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ABSTRACT

This report consists of Part I of the dissertation submitted by
the author to the Graduate Division of the University of California,
Berkeley, in partial satisfaction of the requirements for the degree
of Doctor of Philosophy in Engineering.

In this report, the dam-reservoir interaction effects considering
incompressible fluid are presented. The hydrodynamic effect represented by
an added-mass matrix is evaluated by two basically different procedures--

a Generalized Westergaard Formula and the Galerkin Finite Element Method.
Pressure solutions acting on gravity dams, cylindrical arch dams and
general arch dams are compared for the different procedures. Rigorous

mode shape and frequency correlations are carried out, and based on the
results of the correlation studies a most efficient procedure is suggested,

which is shown to be adequate for engineering purposes.
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1. INTRODUCTION

1.1 Objectives

Hydrodynamic effects induced by the impounded water may have signi-
ficant influence on the response of a dam subjected to earthquake excitation.
Current technique is well capable of analyzing a linear dam-reservoir
interaction system, taking into account the hydrodynamic effects. (4-7,
9-13,16,18,19). But the responses of dam-reservoir systems to most Design
Base Earthquake (DBE)* are likely to be nonlinear, so that we can no Tonger
employ the frequency domain solutijon technique to deal with hydrodynamic
effects as in many of the works being done up to date, (4-7,16;]8,19).
Time domain solution is left as the only alternative. While to economically
inciude the water compressibility of infinite reservoir’ in time domain
solution is still under research, the hydrodynamic effects due to an
incompressible water reservoir can be readily taken into account in the
time domain solution of a dam-reservoir interaction system. The easiest
way to deal with the hydrodynamic effects of an imcompressible water
reservoir is by employing the "added—mass" concept (1). It is the objective
of this work to investigate and select a most reasonable and economical
method that can count for the hydrodynamic effects of incompressible
water reservoir in the form of added-mass. For the general geometry of
concrete dams, the Generalized Westergaard Formula and the Galerkin Finite
Element Method are among the candidates. Rigorous analyses of mode shapes
and frequencies are compared with the field experimental work, and the

results serve as the major indication of the validity of the method.

* DBE is an earthquake intensity corresponding to a return period of 100
years (also see Section 5.3).

+ .. . . . . .
Infinite reservoir has been used in general for easier analytical solution
simuiating out-bound energy radiation condition for a very large reservoir.



1.2 State of the Art

The Finite Element Method with the aid of high speed digital computer
has enabled us to analyze all types of complex civil engineering structures.
But one of the difficulties remained in today's structural analysis
techniques is to evaluate the effects of various kinds of loadings arise
from the environment where the structures are located. The hydrodynamic
Toading effects upon the dams are few among them. Since the early part of
the twenties, the influence of hydrodynamic effects on the responses of the
dams have long been an interested topic, especially in the event of earthquake.

In 1933, professor H. M. Westergaard (1) firstly established a
rational standard procedure to take into account the hydrodynamic loadings
on gravity dams during earthquakes. Although the case he studied was
limited to rigid dams with vertical upstream face, and infinitely long
reservoirs, ignoring surface waves and considering only small displacements
of fluid particles, this work was regarded as a milestone. Especially
the concept of added-mass, which he introduced for the incompressible
water reservoir, greatly simplified the analysis procedure of the response
of a dam considering hydrodynamic effects during earthquakes. Brahtz and
Heilbron (2) followed up with a discussion on the effects of a finite
reservoir, compressibility of the water and flexibility of the dams. In
1952, Zangar (3) furthered Westergaard's work; by using an electric analog
he investigated the effects of a sloping upstream face and provided
results on added-mass representations of hydrodynamic effects for a
broader class of dams that can be idealized as 2-dimensional monoliths.
Zienkiewicz and Nath (13} later used the same technique to apply Zangar's

work to 3-dimensional arch dams.



Lately, Chopra has carried out a series of investigations (4-7) on
various aspects of hydrodynamic effects in the earthquake response of
gravity dams; in the more recent work he included also effects of the
foundation modelled as an elastic half-space (24). Following pretty much
the same path, Porter (18) extended the work of Perumalswami (25) to
formulate expticit mathematical solutions for the fluid domain retained by
an arch dam considering the responses to all components of ground motion,
The reservoir considered was defined by a cylindrical dam face of constant
radius, a horizontal floor, and vertical radial banks enclosing a central
angle of 90°. Recently, Hall (19) has developed a numerical scheme to deal
with arbitrary geometries of reservoir of arch dams. Effects of water
compressibility, flexibility of the dam, energy radiation in infinite
reservoir and vertical ground motion contributions (14) are thoroughly
treated by his procedure. At the same time, in modelling an infinite
reservoir, Saini etal.(16) used an infinite element and obtained similar
results as Chopra; Nath (17) employed a conformal mapping technique and
obtained economical and reasonably good accuracy. However, all these works
are restricted to solutions in frequency domain.

Priscu et al. {8) used a finite difference methed to solve for arch
dam-reservoir system responses in the time domain, considering compressible
water reservoir. Contrary to Chopra, he concluded that the water compress-
ibility could change significantly the seismic response of a slender dam
(e.g., arch dam) . In the particular case he studied, the dam displacements
could reduce up to 50% 1f water compressibility is not neglected. This
discrepancy in findings concerning the effects of water compressibility implies
the need for further research.

More recently, Muller (26) attempted an approximation method in the time

domain, taking into account the water compressibility of the reservoir by a



4

“second added mass" concept; the idea is good, but it still falls

short in its ability to handle a large reservoir.

1.3 Scope

In Chapter 2, the simpliest representation of hydrodynamic effect,
that is, the added-mass derived from Westergaard's classical solution,
is reviewed and generalized, considering arbitrary geometry and orientation
of the upstream face of arch dams. Also an appropriate lumping process
is described.

The Galerkin Finite Element Discretization of the wave equation that
governs the pressure behavior in an imcompressible fluid domain is presented
in Chapter 3. A consistent lTumping process for this procedure that maintains
symmetry of the resulting added-mass is also presented.

Chapter 4 describes computer implementations of the preceding concepts,
and also presents numerical sclutions for pressures given by the various
schemes and compares their results. The range of applicability of each
method is indicated.

In Chapter 5, numerical solutions of the mode shapes and freguencies
obtained by each method are correlated with results of field measurements
on Techi Arch Dam; variable water level is considered. From these
correlation studies, a most reasonable and economical method is suggested.
Finally, stress responses of Techi Arch Dam due to static loadings, the
Design Base Earthquake and hydrodynamic effects calculated by the suggested
method are presented.

Final conclusions and remarks concerning the needs in further research
on the time domain selutions of infinite compressible water reservoir are

discussed in Chapter 6.



2. GENERALIZED WESTERGAARD FORMULA

2.1 Review of the Classical Westergaard Formula

In Westergaard's classical work (1), dealing with water pressures on
dams during earthquakes, he did not try to consider every possible effect;
rather, as a good engineer will do, he made reasonable assumptions for the
case he studied, and was able to obtain reasonable solutions for engineering
use.

The assumptions he made are the following:

(1)  dam was idealized as a 2-dimensional rigid monolith with vertical
upstream face;

(2) the reservoir extends to infinity in the upstream direction;

(3) displacements of fluid particles are small;

(4) surface waves are ignored;

(5) only horizontal ground motion in the upstream-downstream direction

is considered.

According to these assumptions, he posed an initial boundary value problem,
and obtained pressure solutions on the upstream face of the dam. For the
purpose of practical engineering use, he approximated the pressure solution
(for an incompressible reservoir) with a parabola, which he felt to be

better than a quadrant of an ellipse. Later, he observed that '"the pressures
are the same as if a certain body of water were forced to move back and forth
with the dam while the remainder of the reservoir is left inactive". The
amount of the water included was determined by equating the inertia forces

of this body of water to the pressures that actually were exerted upon the
face of the dam under the same motion of the dam.

Thus, Westergaard suggested (Fig. I-1(a)). that the dynamic pressure

could be expressed as:



H-Z (2.1)

o
1
0o~
<]
=
i
'
r~
I
oo~
©
B

where
a = horizontal ground acceleration, in units of g {gravitational
acceleration)
w = unit weight of water
¥ = horizontal ground acceleration
= ynit mass of water

depth of reservoir above the base of the dam

~ = T ®a
I

= distance from the base of the dam
p. = hydrodynamic pressure at height Z from the base of the dam,

applied normally to the dam face,

Equation {2.1) indicates that the hydrodynamic pressure exerted normally on
the upstream face of the dam, at height Z above the base of the dam, due to
ground acceleration Fg (that is, the total acceleration of dam face at
height Z, because the dam is rigid), is equivalent to the inertia force of
a prismatic body of water of unit cross-section and length %—/ﬁ(ﬁify,
attached firmly to the face of the dam, and moving with the dam back and
forth in the direction normal to the face of the dam (that is, horizontally)
without friction.

This body of water attached to the dam face and moving with the dam,
is the "added-mass" applied by the reservoir to the dam, a concept first
introudced by Westergaard, that has greatly simplified the dynamic response

analysis of dams with hydrodynamic effects.

2.2 Generalized Westergaard Formula (9,10,27)

Employing the concept of "added-mass" as mentioned in Section 2.1 above,

we now generalize it by applying'the following assumption:
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The hydrodynamic pressure exerted on any point of the upstream
face of a dam, due to the total acceleration ?ﬁ normal to the dam
face at that point, is equal to the inertia force produced by a
prismatic body of water of unit cross-section with length %»/ﬁ(ﬁffy,
where Z is the height of that point above the base of the dam, that
attached firmly normal to the dam face at that point, and moving
back and forth with the dam in the normal direction without friction.
(Fig. I-1(b}).
According to this definition, the “added-mass" is generalized to be
applicable to the general geometry of the upstream face of flexible arch
dams, because it depends only on the total normal acceleration at local
paints,
Now in the finite element analysis of the response of the dam, if we

have discretized the dam body into finite elements, then, at a certain node

“i" on the upstream face of the dam, the hydrodynamic pressure is:

p; = af, (2.2)
where
pi = hydrodynamic pressure at node "i", compression as positive
?Ei = total normal acceleration at node "i"
a; = Westergaard pressure coefficient %-p%ﬁ?(ﬁ;fi;T
p = mass density of the water |
Hi = depth of water at the vertical section that includes node "i"
Z; = height of node "i" above the base of the dam
But the total normal acceleration in can be represented in terms of
cartesian coordinate compoents of the ground acceleration ?gx’ ng, ?gz,and
of acceleration components at node i relative to the base of the dam in, ?yi

and Vzi‘ Making use of direction cosines with respect to the normal direction

at node i, we have:



"x Yax
N . o
v, Paz
where
<t _ ot ot Lt T . X
By = <Fy fy ¥y total acceleration of degrees of freedom at node i
Ay = <Ay Ay A,>;» normal direction cosines at node "i"
B: = a (3 x 3) displacement transformation matrix of which the entry

Bjk stands for the acceleration of node "i" in j-direction
(j,k = 1,2,3 representing x,y.z-direction, respectively) due to
a unit ground acceleration in k-direction while the dam is

undergoing rigid body motion.

Substituting Eq. {2.3) into Eq. (2.2) leads to the hydrodynamic pressure at
node i expressed in terms of ground accelerations and relative accelerations

at node i:

i Lt o
Py = o 2y By = oy ARy ) (2.4)

Hydrodynamic pressures at any point on the face of the dam can be
found in a similar way. But in the finite element solution procedure, these
external pressures must be integrated over the appropriate surface of the dam
to obtain the nodal loads. In this lumping process, the hydrodynamic nodal
forces are expressed in terms of nodal accelerations, by Egs. (2.2) and (2.3),

thus, the coefficient in this expression will be the equivalent added-mass.

2.3 Tributary Area Lumping Process

The easiest way to lump hydrodynamic pressures into equivalent hydro-

dynamic nodal forces, is to multiply by the tributary area associated with a



node i; thus:

F . =-p: A. (2.5)

where

H

Fni equivalent normal hydrodynamic nodal force, outward normal from

the dam face as positive

=
H

hydrodynamic pressure ai node i, compression as positive

x=
it

tributary area associated with node i.

Note here, that the hydrodynamic pressure was assumed to be constant over
the tributary area, and to have the magnitude as at node i. Also, since

the hydrodynamic pressures act normal to the dam face, so is the equivalent
hydrodynamic nodal force, in the average sense, also normal to the dam

face. Hence, the 3 components of the equivalent hydrodynamic forces at node
1 in Rectangular Cartesian Coordinate (RCC) frame can be found as before.
Premultiplying Fni by normal direction cosines at node i, thus leads to the

cartesian coordinate values

F, = F & A (2.6)

where

<F F F.>!
X'y z'i

1]

éi <)‘x Ay Az>i

Substituting Eqs. (2.4)and (2.5) into Eq. (2.6}, leads to;

Fi = ‘ﬂasi(fi Bty (2.7)
where
Foo= <F fy FZ>§
Fa = Fax Toy iAgz>1T i A2 syn. |
Pas, =% Ay M=o A [ AN N (2.8)
L Azkx >\z Ay Az 1y
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Mas. is the added-mass matrix associated with node i and foliowing the
i
direct stiffness assembly procedure, the equivalent hydrodynamic nodal

force equations for the dam hecame:

\ -
T N 10 .
A Mo i Mas Bl Yax
F M M
e -as?2 - 2
: e .. <z a-S:’ < i_%—Z’ ay
F | P M B r
~m —asm| | ~m —asm{ |[=m z
< | J L 1\ J

or,

F = M P - M B ¥ (2.9)
“{3mx1) =2 (3mx3m) ~(3mx1) 7 mas g gy (3MK3) ~gi50q)

where m = total number of nodes of the dam on its upstream face.

Mas in Eq. (2.9) is the added-mass coefficient matrix for the dam
resulting from the hydrodynamic pressures upon the upstream face of the
dam. It is uncoupled between nodal points. Also, notice that the same
Westergaard pressure coefficient is used, regardless whether the total
nodal accelerations came from the vertical or horizontal component of
ground accelerations.

The equivalent hydrodynamic nodal force F from Eq. (2.9) is an
additional Tloading vector to be incorporated into the right hand side of the

equation of motion of the dam:

t . _
(nx1) © E(nxn) Yix1) T K(nxn) Yinx1) © P(nx1) (2.10)

Eknxn)z
where

mass, damping and stiffness matrices respectively of the

=
~
]
|=
]

dam structure;

v, v = velocity and displacement vectors vespectively of the entire
dam, including internal degrees of freedom of the dam
structure;

b = total acceleration vector of the dam structure;
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0
p ={~—* } , where F is obtained from Eq. (2.9):
F(3nx1)
n = total number of degrees of freedom of the entire dam structure.

Alternatively, if we write Eq. (2.9) as follows:

4] g 0O &
{”} = - { J {“‘} = Mt (2.11)
Lt 2~
F (nx1) 0 ﬂas nxn ' 's

~

where

1
3

L total acceleration of internal degrees of freedom of the dam;

ot .
s = Flamx) + B T from Eq. (2.9).

~

Then, Eq. (2.10) can be rewritten as:

M+M) ¥ +Cy+Ky=0 (2.12)
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3. GALERKIN FINITE ELEMENT METHOD

3.1 Galerkin Method for Wave Equation (11,12,27)

In this formulation of reservoir interaction, the hydrodynamic
pressures in the reservoir are assumed to be governed by the pressure wave

equation (Fig. I-2(a)):

Vop(x,ys2,t) = l—g B(x,y,2,t) (3.1)
where

p(x,y,z,t) = pressure distributions in the reservoir;

C = VK/p is the sonic weve velocity;
K = bulk modulus of the fluid;
p = mass density of the fluid.

In order to find the hydrodynamic pressures acting on the face of a dam,

Eq. (3.1) must be solved with appropriate boundary conditions. Since our
interest is in finding added-mass representations of the hydrodynamic effects,
after we have found the hydrodynamic pressures due to accelerations at face
of the dam, they must be Tumped into equivalent hydrodynamic nodal forces.
Thus, the hydrodynamic forces are related to accelerations at the nodal
degrees of freedom on the face of the dam leading to the added-mass
coefficient matrix. For this purpose, the boundary conditions to be imbosed

on the reservoir boundaries (Fig. I-2(b)) are as follows:

(1) at dam-reservoir interface: %%— = - pvﬁ .
s
(2) at floor or reservoir: %E_'= 0, or Wt =0
S ng
(3) at upstream end of reservoir: %%—»= 0, or Vﬁ =0 ;
5 s

(4) at free surface of reservoir: p = 0, or surface waves are neglected ;

(5) at canyon walls: 22_ = g, or, vt =0 . (3.2)
ang ng

where ng is the outward normal direction from the reservoir surface, and



13

Vgs is the total normal acceleration of the fluid at the boundaries of

the reservoir. The acceleration is positive when fluid moves outward from
the reservoir. It is also of interest to note that, if we want to include
surface waves, then, condition (4) becomes %%g»= - B; if we want to consider
the flexibility of the floor and canyon walls, conditions (2) and (5)

become %%—-= - pv§ , where the acceleration V: is defined as was mentioned
5 s S

above; if we want to investigate the effects due to relative motion at

upstream end of the reservoir, condition (3} becomes §g-= - pvg , ete.
s

]
Now we proceed to seek the hydrodynamic pressure solution of Eq. (3.1)

with the beundary conditions of Eq. (3.2). But because the geometry of the
reservoir generally is irregular, it will be extremely difficult to find a
closed form solution; therefore, we seek a numerical solution based on the
Galerkin Finite Element Method.

The Galerkin Method is a weighted residual method; its residual is
weighted in such a way that the approximate numerical solution will be
orthogonal to the error of the numerical solution; and thus, in the energy
norm, the numerical solution minimizes the residual caused by the error.

Letting p be the approximate numerical solution of Eq. (3.1) with
boundary conditions Eq. (3.2), then the residual of Eq. (3.1) due to the

error in approximate solution p is,

5 p=R (3.3)

where R is a residual of very small magnitude.
The Galerkin Method is expressed as,

rr R - L) av = o (3.4)
N . 0

v
where N is a row vector of weighting functions. Applying Green's

Theorem (or integration by parts) to Eq. (3.4), we have,
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T 3p_ T T o5 v =
ff N5 B dA - —52—1’61'51 pdV-fﬂfVN Wdv=0 o (3.5)

The first term of Eq. (3.5) only exists along the boundaries; applying the
boundary condition Eq. {3.2) to it, we have,

IroNT 3p - Tt
S Ng an, dA = -p ff N vnS dA (3.6)

which now only exists along dam-reservoir interface, because V: vanishes along
s
all other boundaries according to Eq. (3.2). To relate this to the motion of dam

face, we observe that at the same point on the dam-reservoir interface,the fluid

acceleration Vﬁ can be expressed in terms of the acceleration of the dam
S
face ?: . However, it must be noticed that Y: is positive when outward

5 s
normal from the dam face (Fig. I-2(a)}, while VE is positive when

outward normal from the reservoir (Fig. I-2(b)), thus,
Vo= - F (3.7)

Moreover, the normal acceleration of the dam face Fﬁ can be expressed
S

in terms of the normal direction cosines and three RCC components;
that is,

(3.8)

where

A= <xx Ay AZ> the direction cosines at the point where Fﬁ Tocates
~ s

Qt = <Ut U Ut>T total acceleration of the dam face in RCC components.

Substituting Egs. (3.6), (3.7) and (3.8) into {3.5), we have,

o 1t N 2 OF da =J62-f\f/f WbV e (3.9)
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For compressible water, C = 4720 ft/sec, but for incompressible water,

C » », thus Eq. (3.9) becomes,

LI e Vp AV = o TN

.
V > g -5

A Ut (3.10)

This is the Galerkin weak form of pressure wave equation; for an incompressible
reservoir, it relates liquid pressures to the accelerations of the face of

the dam.

3.2 Finite Element Formulations

According to Galerkin Finite Element Method, after the Galerkin form
of the field differential equation has been obtained, we discretize the
domain by Finite Element Method, using as weighting functions the basic
interpolation functions of the elements.

Examine again Eq. (3.10),

St an (3.10)

~

Frr N e Vg AV = o fr N
v o~ F § -

where V is the fluid domain, S is the dam-reservoir interface. We now
discretize the fluid domain into 3-D finite elements, and the interface
correspondingly into 2-D finite elements(the interface is 2-D in natural coor-
dinates, but 3-D in RCC space). For a point within the element e in the fluid
domain, its appropriate hydrodynamic pressures'E(e)can be expressed as follows,

according to the Finite Etement Method:

p(®) = n(e) ple) (3.11)
where
ﬁ(e) = row vector of interpolation functions associated with nodes of
the element e,
B(e) = ¢olumn vector of nodal pressures of the element e.



16

Then, substituting Eq. (3.11) into the left hand side of Eq. (3.10), we

have for element e:

T T
rrr (@) gptelayle) o e gutedgyle) (o)
O Je) = :
or, T
rrr wkede gpledgyle) o gle) (e) (3.12)
yled ™ B "
where T T T
(&) on (e an(e)  gyle) gyle)  gyle) yyle) (e)
-Q(KDXKD) - ff{e)( Nax ~ax * Nay ~By * Naz Naz ) v © (3.13)
v

KD = number of nodes of 3-D fluid element e.

For 2-D interface elements, the accelerations Qt can be approximated in a

similar way. For 2-D interface element i, we have,

mnﬁzgnﬁﬁﬁ (3.14)

~ =S ~

where
9£1)(3X3ND) = matrix of interpolation functions associated with nodal
degrees of freedom of interface element i ,

(1)

N columns vector of total nodal accelerations of 2-D

interface element i in RCC components ,

ND number of nodes of 2-D interface element 1.

H

Substituting Eq. {3.14) into the right hand side of Eq. (3.10), we have for

element 1i:
AT N T . R . N ¥
pff Ijg(;T) Z,‘(I) 9(1) dA(1) = fo Ni’) 5(]) ggl)dA(-l) f(.‘)
5(1) 5(1)
or,

pﬁwﬁgﬂ5ﬁ>yngﬂn=pbg)ﬁn
S 1
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where

h = [f N A o} dA 3.16

Ngz) ) = the part of the 3-D fluid element interpolation function
T 1xND
that reduce to its 2-D interface boundary only, which is

corresponding to the 2-D interface element i.

Now assembling Eq, (3.12) for all 3-D fluid elements in the reservoir, and
assembling Eq. (3.15) for all 2-D interface elements on the dam-reservoir

interface, we have the discretized form of Eq. (3.10):

. Lt
5 gt®) ple) oy hg‘) #l1) (3.17)
e ~ i~ ~
OY‘,
9‘!"]" S-Y‘S EY‘ 0 0 9
(NERXNER) {NERXNES) {NERx1) {NERXNLL)
= p .t (3.18)
ey 9ss Ps 0 h s
(NESXNER) (NESxNES)| [(NESx1) (NESxXNLL) (NLLx1)}
where
Pr = nodal pressures of fluid elements that are not on an interface
nor on a free surface;
p, = nodal pressures of fluid elements that are on the dam-reservoir

interface, but not at a free surface;

G, ps> o> Lgg ~ submatrices of g partitioned according to p. and
Pgs
[} = assembled matrix of Eq. (3.13) over the entire fluid domain;
bs = assembled matrix of Eq. (3.16) over the dam-reservoir interface;
fs = nodal total accelerations of dam face, including those nodes
at free surface;
NER = number of nodes of fluid elements that are not on an interface

nor on a free surface;
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NES = number of nodes of fluid elements that are on an interface,
but not on free surface;

NER+NES = NEQ, total number of nodes in the reservoir, excluding all
free surface nodes;

NLL = total number of nodal acceleration RCC components on the

interface including those at the free surface.

The pressures on the free surface vanish according to boundary condition
(4) of Eq. (3.2), therefore, they do not enter into the assembling process
of matrix g.

Since we are only 1nterestedv1n finding the hydrodynamic pressures
acting upon the interface, that is the vector P s We don't have to solve
the entife system of equations of Eq. (3.18); rather it is convenient and
more economical to do a static condensation on Eg. (3.18) first, to condense
out NER equations that are associated with P Since there is
nothing on the right hand side associated with P We need only to do static

condensation operations on the left hand side of Eq. (3.18), that is, on

matrix g. Thus we have,
_ .t |
9 B5 = 0 hg B (3.19)
where

=1
9s " 955 Y5 Jpr Ips (3.20)

(NESXNES)

is a symmetric matrix, and,

-1 ”
P =09 b i (3.21

After Pg> that is the hydrodynamic pressures acting upon the dam-reservoir
interface, have been found from Eq. (3.21), the next step is to lump the
hydrodynamic pressures into equivalent nodal hydrodynamic forces, and thus

to obtain the added-mass coefficient matrix. This operation is equivalent
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to that described in Chapter 2.

3.3 Consistent Lumping Process

The consistent lumping process making use of the virtual displacement
method is the most appropriate procedure for converting the hydrodynamic
pressures of Eq.(3.21) into equivalent nodal forces (Fig. I-3(c)): that is,
by introducing a virtual displacement field into the domain and equating to
zero the virtual work. Let's now consider a 2-D interface element i, which
corresponds to a 3-D fluid element e; in other words, element i overlaps

the upstream surface of concrete element e of the dam at dam-reservoir

interface. From Eq. (3.21) we can obtain pressure values at discrete nodal
points; that is, for element i, we can obtain its nodal pressures.
Then, the pressure distributions over the domain of element i can be

expressed as,

o) = i gl (3.22)
where
Eﬁi) = pressure at any point on interface element i ;
Nééi D) = part of fluid element e interpolation functions that are
* reduced to its 2-D interface boundary only, that is,

nonvanishing only on the surface corresponding to interface
element i

ng) = nodal pressures of interface element i.

(NDx1)

Now we introduce a virtual displacement field, 69(1) at any point, into the
domain of interface element i by introducing nodal displacements at nodal
points of element i, 63(1), and, as in Eq. (3.14), with the interpolation
functions géi), we have,

sull) - gps“) spll) (3.23)

o ~
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Then, equating the virtual work done by the hydrodynamic pressures to

the virtual work done by their equivalent hydrodynamic nodal forces, we

have,
AT . . . .
st k) ) (D) (3.2
) ; 5(1) 5
where
E(E%N0x1) = equivalent hydrodynamic nodal forces of 2-D interface
element i ,
Grgi) = normal virtual displacement at the point where Eéi)

s
applies.

Notice here that the negative sign is due to the fact that EﬁT)is positive
for compression and §r£1) is positive when the interface moving outward normal

S
from the dam face,therefore,resulting in negative virtual work. Furthermore,

as in Eq. (3.8), we can express drg]) in terms of 6g(1), that is,
5

. . AT
srit) =y auli) = gyl 5T (3.25)
s

where 5 is the normal direction cosines at the point where Sg(1) locates.

Substituting Egs. (3.22}, (3.23) and (3.25) into Eq. (3.24), we have
DT ) L (T gy Cbgﬁ RINCINE) (1)
S

or,
f() o (07 00) (3.26)

where h'1) is defined in Eq. (3.16).
Assembling Eg. (3.26) over the entire dam-reservoir interface, we

have,

= - h! (3.27)

F - p
~(NLLxT) TS (NLLXNES) ~S(NESx1)
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Then, introducing Eq. (3.21) into Eq. (3.27), we find,

- T -1 .t

F=-0 hs 9 hs T's

or,
T

E = - -W—lasrs (3.28)
where

M. =phfglh (3.29)

—a 0 0g dg D¢ .

5
is the symmetric added-mass coefficient matrix for the dam, resulting from
the hydrodynamic pressures acting upon the upstream face of the dam.
Notice that the added-mass coefficient matrix of Eq. (3.29} which came from
the Galerkin Finite Element discretization of the wave equation in the
reservoir using a consistent lumping process, is in general a full matrix,
coupled not only between nodal points but also among nodal degrees of
freedom that are perpendicular to each other.

Expressing total acceierations fg in terms of relative and ground
accelerations, we can rewrite Eq. (3.28) in the form similar to Eq. (2.9},

thus,
F =-M ¥ y - M B I8
~(NLLD) 7 Fag v ) =MD Sag sy T (NELS) <93,
(3.30)

As before, the equivalent hydrodynamic nodal force vector F of Eq. (3.30)
is ready to be incorporated into the right hand side of the equation of

motion of the dam as an additional effective loading vector.
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4. COMPUTER IMPLEMENTATIONS AND NUMERICAL SOLUTIONS

4.1 Computer Implementations

In order to illustrate the efficiency and validity of the scheme
for added-mass coefficient matrix computation presented in Chapter 2 and
3, a Fortran program RSVOIR (28) was developed. It serves as a general
purpose incompressible fluid added-mass preprocessor for arch dams of
general geometry. The added-mass coefficient matrix can be computed from
this preprocessor and then assembled with the concrete mass matrix of the
dam at appropriate locations, so that the response of the dam including
incompressible hydrodynamic effects can be obtained. The computational
proéedures (20,21,22) for obtaining the added-mass matrix with each

scheme are detailed in the following sections,

4.1.1 Generalized Westergaard Formula Procedure

From Eq. (2.8) we have the added-mass coefficient matrix according
to the Generalized Westergaard Formula. For the computation of added-
mass coefficients associated with node i, three pieces of information are

necessary:

H.-Z.7Y

v H

ool ~

(a) Westergaard Pressure Coefficient a; =g e
(b) tributary area A;

i i i L=< >.
{c) normal direction cosines Al Ay Ay A,

The first item, Qs May be calculated readily when the location of node
i is known. The second, Ai’ is a coliection of the area contributions

from every interface element associated with node i, that is (Fig. I-3(b)),

= salk)

in which the Agk)’s are evaluated most easily as,
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Agk) = 2k nogk) (4.2)
where A(k) = area of interface element k
ND(k) = number of nodes of interface k

The normal direction cosines, A (Fig. I-4), can be found from the

properties of the interface finite elements associated with node i

(Appendix A), Due to the finite element discretization, the normal direction
cosines of the same node may differ from element to element. Therefore,

the nodal mass is obtained through element by element assembly:

.
- (k) (k) (k)
as = 2oy A7 4 Xy (4.3)
T

where 5$k) = normal direction cosines of interface element k, at node 1.
But in the standard direct stiffness method assembly procedure, the assembly
is not carried out node by node, locally; rather, it is carried out element
by element, globalty. Therefore, the local assembly of Eq. (4.3) is
accomplished oniy after the program has locoped through the computations and
assembly of all the interface elements associated with node i. The global
added-mass matrix is obtained while the computations and assembly are

carried out for every interface element on the dam-reservoir interface.

4.1.2 Galerkin Finite Element Procedure

The added-mass matrix of Eq. {3.29) is not obtained from the assembly
process; rather, it comes from the sclution at the global level. But
its ingredient matrices, 9. and hs’ are the result of assembling elemental
contributions. In order to find added-mass matrix of Eq., (3.29), it is

necessary to form the matrices 9 and Ds first,



24

4.1.2.17 Formation of matrix 9

As shown by Eq. (3.20), matrix g is a product of static conden-
sation operating on matrix g, which in turn is the global assembled
form of the element coefficient matrices g‘e) of Eq. {3.13).

For 3-D fluid element e, the integral of Eq. (3.13) is computed

numerically, thus, recall

T T T
@ (ag(e> (e an(e) gye)  gyle) 3¥(e))dv(e)
= + +
g V(e) aX X oy ay ¥4 az (3.13)
or,
ale) o (e) (e) . (e) (e} (e
oN: 7 oN; oN; ™7 oN; oN; 7 ON:
Si) N ff{eg ;x %x * ;y %y ¥ %z 3; )dv )
v (4.4)

Employing Gaussian Quadrature to numerically integrate £q. (4.4), we

have,

(e) -

(e)
95 i g Wt (rk,s )IJ

ﬁ Wy wm kmnl

where
(rk,sm,tn) = Gaussian Quadrature integration points in natural
~ coordinates (r,s,t)

WisWpoW, = Gaussian Quadrature weighting functions
anie) el an(ed an{e)  gple) aN(e)
&) (r s Lt ) = ( ]
ij v k?mn

90X % * oy oy * 32 az ) of

element e, evaluated at (rk,sm,tn).

)

= determinant of Jacobian matrix of element e,gﬁe R

IJ(E)

kmnl
evaluated at (rk,sm,tn), where

RS IR IR

(e) = | yle) yle) (e y(e) ;{e)
~’s ~ ~’s o i

[==

NSE) 5(3) N(e) X( e) N(e) Z(e)



in which
e (e) e (el gyle)

(e) (e) _ °% » N .
ﬁ’r s %35 s N’t T TSy T3 ¢ TRt respectively, and

X(e), Y(e), Z(e) = X, ¥, Z components, respectively, of

coordinates of all the nodes pertaining to element e.

Finally,

/aMef\ ’&“ef
1 ]
X or
(e) (e
<M e e Y g
oy - 3s
(e) ‘ (e)
AN, ON;
"5z ) ot

Now, the numerical calculations (Eq. (4.5) Jare carried out for all fluid
elements in the reservoir, and the results are assembled according to the
direct stiffness method to form the global matrix g. But so far, we
have not mentioned what kind of 3-D fluid element should be used and how
big should be the domain of reservoir included in the discretization.

In general, 13 to 20 node 3-D elements (Fig. I-5(b) and Appendix
B) allowing quadratic variation in upstream-downstream direction are
appropriate toc be used as fluid elements, because they provide possible
exponential decay of pressure solutions in the upstream direction. As
for the size of reservoir domain to be incliuded, it is clear that it's
impossible to model an infinite reservoir; therefore, the reservoir
extent in the upstream direction should be found by studies on the
convergence of hydrodynamic pressures while gradually increasing reservoir
domain. It has been found that for an incompressible reservoir, the
hydrodynamic pressures converge adequately when the reservoir domain
extends in the upstream direction three times the height of the dam.

Now, after g has been formed, using appropriate 13 to 20 node
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3-D fluid elements and an adequate reservoir domain, we statically
condense out those nodal degrees of freedom in the reservoir that are
not on the dam-reservoir interface. The number of equations eliminated
is NER as defined in Section 3.2, resulting in matrix 9 of dimension

(NES x NES), where number NES is also defined in Section 3.2.

4.1.2.2 Formation of Matrix bs

The matrix hs in £q. (3.29) is the assembled form of ﬂéi) in
Eq. (3.16). The integration of Eq. (3.16) is only appropriate to be
carried out numerically as above. Therefore, let us recall

') - o gt o al!) (3.16)

and apply Gaussian Quadrature integration to the integral, to obtain

(1) . () )
Ds =3 W Wy gjrm,sn)ldmn (4.6)
mn
where
WooW, = weighting functions of Gaussian Quadrature
(rm,sn) = Gaussian Quadrature integration points in natural
coordinates (r,s)
Ei) s ) = N(i)T x(i) ¢(i) evaluated at the integration points
M 'e>m ~S mn *s
(rpsy)
(i) _ () ,0) ,0) - ' ‘
Emn = <AX Ay AZ >mn, normal direction cosines at (rm,sn) of

element i (Fig. I-4 and Appendix A)

. . 2 02 a2,
Idé;)l = lééa)l = (lil) + A§T) + A§1) )% evaluated at (rss,)(Ref. 29).
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After héi) in Eq. (4.6) has been numerically evaluated, it is assembled
into the global matrix Es. These calculations and assembly operations
are carried out for all 2-D interface elements on the dam-reservoir
interface. Thus far we have not considered what kind of 2-D element
should be used, but 6 to 8 nodes 2-D elements (Fig. I-5(a) and Appendix
B) seem to be appropriate.

Now, after the matrices 9 and hs have been formed as above, we
can proceed to carry out the computations for the global added-mass
matyrix Mﬁs of Eq. (3.29). Because inversion of a matrix is very
inefficient, the computation of Eq. (3.29) is carried out as follows:

(a) Solve g Q= h_, for Q (4.7)

using any suitable egquation solver;
T

=0 h

(b) Form the matrix product
S -5

Q

M,
thus, the global added-mass matrix M, of Eq. (3.29) is obtained.
S

4,2 Hydrodynamic Pressure Solutions and Their Comparisons

Although the added-mass coefficient matrix is the most convenient
way to account for the hydrodynamic effects, it is hard to tell whether
a scheme is good or not just by looking at the added-mass matrix
coefficients. In order to evaluate an added-mass matrix scheme, we have
to examine it with respect to the hydrodynamic effects it produces.

If we recall the procedures to formulate the added-mass matrix,
it is clear that the hydrodynamic pressures are the gquantities of interest.
The definition of added-mass coefficients can be termed as nodal resisting
forces caused by unit nodal accelerations acting into the reservoir. Yet,
the nodal accelerations actually cause distributed hydrodynamic pressures
to act on the dam face, and the nodal forces are obtained through

pracesses of lumping the pressures. Therefore, the hydrodynamic effects
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represented by the added-mass coefficient matrix can be evaluated by the
studies on the pertinent hydrodynamic pressures.

Now, we can impose any pattern of accelerations on the upstream
face of the dam and obtain, from Eq. (2.4) or Eq. (3.21), the hydro-
dynamic pressures distributed over the dam face. The simplest pattern
of accelerations that can be applied is unit uniform motions in the
upstream-downstream direction. Physically, this is just the rigid
body motion of the dam with unit accelerations acting in the upstream-
downstream direction, while the reservoir fioor and canyon walls are
fixed.

Figures I-6 through I- 9 show the hydrodynamic pressure distri-
butions over the upstream face of dams of various geometries subjected
to unit uniform acceleration in the upstream-downstream direction.

The cases studied included a gravity dam with vertical upstream face,
cylindrical arch dams, and a general doubly curved arch dam. Notice
that in all cases, the y-dimensions of successive fluid elements have

a ratio of 1.25 in the upstream direction.

4.2.1 Gravity Dams

Figure I-6(a) shows the reservoir of a gravity dam with vertical
upstream face, discretized into 16-node 3-D fluid elements and 8-node
2-D interface elements. Since the geometry of the reservoir and the
excitations of the interface boundary do not vary with x, this is a 2-D
problem and the pressure solutions are independent of x. Actually, this
is exactly the case Westergaard (1) studied, and the exact solution is
available. As shown in Fig. I-6(b), the hydrodynamic pressure solutions
from finite element method converges sufficiently when L/H = 3. Also,

the figure indicates that both Westergaard approximate solution and the
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finite element solution with L/H = 3 are good approximations to the exact
solution.

Due to the discretization error, it is seen that the finite
element solution converges to a value lower than the exact result.
It can be shown that 20-node 3-D fluid elements will yield a better
solution because they are more flexible, but the additional computational
cost may not be justified.

In this case study, the finite element method is demonstrated
to be a reasonably accurate and efficient method to evaluate hydrodynamic
effects; the Westergaard approximate solution is expected to be good for
this case only, because it was derived from the closed form solution for

this case.

4.2.2 Cylindrical Arch Dams

As a bridge from the study of gravity dams to the case of general
arch dams, several cylindrical arch dams were studied. Fig. I-7(a) shows
the reservoir of a cylindrical arch dam with vertical upstream face. The
reservoir has parallel vertical side walls and horizontal bottom. Figq.
I-7(b) shows the hydrodynamic preséure distributions at the crown section
due to unit upstream acceleration. The finite element solution converges
sufficiently when L/H = 3, and the Westergaard approximate solution is
virtually identical to that for the gravity dam in Fig. I-6(b}. Fig.
I-7(c) shows that similar results are found halfway between the crown
and abutment, although the finite element results are increased slightly
while the modified Westergaard results are decreased. In Fig. I-7(d),
the hydrodynamic pressure distribution at the vertical section next to
abutment shows significant changes: increases for finite element and

decreases for Westergaard. The latter results are unacceptable; the
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finite element results are effectively converged at L/H = 3. The
underestimations of hydrodynamic pressures by the Westergaard approxi-
mate solutions can be attributed to the fact that it only recognizes
the water depth and normal direction cosines of the dam face; it is not
aware of the existence of the bank which forms sharp angle with the dam
thus restricting the lateral direction flow of the reservoir water.

If we now enlarge the angle between the bank and the dam, by
introducing diverging reservoir walls as shown in Fig. I-8(a), it can be
seen from Fig. I-8(d) that the Westergaard approximate solution is
again close to finite element solution. It should be noticed that in
Figs. I-7(d) and I-8(d), the Westergaard approximate solutions do not
change, but the finite element solution varies due to the boundary
restrictions imposed by the bank. 1In general, the Westergaard
approximate'solution overestimates hydrodynamic pressures if the abut-
ment angle between bank and dam is reasonably wide as shown in Figs.
I-8(b) and (c). These figures also compare the effects of the reservoir

bank flare angles for the finite element solutions.

4.2.3 General Arch Dams

In Fig. I-9(a) we present the reservoir of a general arch dam,
where the reservoir has constant section (prismatic form) in the up-
stream direction. Because of the discretization approximation in the
finite element method, the normal direction cosines for nodes at the
face of the dam, may not be calculated accurately especially for the
corner nodes. A general conclusion of this comparison as depicted in
Fig. I-9 is that the Westergaard approximate solution is too conservative
and overestimates hydrodynamic effects. 1Its chief advantage is that it

is the least expensive means to represent hydrodynamic effects. However,
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by actually carrying out computations of hydrodynamic pressures by
both methods on Techi Arch Dam, an existing nonsymmetric arch dam
(Fig. I1-10), we found that it was not very expensive to use Galerkin
Finite Element Method. Results obtained by the two methods, shown in
Fig. 1-9(d), demonstrate the significant overestimation given by the
Westergaard approach.

From the cases studied, it is evident that the Generalized
Westergaard approximation can be used for crude preliminary analysis
purposes taking advantages of its relative economy. The Galerkin
Finite Element Method with its competitive low cost should be used to
represent incompressible hydrodynamic effects for final design studies.
The validity of this method will be strengthened by the correlation

studies presented in the following chapter.
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5. NUMERICAL CORRELATIONS WITH EXPERIMENTS ON TECHI ARCH DAM

5.1 Properties of Techi Arch Dam

The Techi Dam, located in the middle part of Taiwan in a moderately

active seismic zone, was completed in September 1974. It is 180 m in
height, with a crest 290 m long at an elevation of 1471 m above sea.
The thickness of the dam is 4.5 m at the crest and 20 m at the base. It
is a double curvature arch dam with total concrete volume of 430,000 m3.
A perimetral joint surface has_been provided between the dam body and the
pulvino block; the dam body has 22 vertical cantilever monoliths with a

contraction joint between each monolith (Fig. I-10).

The mechanical properties of the dam and its foundation are as

follows:

Dam Body
Young's Modulus E = Egynanic = 5-6774 X 10° psi
Poisson Ratio v = 0.21 {(0.19 ~ 0.23)
Thermal Coefficient & =5.6x10°
Mass Density o = 150 Tb/ft>
Compressive Strength o ¥ 5365.15 psi
Tensile Strength Gtz 500 psi

Foundation
Young's Modulus E =8.516 x 106 psi
Poisson Ratio v = 0,21
Mass Density p = 162 16/ft3
Compressive Strength GC: 2.1 x 104 psi
Tensile Strength otx 930 psi

In 1979, several sets of dynamic experiments were carried out on

the dam, including measurements of both ambient vibrations and forced
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vibrations. Numerical modelling of the dynamic behavior of Techi Dam
was carried out on the CDC 7600 machine at Lawrence Berkeley Laboratory.
A certain volume of massless foundation rock was included (Fig. I-11,
I-12} in the model, and both the dam body and foundation rock were
discretized by 3-D finite elements. Thick shell elements, transition
elements and 3-D shell elements as described in the computer program
ADAP (23) were used for the dam body whereas 8-node brick elements were
used for the foundation rock. (Figures I-11 through I-14). Various
added-mass matrix representations of hydrodynamic effects were computed
from the preprocessor RSVOIR (28), and assembled with the concrete mass
matrix computed by the program ADAP. The added-mass matrices that were
considered included the Generalized Westergaard approximation solution,
a consistent added-mass matrix from Galerkin Finite Element Method, and
a diagonalized added-mass matrix obtained by diagonalizing the consistent
added-mass matrix. (22). Also, various different water levels were
considered in the study (Appendix C).

The vibration frequencies and mode shapes were calculated by the
ADAP program for each case inc]udihg foundation and hydrodynamic effects.
Also, stresses in the dam due to the static loads, namely hydrostatic
and gravity, were evaluated. Because there was no information on
temperature changes, no thermal load was included. Finally, a response
spectrum dynamic analysis was carried out. The first 8 modes of the
case considering the diagonalized added-mass matrix from Galerkin
Finite Element Method were used in the dynamic response analysis, and
stresses envelopes were obtained for the dam-foundation-reservoir system
subjected to hydrostatic load, gravity load, plus the Design Base

Earthquake excitations. Mode shape and frequency correlations with the
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experimental results are shown in Section 5.2, and the stress responses

including earthquake effects are presented in Section 5.3.

5.2 Correlation of Frequencies and Mode Shapes

Because of heavy rainfall that occurred during the field measure-
ment program, the vibration measurements were taken at different water
levels. Therefore, numerical solutions were also calculated for various
water levels using different methods of approximation; by curve-fitting

we can interpolate frequency values at intermediate water levels.

5.2.1 Frequency Correlations

VYarious types of frequency correlations are presented in Figures
I-15 through I-19. Fig. I-15 shows the variation of fundamental frequency
of Techi Dam with changes of reservoir height, calculated with the
modified Westergaard reservoir approximation and with the finite element
model. Also shown is corresponding information on frequency changes in
a typical gravity dam. This figure shows that the decrease in
fundamental frequency of an arch dam is more rapid than that of a gravity
dam when the water level in the reservoir increases. This shows that the
added-mass which represents the hydrodynamic effects has a greater
influence on the fundamental frequency of the arch dam than on that of the
gravity dam. This is obvious because the arch dams are in general more
flexible and have less concrete mass. The figure also shows that when
the water Tevel is close to the crest, the added-mass has éimi1ar influence
on the fundamental frequency for both gravity dam and arch dam. However
this cannot be taken as a general rule, because it depends on the geometry
of the reservoir and of the dam being considered. If the reservoir cross-

section is of a wide V-shape, it is expected that the influence of the
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added-mass upon the fundamental frequency will be much greater on arch
dams. It is also interesting to see that the added-mass cause almost
the same rate of change of fundamental frequency of the arch dam,
whether it was computed from Generalized Westergaard approximate solution
or from the Galerkin Finite Element Method, but the significant over-
estimate of reservoir effects given by the Westergaard model is obvious.
The correlations between the analytical procedures and also with the
experimental results are presented in a different form in Fig. I-16,
where the changes due to water level are based on the full reservoir
condition. The similar slopes among all 3 curves, i.e., the rates of
increase in the fundamental freguency per unit decrease in water depth
show that the analytical procedures for taking account of hydrodynamic
effects are fairly accurate. The sharp drop on the curve of the
finite element solution shows that the hydrodynamic effect has negligible
influence on the fundamental frequency of the dam when the water level
is below 40% of the height of the dam. The increase in fundamental
frequency of the dam without water over that of the dam with full
reservoir, is approximately 35% when the added-mass is computed by
finite element method. Expressed in the context of Fig. I-16, if the
fundamental frequency of the dam without water is 100%, the fundamental
frequency of the dam with full reservoir is about 74%. In general, a
full reservoir will reduce the fundamental frequency of an arch dam by
20% to 30%.
Figure I-17 shows comparisons between results of the two numerical
representation of added-mass for the frequencies of first 4 modes of
vibration of the reservoir-dam system when the water level varies.

This figure again shows that the rate of change of frequencies with water
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level is similar for both numerical representations of added-mass.
But obviously the added-mass obtained by Generalized Westergaard solution
is greatly overestimated compared to that computed by Galerkin Finite
Element Method. The difference between different schemes is greater than
between different water levels for the same scheme.

The correlation with forced vibration experimental results shown in
Fig. 1-18, demonstrates that the hydrodynamic effects evaluated by
Finite Element Method in the form of diagonalized added-mass matrix gives
better agreement than the Westergaard procedure. Although the finite
element analysis underestimates the added-mass effect for the fundamental
mode, it overestimates it for the second mode and gives quite good
agreement for the third and fourth modes. Therefore, as a whole, it may be
concluded that hydrodynamic effects are well evaluated by Finite Element
Method.

A final comparison of all experimental and analytical results for
the various water levels that have been studied is presented in Fig. I-19.
On this comparison the question has to be raised as to how to identify
the mode number corresponding to a given freguency. Because of the
possibility of missing modes in the experiments, as will be seen in the
foltowing section, we have to be sure that the frequency correlations
actually apply to the same mode number. We know that in solution of an
eigenproblem, any errors in the computational procedure affects eigen-
vectors more than eigenvalues; that is, the computed eigenvalues tend
to be more accurate than the computed eigenvectors. However, because
the frequency errors also may be due to inaccurate material properties,
in this study it was necessary to identify the mode number by similarity
in mode shape; i.e., if the asscciated frequencies are different, it

is presumed to be because the material properties are not modelled
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accurately. In the following section, mode numbers are identified by
mode shapes, considering both radial and tangential components; in this
way some missing modes in the experiments were discovered. On this
basis the correlations of frequencies associated with the same mode

number are proven to be valid.

5.2.2 Mode Shape Correlations

The correlations of mode shapes are illustrated in Figures I-20 and
[-21. Fig. 1-20 shows the correlations between experiments (34) and numer-
ical solutions using the Galerkin Finite Element Method for the case when
water level is at 90% of dam height. Fig. I-21 presents the correlations
for the case when water Tevel is at 85% of the dam height, except that the
analysis in this case used the Generalized Westergaard reservoir model.

As mentioned above, the correlations should be done for the same
mode number as identified by similar mode shapes (because some tangential
components were not measured, only radial components are compared in the
figures). Some different modes, as shown by Figures I-20{b) and (¢), may
have similar radial components of the mode shapes; but they are indeed
different modes because displacement shapes on vertical sections are
different. This is far more evident for higher modes. In Figures I-20 and
I1-21 we only show the mode shapes of the crest, but for the higher modes it
may be necessary also to show the mode shapes of selected sections below
the crest in order to differentiate mode numbers.

In Fig. I-20, we see that the correlations of mode shapes are very
good for the first several modes, but some modes were missed in
the experimental results. The measured frequencies associated with
those missing modes are listed on the figures, although the mode shapes

were not measured. The measured and calculated frequencies for the
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similar mode shapes are within 5%, indicating the hydrodynamic effects
represented by the added-mass matrix computed by Galerkin Finite Element
Method are reasonable, while also considering the uncertainties in the
concrete material modelling. It is interesting to see that the 3rd

mode shape may not be easy to obtain in the forced vibration test because
its crest nodes are so close to those of the 2nd mode. In general,
because the behavior of a structure is normally dominated by its lower
modes, Fig. I-20 shows that the hydrodynamic effects represented by the
diagonalized added-mass matrix computed from the Galerkin Finite Element
Method are certainly adequate for engineering purposes. Although they are
not shown, it is worthwhile to mention that the mode shapes given by the
consistent added-mass matrix are almost identical to those according to
the diagonalized added-mass matrix for both radial and tangential com-
ponents, except for mode numbers above the 9th.

Fig. I-21 shows that the correlations of mode shapes for 85% water
depth are good up to 4th mode with the 3rd mode missing from experimental
results. This indicates that the added-mass matrix computed according to
the Generalized Westergaard Formula has good relative distribution on the
dam face. However, frequencies of similar mode shapes have errors of up
to 20%; thus, the added-mass matrix according to the Generalized Wester-
gaard Formula overestimates the hydrodynamic effects in magnitude. One
mey rotice from Figures I-21(d) and (e) that the crest mode shapes are
similar for modes 4 and 5 of the numerical solution in both radial and
tangential components. If only the crest mode shapes were compared in
this case they would appear to represent the same mode number. But they
are truly different modes because the vertical crown section shapes{not shown)

are completely different from each other. When we examine correlations of
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mode shapes and their associated frequencies of mode 9, in Fig. I-21(i)
we can only say that this is a beautiful note in the melody played by
Generalized Westergaard Formula.

From the correlation studies on frequencies and mode shapes present
in this section, it may be concluded that the hydrodynamic effects
represented by the diagonalized added-mass matrix from the Galerkin Finite
Element Method can be considered as a good approximation of the true
behavior. Nevertheless, the Generalized Westergaard approximate solution

sti11 can be useful for crude preliminary studies.

5.3 Stress Response Representations

Stresses calculated in a structure subjected to specified
loadings provide the basis for the design of the structure. According
to the assumed mechanical properties of the structural material, the
structure is designed so that when subjected to the design loads, it won't
develop excessive stresses that will Tead to damage. Because of the
petential disaster associated with the failure of a dam, it is very
important to analyze the stresses in the dam accurately, when it is
subjected to the maximum expected loadings. For arch dams, two critical
stresses may be represented conveniently in terms of normal components
in the horizontal and vertical directions, usually called arch and
cantilever stresses.
Three intensity loads of earthquakes often are used in the design
of a dam:
(1) Maximum Credible Earthquake (MCE): This is the maximum possible
earthquake that might occur at the site of the dam. When subjected
to the MCE, the dam may suffer damages, but must retain the

reservoir.
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(2) Design Base Earthquake (DBE): This is an earthquake intensity
corresponding to a return period of 100 years, (Fig. 1-25(b) and (c)),
the expected life of the structure. When subjected to the DBE,
the dam should sustain only repairable damages, and its equipment
should be able to operate normally.

{(3) Operation Base Earthquake (OBE): This is an earthquake intensity
corresponding to a return period of 25 years. (Fig. I-25(b) and (¢));
it is very likely to occur during the 1ife of the structure. When

subjected to the OBE, the dam should not sustain any damage.

The Design Base Earthquake was used for this study. Figures [-22

to 1-24 present the stress responses of Techi Dam when subjected to
various types of loadings. In the figures, SIG-XX denotes horizontal normal
stress (arch stress) while SIG-YY denotes vertical normal stress
(cantilever stress). A1l cases presented in Figures I-22 to 1-24 are

discussed in the following sections.

5.3.1 Stress Response to Static Leadings

Because no temperature change data was available, the only static
loads considered were hydrostatic and gravity. Figs.I1-22 shows the
static stress results in the form of contour plots; all the tension
zones are shaded. Four separate plots are presented (Figs.I-22(a),(b),
(c), and (d)), showing arch and cantilever stresses on the upstream
and downstream faces. Obviously, all the tensile stresses, either
cantilever or arch, due to the static loads, are well below the tensile
strength of the concrete (which is assumed to be 500 psi here, see
Section 5.1).

The éompressive stresses are also well below the material strength.

The static compressive cantilever stresses shownon the downstream face
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at the foot of the dam in Fig. I-22(d) while it is subjected to static
Toads are beneficial because they compensate for dynamic tensile stresses
which may be quite high in this region.

5.3.2 Stress Response to Combined Static Loads and Design Base
Farthquake (DBE) Excitation

The response spectra for the DBE are shown in Fig. I-25(a). From
Fig. I-19, the fundamental frequency of Techi Arch Dam, with 90%
reservoir depth, is approximately 2.7 Hz according to finite element
solution with diagonalized added-mass matrix, it corresponds to approx-
imately 2 g of the pseudo-acceleration intensity on the response spectra
for the DBE in Fig. I-25(a). If we consider pseudo-acceleration intensity of
0.2 g and above as significant (10% of the intensity of fundamental mode),
then the DBE has important intensity associated with excitation
frequencies up to 7 Hz, which will excite the first 8 modes of the Techi
Dam considering hydrodynamic effects (see Fig. I-19). Thus, the first
8 modes were included in the response spectrum dynamic analysis. Because
the dynamic stresses resulting from the response spectrum dynamic
analysis are in absolute value, we present the stress response due 1o
combined static and dynamic lToadings in terms of maximum and minimum
stress envelopes.

The stress envelopes have minimum values obtained by subtracting
response spectrum dynamic stresses from corresponding static stresses,
and the maximum values are evaluated by adding response spectrum dynamic
stresses to the corresponding static stresses. Fig. I-23 iliustrates the
stress envelope contours on the upstream face while Fig. I-24 presents
the stress envelope contours on the downstream face. As before, SIG-XX
indicates arch stresses and SIG-YY represents cantilever stresses;

and here, minimum stresses show the largest possible compressive stresses
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whereas maximum stresses show the largest possible tensile stresses.

From Figures 1-23 (a),(b),(e) and (f), it is evident that the
maximum arch and cantilever compressive stresses on the upstream face
due either to upstream-downstream excitations or cross-canyon excitations,
are all well below the compressive strength of the concrete, which is
about 5000 psi.

Similarly, Figures I1-23(d) and (h) show that the maximum tensile
cantilever stresses are well below the tensile strength of the material;
hence, no cantilever cracking will occur. However, in Figures I-23(c)
and (g), it is clear that the tensile arch stresses indicated near the
crest are beyond the tensile strength of the material; thus cracks are
expected to be formed there. But it must be remembered that vertical
contraction joints were built into the structures; thus the tensile
arch stresses will merely open these joints. Therefore, no cracking
is expected from these indicated tensile stresses in the crest region
and the dam will be able to withstand the earthquake without significant
damage.

Figures I-24(a) to (h) present the corresponding stress results
for the downstream face. Figs. I-24(c) and (g) indicate that tensile
arch stresses on the downstream face also exceed the tensile strength
of the material, and again it may be assumed that the contraction joints
will open to release the tensile arch stresses. Figs. 1-24(d) and {(h)
show that cantilever cracking also is unlikely on the downstream face,
and Figs. I-24(a), (b), (e) and (f) show that the compressive stresses
are well within the compressive strength of the concrete.

Thus, the discussions in this section have shown that Techi Dam

will not have significant damage when it is subjected to hydrostatic
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load and gravity load combined with the Design Base Earthquake

excitations, taking account of incompressible hydrodynamic effects and
foundation flexibility. However, one other aspect of the dynamic

behavior should be considered: the nonlinear response mechanism

associated with the opening of the contraction joints due to the action

of dynamic tensile arch stresses. It is evident that such joint opening

on one face of the arch dam will be accompanied by the modification of

the arch stresses on the other face (and vice versa), and also the
possibility of changes in the state of stresses in the cantilever direction.
This type of nonlinear response mechanism is the subject of the second

part of this thesis.
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6. CONCLUSIONS AND REMARKS

The hydrodynamic effects represented by an added-mass matrix
‘associated with incompressible fluid reservoir of arch dams are reported
here. Two basically different computational procedures, namely
Generalized Westergaard Formula and Ga1erkin.F1nite Element Method, are
described in detail, and pressure solutions obtained with each are
compared. Rigorous vibration frequency and mode shape ana]yées are
carried out, and based on their comparisons with field measurements,

a best suitable standard procedure is proposed, i.e., Galerkin Finite
Element Method with diagonalized added-mass matrix.

Safety evaluations of Techi Dam, that subjected to either static
loads alone or to combined static and dynamic earthquake Toads, are
discussed. It is shown‘that Techi Dam won't sustain major damages
due to these loading conditions, but that minor damages might occur near
the crest spillway. This condition may need further study that includes
joint opening nonlinear response, it nevertheless should not prohibit
the normal operation of the gates.

It was found that hydrodynamic effects of an incompressible liquid
reservoir were represented adequately by a reservoir model that extends
in upstream direction 3 times the height of the dam. This greatly
reduces the cost of the finite element analysis of the reservoir inter-
action, but the corresponding conclusion may not apply to compressible
water. Inclusion of the water compressibility greatly complicates the
reservoir analysis, and it is not known at present whether or not
the results neglecting water compressibility conservative. Further
reserach is needed to verify the significance of the influence of water
compressibility on the real time response of an arch dam, especially when

superposition procedure is not valid.
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However, the results of the analyses and of the correlations with
field measurements contained in this report have shown that the hydro-
dynamic effects represented by added-mass of incompressible water should
be satisfactory for engineering purpose in the analysis and design of

an arch dam.

In view of nonlinear dynamic response analysis of arch dams,
diagonalization of the full added-mass matrix was deemed necessary to
reduce the computaticnal cost. This diagonalization has nevertheless
destroyed the coupling effectsof added-mass, whether these coupling effects

are important or not require further research.
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APPENDIX A: COMPUTATIONS OF NORMAL DIRECTION COSINES

The normal direction cosines at any point on a curvilinear surface,
as on the 2-D interface elements, can be found {25) from the intrinsic
property of finite element interpolation functions which use the natural
coordinates as curvilinear coordinates.

Figures I-4(b) and (c) show 2 kinds of possible 2-D interface
element (2-D in natural coordinates, but 3-D in RCC space), where points
p are regular points and point q is a degenerate corner point. The
computations of normal direction cosines for points p are different from

that for point q.

A.1: Normal Direction Cosines for a Regular Point p

From basic finite element property, we have,

=z Ni(r,s)ﬁi (A.1)

%p
;

where

Xi = X5 Y5 237 the coordinates of node i of the element

The unit normal vector at point p, n, can be found as,

ax ax
ETR
gp " Tax 3x (A.2)
=Py =P
ar as
where
X
‘%& = IN,.(r,s)X;, vector tangent to r-curve at point p
.l 2 e
oX
_%g.= LN (P,S)Xj, vector tangent to s-curve at point p
.i 3 ~

or, in finite element formulation,
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1 j k
1
n.= N, (r,s)x; ZN. (r,s)y. I N, (r,s)z,
~p EéR ) EéE. i br iod i, iy iy i | (A.3)
ar 35
? Ni’s(r,s)xi ? Ni,s(r,s)yi ? Ni,s(r’s)zi
Thus,
1 ? > o~
n_ = (n,, 1 +n,. 3+n, Kk (A.4)
~ X X X Z
p %% p yp p
ar 3s
and
X ax
—~P =Pl = 2 2 2 s
5 X g (ngp * Nyp *+ gp) (A.5)

A.2: Normal Direction Cosines for a Degenerate Corner Point g

IX
Because —§%~= 0 at the degenerate corner point q (Fig. I-4(b)), we

cannot find nq as above.

Instead,the unit normal vector gq can be found most conveniently

as foliows:
Xq © ? Ni(r,s)gi (A.6)
X X
= =9 —-~q
m 5s X —5g (A.7}
~q r=1.0 r=-1.0
and

_ 1
o TR -

The sequence of the cross-product is expressed in Eq. (A.7) according to
the convention that the connectivity cof the element is defined in the

counterclockwise direction {Appendix B). In finite element formulation,
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Eq. (A.7) becomes

-~ ~

i J

= >

m, - ? Ni,S(T.O,s)xi % Ni,s(]'o’s)yi § Ni’S(T.O,s)zi (A.9)

) Ni,s(-l.o,S)xi ? Nias(—1.0,8)yi ? Ni,s(-LO,s)zi

and,
1 A 5 v
= m +m + m K A.10
N m ( Xq 1 g J zq ) ( )
where
2 2 2 \k
= + A.]1
mg| = (g * Myq ¥ izg) (A1)
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APPENDIX B: FINITE ELEMENT INTERPOLATION FUNCTIONS
AND THEIR DERIVATIVES (21,22)

Variable node finite elements are used in the analysis described
in this report; the convention of their connectivities is shown in

Fig. I-5.

B.1: Interface Elements (Fig. I-5(a))

For interface elements, 2-D in natural coordinates and 3-D in
RCC space, their interpolation functions and the derivatives of their
interpolation functions with respect to the natural coordinates are as

follows:

1~ 172
- 1 i}
¢: = Ls = m (Lhyq % Typy) 1524
¢j = QJ Jj=5~8

where Ty = 0 if node k is not included

Ly = G(r,rk)G(s,sk)

6(8,8,) = % (148,8), 8= + 1,8 = 1,5

1-g2 LB, =0

]

G(B.8)

and derivatives

Ck,B = G,B(r,rk)G(S,Sk) + G(rsrk)GaB(SaSk)

_ -
G,B(B’Bk) - f Bk: Bk - i'_ ]
G,B(S’Bk) = —28 s Bk =0
For degenerate elements, if several nodes are degenerated into one node,

their associated interpolation functions also have to be degenerated

into one function, and similarly the derivatives of the interpolation
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functions.

B.2 3-D Fluid Elements (Fig. I-5(b})

For 3-D fluid elements, the suggested interpolation functions and
the derivatives of the interpolation functions with respect to natural

coordinates are as follows:

) 1
Ny =2y -5 (Zg * Ty + Tyq)

) ] N
Ni =25 -7 (Ba7 * Bag T Bg) T2
Ng = g - % (G5 + G + T7)
57 5% 72137 516 T %17
- 1 .
Ny =ty -2 By P Byag ¥ Byqp) I 68
N = T k = 9~20
where
_—— 0,1f node m is not included
g, = 6(r,r )G(s,s )G(t.t )
‘ =.]_ = =
G(B,8 ) =5 (1 +8.8) ,8 =+1,8=r.;s,t
6(8, 8,) = 1-87 By = O
m >m

and derivatives

Cn,g = B plr p)Gls, s)6CE, t) + Glr,rp)Go(s, s )6(t,t,) +

G(r,rm)G(s,sm)G,B(t,tn)

1
?-Bm)B

+ 1

6 (8.8, .

0

'28 E B

6, (8.8, .
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For degenerate elements, if several nodes are degenerated into one
node, their associated interpolation functions also have to be degenerated

into one function, and similarly for the derivatives of the interpolation

functions.
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APPENDIX C: VARIABLE WATER LEVELS

When the dam is discretized in such a way that its element bound-
aries on the upstream interface do not match the boundaries of the
fluid elements at the interface, the added-mass matrix found by the
methods presented in Chapter 3 cannot be assembled directly with the
concrete mass matrix of the dam. This is because different nodal points
or degrees of freedom apply to the water and the concrete elements.
This is most Tikely to occur when the dam is discretized so that the
water surface is located between the horizontal boundaries of the
dam element. |

This problem presents no difficulty for the added-mass matrix
formed by Generalized Westergaard Formula. But in using Galerkin
Finite Element Method, the difficulty arises in the integration of
Eq. (3.16):

(

T

ﬁézb)m x 3ND) © ffm A
S
The shape functions Ngi) and Qéi),'in this case, does not reside in the
same domain, rather the domain of ﬂgi) is included in the domain of géi)
(Fig. 1-26). The fntegration only can be carried out for in the domain
of ﬁgi) and cannot be in the domain of Qéi), because géi) are discontinu-
ous functions in the domain of Qéi) {they vanish above the water level,

see Fig. I1-26). Therefore, Eq. (3.16) can be written, in this case,

as follows:

.
it - i 8 rs) A1) () 88T (e(ras), n(rs)) aal) (e

or, in the form of quadrature integrations:
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. . . . i
nt) - 2w M50 2 s 6l (e ss g ) 05,01

(C.2)

A11 the terms in Eq. (€C.2) are defined similarly to those in Eq. (4.8).
The task is in evaiuating values of 9§1) at integration points

)

(rj,sk), while Qéi are functions of (£,n). Naturally, we have to find
coordinates (£,n) at points where (rj,sk) Tocates, and they are only
related through the RCC coordinates of the nodes that associéte with each
element respectively.

Therefore, firstly we denote the RCC coordinates of fluid element

nodes as x, ¥, z and RCC coordinates of concrete elements as X, Y, Z.

Then, we can have the expression:
Xn = g X (C.3)

where
X = x-coordinate of node n of the fluid element at the interface
5 = yector of X-coordinates of nodal points of concrete elements
| at interface
¢. = vector of shape functions associated with nodes of the concrete

elements.

o and X are known, and if we position Xn properly, that is, at the
locations where & values are -1, 0, +1, then, £q. {C.3) will reduce to
a simple form of a quadratic equation with n as unknown. Then if we
solve n, for the corresponding X knowing 41 <y, <1, we can find the
coordinates (g,n) for all nodes of the fluid element on the interface.

Furthermore, the integration points (rj,sk) has an x-coordinate, Xy given



by
Xa = Qs(rj’sk) X (C.4)

where % = vector of x-coordinates of nodal points of the fluid element

at interface (i.e., xn's).
relating Eq. {C.4) to Eq. (C.3), we have,

Xg = Nolrinsy) & X = Eo, X (c.5)

where = collection of ggin Eq. (C.3) with known {(&£,n)'s

25(ND x ND)
By Eq. (C.5) we can find RCC coordinates of integration points (rj,sk)
in terms of RCC nodal coordinates of the concrete element.

Now, refering back to Eg. (C.2) with Eg. (C.5), we have

[e) o g
+ Nsx .
gg‘) - 0 gé;) 0 (C.6)
| 00 Eii)_

which corresponds to the nodal degrees of freedom of element i arranged

T.,1.7T

according to <XT Y 7>
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FIG. I-4 NORMAL DIRECTION COSINES OF CURVILINEAR SURFACE
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FIG. I-9 ARCH DAM WITH GENERAL GEOMETRY UPSTREAM FACE

PRESSURE



66

WESTERGAARD
FEM, L/H =3

(d) PRESSURE DISTRIBUTION OVER THE DAM FACE
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FIG. I-13 FINITE ELEMENT MESH OF DAM BODY (TECHI DAM)
UPSTREAM FACE PROJECTED ON XZ-PLANE
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OF TECHI DAM DUE TO STATIC LOADS AND DESIGN BASE EARTHQUAKE
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FIG. I-24 CANTILEVER STRESS AND ARCH STRESS ENVELOPES FOR DOWNSTREAM FACE
OF TECHI DAM DUE TO STATIC LOADS AND DESIGN BASE EARTHQUAKE



99

DOUNSTREAM FACE

MINIMUM SIG-YY
UNIT ¢ PSI

CONTOUR INTERVAL= 75.0

UPSTREAM-DOWNSTREAM EXCITATIONS

AND  HYDROSTATIC + GRAVITY LOADS
(b)

F1G. 1-24 (Cont.)



100

DOUNSTREAM FACE

MAXIMUM SIG-XX
UNIT ¢ PSI

CONTOUR INTERVAL= 100.0

UPSTREAM-DOUNSTREAM EXCITATIONS
AND HYDROSTATIC + GRAVITY LOADS
(c)

FIG. I-24 (Cont.)



101

DOWNSTREAM FACE

MAXIMUM SIG-YY

UNIT ¢ PSI
CONTOUR INTERVAL= 100.0

UPSTREAM-DOWNSTREAM EXCITATIONS
AND  HYDROSTATIC + GRAVITY LOADS
(d)

FIG. I-24 {Cont.)



102

- DOUNSTREAM FACE

MINIMUM SIG-XX
UNIT ¢ PSI
CONTOUR INTERVAL= 150.0

CROSS5-CANYON EXCITATIONS

AND HYDROSTATIC + GRAVITY LOADS
(e)

FIG. I-24 (Cont.)



103

DOWNSTREAM FACE

MINIMUM SIG-YY

UNIT ¢ PSI

CONTOUR INTERVAL= 100.0

CROSS-CANYON EXCITATIONS

AND HYDROSTATIC + GRAVITY LOADS
(f)

FIG. I-24 {Cont.)



104

DOUNSTREAM FACE

MAXIMUM SIG-XX
UNIT ¢ PSI
CONTOUR INTERVAL= 150.0

CROSS-CANYON EXCITATIONS

AND HYDROSTATIC + GRAVITY LOADS
(a)

FIG. I-24 (Cont.)



105

DOUNSTREARM FACE

MAXIMUM SIG-YY

UNIT ¢ PSI

CONTOUR INTERVAL= 75.0

CROSS-CANYON EXCITATIONS

AND  HYDROSTATIC + GRAVITY LOADS
(h)

FIG. I-24 (Cont.)



106

- >‘<§f‘9/-\ @
N N_/]
50 }aé. /éx;

0\4
X

NN
\ ‘X’
KPS

IR

8 20 PO\BE/\ L/ N
Vi

~

> /

2
>

01 0.2 05 1 2 5 10 20 50 100
Freq.’ Hz

D
YN
KA XK

FIG. I-25 (a)5% damping elastic response spectra for Operation
Base Earthquake and Design Base Earthquake, based
on Newmark's basic spectra with amplification factors
for acceleration and velocity taken to be 2.6 and
1.9 , respectively.



107

600 T T 7T TT1T T T 7777

500 —

400

A (CM/SEC?)

o ?
200

4

100 e

0 b EENE RN
10 20 50 100 200 500 1000

L ! | D N I S | 1 i J =
09 08070605 04 03 02 01 005

FIG. I-25(p) Relation between ground acceleration and probability
of exceedance in fifty years, P, and return period
T'



108

60 T T T T T — AR
50
40
[®)
o)
< 30
> .
o
>
DBE
20 /}
_ OBE
10/
0 Lo bt Lo drand oy
10 20 50 100 200 500 1000
{ i | N T 1 1 ! 1

]
09 08 07060504 03 02 01 005

FIG. I-25{c) Relation between ground velocity and probabi?ity of
exceedance in fifty years, P, and return period T.

(Techi dam site)



109
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element at interface

(b)

FIG. I-26 VARIABLE WATER LEVEL
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"Predictive Dynamic Response Of Panel Type Structures Under Earthquakes,” by J.P. xollegger and

J.G. Bouwkamp - October 19380(PBa1 152 315)A04

"The Design of Steel Energy-hbsorbing Restrainers and their Incorporacion into Nuclear Power Plants
or Enhanced Safety (Vol 3): Testing of Zompercial Steels in Low-Cvele Torsional Fatique," by
E.R. Parker, E. Jongewaard and M. Drory :

o

Frencay,

"The vesign Of Steel Eneryy-Absorbing Restrainers and their Incorporation into Muclear Power Plants
for Enhanced Safety (Vol 4): Shaking Table Tests of Piping Systems with Energy-Absorbing Restrainers,”
by 5.7, Stiemer and W.S. Godden - Sept. 1980

"The Design of Steel Energy-Abscorbing Restrainers
for Enhanced Safety (Vol 5

and their Incergporation into Nuclear Power Plants
Summary Report," by P. Spencer

"Experimental Testing of an Energy-Absorbing Rase Isolation System,” by J.M. Kelly, M.S.
K.E. Beucke - Qctoper 1980(PBSL 154 072)a04

Skinner and

"Simulating and Analyzing Artificial Non-Stationary Farthquake Ground Motions," by E.F. Nau,
and K.5. Pister - QO¢tober 1980(PBS8L 153 397)004

R.M. Oliver

"Barthgquake Engineering at Berkeley - 1980," - Sept. 1980(PB8L 205 #74)A09

"Inelastic Seismic analysis of Large Panel Buildings,”
{PB8L 154 338)al3

by V. Schricker and G.H.

Powell - sept, 1960

"Dynamic Response of Fmbankment, Concrete~Gravity and Arch Dams Including Hydrodynamic Interaction,®
by J.F. Hall and A.X. Chopra - October 1980(FBB1 152 324)all

“Inelastic Buckling of Steel Struts Under Cyclic Ipad Reversal," by R.G. Black, W.A. Wenger and
E.P. Popov - COctober 1980(PB81 154 312)AD8

"Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Barthquake,” by
P. Repetto, I. Arangc and H.B. Seed - Sept. 1980(PB8L 161 739)A035

“Evaluation of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrece
Frame," by J.M. Blondetr, R.W. Clough and 5.A. Mahin

"Modelling of Soil-Structurse Interaction by Finite and Infinite Elements," by F. Medina -
December 1980(PB8L 229 270)ada

"Control of Seismic Response of Piping Systems and Cther Structures by Base Isolation,"” edited by J.M.
¥elly - January 1981 (PBBL 200 7335)R05

“CPTNSR - An Interactive Software System for Optimal Design of Statically and Dynamically Loaded
Structures with Nonlinear Response," by M.A. Bhatti, V. Clampi and K.3. Pister - January 1981
(PBSL 218 851)A09

"analysis of Local vVariations in Free Field Seismic Ground Motions," by J.-C. Chen, J, Lysmer and H.B,
Seed - January 1981 (AD-ACS9508B)AL3

"Inalastic Structural Modeling of Braced Offshore Platforms for Seismic Loading,” by V.A. Zayas,
P.-S.B. Shing, S.A. Mahin and E.P. Popov -~ January 198l (FB82 138 777)a07

"Dynamic Response of Light Equipment in Structures,” by A. Der Kiureghian, J.L. Sackman ard B, Nour-
Omid -~ April 1281 {(pB81 218 43973a04

"Preliminary Experimental Investigation of a Broad Base Liquid Storage Tank,” by J.G. Bouwkamp, J.P.
Kollegger and R.M. Stephen - May 1981 (PB82 140 385)A03

"The Seismic Resistant Design of Reinforced Concrete Coupled Structural walls," by A.E. Aktan and V.V.
Bertero - June 1981 (PB82 113 358)all

“The Undrained Shearing Resistance of Cohesive Scils at Large Deformations,” by M.R. Pyles and H.B.
Seed - August 1981

"Experimental Behavior of a Spatial Piping System with Steel Energy Absorbers Subjected to a Simulated
Differential Seismic Input,” by S.F. Stiemer, W.G. Godden and J.M. Kelly - July 1981



UCB/EERC-81/10

UCB/EERC-81/11

UCB/EERC-81/12

UCB/EERC-81/13

UCB/EERC-81/14

118

"Evaluation of Seismic Design Provisions for Masonry in the United States,” by B.I. Sveinsson, R.L.
Mayes and H.D. McNiven - August 1981

"Two-Dimensional Hybrid Modelling of Soil-Structure Interaction," by T.-J. Tzong, S. Gupta and J.
Penzien - August 1981 (pB82 142 118)A04 .

“srudiaes on EFffects of Infills in Seismic Resistant R/C Construction," by $. Brokken and V.V. 3ertero -
September 1981

"Linear Models to Predict the Nonlinear Seismic Behavior of a One-Story Steel Frame," by H. Valdimarsson,
A.H. Shah and H.D. McNiven - September 1981 (PBB2 138 793}A07

"TLUSH:

A Computer Program for the Three-Dimensiocnal Dynamic Analysis of Earth Dams," by T. Kagawa,

L.4. Meijia, H.B. Seed and J. Lysmer - September 1981 (PB22 139 940)A06

UCB,/EERC-81/15

"Three Dimensiocnal Dynamic Response Analysis of Barth Dams,” by L.H. Mejlia and H.B. Seed - September 1981

(PRB2 137 274)A12

UCB/EERC-B1/16

UCB/EERC-8L/17

"The Influence of Base Isolation on the Seismis Response of Light Secondary Eguipment,” by J.M.

"Experimental Study of Lead and Elastomeric Dampers for Base Isolation Svstems," by J.M. Kelly and
3.B.

Hoddexr ~ October 1981

kKelly -

April 1981

UCB/EERC-81/18

"Studies on Evaluation of Shaking Table Response Analyvsis Procedures," by J.

Marcial Blondet - HNovember

1981

UCB/EERC-B1 19

UCB/EERC-81/20

=

UCB/EERC-82/0L

UCB/EERC~-82/02

UCB/EERC-82/03

UCB/EERC~82/04

UCB/EERC-82/05

UCB/EERC~82/06

UCB/EERC-82/07

UCR/RERC~82/08

UCB/EERC-82/09

- "DELIGHT.STRUCT:
K.S.

“Optimal Design of Seismic-Resistant Planar Stsel Frames," by R.J. Balling, V. Ciampi, X.5.
Polak -~ December 1981

A Computer-Aided Design Environment for Structural Engineering,” by R.J. Balling,

Pister and E. Polak - December 1981

Pister and

"Dynamic Behavior of Ground for Seismic Analysis of Lifeline Systems,”
by T. sato and A. Der Kiureghian - January 1982 (PB82 218 926) A0S

"Shaking Table Tests of a Tubular Steel Frame Model," by ¥. Ghanaat
and R. W. Clough - January 1982 (pPB82 220 161) AC7

"Experimental Behavior of a Spatial Piping System with Shock
Arrestors and Energy Absorbers under Seismic Excitation," by
S. Schneider, H.-M. Lee and G. W. Godden - May 1982

"New Approaches for the Dynamic Analysis of Large Structural
Systems," by E. L. Wilson - June 1982

"Model study of Effects on the Vibration Properties of Steel Offshore
Platforms," by F. Shahrivar and J. G. Bouwkamp - June 1982

"States of the Art and Practice in the Optimum Seismic Design and
Analytical Response Prediction of R/C Frame-Wall Structures,® by
A. E. Aktan and V. V. Bertero -~ July 1982,

"Further Study of the Earthquake Response of a Broad Cylindrical
Liguid-Storage Tank Model,"™ by G. C. Manos and R. W. Clough =~
July 1982

"aAn Evaluation of the Design and Analytical Seismic Response of a
Seven Story Reinforced Concrete Frame - Wall Structure,™ by A. C.
Finley and V. V. Bertero - July 1982

"Fluid-structure Interactions: Added Mass Computations for
Incompressible Fluid,” by J. S.-H. Kuo - August 1982



