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ABSTRACT

An experimental program has been formulated to examine the behavior
of confined edge members in reinforced concrate wall systems subjected
to seismic excitations. This report describes the design and construction
of the testing facility required to conduct such a program and discusses
the first series of experiments and results.

Eight specfally shaped concrete specimens were tested to assess
the mechanical characteristics of edge members. These specimens were
designed to simulate one-third scale models of the edge members in & pro-
totype 15-story, barbell-shaped wall., four of the specimens were cast
with circular spiral reinforcement while the remainder were unreinforced.
None of the specimens were longitudinally reinforced.

Both monotonic and cyclic shear loading were applied in combination
with axial forces to the study of both monotonic and hysteretic responses
of the specimens to shear loading. The effect of transverse cracks,
whose widths were axially restrained, on both of the above responses,
was also investigated.

Experimental results ‘adicated that high compressive forces lead to
high shear resistance accompanied by large shear stiffness. The desira-
biTity of avoiding the formation of wide c¢racks that remain open became
apparent.

Recommendations are given for further research.
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1. INTRODUCTION

1.1 General Remarks

Efficient design of earthquake-resistant structures requires the
use of a structural system capable of providing stiffness, strength
and stable hysteretic behavior with large energy dissipation capacity.
Post-earthquake damage observations [1,2] and experimental investiga-
tions [3 - 7] indicate that these characteristics can be met with
properly designed reinforced concrete structural wall systems.

The barbell shape has been found to be a particularly advantageous
shear wall cross section for use in seismic-resistant design. The bar-
bell configuration results from a wall panel between two edge members
greater in thickness than the panel, This geometry enables convenient
placement of flexural steel for increased flexural strength and curva-
ture ductility and increases the out-of-plane wall stiffness, reducing
the tendency for lateral instability. In addition, by selecting edge
members with circular or square cross section, confinement of the con-
crete and lateral restraint of the longitudinal reinforcement in the
edge members is facilitated. Such advantages are not as easily realized
in rectangular walls where the edge members are developed within the
thickness of the wall panel. Barbell-shaped walls consequently exhibit
increased rotation capacity, improved restraint against construction
joint s1ip, and increased shear strength and deformation capacity.

Circular spiral steel can be efficiently used as transverse con-
fining reinforcement in the edge members. The ease of providing small
spiral pitch and uniform radial confinementmakes its use particularly

attractive. Strong and ductile edge members result from this confinement.



The addition of well-confined edge members significantly improves
the seismic-resistant behavicr of reinforced concrete walls. This
becomes evident from consideration of the possible failure mechanisms
of walls subjected to seismic actions {Fig. 1.1). An efficient seismic-
resistant design requires the shear-types of failure to be avoided or
delayed until sufficient energy is dissipated through flexural yield-
ing. An analysis of the different shear mechanisms clearly indicates
that because of their required confinement the shear wall vertical bound-
ary members (edge members) can act as large diameter dowels or short
ductile columns, thus they can be a significant factor in achieving
the desired response of barbell-shaped walls. Unfortunately, there is
2 lack of data regarding the behavior of confined concrete subjected
to high shear and axial loads, and consequently, it is impossible to
acrurately predict the response of these edge members to these extreme
combined loadiny conditions. This in turn prohibits an understanding
of wall panel and edge member interaction. To provide the required
information, it was decided to investigate the behavior of these con-

fined edge members.

1.2 QObjectives and Scope

The objective of this study is to gain an understanding of edge
member behavior under seismic-type excjtations. A test program has
been designed to experimentally examine the behavior of confined edge
members. The ultimate goal is to use the information of this investiga-
tion to develop a rational basis for designing barbell-shaped walls

against the effects of severe earthquake ground motions.



The score of this report is limited to the initjal phase of the
experimental program which consisted of the design and construction of
the testing facility and the first series of experiments. {nly edge
members confined with circular spiral reinforcement were investigated
in this test series. The general experimental setup and testing pro-
cedure as well as the test results and conclusions from the first set

of specimens are presented herein.



2. TEST SPECIMENS

2.1 Selection of Test Specimens

The simplest test specimen capable of duplicating prototype edge
member behavior was sought. In addition, a scale suitable for accurately
modeling this behavior was required. The factors governing the selection
of both specimen form and scale are described below.

2.1.1 Scale

Difficulties in accurately reproducing prototype behavior on small
scale models prompted the use of a test specimen on the largest feasible
scale. It was also desired to correlate test results with one-third
scale coupled shear wall tests performed at the University of California,
Berkeley [8]. Since available testing capacities prohibited the use
of a full-size specimen, a model of the same scale and configuration
a5 that used in the coupled shear wall tests was adopted.

2.1.2 Basic Svbassemblage

Several factors governed the selection of a subassemblage. First,
tests have shown that crushing of edge member cover has little effect
on the strength and ductility of barbell shear walls [4]. Thus, only
the core was modeled. A nine-inch (229 mm) diameter core was used for
the test specimen. Second, shear wall failure resuiting from diagonal
tension or sliding sheaar tends to concentrate inelastic behavior in the
edge member over a limited height. To investigate the response of edge
members under such conditions, the core height was selected as one of
the main parameters to be studied. For the series of tests reported
herein, the core height was one inch (25.4 mm). To ensure ailure over

this height, the specimen was specially shaped and strengthened ahove
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and below the core by post-tensioning. A square section wac adopted
at these locations to facilitate post-tensioning of the concrete and
foading of the specimen. Figure 2.1 illustrates the test specimen
geometry,

To compare and contrast the behavior of confined and unconfined
edge members, half of the test specimens were confined with 1/4-inch
(6.4 mm) diameter spira) at 3/4-inch (19.1 mm) pitch. The selected
pitch permitted one complete revolution of the spiral within the l-inch
{25.4 mm) core height.

Longicudinal steel was omitted from all specimens in this test

series to isolate behavior of the concrete.

2.2 Materials
2.2.1 Concrete

The mix design used in this study was based on a specified 28-day
strength of 5000 psi (34.5 MPa). Portland cement Type I, coarse and
fine sand, and 3/8-inch (9.5 mm) maximum size agaregate constituted the
selected mix. The same mix design was used fri- all specimens; minor
modifications of the water-cement ratio adjusted the slump at the time
of casting. Table 2.1 shows the mix design.

Although 5000 psi 28-day strenqgth was specified, cylinder strengths
at 28 days ranged from 4669 to 5199 psi. On the days of testing (48-69
days after casting) average cylinder strengths ranged from 5022 to 5330
psi. In addition to compression tests, splitting tensile and flexural
{beam) tests were performed on concrete samples for each specimen. The
results of these tests are summarized in Table 2.2,

Additional 6 x 12-in. cylinders were tested for four of the eight
specimens to evaluate the elastic modulus of concrete, E.. A stress-strain

6



turve typical of those obtained is given in Figure 2.2. The average
secant modulus at 0.45 fc was 2770 ksi {19,105 MPa). Experimental
secant moduli and those computed from the ACl equation: EC = §7,000 J?E
{9] are compared in Table 2.2. In all cases the experimental moduli are
considerably lower than the ACI theoretical values. Results obtained by
other researchers suggest that the low experimental values were a conse-
quence of the small aggregate size used [10].

Poisson's ratio, v, was also measured experimentally in one of the
cylinder tests. A value of 0.15 was obtained at 0.45 fer
2.2.2 Steel

Deformed #2 steel bars with a nominal diameter of 0.25-in. (6.4 mm)
were used as circular spiral reinforcement. Figure 2.3 shows an average
stress-strain diagram for the bars. The steel yielded at a rominal
stress of 69 k:i (476 MPa) and attained a maximum stress of 92 ksi (634

MPa). Rupt. e of the bar occurred at 24 percent elongation,

2.3 Fabrication and Casting of Specimens

h total of 8 specimens were fabricated. They were cast four at a
time in a vertical position. Reusable wood forms made of high density
overlay plywood were used. Figure 2.4 illustrates the procedure fallowed
in assembling the formwork.

Special care was taken in designing the formwork to beused to cast
the core test region (Fig. 2.1)., The selected formwas radially tapered from
a 2-inch {(5.08mm) thickness at the outside of the specimen to 1-inch {2.54 nm)
at the core. The taper reduced the possibilityof trappingair inthe bottomhalf
of the specimen while casting, facilitated removal of the formafter casting,
and reduced the stress concentration between the core and the post-ten-

sioned concrete above and below it. Modification of this formwork piece
7



permits reuse of the forms in future tests for specimens with cores
up to 10 inches (254 mm) in height.

Righ strergth A490 threaded rod was used to provide the desired
post-tensioning in the concrete adjacent tc the core. Conduits were
cast in the specimens to provide ducts for the threaded rods. The
conduits were held in place as detailed in Fig. 2.5. Wooden dowels
glued and nailed to the inside of the forms positioned the conduits
within the formwork. Closed-cell ethafoam was used to seal the conduit
from the wet concrete.

Steel rods 1/4-inch (5.4 mm) in diameter were cast in each specimen
tc attach instrumentaticn., The arrangement of these fixtures is ilius-
trated in Fig. 2.€.

The four confined specimens had identical spiral and pitch. Three-
quarter inch spiral pitch was maintained with tie wire positioned at
third points along the circumference of the spiral, Anchorage of the
spiral was provided by extending it approximately 5 inches (127 mm)
above and below the c¢nre with two additional turns at each end.

Casting was facilitated by the use of a high frequency hand vibrator.
After casting, the specimens were covered with wet burlap and plastic
for seven days. The forms were stripped on the seventh day. The specimens
were stored in the laboratory at approximately 70°F (21°C) until the
dates of testing. The ages of the specimens at the times of testing
ranged from 48 to 69 days.



3. EXPERIMENTAL SETUP AND TESTiNG PROCEDURE

3.1 General Setup

The experimental setup, including test specimen and testing facility,
is shown in Fig. 3.1. As illustrated, the specimen was tested in a vertical
position. The testing facility consisted of a testing frame, loading
devices, ancillary apparatus, instrumentation, and a data acquisition

system. Each is described below.

3.2 Testing Frame

The testing frame was fabricated from structural steel members.
It was designed to resist forces of 600 kips (2670 kN) axial compression,
200 kips (890 kN) axial tension, and 235 kips (1050 kN) shear on the
specimen. A harizontally oriented reaction frame resisted the shear
force applied to the specimen, Figure 3.2 illustrates this framework.
Axial forces were resisted by a cross-head (Fig. 3.1) consisting of
large girders arranged in a grid. The cross-head was supported by four
columns anchored by prestressed rods to the laboratory floor. A beam
and two additional columns supported the weight of the lateral loading

jack.

3.3 Loading Devices

The loads applied to a typical specimen included both axial and
shear loads. Tne l1pading systems used for each load type were indepen-
dent of one another. Each is described subsequently,

3.3.1 Shear Loading System

The shear load wa+< applied with a double-acting hydraulic jack.
Cperating at 3000 psi (20.7 MPa) o’1 pressure, its maximum load capacity

is 235 kips (1050 kN) push and 176 kips (780 kN) pull. The jack has a
9



stroke of 24 inches (610 mm). The force applied by this jack was directly
measured by a 200 kip (890 kN) capacity load cell connected be‘ween :he
jack cylinder and the test specimen.

The shear jack was operated by an electricaily-controlied servo-valve.
The servo-valve was controlled by an MTS controller, The electricai output
from the loacd cell measuring the shear force and from an LVDT mounted on
the jack measuring the movement of the ram were used as input to the con-
troller transducer conditioners. After receiving these signals, the feed-
back selector determined which would be used as input to the servo-controller.
In this way, the shear loading jack could be operated under load or dis-
placement control. To improve the accuracy of the measurements taken and
to avoid the danger of a sudden collapse resulting from deformation soften-
ing, displacement control was used exclusively in all tests.

3.3.2 Axial Loading System

Lack of experimental data regarding the behavior of concrete subjected
to shear and axial tension led to the development of an axial loading
system with the capability of applying both tension and compression. An
existing 600-kip (2670 kN) capacity single-acting hydraulic jack was
capable of applying the required compressive force. The jack has a stroke
of 6 inches (152 mm) and was manually controlled with an air-operated
booster pump. A compression transducer was mounted directly on top of
the jack. 7Th: jack was supported by a heavy movahle cart which rode on
large roller bearings on ground rails, permitting unrestrained lateral
displacement of the bottom half of the specimen relative to the top.

To modifv this system for applying tension, a loading platform con-

sisting of a grid of welded heavy structural steel members was used. A
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pin and clevis connected the platform to the axial jack. Four 1-1/8-in,
(28.6 mm) diameter prestressing rod; were connected to the platform and
inserted through tie-down holes in the laboratory floor slab. The plat-
form, rods, and jack are illustiated in Fig. 3.3. Beneath the floor, the
rods were connected in pairs by heavy box section beams. A 200-kip

(890 kN) capacity jack was placed between each beam and the floor slab.
This setup is shown in Fig. 3.4.

A 50-kip (222 kM) capacity load ce!l was cannected to each rod on
top of the loading platform. The net force on the specimen was equal
to the difference of the forces measured by the load cells on the rods
and the axial jack. The signals from the five axial load cells were sent
to an analog computer which produced a single signal of the net axial
force on the specimen.

This loading system provided the capability of applying tension,
compression or alternating axial l1oads to the specimen. To apply com-
pression, the rods were pretensioned against the axial jack for stability.
Each rod was loaded to approximately 5 kips (22 kN). A self-equilibrated
system consisting of the rods, jack, loading platform and laboratory
floor results prior to connection of the specimen. After connection,
the axial jack was used to apply the desired compression.

To apply tension, the specimen was first connected to the axial
loading system and subjected to a compressive force of about 1 kip (4.4 kN).
The rods were subseguently tensioned to a total force in excess of the
axial load desired on the specimen during testing. Retraction of the

axial jack cylinder produced a net tensile force on the specimen.
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3.4 Ancillary Apparatus

Steel plates encased the specimen and were part of the post-
tensioning apparatus providing biaxfial confinement of the concrete
adjacent to the core. The plates on the east and west faces of the
specimen were also used to transfer the shear force to the specimen.
These were connected to “ear-shaped” steel plates which were in turn
attached to the shear loading jack at the west side and lateral reaction
bracing at the east, Figure 3.5 illustrates the apparatus.

Proper alignment of the plates permitted application of pure shear
through the mid-height of the core. The plates were designed to alliow
for future modifications in the test specimen s¢ that c.re heights up to
10 inches (254 mm) can be tested with shear through the center by reposi-

tioning of the steel plates.

3.5 Specimen Instrumentation

3.5.1 Measurement of Shear Deformations

Shearing deformations are typically given in terms of the angular
change between two faces of an element, y. To evaluate the shear defor-
mation of the test core, the relative dicsplacment of the top and bottom
of the core in the direction of the appiied shear force was measured.
Figure 3.6 illustrates the shear deformation quantities.

The expected magnitude of the relative elastic shear displacement
was on the order of 0.001 inch (0.025 mm), however, large deformation
behavior was also of interest; therefore, an accurate study of the complete
shear deformation response required instrumentation sensitive over a
large range., Linear variable differential transformers, LVOT's, were

selected for use because of the sensitivity they could provide.
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It was impossible to utilize the test frame itself or an auxiliary
frame as a reference from which to take absolute measurements of the
displacements of the top and bottom of the core as the slightest movement
of either reference would invalidate measurements taken in the elastic
range. In addition, the geometry of the setup made it practically impos-
sible to devise a reliable referencing scheme since this required relative
displacement measurements to be taken directly.

The 1-inch (25.4 mm) core height limited the space available for
instrumentation and difficulties in reliably mounting the LVDT's within
this space prompted the use of two different schemes to measure the
average relative shear displacement of the test specimen.

The first arrangement is illustrated in Fig. 3.7 and consisted of:

1) An LVDT holder, designed to slip aver the 1/4-inch diameter pin cast

in the top half of the specimen; and 2} An LVLT, mounted in the holder and
measuring the relative shear displacement against the bar cast in the bot-
tom half of the specimen (two LVDT's with ranges of +0.1 inch (+2.54 mm)
were mounted in this fashion).

A second system measured the shear displacement at the center of the
specimen. Figure 3.8 illustrates this instrumentation setup, which con-
sisted of: 1) Two 1/4-inch diameter steel bars cast parallel to each other
directly above and below the test section; 2) LVDT holders, connected to
opposite ends of the top bar within 1/2 inch {12.7 mm) of the core; 3) Two
small plates, fabricated to fit on the bottom bar; and 4) LVDT's with ranges
of +0.1 inch mounted in the holders and measuring against the plates. The
averaye of these readings provided a secord measure of the shear displacement.

After several cycles of loading, the integrity of the core is reduced

by ¢racking and/or crushing of the concrete and the relizbility of the
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measurements obtained using the schemes presented atove is reduced once
this stage is reached. Alternate schemes were developed to circumvent this
problem. Two LVDT's with +0.1-inch (+2.54-mm) range were mounted on the

steel plates post-tensioned to the specimens to meaiure the relative

displacement of the steel plates.

Two additional LVDT's with +1-inch (:2.54-my) range were also
mounted or the steel plates, fllustrated in Fig. 3.9. These instruments
provided data regarding the specimen response to large displacement cyclic

shear loading. At large displacements, the +0.1-inch (+2.54-mm) LVDT's

were disengaged.

3.5.2 Measurement of Axial Deformations

The axial deformation of the l-inch (25.4-nm) core was mea-
sured with two LVD1's, having ranges of +1/2 inch (#12.7 mm),
mounted in holders attached to the steel plates post-tensioned to the
specimen. The LVDT's measurcd directly against specially prepared sur-
faces on the plates opposite them. Figure 3.10 illustrates the place-
ment of this instrumentation.

3.5.3 Measurement of Spiral Strain

The confining pressure on the core is directly proporticnal to
the stress in the spiral. To measure the associated spiral strain,
two weldable strain gages were attached at diametrically opposed points

on the outside of the spiral within the exposed test core.

3.6 Data Acquisition System

A1l transducers used for testing were read at selected stages of
the test directly through a high-speed data acguisition system. Two

X-Y-Y' recorders were used during testing to provide continuous plots
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of the shear force versus axial Toad, axial displacement, shear displace-

ment and feedback displacement.

3.7 Testing Procedure and Loading Sequence

At the commencement of testing, a predetermined axial load was applied
to each specimen. A summary of the applied axial loads is given in
Table 3.1. The selected stresses of 0.45 fé and 0.7 fé correspond to
static and dynamic service level stresses, respectively. In six of the
eight specimens tested, the prescribed axial load was manually held
constant with an air pump. The shear force vercus axial load recorder
plot served as a guide for maintaining a constant axial load. Shear
displacements were generally applied according to the loading history
shown in Fig. 3.11.

After specimens S1U4 ard S1C4 were initially cracked, the crack
width rather than axial load was maintained constant for the duration
of the test by making manual adjustments of the axial 1oad according to

the recorder plot of shear force versus axial displacement.

3.8 Performance of Testing Facility

In general, the performance of thc testing facility was excellent.
Only minor problems arose during testing of the first specimens which led
to the introduction of slight modifications. Several oi the bolted friction
connections slipped during application of the shear force, so to eliminate
the resyltant "roise" in the test data, sume of the connections were welded,
Rotation of the bottom half of the specimen about the pin and clevis con-
nection directly beneath it was also noted and screw jacks were positioned

in the connection to restrain its rotatinnal freedom.
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After the modifications mentioned, the testing facility was proven
to be capable of applying a shear force of 212 k (943 kN), which is
close to the maximum load capacity of the jack used for such a purpose

[235 kips (1050 KN)].
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4. TEST RESULTS AND THEIR EVALUATION

4.1 General Remarks

To facilitate the presentation of experimental results, the discussion
is divided into two parts. Those results cbtained under monotonically
increasing displacements are discussed under the heading of Monotonic
Behavior. The results obtained under repeated cycles of deformation

reversals are presented under the denowination of Hysteretic Behavior,

4.2 Monotonic Behavior

4.2.1 Under Constant Axial Load

Initial Stiffness. The initial shear stress, v (obtained dividing the

total applied shear load by the gross area of the core}, versus shear
deflection, év‘ response was linear for all specimens tested under constant
axial load, as can be seen from the plots of v vs. av for four of the
specimens shown in Figs, 4.1 and 4.2, A comparison of these plots indicates
that the initial tangent stiffness is related to the axial load and a trend
of increasing stiffness with increasing compressive normal stress is sug-
gested,

The dependency of initial stiffness on normal stress is contrary to
the concept ¢f linear elastic behavigor. Although concrete is not 2 linear
elastic material, its behavior under low stress ievels can be approximated
as such and its elastic modulus, Ec‘ and Poisson's ratio, v, remain nearly
constant below a stress ievel of aporoximately 0.45 f., consequently, the
jnitial shear stiffness should remain constant according to the equation:

0. fe

T )

Average experimental values for Ec and « yield an average theaoretical
shear modulus of 1200 ksi (8274 MPa). Experimentally derived shear
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moduli are computed from the equaticn:

6 - M
y
where
A = form factor (%9 for circular cross section)
v = shear stress
y = shear angle (rad)

Experimental and theoretical sheur moduli are compared in Table 4.1.

In all cases the experimental moduli are significantly less than the
value predicted by tinear elastic theory. This inconsistency between
the measured and theoretically computed shear moduli can be attributed
to several factors. Of particular significance is microcracking
initiated during curing of the specimens which influences the

linearity of the v-6, response and reduces the measured stiffness.

More extensive cracking within the core resulting from handling of the
specimens is also a possibility which must be acknowledged. Cracking
would result in a significantly reduced initial stiffness. Additionally,
the flexibility of the conduits cast in the specimens near the test
saction should be considered as a possible source of deformation tending
to dezrease experimental shear stiffnesses.

The magnitudes ot the elastic shear displacements were near the
level of electronic noise in the data acquisition system in some cases.
The loss of significance which results coupled with the uncertain
internal state of deformation require, first, that the results presented
for the linear elastic range »f behavior he considered approximate, and

second, that this problem he further investigated.
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Initial Strength. The average initial shear strenqgths of the specimens
based on gross cross-sectional properties are listed in Table 4.2. The
experimental strengths are compared with shear strengths obtained using
analytically derived exprossions. In most cases the experimental strengths
exceeded the anaiytical values, particularly for the specimens subjected
to hinh axial loads. There is an extreme discrepancy petween the ACI
values [9] and the experimental results because the ACI equation predicts
the diagonal tensile strength of concrete and not the punching shear
strength associated with high axial loads. The Bresler-Pister equation [11]
was also derived from experimental results where shear failure was initiated
by diagonal tension cracking in the concrete.

The devendency of the experimental shear strengths on the applied
normal stress is illustrated in Fig. 4.3. The general trend of the curve
indicates increased shear strength with normal stress but reduced rate
of increase under high axial loads. It should be noted that for <implicity
the direct contribution of the spiral to the shear strength of the confined
specimens was not deducted from the recorded strengths. The contribution
is dependent con the precise nature of cracking in the core and the maximum
possible contributicn of the spiral steel to the shear strength is only
50 psi (0.34 MPa),

The nonlinear <hear strength versus normal stress relationship was
substantiated by observations made durirg testing. Three general types
of failure were observed: diagonal tension, crushing, and a combination
of the two. Failure under zero normal stress was sudden --a single
diagonal tension crack formed across the specimen. Under a normal stress
of .45 fé, failure was less sudden -- a zone of c¢rushed concrete connected

with diagonal cracks provided the failure surface. Under an axial stress
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of 0.7 fé. the first visible cracks were nearlyvertical. The presence
of high shear stress reduced the effective compressive strength of the
concrete, resulting in a crushed zone across the entire core.
Figure 4.4 illustrates the three observed failure modes.

In general, spiral reinforcement will strengthen a concrete core
by providing radial confining pressure that can also help maintain the
integrity of the core by restraining the near vertical <racking observed
under high axiai loads. In this test series, however, little difference
in strength or behavior was noted between the confined and unconfined
specimens , due largely to two factors. First, the normal stress
Jevels were not high enough to produce significant confining pressure
by the spiral. The maximum spiral stress produced by the axial stress
on the core was 10 ksi {69 MPa)resulting in an average peak confining pres-
sure of 150 psi (1.0 MPa). Second, and perhaps the more important
factor, was the post-tensioned concrete above and below the test core.
The post-tensior:ng precompressed the test section prior to testing and
restrained lateral expansion of the core during testing.

4.2.2 Under Constant Crack Width

Specimen Si€4 was initially loaded in shear while subjected to
constant axial tension. When the maximum shear resistance was reached,
a crack formed across the test section and shear loading was continued
while a constant average crack width of 0.02 inch (0.51 mm) was maintained.
The initial shear stiffness measured after cracking ias 2200 k/in. (385
kN/mm) , approximately ane-eighth of the stiffness measured during
initial loading of the specimen in its uncracked state. Specimen
S1U4 was subjected to one cycle of shear loading with a constant average

crack width of 0.05 inch (1.3 mm). An initial cracked shear stiffness of
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600 k/in. (105 kN/mm) was found.
These results indicate .narkedly reduced stiffness for cracked edge

members where crack closure is restrained.

4.3 Hysteretic Behavior

4.3.1 Under Constant Axial Load

The specimens c¢ycled 1in shear while subjected to a constant axial
load exhibited similar shear stress versus shear displacement reltation-
ships. A typical plot is shown in Fig. 4.5, The load-deflection behavior
is characterized by initially linear response, as discussed previously,
with a subsequent reduction in resistance after maximum shear strength is
reached. 1In all cases, after two cycles of shear loadina with shear
displacements of approximately 0.3 inch (7.6 mm), i.e., exceedina that
corresponding to maximum shear resistance, the shear resistance became
neariy constant. This inelastic behavior represented frictional resist-
ance to shear. Test results indicate that the frictional shear resistance
increases linearly with normal stress. This relationship is i1lustrated
in Fig. 4,6,

These results can be undarstood in terms of the Coulomb-Mohr failure

theory which is expressed by the equation:
v = ptanp + ¢

where ¢ is the internal friction angle, ¢ is the cohesive strength, p
is the normal stress, and v is the shear strength., If a fully cracked

failure surface has been formed, the cohesion is zero. The equation:

Ve = ptand
fully defines the frictional shear strength in this case.
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The experimentally derived internal friction angle, ¢, was 32°.
This correlates very well with the average friction angle obtained by
other researchers [12].

Constant frictional resistance was attainable because axial short-
ening of the specimens was unrestrained. Each cycle of shear loadina
was accompanied by axial shortening of the specimen due to abrasion and
grinding of adjacent concrete surfaces. Figurr 4.7 illustrates the
relationship between axial shortening and shear displacement for two
specimens subjected to different axial loads. After small displacement
cycles, the grinding failure was accompanied by near constant axial
distortion per unit shear displacement, independent of the absclute
shear displacement. Under a normal stress of 0.7 fé. Specimen S1C3
exhibited an average axial displacement of 0.07 inch per inch of shear
displacement; Specimen S1C4 under a normal stress of 0.3 fé shortened
an average of 0.03 inch axially for each inch of shear displacement.
Although sufficient data is not available to generalize these results,
a direct proportionality between axial shortening and normal stress is
suggested for the range of axial stresses used in this study.

4.3.2 Under Constant Crack Width

Specimen S1C4 was cycled in shear while a constant average
crack width of 0.02 inch (0.51 mm) was maintained. A dramatic
difference in the shear force versus shear displacement relationship
was seen for this specimen. Rather than exhibiting stable hysteretic
behavior, as did the specimens under constant axial load, the hysteretic
load-deflection curve for this specimen showed degrading strength and

stiffness, in addition, the hysteretic loops were highly pinched.
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Similar test results have been found by other researchers [13]. The

shear stress versus shear displacement response accompanied by the
corresponding axial stress versus shear displacement relztionship is

shown in Fig. 4.8, The shear stress-shaar deflection behavior illustrated
was highly dependent on the normal forces developed during cycling.

Shear resfstance was proportional to ths average axial stress developed
over the cross section by local bearing of aggregate from adjacant crack

faces.
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5. APPLICATION OF EXPERIMENTAL RESULTS TO SHEAR WALL BEHAVIOR

5.1 General

The experimental results presented in Chapter 4 have limited
applicability. They cannot be directly related to the strength or
deformation characteristics of barbell-shaped walls because testing
was limited to longitudinally unreinforced concrete. The data obtained
can, however, be used to provide insight into the par-ticipatior of edge
members in the shear resistance of lateraily loaded shear walls. The
potential effect of edge members will be discussed according to the

load history of isolated shear walls.

5.2 Monotonic Loading

Under low shear and axial loads, an elastic distribution of shear

stress will develop across a wall. Elastic theory dictates that the
shear force at this stage is resisted primarily by the wall panel, as
loading increases, however, cracking in the tensile edge member and in
the wall panel modifies the shear distribution. Four static shear
failure modes have been gbserved.
Web Crushing. This failure mode is common in walls with relatively
thin panels. Flexural cracking along the tensile edge of the wall pro-
pagates diagonally across the wall panel due to the presence of high
shear. The shear force must be transferred across the wall through the
inclined struts between these cracks which results in a small zone of
high compressive stresces leaaing to panel splitting and/or crushing.
Figure 1.1(a){i) illustrates this failure mode.

The confined compression edge member care is generally sound when

the panel crushes since the effective compressive strength of the core
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is greater than the strength of the unconfined panel. At this staje,
the edge members act as short columns to resist the shear and asso:iated
bending and axial forces. No experimental data has yet been collected
to predict the shear strength under this situation.

Diagonal Tension. If a wall panel has not been adequately designed to

resist shear or if the shear span to depth ratic is small, a sudden
diagonal tension crack can form across the panel resulting in a
sudden transfer of shear to the compression edge member. This failure
mode is illustrated in Fig. 1.1{a)(ii).

The compression edge member ultimately fails in punching shear or
diagonal tension depending on the magnitude of its axial force. The
data given in Fig. 4.3 provides an estimate of the maximum concrete shear
resistance of the edae member.
$1iding Shear. It is possible to conceive of shear failure due to sliding
at a construction joint, A poor quality ccnstruction joint provides a
plane of weakness susceptible to sliding. Fiqure 1.1{a)(iii) illustrates
this mode of failure.

Experimental results have indicated, however, that the resistance ot
edge members to punching shear is very great. Large shear forces would
be required to deform both edge members sufficiently to permit stiding and
it is 1ikely that the required shear force is in excess of that causing
web crushing in typically proporticned barbell-shaped vills, confirming
the lack of sliding shear failures observed in such wazlls.

Combined Diagonal Tension and $1iding Shear. Under relatively Tow loads

it is common for a horizontal erxdral crack to form near the base of a

wall across the width of the panel. S5liding may occur along this crack
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surface, but the strength and stiffness of ihe compression edge member
prevents the crack from nropagating into it, the lateral force on the
wall is consequently permitted to increase, Excessive shear in the panel
can lead to diagonal cracking. Dependiny on the magnitude of the axial
force in the compression edge member and the arrangement of the panel
cracks, failure of the edge member will result from purching shear or
diagonal tension. The maximum concrete resistance of the edge member

is given in Fig. 4.3.

5.3 "Elastic" Cycling

Elastic cycling of a shear wall will typically cause its 2dge members
to crack in tension, and additionally, a horizontal flzxural crack will
1ikely form across the wall pane. near the base. Since cycling is
restricted to the elastic range, the longitudinal steel in the edge
members will not have yielded. Cracks in the tensile edge member will
(except for the effects of volumetric changes) tend to ciose upon 1ad
reversal. After a few small shear displacement cycles, a !ower bound
on the shear resistance of the concrete in the edge member will be given
by the frictional resistance summarized in Fig. 4.6, however as the num-
b=r of cycles increases, the concrete will abrade. An effective
widening of the edge member cracks will result from the abrasion and
grinding since longitudinal steel restrains the axial distortion of the
concrete. The steel in the edge members resists most of the lateral
force at this stage. Since the concrete within the core is generally
intact and confined with closely-spaced lateral reinforcement, buckling
of the longitudinal bars in the edge members will be restrained. TRis

will permit the edge member cores to act as large dowels in resisting

27



shear. Experimental data must be collected to estimate this final shear
strength.

Lower bound estimates of the shear strength of edge members are
availahle from other researchers [4-G]. Tests have been performed an
tarbell-chaped shear wall models consisting of square edge members with
cores equal in diameter, similar in concrete strength, and similar in
confinement type and spacing to those 4sed in the investigation reported
herein. Pseudo-static, seismic-type excitations were applied to these
wall madels according to various load histories. In general, flexural
cracks in the ternsion edge member, diagonal cracks in the wall panel,
and pertial crushing of the compression edge member cover preceded web
crushing failure of these specimens. In one specimen which was cycled
elastically and subsequently loaded monotonically to failure [4], a
maximum shear force of 248 kips (11083 kN) was resisted prior to panel
crushing. The loss of the panel as a significant shear resisting element
caused the lateral force to suddenly drop to 180 kips (801 kN). The
axial force on the compression edge member was 380 kips (1690 kN) at
this stage and this edge member remained as the primary shear resisting
eiement in the wall.

The high axial compression to which the edge member was subjected
likely reduced its shear strength relative to the specimens tested under
225 kips (1000 kN),reported on in this investigation. The average of
the initial shear strengths of Specimens $1U3 and S1C3 was 205 kips
(910 kN). The apparent reduction in shear strength under higher exial

loads correlates well with the trend suggested in Fig. 4.3.
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5.4 ]nelastic Cycling

Wide cracking in the tension edge member will result from yielding
of the longitudinal steel therein. Upon load reversal, these cracks
will remain open until comparable yielding occurs in the opposite direction,
Resistance from the concrete in Lhe edge member is available only at
large displacements since the shear stiffness of concrete with a finite
crack widih is greatly reduced. At large displacements, however, the
edge member reinforcement is capable of effectively resisting applied

lateral forces.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From observations made during testing and an evzluation of the
experimental results obtained, several conclusions have been drawn.
They are grouped into thwveecategories. First, conclusions regarding the
perforﬁance of the testing facility are presented. Second, conclusions
concerning the hehavior of the test specimens are given. Finally,
implications relating to the overall behavior of barbell-shaped walls
are listed.

6.1.1. Performance of Testing Facility

(1) The test frame has been proven to be capable of applying a
shear force of 212 kips (943 kN). The design load of 235 kips (1045 kN)
shear is likely attainable‘butperhapsinsufficienttotestspec1mens§ubjected
to axjial stresses in excess of 0.7 fé and/or those reinforced with longi-
tudinal steel if the height of the core is kept equal to one inch.

(2) Frictional losses in the test frame likely reduced the shear
forces applied to tke specimens. The magnitude of these reductions
could not be measured with the given testing facility.

6.1.2 Behavior of Tested Edge Member Specimens

The specimens tested provided data on edae members subjected to
axial stresses ranging from 0.02 fé tension to 0.7 fé compression.
The conclusions drawn from an evaluation of the test results follow.

(1) The magnitudes of the experimental shear moduli, G, were
smaller than that generally assumed.

(2} The shear strength of all specimens was sensitive to the

applied normal stress. Increased axial stresses resulted in larger
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shear strengths. The shear strength increased less rapidly at axial
stresses above a seivice level of 0.45 fé when crushing preceded shear
failure. Because punching shear rather than diagonal tension failure
results under the combination of high axial compression and shear, the
ACI equation is toc conservative to predict the shear strength of edge
members .

{3) When axial distortion of the specimens was unrestrained, a
constant frictional resistance was obtained under cyciic shear loading.
This corresponded to a concrete internal friction angle, ¢, of approxi-
mately 32°.

{4) The monotonic behaviar of cracked specimens with crack widths
maintained constant during shear loading was markedly different from
that of uncracked specimens tested under a constant axial load. Maximum
shear resistauce of the cracked specimens was attained at considerably
larger displacements than for the uncracked specimens. An average crack
width of 0.02 inch (0.51 mm) reduced the initial stiffnesc of Specimen
$1C4 to one-eighth of that computed for uncracked Specimen S1U1 tested
under zero axial load. The maximum shear resistance of Specimen S1C4 was
only about one-tenth of that measured for the specimens loaded with an
axial stress of 0.7 fé.

{5) The shear stress versus shear displacement behavior of the
specimens cycled in shear under constant crack widths resulted in
strength and stiffness degrading pinched hysteretic Toops.

6.1.3 Behavior of Barbell-Shaped Isolated Shear Walls

{1} The high shear strength and stiffness of edge members under

axial compression limits the likelihood of sliding shear failure in
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barbell-shaped walls. Web crushing must first occur to sufficiently
increase the height of the sliding region in the panel, only then will
short column behavior c¢f the edge members be induced.

{2) Tension in an edge member producing yielding of the longitudinal
steel and wide cracking of the concrete will reduce the overall shear
strength and stiffness of the wall as it is cycled in shear. If cracks
are not closed by compression yiclding of the steel, only the reinforce-

ment in the edge members will be capable of resisting lateral loads.

6.2 Recommendations for Future Research

Results of the reported inves*tigation suggest modifications and/or
further studies in the following areas.

6.2.1 Testing Facility

(1) To enable the study of specimens subjected to axial stresses
in excess of 0.7 fé and/or those longitudirally reinforced, the testing
facility should be modified to accommodate the increased shear force
demand, Alternatively, the specimen test sec-ion cnould be decreased in
size to reduce the demand.

{2) To assure accurate measurement of the shear force resisted by
a specimen, the frictional losses in the test frame should be monitored.
A load cell placed on the opposite side of the specimen from the shear
loading jack may be found suitable.

" {3) An improved scheme to resist rotation of the bottom half of
the specimen is advisable. Screw jacks were used to block the pinned
connection beneath the specimen for a tempovary rotational restraint.
6.2.2 Test Specimen

(1) The reasons for the low experimental shear moduli should be

investigated further,
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(2) The core height should be increased to study the effect of
confinement on the shear strength and stiffness of edge members as well
as to investigate the conditions under which diagonal tension failure
occurs in edge members. The introduction of bending will permit a more
indepth study of dowel action or short column behavior.

(3) Longitudinal steel should be added to the specimens to study
the relative contributions of concrete and steel to the shear strength
and stiffness of edge members. This will permit an assessment of their
interaction and an understanding of the overall behavior of edge members.

(4) Under extreme seismic excitations, edge members will likely
be subjected to axial lpads in excess of those applied to the specimens
reported on in this investigation (0.7 fé). Axial loads close to the
compressive strength of the specimens should be applied to provide data
over the entire range of potential compressive forces.

Longitudinally reinforced specimens should also be subjected to
axial loads large enough to cause tensile yielding of the steel and wide
cracking in the concrete.

(5) Additional tests should be performed with a range of crack
widths maintained constant during shear loading.

Once the testing procedure is refined and the basic behavior of
edge members is understood the effects of several additional parameters
should be studied. These include the amount and type of confinement,

load history, rate of loading, concrete strength, and aggregate type.
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TABLE 2.1 - CONCRETE MIX

Material

Wt. for 1 cu. yd.* (1bs)**

Cement Type 1 636
Fine Sand 325

Coarse Sand 1316
Aggregate 1287
Water 326
* | cu. yd. = 0.765 m?

** 1 1b, = 4,45\

Preceding page blank
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TABLE 3.1 ~ AXIAL LOADS APPLIED DURING TESTING

Axial Stress

Axial Stress

Constant Average

Specimen Ouring Monotonic During Shear Crack Width During
Shear Loading Cycling Cycling

s1u1 0 - -
UK 0.45 fc 0.45 fé -
$1U3 0.7 fé 0.7 fé -
S1u4 - - 0.05" (1 cycle)
51C) - 0.16 fé -
51C2 0.45 fé 0.45 fé -
S1C3 0.7 fé 0.7 fé -
S1C4(a) -0.2 fé - 0.02"

(») - 0.3 fé -

(- not included in test)

1in. = 25.4 mm

Specimen Designation

$ 1 ufc 2

l—Spec'huen Number
Unconfined/Confined
Test Series Number

Shear Test Series
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TABLE 4.1 - COMPARISON OF EXPERIMENTAL AND
THEORETICAL SHEAR MODULI

F:--_ Axial Experimental Average Theoretical

Cpecimen Stress, p Shear Mgdulus. G Shear Mody]us. G
(ksi)* (ksi)

S1C4 -0.2 fé 300 1200

51Ul 0 310

s1u2 0.45 fé 330

S1C2 0.45 fé 280

S1U3 0.7 f. 560

$1C3 0.7 fé 540 J’

* 1 ksi = 6.895 MPa

42




TABLE 4.2 - COMPARISON OF EXPERIMENTAL AND THEORETICAL SHEAR

STRENGTHS OF INITIALLY UNCRACKED SPECIMENS

Axial Shear Strength, vy {psi)*
Specimen :t(r;ssis) Analytical
Experimental
(1) (2)
S1c4 -94 318 0 346
S1Ut 0 266 143 406
s1y2 2177 2516 300 813
S1c2 2260 2617 303 987
S1u3 3513 3116 395 754
$1C3 3536 3339 404 1234
* 1 psi = 6895 Pa
Nu 9
(1) VC = 2 (1 + m—p‘—g) Vfc bwd {Ref. ]
vy Vc/Ag
(2) T, = 0.949 o, + .05 f:: [Ref. 11]
- = VZ 2. 300
where Ty 15 [ I1 312_1
= 1
% = 31
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Fig. 2.4 Formwork Assemblage Procedure
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Fig. 3.3 Axial Loading System

56



M3IIA 1SV3 (q)

snjededdy Supeol |etxy ¢°€ ‘614

dnN13S vN1ov (9)

M3IIA 1S3m (o)

WY38 ONILI3INNQD —————

WOVP diX 002

Y le———8V7S NMOG- 3L ——:

4

QoY ONISS3¥ 1S34d

57



-

Dwecton of Shear Loadng

Fig. 3.6 Specimen Shear Deformations
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SHEAR STRESS (pwi) ,v
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Fig. 4.5 Typical Cyclic v-dv Magram
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Fig. 4.6 Frictional Shear Resistance Versus
Normal Stress Diagram
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Fig. 4.7 Axial Shortenina Versus Shear Displacement
Diagrams, Specimens S1(3 and S1C4
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