a frequency response curve was established indicating a
modal frequency of 4.56 Hz for mode 3.

It is apparent from these figures that several modes have rather
similar shapes and that it is necessary to examine both the crest
displacements and the vertical section displacements to establish the
appropriate model number. Also it must be realized that the vibration
generators do not excite any single pure mode shape, but actually
5rovide input to all modes having finite radial displacements at the
shaker locations. Of course, the modes with frequencies close to the
excitation frequency are amplified significantly, and if the structure
has very low damping the vibration mode generally will be apparent
from this test procedure. But with damping ratios in the 5 to 10% range,
significant interaction will be excited between modes with closely

spaced frequencies, and such mode shapes will not be well defined by this

test procedure.
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PART 11T ANALYSIS OF EARTHQUAKE RESPONSE

METHOD OF ANALYSIS

Although it is recognized that significant nonlinear mechanisms
may participate in the earthquake response of an arch dam, it is customary
to neglect such mechanisms in a seismic safety evaluation and to assume
that the dynamic behavior is linearly elastic. The magnitude and distri-
bution of stresses resulting from the linear response analysis then
provide a basis for judgement concerning the possibility of significant
nonlinear behavior and of the consequences of such inelastic deformations.
Because the mathematical model of an arch dam-foundation-reservoir system
generally includes hundreds of degrees of freedom, it is desirable to take
advantage of the assumed linearity of the system to evaluate the dynamic
response in terms of its vibration mode coordinates. Assuming that the
system has proportional viscous damping, the modal coordinate response
is completely uncoupled, i.e., the response in each mode is independent
of all other modes, and the total response is obtained by superposing
the single degree of freedom modal responses. This is the mode-super-
position method of analysis, and is the procedure incorporated in the
ADAP program.

The equation of motion of the dam-foundation-reservoir system,

represented by the finite element method, may be written

m+m ¥ +cyrkye=-in+mirilt) (1)
where
v = vector of nodal displacements of finite element mesh expressed
in rectangular cartesian coordinates
m = consistent mass matrix for the concrete dam elements
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= added mass matrix from reservoir (non-zero at interface nodes
only)

¢ = viscous damping matrix (assumed proportiocnal)

k = stiffness matrix for dam and foundation rock

r=<r v or>

X'y z
r, = vector with ones corresponding to the "x" displacement
components in v and zeros otherwise
V(t) =<v ¥ ¥ ST = input earthquake accelerations in x, y, z
-g gx gy gz

Solving the undamped eigenproblem

[k-u®tm + m 1]y = 0 (2)
for the mode shapes & = <¢; ¢, b3 --->
and frequencies = <w$ wg wg ...>T

and introducing the modal coordinate transformation

v=20Y (3)

where

_ T
Y = <Y] Y2 Y3 -

leads to an uncoupled set of modal coordinate response equations of the

form
. . 2 £h
in which
. -
Mn = éq[m, + ma] Qn = modal mass
&n = modal damping ratio
LT
L mtmlr
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It should be noted that Eq. 4 represents the modal coordinate response
due to earthquake accelerations applied in the three coordinate axes,

yg, and £ defines the corresponding three component effective earth-

s
quake input vector (due to unit accelerations).

If the modal coordinate response history Yn(t) is evaluated by
Eq. 4 for all modes from any given earthquake history, then Egq. 3
provides the corresponding history in terms of the finite element

coordinates v(t). The solution of £q. 4 may be expressed by means of

the Duhamel integral as follows

£
Y (t) = - Mnnmn v (t) (5)
where .
-£ (t-1)
v (t) = j AORI 0 w, (t-1) dr (6)
0

is one form of the Duhamel integral. For design analyses or seismic safety
studies, however, only the maximum modal response need be determined, and
this may be evaiuated conveniently from the earthquake response spectrum.
For this purpose Eq. 6 will be rewritten in terms of the three earthquake

components as follows:

Yn(t) Ynx(t) + Yny(t) + Ynz(t)

1
- g v
Mn Wy nx nx

(t) + V (t) + £

£ny ny nz vnz(t)]

Then considering the maximum response from the x component earthquake

(with similar expressions for the other components)

= n_ g (7)
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where va is called the pseudo-velocity response spectrum of the x
n

component earthquake ¥ _(t) and is given by the maximum value of the

gx
Duhamel integral (Eq. 6) achieved at any time during the earthquake.

The earthquake response spectrum defined for the Techi dam site is
discussed in the following section. It represents a single coordinate
component of the earthquake motion, and may be applied as a separate
effect in any direction. The corresponding maximum value of the modai
coordinate then is given by Eq. 7. However, because the modal
coordinates do not achieve their maxima at the same instant of time, the
maximum displacement in finite element coordinates cannot be obtained
by introducing the modal coordinate maxima into Eq. 3. Instead, the
maximum modal values of the desired response quantities must be evaluated
separately and then superposed by a procedure taking account of the
probability of maximum combination. The most commonly used combination
procedure is the square root of the sum of the squares method (SRSS), as

follows:

i
~
o
>

2 2z
v )T+ (g, ¥ IS N
-max =1 Y22 ax (8)

HO
~
P
Q

x
max maXx maXx

It should be noted that the maximum values given by Eq. 8 are associated
with the response spectrum of a single earthquake component. If the
combined effect of more than one earthquake component is to be determined,
then the separate results from each earthquake component may be combined

by the SRSS method.
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DESIGN BASIS EARTHQUAKE

As a part of this cooperative research effort on Techi Dam the
CEER of National Taiwan University made a seismic risk analysis of the
dam site {2). Assuming a 50 year life span {or exposure period) for
Techi Dam, and earthquake return periods of 25 years and 100 years,
respectively, both an "Operational Basis Earthquake™ (0BE) and a
“Design Basis Earthquake” {DBE) were defined. The design criteria
associated with these intensities of earthgquake motion are that the
dam should remain functional after the OBE (hence no inelastic deforma-
tions or damage should occur), whereas some damage and concrete cracking
are permitted during the DBE, but there must be no possibility of
collapse or release of the reservoir.

The OBE and DBE elastic response spectra for a 5% damping ratio,
specified in Reference 2, are presented here in Fig. 38. From these
curves it may be noted that the first mode spectral velocity for Techi

Dam (using the calculated first mode frequency f, = 2.75 Hz) are about

]
23 and 34 cm/sec, respectively. Of course, the values for the higher

modes are smaller, according to the shapes of these curves.

CALCULATED STRESSES IN TECHI DAM

Dynamic stresses in Techi Dam were calculated by the ADAP program
using the analysis procedure outlined above. Pseudo-velocity response
spectrum values were taken from the Design Basis Earthquake spectrum of
Fig., 38 and applied in Eq. 7 to obtain the maximum response in each mode.
Then the maximum modal stress values were calculated at the upstream
and downstream faces of the dam (extrados and intrados), making use of the
finite element stress coefficients. The modal stresses were evaluated

at the element integration points in terms of vertical and horizontal
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components so that they could be superposed by the SRSS method. Then
contour plots were made of the superposed stress values, showing lines
of constant stress value on the upstream and downstream faces.

One of the advantages of the mode superposition method of earthquake
response analysis is that relatively few modes need be considered.
Especially in a SRSS response spectrum analysis, it is found that the
higher modes have 1ittle effect on the calculated maximum stresses. To
determine the number of modes required in the stress analysis of Techi
Dam, a sequence of analyses was carried out including 3, 6, 9, 12, and
15 modes; i.e., the contributions of groups of these additional modes
were included sequentially in Eq., 8. Based on this study, it was
concluded that modes above number 8 did not make any significant contri-
bution, and the results presented here are from the SRSS combination
of the first eight modes.

Because an earthquake applied in the upstream-downstream (U-D) direction
tends to excite the essentially symmetric vibration modes while a cross-
canyon (C-C) excitation excites mainly the antisymmetric modes, it was
decided to study the effect of the DBL applied separately in the x and in
the y global coordinate directions. It must be noted that the results
of the SRSS combination (Eq. 8) are always positive, so there is no
indication of antisymmetry in the dynamic response to a cross-canyon
input even though the response motion may be essentially antisymmetric.

Of course the dynamic earthquake loading is only a part of the load
acting on Techi Dam. In addition it is subjected to static water pressure
from the reservoir and to static gravity loads due to its own weight. In
general, the dam is also subjected to stress changes resulting from
temperature variation and creep; however, nc information was available on

these mechanisms so such stresses were neglected in this investigation.
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The ADAP program has the capability of calculating directly the static
stresses due to water load and dead weight. The hydrostatic pressure
distribution is evaluated and converted into nodal loads acting normal

to the dam face, and the gravitational body force is similarly converted
into consistent element nodal loads. The program then solves the assembled
static equation of equilibrium to determine the static nodal displace-
ments, v, and applies the element stress coefficients to obtain the stress
components at the integration points on the dam face.

Results presented in the following sections include Tyx and ny
stress contours on the upstream and downstream faces due to the static
Toad alone, and then for the SRSS earthquake stresses combined with the
static stresses. The earthquake effects are presented fifst for the
upstream-downstream earthquake, and then for the cross-canyon earthquake.
The static stresses do have their appropriate sign (+ = tension,

- = compression) so in combining the SRSS earthquake stresses with the
static stresses, the maximum {fensile) combination was obtained by

adding the SRSS values to the static values, while the minimum (maximum
compression) combination was obtained by subtracting the SRSS values

from the static. It must be noted here that the stiress components are
identified in local element coordinates rather than global, so Tyx
represents the horizontal stress component in the dam face (arch stress)

while ayy represents the vertical stress component {cantilever stress).

Static Stresses: The static stress contours for the upstream face are

presented in Figs. 39 a and b for Oy and ny’ respectively, while the
corresponding results for the downstream face are presented in Figs. 39 ¢
and d. These figures clearly show that the dam is well designed for

static loads and that the symmetric loading produces essentially
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symmetric stress patterns. The peak compressive stress of about 800 psi

)

is well within the strength of the concrete. The arch stresses (Uxx
show almost no tensile values, while in the cantilever direction the
maximum tensile stresses are only 50 and 75 psi on the upstream and

downstream faces respectively, again well within the concrete strength

in tension. The contours indicate a symmetric downstream arch displace-

ment that reaches maximum curvature at about two-thirds dam height.

Static plus Upstream-Downstream Earthquake: The maximum compressive

stress contours (minimum Tyx and oyy) due to static loads plus upstream-
downstream (U-D) earthquake are presented in Fig, 40 a, b, ¢, and d, 1in
the same sequence. Comparison with Fig. 39 shows that compression due
to the earthquake in this direction merely amplifies the static compressive
stresses, increasing them by about 50 percent. Clearly, these results
show no risk of compressiye failure of the concrete.

The maximum tensile stress contours (maximum Tyx and Uyy) due
to static loads plus the U-D earthquake are shown in Fig. 41, a-d, again
in the same sequence. The general pattern of these arch stress components
is similar to the static arch streés resuits, but with a very large added
tensile component. The arch tensile stresses near the crest of the dam
have very high values with an indicated maximum of over 1600 psi right
at the crest in the center of the upstream face. However, arch stresses
in excess of 600 psi are limited to about the top 10 meters upstream
and are localized in a top-center zone of about 20 meter radius on the
downstream face. In the cantilever direction, the maximum tensile
stresses are about 250 psi on the upstream face and about 400 psi down-
stream. There are within the expected tensile capacity of the concrete,

so there should be no cantilever cracking due to this earthquake.
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Static plus Cross-Canyon Farthquake: Figures 42 a-d presents the

maximum compressive stress contours due to the static load plus cross-
canyon (C-C) earthquake. Comparison with Fig. 40 a-d shows that the two
earthquake orientations have similar effects on the maximum compressive
stress contaours. Both produce amplifications of the static stress values,
but the amplification effect due to the U-D earthquake is greater in the
central section of the dam, while it is greater near the quarter span
sections for the C-C earthquake. The peak compressive stress is less

than 1200 psi, so there is no danger of compressive failure due to this
earthquake.

The maximum tensile stress contours due to static loads plus C-C
earthquake are shown in Fig. 43 a-d. Comparison of these with the U-D
earthquake effect in Fig. 41 shows that the C-C direction produces less
critical tensile stresses. The arch stress patterns are generally of
similar form, but are significantly less tensile in Fig. 43. The same
type of conclusion can also be drawn from~the cantilever tensile stress

patterns; i.e., the stresses due to the C-C earthquake are less critical.

DISCUSSION OF STRESS RESULTS

From the results presented above, it is clear that Techi Dam is
easily able to resist the static stresses due to gravity and water
pressure loads; compressive stresses reach only a small fraction of the
compressive strength of the concrete, and any potential static failure
of a well designed arch dam must result from concrete crushing (assuming
that the geological structure of the abutment rock is adequate). The
intensity of thecantilever tensile stresses is well within the expected
static tensile strength of the concrete, which may be taken as about 7.5

percent of the compressive cylinder strength. Using the specified value,
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o, = 5365 psi, the allowable static tensile strength would be about
400 psi.

On the other hand, the U-D earthquake input induces dynamic tensile
stresses at the crest region in excess of 1600 psi. Assuming that the
dynamic tensile strength is 12.5 percent of the static compressive
strength, the tensile capacity of this material would be about 670 psi,
hence it is apparent that some type of tensile separation would be
anticipated in the crest region of the dam during the Design Basis
Earthguake. 1In fact, even the Operational Basis Farthquake which has a
first mode spectral velocity about 2/3 that of the DBE would induce
tensile crest stresses of about 1100 psi, again well in excess of the
tensile strength.

However, the tensile stress patterns induced by the U-D earthquake
plus static loads (Fig. 41) must be examined in greater detail before any
conclusion may be drawn about possible cracking or failure. First, it
must be emphasized that the tensile stresses are excessive only in the
arch direction; there is no indication of possible cantilever cracking.
Second, the really severe tensile stresses are localized in the top
10 meters of the upstream face, and from the stress contour configuration
on the upstream and downstream faces it may be concluded that the critical
deformation pattern involves upstream "bowing" of the central half of
the dam crest. Thus the peak tensile stresses at the upstream face combine
the effects of tensile arch action with the upstream bending mechanism.
From the view of the dam shown in Fig. 4, it is evident that these arch
tensile stresses cannot be developed. The contraction joints between
the vertical blocks of the dam cannot resist tension; the joints near
the crest of the dam would be expected merely to open up, with the greater

tendency for opening at the upstream face.
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0f course, the contraction joint opening is a nonlinear behavior
mechanism and is not accounted for in the linear mode-superposition
response spectrum analysis. Hence, the results presented here merely
demonstrate that nonlinear behavior is to be expected, but do not
indicate the true magnitudes of the resulting stresses. However,
because the indicated joint opening is quite localized in this structure,
it may be concluded that the vibration properties would not be affected
greatly, and thus that the maximum response displacements wouid be only
slightly modified. Accordingly, it may be concluded that the indicated
elastic cantilever stresses as well as the compressive arch stresses, are
a reasonable approximation of the actual nonlinear resuit.

The tensile arch stresses are fictitious, because the contraction
joints would open as soon as tensile deformations were indicated. When
intense stresses are indicated at the upstream face, it is probable that
the contraction joint opens through the entire thickness of the crest
structure, due to the combined tensile arch and bending effects.

On the other hand, the peak tensile stresses on the downstream face
are probably associated with downstream bowing of the arch; thus it
involves a bending effect that exceeds the arch compression mechanism.

In this case, the contraction joint will open only part way through the
dam thickness, and the compressive stresses at the upstream face will
be accentuated by the opening mechanism. However, the peak compressive
arch stresses on the upstream face indicated by the Tinear response
analysis are only about 1600 psi, so it is apparent that there is
adequate reserve capacity to avoid a dynamic crushing failure in this
region resulting from stress concentration effects associated with the

contraction joint opening on the downstream face.
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Based on this evaluation of the dynamic response behavior, it
may be concluded that Techi Dam can resist the Design Basis Earthquake
without damage. Some "working" (movement) of the contraction joints can
be expected in the central half of the dam, for ten meters below the
crest, but this working will be mainly at the upstream face, and therefore
only partly available for inspection. Some contraction joint opening
may also occur in the upper central area of the downstream face, but
this is not likely to leave any visible effects because the joint movement
will be very small and will extend only a small distance through the dam

thickness.
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CONCLUSTONS AND RECOMMENDATIONS

Based on this comprehensive cooperative investigation of Techi Dam

the following conclusions are drawn and recommendaticns made concerning

the experimental and analytical procedures, and regarding the earthquake

safety of Techi Dam:

(1)

(2)

The rotating mass shaker study of Techi Dam provided information on
the vibration properties that was essential to the refinement and
verification of the mathematical model used in the seismic safety
evaluation. However, it is evident that parallel ambient and analy-
tical studies are needed to interpret the forced vibration data

reliably.

Ambient vibration studies can provide good experimental data much
more conveniently than can a forced vibration experiment, but it
is not as reliable in estimating the damping properties and ideally

is used as a supplement to a shaking machine investigation.

The ADAP program provides finite element models of both dam and
foundation that effectively répresent the prototype structure.
Also, the analytical procedures for evaluating vibration properties

and dynamic earthquake response are quite efficient.

The finite element reservoir model included in the RSVOIR subroutine
is much more reliable for analyses of arch dams than is the extended
Westergaard model. The cost of evaluation of the added mass matrix
from the finite element reservoir is significantly greater than by the
Westergaard approach, but it does not represent an excessive part

of the entire earthquake response analysis. Plans have been made to

incorporate this subroutine into a revised version of ADAP.



(5)

(6)

(7)
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Techi Dam is well designed for both static and earthquake loads.

It will exhibit some movement of the contraction joints in its upper
central region during the very unlikely event of a Design Basis
Earthquake, but the body of the dam will not be damaged even by

this extreme event. It should be noted that no study was made

here of the earthquake response of the gate structures or other
appurtenances, and it is recommended that these be made the subject

of further investigation.

It is stated 1nvthe report by CEER (2) that strong motion seismo-
graph recorders have been and are being installed in Techi Dam.

If the dam is subjected to any significant earthquake motions in the
future, with peak accelerations in excess of 0.10 g, the data
provided by these seismographs will be most valuable in future
development and verification of procedures for seismic safety
evaluation. Such a full-scale experiment is the best hasis for
assessing present analytical techniques, and it is strongly
recommended that a special research project be funded for this

purpose when the major earthquake occurs.

Although the Tinear response analysis procedures were adequate to
assess the safety of Techi Dam, significant nonlinear response
mechanisms can be expected in many arch dams if they are subjected

to maximum credible earthquake motions. For this reason, it is
recommended that the nonlinear response behavior of arch dams be made

the subject of further intensive research.
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Three principal nonlinear dynamic response mechanisms can be
identified in arch dams: (1) contraction joint opening in response to
tensile arch deformation, (2) cantilever cracking due to tensile stresses
in the vertical dam monoliths, and (3) cavitation at the dam face when
the negative hydrodynamic pressures exceed the hydrostatic pressures at
any point on the dam face.

A second report by J. S.-H. Kuo (7) presents an exploratory study
of the nonlinear response of an arch ring made up of monolith blocks. It
provides analytical correlation with an experimental shaking table study
done as part of this cooperative research effort (8). Considerable further
work is needed to extend this procedure to the case of a three-dimensional
arch dam. A preliminary shaking table study of a gravity dam monolith also
is reported in Reference 8. This gave quantitative data on the cantilever
cracking behavior of a vertical monolith, and also demonstrated the
feasibility of performing a shaking table study of a complete arch dam model
with reservoir. It is strongly recommended that further development of
this type of research be done in the future. Only then will it be possible
to study the resistance to colliapse of a thin shell arch dam subjected to
earthquake.

Reference 8 also gives some experimental evidence on the cavitation
phenomenon in concrete dams subjected to earthquake motions. Preliminary
analytical studies of this problem (9) have shown that this form of
nonlinearity may not have a very significant effect on stresses caused by
earthquake. However, further study is needed to substantiate this

conclusion.
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UPSTREAM FACE

DOWNSTREAM FACE

FIG. 2 VIEW OF DAM
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FIG.3 PLAN OF TECHI DAM SHOWING LOCATION
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ADJACENT TO STATION IO

FIG.5 FORCED VIBRATION GENERATOR
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FIG. 30 FINITE ELEMENT MESH OF TECHI DAM
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FIG. 32 SECTION OF FOUNDATION BLOCK AND DAM AT Y-Z PLANE
(SHOWING ELEMENT MESH AT THE BOUNDARY )
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FIG. 33 PRISMATIC FINITE ELEMENT RESERVOIR MODEL
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WESTERGAARD
FEM, L/H = 3

FIG. 34 PRESSURE DISTRIBUTION ON RIGID TECHI DAM FACE
(DUE TO 1 g ACCELERATION UPSTREAM)
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35 DECREASE OF FIXED MODE FREQUENCY WITH RESERVOIR DEPTH
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