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ABSTRACT

Specially designed arrays of strong-motion seismographs near to the
earthquake source are required for seismological and engineering studies
of the generation and near-field properties of seismic waves. The first
such large digital array, called SMART 1 (with radius 2 km and 37 accel-
erometers), to record substantial ground motion (up to 0.24g horizontal
acceleration) became operational in September 1980 in a highly seismic
region of Taiwan. During the first year of operation, SMART 1 recorded
fifteen earthquakes with local magnitudes (M) ranging from 3.4 to 6.9.
Three were located directly below the array at focal depths of 59 to 76 km.
The remaining twelve had shallow depths with epicentral distances from 1.8
to 76 km. Digital records from 27 three-component accelerographs were ob-—
tained from a magnitude 6.9 (Mp) local earthquake on January 29, 1981.

The digital accelerographs were tested on the shaking table at U.C.
Berkeley before they were sent to the field. Calculated instrumental trans-
fer functions show that the calibration up to 20 Hz is known sufficiently
well for normal wave analysis. Installational and operational details and
likely errors in the data processing are also presented.

For the major preliminary study, recorded wave forms across the array
were analyzed for the January 29, 1981 and November 14, 1980 earthquakes.
The correlation coefficient between the acceleration wave forms of the same
component recorded at any two array sites was studied. Representative
measurements were made of seismic wave coherency, Fourier wave number, and
response spectra. Comparisons of power spectra as a function of wave num-
ber, frequency, azimuth of propagation, and wave type show that wave forms
and local magnitude varied significantly across the array for each event.

On average, peak accelerations of horizontal components were about three



ii

times that of the vertical component. Relative spectral changes from earth-
guake to earthguake were large.

The preliminary engineering analysis included (1) transformations to
principal axes, (2) development of generalized response spectrum ratios for
characterizing multi~support excitations, and (3) moving window analysis in
the time and frequency domains for studying the spectral variations of re-
corded ground motions. The dynamic properties of site conditions and, following
ideas of Newmark, spatial correlations of earthquake motions were also studied.
A technique using the principal variance ratio was developed to identify the

wave direction and type of waves.
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1. GENERAL INTRODUCTION
1.1 Objectives

Installation of specially designed arrays of strong-motion seismographs
in highly seismic areas of the world was recommended at an international
workshopl in Hawaii in 1978. Since that time, a number of large-scale arrays
have been designed for siting in California, Japan, Assam (India), Mexico,
People's Republic of China, Turkey, and in Taiwan, R.0.C., among other places.
In addition, an International Strong-Motion Array Council (ISMAC) has been
formed and has held two meetings to assist development and recommend future
international meetings, data standardization and dissemination, instrumental
comparisons, and so on.

Array measurements of seismic waves near to the source of a great earth-
quake are needed for two main reasons: first, such data provide a fuller
understanding of both the generation of seismic waves from the moving dislo-
cation along the causative fault and the effect of the intervening geology
on the wave propagation. Secondly, such data supply essential knowledge
about the spatio-temporal variations of seismic ground motions for engineering
design‘of structures with large base dimensions, such as dams and bridges.
With these objectives, the International Workshop on Strong Motion in Hawaii
in May, 1978, recognized the need for groups of broadband accelerometers
within a specified seismic area and with a specified site geometry and common
time base. The first such digital arra& to become operational is located at
the town of Lotung in the northeast corner of Taiwan, a particularly seismic
area.

For engineering purposes, the prediction of strong ground motion and of
the response of engineered structures in earthquakes3 depends upon measurements

of the spatial variability of earthquake intensities. Pioneering work of this



kind for small ground motions was first carried out in.JapanA using a small array
of seismographs and correlational analysis. In this report, we describe
more extensive measurements of seismic waves from strong earthquakes near
to their sources, from a dense multiple-element array of digital strong-motion
seismographs, and summarize the basic strong-motion data recorded by the array
in its first 12 months of operation. An indication of preliminary research
with some of the data is also given.

The SMART 1 research project is conducted jointly by the Seismographic
Station, University of California, Berkeley, and the Institute of Earth

Sciences, Academia Sinica, Taipei.

1.2 Strong Motion Array Configuration and Site Conditions

The strong-motion array, called SMART 1, installed at Lotung in Taiwan,
is a two-dimensional surface array and consists of a center element C00 and
three concentric circles (inner I, middle M, and outer 0), each with 12
strong-motion seismographs having a common time base, and radii of 200 meters,
1 km, and 2 km, respectively (see Figs. 1.1 and 1.2). The inner ring controls
the spatial aliasing since, for a wave veiocity of 1 km/sec and element
spacing of 100 m, say, the aliasing frequency is 5 Hz. Only one instrument in
the I~-ring is located more than 10 m from the position of perfect symmetry.
The coordinates of SMART 1 are shown in Table 1.1. Details of the Lotung area
and the soil conditions are shown in Figs. 1.3 and 1.4; for the upper 500
meters depth, the P wave velocity is about 0.5 to 1.0 km/sec.

Installation began in September, 1980, and by January, 1981, 27 instru-
ments were in place. By September, 1981, 15 earthquakes of

local magnitude 3.4 < ML < 6.9 had triggered array elements (see Table 1.2).



The largest, on January 29, 1981, was a strong earthquake centered 30 km from
the center of the array and felt all over Taiwan. Its focal depth was

approximately 11 km. The (Richter) magnitude calculated locally by the

Institute of Earth Sciences (Taipel) was 6.9. The world-wide average m magni-

tude (NEIS) was 5.6. In this case, the seismic waves triggered all the 27

operational digital accelerometers, thereby providing the largest comprehen-
sive multi-dimensional recording of strong ground motion near a significant
fault rupture yet obtained. This set of accelerograms can now be compared
with important strong motions measured with other arrays such as in the 1979
Imperial Valley earthquake5 and the 1975 Oroville aftershocks.6 In the 1981
Taiwan earthquake, the maximum horizontal and vertical accelerations recorded
were 0.24g and 0.09g, respectively. (A number of strong-motion accelerometers
of conventional analog type also triggered in the vicinity of SMART 1, allowing
crucial comparison between the two types of measurements’; see Figs. 3.4a and
3.4b.)

Large aperture seismic arrays (linear dimension of order 100 km) have
been used for over 15 years to discriminate between underground nuclear

8, 9 In

explosions and earthquakes by enhancing the signal-to-noise ratio.
contrast, a strong-motion array of aperture 2 km is not designed to enhance
small signals, but rather to determinewave speed, direction of propagation,
type of wave component, and spatial variations and phase relations. As in
an array of radio telescopes, a seismic array, like SMART 1, allows wave
correlations for consecutive time and frequency intervals. Also, a computer
algorithm can be used to insert appropriate time lags in the signals at each

element, thereby steering the array response towards a known azimuth. One

seismological objective is to follow the seismic dislocation as it moves



along the rupturing fault. On the engineering side, the measurements are
designed to address such key questions as how the intensity of seismic waves
varies over short distances, what is the contribution of seismic surface
waves to shaking at a given site and, in particular, to provide information
on out-of-phase wave components over distances comparable to the base dimen-
sions of large engineered structures. Accelerograms from individual strong-
motion seismographs cannot, in general, provide the resolution needed to

resolve such questions.
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Fig. 1.2 The SMART 1 array
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Fig. 1.3 Geological map of Lotung area
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Preceding page.blank

2. INSTRUMENTATION

2.1 Introduction

All the instruments selected for the SMART 1 array were extensively
tested at the University of California, Berkeley, before they were shipped to
Taiwan where they were again checked before final installation; Installation
of the SMART 1 instruments in the field in Taiwan began in September 1980 by
engineers from the Institute of Earth Sciences, Taiwan, initially jointly
with the staff of the Seismographic Station of the University of California
at Berkeley. By October 1980, twenty-one elements of the array were opera-
tional and the remaining elements were added in the following months
(Table 1.1). All thirty-seven elements were installed by September 1981.

A second-order traverse was made in January 1981 to determine the exact
location of each element. The coordinates are given in Table 1.1. The
deviations of the actual site locations from the planned configuration are
listed in Table 2.1.

By June 1981, eleven earthquakes had been recorded by SMART 1, With
excellent performance in that most instruments triggered and the digital
records were of high quality.

In this section some of the technical insights gained from the instal-

lation and operation of SMART 1 during its first year are presented.

2.2 Instrument Specification

The array elements at the field stations are triaxial strong-motion
accelerographs which include digital cassette recorders with precision timing
capability. A detailed description of the instrumental components is given

below.
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(1) Accelerographs

There are 37 self-contained digital accelerographs having low
power dissipation. Tie-down bolts anchor the unit to a surface
pad. The three-component accelerometers (SA-3000) are self-
triggering when the vertical acceleration exceeds 0.01g
(adjustable). The accelerometer is connected to a Sprengnether
DR 100 recorder (shown in Fig. 2.1) in which data are filtered
to prevent aliasing. The signal sampling at 100 sps per channel
is converted to 12 bit binary. The digital delay memory has a
capacity of 2.5 seconds. Digital data are recorded on magnetic
tape cassettes which have a high signal-to-noise ratic. An auto-
matic time-code generator records on tape such time information
as day of year, hour, minute, second. The accelerograph also is
capable of recording externally generated reference time signals
on the cassette tape.

The sensitivity of the SA-3000 is 3.75 V/g with + 2.0g full
scale; its resolution is 0.001 percent of full scale or 2.0 x 10_3 g.
Arrows on the case of the sensor indicate the positive directions
of the motions as shown in Fig. 4.8. The SA-3000 consists of
three force-balanced accelerometers oriented so that their sensi-
tive axes are orthogonal. Their full-scale output is + 7.5 V. A
bubble is provided in the 1lid of the SA-3000 to ensure level instal-
lation of the sensor. Calibration data for level output voltage
are provided with each unit so that an absolute level can be
achieved for the horizontal sensors to approximately +3 minutes of

arc. The AC/DC converter, calibration, circuit, and three-channel,- ..
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five-pole Butterworth low-pass anti-aliasing filter are incorpor-
ated within the unit. The calibration input injects current into
each sensor so as to provide approximately a lg bias of the

sensor. Specifications of the SA-3000 are shown in Table 2.2.

(ii) Power Units
Each of the 37 elements of the array is powered by lead-acid

batteries, charged regularly from the local electricity supply.

(iii) Portable Comparator

A portable field clock and comparator unit that can be taken
from station to station is used to compute and display accumulated
time corrections for the internal station clock to an accuracy of
1 millisecond. A comparator reference clock is also displayed.
Manual adjustments of the comparator clock to GMT from radio time-

signals are necessary.

(iv) Portable Playback Unit

The portable playback unit has the capacity to play the
accelerograph digital tapecagsettes onto strip charts with
variable gain. The analog signals are displayed in parallel with

the coded time data.

(v) Laboratory Playback System

The laboratory playback system selected was the Sprengnether
DP-200 (shown in Fig. 4.1) which has the capability to play

cassette tapes into a recorder that displays the signals on three-
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channel paper with time annotation. The system can also transfer
the digital data from cassettes to nine-track tape (10-1/2 inch
reels) in ASCII-coded 800 bpi records with character representa-

tion. The length of the record is 5120 characters.

During the initial testing, if any malfunction was noted in an instru-
ment, all other instruments were checked particularly with regard to this
function. Most difficulties occurred with individual accelerometers which
are easily damaged by rough handling since they are of the pivot and jewel
type. One symptom of damage was variation of the base line, called DC drift
or DC offset. In all, 24 of the 111 SA-3000 accelerometers were returned to
the manufacturer, Columbia Research Laboratories, Inc., for repairs.

Some available strong motion instrumentation was rejected for a variety
of reasons. For example, some nine-track tape recorders were not acceptable
since they used binary format, not ASCII. The latter code was selected because
it was decided that the system must be independent of a particular computer
from the outset; the project is an international one and could not be tied
to a specific data processing system.

In particular, the instruments selected have the following features:
the crystal oscillator specifications of the clock-comparator are very pre-
cise; the anti-aliasing filter for the seismic data has sharp attenuation;
the annotation on the paper recorder playout is quite complete, and includes
a simultaneous time information unit, serial number, and accurate reference
time. TFurthermore, the cassette playback system is convenient in that it
displays time of event and event number while the tape is read, and the tape
automatically stops . between events. It would be even more satisfactory, how-
ever, if the start-up time were slightly faster and the tape recording time

longer.
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2.3 Shaking Table Test

Finally, before they were shipped to Taiwan, all accelerometers and
digital recorders were tested on the earthquake simulator (shaking table)
at the Earthquake Engineering Research Center of the University of Cali-
fornia, Berkeley (Fig. 2.2). Recorded strong ground motions from Cali-
fornia earthquakes scaled to various acceleration levels were used to drive
the shaking table to which both the accelerometers and recorders were rigidly
attached.

This laboratory test for defects in the instrumentation also provided
an opportunity to check the specified responses of the accelerometers
against the known response of the shaking table. A time-history of the
shaking table input and the corresponding response of one of the instru-
ments is shown in Fig. 2.3. The response of the shaking table is measured
by an accelerometer placed at the center of the table. Tests were also
done at low acceleration levels to test the trigger circuitry.

On subsequent evaluation, the shaking table tests proved to be of great
value. Undoubtedly, malfunctions in the field in Taiwan were minimized by
this procedure.

The following shaking table inputs based on accelerograms recorded at
El Centro, Taft, and Pacoima Dam during the earthquakes of May 1940, June
1952, and February 1971, respectively, were used.

(1) E1 Centro vertical

(2) E1 Centro NS horizontal - max. accel. 0.33g

(3) (1) and (2) combined

(4) Pacoima horizontal and vertical combined

(5) Taft horizontal S69E (max. accel. 0.18g) and

vertical combined, with amplitude increased
to maximum possible for the table.
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A comparison of El Centro (2) with the response of one of the instru-
ments in Fig. 2.3 shows no significant differences in the time domain. The
relation between the driving force and the transfer functions of the shaking
table and instrument are illustrated in Fig. 2.4. When all the systems are

assumed to be linear, the instrument transfer function is defined as

H(w) =

where Y(w) and F(w) are the Fourier transforms of the responses of the instru-
ﬁént, y(t), and shaking table, f(t), respectively.

Figures 2.5 and 2.6 show the transfer functions of instruments 290 and
300, for the different driving forces, E1l Centro (1) and (2). The curves
show that at frequencies below 16 Hz, IH(w)I is approximately equal to one.
This means that below 16 Hz the signal recorded by the instrument is essentially
the same as the movement of the shaking table. Comparison of the recorded

response of the instrument with the input motion indicates close agreement.

2.4 Field Adjustments

A typical field installation is shown in Fig. 2.7. The elements of the
array are routinely checked every 2 to 3.days in accordance with the following
directions to the local operator:

1. Before visiting station, observe clock error of TS-500 on scope.

Adjust clock to zero error once every two weeks.

2. On entry to station, take a general look at the system. The "clock"
lamp on DR-100 should flash once per second. Turn on 'display"
switch to make sure that the clock works in normal conditions.

3. Read event number and record it on operational log.

4, Check the time error between TS-500 and DR-100. Enter the time and

time error on this operational log. On giving a "step'" calibration



10.

11.
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or writing a time error from the TS-500, make a note on the opera-
tional log and observe the tape movement. Adjust DR-100 clock to
zero error once every two weeks (after TS-500 adjustment).

Use a digital voltage meter to check external battery voltage and
record on operational log.

Replace external battery at each station once a week.

Measure output signal of each channel of the SA-3000 accelerometer
and record on the operational log.

Do not change sample rate and time duration switch.

If a change in trigger level is made or the tape is replaced, make
a note on the operational log.

Before leaving the station, observe event number again and turn
display off.

Immediately following an earthquake, each station should be visited.
Write time error on the tape and operational log, then replace the

tape. Send data back to the Institute as soon as possible.
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TABLE 2.1

Deviation of Actual Site Locations from the Planned Configuration

Distance Azimuth Distance Azimuth
Station Error Error Station Error Error
(meters) (degrees) (meters) (degrees)
I01 - 6.7 -3.29 MO7 +22.9 +2.65
102 - 6.1 +0.74 MO8 -16.3 -1.84
103 + 4.2 -0.95 M09 +33.9 -3.87
104 + 6.8 -0.31 M10 -77.0 -3.9
105 + 1.8 ~0.76 M11 + 2.0 0*
106 - 6.4 +4.06 M12 + 3.5 +0. 57
107 + 0.6 +2.62 001 +26.4 - =1.27
108 -12.3 ~-1.71 002 + 8.2 -0.17
109 + 6.9 -0.43 003 +40.7 | +0.31
I10 - 0.3 -1.83 004 -15.7 -1.59
111 -18.4 -0.90 005 ~ 1.0 -2.68
112 + 1.4 +0. 54 006 +10.2 -0.55
MO1 - 8.1 -1.12 007 + 0.8 -1.38
M0O2 +99.9 -3.04 008 +56.4 -3.19
MO3 -53.9 -3.97 009 +45.2 -2.44
MO4 +12.5 +0.19 010 + 2.9 +0.40
MO5 -39.9 ~3.06 011 -51.2 -0.03
M0O6 + 2.7 -0.21 012 - 3.6 +0.17

Reference Station
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TABLE 2.2

Specifications of the SA-3000 Accelerometer

RANGE: + 2.0g

SCALE FACTOR: 3.75 v/g

INPUT POWER: + 12 vdc @ 165 ma

RESOLUTION: 0.0017% of full scale
NON-LINEARITY: Less than 0.2% of full scale
HYSTERESTIS: Less than 0.05% of full scale
CROSS—-AXIS SENSITIVITY: ' Less than 1%
TEMPERATURE SENSITIVITY: Less than 0.01% per degree F
NATURAL FREQUENCY: > 50 Hz

DAMPING RATIO: 0.7 + 0.2

ZERO OUTPUT: Less than 0.50%

TEMPERATURE RANGE:

65° F to 200° F storage

0° F to 150° F operation
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Driving force:

El Centro NS horizontal

W

-C.1

-
=]
]

-0.2

GROUND ACCELERATION (g)
o
==
=

-0.3
TIME (Seconds}

Instrument response:

Fig. 2.3 Comparison between input acceleration and instrument
response from shaking table test
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Typical field installation

Fig. 2.7
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3. A PRELIMINARY STUDY OF THE TAIWAN
STRONG MOTION ARRAY DATA

3.1 Description of Available SMART 1 Data

During the first six-month period of operation, from October 1980 to
March 1981, SMART 1 was triggered partially or wholly by nine earthquakes.
Most analysis to date has been given to this early data set. The parameters
of these earthquakes are listed in Table 1.2, together with preliminary re-
sults for six subsequent earthquakes up till October 1981. The earthquakes
in the total set are referred to as Event 1 through Event 15. The recorded
maximum peak accelerations of the vertical, EW, and NS components of each
earthquake are also included in Table 1.2. The epicenters of the first nine
earthquakes are shown in Fig. 3.1. Table 1.2 and Fig. 3.1 show that three
earthquakes with My, in the range 5.6-5.9 were located almost directly below
SMART 1 at depths ranging from 59 to 76 km. The remaining six earthquakes
with My in the range 3.8 to 6.9 were all shallow, with depths ranging from
7 to 43 km. The epicentral distance ranges from 7 to 193 km. The ratio of
triggered instruments to operational instruments ranges from 2/27 to 27/27
for the first nine earthquakes. With only few exceptions, failure to trigger
was simply because actual ground accelerations did not reach the preset trig-
ger levels of 10-15 gals. The highest acceleration recorded during the
initial twelve-month period was 244 gals.

Following each event, the triggered tape cassettes were retrieved from
the field and returned to the Institute of Earth Sciences, Taipei, where their
contents were transferred onto a regular 9-track magnetic tape (see Section
2.2). The data on this regular tape were then read into a computer for de-
coding, checking, editing and correction for DC offsets before they were
stored onto a data tape for further processing. Time corrections of individ-

ual records were included in the event header.



30

Figures 3.2a, b, and ¢ show recorded waveforms of the vertical, EW and
NS components, respectively, for Event 2, the My = 5.9 earthquake of November
14, 1980. This earthquake at 62 km depth was only 10 km from SMART 1, so
that it was located almost right under the array; 16 out of the 21 operating
instruments were triggered. Both P and S waves were recorded, showing an
S-P time of about 9 sec. A small delay of P waves as well as of S waves
across the array was observed, consistent with the near-vertical incidence
of these waves. The signal levels of the vertical component (primarily P
waves) were significantly lower than those of both the EW component (pri-
marily SH waves) and the NS component (primarily SV waves). The two horizon-
tal components had about the same strength. The waveforms of individual com-
ponents varied considerably across the array. Figures 3.3a, b and c show
recorded waveforms for Event 5.

Tables 3.1 and 3.2 list the peak accelerations of the vertical, EW and
NS components and their occurrence times recorded by SMART 1 for Events 2
and 5, respectively. The values range from 9.3 to 29.7 gal, 19.9 to 69.7
gal and 29.0 to 78.7 gal for the vertical, EW and NS components, respectively,
so that the peak accelerations vary by‘a factor of 2 to 4 across the array.
The following two observations can be made from these results. First, vari-
ations in both vertical and horizontal peak accelerations by a factor of 2
to 3 were not uncommon over a circular area having a radius of only 2 km.
Secondly, the peak accelerations of the horizontal components were about 3
times greater than those of the vertical component.

A comparison between the free-field motion and the motion recorded by
an analog-recording SMA-1 instrument at the Lotung Town Hall in the SMART 1

area can be seen from Figs. 3.4a and b.
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3.2 (Correlation Coefficients of Acceleration Waveforms Across SMART 1

An important consideration in the design of a long-base structure con-
cerns the coherency of input acceleration functions at different points of
its base. The SMART 1 data provide valuable information for this problem.
The correlation coefficients pij(see Chapter 7) between the acceleration
waveforms of the same component recorded at two array sites were computed.
The results are plotted as a function of site separation for the largest
intermediate-depth earthquake, Event 2, whose waves arrive at the array in
a nearly vertical direction, and for the largest shallow earthquake, Event 5,
whose waves arrive at the array in a more horizontal direction,

Figure 3.5 shows the correlation coefficient pij for the vertical, EW,
and NS components for Event 5 to be about 0.5, 0.6, and 0.7, respectively,
at site separation about 0.2 km. For larger site separations, pij drops to
within #0.2, 0.3, and +0.4 for the vertical, EW, and NS components, respec-
tively. Thus, the waveforms are better correlated for the NS component than

for the EW component. The vertical component has the poorest correlation.
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TABLE 3.1

Maximum Acceleration: FEvent 2

EARTHQUAKE OF NOvV. 14, 1980, 13H, 37M, 4.00S (GMT)

EPICENTER: 121-47.49E 24-35,14N

DEPTH : 62.06 (KM)
MAGNITUDE: 5.90

STATION CODE V COMPONENT EW COMPONENT NS COMPONENT
gal second gal second gal second
coo 19.8 24,342 56.8 23.522 49,7 25.732
103 23.4 22,626 34.4 23.946 45.0 24.606
106 19.5° 23.578: 31.0 23,508 29.0 25.688
M0O2 29.7 15.297 60.3 25,387 78.7 23.377
MO} 14.9 22.637 19.9 27.557 40.1 24.547
M04 14.4 15.037 37.0 25,597 39.2 24,017
MO5 21.4 15.402 49.2 23.182 36.7 25.392
MO 6 24,2 24,709 28.3 22.999 40.6 24.709
M0 8 17.0 22.936 67.8 23.486 35.1 23.746
M09 11.5 15.442 27.% 23.472 29.8 24,672
M10 17.9 23.936 61.5 24,866 60.9 24,616
M12 21.5 25,506 34.3 24.616 36.2 23.546
003 20.4 15.023 37.0 24,013 68.6 24.853
006 27.9 23.841 62.7 24,031 -~ 72.8 23.931
009 20.8 23.428 42.4 24.478 38.9 23.748

012 9.3 22.647 51.9 24.277 33.2 - 24.067
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TABLE 3.2

Maximum Acceleration: Event 5

EARTHQUAKE OF JAN. 29, 1981, 4H, 51M, 36.065 (GMT)

EPICENTER: 121-53.78E 24-25,75N

DEPTH : 11.05 (KM)
MAGNITUDE: 6.9

STATION CODE V COMPONENT EW COMPONENT NS COMPONENT
gal second gal second gal second

coo 42.5 44,456 97.2 48.356 112.0 48.316
103 44,1 44,945 76.4 48,355 86.4 48.155
106 31.5 44,423 89.5 48.633 76.4 48.323
109 64.5 48.703 89.0 48,343 127.6 48.583
I12 57.5 44,203 136.0 48,313 110.2 48.433
M01 91.5 47.560 80.1 48.660 173.9 48.420
M0O2 47.5 48,211 120.4 48,781 118.8 48.351
MO3 28.5 44.506 60.8 48,276 118.9 48.46¢
MO4 31.1 47.150 158.2 48,130 129.8 48.510
M0O5 42.6 47,340 112.8 48.200 100.3 48.740
MO6 53.4 48,748 62.9 48.758 96.4 48.758
MO 7 47.7 48.560 110.4 48.460 106.4 49.040
M08 35.6 48.521 96.4 48.231 102.6 47.861
M09 32.5 47,250 68.7 48,340 73.4 49.330
M10O 40.3 44,519 127.3 48,379 121.0 48.449
M1l 55.3 48,455 115.7 48.385
M12 44.5 49,184 93.6 48.474 150.3 48.394
001 30.6 44,600 87.2 49.190 113.0 48.600
002 © 38,0 47.334 139.4 48.574 244.1 48.544

003 29.2 48.549 156.1 48.309 132.1 48.259

004 27.5 46.987 123.0 48.147 111.3 48.677



STATION CODE

005
006
007
009
010

012
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TABLE 3.2 (continued)

V COMPONENT

gal
23.4
39.8
27.4
34.7
40.9

26.8

second
43.560
47,183
47.240
47.310
48.478

47.822

EW COMPONENT

gal
97.7
117.8
84.5
116.2
90.1

87.0

second
47.790
48.653
48,130
48,220
48,458

48.622

NS COMPONENT

gal
115.4
102.7
79.3
82.7
112.3

161.5

second
48.330
48.343
48.060
49,200
48,508

48.682
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quakes recorded during the first six months
of operation
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4. DATA PROCESSING

4.1 Timing

SMART 1 is designed so that individual elements trigger when seismic
waves having peak accelerations above 0.0lg propagate across the Lotung
area. Complete wave trains are obtained because of the 2.5 second memory
associated with each element. Universal time, correct to at least 0.01 sec,
is marked on each tape at the time of the first earthquake that triggers the
element. Timing of aftershocks is given by the relative interoccurrence
times specified by the internal crystal clock. Immediately after a signifi-
cant earthquake is recorded, technicians check the internal clock of each
element with the portable comparator. This final check of the internal clock
is made no later than two or three hours after the recording of the main
shock so that inter-element time corrections are less than 0.0l sec. 1In this

section, some basic processing of recorded data from SMART 1 is discussed.

4.2 Digital Processing

The cassettes obtained in the field at the array elements are taken to
the digital playback system (shown in Fig. 4.1) at the Institute of Earth
Sciences 1in Taipei, where they are converted to computer-compatible digital
stacks and filed oun magnetic tape by the laboratory playback system.

When the recorded cassette tapes are sent back to the laboratory, they
are played back on paper for visual inspection. Valid records are picked out
and transformed from the cassette tapes to a regular 9-track magnetic tape.
The raw data tape is then read into a computer for decoding and editing.

The edited records with related header information are written onto a user's
data tape for further processing.

The traces of the V, EW, and NS components of acceleration recorded by

each element are plotted for easy visual inspection by potential users of the
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SMART 1 data. The digital format of recording makes it possible to perform
fast data processing on an extensive scale. The following six steps summarize
the decoding and editing involved in the processing of the SMART 1 data.

a) The recorded cassette tapes are played back on paper. On these
playback traces, the number of stations that recorded during
the earthquake are marked aswell as the event number and the
maximum ground acceleration (see Figs. 3.2 and 3.3).

b) The recorded cassette tapes are transformed to 9-track magnetic
tape.

c¢) Decode: The seismic event is recorded as a file consisting of 5120
character records for header, data and trailer. The number of
records per file depends on the event duration. The file organi-
zation is shown in Tables 4.1 to 4.4.

d) The record is printed out and errors corrected. Both the original
record and the transformed record (decode) are printed out. The
error corrections are needed for missing data, adjustments for
time mark errors, glitches and D.C. shifts. Examples of possible
errors are given in Figs. 4.2 to 4.4.

e) The time correction, hypocentral location, and magnitude are all
inserted in the data. The time correction is shown in Fig. 4.5.

f) The corrected data are transferred to regular 9-track magnetic tape.

After data processing, the basic instrument correction and base-line
correction developed by Trifunacl and Hudson2 are applied. Then the Fourier
amplitude spectrum, response spectrum, correlation coefficient and the vel-
ocity and displacement are calculated from the corrected data. The data pro-

cessing procedure is shown graphically in Fig. 4.6.
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The natural frequency of the SMART 1 instrument is >50 Hz and the damp-
ing ratio is 0.7 0.2 critical damping; however, the cutoff-frequency of the
3-channel, anti-aliasing filter (5-pole low-pass Butterworth) is set to 25 Hz.
The filter response curve for the test input which is shown in Fig. 4.7 in-
dicates that the recorded accelerogram is quite close to the ground acceler-
ation. Hence, no instrument correction was applied to the SMART 1 data. The

positive direction of the recording is shown in Fig. 4.8.

4.3 References

1. Trifunac, M.D., "A Note on Correction of Strong Motion Accelerograms
for Instrument Response,' Bull. Seisn. Soc. Am., 62, No. 1,
401-409 (1972).

2. Hudson, E.C.. Reading and Interpreting Strong Motion Records, Earth-
quake Engineering Research Institute, Berkeley, California
(1979).
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TABLE 4.1

File Organization

A file consists of records as Follows:

Record : Data
1 - Header Data
2 ‘ Digital Data
" _ _ "
14 ’ . 1]
" - ' ; “5,.
N ‘ . Digital Data
" NHL o . Trailer Data
File Mark
TABLE 4.2

Header Record
The header record is a 5120 character record consisting of ASCII coded

BCD for DAYS, HRS, MINS, SEC, SERIAL NUMBER of recorder, EVENT COUNT, and
SYSTEM (16 characters). The remaining characters in the record are ASCII

spaces (Hex 20). A header record is therefore:

Char.# Data

1 Days MSD (N*100)
2 "~ Days MSD (N*10)
3 Days LSD (N*1)
-4 : Hours MSD (N*10)
5 Hours LSD (N*1)
6 Mins MSD (N*10) .
7 Mins LSD (N*1)
8 Secs MSD (N*10)
9 Secs LSD (N*1)

10 S/N MSD (N*100)
11 S/N MSD (N*10)
12 S/N LSD (N*1)
13 EV MSD (N*10)
4 ' EV LSD (N*1)

15 ' SYS MSD (N*10)
16 SYS LSD (N*1)
17 ASCII Spaces

[}4 "
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TABLE 4.3

Data Record

The data samples are formatted into 6 ASCII characters per sample, as follows:

Char.#
1 ID# ASCII 0,1, or 2 (v, EW, NS)
2 SIGN ASCII + or -
3 MSD ASCII BCD (N*1000)
4 " " " (N*lOO)
5 1 L 1 " (N*IO)
6 LSD "o (N51)

The above pattern repeats for 853 samples (284 samples/channel), a total

of 5118 characters. The remaining 2 characters are ASCII spaces.

TABLE 4.4
Trailer Record
The trailer record is a 5120 character record consisting of 16 ASCII

coded BCD characters and 5104 ASCII nulls (Hex 00). A trailer record is as

follows:

Char.# Data

1 Days MSD (N*100)
2 Days MSD (N*10)
3 Days LSD (N*1)
4 Hours MSC (N*10)
5 Hours LSD (N*1)
6 ‘Mins MSD (N*10)
7 Mins LSD (N*1)
8 Seécs. MSD (N*10)
9 Secs LSD (N*1)

10 S/N MSD (N*100)
11 S/N " (N*10)
12 S/N LSD (N*1)
13 EV MSD (N*10)
14 EV LSD (N%1)
15 SYS MSD (N*10)
16 SYS LSD (N*1)
17 ASCII Nulls
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LABORATORY PLAYBACK



0+0000
0+0000
0+00C0
0+0000
0-D002
0+D0C0
0-0002
0+0000
0+00C0
O0+0000
0+0000
0-0002
0+0000
0+000D
D+D00D
D+0000
D+0000
D+00C0
0-0002

240002
2+0005
=+0004
2+00035
2+0005
2+0000
2+0002
2+0002
2-0003
2+0002
2+0007
2+0007
=+0001
- 2+020%
2+0001
2+0005
=2+0001

1-0004
1~-000z2
1-0002
1+0000
1-0002
i-0002
1-0002
i-0002
1+0000
1-0002
1+06000
1+0000
1+0000
1+0000
1+0000
1-0002
1-0002
1-0002
1-0002

Fig. 4.2

0-0013
c-0013
C—-0011
O0-0013
0-0014
C-0015
C-0010
0-0013

1-CD05
1-C034
1-C008
1-C012
1-€028
1-C007
1-001
1-C011

2+0006
2+0002
240002
2+0002
=+0003
2+0003
2+0002
2+0002
2+0003
2+0002
240002
2+0002
2+0003
2+0003
2+0002
2+0003
2+0002
2+0003 ¢
2+0003 /[D-0002_1+00)
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0+0000
P-0001
O0+0D00
O+ 0500
0-0002
0+0000
0-0202
D+0D00
0+0000
0-0D01
0+0D00
0-0002
2+0500
0+0000
O+0000
D+0D00
040300
0+0D00

Data missing at end of

c-0012
0-0013
0-0011
0-0013
0-0014
¢-0015
0-00190
0~-0013

2+00023
2+0003
2+0005
2+0005
2+000%5
2+0001
2+0003
2+0001

1-0003
1--0002
1 +0000
1+0000
1+0000
1-0002
10002
1+0000D
1+0000
1-0002
i+0000
1+0000
1+0000
1+0000
1,+0000
1-0002
1-0002
10002

file

1-0006
1-C005
1-000%
1-0012
1~-0008
10009
1-0010
1-0011

2+0006
2+0002
2+0000
2+8002
2440004
240002
2+0002
2+0003
2+0003
240002
240002
2+D002
240003
240003
240002
2+0003
2+D002
240003

C+0000
0+0000
0+0000
0+0000
00002
0+0000
O+0000
0+000C0
0+0000
0+0000
00002
00002
0+0000
0+0000
0+0000
00002
0+0000
0+0000

2+00305
2+8003
2+0005
240005
2+0004
2+0001
2402003 0-0011
240000 0-0013

0-0013
0~-0G013
o-0012
0-0014
60014
¢—-0015

0+2Ca7 1+2057

"0+2047

a2+2047

1+204-7-

22047 0-00118

0-0013
C-0013
0-0013
0-0013
C¢-0013
0-0013
6-0013
C-0013

1-CCI5
1-0027
1-C00%
10012
1—-0009
1-CG27
1-C011
1-CO11

Fig. 4.3

2+000]
2+0003
2+0003
2+0002
2+3003
2+0002
2+000%
2+0000

O=0013
0-0013
0-0013
0-0013
0-0013
C-0013
0-0013
0-0013

1-0004%
1—-0007
1-00i10
1-0012
1-000%
1-0008
1-0011
10007

the middle of the data file

2+0201 O-0G0145
240210 0-0011
240000 0-0014
240203 O-0012
240002 0~-0013
2+0002 00013
2400043 0-0013
2+0000 0-0013

Repeated time mark occurring in
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5 ‘3191337252890132
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2-0683
140680
lo-0483

0-0634
2=17G7
1404642

1—-1878
0-0742
0-04683

0-0683
1+0682
1+0432

1+0514 0-0683 1+0680
0-0£94 1-1878 0-0.83

2—1707
1+0642

0-07631
0-05683

2-1707 2-1023 [C+0003

0+0000
0+0000
0+0003
0+0001
0-0003
0+0003
0+0004%
0-0003
0+0000
0+0000
0+0002
0+0003
0+0000
0+0003

2+0006
2+00056
2+00046
2+000646
2+0004
2+0005
2+0006
2+00046
2+000&
2+0005
2+0005
2+0005
2+0005
2+0008
2+0006

1+0007C
1+0003
1+0002
1+0000
1-+0000
1+0003
1+0000
1+0002
1+0000
t+CD0D
1+0000
1+0002
1+0000
1+Q002

-

Fig. 4.

0+0002
O+0002
0+0002
0+0002
0+0001
0+00035
Q+0008
H+0004
0+0004
0--0003
C-0002
0+0004
0+0004
0+0000
0+0001

Fig. 4.4b

2-00C46
2-0002
2~-D005
2000646
20002
=2-0004
2+0002
20002
2-0004
2-000s%
2+0000
2~-000646
2-0014
2—-0004

4a Glitch in the data at beginning of the

1+0003
1+0003
1+0003
1+0003
1+000¢
1+0003
1+0003

O0+0000
C—-000=2
0+0005
0+00C0
00002
0+0003
0+0002
0+0000
0+0002
0-0002
0+0002
0+0002
0+0002
0+0002

=2+0005

2+0005
2+0005
2+00056
2+0004
2+0005
2+0005

1+C000 2-0009 0+0000
1+C003 20002 C-0003
1+0000 2-000&6 0+0CD4
1+0200 2-0004 0-000z
1-0002 2-0002 C+0000
1+0002 2-0002 0+0CQOR
1+0002 2+0002 9+QC00
1+C002 2-0004 ©+0000
1+C000 2-0002 0+0C02
1+8000 200046 0~0C02
1+0000 2+0002 C+0003
1+0002 2-00046 C+0000
1+D002 2-0013 C+0CO05
1+0002 2-0002 C+0000

0+0002 1+0D03 2+0005
0+0002 1+0003 2+0005
C+0003 1+0003 2+0006
0+0003 1+0003 2+0005
0+0000 1+0003 2+0005

C+0004 §+0004 2400046

0+0005 1+0003 2+0005

{1-2030

2-203H] 0+0010 1+0003 2+00056

1+0003
1+0004%
1+0002
1+0002
1+0003
1+0003
1+0003

2+0006
2+0004
=2+0004
2+0004
2+0004
2+0005
2+0004

Clitch in the data at

C+0012 1+0008 2+D005
0+0000 140004 240006
0-0003 1+0004 2400056
C+0004 1+0002 2+0005
0+0006 140002 2+0004
0+0000 1+0003 240005
C+0001 1+0004 2+00043

1+C002
1+C000
1+0003
1-0001
1+C000
1+C000
1+C000
1+0002
1+C000
1+C000
1+C000
1+8000
1+0002
1+C003
1+0000

2+6000
2-0010
2--0002
2-0009
2-0002
2-00C4
2-0002
2+0002
2-00046
2—-0002
2~0006
2+00C0
2-0010
2-0010
2-0002

data file

0+0092
0+0002
0+0002
0+00D2
0+0CD1
0+0002
0+0£000
0+0004
0+CD10
040004
040001
0+CD04
0+C0D5
0+CDD4
0+C304

1+0003
1+0004
1+0002
1+0003
1+0003
1 +0003
1 +0004
1+0002
1+0003
1+00048
1 +0004
1+0003
1+0002
1 +0002
1 +0004

the middle of the data file
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AT2= A Tgp + ATy,
ATy =4Tg; + 4Tr) .
4Ty - 4T,= ERROR OF CORRECTION

Time of the time-error checking before event
Time of the time-~error checking after event
Time of event

Time-error of TS-500 time comparator (checked by standard
time receiver and scope

Time-error between TS-500 and DR-100 digital event recorder
Actual time-error used for correction
Estimated time-error (by using linear interpolation)

Error of time correction (should be < 10 millisec.)

Fig. 4.5 Time correction
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DECODE ORIGINAL DATA

DE
l EDIT DECODED DATA
Vi
l BASELINE CORRECTION
v2
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WAVE PLAYBACK
FORM TRACES
CORRELATION i SMOOTH
COEFFICIENT FAS.
RESPONSE VELOCITY
SPECTRUM DISPLACEMENT

Fig. 4.6 Data processing procedure




57

(ga) NOIIVANIILV

004

anduT 18973 10J 2AIND o2suodssi I23TIL

¢e

0L

['h 814

(40/ZH) ADNANDHYL CHZITVWION

8

9

.v

T

Q.n Q.

w-

P

1’0

9€ —

a8 09 o¥
Tt

T

¥

T

— .

0€ -]

et

11

i
L]

Wi

-

0T

(yead o3 yead AQT Indur yarm)

HADVLIOA L0d4LO0



58

POSITIVE OUTPUT FROM THE SENSORS RESULTS FROM
ACCELERATIONS WHICH CAUSE GROUND MOTION AS SHOWN

Fig. 4.8 Positive direction of sensor



5. SPECTRAL ANALYSIS OF THE ACCELEROGRAMS

5.1 Introduction

The format of SMART 1 records makes processing by computer relatively
fast and easy. For instance, the Fourier spectra of the considerable number
of records obtained in the first six months were calculated in one pass. This
speed is difficult to match with conventional film accelerograms. Because
absolute time is available, the records can be correlated against epicentral
distance in real time.

The high P wave signal strength for the January 29, 1981 earthquake
(Event 5) resulted in both P and S waves being recorded by all 27 operating
instruments. The signal amplitudes are different for the three components,
with the vertical and north-south components being the weakest and strongest,

respectively.

5.2 Fourier Spectra and Response Spectra

Figure 5.1 shows the smoothed Fourier spectra of the acceleration wave-
forms of the vertical, EW and NS components at the Site C00, at the center of
the array, for Event 2, the November 14, 1980 earthquake of Mj, = 5.9. It
should be noted that the vertical scales in each figure are not always the
same for the three components. Variations in the Fourier spectra of the
vertical components are greater than those of the horizontal components
across SMART 1.

The SMART 1 records also permit the ready calculation of the response
spectra. The group of records for the first six months was processed to-
gether to generate individual response spectra and produce mean response
spectra. A goal of the project is, eventually, to separate the effects of

site and source conditions on the respounse spectra by appropriate group
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analysis. Figures 5.2a, b, and ¢ show the response spectra of the vertical,
EW and NS components, respectively, of the CO0 records for Event 5, the Jan-
uary 29, 1981 earthquake of magnitude M; = 6.9. These curves are represent-
ative of the response curves of most sites for Event 5. They show that the
NS component has more energy than the EW component for periods greater than
0.5 sec, and that the vertical component has significantly lower spectral
levels and a flatter shape than the horizontal components.

Figures 5.3a, b, and ¢ show the response spectra of the vertical, EW
and NS components, respectively, of the C00 records for Event 2. For this
earthquake, the EW and NS components have about the same spectral level and,
as for Event 5, the vertical component has correspondingly lower levels than
the horizontal components. TIn comparison with Event 5, this event has rel-
atively less energy for periods greater than one second than for shorter
periods, especially in the case of the NS component.

In general, the shapes of the response spectra differ between vertical

and horizontal components as well as between different earthquakes.

5.3 Frequency-Wave Number Spectral Analysis

Figure 5.4 shows the three components of ground motion measured at two
array elements (stations 001 and 002) during Event 5. Wave trains of what
are assumed a priori to be predomimantly P, S and surface waves can be seen
lasting about 20 sec. Each record is aligned vertically according to Uni-
versal Time. The records demonstrate significant spatial variability (con~
firmed separately by the frequency spectrum anélysis described in Section
5.2) befween array elements about 1 km apart. This aspect of the vari-
ability of strong ground motion will be discussed at length in a later

study.
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Consider next the phased correlations of a specified portion of such
records for a given component at all array elements so that not only the
average power in the seismic signal may be estimated, but also the speed and
direction of any coherently propagating seismic wave. A convenient method
is to plot the power spectrum for a particular time window as a function of
wave number k (cycles per km) and azimuth. An outline of the algorithm is
given in Appendix E. If the plot is made at a particular frequency f, the
distance from the center is inversely proportional to the apparent wave
speed ¢ (where ke = f).

As an illustration of the method, wave-number spectral plots are shown
in Figs. 5.5 and 5.6, computed using a high resolution algorithml from 26
SMART 1 vertical and north-south component accelerograms, respectively.
(Digital data from one triggered element were not included in the analysis.)
The two time windows chosen are marked 1 and 4, respectively, at the bottom
of Fig. 5.4. Similar spectra of each ground motion component were computed
for frequencies of 8, 6, 4, 2, 1, 0.5, 0.25, and 0.125 Hz for each sequential
time window, 1 through 5 in Fig. 5.4, from the beginning to the end of the
record. Preliminary analysis of these 120 spectral plots have been made but
for the sake of brevity only Figs.5.5 and 5.6 are reproduced here.

The spectra show that the wave trains in the first and second windows
(each 4 sec long) correspond principally to P waves crossing the array. In
Fig. 5.5, the main power (marked A) is at 1 to 2 Hz and arrives at an ap-
parent velocity of about 8.3 km/sec (appropriate for P waves) from an azi-~
muth of E 58° §. (The azimuth of the earthquake focus is E 64° S.) 1In the
third window, the predominant maximum power (not shown here) is very co-
herent at 1 to 2 Hz, but propagates from E 68° S at about 3 km/sec. This

motion (see Fig. 5.4) corresponds mainly to Rayleigh and S waves crossing
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the array. The spectral pléts show also that during this time interval a
large amount of the energy being produced by the rupturing dislocation was
being scattered away from the direct path between source and array. This
scattering may be associated with structural irregularities in the crust and
the superficial soil layers.

The spectrum shown in Fig. 5.6 for a window of 10 sec length in the
coda of strong ground motion has a maximum peak energy (A) appropriate to
waves moving with an apparent speed of ~1.0 km/sec across the array from
E 75° S. The interpretation, supported by the orbital motion measured by
the three components of acceleration, is that at this time the NS component
of wave motion is predominantly of Rayleigh type. A summary of the estimated
average apparent velocities and directions of approach of the seismic waves
in each of the five time windows is given in Fig. 5.7. The diagram indicates
that the preliminary body wave arrivals (P and S waves) are from a direction
to the east of the epicenter, while the later arrivals (surface coda waves)
arrive successively from directions more and more westerly of the epicenter.
This change in azimuth may be due to lateral refraction in the crustal struc-
ture or it may arise from the propagatién of the seismic dislocation on the
rupturing fault. A separate determination of the fault plane parameters is

now under way.

5.4 Wave Coherency and Type

The above examples demonstrate that arrays like SMART 1 may have the
capability, for the first time in seismology, of following the elastic dis-
location as it moves along the fault. There is also the ability to determine
whether, in a given time, the predominant seismic motiomn is of P wave, S wave
or surface wave type. The lack of such identification has previously hinder-

ed crucial diserimination between theoretical models. The present prelimin-
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ary analysis does not make use of the three recorded components of wave
motion at each array element. The wave-number frequency spectral method
can, however, be extended to this general case and orbits of the particle
motions calculated.

A further use of the array data relates to two hypotheses now often
appealed to: (1) that strong-motion accelerograms are largely super-
positions of random motion52 and (2) that coda waves from local earthquakes
arise from scattering3 from randomly~distributed heterogeneities in the
crust. From SMART 1 recordings of the January 29 earthquake, both hy-
potheses appear to be only partly correct. Comparison of seismograms and
wave-number frequency spectral plots shows that coherent energy (i.e.,
physically correlated) is present throughout the 20 sec duration of strong
shaking, at least for frequencies 0.5 < f < 2 Hz. (In this frequency range
no problems from either spatial or temporal aliasing should arise.) Further,
the major part of this coherent energy corresponds to the expected body and
surface waves of seismology. In most time windows, however, at higher fre-
quencies (f > 6 Hz), the wave number spectra lose coherence.

The illustration given in Fig. 5.8 is the NS component in window 3; the
maximum energy (point A) is weak and represents very slow waves épproaching‘
from the southwest. At higher frequencies, the calculated spectra are con-
sistent with the hypothesis of a large proportion of scattered waves arriv-
ing from widely~distributed heterogeneities. The actual extent of geological
structural variations is not yet known from borehole information in the
SMART 1 region. Seismic surveys indicate, however, a surficial layer of
recent alluvium with P wave velocities of 500 to 1000 m/sec overlying

pleistocene rock with P wave velocities of 1800 to 2000 m/sec.
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Another example of the capability of a near-source array like SMART 1
is that spatial correlations of waveform can answer the long-standing
question of what is the minimum distance from the seismic source at which
surface waves appear. Theoretical calculations are not specific and defin-
ite observational field evidence has not been observed. 1In the example above
(Fig. 5.6), Rayleigh waves of period 2 sec are clearly present 30 km from
the shallow-focus source. More extensive analyses4 of all the above ques-
tions will be given in later studies using the complete set of earthquakes

recorded by SMART 1.

5.5 References

1. Capon, J., "High-Resolution Frequency-Wave Number Spectfum Analysis,"
Proc. IEEE, 57, 1408-1418 (1969).

2. Housner, G.W. and P.C. Jennings, "Generation of Artificial Earth-
quakes," J. Eng. Mech. Div., ASCE, 90, 113-150 (1964).

3. Aki, K. and B. Chouet, "Origin of Coda Waves, Source Attenuation
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4. Bolt, B.A., Tsai, Y.B, Yeh K. and M. K. Hsu,  Earthquake Strong
Motions Recorded by a Large Near-Source Array of Digital
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6. LOCAL MAGNITUDE VARTATIONS ACROSS ARRAY

6.1 Magnitude Measurements

For all records analyzed, the strong-motion accelerograms from stations
of the SMART 1 array were converted to equivalent Wood-Anderson seismograms
using a response spectrum written by A. Roca that is similar to that used

. . 1 . . . .
by Kanamori and Jennings. Richter local magnitude is given as

Mi = log A - log Ao . (1)

It was determined by two methods based on the peak amplitude A (in milli-
meters) of the equivalent Wood-Anderson records as follows:

1. For the largest event of January 29, 1981 (see Table 1.2, Event
5), the equivalent Wood-Anderson seismogram appeared normal so that, by
definition, the peak amplitude was taken to be the greatest value recorded
for the zero-to-peak displacement on the Wood-Anderson record.

2. For the smaller events transformed, recordings (accelerogram or
equivalent Wood-Anderson seismogram) showed evidence of incompleteness.
Some records appeared to trigger late as distinct phases were not always
readily apparent. Further, surface waves seemed disproportionately large,
as if they had been used to set the record scale because P and S phases
were missing. Long-period perturbations of the Wood-Anderson record were
apparent in the records with low signal-to-noise ratio (S/N). The causes
for this arise from two sources: (i) when the S/N is low, the least signi-
ficant bit is unable to sample low signals adequately; (ii) a mid-record
shift in the DC level is often apparent in the original acceierogram - a
problem occurring in the early stages because of "sticky" pendulums in some

of the new instruments.
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In the second case, the peak amplitude was taken as one-half of the
greatest manually-measured peak-to-peak Wood-Anderson displacement. The
log of the peak Wood-Anderson displacement was averaged for the two hori-
zontal components (log A) and added to -log AO, determined individually for
each station by linearly interpolating the -log Ao tabie published by
Richter.2

The adequacy of the second technique for determining log A is not
always assured because of subtle changes observed in the computed Wood-
Anderson records across the array. The technique, however, was employed for
all events, except that of January 29, 1981. Further, an event recorded on
March 22, 1981 had such extreme S/N and DC-level shift problems that it was
felt that even the second technique of amplitude measurement was mnot
applicable.

It should be noted (Event 2, Table 1.2) that on November 14, 1980, a
magnitude 5.9 earthquake (Taiwan magnitude) occurred about 10 km from the
array, triggering several of the array instruments. Unfortunately for this
study, the hypocenter was at a depth of over 60 km, precluding proper appli-
cation of the Richter attenuation relation (-log AO versus distance), based
on shallow southern California earthquakes (depth less than 15 km).

The various measurements and computed magnitudes are listed in Table 6.1.
The following summary compares the magnitudes of the earthquakes assigned by

the Institute of Earth Sciences and also those determined from SMART 1.

Event Date Taiwan M SMART 1 My * s.e.
1 October 18, 1980 5.8 5.66 = 0.08
5 January 29, 1981 6.9 6.24 = 0.08
7 March 2, 1981 6.9 6.51 + 0.04
8 March 10, 1981 4.4 4,10 + 0.11

It is interesting to note that all magnitudes determined by SMART 1

are consistently smaller than those given by the Institute. Several



explanations may be offered.

1. The magnitude determination for many smaller earthquakes in
Taiwan is based on measured durations. The single Wood~Anderson instrument
at the Institute provides the calibration of the nationwide network of short
period seismometers. Such procedures give rise to unresolved problems
from the mechanisms and crustal scattering.

2. The attenuation curve, -log Ao versus distance, used for the
SMART 1 magnitudes, was originally designed for southern California and
may not be applicable to Taiwan earthquakes.

3. The final determination of Richter magnitudes assigned to an
earthquake is meant to be made as an average of magnitude determinations
over a wide azimuthal distribution. The area sampled by SMART 1 would
normally be represented by only the Taipei Institute station (if any), and
the results here may indicate that, due to local geologic conditions,
magnitude estimates are lower for the SMART 1 area than the average over

the rest of Taiwan.

6.2 Peak Amplitude Attenuation

The linear regression of the logarithm of peak amplitude onto distance
was determined for several components, as listed in Table 6.1. Several of
these are also plotted in Figs. 6.1 to 6.5.

We would expect that the slope of the regressed curve would be nega-
tive owing to the physics of attenuation. It is seen, however, that for
some components the slope is positive, indicating that the peak amplitude
is actually increasing with the distance travelled across the array.

Though the data are scattered, these positive slopes appear significant.

This is particularly true of the log A attenuation plot for January 29,
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1981 (Fig. 6.1), which shows minimal scatter of the data points. Linear
regression for the two horizontal components individually, log AEw and

log ANS’ shows distinctly different attenuation curves. (N.B. For every
station,ANS was greater than AEW') As Event 5 occurred SSE of the array,

the difference between the two horizontal components indicates that signi-
ficant SV energy is contributing to the peak horizontal amplitude. Initially,
it was supposed that as the seismic energy travelled across the array, there
was refraction of the wavefronts due to the wedge-shaped delta structure
under the Lotung area, causing a transfer of energy from the EW component
into the NS component. On its own, however, this explanation of the trans-
fer of horizontal component energy does not necessarily explain the positive
slope in the log A plot. Further, the plot of log AHZ (Fig. 6.2), where AHZ
is the peak amplitude of the vector sum of the horizontal components, still
shows an increase in peak amplitude with distance across the array. By
comparison, the log peak amplitude plot for the vertical component (log Az),
in Fig. 6.3, shows a definite negative slope. It is possible, therefore,
that path effects and mode conversion are enhancing the horizontal components
of the waves by some transfer of energy from the vertical component.

The SMART 1 results also indicate that local (Richter) magnitude esti-
mates are subject to significant variation due to local structural changes
within a linear dimension of 2 km. Contours illustrating the ML variation
for Event 5 are drawn in Fig. 6.6. The equivalent Richter magnitude for
this earthquake ranged between 6.0 and 6.4 across SMART 1 with a mean of
6.24 + 0.08. The scatter about the mean is not random, however, but as
shown in Fig. 6.6, there is a systematic azimuthal trend.

It is important to reiterate that the local magnitude estimate for

the January 29, 1981 main shock by the Institute of Earth Sciences in Taipei is
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6.9. This value is calculated from a Wood-~Anderson seismograph operated in
Taipei and follows standard procedures used in Taiwan for many years. A
direct comparison between this value and the SMART 1 mean of 6.24 and the

"true' Richter magnitude cannot be made because regional attenuation curves

are not vet available for Taiwan.
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1. Kanamori, H. and P.C. Jennings, ''Determination of Local Magnitude,
My, from Strong-Motion Accelerograms,"” Bull. Seism. Soc. Am.,
68, 471-485 (1978).

2. Richter, C., Elementary Seismology, W.H. Freeman, San Francisco
(1958).




Station

€-00

I-06

I-09

I-12

M-01

M-02

M~04

M~05

M-06

M-07

M-08

M-10

M-12

0 06

0 09

012

45,

45,

45,

45,

46.

46.

44,

44

44,

44,

45.

46.

43.

45,

47.

Dist (km)

47

27

45

37

14

70

.46

19

90

82

47

46

28

47

82

TABLE 6.1

Peak Amplitudes and Magnitudes

(see Notes at end)

October 18, 1980

—log
2.

2.

509

505

. 509

.513

. 527

.523

- 500

. 494

.489

484

-498

.516

.529

.469

. 506

. 549

2 An

2.

2.

log Ay

862

846

. 000
.811
.747
. 661
797
777
.881
.863
.888
.827
745
. 634
.638

. 608

5.371
5.352
5.509
5.324
5.275
5.184
5.298
5.271
5.371
5.347
5.386
5.344
5.274
5.103
5.144

5.157

M, = 5.29

+0.11

3.262

3.173

3.177

3.197

3.116

3.059

3.091

3.138

3.164

3.200

3.179

3.109

2.972

3.204

5.753

5.720

5.771

5.686

5.704

5.720

5.617

5.553

5.580

5.622

5.662

5.716

5.708

5.578

5.478

5.753

5.66
+ 0.08
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TABLE 6.1 (continued)

January 29, 1981

Station Dist (km) -log A, log A, .Mz log A My,
Cc-00 30.28 2,111 3.540 5.651 4,209 6.320
I-03 30.25 2.110 3.343 5.453 4.198 6.308
1-06 30.09 2.104 3.410 5.514 4.104 6.208
I-12 30.48 2.119 3.523 5.642 4.147 6.266
M-01 31.08 2.143 3.376 5.519 4,106 6.249
M-02 30.75 2.130 3.430 5.560 4.151 6.281
M-03 30.22 2.109 3.376 5.485 4,034 6.143
M-04 29.65 2.086 3.526 5.612 4.147 6.233
M-05 v 29.41 2.076 3.490 5.566 4.097 6.173
M-06 29.29 2.071L 3.952 6.024 4,137 6.208
M-07 28.78 2.051 3.472 5.523 4.137 6.139
M-08 29.91 2.096 3.650 5.746 4,185 6.281
M-09 30.38 2.115 3.383 5.498 4.118 6.233
M~10 30.82 2.133 3.424 5.557 4,137 6.270
M-11 31.22 2.149 3.603 5.751 - -
M-12 31.27 | 2.151 3.469 5.620 4.134 6.285
0-01 31.92 2.177 3.352 | 5.529 4,184 6.361
0-02 31.07 2.143 3.442 5.585 4,202 6.345
0-03 30.03 2.101 3.437 5.538 4,125 6.226
0-04 29.12 2.065 3.367 5.432 4.097 6.162
0-05 28.46 2.038 3.523 5.562 4,008 6.046
0-06 28.29 2.031 3.476 5.508 4.118 6.149

0-07 28.71 2,048 3.624 5.672 4.093 6.141



Station
0~-09
0-10

0-12

84

TABLE 6.1 (continued)

January 29, 1981
Dist (km) -log A, log A, yi
30.57 2.123 3.492 5.615
31.58 2.163 3.471 5.634
32.26 2.190 3.380 5.570
MZ = 5.59
+ 0.12



Station

C-00

I-03

I-06

M-01

M-02

M~03

M-04

M-05

M-06

M-07

M-08

M-09

M-10

M-11

M-12

0-01

0-02

0-03

0-04

0-09

0-10
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TABLE 6.1 (continued)

January 29, 1981

Dist (km) :}gg_éo
30.28 2.111
30.25 2.110
30.09 2.104
30.48 2.119
31.08 2.143
30.75 2.130
30.22 2.109
29.65 2.086
29.41 2.076
29.29 2.071
28.78 2.051
29.91 2.096
30.38 2.115
30.82 2.133
31.22 2.149
31.27 2.151
31.92 2.177
31.07 2.143
30.03 2.101
29.12 2.065
28.46 2.038
28.29 2.031
28.71 2.048
30.57 2.123

31.58 2.163

log A,

4.
4.
4.

4,

572

524

446

625

.712

. 564

. 514

. 668

.593

424

. 549

. 506

471

. 609

.691

.611

.818

.711

.536

442

. 502

429

.551

. 487

Pz

6.683

6.634

.550

6.744

6.855

6.694

6.622

.755
.669
.435
.600
. 602
. 587

742

.842

6.788

.961

.812

6.601
6.480
6.534
6.478
6.674

6.650
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TABLE 6.1 (continued)

January 29, 1981

Station Dist (km) —log Al log A, Mo
0-12 32.26 2.190 4.683 6.874
MHZ = 6.68

+ 0.13



Station

C~-00

1-03

1-06

I-12

M-01

M-02

M-03

M-04

M-05

M-06

M-07

M-08

M~-09

M-10

M-11

M-12

0-01

0-04

0-05

0-06
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TABLE 6.1 (continued)

Dist

30.

30.

30.

30.

31.

30.

30.

29.

29.

29.

28.

29.

30.

30.

31.

31.

31.

31.

30.

29.

28.

28.

28.

30.

January 29, 1981

(km)
28
25
09
48
08
75
22
65
41
29
78
91
38
82
22
27
92
07
03
12
46
29
71

57

log AEw
4.
4.

3.

0648

0539

9434

. 9768

.7960

.9712

.8423

. 0513

-9941

- 0496

.0238

. 0756

.9488

. 9639

.8723

. 9606

.8889

. 0158

.0251

. 9338

.0269

. 9285

. 9587

dog Aus

4.3528
4.3419
4.2654
4.3178
4.4160
4.3305
4.2257
4.2429
4.2004
4.2244
4.2509
4.2909
4.2871
4.3097
4.3236
4.3959
4.4073
4.5144
4.2335
4.1694
4.0816
4.2082
4.2568

4.3222



Station
0-10
0-12
Station Dist (km)
M-05 194.28
0~02 196.46
0-06 192.98
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TABLE 6.1 (continued)

January 29, 1981

Dist (km) log AEW log ANS
31.58 3.9910 4.3311
32.26 3.9859 4.4244

March 2, 1981

-log A log AZ gz log A
3.500 2.554 6.054 3.057
3.500 - ~ 2.970
3.500 2.436 5.936 3.014

MZ = 6.00 ML

+ 0.08

6.557

6.470

6.514

6.51
+ 0.04



Station Dist (km)
Cc-00 6.99
I-03 6.88
I-06 7.17
I-09 7.11
I-12 6.82
M-02 6.01
M-03 6.48
M-04 7.03
M-05 7.45
M-08 7.89
M-09 7.65
M-10 7.15
0-01 4,97
0-02 5.29
0-03 6.16
0-04 7.14
0-05 8.05
0-06 8.76
0-09 8.33

TABLE 6.1
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(continued)

March 10, 1981

1.443
1.442
1.436
1.420
1.430
1.441
1.449
1.458
1.453
1.443
1.400
1.406
1.423
1.443
1.461
1.475

1.467

log Az gz
2.182 3.622
2. 000 3.438
2.292 3.736
2.588 4.030
2.241 3.677
1.949 3.370
2.276 3.706
2.152 3.601
2.124 3.582
2.000 3.453
2.021 3.464
1.978 3.378
2.182 3.588
2.262 3.686
2.316 3.759
1.863 3.330

ﬁz = 3.59

+ 0.18

2,613
2.642
2.666
2.688
2.638
2.774
2.690
2.611
2.602
2.473
2.658
2.640
2.639
2.952
2.517
2.509

2.599

=

[=

4.288
4.182
4.056
4.085
4.103
4.109
4.067
4.214
4.139
4.069
4.055
3.916
4.058
4.046
4.062
4.395
3.978
3.984

4.065

4.10
+0.11
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TABLE 6.1 (continued)

Notes
-log A, is linearly interpolated from values given in Richter2
log A = (log AEw + log ANS)/Z where AEw and ANS are peak amplitudes (in
millimeters) for the Wood-Anderson instrument displacement on the east-
west and north-south components, respectively.

AZ is the peak vertical amplitude for an equivalent Wood~Anderson

instrument.
AHZ is the peak horizontal amplitude measured from a record given by

the Pythagorean {vector) sum of the two horizontal components.
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TABLE 6.2

Attenuation Across SMART 1

Linear Regression (see Footnotes)

Type of Displacement a b
October 18, 1980 A v 45 km
Ay 4.158 -0.0302
A 1.632 +0.0336
January 29, 1981 A v 30 km
A, 4.751 ~0.0420
Apy 4.622 -0.0215
Axg 2.152 +0.0710
Ayy 3.025 +0.0512
A 3.364 +0.0256
March 2, 1981 A~ 194 km
A, -15.081 +0.0908
A 6.022 -0.0155
March 10, 1981 A~ 7 km
Ay 2.201 -0.0072
A 2.884 ~0.0322

rl%

0.0726
0.1974

0.1221
0.1029
0.6615
0.2784
0.2980

1.0000
0.3%07

0.0013
0.0731

2

% test for fit: r® = 1 for perfect fit

log A= a + bA
A = W-A displacement in millimeters

A = epicentral distance in kilometers
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SCALE 172500

6.4
012 @636
6.40

Fig. 6.6 Contours of computed Richter magnitude for Event 5.
Values for individual magnitudes are shown at those
array elements which recorded this earthquake.
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Preceding page. blank
7. IDENTIFICATION OF WAVE TYPES, DIRECTIONS, AND VELOCITIES

7.1 Correlation and Coherence

In an attempt to identify wave types, directions, and velocities produced
by the earthquakes of November 14, 1980 (Event 2), and January 29, 1981, (Event

5), let us first examine the cross correlation coefficient given by

Rij(T)
py5(M = (1)
Y R (0) Rjj(O)
where
tO+AT/2
R, ,(T) = I x. (t) x.(t+1) 4t (2)
1] t,-07/2 * J

and where Xi(t) and xj(t) are the recorded acceleration time-~histories in the
x~direction (see Fig. 7.1) at stations i and j, respectively, At is a time window
centered on time to, and T is a time lag. If the ground motions at these stations
were produced primarily by a single travelling wave, then the above cross
correlation coefficient, which can range from +1 to -1, would show high correla-
tion for T equal to the time required for the wave to travel between the two
stations. This value of T would, of course, depend upon the direction of wave
propagation as well as wave velocity.

Plots of the cross correlation coefficient given by (1) are shown in Figs.
7.2a to 7.2c for both earthquakes mentioned above using time windows which
contain the significant high intensity motions as shown in Fig. 7.3, and for
selected station pairs as indicated. The distances given in these figures are
true distances (not projected distances) between corresponding station pairs.

The maximum absolute values of the cross correlation coefficients are shown in

Fig. 7.4 along with an exponential curve fitted by least squares.
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It is significant to note that the cross correlation coefficient plots in
Figs. 7.2a to 7.2c¢ are not characteristic of motions dominated by a single
travelling wave train. Their shapes and low values of correlation suggest the
simultaneous presenée of multiple waves travelling in different directions with
different velocities. The wide scatter of maximum absolute values in Fig. 7.4
also supports this general conclusion. As a consequence resolution of the
motions into their frequency components and into their components of principal
directions is required before identification of wave types, directions, and
velocities is possible.

Following along these lines, let us transform the x and y recorded com-~
ponents of horizontal ground motion at a point into their x and y components

in accordance with Fig. 7.1; thus,

%(t)

fl

x(t) cosd + y(t) sing
(3)
-x(t) sind + y(t) cosd .

y(£)

Next, using time and frequency domain windows, the Fourier transforms of these
new components are calculated using relations of the type

tO+AT/2

f x(t) exp(-i2mft) dt (4)
tO—AT/Z

1§t

A~ (f)
X

—fO+Af/2

x{v) = [ A~(f) exp{i2wft) 4f
~£,-0£/2 X
(5)

f0+Af/2

+ J A~ (f) exp(i2mft) d4f
fo—Af/Z

where window lengths AT and Af are centered on time to and frequency fO'

respectively. A coherence function for components ii and ij (i and j refer to

station numbers) can now be defined by
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S~ ~ (£)] 2
XiX
5.9 T sTTE s- - ™ (6)
i3 X, X, X.X,
ii 33
where
[e o]
Sg.i.(f) = f R§.§.(T) exp(-i2mfT) 4Tt (7)
i3] it i]
tO+AT/2
Ri'i'(T) = J xi(t) xj(t+T) dt (8)
] t,~AT/2

and where Si % (f) and R§ 3 (f) are similarly defined. Note that the coherence
i 33

function (6), which ranges from 0 to 1, provides a measure’of the statistical
dependence of motion ij on motion ii.

Coherence functions as defined by (6) are plotted in Figs. 7.5a and 7.5b
for components of motion produced by the earthquake of January 29, 1981, in the
¥ and % directions, respectively. In what follows the value ¢ = 64° is adopted
so that the X% direction corresponds with the direction to the epicenter from
station C00. The station pairs represented in these figures are located along the
radial line of SMART 1 running from station 006 to 012 which is oriented in
approximately the epicentral direction. The distance coordinate shown in these
plots represents true distance between stations i and j. Note that while the
average ccherence with distance is relatively low for most frequencies over the
range O0<f<10 Hz, it is relatively high in the neighborhood of frequencies 3.0
and 4.5 Hz, in Fig. 7.5a and at frequencies about 1.1 and 3.5 Hz in Fig. 7.5b,

as indicated by fl and f_,, respectively. This observation is encouraging as the

2
corresponding Fourier amplitude spectra for motions §i and §j for all station
pairs have large peaks in the vicinity of the same frequencies. Thus, the high

intensity ground motions which are caused primarily by freguencies in the neigh-

borhood of fl and f2 appear to be caused largely by single wave trains moving
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across the array. In other frequency ranges, the motions appear to be caused to a
much greater degree by multiple waves moving with different apparent velocities.

Let us now examine the influence of direction ¢ on the cross spectral density
function defined by (7) for components x(t) and y(t) as given by (3) using
measured components x(t) and y(t) for station pairs which are separated by only
0.2 km. This shortest distance between station pairs is selected so that

coherences Yi % and Y~ ~ are as large as possible; thus, the variations in
i3 ¥i¥5
S; % with respect to direction ¢ and frequency f show variations in the inten-
i
sities of motions §i and X,. Figures 7.6a and 7.6b show plots of S~ , asa
J X, 3
function of frequency f for discrete values of direction ¢ over the entire
o
range -90 <¢<+90o. Figure 7.6a represents the earthquake of January 29, 1981,
using station pair C00-I12 while Fig. 7.6b represents the earthquake of
November 14, 1980, using station pair I06-C00. From these figures, it is clear

that the high intensity motions tend to be concentrated in the neighborhood of

frequencies f f2, and £ For these discrete frequencies, the values of ¢

1’ 37

yvielding the greatest values of cross spectral density can be observed. It
should be pointed out that functions Si % need not be generated through the use

iv3-
of (3), (4), (5), (7), and (8) for each value of ¢ since they are more easily

obtained from the transformation

2 . 2
S§'§.(f.¢) = Sx.x'(f) cos ¢ + Sy'y_(f) sin“¢
1] r ] 173 (9)
+ Sx.y (f) cos¢ sing + S x.<f) cos¢ sin¢ .

Yy i

[N

The cross spectral density function (9) can easily be maximized with respect

to ¢ for discrete values of frequency £, to give the direction of maximum
intensity. The directions of maximum intensity shown in Fig. 7.7 were obtained
by first maximizing the spectral densities for £ = 2.9 Hz and then averaging the

corresponding two values of ¢ for each set of adjacent station pairs along the
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array line 006 to 012 during the earthquake of January 29, 1981. There is a
definite shift in the direction of maximum intensity at this frequency as one
moves across the array from station 006 to station 012.

The direction of maximum intensity as a function of frequency f_ can also

0

be obtained by maximizing the variance function3’4'5 (see (8))

2 ., 2 .
R§.§‘(T—O,¢) = RX'X.(O)cos ¢ + Ry.y.(O) sin ¢ + 2Rx~y'(0) cos$ sind (10)
i%i iTi i‘i i‘i

with respect to ¢; thus, giving

1
bfpd =3t TGy - ® _(© - (11)
X.X, V.V.
Angle ¢o in (11) denotes the two principal directions which are 90° apart; one
being the major principal direction, the other the minor principal direction.
The corresponding principal variances will be denoted by R; % (fo,¢0) and
R§ 5 (f0,¢o). The angles of maximum intensity obtained by this procedure are
i'i
quite close to those obtained by the previously described procedure of
maximizing the cross spectral density function for station pairs with respect

to direction ¢

7.2 The Principal Variance Ratio

Let us now define a principal variance ratio as given by
~ (£,,9,)
.y, 0°70
1Yy
Ri.i.(fo'¢o)
1 1

R~
y

R(£,,0,) = (12)

which varies over the range O0<R<1l. If we examine, the motion at station i1 for
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discrete values of fo, consistent with the discrete frequencies of the Fast
Fourier Transform method used in evaluating (4) and (5), we find the

following results. PFirst, when R(fo,¢0) = 1 there are no principal directions be-
cause the harmonic motion at frequency fO moves along a circular path at constant
angular velocity, 2ﬂf0, as shown in Fig. 7.8; i.e., the motion is equivalent

to two resultant harmonics in orthogonal directions having equal amplitudes

but being 90° out~of~phase. When R(fo,¢0)<l, principal directions do exist

with the motion being along a straight line for R(f0,¢o) = 0 and along an

ellipse for O<R(f0,¢o)<l. In the latter case, the resultant harmonics in the
principal directions have different amplitudes as shown in Fig. 7.8 and they

are 90° out~of-phase. Secondly, it is significant to note that oﬁly for

R(fo,¢o) = 0 can a pure single harmonic wave exist. For R(f0,¢0)>0 multiple
waves moving in different directions are present. Thus, in the interest of
identifying wave types, directions, and velocities, attention should be
concentrated on those discrete frequencies having low values of R(f0,¢0).
Fortunately, in the SMART 1 data analysed here as will be shown subsequently,
those frequencies usually represent waves of high energy transmission.

Figures 7.%9a and 7.9b show plots of the major principal variance, the
principal variance ratio, and dominant (or major principal) direction for the
ground motions recorded at stations C00, I03, and I06 during the earthquakes
of January 29, 1981, and November 14, 1980, respectively. It is significant to

f f

note in Fig. 7.9a that at frequencies, fl' o7 and f4, representing high

3’

intensity motions, the corresponding variance ratios are low indicating
relatively pure single wave transmissions at these fregquencies. Note that the

dominant directions are nearly toward the epicenter for frequencies f. and f2

1

but are much closer to the normal direction for frequencies f3 and £ This

4

observation suggests that Rayleigh waves are the primary source of energy
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transmission for frequencies less than about 2.5 Hz and that shear waves (SH
waves, perhaps in part I,ove waves) are the primary source of energy transmission
for frequencies from 2.5 Hz to about 6 Hz. Above these frequencies, the directions
of propagation are quite variable. 1In Fig. 7.9b, the variance ratio has fairly
low values at frequencies fl and f2 which also correspond to frequencies of
relatively high intensity. However the variance ratio is quite high for most
frequencies suggesting a mix of waves. Again it is significant to note the change
in dominant direction from the epicentral direction (in the range

1.4<£,<2.0 Hz to the normal direction (at higher frequencies up to 8 Hz).

As mentioned earlier, this change suggests a shift with increasing frequency from
dominant Rayleigh wave transmission to SH or Love wave transmission.

Let us now examine in further detail, the ground motion characteristics at
frequencies fl = 1.17 Hz and f3 = 2.85 Hz, as indicated in Fig. 7.9%a, for
many stations in addition to stations CO00, I03, and I06. As suggested above, the
dominant ground motions at these frequencies seem to be caused primarily by
Rayleigh and shear (SH) waves, respectively. Figures 7.10a and 7.10b show
the dominant directions at frequencies 1.17 Hz and 2.85 Hz, respectively, at
many stations for the earthquake of January 29, 1981, evaluated using (11).

The average dominant directiontbo over the array is also shown in these figures
as computed from frequency-wave number spectral analysis 6. Note that the
average dominant direction in Fig. 7.10a is reasonably close to the epicentral
direction while the average dominant direction in Fig. 7.10b is close to the
normal direction.

We may now use these two average dominant directions to generate correspond-
ing cross correlation functions defined by (8) for ground motions recorded at
station pairs across the array during the earthquake of January 29, 1981. We
plot in Fig. 7.11 for each station pair the delay time T, for maximum cross

correlation, against the corresponding relative distance between stations as
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projected on the average dominant axis. Straight lines fitted by least
squares yield wave velocities (inverse values of the line slopes) equal to
2.4 km/sec and 5.3 km/sec for frequencies 1.17 and 2.85 Hz, respectively.

The Rayleigh wave identified above at frequency 1.17 Hz moving in the
direction ¢ = 68° at velocity 2.4 km/sec is with little doubt the same wave
type characterized in Chapter 5 by the wave number spectrum analysis which
showed waves at frequencies 1 to 2 Hz moving in the direction ¢ = 68° at
velocity 3.0 km/sec.

Because a uniform elastic half space transmits Rayleigh waves at a velocity
equal to 0.9 times the shear wave velocity , an explanation is needed of the
mixture in the same time window of SH waves with local velocity of 5.3 km/sec
and Ravleigh waves with velocities of 2.4 km/sec. The usual seismological
interpretation of this large difference in local apparent velocities is that
the SH waves are associated with longer travel paths from the earthquake source
to the array in the vicinity of which the SH wave fronts move steeply upwards
through the soil. Thus the apparent shear wave velocity is largely controlled
by the more rigid, deeper rocks in the crust. On the other hand, the Rayleigh
waves develop near the surface between the_source and the array so that their
wave velocities are largely controlled by the shallower materials.

According to this explanation the vertical component ground motions in the time
windows studied should be significant in the frequency range of the Rayleigh waves
but relatively insignificant in the freguency range of the shear (transverse) waves
described above. This prediction was tested by computing particle motions from the
accelerograms as a function of frequency. Results are shown in Fig. 7.12. The
particle orbits agree well with the above prediction with significant vertical
displacement in the frequency bands 0.25 to 1.5 Hz and 0.75 to 1.5 Hz, but almost

none transverse to the wave direction in the 2.5 to 3.1 Hz frequency band.
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Earthquake: Jan 29, 1981
t0=50:30 AT=7.0 sec
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Fig. 7.7 Direction of wave propagation
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Fig. 7.8 Physical meaning of principal variance ratio
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Earthquake: January 29, 1981
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JANUARY 29, 1981 EARTHQUAKE
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Fig. 7.10a Dominant directions at 1.17 Hz for Event 5
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JANUARY 29, 1981 EARTHQUAKE
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Preceding page blank

8. ENGINEERING ANALYSIS OF SMART 1 ARRAY ACCELEROGRAMS

8.1 Introduction

The engineering studies of the ground motion data from the SMART 1
array concentrate on the influence of spatial variations of ground motions
on the dynamic response of large structural systems such as industrial
buildings, bridges, and dams. The results presented in this chapter focus on
the correlations of multi-support excitations and their influence on the
dynamic response of linear structural systems for selected accelerograms
recorded during the earthquakes of November 14, 1980 (Event 2) and January -

29, 1981 (Event 5).

8.2 Response of Linear Systems to Multi-Support Excitations

A. General System
The equations of motion for a discrete parameter, linear structural

system subjected to multi-support excitations can be written in the form

t t

mif+ctt+krt = po) 1)

t . . . . .
where r 1s the total displacement vector from a fixed reference containing
n components, i.e., n = n_ + nb where ns is the number of degrees of freedom

in the system exclusive of support displacements and n, is the number of

b
degrees of freedom associated with the support displacements, p(t) is the load
vector containing non-zero components only for the support interaction forces,

and m, ¢, and k are the n x n mass, damping, and stiffness matrices, respec-

tively. This equation can be partitioned and written in the form
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m m, ;t c c . it k k rt o)
—ss —sb|}—"s —ss —sb —8 —s8s —sb -8 -

ft * c ;t ! k rt ) @
ITbs  Tbb| | b Zbs  <bb| | b Kos Kop| | I 123

t t .
where T and x represent the n_ and n degrees of freedom, respectively.
The total response can be separated into quasi~static and dynamic

response of the form

(3)

Iz)
il
~
o]
n
+
P—
o)
L

X s . . ' . ,
where components in vector rd are identical to the corresponding prescribed

D

. . t . s s s
support displacements in vector Iy components in Eg are the quasi-static

displacements in the n_ degrees of freedom caused by the support displace-

. . d . . .
ments in and components in r_ are dynamic displacements in the n_ degrees

t
L
of freedom.

The quasi-static response is obtained from the first equation of (2)

. . ot
upon letting EF and r equal zero vectors; thus

gs  _  _ -1 -t
ts kes Esb I - ()

The dynamic response is obtained from the first equation of (2) upon sub-

stitution of (3) and (4); thus

-d ‘d d -1 _ -t -1 _ t
Ess£s +'Ess£S +-Esszs = [Esskss ESb Esb] E-b + Lgsskssksb E-sb] rb (5)

The secoﬁd term on the right hand side of (5) equals zero for stiffness pro-
portional damping and is small for other forms of damping when the damping
ratios are low, say less than 10 percent of critical; therefore, it can be
dropped from the equation without introducing significant error. The dynamic

response can then be obtained from the approximate relation
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..d -d d _ et
N 1 _
Ess-Es +«Ess£s + Kss}:s - [Esskss 1—<-sb Esb] Eb ) (6)

Solving for fixed base structural mode shapes and frequencies using

mTe T I = o (7
d . .
the vector r_ can be expressed in terms of the resulting n. X ng modal
matrixgS and the n fixed base modal coordinates Xs as given by
d _
s 7 S)-s Zs (&)
Introducing (8) into (6) and using the orthogonality properties of the
fixed base modes, uncoupled normal mode equations of motion for the fixed
base structure are obtained as given by
MY +CY +KY = o [m klk -m. ] (9)
~g=§ ~—s8 —8$5 —s —ss—ss —sb ~—sb” -b
where<MS, Es’ and Ks are n_ X n diagonal matrices defined by
M = @T m ¢
—s —§ —sSs—sS
_ T
C = & ¢ & = 2Muwg (10)
—s —s —8s5—s —5—s7>s
- T 2
and K = ok ¢ = w: M
=s ~8 —8S—-8 8 —s

wheregs is a diagonal matrix containing the fixed base normal mode frequen-
cies, and és is a vector containing the n_ normal mode damping ratios. It is
assumed here that the damping matrixAgSS is of the Caughey form so that
uncoupled damped normal modes exist.

It should be recognized that generalized shape functions and corres-
ponding amplitudes could also be used in formulating the original discrete
parameter equations of motion. Normally, however, the standard finite

element approach would be used.
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B. Special Case of the General System

Consider a special case of the general system formulated above where
n_ = 1, o, = 2, and n = 3. Let the two prescribed single-component support

displacements at supports A and B in this case be denoted by ng(t) and

vgB(t), respectively. Equation (3) can now be written as

rt () % () NG
= ROR BRI NORE. o ) (11)
v (E) v5(t) 0

Note that the single degree of freedom in the fixed base system as repre-
sented by ri(t) could be any single normal mode of the multi-degree fixed
base system or any other single generalized shape function for that system.

The quasi-static solution as given by (4) becomes

gs 12 13
r = ==y -V R (12)
1 kll gA kll gB
and (5), yielding the dynamic response, reduces to
d -d da_ [F12 M2\ . k13 M3\ . (13)
I L2 Bl Sl AN (S il A8
12 "/ B 11 M1/ 8
where
o= gy fmyy
(14)
817 cp/?myey

For the subsequent development, it is convenient to write (13) in the form

d

- .d s d. e
r, + 2£lw1rl +uwfr; = - A VoA B VR (15)
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B kip M, 13 M3
S -l A N (16)
11 ™1 11 ™1

Now compare the maximum absolute value of dynamic response with the two

where

1t

simultaneous inputs as expressed by (15) with the average of the maximum
absolute values of response produced by the two inputs applied as rigid base

inputs separately, i.e., the averages of the maximum absolute values of

response derived from

..d nd 2 d _ .
r, + 2€lwlrl tulr, o= - (A + B) VoA (17)
~d °d 2.d _ -
ry + 2£1mlrl + wlrl = (A + B) VgB , . (18)

BB .
Letting SAA(g,T) and Sa (£,T) represent the standard pseudo-acceleration
a

response spectra for ground accelerations %gA>and QgB’ regpectively, the

maximum absolute values for r? as given by (17) and (18) will be

1
—E%A + B)SiA(E,T) and l§%A + B)SEB(E,T), respectively. The average of
(€] W

1 1

these two maximum responses will be ~l—-(A + B)[SQA(E,T) + SiB(g,T)]. The

2
Zwl

quantity T introduced here is the fixed base structural period 2ﬂ/wl.

Consider now the maximum absolute value of response resulting from

(15). It is convenient to designate inputs ;gA and ;gB so that fAf < fBl and
to introduce a participation factor ratio y defined by
- A
Y = B . (19)

Because [A} fiBI, Yy must always be in the range
-l <y <+1 (20)
Using this participation factor ratio, (15) can be written as

-d °d 2. d
ro + Zglml 1 + wlrl

1 v 1 (21)

= T Blyvg F g
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Defining SiB(Y,E,T) as the standard pseudo-acceleration response spectrum

derived using 1/2[Y;gA + ;gB] as the single input to the single degree of

freedom system, the maximum absolute value of response resulting from (21)

. 2B  AB,
is =7 S, (v,€,T).
1

A generalized dynamic response ratio @d(y,g,T) is now defined as the
ratio of the maximum absolute value of response derived from (21) to the
average of the maximum absolute values of response given by (l7)_and (18);

thus
SAB

4 a_ (Y,&,T) (22)
T e, + 8PP,

ey, =

Note that as %gA(t) and ng(t) approach full positive correlation with each
other, @d(l,E,T)+l.

The generalized dynamic response ratio defined by (22) can be used
effectively to measure the modified dynamic response resulting from the

differences in the two simultaneous inputs ;gA and ;gB' These differences

obviously depend upon the distance between supports A and B as well as

other factors.

A

. AB
Since Sa {(1,£,T) and Sa

B(—l,g,T) are the pseudo-acceleration response

spectra for single degree of freedom inputs 1/2[v . + ;gA] and 1/2[5gB - v

oB gA]’

i.e., the in-phase and out-of-phase components, respectively, for motionmns at
A and B, the non-dimensional normalized form of (22) given by

AB
25, (v,&,T)

+1) . d 23
_('X'ﬁ}*)’ ® (Y9£9T) = AA BB ( )
[Sa (g,T) +s_"(g,T)]
a
can be used for y = +1 and vy = -1 to measure the intensity of in¥phase

motions and out-of-phase motions, respectively.

Example No. 1 of the Special Case -~ Consider the simple system shown in

Fig. 8.1 with support inputs at A and B as indicated. For this system,
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(4) and (6) become

gs _ 1
o= 3 [ng + vgB] (24)
and
-d *d 2 d 1 . .
ry + 2glw1rl tugr, o= - 3 [ng + vgB] (25)

where Wy = vk/m, and El is the fixed base damping ratio. Constants A and B
as defined by (16) are both equal to 1/2; thus y = +1. The dynamic response

ratio reduces to the form

AB
25 " (v,&,T)
d b4 k]
2% (1,¢,T) = = (26)
(2t e,m + %, m)

and the shear forces are given by

! VB VgA\] k Tgp " ]
_rl +<%i)‘g s Vp(e) = —Z—[ri —(M) | . @27

_ k|
VA(t) = 3

Let us now define two new acceleration spectra SA(E,T) and SB(g,T) by the

relations
v =~V
'A(g’ ) “1171 + ( 2 J {max ?
. Voo (28)
So(E,T) = w?|yS - 8B &/
B<€ ) Y1171 ( 2 max
Note that v = v
ote that when VB VA’
5,6, = 5,(6,1) = A,
and when Vy T VB,
5,5, = 5, (5,1 = sPP(E,m)

If a new generalized dynamic response ratio @t(g,T) is defined as the
ratio of the average of the maximum absolute values of VA(t) and VB(t)
produced by the multiple inputs as represented by (24) and (25) to the
average of maximum absolute shears as produced by separate rigid base (single

input) inputs ;gA and ;gB, then
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5,(6,T) + SB(E,T)

t
°(E,T) = —n
S
a

-

&1 + 2P,

(29)

Note that for systems of the above type which are statically indeter-

minant through their supports, the forces produced by the quasi-static

responses are proportional to the out~of-phase ground displacement

(vgB—ng)/2.

Example No. 2 of the Special Case - Consider the simple system .shown in

Fig. 8.2 with support inputs at A and B as indicated. It is of interest to

consider the absolute maximum response of a single mode of vibration for

simultaneous inputs GA(t) and GB(t) and to compare this maximum response with

the average of the corresponding absolute maximum responses produced by rigid

base inputs §A(t) and VB(t).
Considering the first mode, its dynamic response is given by

d _ d . TX
v (x,t) = rl(t) sin .

and its quasi-static response is given by

v (t) - v  (t)
VIS (x,t) = VA0 4-/ 8B gh ) x .

—

Adding (30) and (31), the total response is given by

Wix,e) = 'ri(t) 0G0+ V0, () + v o)
where @l(x) = sin %§

Qz(x) = 1 - %

®3(x) = ~% .

The principle of virtual work and standard finite element methods give

(30)

(31)

(32)

(33)
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-

11 2 ’ 12 13 2
(34)

=
_ m'ET - -
kjp T o3 k12 k13 0
from which
2 - = E»-E M =

w3 kll/mll = ; Tl Zﬂ/wl . (35)

Substituting (34) into (16) gives A = B = 2/w; therefore, vy as defined by

(19) equals 1. Because this structure is statically determinant through its
supports, the quasi-static response produces no internal forces in the system.
This is consistent with (4) with r%s = 0. It is quite clear now that the

generalized dynamic response ratio given by (26) for £=£land T=Tl is a
direct measure of the modified total force (or stress) response caused by

the differences in the two inputs GA(t) and GB(t).

For the second mode response, (32) and (33) still apply except that

- oip 27X
@l(x) = sin T . (36)
This mode shape leads to
_ ok o _mol - _ _mlL
M1 2 M2 7 ¢ M3 27
(37)
_ 8T4ET _ -
ki1 T T kg ki3 ©
L
Thus,
kll 16THET
w% = = = (second mode freq.) . (38)
™1 mLY
Substituting (37) into (16) gives A = 1/m and B = -1/w; therefore, y as

defined by (19) equals -1. From (26), it is seen that @d(—l,E,T) becomes in-

finite. The reason for this is that the second mode is excited only by the
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out-of-phase motion (GgB—QgA)/Z. In other words, the rigid base (in-phase)

inputs produce no second mode response.

8.3 Correlations of Multi-Support Excitations

A. Multiple Components at One Support
Consider input accelerations a__(t), a__(t), and a_ (t) at support r
X Ty rz
in directions x, y, and z, respectively. These motions can easily be
transformed to any other orthogonal set of axes, say x, y, and z, through a
T

transformation matrix a which satisfies the condition a'a = I, where I is

the identity matrix. Then

()" P .

'/arx(t) W all a12 a13 (Aarx(t)w
< af;(t) \ = ayy a22 ayq ﬁ ary(t) g . (39)
L\afg(t)_) 431 a32 a33 L-arz(t)/

The transformation giving the principal axes, i.e., the directions for
which no cross-correlations exist among the three transformed components of
accelerationl can easily be found. For small structures, the directions
of the principal axes for all inputs would be approximately the same;
however, for large structures significant differences could exist, particu-
larly when the site conditions are complex .
B. Uni-Directjonal Components at Two Supports

Let ari(t) and asi(t) be the recorded ground accelerations at stations
r and s, respectively, in the i th coordinate direction (i = x,y,z) at time
t. These motions can be separated into their in-phase and out-of-phase

components as shown by
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[ -
o (o) = Fari(t) -Izwasi(t)_]x . ,‘ a_. (1) 2 a_, (t)
: o @
e - a_.(t) +a_, (1) [ ) a_ () - a_, (t)
st 2 | 3 2

The first term on the right-hand side of (40) represents the in-phase
component while the second term represents the out-of-phase component. It
is very informative to compare these two components directly for different
pairs of stations and for different directions when studying the correlations
of ari(t) and asi(t). As pointed out previously, (23) can also be used for
this same purpose by letting y = +1 and v = -1 and comparing the two results
obtained.

Correlation studies of ari(t) and asi(t) can also be carried out using
the so called "moving window" technique. To develop this method, the Fast

Fourier Transform algorithm can be used to generate

T%t )
— - —iwa
ari(lm,t) = . At ari(a) e do (41D
2
— 5
w + 5 =
— —_ + —
b . (w,t,a) = 1 2 4 (ip,0) &BoqE (42)
rt 27 r Tt
w2

where o is a dummy variable for time t, At is the window width in the time
domain, Aw is the window width in the frequency domain, and B is a dummy
variable for circular frequency'a. Time t in (41) can be varied continuously
for a fixed value of At resulting in a moving window in the time domain.
Likewise, frequency'a in (42) can be varied continuously for a fixed value

of Aw resulting in a moving window in the frequency domain. Equation (41)
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is actually the Fourier Transform of ari(t)’ but considering only its values
over the time range At centered on t, while (42) is the inverse Fourier
Transform of ari(iagt) but considering only its values over the frequency
range Aw centered on w. In some cases, ari(ia;t) and bri(iagt,u) are calcu-
lated for At infinite and Aw equal a finite value, respectively; while in
other cases, they are calculated for At equal a finite value and Aw infinite,
respectively. In certain special cases, finite values are used for both
At and Aw.

To continue with this moving window approach, generate the cross-

correlation coefficients (or functions) as defined by

o
I _ bri(m,t,a) bsi(w,t,u+1) do.

. oty = (43)
ri,si S — P - )
\J/j:w bri(m,t,a) a . }j;w bsi(w,t,a+r) do

where T is a time difference. By this definitiom, the cross correlation co-

P

efficients fall in the range

-1 <p (0,t,7) <+ 1 . (44)

ri,si

The use of (43) to study the cross correlation of motions ari(t) and asi(t)

is described in the next section.

8.4 Numerical Results of Analyses
A. Directions of Principal Axes

Directions of principal axes were determined for the ground accelerations
produced at statioms M02, MO5, and M12 during the earthquake of November 14,
1980 (Event 2), and at stations C00, I06, and 009 during the earthquake of
January 29, 1981 (Event 5). The directions of these axes when projected on a
horizontal plane are shown in Figs. 8.3 and 8.4 for eight different over-

lapping time segments of 4 sec.each. The crosses and dots indicate that the
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major and minor axes, respectively, are approximately vertical while the
short and long solid lines indicate directions of the intermediate and major
axes, respectively. The most significant of these results are those for time
segments in the range 0<t<8 sec. which covers the high intensity periods of
the motions.

During this high intensity time range, the major principal axis for
Event 2 points downward towards the hypocenter located approximately 10 km
S16°E of the center station of the array and at a depth of 62 km. This ob-
servation is consistent with high P-wave contributions to the ground motions.
During the time range 6<t<18 sec., the 4-sec. segments show the major prin-
cipal axis to be approximately horizontal and usually pointing in the general
direction of the epicenter,

For Event 5, the major principal axis is approximately vertical only
during the first 4-sec. segment at stations CO0 and I06. For all other time
segments, it is approximately horizontal. During the high intensity time
range and considerably beyond, the directions of the major principal axis
correlate reasonably well with direction to the epicenter located 30 km
S26°E of the array's center station. The hypocenter depth for this earth-
quake was approximately 11 km. These observations are consistent with high

S-wave contributions to the high intensity motions.

B. In-Phase and Out-0f-Phase Components of Uni-Directional Motions

In-phase and out-of-phase components of uni-directional motion at
selected pairs of stations were calculated using the definition of (40).
Figs. 8.5 to 8.9 show Fourier amplitude spectra for each of these components
as recorded during Event 2 and Event 5, respectively, for the station pair
C00 and I03. The in-phase component for the earthquake of November 14, 1980,

is much stronger than the out-of-phase component except for frequencies in
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the approximate range 5 to 6 Hz. The large percentage of in-phase motion is
consistent with wave fronts of the P-wave type moving in an approximately
vertical direction as indicated by the vertically oriented major principal
axis previously described. The in-phase and out-of-phase components for
Event 5 are approximately equal in intemnsity if averaged over the entire fre-
quency band 0<t<7 Hz; however, there is a definite shifting of the intensity
from one component to the other as a function of frequency. To illustrate
this observation, notice the high percentage of out—of-phase motion for fre-
quencies in the neighborhood of 1, 3, and 5 Hz and the low percentage for fre-
quencies in the neighborhood of 2, 4, and 6 Hz. While some effort has been
made to rationalize the cause of this phenomenon, no explanation will be set
forth at this time. Obviously, further study of these and other results is

needed.

C. Non-Dimensional Normalized Dynamic Response Ratio

The generalized dynamic response ratio @d(y,g,T) defined by (22) can be
used to correlate the in~-phase and out-of-phase components of uni-directional
motions at station pairs when placed in its non—-dimensional normalized form
shown by (23) gnd when evaluated for y = %l and vy = -1. Plots of this non-
dimensional normalized ratio against structural period T are shown in Figs.
8.9 to 8.13 for £ = 0.05.

Figures 8.9 and 8.10 show plots of this ratio for station pairs CO0 and
T03 and COO and 106, respectively, using vy = +1 which emphasizes the in-phase
component 0f motion. Notice that the percentage of in~-phase motion for Event
2 1s very high compared with the corresponding percentage for Event 5, par-
ticularly as shown by the longer structural periods. This observation is
quite similar for station pairs C00 and I03 and CO0 and I06. Clearly, the

results of Figs. 8.9 and 8.10 are consistent with mainly propagating SV-waves
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for Event 2 and predominant S-waves propagating horizontally for Event 5.

The non-dimensional normalized response ratio for y = +1, &€ = 0.05, and
for station pair CO0 and 103 is again plotted against structural period T in
Figs. 8.11 and 8.12. Also plotted in these figures is the same response ratio
for vy = -1 which emphasizes the out-of-phase component of motion. Again
notice the very high percentage of in-phase motion (y = +1) for Event 2, as
compared with Event 5. Comparison of curves in these same figures for y = -1
shows a high higher percentage of out-of-phase motion for Event 5 as compared
with Event 2. The plots in Fig. 8.13 correspond to those in Fig. 8.12 except
they represent statiomn pair C00 and 106 instead of station pair CO00 and I03.
The results for both station pairs are quite similar.

The observation previously mentioned of an oscillatory shifting of the
intensities of in-phase and out-of-phase motions with frequency for Event 5

is again apparent in Figs. 8.12 and 8.13.

D. Shear Ratio

The generalized response ratio @t(E,T) defined by (29) (called the shear
ratio here) is plotted in Figs. 8.14 and.8.15 for Event 2 and Event 5, respec-
tively, using the recorded EW motions for station pair €00 and I03. The plot
in Fig. 8.14 showing the shear ratio to be nearly equal to 1 over the entire
structural period range indicates a very large percentage of in-phase motion,
in fact, so large a percentage that the rigid base input assumption usually
made in engineering practice would be reasonably valid for this case. This
observation is quite significant considering the fact that stations C00 and
103 are separated by 200 m.

The shear ratio plot in Fig. 8.15 for Event 5 is quite different from
that in Fig. 8.14. 1t shows a shear ratio considerably less than 1 over most

of the structural period range which indicates the double-support input pro-
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duces response considerably less than the average of the separate rigid base
inputs. The out-of-phase components are obviously strong for this case
causing a large reduction in structural response.

By definition, the shear ratio must approach infinity as the struc-
tural period approaches zero because the quasi-static shear forces approach
infinity while the dynamic shear forces remain finite. This fact explains
why the shear ratio is larger than 1 for the shorter structural periods.
The quasi-~static response also increases the shear ratio above unity in the
longer structural period range for the case of Event 2 because of the large
percentage of in-phase motion. One should note that the shear ratio is ex-
actly unity when the motions at stations C00 and I03 are identically equal.
This ratio can exceed unity only as a result of the quasi-static response

caused by the out-of-phase motion.

E. Cross—-Correlation Coefficients

The cross correlation coefficient defined by (43) can be used to study
the correlation of motions ari(t) and asi(t) measured at stations r and s,
respectively, in the i th direction. Letting At and Aw in (41) and (42),
respectively, become infinite, the cross correlation coefficient is a func-
tion of time difference 1 only. Figure 8.16 shows plots of this coefficient
for the EW components of motion at two station pairs, namely CO0 and 106,
and 106 and M08, as recorded during Event 2. The maximum cross correlations
for these two station pairs were found to be +0.476 and -0.291, respectively,
while the corresponding cross correlations for zero time difference were
found to be +0.204 and +0.167. These correlations are relatively low as
their numerical values are dominated by the higher frequencies in the ground
motions. The values of time difference 1 associated with maximum values of

correlation are now being used to assist in studies of wave transmission
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characteristics (wave type, velocity, and direction). The results of these
studies will be reported later.

Because of the dominance of higher frequencies on the cross correlation
coefficient and the differences in correlation.which exist among frequencies,
a moving window in the frequency domain was used to obtain cross correlation
as a function of frequency w and time difference t. In this case At was set
equal to infinity.

Figures 8.17 to 8.20 show this correlation plotted against ground motion
period (27/w) for 1=0 and for Af=Aw/27=0.488 Hz. East-west components of
motion for stations CO0G, I03, 106, and 012 recorded during Event 2 and Event
5 were used as indicated. Figures 8.17 and 8.18 show the cross correlations
to be very high for the longer periods of motion recorded during Event 2, and
they show a relatively fast drop in correlation with decreasing periods below
1 sec. TIn contrast, the cross correlatiouns are relatively low over the en-
tire period range for the motions recorded during Event 5, as shown in Figs.
8.19 and 8.20, except in the near neighborhood of certain discrete periods.
The significance of the oscillatory character of these cross correlation
functions is now under investigation with no definitive conclusion having
vet been reached.

Cross correlation coefficients have been generated for components of
motion using both time and frequency moving windows. For example, they
were generated for the major principal components of motion at statioms M02
and MO5 as recorded during the earthquake of November 14, 1980, within the
time period 9 to 14 sec. and within the frequency band 2.6 to 3.0 Hz; see
Fig. 8.21. The resulting cross correlation is plotted against time differ-
ence T in Fig. 8.22. Because of the narrow band character of the components

of motion and the phase angles involved, this function has the appearance of
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a slowly varying harmonic with a 3.3 sec. period which peaks at about T = 5
sec. where p = 0.8. The significance of this shape is now being correlated
with other information to shed light on the wave transmission characteris-

tics to be reported later.

F. Pseudo-Acceleration Response Spectra

Standard normalized pseudo-acceleration response spectra were generated
using 5 percent of critical damping for the components of motion recorded
during Event 2 and Event 5. The averages of these spectra are shown plotted
against structural period in Figs. 8.23 to 8.26 where they can be compared
with previously published average spectra representing 4 different soil
typesz. The average spectra for these two earthquakes have shapes which
correlate best with the previously published averages for hard site con-
ditions. This observation is not consistent with the relatively soft‘site
conditions of the SMART 1 array, and this suggests dominant influences from

the source mechanism.
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Fig. 8.3 Directions of principal axes for ground motions
produced by the earthquake of November 14, 1980.
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Fig. 8.4 Directions of principal axes for ground motions
produced by the earthquake of January 29, 1981.
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Fig. 8.5 Fourier amplitude spectrum of the EW in-phase
component of motion for the station pair

C00 and I03: Event 2
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Fig. 8.6 Fourier amplitude spectrum of the EW out-of-phase
component of motion for the station pair
C00 and 103: Event 2
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Fig. 8.7 TFourier amplitude spectrum of the E-W in-phase
component of motion for the station pair
C00 and 1I03: Event 5 ’
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Fig. 8.8 Fourier amplitude spectrum of the EW out-of-phase
component of motion for the station pair
C00 and I03: Event 5
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NORMALIZED DYNAMIC RESPONSE RATIO
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Fig. 8.11 Normalized dynamic response ratio of EW components of
motion at stations C0O0 and 103: Event 2; y = +1, v = -1
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Fig. 8.12 ©Normalized dynamic response ratio of EW components of
motion at stations C00 and I03: Event 5; v = +1, v = -1
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NORMALIZED DYNAMIC RESPONSE RATIO

EARTHQUAKE : JAN. 29, 198]
5% CRITICAL DAMPING

0.2 -
0 L L1 ! !
0] 0.5 1.0 1.5 2.0 2.5 3.0
STRUCTURAL PERIOD- SEC.
Fig. 8.13 Normalized dynamic response ratio of EW components of

motion at stations CO0 and I06: Event 5; v = =1, y = -1
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Fig. 8.14 Shear ratio of EW components of motion at stations C00
and I03: Event 2
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Tig. 8.17 Cross correlation coefficient of EW components of
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9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This report summarizes the design, installation, operational and
analysis aspects of the development of the SMART 1 array, particularly up to
about the end of its first year of operation (September 1980 - September
1981). The array represents a substantial investment in research funds and
technical effort by the National Science Foundation and the National
Science Council and by seismologists, engineers, and technicians at the
Institute of Earth Sciences and the University of California, Berkeley. As
the report demonstrates, the enterprise has exceeded the initial expectations
with a valuable file of strong-motion data already available. Because the
instrument selection, array installation and operation of this digital array
involve novel features, it was thought valuable to set out in more detail
than usual the more important experiences encountered in practice. Such
practical matters should be helpful in the design and operation of other
large-scale digital arrays.

The seismological and engineering research based on the measurements of
strong motion of earthquakes obtained since September 1980 using SMART 1 is,
of course, only in its beginning stages. Nevertheless, we have incorporated
in this report some preliminary studies of the recorded ground motions to
indicate the type of research that is now feasible and to give an idea of
the probable applications. The complete results will eventually be published
elsewhere.

This summary report also provides an opportunity to evaluate strengths
and weaknesses of the various aspects of the concept of large digital arrays,
although perhaps a decade is needed for a balanced and complete critique. An

assumption at the International Workshop on Strong Motion in Hawaii (refer-
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ence 1,Section 1.3) was "There is an adequate understanding of the nature of
earthquake ground motion to be able to design useful strong-motion arrays
which will provide answers to some of the important unresolved questions
facing the designers of structures and other facilities in the earthquake-
prone regions of the world." Based on the first year of operation of

SMART 1, this expectation is substantially correct, but it must be stressed
that siting and local technical competence were relatively favorable in this
case.

As described in the first chapter of the report, the site of the SMART 1
array on the Lanyang plain is located at the northeast part of Taiwan,
only a few hours by car or train from the Institute of Earth Sciences in
Taipei. Electricity and telephone services are excellent and the local road
system is superior. Cooperation from local authorities and land owners was
uniformly favorable. The region was selected also because it has the highest
seismic activity in Taiwan, with both shallow and intermediate focus earth-
quakes of sufficient strength to trigger érray elements. The expectation of
earthquake recordings in the short term has proved correct. A seismic re-
flection survey had been dome in 1976 across the Lanyang plain which showed
a flat surficial alluvial layer with 800 to 1000 m/sec P wave propagation
velocity, underiain by dipping alluvial layers with 1800-2000 m/sec P wave
propagation velocity. Tt is clear, however, that a full understanding of
the recorded wave patterns will require more detailed mapping of the soil
layers and geological structure; further geophysical surveys supplemented by
boreholes will be required. The region is undergoing economic development
with some multi-story buildings, substantial bridges and harbor facilities
now appearing and planned. Some structures have already been instrumented

with regular three-component accelerometers so that valuable engineering
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comparisons between structural response and array recordings will be
possible.

The selection of a concentric circular array has proved beneficial.
From the seismological point of view, this configuration helps in the deter-
mination of wave velocity, wave number, and the structure under this array,
given various source locations. In other locations, where sources are re-
stricted to specific faults, an omni-directional configuration may not be
optimal. From the engineering point of view, the 2 km radius of the outer
ring, containing 12 instruments, yields an inter-element distance that is
large} than needed in practice. For most spatial variation of ground motion
of engineering interest, a more densely spaced array is required. The inter-
element spacing of the inner ring (about 100 m) is, however, directly appli-
cable, even though the relative distance between stations in some smaller-
scale arrays is much less. (The spacing is about 20 m in the 1979 El1 Centro,
California, differential arrayZJ

The instruments selected for SMART 1 have proved to be relatively
trouble—free»and to have a number of useful characteristics. 1In particular,
the crystal oscillator is precise and the anti-aliasing filter adequate. A
trigger level setting of 0.05g has proved satisfactory. Because each instru-
ment is checked every 2 to 3 days, no conclusion can be reached about re-
liability of such digital devices when servicing is long-term. 1Initial
experience with the special digital processing equipment designed for SMART 1
is favorable. The data playback and correction, including removal of time
marks, glitches and the DC shift are remarkably fast. Generally, it takes
less than fifteen minutes to scan and correct a single acceleration record.
So far only the digital records of two major earthquakes, November 14, 1980

(Event 2) and January 29, 1981 (Event 5) have bech analyzed to any extent
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from 9-track tape copies. The experience with these tapes and records on
the Mod Comp mini-computer system at the U.(C. Seismographic Station has been
quite satisfactory. A number of tape copies have been made available for
analysis at other research centers but a survey of their performance is pre-
mature.

It should be pointed out that some of the smaller ground motions that
have triggered array elements at the 0.05g threshold setting provide only
limited digital samples. This leads to accelerograms that appear stepwise
discontinuous when played back visually.. The difficulty can be overcome if
ﬁécessary by decreasing the trigger level and increasing the gain.

In response to a crucial need in engineering design, research with array
records has concentrated on what can be learned about in-phase and out-of-phase
components of horizontal seismic ground motion. It has been found that, in
the frequency range 1.0 to 10 Hz, cross-correlation coefficients are domin-
ated by higher frequencies. Cross-correlations as a function of frequency
for different pairs of stations have shown that high Fourier amplitudes of
in-phase or out-of-phase waves may produce a high dynamic response of linear
systems. The model indicates the influence on the structure of the out-of-
phase input.

Another aspect of the phase problem, related to foundation-structure
interaction, is the frequency dependence of the dominant direction of inci-
dent wave propagation., It bas been demounstrated with SMART 1 records that
the variance ratio R({f) can be used to infer the dominant directions
of the harmonic wave components. For high values of R(f}), there is no dom-
inant direction at this frequency f. Also, different types of seismic waves
(P. SH, Rayleigh, Love, etc.) can be identified by the use of the ratio of

the principal variances and the maximum power spectral density function.
»
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The principal variance calculation also provides a way to identify
inter-element wave propagation characteristics for comparison with the aver-
age values obtained from frequency-~wave number analysis for the whole array.
Most probabilistic analyses of structural response assume that the ground
motion inputs are uncorrelated, i.e., the cross-spectral density function of
the excitation is assumed zero. Because of the special configuration of the
SMART 1 array, there is no difficulty in calculating the coherence between
different station pairs and thus establishing a cross-spectral model.
Studies of the phase change and distance attenuation of the amplitude of the
cross—-spectra show promise, even though the parameters of the cross-
spectral density function depend on the focal depth and magnitude of the
earthquake.

In the measurement of coherency of Rayleigh waves of frequency about
1 Hz propagating across the array, a loss of correlation was found to be
gsignificant for the largest earthquake recorded. This effect may be due to
the scattering of waves for larger station separation. McLaughlin gE_gl.B
have also discussed wave attenuation and random scattering in a study of
waves across a sparser array from underground explosions in Nevada.

A few other papers on strong motion recorded by other arrays have re-
cently appeared, allowing limited comparison with SMART 1. Smith et al.l
have analyzed digital accelerograms from a small-scale linear El Centro
differential array for the 1979 Imperial Valley earthquake., Because ab-
solute time was not available at each element, they use an aftershock record
to align the arrival of P waves and establish the time reference. In their
subsequent correlation study, they define the covariance of two records in

the usual way (see Chapter 7), as
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It is impotrtant to study the covariance not only for k=0, but also for different

values of k, and this analysis is being done with the SMART 1 data.
Besides the establishment of a cross-spectrum model of ground motion,
spatial averaging of array data also provides important information on the
effect of rigid non-embedded foundations on the seismic waves (the "tau"
effect). We have defined a ground motion spectral ratio RTAU as the ratio

of the spectrum of the array-average time history to the array-average

spectrum of each individual time history, i.e.,

F{Vgl} + F{ng} + ... F{Ggm}

where F{ } is the Fourier transform of the time signal. The average of the
free-field ground motions at each instant in time over the array provides an
estimate of the translational motion that a rigid foundation, secured to the
ground over the array dimension, will uﬁdergo as a result of the seismic ex~
citation. Calculations using ground motion measurements over the inner ring
yvield a spectral ratio RTAUthat approaches 1 from 1 Hz up to 4 Hz,and then decays
to zero above 4 Hz (see Figs. 9.1 to 9.3). Further, it has been found that
the foundation averaging ""tau"” depends on the phase difference of the input
signals.

Another promising line of research using inter-element array motions
concerned the ground strains developed. The seismic behavior of oil or gas
pipelines is predominantly controlled by the ground strain/displacement

characteristics. Free field motion on the surface of the ground is suf~-



ficient to represent ground motion input for such systems because, even for
buried pipelines, depth in general is shallow relative to the surface soil
layer. By transforming coordinates to the longitudinal direction and the
transverse direction, the normal ground strain €45 along the epicentral di-
rection between stations 006 to 012 (see Fig. 1.2) was expressed as

i .

U - UJ

X X

£,. =

. R b
i] Lij

where Eij represents the average strain between stations i and j, and Ui
and Ui are ground displacements in the x direction at the two stations,
regpectively; Lij is the distance between i and j. Based on this procedure,
the strain time histories for the SMART 1 site are as shown in Fig. 9.4.

The maximum strains at the site are given in Table 9.1.

Finally, as noted in the work ¢f N. Newmark, measurements of torsional
components of strong ground motion are of engineering importance. The close
element spacing and circular geometry of SMART 1 allow estimation of rota-
tional motions (i.e., the components of curl u). Some promising calculations

have begun on this parameter and details will be published elsewhere.

9.2 Recommendations

A special seminar on Strong-Motion Seismic Instrument Arrays was held
in Taipei and Lotung on September 7 - 10, 1981, with about thirty seismolo~
gists and earthquake engineers participating. It was agreed that the SMART 1
project is one of the most productive undertaken under the present Coopera-
tive Science Program. The meeting participants (listed at end of Section
9.3) strongly endorsed the following recommendations:

1. Support should continue by both the NSF and the NSC for the

operation of the SMART 1 array with provision of the necessary funds for the
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vital analysis and interpretation of data already obtained and likely to be
obtained in the future.

2. The efficiency of data analysis at the Institute of FEarth Sciences,
Academia Sinica, which handles the data processing for the SMART 1 array,
needs improvement by acquisition of additional computer CPU capacity and
peripheral hardware and software support.

3. A seismic profile should be conducted to allow critical delineation
of the subsurface structure of the Lanyang sedimentary basin near the array
site and at least one borehole to basement rock should be drilled and logged
within the array.

4. The present SMART 1 array should be augmented by the addition of a
string of downhole sensors and one or more extended surface radial arms to
an appropriate distance for the study of attenuation of strong ground motion
on various foundation materials.

5. Strong motion instruments should be installed in high-rise buildings
and other suitable structures in the vicinity of the SMART 1 array site
particularly for structural respouse studies and soil-structure interaction
studies.

6. Timely distribution of the raw data and analysis results to the
general scientific and engineering communities is essential. The principal
invegtigators of the SMART 1 projectare urged to take proper measures to
ensure that scientific data and information are expeditiously distributed for

general use and application.
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TABLE 9.1

Maximum ground strain [x 10—5] along
the profile from site 006 to 012 of
SMART 1.

| Segment Strain €13
006-M06 -3.3
M06-106 -3.1
106-C00 -3.1
€00-112 4.6
112-M12 4
M12-012 -2.5
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SPECTRAL RATIO

o
-] \Wv\"~”~“”~"m""~”'~”"'“m~~'wﬁquﬁm T
WVWJ\W N
N \/\'\ v
o 1/
| N\
EW direction
Inner ring
= T ] I [ 1
]
r-:}*_ __________________________________________
\ \
~ fj/f Vi .
g YA
\
| Medium ring EW direction
1 _ ! 1 . i |
o
T T T T T T T TS T s s e s s e
i \\
Outer ring EW dirgction
T ] ] ] I
0. 2.0 4.0 6.0 8.0 10.0
FREO-Hz

Fig. 9.2 Spectral ratio RTAU in the EW direction: Event 5



SPECTRAL RATIO SPECTRAL RATIO

SPECTRAL RATIO

178

Earthquake: Nov. 14, 1980

<
ﬁﬁ*i;A{\;;&;k&k%&%;Lgk\;)gi_—--—‘ﬂ~””~“~~‘—w
M ' M\/\ﬂ/\/\
EW direction
g; Inner ring
. i 1 f ] |
o"-\ _________________________________
i R b
| N \VW
AV -
JAn A
AW/ Y
\/ J
| EW direction
c?é_ Medium ring
q f T I | ]
C
BT T T T T T e e e ST S e S n o e e o e o e e e s e
EW direction
o Outer ring
: T T T T \
0. 2.0 4.0 6.0 8.0 10.0
FREQ-Hz

Fig. 9.3  Spectral ratio RTAU in the EW direction: GEvent 2



GROUND STRAINS

179

Earthquake: Jan. 29, 1981
(radial direction)

-5
10 006-MO6

5.0
__-~»*~_—~J’\ /\j\ /ﬁ\¥ N\ I\ N,
l y] VAR A Ve o
-5.0
M06-106
5.0,
Tﬁ"'fAK/fkl\dq\\/%pﬁ\v\d/n>Kﬁfﬁ,q\\//, NS
-5.0J
106-C00
5.0
A-—-*’*"”““=k~wvmq V (f\/w .
Q AWiTA \// )
-5.04
- C00-I12
-5,0 :
T12-M12
5.0+
‘ M\/\]M\ /\V \r/_l\\/rj\‘ \ﬁv V\/
-5.04
107> M12-012
5.0~
V/\w%/\ lwf\\/ T
-5.0.
1072 , ) , B N
— { i ¥ . v
0 4.0 8.0 12.0 16.0 20.0

seconds

Fig. 9.4 Ground strains between selected pairs of elements: Event 5






Preceding page blank 181

APPENDIX A

3-Component Data Listing of Station I03 of Earthquake
of January 29, 1981 (Event 5)
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APPENDIX B

Time History of Station 103

(see opposite page)
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APPENDIX C

Calculated Velocity and Displacement of NS Component of Station 103

(see opposite page)
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APPENDIX D

Fourier Amplitude Spectrum of Acceleration of Station 103

(see opposite page)
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APPENDIX E

Frequency-Wave Number Spectral Formula

The formula for the high resolution method for frequency-wave number

analysis can be represented in the following way.

For station j, the spectrum is
t +AT it
£ (w) = J a,(t)e dt
J £ ]
o

Define the cross-spectrum as

S5, @) = £,0) £, @)
and compute
e {jngjg@)e_i—k—' (z "-—“32)}_1 ,
where
Q@1 = (5,1

Then normalize the maximum P(w,k) to O db. Finally, P(w,k) is con-
toured. The contoured diagram can be analyzed for average horizontal phase

velocity and direction of wave propagation (see Figs. 5.5 and 5.6).
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